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Abstract

Background: Entropy when applied to biological signals is expected to reflect the state of the biological system.
However the physiological interpretation of the entropy is not always straightforward. When should high entropy
be interpreted as a healthy sign, and when as marker of deteriorating health? We address this question for the
particular case of human standing balance and the Center of Pressure data.

Methods: We have measured and analyzed balance data of 136 participants (young, n = 45; elderly, n = 91)
comprising in all 1085 trials, and calculated the Sample Entropy (SampEn) for medio-lateral (M/L) and anterior-
posterior (A/P) Center of Pressure (COP) together with the Hurst self-similariy (ss) exponent a using Detrended
Fluctuation Analysis (DFA). The COP was measured with a force plate in eight 30 seconds trials with eyes closed,
eyes open, foam, self-perturbation and nudge conditions.

Results: 1) There is a significant difference in SampEn for the A/P-direction between the elderly and the younger
groups Old > young. 2) For the elderly we have in general A/P > M/L. 3) For the younger group there was no
significant A/P-M/L difference with the exception for the nudge trials where we had the reverse situation, A/P <
M/L. 4) For the elderly we have, Eyes Closed > Eyes Open. 5) In case of the Hurst ss-exponent we have for the
elderly, M/L > A/P.

Conclusions: These results seem to be require some modifications of the more or less established attention-
constraint interpretation of entropy. This holds that higher entropy correlates with a more automatic and a less
constrained mode of balance control, and that a higher entropy reflects, in this sense, a more efficient balancing.

Background
The attention-constraint interpretation (ACI)
There is a longstanding interest to analyze biological
signals in terms of complexity, regularity and chaos.
Measures such as entropy, the Hurst ss-exponent and
fractal dimensions have become popular. In physiology
one can perceive two general lines of interpretations for
such measures: (A) One may interpret irregularity and
high entropy as signs of a healthy vigilant system;
indeed, at the other extreme end we have death which
is characterized by a “flat line”. Irregularity may thus
been seen as a mark of alertness. The system explores
the “phase space” and is ready for the unexpected. An
impaired system in contrast may become rigid and
trapped in repeating patterns unable to successfully
cope with new challenges. (B) On the other hand, irre-
gularity and high entropy may be taken as signs that the
system is loosing its structure and becoming less

sustainable. This is close to the traditional interpretation
of entropy as a measure of disorder and noise.
Standing posture is a case in point with regards to

these dualistic interpretations. When measuring the
excursions during quiet standing in terms of the center
of pressure (COP) one may interpret “chaotic” excur-
sions as a sign of poor balance and deficient postural
control. On the other hand, chaotic excursions may be
also interpreted as a characteristic of a successful vigi-
lant strategy to keep balance. Obviously both interpreta-
tions can be correct, but the question is then how to
decide which one is the most appropriate one in a case
at hand. Or more generally, when is a high entropy,
fractal dimension, etc, to be interpreted as a sign of a
pathological condition and when as a sign of health
[1-4]? This is also intertwined with the issue of com-
plexity vs regularity, and what metric measures which
[4]. Roughly speaking entropy is thought to be asso-
ciated with regularity while various fractal measures are
related to complexity, but there is no agreement on this
issue. Since there is no unambiguous definition of
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complexity, theres is no single complexity measure. This
motivates the inclusion of a fractal variable in our inves-
tigation as a complementary measure, although the
interpretation of entropy vis-a-vis balance is the main
focus. In the present case we use Sample Entropy [5] as
the entropy measure, and the Hurst exponent a, based
on the detrended fluctuation analysis (DFA) [6], as our
fractal measure. The use of DFA in posturographic ana-
lysis goes at least as far back as [7] with some more
recent investigations such as [8-10].
Table 1 lists a selection of some recent works on the

use of entropy in connection with postural control
[1,10-18]. Thus a decrease in entropy may be inter-
preted as sign that more attention is devoted to the bal-
ancing which causes a regularization of the COP-curve
[13], and conversely that a higher entropy indicates that
balancing requires (or gets) less attention [17] and can
be handled by the “auto-pilot”. While most authors find
their hypotheses about entropy confirmed one exception

is [10] who finds the larger entropy for elderly to be in
conflict with the hypothesis of a decreased complexity
with ageing. In our case we also found higher entropy
for elderly, which also had higher entropy for the eyes
closed condition compared to the eyes open condition,
contrasting with [13,17]. The common expectation is to
find less complexity for the elderly in general [2], which
though does not necessarily mean smaller entropy [4]. If
we adopt the preliminary hypothesis that increasing
entropy signifies that lesser attention is devoted to bal-
ance control then, in the light of the results for the
elderly, it must be modified: Increasing entropy may be
interpreted as an inability in some circumstances to
exert effective attentive control. Thus, an entropy
increase during the EC condition could be interpreted
as a reduction of an effective attentive control of balance
due to the lack of visual input (compensatory proprio-
ceptive inputs are perhaps impaired), the result is there-
fore a more irregular sway. According to this, ballet

Table 1 A summary of some studies of entropy in balance

Publication Study details Results

[11] Case study of a 73 y woman with a labyrinthine deficit. Balance
training. Dynamic and static tests. Entropy variable: ApEn [28].

Higher entropy after training interpreted as “improved stability”,
“increased complexity”, and as a sign of “a more self-organized
system”.

[12] 30 young adults. Modified SOT test. Dual task DT (digit recall) vs
single task ST. Entropy variable: ApEn.

DT > ST (AP-direction, quiet standing). “Potential of ApEn to
detect subtle changes in postural control.” Higher ApEn
interpreted as a mark of “less system constraint”, and a decrease in
ApEn as a “change in the allocation of attention.”

[13] 30 young adults. QS, EO, EC, DT, ST. DT = uttering words
backwards. Entropy variable: SampEn [5] ("regularity”) plus scaling
exponent, correlation dimension and Ljapunov exponent.

ST: EC < EO; EC: DT > ST. “Regularity of COP trajectories positively
related to the amount of attention invested in postural control.”
Increasing entropy during DT/EC interpreted as an increase in
“automaticity” or “efficiency” of postural control.

[14] 10 ballet dancers and 10 track athletes. Foam vs rigid support.
Shoulder width stance. Entropy from RQA analysis [35].

Dancers < athletes; EC > EO; foam > rigid. Increasing entropy
interpreted as sign of “greater flexibility”. Note: the entropy here is
calculated differently than SampEn or ApEn.

[10] 14 young and 14 elderly. QS 60 sec and prolonged 30 min.
Shoulder width stance (60 sec). Entropy variable: mul-tiscale
entropy MSEN [36] plus scaling exponent (DFA [6]).

Old > young (AP-direction); DFA: old < young. Higher entropy for
elderly found to be “inconsistent with the hypothesis that
complexity in the human physiological system decreases with
aging.”

[15] 11 low and 11 highly hypnotizable students. 30 sec QS with EC,
plus mental computation. “Easy” = stable support; “difficult” =
unstable support (foam). Feet position: 2 cm heel-to-heel, 35°
splay. Entropy variable: SampEn.

Difficult > easy. “No significant hypnotizability-related modulation
was observed.”

[16] 10 diabetics II with symptomatic neuropathy, 10 asymptomatic
diabetics, and 10 non-diabetics. QS, EO, EC, COP measured in AP-
direction. Entropy variable: ApEn.

EC > EO stat. significant only for symptomatic diabetics.

[17] 19 preadolscent dancers and 16 age-matched non-dancers. 20 sec
QS with
EO, EC, DT. DT = memorize words
from audiotape. Entropy variable: SampEn.

Dancers > non-dancers; EC < EO; DT > ST. Higher entropy
interpreted as increased “au-tomaticity of postural control.”

[18] 19 infants with typical development and 22 infants with delayed
development. Sitting postural sway. Entropy variables: symbolic
entropy and ApEn.

Delayed < typical in ML-direction. “Healthy postural control is seen
to be more complex.”

[1] Case study no. 2, 18 y old collegiate soccer player with cerebral
concussion. Entropy variable: ApEn.

Entropy decreased during recovery from concussion. Entropy “can
be considered as a measure of system complexity”. “Lesser
amounts of complexity are associated with both periodic and
random states where the system is either too rigid or too
unstable.”
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dancers have high entropy because they need not devote
much attention to balance (their well trained “auto-
pilot” handles the balancing) while elderly have high
entropy because they cannot in a similar manner, even
if they want to, exert an effective attentive control of
balance and “cool down” the system.

COP and the feedback loop
At this point it may be a good time to step back a bit
and think about what the Center of Pressure (COP) is
really measuring. As long as the person stands like an
inverted pendulum and controls the posture via ankles,
the COP follows closely the Center of Mass (COM)
and in this sense gives a good measure of the sway.
However, what COP directly measures is the force act-
ing on the force plate via the feet soles. It thus records
a sum of the muscular activity of the plantar extensors
and flexors, which indeed can be tested with electro-
myographic (EMG) methods [19]. Therefore a highly
variable COP corresponds to a highly variable muscu-
lar activity. From a control theory point of view COP
is a control variable (the acting force) in a feedback
system (see Fig 1), and is dynamically closely related
to the output variable (sway). This can lead sometimes
to confusions when interpreting the results in terms of
cause and effect [20]. In Fig 1 noise refers to random
or spontaneous processes which in the neural system
may be associated with the membrane dynamics. They
are depicted as independent sources but they may be
under the influence of the feedback loop. Also their
output could be placed at alternative points in the dia-
gram. The “+” and “-” signs at the sensory noise arrow
emphasize that noise may also have a beneficial effect
and enhance the sensory threshold e.g. by a process
called stochastic resonance [21]. External forces are

gravity and perturbations such as a nudge. Given all
the acting forces the motion of the system is deter-
mined by dynamics (Newtonian mechanics). External
sensory constraints include eyes closed condition.
Internal constraints may include peripheral neuro-
pathy. The afferent signals are handled principally on
three levels. The fastest response is the myotatic
stretch reflex (~ 40 ms), then follows the learned auto-
matic responses (~ 100 ms), and finally we have the
voluntary responses (> 150 ms). These are annotated
as the spinal, cerebellar and cortical components in
the diagram.
Strictly speaking the cortical-volitional part breaks

the closed loop since the person may decide to change
the “setpoints” at any time (with a delay!). In experi-
ments it is though assumed that the participant is
instructed e.g. to stand as still as possible and that this
constrains his/her responses so as to mimic an auto-
maton (the balance “auto-pilot”). In the diagram we
have indicated the output entropy variable(s) S calcu-
lated from the COP-data. In a closed loop like this the
entropy could prima facie depend on anything, how-
ever if we follow the ACI interpretation we could write
the model symbolically as

Entropy Automatic Noise Attention= + − . (1)

That is, the basic assumption is that the automatic
responses/control increases entropy while the volitional
control decreases it. The later effect may be understood
as a consequence of the longer volitional response time
and consequent more sluggish behaviour. One natural
hypothesis then is that volitional control determines the
setpoints on a longer time scale, while the automatic
control handles the fine tuning toward the setpoints on
a shorter time scale. From this interpretation it does not

Figure 1 Balance control system. A schematic view of the balance control system which describes a closed loop.
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necessarily follow that larger entropy implies smaller
COP amplitude. Large entropy may either be associated
with a complex fine tuned control (resulting in small
COP amplitude) or a an inefficient chaotic control
(resulting in a large COP amplitude).

Methods
Participants
The group of “elderly” were community dwelling home
care clients from a Finnish municipality. They were
recruited for a fall risk study. Of these 37 were classified
as fallers (F) meaning that they had fallen once or more
during the past 12 months at the time of the study. The
group of “young” were healthy adults recruited from the
same area and were typically office workers. Age and
BMI (body mass index) are given in Table 2. All partici-
pants gave their written informed consent. The study
was approved by the ethical committee.

Measurements
The balance measurement was performed using a stan-
dard strain gauge force plate (model B4, http://www.
hurlabs.com) connected to the PC via USB. The proto-
col, designed at our lab for fall risk assessment, con-
sisted of the following trials (EO = eyes open; EC = eyes
closed):

EO1 First EO trial
EC1 First EC trial
EO2 Second EO trial
EC2 Second EC trial
FOAM Standing on foam EO (2 cm PE-foam)
HEAD R Autohead rotation EO (neutral ® left ®
right ® neutral)
HEAD E Autohead extension EO (neutral ® up ®
down ® neutral)
NUDGE Perturbation EO (one forward nudge at the
waist level at the beginning of the trial)

Each trial lasted 30 seconds. The foot position (shoes
off) was standardized [22]: clearance (heel-to-heel dis-
tance) of 2 cm; 30° splay (angle between medial sides of
the feet). Arms were held at the sides. A mark on the
wall (3 m distance, height 1.5 m) was used for fixing the
gaze. The instruction to the participant was to be
relaxed (breath normally, etc) and to stand as quiet as
possible.

Analysis
For calculating the Sample Entropy (SampEn) and
Detrended Fluctuation Analysis (DFA) we used the
computer codes obtained from Physionet [23]http://
www.physionet.org/physiotools/. For SampEn we used
the “default” parameter values m = 2 and r = 0.2. Before
calculation the COP-data was down sampled from
200 Hz to 10 Hz since: (a) there is little of physiological
significance above 10 Hz in the COP signal; (b) it les-
sens the computational burden of analyzing about 8
hours of data; (c) this down sampling corresponds to a
lag value also used e.g. by [12]. 10 Hz corresponds to
100 ms which is of the order of the automatic responses
and hence also makes physiological sense as a lag time.
The sampen function was used with the -n option
meaning that the data was normalized before the
entropy calculation (mean value is subtracted and the
result is then divided by the standard variation). As a
measure of the amplitude of COP we have computed its
standard deviation denoted sX and sY for medial-lateral
and anterior-posterior direction respectively. For statisti-
cal significance level we use p < 0.05. For statistical cal-
culations and data visualizations we have used
MATHCADhttp://www.ptc.com/products/mathcad/ and
the R-package [24]. The two-sample Welch t-test for
comparing the means of two sets A and B with unequal
variances was calculated by the R-command t.test
(A,B). When checking the entropy difference between
the EO and EC conditions we have applied the paired t-
test to S(EO1) + S(EO2) and S(EC1) + S(EC2). Statistical
tests with respects to all trials have been calculated
using the averages over the trials for each person. (In R
one can use the aggregate command with FUN =
mean to obtain the means.)

Results and Discussion
Results
The Figures 2, 3 and 4 give an overview of the results.
We discuss the notable features for each variable in
separate subsections. In the figures we have plotted the
mean of the corresponding variable for each subgroup
for each trial (F = elderly fallers, NF = elderly non-
fallers, Y = “young”).
Sample entropy
For medial-lateral (X) vs anterior-posterior (Y) a promi-
nent feature is that the groups of elderly have higher
entropy for the Y -direction: S(Y ) >S(X) (p < 0.0001).

Table 2 Participant characteristics

Group Number (♂ + ♀) Age ± SD BMI ± SD (kg m-2)

Elderly Fallers (F) 34 (6 + 28) 81.5 ± 5.7 (68 - 94) 27.3 ± 4.8 (17.7 - 37.6)

Elderly Non-Fallers (NF) 57 (14 + 43) 79.8 ± 6.2 (64 - 91) 29.6 ± 5.3 (20.8 - 46.1)

“Young” (Y) 45 (16 + 29) 38.9 ± 11.6 (17 - 61) 24.3 ± 3.4 (19.5 - 33.8)
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A general pattern is the higher entropy in the X-direction
for eyes closed condition (EC) compared to the eyes open
(EO) condition, S(EC, X) >S(EO, X) (p < 0.0005). For Y -
direction the elderly fallers have a pronounced increase in
the eyes closed case compared to the eyes open case (p <
0.0001). A final interesting feature is the decrease of
Y-entropy for the nudge trial for all groups (p < 0.0001).
COP amplitude
An expected feature is that the “young” in general have
a smaller COP amplitude (p < 0.0001). One exception is
the Y -amplitude for the nudge trial. Since the COP Y is
proportional to the righting torque the relative large
COP Y for the “young” group in the nudge case reflects
the ability to counteract the nudge. The elderly tend to
have larger X - and Y -amplitude with eyes closed com-
pared to eyes open (p < 0.0001). The larger lateral COP
X amplitude is a distinguishing feature between the
elderly fallers and non-fallers for the foam (p = 0.009)
and head extension (p = 0.04) conditions.
Hurst ss-exponent a
We note that mean values a for the groups stay well
within the range 1 - 1.5 characterizing anti-persistence.
For the elderly we have a higher a-value in the

X-direction, a(X) >a(Y ) (p < 0.0001). Another pattern
is that a(X) is lower for the “young” compared with the
elderly (p < 0.0002). A conspicuous feature for the
elderly is that a goes up and down from trial to trial.
This is true also for the “young” in the X-direction but
not so in the Y -direction.
Relations
For all the variables we have a positive correlation
between the X- and Y -components. What is more
interesting are the negative correlations for the pairs
Entropy X, Hurst a(X) (corr. = -0.68, p < 0.0001) and
Entropy Y , Hurst a(Y ) (corr. = -0.84, p < 0.0001), see
Fig 5. A negative correlation is expected as far as a
higher a value is associated with a smoother signal
which in general implies a smaller entropy. The nudge
tests deviate a bit from the general pattern; this was the
condition where entropy took a plunge. Of interest is
also the question whether there is some relation
between entropy and COP amplitude. Fig 6 depicts
entropy S(Y ) for the Y-direction plotted against the
COP Y amplitude sY . For the “young” there is a quite
distinct pattern with a “knee” around S(Y ) = 0.5 as in
Fig 5. Discounting the nudge trials then only the
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Figure 2 Entropy. Entropy for the X and Y direction for all the trials and the three subgroups: Elderly fallers (F), elderly non-fallers (NF), and
young (Y). For each group the value is the group average.
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“young” group has a significant correlation between
entropy S(Y ) and Y-amplitude sY (-0.39, p < 0.008).

Discussion
The attention-constraint interpretation (ACI) seems to
be in accord with lowering of entropy S(Y ) in the
nudge trial (Fig. 2). However, the higher entropy in the
eyes closed case, S(EC) >S(EO), seems, prima facie, to
be at variance with the ACI and some results in the lit-
erature, see e.g. [13,17] or Table 1. We may though
understand the higher entropy in EC case, despite an
“increasing cognitive involvement in postural control”
[[13], p. 1], if the lack of visual cues cannot be compen-
sated for by other proprioceptive cues. That is, lack of
sensory information through sensory deprivation, or
impairment, may imply that an increase of cognitive
involvement does not translate into a corresponding
constrained mode of balance. The pilot is so to speak
flying blinded. Suppose the attentive control works by
increasing the deterministic component in relation to
the noise and that it may in this way lead to decreased
entropy. However, if the sensory input is affected by

noise then the output of the deterministic control will
also be accordingly affected by noise, and we may see
an increase in entropy instead of a reduction. The
higher entropy S(Y ) for the elderly may be interpreted
along these lines as an effect of a more impaired (noisy)
sensory system which provides less precise input for the
balance control. This is supported also by Fig. 6 where
the data for elderly show an increase in the scatter of
COP Y when entropy is above about 1 unit. For the
young, however, an increased entropy S(Y ) is associated
with a smaller COP Y . In this case increased entropy
apparently signifies a more fine tuned control and not
so much the contribution from noise.
One finding related to fallers vs non-fallers was the

greater medial-lateral (M/L) sway for fallers during the
foam and head rotation conditions. M/L-sway (foam)
sX ≥ 10 mm indicates for the elderly roughly an odds
ratio of 4.5 for belonging to the fallers group. Several
other studies have also implicated increased lateral sway
as a marker for fall risk, see e.g. [25,26]. A novel feature
here may be the increased SampEn for the anterior-pos-
terior COP Y during eyes closed condition (EC) for the
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Figure 3 Center of pressure (COP). Standard deviation of COP X and COP Y for all the trials and the three subgroups: Elderly fallers (F), elderly
non-fallers (NF), and young (Y). For each group the value is the group average.
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elderly fallers relative to the non-fallers. This suggests
that one should make further studies of the usefulness
of this entropy variable as a fall risk indicator. The rea-
son why a similar entropy increase does not show up
for the M/L-sway for the EC condition is a bit of a mys-
tery, but maybe is related to the somewhat different
control mode (shifting the weight between the legs) of
the M/L-sway for bipedal quiet standing, compared to
the control of the A/P-sway.
If we wish to establish a canon of entropy interpreta-

tion, we could proceed by measuring entropy vs COP
for various groups and conditions, as exemplified by
Fig. 6. Those groups which are known to have excellent
balance would then define the optimal entropy relation.
Hopefully this could then be followed up by a convin-
cing theoretical framework. With an appropriate test
protocol one could draw an entropy-COP diagram for
an individual that could yield further clinically useful
information on the weak/strong points of the balance
control. A complementary approach would be to use
brain imaging techniques during balancing tasks [27] to
reveal whether some specific functional areas, if such

areas can be identified, are correlated with the entropic
measures.

Conclusions
The data presented here provide further evidence that
entropy is a variable that may complement the tradi-
tional posturographical variables. Comparison of results
from young and elderly reveals though that more work
is needed to identify the correct physiological interpreta-
tion of entropy in a given situation. One way to proceed
is to measure the entropy-COP relation for various
groups of people and conditions. Those known to have
excellent balance control would define the optimal
entropy relation. Of clinical importance is to find those
conditions (test protocols) that yield a maximum of
information about deficiencies of the balance control,
yet are safe and simple to administer.

List of abbreviations
a: Hurst self-similarity (ss) exponent; ACI: attention-
constraint interpretation; ApEn: approximate entropy;
A/P: anterior-posterior; BMI: body mass index; COP X:
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medio/lateral center of pressure; COP Y: anterior/pos-
terior center of pressure; DFA: detrended fluctuation
analysis; EC: eyes closed; EO: eyes open; H: Hurst para-
meter; S: (sample) entropy; M/L: medial-lateral; s: stan-
dard deviation.

Appendix
Entropy
Approximate Entropy (ApEn [28]) and Sample Entropy
(SampEn [5]) which are commonly used in physiological
applications belong to the dynamic category. Dynamic
entropy is concerned with the predictability of the sig-
nal. If we know the signal up to time t0, how well can
we predict its succession for times t >t0? In terms of
information the question be formulated as follows: If we
know the signal for a time interval [ti, ti+1] how much
additional information is needed to predict the signal
for the time interval [ti+1, ti+2]? For a simple determinis-
tic signal no new information is needed once we know
the “formula” which generates it. On the other extreme,

for a completely random signal we need to know the
whole signal in advance in order to “predict” it. We can
also formulate the information excess as the entropy
produced per time of evolution, a concept which was
advanced by Kolmogorov (1958) and Sinai (1959) (Kol-
mogorov-Sinai entropy, KS, [[29], p. 193]). ApEn and
SampEn are simplified numerical estimates of the KS-
entropy. Generally speaking these entropies approximate
the expression ln(1/P), where P is the conditional prob-
ability that if two sets zi, zj of m consecutive data points
(d is the lag, typically taken as d = 1 depending on the
sampling rate),

z x x x

z x x x

i i i d i m d

j j j d j m d

≡

≡
+ + −

+ + −

( , , , ),

( , , , ),
( )

( )




1

1
(2)

are close to each other, ||zi - zj ||<r · SD, then so will
the next following points be too, |xi+md - xj+md| There-
fore ApEn and SampEn can be seen to estimate
the degree of “surprise” in the data. Here the distance
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|| zi - zj || between two sequences is defined as the lar-
gest absolute difference between any two pairs of data
points from the sequences. The distance is measured in
terms of the fraction r of the standard deviation SD of
the time series. Typical choices for the parameters are
m = 2 which is the so called embedding dimension, and
r = 0.2 for the so called tolerance; for more elaborate
methods of selections of these parameters see [30,31]. In
our case m is restricted by the size of the downsampled
time series (300 points). As a rule thumb one needs
about 10m - 20m data points [32].

The Hurst self-similarity (ss) exponent a
The Hurst parameter H (after the hydrologist Harold
Hurst) is related to a scaling property of time series x(t)
and is also though of as one of the metrics for complex-
ity (for which there is no universal definition [33]). The
idea is that if we appropriately rescale the time axis and
the ordinate then the curve “looks similar”. One mathe-
matical rendering of this idea is that the mean variance
(x(t + Δ) - x(t))2 depends on Δ as a power Δ2H,

( ( ) ( )) .x t x t H+ − ∝Δ Δ2 2 (3)

One example is a type of random motion called Brow-
nian motion for which H = 0.5. Basically we could deter-
mine H from numerical data by computing the variance
(3) for series of values Δ and map variance against Δ using
logarithmic axes. The detrended fluctuation analysis
(DFA) [6] is a variant of this method which is applied to
the cumulative sum y of x, yk = ∑i≤k xi, instead of x itself.
This is for numerical robustness reasons. Secondly the
data is divided into blocks of sizes n, and for every block
the data is approximated by a linear function yn by which
we obtain the “detrended data” y -yn. Finally the “variance”
is computed ∑1≤k≤N (yk -ynk)

2/N as the mean square the
detrended data. If this depends on n as n2a then a is
defined as the self-similarity parameter of x. For time ser-
ies which satisfy the self-similarity property we have the
theoretical relation a = H + 1. Because a is based on the
cumulative sum y it covers a bigger range 0.5 <a < 2 than
H which is restricted to the range 0 <H < 1. An important
property is that signals x with 0 <H < 0.5 (1 <a < 1.5)
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exhibit so called anti-persistence meaning that subsequent
increments in x tend to anti-correlate,

{ ( ) ( )} { ( ) ( )} .x t x t x t x t+ − + + − <2 0Δ Δ Δ 

For 0.5 <H < 1 (1.5 <a < 2) we have the opposite
property called persistence. For a pendulum, as an exam-
ple, we may expect persistence for small time intervals
since it tends to continue its motion in the same direc-
tion. For longer time intervals we expect anti-persistence
since the pendulum swings back. A smaller a-value for
quiet standing COP can thus be interpreted as a higher
degree of anti-persistence; that is, a higher proportion of
rapid corrective impulses.
For a self-similar curve the power spectrum Px(f), as a

function of the frequency f, has the form

P f
f f Hx( ) .∝ − = +

1
2 1

1
2 1a (4)

This relation suggests that with increasing a (or H)
the curve becomes increasingly smooth since the higher
frequency components are suppressed. Finally, in the
case of self-similar time series x(t), the Hurst ss-expo-
nent can be related to the fractal dimension D of the
graph (t, x(t)) as D = 3 - a = 2 - H [[34], p. 60].
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