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Abstract

The medium induced energy losses in heavy ion collisions are generally
measured using inclusive particle yields. In this thesis the method of two
particle correlations is used to study the possible modifications of the
transverse jet shape due to the medium induced energy loss. The main
observable in this thesis is the jet fragmentation transverse momentum
jT, defined as the transverse momentum component of the jet fragment
with respect to the jet axis. This can be measured using leading particle
correlations, where the trigger particle approximates the jets axis and the
associated particle is identified as the jet fragment.

The pp data at
√

s = 2.76 TeV and Pb–Pb data at
√

sNN = 2.76 TeV
measured by the ALICE experiment are analyzed to study the jT distri-
bution. The track selection criteria, corrections on track reconstruction
efficiency and acceptance and centrality class assignments are discussed
before constructing the jT distributions. The signal in these distributions is
the part coming from the jet fragmentation. The background in pp comes
solely from the underlaying event accompanying the hard scattering while
in Pb–Pb also the collective flow contributes to it. Two different methods
to determine the background component in pp and one in Pb–Pb are
presented.

The modifications of transverse jet shapes in Pb–Pb compared to pp
are deduced from the comparison of Pb–Pb and pp jT distributions. It is
observed that the jT distribution in Pb–Pb is broader (or harder) than that
in pp at low momentum region and there is a hint of the jT distribution
narrowing (softening) at high momentum region. The low-pT broaden-
ing could be possibly associated to the parton multiple scattering and
gluon bremsstrahlung inside the medium or to the interference of the
longitudinal flow and the fragmentation process. The narrowing of the jT
distribution at high-pT could be attributed to the (i) stronger suppression
of gluon than quark jets in the nuclear medium or to the (ii) kinematic
bias due to the fact that an observed particle of certain transverse momen-
tum corresponds to a harder parton in Pb–Pb collision as it does in pp
collision. The harder the parton is, the more collimated the fragmentation
gets kinematically.
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Tiivistelmä

Energiahäviöitä raskasionitörmäyksissä mitataan yleisesti inklusiivisten
hiukkasjakaumien avulla. Tässä tutkielmassa pyritään kaksihiukkaskorre-
laatioita käyttäen tutkimaan mahdollisia energiahäviöistä johtuvia jettien
poikittaismuotojen muutoksia. Tutkittava suure on jetin poikittaisfragmen-
taatioliikemäärä jT, joka määritellään jetin fragmentin poikittaisliikemää-
räkomponenttina jetin akselin suhteen. Tätä voidaan tutkia kaksihiukkas-
korrelaatioiden avulla valitsemalla liipaisinhiukkaseksi (trigger particle)
suurimman liikemäärän hiukkanen törmäyksessä, jolloin liipaisinhiukka-
sen liikemäärän voidaan olettaa olevan keskimäärin yhdensuuntainen jetin
akselin kanssa. Tällöin liittohiukkanen (associated particle) tulkitaan jetin
fragmentiksi.

Työssä analysoidaan ALICE-kokeen mittaamaa dataa pp-törmäyksistä
energialla

√
s = 2.76 TeV sekä Pb–Pb-törmäyksistä energialla

√
sNN =

2.76 TeV. Analyysissa esitellään kriteerit hyväksyttyjen ratojen valinnalle
sekä näihin valintoihin liittyvät korjauskertoimet todellisen hiukkasjakau-
man löytämiseksi. Työssä johdetaan ALICE-kokeen äärellisestä kinemaat-
tisesta alueesta johtuvat korjaukset mitattavien hiukkasparien lukumää-
riin. Lisäksi esitellään perusidea sentraliteettiluokkien määrittämisestä
kokeellisesti. Tämän keskustelun jälkeen rakennetaan jT-jakaumat. Näis-
sä jakaumissa signaali on jetin fragmentaatiosta tuleva osa. Tausta pp-
törmäyksissä tulee vain kovaa sirontaa ympäröivästä tapahtumasta, mutta
Pb–Pb-törmäyksissä myös kollektiivinen virtaus vaikuttaa taustaan. Taus-
tan määrittämiselle esitetään kaksi erilaista menetelmää pp-tapauksessa ja
yksi Pb–Pb-tapauksessa.

Jettien poikittaismuotojen muutoksia Pb–Pb-törmäyksissä verrattuna
pp-törmäyksiin etsitään vertaamalla toisiinsa jT-jakaumia Pb–Pb- ja pp-
törmäyksissä. Havaitaan, että jT-jakauma Pb–Pb-tapauksessa on leveämpi
(kovempi) kuin pp-tapauksessa pienella liikemäärällä ja kapeampi (peh-
meämpi) suurella liikemäärällä. Pienellä poikittaisliikemäärällä havaittu
jT-jakauman leveneminen voi johtua esimerkiksi perättäisistä siroamisis-
ta väliaineessa ja väliaineen indusoimasta gluonisäteilystä tai pitkittäi-
sen kollektiivisen virtauksen interferenssistä jetin fragmentaation kanssa.
Mahdollisia syitä suurella poikittaisliikemäärällä havaittuun jT-jakauman
kapenemiseen voivat olla (i) gluonijettien kvarkkijettejä suurempi tukahtu-
minen väliaineessa sekä (ii) eräs kinemaattinen ilmiö. Tietyllä poikittais-
liikemäärällä havaitut hiukkaset syntyvät kovemmista alkeishiukkasista
Pb–Pb-törmäyksissä kuin ne tekevät pp-törmäyksissä. Mitä kovempi al-
keishiukkanen fragmentoituu, sitä voimakkaammin siitä syntyvä jetti on
kinemaattisesti kollimoitu.
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Chapter 1

Introduction

Quantum chromodynamics (QCD) is the theory of the strong interac-
tion. It describes interactions between elementary carriers of color charge,
quarks and gluons. It is a crucial part of the Standard Model of particle
physics, which sums up a lion’s share of the current knowledge of the field.
Although the basic Lagrangian of QCD is known, certain phenomena are
not yet fully understood. One example of these is the confinement of
quarks and gluons. In ordinary matter quarks and gluons are confined to
colorless hadrons. QCD predicts that at very high temperatures quarks
and gluons can deconfine from mother hadrons and propagate freely in a
new phase called the quark-gluon plasma (QGP) [1, 2]. It is believed that
the early universe has undergone through this phase in less than a few
microseconds after the Big Bang.

In laboratory, such extreme conditions leading to the creation of QGP
are achieved in collisions of ultra-relativistic heavy nuclei. The research
facilities achieving the highest energy densities today are the Brookhaven
National Laboratory (BNL) at Upton, New York and CERN at Geneva.
The Relativistic Heavy Ion Collider (RHIC) at BNL is dedicated to heavy
ion physics. It is designed to study collisions of variety of nuclear species
ranging from deuteron to gold and uranium nuclei over a broad energy
range

√
sNN in 7 − 200 GeV. It can also study polarized proton beams

up to
√

s = 500 GeV. In CERN, on the other hand, the LHC collider is
mainly colliding protons to study electroweak physics. However, also
heavy nuclei can be accelerated with this machine. Currently the center
of mass energy

√
sNN = 2.76 TeV has been achieved for the Pb–Pb system

and the designed energy is
√

sNN = 5.5 TeV. The difference in energies
between RHIC and LHC is rather large and thus LHC opens up a whole
new energy regime for heavy ion research.
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2 CHAPTER 1. INTRODUCTION

The main topic of this thesis is to study the properties of QGP using
the Pb–Pb data at

√
sNN = 2.76 TeV measured with the ALICE detector.

This is done by studying the modifications of the transverse structure of
jets in heavy ion collisions using two particle correlations. To understand
the analysis, some basic heavy ion physics concepts and the experimental
setup are introduced in Chapter 1. After the introduction, a more detailed
description about the analysis is provided in Chapters 2 and 3 before pre-
senting the results in Chapter 4 and conclusions in Chapter 5. Definitions
of the used kinematic variables are found from Appendix A.

The unit system used throughout the thesis is the natural unit system
where c = h̄ = kB = 1. In this system [energy] = [momentum] =
[temperature] = 1

[time] =
1

[length] = GeV and GeV · fm ≈ 5.07.

1.1 Heavy ion collisions

1.1.1 Quark-gluon plasma

One of the main goals of the heavy ion study is to explore the phase
diagram of the strongly interacting matter. The diagram is shown in
Fig. 1.1. Ordinary nuclear matter is represented by a black dot at the net
baryon density relative to the average nuclear density 1 and at close to
zero temperature.

In the ultra-high density and near to zero temperature region the QCD
predicts a phase transition into a color superconducting quark matter
[3]. This part of the QCD phase diagram is not currently accessible
experimentally. On the other hand the ultra-high temperature and near
to zero net baryon density QCD phase can be created in ultra-relativistic
heavy ion collisions at high energy accelerators. According to the current
understanding of the collision trajectory in the QCD phase diagram, the
deconfined excited medium is created in the very early stage (< 1 fm) of
the collision [4, 5]. Later the nuclear matter expands and cools down until
it reaches the "freeze-out" stage when the final state particles are formed.

According to lattice calculations, the critical energy density ρc at which
a phase transition from hadron gas to quark-gluon plasma occurs is about
ρc ∼ 1 GeV/fm3 [6]. Tab. 1.1 shows approximative energy densities achieved
in three different heavy ion accelerators based on a Bjorken estimate [7].
According to these numbers, it is expected that QGP is actually produced
in these experiments.

The expectation of the new phase of matter at high temperature and
energy density follows from the asymptotic freedom of QCD [2]. This
unique feature is a consequence of the fact that QCD is a non-Abelian
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Table 1.1: Approximate energy densities achieved in some high energy
accelerators estimated using the Bjorken model [7]. The numbers are taken
from [8–10]. For comparison, the expected critical energy density ρc for
QGP transition given by lattice calculations [6] is presented.

Accelerator Energy density [GeV/fm3]

LHC & 16
RHIC & 5
SPS & 3

QGP ∼ 1

Figure 1.1: The phase diagram of the strongly interacting matter. The
density axis is normalized by the density of the ordinary nuclear matter
ρ/ρnuclear. Blue and red arrows reflect the paths probed by different acceler-
ators. The color superconducting phase is predicted theoretically [3], but
not yet found experimentally. Figure is taken from [11].
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theory. The strong coupling constant αs is in fact not a constant, but it
depends on the energy scale Q2. At large four-momentum transfer the
strength of the coupling diminishes and at low four-momentum transfer
it grows. This behavior is explained by the antiscreening phenomenon
[12]. To understand antiscreening, it helps to consider the screening
phenomenon, that occurs in quantum electrodynamics (QED). The QED
vacuum is filled by virtual electron-positron pairs. In the vicinity of a test
charge, the vacuum becomes polarized. The virtual particles of opposing
charge are attracted to the charge and the virtual particles of like charge
are repelled. Hence the virtual fluctuations tend to screen the bare charge.
When probing the test charge at smaller distances, the screening is weaker.
In QCD, the virtual quark-antiquark pairs produce a similar effect. Besides
quark-antiquark pairs, also gluons can form virtual gluon pairs because
of their self coupling. Due to the integer spin of the gluons, these virtual
gluon pairs produce an effect that is opposite to the screening effect. Now
less color charge is seen when going closer to the test charge. It is found
that the effect of virtual gluons dominates over the effect of virtual quarks,
leading to asymptotic freedom.

1.1.2 The collision geometry

The diameter of a heavy nucleus is nearly macroscopic (∼ 10 fm) and thus
the way the nuclei hit each other has a significant impact on the particle
production in the collision. To quantify how close the colliding nuclei are
to each other, the concept of impact parameter is introduced. The impact
parameter~b is defined as a vector in the transverse plane with respect to
the beam connecting the centers of the two colliding nuclei as illustrated
by Fig. 1.2.

If the length of the impact parameter is close to 0 in a collision, the
nuclei hit each other approximately head on and the collision is called a
central collision. If, on the other hand, the length of the impact parameter
in a collision is close to 2R, where R is the radius of the nuclei, the nuclei
only slightly scrape each other and the collision is called a peripheral
collision. Interesting physics also happens when |~b| > 2R. These collisions
are called ultra-peripheral collisions.

Impact parameter also defines special directions in the collision. The
plane spanned by the impact parameter and a unit vector in the beam
direction is called the reaction plane. An illustration of this is given in
Fig. 1.3. Any direction inside the reaction plane is called in-plane direction
and the direction perpendicular to the reaction plane is called out-of-plane
direction.
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Figure 1.2: A schematic picture of the heavy ion collision in the plane
perpendicular to the beam. The centers of the nuclei are marked with
crosses. The direction of the impact parameter~b is called in-plane direction
and the direction perpendicular to the impact parameter out-of-plane
direction.

Figure 1.3: A schematic picture of the reaction plane in a situation where
the impact parameter coincides with the x-axis. Figure is taken from [13].
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Figure 1.4: A V0 amplitude distribution in the ALICE experiment. The V0
amplitude is proportional to the multiplicity of an event. The distribution
is divided into regions of equal area. This division defines the centrality
classes in the experiment. Figure is taken from [14].

The nucleons inside the colliding nuclei are divided into two classes,
participants and spectators. Participants are the nucleons that take part
in the inelastic collisions. In Fig. 1.2 they are roughly the nucleons that
are in the area covered by both red and blue nuclei. Spectators are the
nucleons that do not take part in the collision. In Fig. 1.2 they are roughly
the nucleons, that are outside the overlap zone.

However, the impact parameter cannot be measured experimentally.
Instead, information about the collision geometry is classified in terms of
collision centrality. To define centrality, an observable that is a monotonic
function of the magnitude of the impact parameter is needed. For example,
the total number of produced particles (multiplicity) is such an observable.
Now the centrality is defined as

c(N) =
∞

∑
n=N

P(n) , (1.1)

where N is the multiplicity of the collision and P(n) is the probability
to have an event where n particles are produced. It can be seen from
this definition, that centrality actually gives the fraction of collisions that
have at least as large multiplicity as the collision under consideration (see
Fig. 1.4). This fraction is usually given as a percentile value. It follows that
central collisions with large multiplicity have a centrality value close to
0 % while peripheral collisions have large centrality values. To get better



1.1. HEAVY ION COLLISIONS 7

Figure 1.5: A sketch of different centrality classes according to Eq. (1.3).
The nuclei (black circles) are shown together with the total cross section
(blue circle) and the cross section of the pictured collision (red circle).

geometrical understanding of the centrality, it can be derived starting
from Eq. (1.1) (see Appendix B), that centrality actually corresponds to the
fraction of the total cross section

c(N) =
σAB

in (b(N))

σAB
in

, (1.2)

where σAB
in is the total inelastic nucleus–nucleus cross section and b(N) is

the impact parameter for average multiplicity N. If the nuclei are approxi-
mated to be hard and black spheres, the total cross section corresponds
to the area in which the nuclei can hit each other, which is π(2R)2. The
cross section for the length of the impact parameter to be less than or
equal to b is πb2. Inserting these approximations to Eq. (1.2) gives a simple
geometrical picture of the centrality

c =
πb2

π(2R)2 =
b2

4R2 . (1.3)

This simple picture is illustrated in Fig. 1.5.

1.1.3 Collective phenomena and flow

The newly born blob of plasma undergoes a rapid expansion during its
short lifetime. The pressure inside the plasma drives this expansion. After
a while the energy density dilutes and the plasma hadronizes back to
a hadron gas, which later decouples into free streaming hadrons. The
timescale of the whole evolution is ∼ 10− 20 fm ≈ 10−23 s [15]. The strong
collective motion during the expansion is called the flow.
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Figure 1.6: A schematic diagram of the simultaneous orientation of di-
rected (ψ1), elliptic (ψ2) and triangular (ψ3) flow. Figure is taken from [16].

Due to the finite size of the heavy nucleus, the initial overlap zone is
anisotropic in azimuth (see Fig. 1.2). The larger pressure gradient along
the impact parameter leads to a more copious particle production in the
in-plane direction as compared to the out-of-plane direction. In other
words the hydrodynamical pressure converts the initial spatial anisotropy
into a final state momentum anisotropy. The resulting particle distribution
is usually described with the help of the Fourier expansion [16]

dN
dφ

(pT) ∝ 1 +
∞

∑
n=1

2vn(pT) cos(n(φ− ψn)) , (1.4)

where vn(pT) is the n:th Fourier coefficient, φ is the azimuthal angle of
the momentum of the outgoing particle and ψn is the event plane angle
defined by 〈sin(n(φ − ψn))〉 = 0. The Fourier coefficients vn and the
angles ψn both have a clear physical interpretation, illustrated in Fig. 1.6
for n = 1, 2, 3. The coefficients vn describe the amplitude of a given
flow component. Directed flow is reflected by v1 and it corresponds
to the momentum conservation of the colliding system. Elliptic flow is
characterized by v2 and it is related to the almond shape of the collision
zone and to pressure gradients. Triangular flow is given by v3 and it is
caused by the initial state fluctuations. The higher coefficients give more
complex shapes of the flow, but soon become negligible. The event plane
angles ψn reflect the orientation of each kind of flow with respect to the
chosen reference angle.

It should be noticed that Eq. (1.4) only depends on φ, not on η. Indeed,
in the measurements the flow is found to be approximately independent
of pseudorapidity at least in the region −2 < η < 2 [17].
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1.1.4 Jet quenching models and observables

Jets are collimated streams of hadrons. They are produced in hard scat-
tering processes characterized by large four-momentum transfer Q2 and
color exchange. This is the realm of perturbative quantum chromodynam-
ics (pQCD). In this framework, the hard scattering event is treated as a
2→ 2 process where the two incoming partons collide at center-of-mass
energy ŝ and the two outgoing partons are emitted back-to-back in the
center-of-mass frame. In a proton–proton collision, the parton–parton
center-of-mass energy ŝ is related to the total proton–proton center-of-
mass energy s as ŝ = x1x2s, where x1,2 correspond to the relative fraction
of the proton momentum carried by the partons. The outgoing partons are
highly virtual. Partons lose the virtuality by radiating mostly gluons in
a process called the parton shower. When the parton reaches a virtuality
close to the hadronic scale (∼ 1 GeV) the non-perturbative hadronization
process begins. The most frequently used hadronization model is the
Lund string model [18], where parton pairs are connected to each other
with strings. In order to neutralize the color charge, these strings can
stretch and break producing new parton pairs with lesser virtuality until
only colorless on-shell hadrons remain. The whole process including both
showering and hadronization is called the jet fragmentation.

If the parton that initiates the splitting (parent parton) is a quark, the jet
is called a quark jet. Similarly a gluon jet is initiated by a gluon. Because
of the differences in the splitting functions of quarks and gluons, gluon
jets have higher mean multiplicity and wider angular spread than quark
jets [19].

Jets provide a good probe for studying the properties of the quark-
gluon plasma. The hard scattering takes place very early in the collision
and can thus be used to probe the entire history of the collision. Examining
how the plasma modifies the jet fragmentation gives information about
partonic energy loss mechanisms. Some of the common model frameworks
used to describe the energy losses in medium are the Armesto-Salgado-
Wiedemann (ASW) formalism [20, 21], the Arnold-Moore-Yaffe (AMY)
formalism [22, 23], the Guylassy-Levai-Vitev (GLV) formalism [24, 25] and
the higher twist (HT) formalism [26, 27]. All of these models are based
on assumptions, that the radiative energy losses dominate over the elastic
scatterings inside the medium and that the fragmentation happens outside
the medium. In another type of models it is assumed that the showering
happens inside the medium. One example of this type of models is YaJEM
(Yet another Jet Energy-loss Model) [28, 29], in which the partons gain
virtuality when traversing the medium which leads to an increased gluon
radiation. An alternative approach is provided by string theory. Here it is
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assumed that the correspondence between certain conformal field theories
(CFT) and anti de Sitter spaces (AdS) [30–32] can be used to describe the
QCD medium in the strong coupling limit. In energy loss calculations
the AdS/CFT models are accompanied with a medium induced drag
force [29]. The results given by all of the energy loss models are dependent
on the chosen medium evolution model. Some of the medium evolution
models are presented and the model dependence is illustrated in [33].

The medium induced modifications of jets are studied by comparing
the results of the central heavy ion collisions to the results of the proton–
proton or proton–heavy ion collisions. These collisions provide a good
reference data, since no QGP is produced there.

Nuclear modification factor RAA

Traditionally the energy losses are studied with the help of the nuclear
modification factor RAA. It is defined as the ratio of the charged par-
ticle yield in nucleus–nucleus collision and the charged particle yield
in pp collision scaled by the mean number of binary nucleon–nucleon
collisions [34]:

RAA(pT) =
(1/NAA

evt ) d2NAA
ch /dηdpT

〈Ncoll〉 (1/Npp
evt) d2Npp

ch /dηdpT

. (1.5)

Even though the general suppression of the yield of high-pT particles in
heavy ion collisions can be seen from the data [34], RAA provides only
limited information about the actual mechanisms of the energy losses.
In [35], several simple toy models are constructed by assigning different
averaged energy loss probability distributions to them. It is seen, that all
of these models can be tuned to fit the RHIC RAA data (see the left panel
of Fig. 1.7). For the details on how the energy losses are implemented in
the used toy models, see [35].

The limited ability of RAA to seperate valid energy loss models from
flawed ones (discriminating power) can be improved by fitting many
observables simultaneously [36]. For this, more differential observables
are needed.

The ratio of per trigger associated yields IAA

One of the more differential observables that can improve the capability
to separate the energy loss models is the ratio of per trigger associated
yields IAA. It is defined in the framework of two particle correlations (for
two particle correlations, see Section 2.1) to be the ratio of the per trigger
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Figure 1.7: Left: Different toy model predictions (colored lines) drawn
together with the PHENIX RAA data (black points) for π0 at 0–10 %
centrality bin. Figure is taken from [35]. Right: Different model predictions
(colored points) drawn together with the STAR IAA data (black points).
The data is plotted as a function of zT = pTa

pTt
, where pTt is the trigger

particle transverse momentum and pTa the associated particle transverse
momentum. Figure is taken from [36].

normalized yields of associated particles coming from jet fragmentation in
heavy ion (YAA) and proton–proton (Ypp) collisions

IAA =

1
NAA

trigg
YAA

1
Npp

trigg
Ypp

. (1.6)

When the yields are defined this way, the observable is more sensitive to the
jet physics. The discriminating power for different energy loss mechanisms
is improved, as can be seen in Fig. 1.7. Below zT = pTa/pTt = 0.5 the theory
curves for ASW [20,21] and AdS [30–32] models show different trend than
those for YaJEM models [28, 29]. In [36] this difference is explained by
the contribution of subleading shower partons to the distribution. ASW
and AdS do not track these partons, but YaJEM models take care of them.
However, it is also noted in [36] that the hydrodynamical model for the
medium can be chosen also in such a way, that YaJEM models do not fit
the data and the others do.

The motivation for this thesis is to further generalize IAA and to con-
struct an observable that is sensitive to the jet shape. This new observable
is then used to study the pp data at

√
s = 2.76 TeV and Pb–Pb data at√

sNN = 2.76 TeV measured by the ALICE experiment.
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1.2 The ALICE experiment

ALICE (A Large Ion Collider Experiment) is a dedicated heavy ion ex-
periment at LHC. The prime aim of the experiment is to study in detail
the behavior of matter at high densities and temperatures. The main
characteristics in the design of ALICE are excellent tracking and particle
identification in the environment of large particle density.

A schema of the ALICE detector can be seen in Fig. 1.8. The most
important detectors for the tracking surround the interaction vertex in
the midrapidity covering full azimuth. The Inner Tracking System (ITS)
is the closest detector to the interaction vertex. It consists of six layers of
silicon detectors and its main purpose is to locate the primary vertex and
secondary decay vertices and to provide accurate tracking for low mo-
mentum particles [37]. ITS is surrounded by the Time Projection Chamber
(TPC), which does a 3D scan of the charged particle track profiles based
on the ionization trace they leave in the gas chamber of the detector [38].
This information can be used to determine the momentum of the particles
and to identify the particles. After TPC, there is the Transition Radiation
Detector (TRD). This detector provides accurate electron identification as it
is able to distinguish electrons from charged pions [39]. The Time Of Flight
detector (TOF) provides more charged particle identification [40]. To make
the particle identification as complete as possible, the High Momentum
Particle Identification Detector (HMPID), which is a Cherenkov radiation
based detector, is placed to the next layer [41].

The electromagnetic calorimeters are situated in the next layer of detec-
tors. A detector called the Electromagnetic Calorimeter (EMCal) is used
for jet and photon triggering and measurement [42]. There is also another
electromagnetic calorimeter, called the Photon Spectrometer (PHOS). This
detector can make measurements of photons and charged particles with
high energy and position resolution [43]. The difference between these
two is, that EMCal has larger acceptance, but PHOS has better energy
resolution.

A solenoid magnet surrounds the central detectors. With the produced
homogeneous magnetic field of 0.5 T ALICE can reconstruct tracks whose
pT is between 0.15 GeV and 100 GeV. On the top of the magnet there is
the ALICE Cosmic Ray Detector (ACORDE). This is used as a cosmic ray
trigger for calibrations and also for studying cosmic rays [44].

Another important set of detectors are the forward detectors, since
they provide event characteristics and triggering. Next to ITS, there are
V0 and T0 detectors. The main purpose of T0 is to provide precise timing
signals for triggering and time of flight measurements [45]. V0 can provide
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Figure 1.8: The ALICE detector. The different parts of the detector provide:
tracking and particle identification (1,3-6), electromagnetic calorimetry (7-
8), magnetic field (9), cosmic ray detection (10), forward rapidity detection
(2,16-17) and muon detection (11-15).
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centrality triggers and multiplicity information [45]. Both of them are
also used as luminometers. The Forward Multiplicity Detector (FMD),
also situated close to ITS, is used to measure multiplicities in the forward
direction [45, 46].

A bit farther away, the Photon Multiplicity Detector (PMD) measures
the photon multiplicities and their spatial distributions [47]. Far away from
the other detectors, just next to the beam pipe, there are the Zero Degree
Calorimeters (ZDC), which provide a centrality trigger of the collision [48].
The only hadronic calorimeters in the ALICE experiment are found from
here.

The muon detection system is located in the forward direction. After
hadrons and photons are stopped by the absorber, the tracks of the muons
are measured by determining their positions before and after the dipole
magnet blocks [49]. Next the muon wall filters away low energy muons
and lets only high energy muons to get to the trigger to provide a trigger
signal. This muon detection system allows the study of heavy quarkonia
and other vector mesons that decay through the muonic decay channels.



Chapter 2

Analysis concept

2.1 Two particle correlations

In triggered two particle correlations, the particles in the event are divided
into three categories, trigger particles, associated particles and other par-
ticles. Trigger particles and associated particles have to meet the preset
requirements for them. These are usually defined to be certain transverse
momentum intervals. The other particles that do not meet these require-
ments are disregarded in the analysis. After the trigger particles and the
associated particles are found, all possible trigger-associated pairs among
them are formed. From these pairs, the sought quantity is measured (for
example ∆φ = φt − φa or ∆η = ηt − ηa). The correlations between the
trigger and the associated particles are searched statistically.

A special case is the leading particle correlation. Here the trigger
particle is chosen to be the particle with the highest transverse momentum
in the collision. Leading particle correlations are very well suitable for
studying jets since the leading particle with high-pT approximates the jet
axis.

Pairs with |∆φ| < π/2 fill the so called near side region and pairs
with larger difference in the azimuthal angle are said to be in the away
side. These regions are illustrated by Fig. 2.1. The particles that form the
correlation peak in the near side come from the same parton fragmentation
process as the trigger particle. The particles in the away side correlation
peak come from the same hard scattering but different parton as the
trigger. The combinatoric background arises when the trigger is paired
with particles from the underlaying event.

Another method for the jet studies is the full jet reconstruction, where a
jet finding algorithm is applied to the data to identify the jet. Both of these
approaches have their advantages and disadvantages. Jet reconstruction

15
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Figure 2.1: Example of the azimuthal correlation function in a pp collision.
The two jet peaks are standing at ∆φ/π = 0 and ∆φ/π = 1 above the
combinatoric background.

gives event-by-event kinematics, but from di-hadron correlations only the
average jet kinematics are obtained. Also the results from the full jet
reconstruction are more easily related to the partons that are initiating the
jet. However, the di-hadron correlations can be used to study jets with
lower pT because of the statistical approach. The two particle correlation
method is also easier to handle experimentally. There are large background
fluctuations in the heavy ion environment, so it is difficult to define the jet
correctly in the full jet reconstruction. Also in general the jet observables
have dependence on the chosen jet reconstruction algorithm.

2.2 Jet shapes

The main goal of this thesis is to study the near side transverse jet shapes
in the framework of two particle correlations. By comparing near side
peak profiles in heavy ion and proton–proton collisions, the influence of
the medium on the parton fragmentation can be studied.

In this thesis, the following jet shape modification scenarios are consid-
ered: broadening, narrowing and no modification. Broadening of the jet
shape is suggested with models that take into account multiple scatterings
and radiative energy losses of the jet fragments inside the QGP [50]. Some
authors also expect that the interference of the collective longitudinal flow
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with jet fragmentation causes broadening of the jet cone [51].
There are some effects, like gluon filtering [52], that might narrow the

jets in heavy ion collisions. Quark jets are known to be narrower than
gluon jets [19]. Because gluons couple more strongly to the medium than
quarks do, gluons are absorbed by the medium more readily than quarks.
Hence it is more likely that the parent parton for a jet in medium is a quark
and thus it is more likely to have a narrower jet. Another explanation
for the possible jet narrowing is a kinematic bias. The fragmentation
variable z = phadron

T /pparton
T tells the fraction of the original parton transverse

momentum taken by the observed hadron. For a 10 GeV trigger hadron,
the expected z values at LHC energies are 〈zvac〉 ≈ 0.5 for a fragmentation
in vacuum and 〈zmed〉 ≈ 0.3 for a fragmentation in medium [52]. Hence
a 10 GeV trigger corresponds to a ∼ 20 GeV parton in vacuum but to a
∼ 33 GeV parton in medium. Kinematically harder partons have narrower
fragmentation than softer ones, so this effect causes jets with similar trigger
momenta look narrower in heavy ion collisions compared to pp collisions.

In case that there is a strong surface bias [52] and the jet fragments
outside the medium it is possible that no significant modifications of the
jet shape are seen.

2.3 Jet fragmentation transverse momentum jT
The main observable in this study is the jet transverse fragmentation
momentum jT, which is defined as the transverse momentum component
of the jet fragment with respect to the jet axis. This can be connected to the
two particle correlations by requiring that the trigger particle is a leading
particle with high-pT. In this case it can be assumed, that the trigger
particle momentum approximates the jet axis. Identifying the associated
particle as the jet fragment allows to write jT as the transverse momentum
component of the associated particle momentum ~pa with respect to the
trigger particle momentum ~pt:

jT =
|~pt × ~pa|
|~pt|

. (2.1)

The longitudinal component of ~pa with respect to ~pt is called~k‖ and its
magnitude is:

k‖ =
~pt ·~pa

|~pt|
. (2.2)

Fig. 2.2 illustrates these definitions graphically.
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Figure 2.2: Illustration of~jT and~k‖. When the trigger particle is a leading
particle that approximates the jet axis sufficiently well, the ~jT can be
written as the transverse momentum component of the associated particle
momentum ~pa with respect to the trigger particle momentum ~pt. The
vector~k‖ is the longitudinal component of ~pa with respect to ~pt.

The first jet transverse fragmentation momentum measurements were
done by the CCOR collaboration at ISR (Intersecting Storage Rings) [53].

Later the root-mean-square
√〈

j2T
〉

values for different transverse momenta
were determined for example by the PHENIX collaboration at RHIC [54]
before the first number distributions as a function of jT were measured
by the CDF collaboration at Tevatron for pp̄ collisions [55]. Recently the
ATLAS collaboration at LHC has published these results for heavy ions
using the method of full jet reconstruction [56]. No significant modification
in the transverse jet shapes is reported there (see Fig. 2.3). In this thesis
the jet fragmentation is studied using different analysis techniques.
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Figure 2.3: The distribution of the jet fragmentation transverse momentum
(jT) measured by the ATLAS collaboration for central and peripheral Pb–
Pb data at

√
sNN = 2.76 TeV. The yellow and orange bands show the

systematic uncertainties from the subtraction of the underlying event
contribution. Figure is taken from [56].
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Chapter 3

Data analysis

The analysis aims to study the jT distributions from the near side jet
fragmentation. The measured jT distribution contains contributions from
the jet fragmentation (signal) and the underlaying event (background).
The goal is to extract the signal from the measured distribution.

In this thesis 15 million events of Pb–Pb data (taken in 2010) and 55
million events of pp data (taken in 2011) taken by ALICE are analyzed.

3.1 Track cuts

The criteria used in the track selection are listed in Tab. 3.1. These cuts
aim to select the charged physical primary tracks that come from the event
vertex and to suppress the secondary tracks coming from decays and
fake track matchings. Primary particles are all particles produced in the
collision, including products of strong and electromagnetic decays as well
as weak decays of charmed and bottom particles, but excluding feed-down
products from strange weak decays and other secondary particles. The
secondary particles are for example γ-conversions and products from
secondary hadronic interactions with the detector material [57].

The z vertex cut |zvertex| < 10 cm selects the reaction vertices, where z
position can be at most 10 centimeters away from the center of the detector
in the beam direction. Combined with the pseudorapidity cut |η| < 0.8,
these two cuts select the region where ALICE tracking detectors have
nearly uniform reconstruction efficiency and acceptance.

Primary tracks are effectively selected by the cut on the distance of
their closest approach (DCA) to the reconstructed vertex. The position of
the vertex is determined by a sophisticated minimizing algorithm. Only
tracks that are closer to the vertex than the DCA value are accepted.

21
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Table 3.1: Track quality cuts used in this analysis. See the text for details.

Accepted pseudorapidity range |η| < 0.8
Accepted z vertex range in pp −10 cm < zvertex < 10 cm

in Pb–Pb −8 cm < zvertex < 8 cm
Maximal DCA to vertex in XY 0.0182 cm + 0.0350 cm

( pT
GeV

)−1.01

Maximal DCA to vertex in Z 2 cm
Minimal number of TPC clusters 70
Maximal χ2 per one TPC cluster 4

Do not accept kink daughters
Require TPC refit
Require ITS refit

In some cases a kink on otherwise smooth track can be found. The kink
indicates a place where the original mother particle decayed to a charged
daughter particle. The kink daughter cut removes a significant portion of
these secondary tracks.

The number of required clusters in the time projection chamber (TPC)
and the maximum χ2 per one TPC cluster are related to the quality of the
track inside TPC, which is the most accurate tracking device of ALICE.
If the required amount of clusters get a tracking signal and the χ2 value
is low enough, the track is considered to be good enough that accurate
measurements can be made. In ALICE TPC the maximum number of
clusters a track can have is 159.

Last in the list are TPC and inner tracking system (ITS) refits. These
are done to find the track parameters at the vertex and to improve the
global track parameters [58].

3.2 Track efficiency

When analyzing the data, it has to be taken into account that the detectors
are not perfect. There may be situations where some primary particle
tracks are missed completely and then there could also be situations
where some fake tracks, that do not correspond to any true particle, are
constructed. Another issue that affects the tracking efficiency besides
detecting the particles is selecting the primary particles from the detected
particles. The track cuts are tuned to select the tracks that have high
probability to be created by primary particles, but they have only limited
efficiency.
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These effects are studied with Monte Carlo simulations. The simula-
tions have to be detector system specific. For this analysis the proton–
proton events are simulated with the PYTHIA Monte Carlo event gen-
erator and embedded to the GEANT3 framework to study the detector
response [59]. The HIJING event generator is used for the heavy ion track
efficiency study. The correction factors for the reconstruction efficiency
and the contamination of the reconstructed sample of primary tracks are
calculated from the simulations.

The reconstruction efficiency CEff gives the probability that a primary
track is reconstructed . This is given by the equation

CEff =
Nrec primary

Nprimary
, (3.1)

where Nrec primary is the number of the reconstructed charged primary
tracks in the required pseudorapidity window in the simulation and
Nprimary the number of all charged primary tracks produced in the simula-
tion in the same pseudorapidity window.

The purity P gives the fraction of properly selected primary tracks
among all the reconstructed tracks.

P =
Nrec primary

Nrec
, (3.2)

where Nrec is the number of all reconstructed charged tracks in the chosen
pseudorapidity window.

In an experiment Nrec tracks are reconstructed. Reconstructed tracks
include true and fake physical primaries. The original number of physical
primaries can be obtained from Equations (3.1) and (3.2):

PNrec = CEffNprimary ⇒ Nprimary =
P

CEff
Nrec . (3.3)

From here, the total correction factor C(pT) is defined to be

C(pT) =
Nprimary

Nrec
=

P
CEff

. (3.4)

Purity P, reconstruction efficiency CEff and the total correction factor
C(pT) are obtained from the Monte Carlo simulation as a function of the
transverse momentum pT. Examples of these are shown in Fig. 3.1. In
the case of two particle correlations the corrections for the trigger and
the associated particle are assumed to be independent. Thus the same
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Figure 3.1: The functions for reconstruction efficiency CEff, purity P and
the inverse of the total correction factor C(pT) given by a Monte Carlo
simulation for Pb–Pb data at

√
sNN = 2.76 TeV [59].

total correction function can be used separately for both of the particles to
obtain total correction factors C(pTt) and C(pTa). The total pair correction
factor Cpair(pTt, pTa) is then calculated as

Cpair(pTt, pTa) = C(pTt)C(pTa) . (3.5)

3.3 Pseudorapidity acceptance

The restricted pseudorapidity coverage leads to a need to make acceptance
corrections to the data, since it is more likely to see a particle pair with
small ∆η compared to a pair with large ∆η. This situation is illustrated in
Fig. 3.2.

The pair acceptance correction can be derived with the help of Fig. 3.2.
The line segment l0 shows the possible (η1, η2) values for ∆η = η1− η2 = 0.
This line segment is longer than segments l1 and l−1, which correspond
to the possible values for some fixed ∆η > 0 and ∆η < 0, respectively.
It is assumed, that both of the particles have uniform pseudorapidity
distributions. This means that it is equally likely to get any η value for η1
and η2. Thus the length of the line segment is directly proportional to the
probability to see the particle pair with a given pseudorapidity gap.

The length of the line segment can be obtained for example from the
right triangle it forms with the limits of the pseudorapidity window. It can
be read from Fig. 3.2 that the length for both of the legs are 2ηmax − |∆η|.
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Figure 3.2: Pseudorapidity acceptance window for a pair of particles. Both
particles have the same acceptance range η1,2 ∈ [−ηmax, ηmax] which leads
to a square acceptance window for the particle pair. The diagonal l0 shows
the possible (η1, η2) values for ∆η = 0 and line segments l1 and l−1 the
possible values for some fixed ∆η > 0 and ∆η < 0, respectively.
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The length of the hypotenuse is then given by the Pythagorean theorem:

L (l1) =
√(

(2ηmax − |∆η|)2 + (2ηmax − |∆η|)2
)
=
√

2 (2ηmax − |∆η|) .

(3.6)
The ratio of L(l0) and L(l1) gives the correction factor G(∆η)

1
G(∆η)

=
L(l1)
L(l0)

=

√
2 (2ηmax − |∆η|)

2
√

2ηmax
= 1− |∆η|

2ηmax
. (3.7)

This is normalized in such a way, that G(0) = 1.

3.4 Centrality selection

As discussed in Section 1.1.2, a centrality measurement is used to classify
the collision geometry. The centrality of an event is defined in Eq. (1.1) to
be the percentile of events, that have higher multiplicity than the event in
consideration. This approach is based on an assumption, that multiplicity
is a monotonic function of the impact parameter~b.

In the ALICE experiment the V0 amplitude distribution is used to
measure the event-by-event charged particle multiplicity (see Fig. 1.4). The
V0 detector is an array of scintillator detectors at forward pseudorapidity
(η ∈ [2.8, 5.1] ∪ [−3.7, − 1.7]), where the signal amplitude is proportional
to the number of traversing tracks.

This centrality definition can be related to the impact parameter and
the collision geometry via the Glauber model. The Glauber model is a
simple model for the heavy ion collisions. It treats the nucleus–nucleus
collision as a multiple nucleon–nucleon collision process [60]. All these
nucleon–nucleon collisions are assumed to be described by the same cross
section and they are also assumed to be completely independent. The
elementary nucleon–nucleon cross section is taken to be the total inelastic
cross section in a proton–proton collision σin. After a single binary inelastic
collision, it is assumed that a nucleon-like object emerges, that interacts
basically with the same cross section with other nucleons.

Using these principles a Glauber Monte Carlo simulation is performed
[14]. Then the measured multiplicity distribution is fitted based on this
simulation and a few further assumptions (for details, see article [14]).
From this fit the number of participants and the number of binary nucleon–
nucleon collisions can be extracted. These quantities can be also calculated
directly from the Glauber model as a function of the impact parameter
(see Appendix C).
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3.5 Measured jT distributions

In this analysis, 1
jT

dN
djT

distributions are measured. The weighting factor 1
jT

is introduced to remove the Jacobian of the polar coordinates. This can be
seen by the following calculation. The vector~jT = (jx, jy) (see Fig. 2.2) has
some distribution f (~jT). In the Cartesian coordinates this is given by

d2N
djxdjy

∝ f (jx, jy). (3.8)

What is actually measured is the length of the vector ~jT. Thus the polar
coordinates give a more intuitive picture of the situation. Using the
transformation djxdjy = jTdjTdθ, Eq. (3.8) can be written in this new
coordinate system:

1
jT

d2N
djTdθ

∝ f (jT, θ). (3.9)

It is further assumed, that f (jT, θ) is symmetric in θ, giving f (~jT) = f (jT).
It follows that dN

dθ is a constant, so it can be written that

1
jT

dN
djT

∝ f (jT). (3.10)

The 1
jT

factor can be multiplied to the other side of the equation, giving

dN
djT

∝ jT f (jT). (3.11)

If the condition f (jT)→ constant, when jT → 0 holds, Eq. (3.10) stays
finite as jT → 0, but Eq. (3.11) tends to zero. This condition is found to
be fulfilled in the analysis. As the signal is concentrated close to jT = 0,
Eq. (3.11) makes the signal difficult to see. This problem can be avoided
by using the distribution in Eq. (3.10).

Tracks that fulfill the selection criteria are combined to pairs. Only
the near side region is studied in this analysis, so a further condition
|∆φ| < π

2 is required from the pairs. The 1
jT

dN
djT

distributions are obtained
by filling the measured data into histograms in the bins of centrality, trigger
particle pT (pTt) and k‖. The corresponding jT and k‖ values are calculated
according to equations (2.1) and (2.2). When filling the histogram, each
pair is weighted by a factor

w =
G(∆η)Cpair(pTt, pTa)

jT
, (3.12)
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Figure 3.3: Measured jT distribution for pp data at
√

s = 2.76 TeV (black
points) and Pb–Pb data at

√
sNN = 2.76 TeV (different centrality classes

marked by colored points) in pTt ∈ [6,8]GeV and k‖ ∈ [3,4]GeV bin.

where G(∆η) is the pair acceptance correction factor derived in Eq. (3.7)
and Cpair(pTt, pTa) is the pair efficiency correction factor derived in Eq. (3.5).
The factor 1

jT
is there to get the form of Eq. (3.10). The final distributions

are normalized by the number of triggers and bin width. The per trigger
normalization makes distributions with different number of events compa-
rable with each other. The bin width normalization makes the distribution
differential. It transforms the bin contents from being just counts to counts
per unit of momentum. This gives a ∆N

∆jT
distribution, which is usually

denoted as a differential dN
djT

distribution.

Fig. 3.3 shows an example of a measured jT distribution for pp data at√
s = 2.76 TeV and Pb–Pb data at

√
sNN = 2.76 TeV for several centralities

in pTt ∈ [6,8]GeV and k‖ ∈ [3,4]GeV bin. From this Figure it can be
noticed, that the more central the collisions gets, the more per trigger yield
there is. This is explained by the fact, that larger number of uncorrelated
particles per one trigger emerge in central heavy ion collisions.
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Figure 3.4: Left: Per trigger normalized yield of associated particles (pTt ∈
[4,8]GeV and pTa ∈ [1,2]GeV) in Pb–Pb collisions at

√
sNN = 2.76 TeV as a

function of ∆φ and ∆η. Jet fragmentation at the near side produces a peak
centered at (∆η, ∆φ) = (0, 0). Right: Projections of the left histogram on
the ∆φ axis in the region |∆η| < 1 (black) and 1 < |∆η| < 1.6 (red). Large
η swing makes the away side jet correlation structure nearly independent
on ∆η within the limited pseudorapidity acceptance of the ALICE detector.
These Figures are taken from the talk by Andreas Morsch in Hard Probes
2012.
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3.6 jT background

3.6.1 Pseudorapidity gap method

As the jets are collimated sprays of hadrons, the jet correlations are short
range correlations. Hence it is expected that if a pair of particles is
separated with a large pseudorapidity gap, the particles do not come from
the same jet. This expectation is supported for example by the narrow near
side jet peak seen in Fig. 3.4. With an assumption that the uncorrelated
background comes solely from the underlying event, that is uniform in
the whole phase space (good approximation for pp), the uncorrelated
background can be built from large pseudorapidity gap pairs. In heavy
ion collisions the collective flow causes significant long range correlations.
Fortunately in the limited ALICE acceptance the flow does not seem to
be dependent on pseudorapidity [17]. Thus measuring the two particle
correlations for a large pseudorapidity gap is effectively a measurement
of the flow [61]. Since this is uniform in pseudorapidity, the measurement
can be extended to the whole pseudorapidity range. Removing this
component from the data leaves only the non-flow correlations left. This
method is data driven, meaning that no external parameters are needed to
parametrize the flow components.

In practice, the background sampling is done in the following way:

1. Find a pair such that |∆η| > 0.8.

2. Generate Ngen new pairs such that pTt, pTa, φt and φa are kept intact
but ηt and ηa are randomized according to the inclusive spectrum.
The flow is preserved, since it is independent of η for constant pT
and φ.

3. Calculate k‖ and jT for the generated pairs.

4. Fill the background histogram weighting the results with 1
Ngen

in
addition to the regular correction factor w (Eq. (3.12)) to preserve the
original number of large ∆η pairs.

In step 2, Ngen = 20 new pairs are generated to get better statistics for
the background. The value of Ngen has to be relatively small so that a
background where the statistical errors are much smaller than the errors
originating from the fixed (pT, φ) pairs is not generated.

The normalization for the background can be figured out using the
pseudorapidity acceptance window discussed in Section 3.3. It is assumed
that the particles are not from the same jet, if the pseudorapidity gap
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between those is larger than some predefined value. In Fig. 3.2 this means
that the background is defined to be the top left corner and the bottom
right corner of the square, limited by the line segments l1 and l−1. Since
all the pseudorapidity distributions are assumed to be flat, the pseu-
dorapidity pair (η1, η2) appears anywhere inside the square with equal
likelihood. This means that the area of a region is directly proportional
to the number of particles seen in that region. The background particles
are again assumed to be evenly distributed in the whole pseudorapidity
range. Therefore the ratio of the area of the whole square with respect to
the area of the defined background region gives the normalization factor
Cabs norm

1
Cabs norm

=
A(background)

A(total)
=

(2ηmax − |∆η|)2

(2ηmax)2 =

(
1− |∆η|

2ηmax

)2

.

(3.13)
Multiplying the particle yield in the background region with this factor
gives the total background yield over the whole acceptance.

3.6.2 Radial gap method

The radial gap method is otherwise the same as the η-gap method, except
that this time the background region is defined a bit differently, also ∆φ
is randomized and the normalization is different. The radial gap method
can be used only in the proton–proton case, since it does not take flow
into account. However, there it serves as a good comparison for the
pseudorapidity gap method.

The per trigger associated yield plotted as a function of ∆φ suggests
that the region between ∆φ = 0.325π rad and ∆φ = 0.475π rad is mostly
populated with pairs uncorrelated with the trigger in ∆φ. This assumption
is backed up by the observation that the measured azimuthal correlation
functions have minima at this region, see Fig. 3.5. Next it is assumed that
the situation is symmetric in (∆η, ∆φ) plane. Based on this, a circle of ra-
dius 0.325π rad is cut out from the (∆η, ∆φ) plane to find the background.
Further it is required that |∆φ| < 0.475π rad leading to a geometry shown
in Fig. 3.6.

The following algorithm is used to generate the background:

1. Find a pair with (∆η, ∆φ) value that is outside the circle but inside
the rectangle in Fig. 3.6.

2. Generate Ngen new pairs keeping pTt and pTa fixed but sampling ∆φ
from a uniform distribution from the interval [−π

2 , π
2 ] rad and ηt and

ηa from the inclusive spectrum.
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Figure 3.5: Azimuthal correlation function. The two black lines are situated
at ∆φ = 0.325 rad/π and ∆φ = 0.475 rad/π. The area between them is
assumed to be populated mainly by background pairs.

Figure 3.6: A plot showing the background region in (∆η, ∆φ) plane in
radian units. The area outside the circle but inside the rectangle that is
marked with red ruling is assumed to be dominated with background
pairs. The upper limits in ∆η direction come from the limited η acceptance.
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3. Calculate k‖ and jT for the generated pairs.

4. Fill the background histogram weighting the results with 1
Ngen

in
addition to the regular correction factor w (Eq. (3.12)) to preserve the
original number of input background pairs.

The value Ngen = 20 was used in steps 2 and 4.
The normalization for this background is found by fitting it to the

tail of the measured jT distribution. It is assumed that large jT tails of
the distribution are dominated by the background contribution. This
assumption is motivated by the fact that jets are quite well focused around
the jet axis and big jT values correspond to a big angle between the two
particles. The normalization region boundaries are chosen to be as far as
possible from the signal region. The signal to background ratio is used as
a tool in this choice. Usually the start of the region is somewhere between
jT = 3− 4 GeV, depending on pTt and k‖.

This method is used to cross check the results given by the pseudora-
pidity gap method.

3.6.3 Background in the data

The measured jT distribution and the estimated background components
for pp data at

√
s = 2.76 TeV in pTt ∈ [6,8]GeV and k‖ ∈ [3,4]GeV bin

are shown in Fig. 3.7 and the measured data to background ratio for
that bin in Fig. 3.8. For other bins, the measured data to background
plots are presented in Appendix D. These Figures show, that the radial
gap background seems to be a bit higher than the pseudorapidity gap
background. This discrepancy in the background choice must be taken
into account, when determining the systematic errors for the final results.
The good thing is that the shapes of the two backgrounds seem to be quite
similar.

The upper plot in Fig. 3.8 is a zoom to the signal region in jT and the
lower plot is a zoom to the normalization region. In the upper plot it can
be seen that the data is high above the background when jT < 1 GeV. The
lower plot indicates that the ratio is indeed close to 1 in higher values of
jT, which correspond mostly to the background. This gives confidence
that the background determination method is consistent.

What is visible in both of the plots in Fig. 3.8 is that the error bars
for radial gap are much smaller than they are for pseudorapidity gap
background. This is due to higher statistics that is achieved with this
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Figure 3.7: Measured jT distribution (black points) and background
obtained using pseudorapidity gap (red points) and radial gap (blue
points) methods for pp data at

√
s = 2.76 TeV with pTt ∈ [6,8]GeV and

k‖ ∈ [3,4]GeV. The blue dashed line represents the start of the normaliza-
tion region for the radial gap method.

method. The price that is paid for this gain in statistics is that the method
is not directly generalizable to the heavy ion case.

In Fig. 3.9 the measured Pb–Pb data can be seen with the pseudorapid-
ity gap background and in Fig. 3.10 is the measured data to background
ratio. These plots show that the measured data to background ratio is
much smaller than in pp in this bin and the Figures in Appendix D con-
firm, that this holds for all the bins in the analysis. The immense amount
of particles produced in the Pb–Pb collision explain this observation.

Because the background level is so close to the measured data, good
statistics is essential for the analysis. When two numbers of similar value
are subtracted from each other, a small number with a large error is left.
With bad statistics, this number can fluctuate a lot.
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Figure 3.8: Measured data to background ratio for pp data at
√

s =
2.76 TeV with pTt ∈ [6,8]GeV and k‖ ∈ [3,4]GeV. Black points are the
results for the pseudorapidity gap background and red points for the
radial gap. The upper plot is a zoom to the signal region in jT and the
lower plot is a zoom to the normalization region.
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Figure 3.9: Measured data (black points) and pseudorapidity gap back-
ground (red points) for central Pb–Pb data at

√
sNN = 2.76 TeV with

pTt ∈ [6,8]GeV and k‖ ∈ [3,4]GeV.

Figure 3.10: Measured data to background ratio for central Pb–Pb data at√
sNN = 2.76 TeV with pTt ∈ [6,8]GeV and k‖ ∈ [3,4]GeV. The background

is obtained using the pseudorapidity gap method.



Chapter 4

Results

4.1 Background subtracted jT distributions

The jT signals are obtained by subtracting the background histograms
from the measured data histograms bin by bin. The extracted jT signals
for pp data at

√
s = 2.76 TeV and for different centrality classes in Pb–Pb

data at
√

sNN = 2.76 TeV are shown in Fig. 4.1. In the logarithmic scale
the extracted jT signals lie on top of each other. The small differences in
signals, left after subtracting a huge background contribution, need to
be studied carefully to find possible modifications in jet shapes. In the
results only statistical errors are presented. Systematic errors are beyond
the scope of this work.

The measured jT data and background, the data to background ratio
and the extracted signal for two different momentum bins for pp data
can be found from Fig. 4.2. The same for Pb–Pb are given in Fig. 4.3.
From these Figures it can be seen, that the higher the pTt and k‖ bins are
studied, the more significant the signal becomes. The difference in the
measured data to background ratio between the lowest and the highest
bins used in the analysis is more than one order of magnitude in both pp
and Pb–Pb data. This observation stems from the fact that soft physics
phenomena are more important at low-pT and jet fragmentation at high-
pT. The emergence of the jet signal is better visible in Fig. 4.3. In the left
column the signal is hardly recognizable from the background but in the
right column the signal stands substantially above the background.

Another thing that is noticeable in Figures 4.2 and 4.3 is the difference
in the size of the error bars in low momentum bins and high momentum
bins, which indicates the difference in the available statistics between these
two regions.
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Figure 4.1: Background subtracted jT distributions (signal) for
√

s =
2.76 TeV data with pTt ∈ [6,8]GeV and k‖ ∈ [3,4]GeV. Black points are
the proton–proton data and the colored points are the heavy ion data for
different centrality classes. Pseudorapidity gap method is applied for all
data sets to extract the signals. Only statistical errors are presented.

The situation is a trade off between the statistics and the clarity of the
signal. At the small pT region the statistics is good, but the signals are
small. At the large pT region the signals are larger, but the statistics poor.

4.2 Nuclear modifications of the jT distribution

Possible signs of the medium induced modifications of the near side jet
fragmentation are studied using the quantity IAA, which is defined as the
ratio of background subtracted jT distributions in Pb–Pb and pp

IAA =

1
NAA

trigg

(
1
jT

dN
djT

)
AA

1
Npp

trigg

(
1
jT

dN
djT

)
pp

. (4.1)

Taking the ratio of signals has the advantage, that it cancels out part of the
systematic uncertainties and no model specific assumptions are needed for
the shape of the jT distributions themselves. Examples of IAA distributions
for different centralities are shown in Fig. 4.4.
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Figure 4.2: The left panel shows pp data at
√

s = 2.76 TeV with pTt ∈
[5,6]GeV and k‖ ∈ [2,3]GeV. In the right panel, there are pp data at

√
s =

2.76 TeV with pTt ∈ [8,15]GeV and k‖ ∈ [6,8]GeV. The topmost plot in
both panels is the measured jT distribution drawn with the pseudorapidity
gap background component. The middle plot shows the measured data
to background ratio zoomed close to ratio one. The extracted signals are
found from the bottommost plot.
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Figure 4.3: The left panel shows Pb–Pb data at
√

sNN = 2.76 TeV with
pTt ∈ [5,6]GeV and k‖ ∈ [2,3]GeV. In the right panel, there are Pb–Pb
data at

√
sNN = 2.76 TeV with pTt ∈ [8,15]GeV and k‖ ∈ [6,8]GeV. The

topmost plot in both panels is the measured jT distribution drawn with
the pseudorapidity gap background component. The middle plot shows
the measured data to background ratio zoomed close to ratio one. The
extracted signals are found from the bottommost plot.
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Figure 4.4: The IAA ratio for
√

s = 2.76 TeV data with pTt ∈ [6,8]GeV and
k‖ ∈ [3,4]GeV. The color indicates the centrality class of the heavy ion
signal. Figure is zoomed to the signal region in jT.

The IAA distributions are analyzed by studying how they evolve as
a function of jT. The modification of the heavy ion signal shape can be
inferred from the data trend:

• rising trend = broadening

• flat trend = unmodified/scaled

• falling trend = narrowing.

This trend is investigated in this thesis by doing a linear fit to the distribu-
tion.

The region in which the fit is done is determined by studying the
measured data to background figures. In all the bins used in the analysis
the region jT ∈ [0,1.5]GeV contains reliable signal (see Appendix D). This
region also has enough data points to fit the data. When jT > 1.5 GeV,
fluctuations start to play a significant role.

To see whether a first order polynomial is actually a better fit to the
data than just a constant function, both of these are fitted and the χ2 values
and the number of degrees of freedom ν of the fits are extracted. A rough
estimate of the goodness of fit is given by the ratio χ2

ν . The closer this
ratio is to one, the better description the fit gives of the data (for more
information about the χ2 test, see for example [62]).
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The same procedure is done for the central and peripheral IAA plots.
The peripheral results are used as a reference for the central case. Since
a peripheral heavy ion collision is approximately like a proton–proton
collision, these ratios should always be nearly constant. So if a first
order polynomial is seen to well describe data in the central case and the
peripheral case is at the same time well described by a constant, this is
taken as a sign of narrowing or widening of the signal.

To make a cross check, also central Pb–Pb signal to peripheral Pb–
Pb signal ratio (ICP) plots are made. Since peripheral collisions should
approximate the proton collisions, these ratios should be close to the
central IAA ratios.

The IAA fit results for the central data are shown in Tab. 4.1 and for
the peripheral data in Tab. 4.2. All the Figures corresponding to the
numerical values found from these tables are shown in Appendix D. There
is a noticeable trend in the central data. A raising line seems to be the
best fit for the lowest bins (pTt . 6 GeV, k‖ . 4 GeV). From there, the
description gradually changes into a constant. Again for the highest bins
(pTt & 8 GeV, k‖ & 4 GeV) a descending line looks like the best fit. The
peripheral data looks more or less like pp data.

The widening of the signal is seen in Fig. 4.5 and the narrowing in
Fig. 4.6. In these Figures the lines represent the constant and linear fits to
the data sets represented by points. These fits show the difference in slopes
between central and peripheral collisions while the central to peripheral
data seems to be similar to central to proton–proton data.
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Table 4.1: Extracted fit parameters of the constant fit and the linear fit to
the central IAA data. The central bin corresponds to the centrality class
0− 10 %.

Bin Constant fit Linear fit
pTt [GeV] k‖ [GeV] χ2 ν χ2 ν Slope

4− 5 2− 3 41.1 23 24.3 22 0.36± 0.08
4− 5 3− 4 43.2 23 27.1 22 0.29± 0.08
5− 6 2− 3 44.3 23 36.6 22 0.29± 0.11
5− 6 3− 4 22.0 23 20.0 22 0.13± 0.10
6− 8 2− 3 26.6 23 24.1 22 0.17± 0.11
6− 8 3− 4 22.6 23 20.2 22 −0.15± 0.10
6− 8 4− 6 17.6 23 15.6 22 −0.13± 0.09

8− 15 2− 3 22.6 23 22.6 22 −0.01± 0.14
8− 15 3− 4 40.6 23 35.4 22 −0.27± 0.12
8− 15 4− 6 59.5 23 22.1 22 −0.51± 0.09
8− 15 6− 8 18.4 11 10.4 10 −0.39± 0.14

Table 4.2: Extracted fit parameters of the constant fit and the linear fit to
the peripheral IAA data. The peripheral bin corresponds to the centrality
class 50− 90 %.

Bin Constant fit Linear fit
pTt [GeV] k‖ [GeV] χ2 ν χ2 ν Slope

4− 5 2− 3 29.7 23 24.6 22 0.10± 0.05
4− 5 3− 4 13.7 23 13.4 22 0.03± 0.06
5− 6 2− 3 29.6 23 28.5 22 0.06± 0.06
5− 6 3− 4 20.7 23 20.7 22 0.01± 0.07
6− 8 2− 3 24.8 23 23.0 22 −0.09± 0.07
6− 8 3− 4 19.3 23 18.9 22 −0.05± 0.08
6− 8 4− 6 13.2 23 11.0 22 −0.12± 0.08

8− 15 2− 3 29.3 23 20.6 22 −0.24± 0.09
8− 15 3− 4 42.8 23 39.2 22 −0.17± 0.10
8− 15 4− 6 41.4 23 23.0 22 −0.32± 0.08
8− 15 6− 8 9.88 11 9.29 10 −0.10± 0.14
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Figure 4.5: The widening of the signal peak. The uppermost plot shows
the central IAA ratio for

√
s = 2.76 TeV data with pTt ∈ [4,5]GeV and

k‖ ∈ [3,4]GeV. In the middle plot there is the peripheral IAA ratio and
in the bottommost plot the ICP ratio for the same energy, pTt bin and k‖
bin. A constant function (blue line) and a first order polynomial (red line)
are fitted to all of the data sets in the interval jT ∈ [0,1.5]GeV. The black
dashed line marks the ratio one.
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Figure 4.6: The narrowing of the signal peak. The uppermost plot shows
the central IAA ratio for

√
s = 2.76 TeV data with pTt ∈ [8,15]GeV and

k‖ ∈ [6,8]GeV. In the middle plot there is the peripheral IAA ratio and
in the bottommost plot the ICP ratio for the same energy, pTt bin and k‖
bin. A constant function (blue line) and a first order polynomial (red line)
are fitted to all of the data sets in the interval jT ∈ [0,1.5]GeV. The black
dashed line marks the ratio one.
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Chapter 5

Conclusions

The commonly used measures of energy loss in heavy ion collisions, RAA
and IAA, were generalized in this thesis using the observable jT, defined
as the transverse momentum component of the jet fragment with respect
to the jet axis. When the trigger particle is a leading particle with high-
pT, it approximates the jet axis and jT can be written as the transverse
momentum component of the associated particle with respect to the trigger
particle (see Fig. 2.2).

The pp data at
√

s = 2.76 TeV and Pb–Pb data at
√

sNN = 2.76 TeV
measured by the ALICE experiment were analyzed using the observable
jT. The modifications of transverse jet shapes in Pb–Pb compared to pp
were searched by studying the ratios of the jT distributions in Pb–Pb and
pp collisions.

Broadening of the jet signal is seen in the low pTt and k‖ region (pTt .
6 GeV, k‖ . 4 GeV) and a hint of narrowing in the high pTt and k‖ region
(pTt & 8 GeV, k‖ & 4 GeV). In between there is a kinematic region where no
significant shape modification is observed. As discussed in Section 2.2, a
possible physical scenario for the broadening would be multiple scatterings
and radiative energy losses in the medium by the jet fragments together
with interactions with the longitudinal flow. However, if this was the
only energy loss phenomenon happening inside QGP, a broadening of
the peak would be expected in all the momentum bins. Instead, the peak
seems to get narrower at higher momenta. Two distinct possibilities for
this are presented in Section 2.2. The first one is gluon filtering. As the
medium is expected to absorb gluons more likely than quarks, the relative
amount of quark jets is expected to rise. It is known that quark jets are
narrower than gluon jets, so this phenomenon leads to a narrowing of the
signal. The second one is a kinematic bias. The fragmentation becomes
softer in medium meaning that less of the original parton momentum
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is carried away by an observed hadron in the presence of medium. As
harder partons have narrower fragmentation, this leads to narrower jets
in the case of heavy ions as compared to pp for a fixed trigger pT. The
surface bias cannot explain this phenomenon, because it should make the
shape of the signal in Pb–Pb approximately the same as in pp .

It is difficult to say which one of the two jet narrowing mechanisms
dominates or if the narrowing is caused by some other unexpected phe-
nomena. The shape difference caused by the fragmentation of partons
with different momenta could be studied by different theory models and
the results obtained from these could then be compared with the observed
narrowing to estimate the contribution of the kinematic bias. If it would
be possible to measure the ratio of quark and gluon jets, the effect of gluon
filtering could be estimated using the ratio.

The error analysis is in progress and the systematic errors are still
missing completely. The sources for systematic errors are for example
the error coming form the background choice and errors in calculating
different correction factors.
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Appendix A

Relativistic kinematics

To describe the experimental setup, a Cartesian coordinate system where
the z-axis is aligned with the beam is used. The (x,y) plane in this
system is called the transverse plane. The momentum ~p = (px,py,pz) of a
scattered particle is divided into two parts, transverse and longitudinal.
The transverse momentum is defined as ~pT = (px,py) and the longitudinal
momentum as p‖ = pz. The direction of the scattered particle is described
by the azimuthal angle and pseudorapidity. The azimuthal angle is the
angle in the transverse plane. Pseudorapidity is defined as

η =
1
2

ln

(
|~p|+ p‖
|~p| − p‖

)
= − ln

(
tan

θ

2

)
, (A.1)

where θ is the scattering angle in the beam direction measured with re-
spect to the beam. A measurement of the pseudorapidity is essentially a
measurement of the scattering angle. Another neat property of pseudora-
pidity is, that when m

E → 0 it coincides with the regular rapidity y of the
particle

y =
1
2

ln

(
E + p‖
E− p‖

)
= artanh

( p‖
E

)
= artanh

(
v‖
)

, (A.2)

where v‖ is the velocity of the particle in the beam direction. The terms
midrapidity and forward rapidity are used to describe the scattering angle.
The midrapidity is the region where η ≈ 0 and θ ≈ 90◦ and the forward
rapidity the region where η & 2 and θ . 15◦.

The scattering processes are categorized to two main classes, soft
processes and hard processes, based on the square of the four-momentum
that is interchanged between the scattering particles Q2 = (p1− p3)

2. Here

51



52 APPENDIX A. RELATIVISTIC KINEMATICS

the indices 1 and 3 refer to the particles in the scattering 12→ 34. Q2 is
called the virtuality. Hard processes, with large Q2, are described with
perturbative QCD (pQCD) since in this case the running coupling αs(Q2)
is small. It may happen in these processes that two high energy "hard"
partons scatter to midrapidity. Due to confinement, they have to hadronize
and form jets. On the other hand, soft processes, with low Q2, typically
cannot be described using pQCD but need phenomenological modeling.
They are considered to form the so called underlying event, that has no
significant correlation to jets.



Appendix B

Centrality as a fraction of total
cross section

In this Appendix it is derived how to get Eq. (1.2) from Eq. (1.1) following
the discussion in [60]. The probability P(n) in Eq. (1.1) can be written in
a different form to take into account that different impact parameters b′

may produce the same multiplicity n:

c(N) =
∞

∑
n=N

P(n) =
∞

∑
n=N

∫ ∞

0

2πb′db′

σAB
in

ρ(b′) P(n|b′) , (B.1)

where 2πb′db′ is the area of the ring between impact parameters b′ and b′+
db′, ρ(b′) is the probability of an inelastic collision at the impact parameter
b′ and P(n|b′) is the conditional probability of producing multiplicity n
provided that the impact parameter is b′. Since it holds that

∞

∑
n=1

P(n|b′) = 1 (B.2)

and by definition ∫ ∞

0
2πb′db′ρ(b′) = σAB

in , (B.3)

Eq. (B.1) has the correct normalization c(1) = 1. For heavy nuclei, a
continuity limit

∞

∑
n=N
→
∫ ∞

N
dn =

∫ ∞

0
dnθ(n− N) (B.4)

is a good approximation. It can also be assumed, that the function P(n|b′)
is narrowly peaked around some average value n̄(b′). Thus it may be
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approximated that P(n|b′) = δ(n− n̄(b′)). Applying these approximations
to Eq. (B.1) gives

c(N) =
∫ ∞

0
dnθ(n− N)

∫ ∞

0

2πb′db′

σAB
in

ρ(b′) δ(n− n̄(b′))

=
∫ ∞

0

2πb′db′

σAB
in

ρ(b′) θ(n̄(b′)− N) . (B.5)

Since n̄(b′) is a monotonically decreasing function of b′, it can be writ-
ten that θ(n̄(b′)− N) = θ(b(N)− b′), where b(N) is the solution of the
equation n̄(b) = N. Thus

c(N) =
∫ ∞

0

2πb′db′

σAB
in

ρ(b′) θ(b(N)− b′)

=
∫ b(N)

0

2πb′db′

σAB
in

ρ(b′) =
σAB

in (b(N))

σAB
in

, (B.6)

where σAB
in (b(N)) is the inelastic cross section accumulated from b′ ≤

b(N).



Appendix C

Glauber model

The Glauber model treats the nucleus–nucleus collision as a multiple
nucleon–nucleon collision process [60]. All these nucleon–nucleon col-
lisions are assumed to be described by the same cross section and they
are also assumed to be completely independent. The elementary nucleon–
nucleon cross section is taken to be the total inelastic cross section in a
proton–proton collision σin. After a single binary inelastic collision, it is
assumed that a nucleon-like object emerges, that interacts basically with
the same cross section with other nucleons.

C.1 Thickness functions

A suitable formalism for calculations needs to be formed using these
approximations. The discussion here is based to that in [60]. nucleon–
nucleon collisions provide a starting point for the derivation. A sketch
of such a process is shown in Fig. C.1 (a). The total probability to have
a nucleon–nucleon collision is given by the total inelastic cross section
σin. With the help of the cross section, a probability to have an inelastic
nucleon–nucleon for a given impact parameter~b can be written as

p(~b) = t(~b)σin . (C.1)

Notice that p(~b) is not a probability density. Eq. (C.1) defines a nucleon–
nucleon thickness function t(~b). The thickness function takes into account
the finite size of the nucleon. Since the total probability is normalized to
σin, the integral of t(~b) over the impact parameter space is normalized to
unity: ∫

t(~b)d2~b = 1 . (C.2)
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Figure C.1: A sketch of (a) a nucleon–nucleon collision, (b) a nucleon–
nucleus collision and (c) a nucleus–nucleus collision in the transverse
plane with respect to the collision axis. ~b denotes the impact parameter
and the vectors ~sA and ~sB denote the positions of nucleons inside the
nuclei A and B. Figure is taken from [60].

Before moving to consider nucleon–nucleus collisions, some kind of a
description is needed for the atomic nucleus. This is an object that consists
of many nucleons. Some distribution for these needs to be assumed.
Woods-Saxon distribution provides quite a realistic estimate for this. The
Woods-Saxon distribution for a nucleon with mass number A is of the
form:

ρA(r) =
ρ0

A
(
1 + exp

[ r−r0
a
]) , (C.3)

where the different parameters are given values ρ0 = 0.17 fm−3, a =
0.54 fm and r0 =

(
1.12A1/3 − 0.86A−1/3) fm. There is one A at the de-

nominator because this nucleon density is wanted to be interpreted as a
probability distribution. This is required by the forthcoming calculations.

For simpler estimates one can use a hard sphere approximation for the
nuclear density. If the nucleons are assumed to be uniformly distributed
inside a hard sphere, the number density∫

n(r)d3r = A ⇒ n(r) =
3A

4πR3 θ(R− r) , (C.4)
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where R is the radius of the sphere and θ(x) is a step function, is obtained.
The radius is given by the equation

4
3

πR3ρ0 = A ⇒ R ≈ 1.12A1/3 . (C.5)

The ρ0 parameter is the same as in the Woods-Saxon distribution. To be
able to interpret the number density as probability density, it still needs to
be normalized by the mass number:

ρA(r) =
3

4πR3 θ(R− r) . (C.6)

Now that the nucleon distributions inside the nucleus are properly
described, the nucleon–nucleus collisions can be considered. A sketch
of this situation is drawn in Fig. C.1 (b). Similarly as before, a thickness
function for a single nucleon–nucleon collision needs to be defined. This
is called the nucleon–nucleus thickness function, or just thickness function.
Now the nucleon inside the nucleus is at transverse position~sA, measured
from the center of the nucleus. As the impact parameter ~b is a vector
pointing from the center of the nucleus to the incoming nucleon, the vector
pointing from~sA to the incoming nucleon is~sA −~b. The probability for
a collision between the incoming nucleon and the nucleon at ~sA is thus
parametrized by the nucleon–nucleon thickness function t(~sA −~b). As the
nucleon inside the nucleus can be anywhere in space with a probability
given by the nuclear density profile ρA, integration over all space is
required to get an expression for the nucleon–nucleus thickness function.
Collecting all this together and further assuming that the positions of the
nucleons are fixed during the collision process gives:

TA(~b) =
∫

dzA

∫
d2~sA ρA

(√
~s2

A + z2
A

)
t(~sA −~b) , (C.7)

where zA is the coordinate along the beam. Notice that equations (C.2)
and (C.3) imply the normalization∫

d2~b TA(~b) = 1 . (C.8)

Similarly as before, the probability for a single nucleon–nucleon collision
is now

p(~b) = TA(~b)σin . (C.9)

For calculations, Eq. (C.7) is a bit cumbersome, because it contains the
nucleon–nucleon thickness function t(~sA −~b), which is usually unknown.
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To make calculations easier, it is assumed that the nucleons are point-
like. In this limit, the nucleon–nucleon thickness function becomes a
two-dimensional delta function. This simplifies Eq. (C.7) a lot. Making the
change t(~sA −~b)→ δ(2)(~sA −~b) in Eq. (C.7) allows the integral over~sA to
be done giving

TA(~b) =
∫

dzA ρA

(√
~b2 + z2

A

)
. (C.10)

This is just the nuclear density projected onto the transverse plane. Now
the term thickness function can also be understood. In this approximation
TA(~b) gives the thickness of the nucleus in the transverse position~b.

Now only a nucleus–nucleus collision is left to be considered. Let the
two colliding nucleons have mass numbers A and B. The situation is
illustrated in Fig. C.1 (c). The derivation begins by finding a thickness
function for a single nucleon–nucleon collision in this nucleus–nucleus
collision. This is called the nucleus–nucleus thickness function, or the
overlap function. Here, similar reasoning as in the case of TA(~b) can be
used. The nucleon at nucleus A is in the transverse position~sA and the
nucleon at nucleus B is in the transverse position ~sB. These positions
are measured from the centers of the nuclei A and B respectively. The
vector pointing from~sA to~sB becomes~b +~sB −~sA. The nucleon–nucleon
thickness function for these two nucleons is thus t(~b +~sB −~sA). Both of
these two nucleons can be found anywhere from space with the probability
given by the nuclear density profiles. Integrating both of them over all
space gives the nucleus–nucleus thickness function:

TAB(~b) =
∫

dzA

∫
d2~sA ρA

(√
~s2

A + z2
A

)

×
∫

dzB

∫
d2~sB ρB

(√
~s2

B + z2
B

)
t(~b +~sB −~sA) . (C.11)

Above integration assumes that the positions of the nucleons are not
changed in the collision. Again, notice that equations (C.2) and (C.3)
imply the normalization ∫

d2~b TAB(~b) = 1 . (C.12)

Analogously to the earlier cases, the probability for a single nucleon–
nucleon collision in the nucleus–nucleus collision is given by

p(~b) = TAB(~b)σin . (C.13)
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To get rid of t(~b), the limit t(~b +~sB −~sA)→ δ(2)(~b +~sB −~sA) is taken.
Then one of the~s integrals can be done with this delta function. Choosing
the integral over~sB gives

TAB(~b) =
∫

d2~sA

∫
dzA ρA

(√
~s2

A + z2
A

) ∫
dzB ρB

(√(
~sA −~b

)2
+ z2

B

)
=

∫
d2~sA TA(~sA) TB(~sA −~b) . (C.14)

In this approximation it can be understood why this is called the overlap
function. TA(~s) represents the thickness of the nucleus at the position~s.
Now in order for TAB to be non-zero, both TA and TB must be non-zero at
the same area in the transverse plane. So they must be overlapping.

C.2 Average number of participants and binary
collisions

One of the things that can be obtained from the Glauber model is the
average number of binary collisions in a heavy ion collision. For this the
probability that n nucleon–nucleon collisions will happen in the nucleus–
nucleus collision is needed. Take a nucleon from the nucleus A and a
nucleon from the nucleus B. The probability that they will collide is
TAB(~b)σin, as given by Eq. (C.13). Since there are no other options than
to collide or not to collide, the probability that they will not collide must
be 1− TAB(~b)σin. As any of the A nucleons in nucleus A can collide with
any of the B nucleons with nucleus B, the maximum number of binary
collisions that can happen is AB. If there are n collisions happening,
AB− n potential collisions did not happen. The nucleons that caused the
n collisions can be chosen in (AB

n ) ways. This reasoning gives the following
expression for the probability of having n collisions:

P(n; A,B;~b) =
(

AB
n

) [
1− TAB(~b)σin

]AB−n [
TAB(~b)σin

]n
. (C.15)

Now that a set of discrete numbers with a probability attached to each is
obtained, the mean of this set is given by summing all the possible values
together weighted by their probabilities. The average number of binary
collisions is thus〈

n(A,B;~b)
〉
=

AB

∑
n=1

nP(n; A,B;~b) = ABTAB(~b) σin . (C.16)
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Notice that not much can be learned about the number of participants
from this calculation. The number obtained here is much bigger than the
number of participants in a collision.

Another interesting quantity given by the Glauber model in the total
inelastic cross section. The total inelastic cross section corresponds to the
total probability to have some kind of a collision. For this, the probabilities
corresponding to different numbers of collisions need to be added up:

Pin(A,B;~b) =
AB

∑
n=1

P(n; A,B;~b) = 1−
[
1− TAB(~b) σin

]AB
. (C.17)

This is the total probability to have any kind of collision at certain impact
parameter ~b. The total inelastic cross section is obtained by integrating
over the impact parameter space:

σAB
in =

∫
d2~b

(
1−

[
1− TAB(~b) σin

]AB
)

. (C.18)

Glauber model is frequently used to give an estimate for the number
of participants. That is the final derivation given here. To be precise,
the participants are divided into two groups. To those that may interact
elastically and to those that may interact only inelastically. The latter are
called wounded nucleons. The number of wounded nucleons is used to
estimate the number of participants. This is a good assumption, since the
elastic part of the total cross section is small compared to the inelastic part
in a heavy ion collision. First it is assumed that all the nucleons in the two
nuclei are at fixed positions. Consider one nucleon inside the nucleus B
at transverse position~sB

i . The probability for this nucleon to be wounded
is needed, meaning the probability that it will collide with any of the
nucleons in the nucleus A. This is obtained by calculating the probability
that it does not collide with any of the nucleons and subtracting this from
one:

pA(~sB
i ) = 1−

A

∏
j=1

[
1− t(~b +~sB

i −~sA
j )σin

]
. (C.19)

Next the nucleon i in nucleus B is allowed to be anywhere it can according
to the nuclear density profile. This profile is given by the thickness function
TB, which is essentially the projection of the density to the transverse plane.
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Inserting this and integrating over all space gives:

p̄(A;~sA
j ;~b) =

∫
d2~sBTB(~sB)pA(~sB

i )

=
∫

d2~sBTB(~b−~sB)

(
1−

A

∏
j=1

[
1− t(~sB −~sA

j )σin

])
.(C.20)

In the above integral the following change of variables is made: ~sB →~sB −
~b. Also the property TB(~b) = TB(−~b) is used. Now that the probability for
a chosen nucleon to be wounded is obtained, the probability to have wB
wounded nucleons can be calculated. Using exactly the same reasoning as
when calculating the number of binary collisions gives:

P(A; B;~sA
j ;~b) =

(
B

wB

) [
1− p̄(A;~sA

j ;~b)
]B−wB

[
p̄(A;~sA

j ;~b)
]wB

. (C.21)

This gives the average number of wounded nucleons in B:

〈
wB(A; B;~sA

j ;~b)
〉
=

B

∑
wB=1

wBP(A; B;~sA
j ;~b) = Bp̄(A;~sA

j ;~b) . (C.22)

This result still has fixed positions for the nucleons in the nucleus A. An
integration over all the possible configurations is required. This is done by
inserting the TA function for every fixed nucleon:〈

wB(A; B;~b)
〉

= B
∫

d2~sA
1 TA(~sA

1 ) · · ·
∫

d2~sA
ATA(~sA

A)

×
∫

d2~sBTB(~b−~sB)

(
1−

A

∏
j=1

[
1− t(~sB −~sA

j )σin

])

= B
∫

d2~sBTB(~b−~sB)

(
1−

[
1−

∫
d2~sATA(~sA)t(~sB −~sA)σin

]A
)

.

(C.23)
This equation is obtained by noticing that actually all of the~sA

j integrals
are identical and that there are A of them. To get the form that can be
applied in calculations, the approximation t(~sB −~sA) → δ(2)(~sB −~sA) is
made to obtain:〈

wB(A; B;~b)
〉
= B

∫
d2~sBTB(~b−~sB)

(
1−

[
1− TA(~sB)σin

]A
)

. (C.24)
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This is the average number of wounded nucleons in the nucleus B, when it
collides with A. For the nucleus A exactly the same steps can be followed.
Then the total number of wounded nucleons is the sum of wounded
nucleons in A and B:〈

w(A; B;~b)
〉

=
〈

wA(A; B;~b)
〉
+
〈

wB(A; B;~b)
〉

= A
∫

d2~sATA(~b−~sA)

(
1−

[
1− TB(~sA)σin

]B
)

+ B
∫

d2~sBTB(~b−~sB)

(
1−

[
1− TA(~sB)σin

]A
)

.(C.25)



Appendix D

Figures

Hints of the jet shape modifications are sought by examining the IAA (see
Eq. (4.1)) plots for central Pb–Pb data. The plots for peripheral data are
used as a reference. A constant function and a first order polynomial
are fitted to these data sets to see if there is a rising or lowering trend in
the ratio, or if the ratio is consistent with a constant. The fitting range is
determined from Figures D.1–D.4. These Figures contain the measured
jT data to background ratio plots for pp data and central Pb–Pb data in
all the pT and k‖ bins used in the analysis. All Figures are zoomed to the
signal region in jT to better see the signal peak. The region where the
signal dies is looked for by evaluating these Figures by eye. This happens
around jT ∼ 1.5 GeV. Thus the fit is made in the range jT ∈ [0,1.5]GeV.
The IAA plots for central and peripheral data for all the pT and k‖ bins
with constant and linear functions fitted to them are shown in Figures
D.5–D.7.
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Figure D.1: Measured data to background ratio for pp data at
√

s =
2.76 TeV for many different pTt and k‖ bins. Black marks the results for
the pseudorapidity gap background and red for the radial gap. The plots
are zoomed to the signal region in jT.
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Figure D.2: Measured data to background ratio for pp data at
√

s =
2.76 TeV for many different pTt and k‖ bins. Black marks the results for
the pseudorapidity gap background and red for the radial gap. The plots
are zoomed to the signal region in jT.
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Figure D.3: Measured data to background ratio for central Pb–Pb data at√
sNN = 2.76 TeV for many pTt and k‖ bins. The background is obtained

using the pseudorapidity gap method. The plots are zoomed to the signal
region in jT.
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Figure D.4: Measured data to background ratio for central Pb–Pb data at√
sNN = 2.76 TeV for many pTt and k‖ bins. The background is obtained

using the pseudorapidity gap method. The plots are zoomed to the signal
region in jT.
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Figure D.5: Central IAA ratios (left) and peripheral IAA ratios (right) for√
s = 2.76 TeV data for many different pTt and k‖ bins. A constant function

(blue line) and a first order polynomial (red line) are fitted to the data sets
in the interval jT ∈ [0,1.5]GeV. The black dashed line marks the ratio one.
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Figure D.6: Central IAA ratios (left) and peripheral IAA ratios (right) for√
s = 2.76 TeV data for many different pTt and k‖ bins. A constant function

(blue line) and a first order polynomial (red line) are fitted to the data sets
in the interval jT ∈ [0,1.5]GeV. The black dashed line marks the ratio one.
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Figure D.7: Central IAA ratios (left) and peripheral IAA ratios (right) for√
s = 2.76 TeV data for many different pTt and k‖ bins. A constant function

(blue line) and a first order polynomial (red line) are fitted to the data sets
in the interval jT ∈ [0,1.5]GeV. The black dashed line marks the ratio one.
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