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Abstract

The theory of neutrino oscillations has turned out to be the most rea-

sonable explanation to the observed violations in lepton number con-

servation of solar and atmospheric neutrino �uxes. A derivation of

the most important results of this theory is �rst given using a plane

wave treatment and subsequently using a three-dimensional shape-

independent wave packet approach. Both methods give the same os-

cillation patterns, but only the latter one serves as a decent starting

point for analyzing coherence in neutrino oscillations.

A numerical analysis of the oscillation patterns on various distance

scales is also given to graphically illustrate the phenomenon of neutrino

oscillation and loss of coherence in it.

Several coherence conditions related to wave packet separation and

the uncertainties of energy and momentum in the mass states pro-

duced in a weak charged current reaction are derived. In addition, a

new limit is obtained for neutrino �ux, beyond which the oscillation

pattern may be washed out due to the overlap of the wave packets de-

scribing neutrinos originating from di�erent reactions. Whether or not

any phenomena will take place in the case of very high �ux remains

uncertain, because the �ux limit is beyond the scope of any modern

neutrino experiment.

Tiivistelmä

Neutriino-oskillaatiot tarjoavat luontevimman selityksen havaituille lep-

tonilukujen säilymislain rikkoutumiselle, joka on havaittu auringosta

ja ilmakehästä tulevissa neutriinoissa. Neutriino-oskillaatioiden teo-

rian tärkeimmät tulokset johdetaan ensin tasoaaltoapproksimaatiossa

ja sen jälkeen käyttäen kolmiulotteisia mielivaltaisen muotoisia aalto-

paketteja. Oskillaatiota ja siihen liittyvää koherenssin häviämistä ha-

vainnollistetaan numeerisilla laskuilla tuotetuin kuvaajin.

Oskillaatioille johdetaan erilaisia koherenssiehtoja liittyen aaltopa-

kettien erkanemiseen sekä energian ja liikemäärän epätarkkuuteen. Li-

säksi löydetään uusi raja neutriinovuolle, jonka yläpuolella oskillaatiot

saattavat kadota. Se, tapahtuuko näin suurilla voilla kiinnostavia il-

miöitä, jää epävarmaksi, sillä nykyisillä koejärjestelyillä asiaa ei ole

mahdollista tutkia.

Summarium

Violatio observata conservationis numerorum leptorum in neutrinis de

Sole et atmosphaera devolantibus simplicissime explicari potest oscil-

latione neutrinorum. Eventus principales theoriae oscillationum neu-

trinorum deducuntur primum undulis planis, deinde fascibus undu-

latoriis tridimensionalibus cuiuslibet formae. Oscillatio amissioque

cohaerentiae in ea graphice illustrantur.

Variae necessitates cohaerentiae ad dissociationem fascium undu-

latoriorum et incertitatem energiae et motus pertinentes deducuntur,

necnon novus �nis �umini neutrinonum, super quem oscillationes abo-

lescere possunt. An vero abolescant necne, incertum relinquitur, quia

tale �umen longe extra facultates hodiernas mensurandi manet.
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1 Introduction

Despite the great success of the Standard Model (SM), not all of its predic-
tions are in accordance with phenomena observed in Nature. It has turned,
contrary to the predictions of SM, out that neutrinos do have mass and
that none of the three lepton numbers is conserved � in the case of sterile
neutrinos even the sum of these three lepton numbers is not conserved. In-
deed, neutrino oscillations were the �rst evidence that something must be
lacking from the SM [1]. New theoretical ideas are needed to explain these
phenomena.

Observations of atmospheric and solar neutrinos indicate violations in
lepton number conservation. In the former case, the observed �ux of muon
neutrinos νµ on the ground is substantially smaller than what is estimated
to be produced in interactions of cosmic rays in the atmosphere. In the
latter case a fraction of the electron neutrinos created in the Sun seems to
disappear on its way to Earth (for experimental results, see eg. [2]), which
was known as the solar neutrino problem (for a more thorough discussion
of neutrino astronomy, see [3]). In both phenomena some of the produced
neutrinos transform into neutrinos of other �avors as they propagate through
space, and they are thus merely two incarnations of the same phenomenon,
neutrino oscillation.

The most natural explanation to this and other observed phenomena
unpredicted by the sole SM arises from the concept of mixed and massive
neutrinos [4]. According to this explanation, the weak interaction eigenstates
|νe〉, |νµ〉, and |ντ 〉 (i.e. the �avor states) have no well-de�ned mass, but their
superpositions do. The �avor states |να〉 (α = e, µ, τ) are expressed in terms
of the mass states |νi〉 as [5]

|να〉 =
N∑
i=1

U∗αi |νi〉 , (1)

where U is the neutrino mixing matrix or the Pontecorvo�Maki�Nakagawa�
Sakata matrix [6]. The matrix U is unitary and can be chosen real and
orthogonal if there is no CP-violation in neutrino mixing [7, 8]. For de�-
niteness, the mixing matrix U is taken to be a unitary but not necessarily
real 3×3-matrix. Both the �avor and mass neutrino states are orthonormal,
〈να|νβ〉 = δαβ and 〈νi|νj〉 = δij .

A �avor antineutrino state |ν̄l〉 can be expressed in terms of antineutrino
mass states as [9]

|ν̄α〉 =

N∑
i=1

Uαi |ν̄i〉 , (2)

where the only change to Eq. (1) is the absence complex conjugation in the
mixing matrix elements. If the mixing matrix is taken to be real, the mixing
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schemes for neutrinos and antineutrinos are exactly the same. The time
evolution of an antiparticle state is similar to that of a particle state1, so
the oscillation pattern will be the same. Therefore only neutrinos will be
considered in the following.

An analogue of neutrino mixing is found in classical mechanics: the mass
states can be identi�ed with normal coordinates in a system of coupled os-
cillators, whereas �avor states describe individual oscillators. The obtained
oscillation phenomenon bears a striking resemblance to that of neutrino os-
cillations, although quantum mechanics or quantum �eld theory is needed to
describe neutrinos. A nice discussion of classical coupled oscillators is given
in [10].

The �avor space � which is the state space in the crudest approximation
� is usually taken to be three-dimensional. If N > 3, there are sterile neu-
trinos, ��avors� that do not enter the SM electroweak interaction Lagrangian
and therefore do not interact [6]. On the basis of experimental data it is not
yet possible to conclude whether sterile neutrinos exist or not [11].

The origin and exact values of the neutrino masses is a vast area of
theoretical [12] and experimental [11] research, which will not be dwelled
into in any more detail than required for the other considerations.

It is not even known whether neutrinos are Dirac or Majorana particles.
In the latter case neutrinos are their own antiparticles and in the former case
not [12]. Other standard model fermions are known to be Dirac particles,
but it is believed that neutrinos make an exception.

2 Plane wave approximation

2.1 The standard formula for neutrino oscillations

The simplest insight to neutrino oscillations is provided by the study of
the time evolution of �avor plane waves. In fact, even the formalism of
plane waves simpli�es to a three-state system of the �avor neutrinos, and
the spatial dependence of the phenomenon is later introduced by an ad hoc

procedure.

As the �avor neutrino states have no well-de�ned mass, they have no
well-de�ned energy and therefore their time dependence is more complex
than that of a simple phase factor. The mass states do, however, have the
most simple time evolution.

Consider a neutrino state |ν(t)〉 and assume that it is created at t = 0 as
a pure �avor state of �avor α, i.e. |ν(0)〉 = |να〉. As stated in Eq. (1), this

1For a particle state |φ(t)〉 = e−iEt |φ〉 and for an antiparticle |φ(t)〉 = e+iEt |φ〉. Com-
plex conjugating all phases in the calculations will lead to the same absolute values of
inner products.
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state is the superposition of massive neutrinos,

|ν(0)〉 =
3∑
i=1

U∗αi |νi〉 . (3)

Given that the mass state | νi〉 has the energy Ei, the time evolution of the
state is simply given by

|ν(t)〉 =
∑
i

U∗αie
−iEit |νi〉 . (4)

The bra vector corresponding to the neutrino of �avor β is found by conju-
gating (1):

〈νβ| =
∑
j

Uβj 〈νj | . (5)

Thus the probability of �nding a neutrino in the �avor β at a time t is given
by

P (να → νβ; t) = |〈νβ|ν(t)〉|2 =
∑
i,j

U∗αiUβjUαjU
∗
βje
−i(Eit−Ejt). (6)

2.2 Massive neutrinos of equal energy

A crucial but dubious step in the calculation of the probability is to intro-
duce relations between the properties of di�erent neutrinos mass states and
between time and space. This transforms the �avor detection probability
function in Eq. (6) into a function of distance and a kinematical variable
describing the produced neutrino.

A common way to do this is to assume that all the neutrino mass states
have the same energy. Arguments supporting this idea are presented, for
example, in [13, 14, 15], although some consider it unphysical [5]. These
arguments will be discussed more thoroughly in section 2.4.

Elementary relativistic kinematics shows that a particle of mass m and
energy E travels at the speed

v =

√
1− m2

E2
. (7)

If L is the distance traveled by the neutrino between production and detec-
tion points and every massive neutrino has the energy E, then

Eti − Etj =EL

(
1− m2

i

E2

)−1/2

− EL

(
1−

m2
j

E2

)−1/2

≈EL
(

1 +
m2
i

2E2

)
− EL

(
1 +

m2
j

2E2

)

=
L(m2

i −m2
j )

2E
, (8)
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which is accurate to the �rst order in squared neutrino masses. Denoting
∆m2

ij = m2
i −m2

j , Eq. (6) leads to the standard formula for neutrino oscil-
lations:

P (να → νβ;L) =
∑
i,j

U∗αiUβiUαjU
∗
βje
−i

L∆m2
ij

2E . (9)

2.3 Massive neutrinos of equal momentum

Some authors consider the equal energy assumption unphysical [5] and in-
stead assume that the di�erent mass states have the same momentum in-
stead. Some [7] use the assumption for other than physical reasons such as
simplicity. These di�erent assumptions of equal energy or momentum have
little or no di�erence in either the di�culty of the calculations or the result.

Let every mass state |νi〉 in Eq. (4) have the same momentum p. The
energies of the states are then

Ei =
√
p2 +m2

i ≈ p+
m2
i

2p
(10)

and so

Eit− Ejt ≈
t∆m2

ij

2p
. (11)

If one further assumes that L ≈ t, i.e. v ≈ 1, one arrives to the formula

P (να → νβ;L) =
∑
i,j

U∗αiUβiUαjU
∗
βje
−i

L∆m2
ij

2p , (12)

which only di�ers from Eq. (9) in that E has been replaced by p. Bearing
in mind that E ≈ p for ultrarelativistic neutrinos, these two results are the
same in the approximation used. Since L∆m2

ij/2p is already �rst order in
squared neutrino masses, the corrections from changing p to E are negligible.

Some authors think that these two approaches give exactly the same
result and represent essentially the same physics, although it may be better to
distinguish these two approaches [16]. This comparison is, however, beyond
the scope of the present analysis.

2.4 An overview to the physics behind the assumptions

Plane waves are not localized, and in fact even non-propagating [17], but one
does wish to calculate distance-dependent probabilities in order to be able
to make predictions for neutrino oscillation experiments.

In the above derivation of the oscillation probability formula it was nec-
essary to assume that the mass states have either equal energy or equal
momentum. It sounds plausible that they are both almost equal. As the
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wave packet treatment will show, this is su�cient to obtain the standard
formula of Eq. (9).

Even if massive neutrinos have equal energy or equal momentum in some
frame of reference, they will not in general do so after a Lorentz boost [9].
Therefore assumptions of equal momentum or equal energy are valid only
in the framework of a speci�c frame. De�ning such a frame is a dubious
ad hoc procedure. In the wave packet treatment no such assumption is
needed to arrive at the probability formula (9). In a generic case of three
�avor neutrinos there will be no frame where the massive neutrinos have
equal energy [17]. Frame independence allows for much more �exibility in
applying the theory to any practical situation.

Coherence can only be given a rigorous treatment using wave packets,
and this will be done in section 4. A simpli�ed coherence condition will be
derived in terms of the plane wave approximation, but such a model cannot
properly describe the coherence of massive neutrinos at a given time and
point.

A general assumption made in most neutrino oscillation investigations is
that neutrinos are ultrarelativistic. Not all neutrinos need be, but since only
neutrinos of about 100 keV or more energy can be observed [5] and neutrino
masses are at most around 2 eV [11], this approximation is very good for all
observable neutrinos of the stardard type.

3 Wave packets

3.1 The need for the wave packet treatment

As discussed in Section 2.4, the plane wave approximation requires numerous
physically questionable assumptions. Usually neutrinos have neither equal
energy nor equal momentum [9], and with wave packets no such assumption
is needed. Also, no trajectory condition such as L ≈ t needs to be imposed
by hand, because such a trajectory equation can be derived from the time
evolution of the wave packets.

There are two highly unphysical consequences of approximating neutrinos
by plane waves. First, in this approach the neutrino has a well-de�ned
momentum and thus completely loses its locality. Second, the source of a
plane wave has to vibrate in the same manner for in in�nite period of time
[18]. It is easy to understand that the production process of a neutrino is
spatially localized and spans only over a �nite period of time.
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3.2 Wave packet spreading

Wave packet spreading can be analyzed [16] by considering a wave function
in the momentum representation having a Gaussian wave packet form

f(p) =
1√√
πσp

exp

(
(p− p0)2

2σ2
p

)
, (13)

where p0 is the mean momentum and σp is the momentum uncertainty. From
this the corresponding wave function in coordinate representation is obtained
by Fourier transform:

ψ(x, t) =
1√
2π

∫
dpf(p)ei(px−Et). (14)

Assuming that the particle in question has a mass m, the energy of the
particle is E = E(p) =

√
p2 +m2. Denoting E0 = E(p0), this expression is

expanded around the peak of f(p) as

E(p) ≈ E0 +
dE

dp

∣∣∣∣
p=p0

(p− p0) +
d2E

dp2

∣∣∣∣
p=p0

(p− p0)2

2
. (15)

Expanding only to the �rst order gives wave packets of constant shape, while
the second order term allows one to analyze the spreading [16]. Carrying
out the di�erentiations and introducing v = p0/E0 (the group velocity of the
particle as discussed in Section 3.3.1), the energy becomes

E(p) ≈ E0 + v(p− p0) +
1− v2

E0

(p− p0)2

2
. (16)

Collecting Eqs. (13), (14), and (16) and carrying out the integration yields

ψ(x, t) ≈ 1
4
√
π

√
p0σp

p0 + iσ2
ptv(1− v2)

× exp

(
2ip0t
v + σ2

pt
2(3v2 − 2)− (2ip0 + 2σ2

ptv
3)x+ σ2

px
2

2p−1
0 (p0 + iσ2tv(1− v2))

)
. (17)

The squared modulus of the wave function ψ(x, t) gives the transition prob-
ability density ρ,

ρ(x, t) =
1√
π

p0σp√
p2

0 + σ4
pt

2v2(1− v2)2

× exp

(
− (x− tv)2

σ−2
p (1 + σ4

pt
2v2 (1− v2)2 /p2

0)

)
. (18)
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This implies that the length of the wave packet σx behaves as

σx(t) = σx0

√
1 +

σ4
pt

2v2 (1− v2)2

p2
0

. (19)

The application of this result to neutrino oscillations will be discussed in
Section 4.5.

3.3 Neutrino oscillations in wave packet treatment2

3.3.1 Produced and detected states

Neutrino oscillations are now considered in wave packet formalism as opposed
to the plane waves used in Section 2. As in the plane wave approach, a �avor
neutrino state of �avor α is created at the origin of a frame of reference when
t = 0. The corresponding state is decomposed to massive neutrino states,
which are described by wave packets ψSi (~x, t) (superscript S refers to the
source):

|ν(~x, t)〉 =
∑
i

U∗αiψ
S
i (~x, t) |νi〉 , (20)

where the wave packets are described by momentum distribution functions
fSi (~p) as

ψSi (~x, t) =

∫
d3~p

(2π)3/2
fSi (~p− ~pSi )ei(~p · ~x−Ei(p)t), (21)

where ~pSi is the mean momentum and Ei(p) =
√
p2 +m2

i .

In the above the function fSi (~p) is strongly peaked at the origin; taking
fSi (~p) = δ(3)(~p) would lead to plane waves with de�nite momenta. It is also
assumed that the peak of fSi (~p− ~pSi ) is not near the origin, that is σSpi � pSi .
This can be justi�ed by the ultrarelativistic nature of detectable neutrinos.

Since the above integral is assumed to be strongly suppressed outside
~p ≈ ~pSi , one may expand the energy as

Ei(p) = Ei(p
S
i ) +

∂Ei(p)

∂~p

∣∣∣∣
~pSi

· (~p− ~pSi ). (22)

Di�erentiating Ei(p) gives

∂Ei(p)

∂~p

∣∣∣∣
~pSi

=
~pSi

Ei(pSi )
. (23)

This derivative is the group velocity ~vgi of the wave packet.

2This discussion mostly follows that of [17].
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Working to the �rst order squared neutrino masses, one may write ~p · ~x−
Ei(p)t = ~pSi · ~x + (~p − ~pSi ) · ~x − (Ei(p

S
i ) + ~vgi · (~p − ~pSi ))t, and thus the wave

packet (21) can be rewritten as

ψSi (~x, t) = ei(~p
S
i · ~x−Ei(p

S
i ))gSi (~x− ~vgit), (24)

where

gSi (~x) =

∫
d3~p

(2π)3/2
fSi (~p)ei~p · ~x. (25)

In this approximation the shape of the wave packet is preserved [17]. This
is evident from the fact that the shape factor of the wave packet depends
on time and place only through the combination ~x − ~vgit � this form also
explains why ~vgi is the group velocity.

A detecting particle is placed at ~x = ~L. In most cases of interest, the
detected neutrino state |νβ〉 is essentially time-independent [17]. Thus, we
have in analogue to to the state |ν(~x, t)〉 discussed above (D refers to the
detecting particle),∣∣∣νβ(~x− ~L)

〉
=
∑
i

U∗βiψ
D
i (~x− ~L) |νi〉 (26)

ψDi (~x− ~L) =

∫
d3~p

(2π)3/2
fDi (~p− ~pDi )ei~p · (~x−~L). (27)

It is assumed that the momentum distribution functions fDi are strongly
peaked around the origin. As above, the wave packet can be approximated
as

ψDi (~x− ~L) = ei~p
D
i · (~x−~L)gDi (~x− ~L), (28)

where

gDi (~x) =

∫
d3~p

(2π)3/2
fDi (~p)ei~p · ~x. (29)

3.3.2 From transition amplitude to probability

By projecting the produced, time-evolved neutrino state (20) to the detected
state (26), one arrives at the transition amplitude

Aα→β(~L, t) =

∫
d3~x

〈
νβ(~x− ~L)

∣∣∣ν(~x, t)
〉
. (30)

In order to evaluate this amplitude, one has to evaluate integrals of the form∫
d3~xψD∗i (~x− ~L)ψSi (~x, t). (31)

Using the expressions (24) and (28) and noting that

(~pSi · ~x−Ei(pSi )t)−~pDi · (~x− ~L) = ~pSi · ~L−Ei(pSi )t+(~pSi −~pDi ) · (~x− ~L), (32)
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one may write

ψD∗i (~x− ~L)ψSi (~x, t) = gD∗i (~x− ~L)gSi (~x−~vgit)ei(~p
S
i · ~L−Ei(p

S
i )t)ei(~p

S
i −~pDi ) · (~x−~L).

(33)
The orthogonality of massive neutrino states gives then for the transition
amplitude Aα→β the form

Aα→β(~L, t) =
∑
i

U∗αiUβie
i(~pSi · ~L−Ei(p

S
i )t)Gi(~L− ~vgit) (34)

where

Gi(~L) =

∫
d3~xgD∗i (~x)gSi (~x+ ~L)ei(~p

S
i −~pDi ) · ~x. (35)

The exact moment of production or detection is usually not measured in
neutrino experiments, so the probability of detecting the �avor β at the
detector is given by the time integral

P (να → νβ; ~L) =

∫ ∞
−∞

dt
∣∣∣Aα→β(~L, t)

∣∣∣2 . (36)

Denoting Ei = Ei(p
S
i ) and de�ning

Iij(~L) =

∫ ∞
−∞

dtG∗j (~L− ~vgjt)Gi(~L− ~vgit)e−i∆φij(~L,t) (37)

with

∆φij = (Ei − Ej)t− (~pSi − ~pSj ) · ~L, (38)

the probability becomes

P (να → νβ; ~L) =
∑
i,j

U∗αiUβiUαjU
∗
βjIij(

~L). (39)

The similarity of this formula to the standard formula for neutrino oscilla-
tions given in Eq. (9) is immediately noted and it will be further strength-
ened by the forms of Iij(~L) obtained in Sections 3.3.3 and 3.4, which give
the phase factor of the standard formula. The main phenomenon in neutrino
oscillations is due to the phase factor ∆φij , and it should be noted that its
form in Eq. (38) is Lorentz invariant, removing the issue of Lorentz boosts
invalidating the calculations.

The integral Iij(~L) describes how much the wave packets of ith and
jth massive neutrinos overlap, and is thus called an interference integral.
For a discussion of why the interference integral Iij(~L) and therefore the
probability is Lorentz-invariant, see [17].
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3.3.3 Calculating the interference integral

To get the probability (39) in a simpler form, the di�erence of momenta
between produced and detected massive neutrino states is denoted by ~δi =
~pSi − ~pDi . With this and ∫

d3~xe−i~y · ~x = (2π)3δ(3)(~y) (40)

for the Dirac's delta function one may write

Gi(~L) =

∫
d3~xgD∗i (~x)gSi (~x+ ~L)ei(~p

S
i −~pDi ) · ~x

=

∫
d3~x

∫
d3~p

(2π)3/2

∫
d3~q

(2π)3/2
fD∗i (~p)fSi (~q)

× e−i~p · ~xei~q · (~x+~L)ei
~δi · ~x

=

∫
d3~p

∫
d3~qδ(3)(~p− ~δi − ~q)fD∗i (~p)fSi (~q)ei~q · ~L

=

∫
d3~qfD∗i (~q + ~δi)f

S
i (~q)ei~q · ~L, (41)

where Eqs. (25), (29) and (35) have been used. This with the one-dimensional
form of Eq. (40) leads to

Iij(~L) =

∫ ∞
−∞

dt

∫
d3~pfDj (~p+ ~δj)f

S∗
j (~p)e−i~p · (~L−~vgjt)

×
∫

d3~qfD∗i (~q + ~δi)f
S
i (~q)ei~q · (~L−~vgit)e−i((Ei−Ej)t−(~pSi −~pSj ) · ~L)

= 2π

∫
d3~p

∫
d3~qfDj (~p+ ~δj)f

S∗
j (~p)fD∗i (~q + ~δi)f

S
i (~q)

× δ(~q ·~vgi − ~p ·~vgj + ∆Eij)e
i(~q−~p+∆~pSij) · ~L. (42)

To continue further, a choice of coordinates is made such that ~vgj = ẑvgj ,
where ẑ is the unit vector in z-direction. The vector ~p is expressed as ~p =
~p‖ẑ + ~p⊥ẑ and others similarly. The following property is easily derived:

∫
d3~xf(~x)δ(~x · zẑ − a) =

1

z

∫
d2~x⊥ẑf(~x0 + ~x⊥ẑ), (43)

where ~x0 is any vector such that ~x0 · zẑ = a and f is a su�ciently smooth
function. In the ~p-integration of Eq. (42) one can choose ~p0 = (~q ·~vgi +
∆Eij)ẑ/vgj , which clearly satis�es ~p0 · ẑvgj = ~q ·~vgi + ∆Eij . Thus the eval-
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uation of Iij may be continued as

Iij(~L) =
2π

vgj

∫
d2~p⊥ẑ

∫
d2~q⊥ẑ

∫
d~q‖ẑf

D
j

(
~p⊥ẑ + (~q ·~vgi + ∆Eij)

ẑ

vgj
+ ~δj

)
× fS∗j

(
~p⊥ẑ + (~q ·~vgi + ∆Eij)

ẑ

vgj

)
fD∗i (~q⊥ẑ + ~q‖ẑ + ~δi)

× fSi (~q⊥ẑ + ~q‖ẑ)e
i

(
~q⊥ẑ+~q‖ẑ−

(
~p⊥ẑ+(~q ·~vgi+∆Eij) ẑ

vgj

)
+∆~pSij

)
· ~L

=
2π

vgj
e
i

(
∆~pSij−∆Eij

ẑ
vgj

)
· ~L ∫

d2~p⊥ẑe
−i~p⊥ẑ · ~L

×
∫

d2~q⊥ẑe
i

(
~q⊥ẑ−~q⊥ẑ ·~vgi ẑ

vgj

)
· ~L ∫

d~q‖ẑe
i

(
~q‖ẑ−~q‖ẑ ·~vgi ẑ

vgj

)
· ~L

× fDj
(
~p⊥ẑ + (~q ·~vgi + ∆Eij)

ẑ

vgj
+ ~δj

)
fD∗i (~q + ~δi)

× fS∗j
(
~p⊥ẑ + (~q ·~vgi + ∆Eij)

ẑ

vgj

)
fSi (~q). (44)

It is assumed that ~vgi ‖ ~vgj , that is ~vgi⊥ẑ = 0, which seems physically
plausible. Under this assumption the phase factor in front of the integrals
above becomes (∆~pSij−∆Eij ẑ/vgj) · ~L = (∆pSij−∆Eij/vgj)ẑ · ~L. To the �rst
order in squared neutrino masses one may also approximate

∆Eij =E(pSi ,m
2
i )− E(pSj ,m

2
j )

≈ ∂E(p,m2)

∂p

∣∣∣∣
pSj ,m

2
j

(pSi − pSj ) +
∂E(p,m2)

∂m2

∣∣∣∣
pSj ,m

2
j

(m2
i −m2

j )

= vgj∆p
S
ij +

1

2Ej
∆m2

ij , (45)

where E(p,m2) =
√
p2 +m2. Further noting that pSj = vgjEj , one obtains

Iij(~L) =
2π

vgj
e
−i

∆m2
ij

2p |~L⊥ẑ|
∫

d2~p⊥ẑe
−i~p⊥ẑ · ~L

∫
d2~q⊥ẑe

i~q⊥ẑ · ~L

×
∫

d~q‖ẑe
i

(
~q‖ẑ−~q‖ẑ · ẑ vgi

vgj
ẑ

)
· ~L

× fDj
(
~p⊥ẑ + (~q‖ẑ · ẑvgi + ∆Eij)

ẑ

vgj
+ ~δj

)
fD∗i (~q⊥ẑ + ~q‖ẑ + ~δi)

× fS∗j
(
~p⊥ẑ + (~q‖ẑ · ẑvgi + ∆Eij)

ẑ

vgj

)
fSi (~q⊥ẑ + ~q‖ẑ), (46)

where p = pSj ≈ 1
2(pSi + pSj ) (used only to divide ∆m2

ij this approximation

for pSj is valid to the �rst order in squared masses). It is rather convenient to
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consider propagation in only one spatial dimension, which is a very good ap-
proximation when the distance between the production and detection of the
neutrino is macroscopic [17]. Taking the one-dimensional version of Eq. (42)
and carrying out the p-integration simpli�es the previous equation to

Iij(L) =
2π

vgj
e
−i

∆m2
ij

2p
L
∫

dqe
iq

(
1−

vgi
vgj

)
L
fDj

(
q
vgi
vgj

+
∆Eij
vgj

+ δj

)
× fD∗i (q + δi)f

S∗
j

(
q
vgi
vgj

+
∆Eij
vgj

)
fSi (q). (47)

This calculation gives Eq. (39) a form very similar to that of Eq. (9).

The plane wave result of oscillation probabilities is obtained by letting
vgi/vgj → 1 and assuming that the shape factors become the same, i.e.

fS,Di (p) = fS,Dj (p). See [17] for a description of how the latter assumptions
follows from the former one. Using the normalization (50), the whole ex-
pression in Eq. (47) excluding the �rst phase factor tends to unity, leading
to Iij(L) = exp(−i∆m2

ijL/2p). This is indeed the same formula obtained by
using the plane wave approach.

3.3.4 Normalization

Di�erent normalizations have been proposed for the momentum distribution
functions fSi , for example [16]∫

dpfSi (p) =
√

2π, (48)∫
dp
∣∣fSi (p)

∣∣2 = 1, (49)

and [17] ∫
dt
∣∣∣Gi(~L− ~vgit)∣∣∣2 = 1. (50)

Imposing such a normalization condition by hand is considered inconsistent.
Instead, one should derive them from the temporal response function of the
detector [17] or from a �eld theoretical treatment of the processes of neutrino
creation, propagation and detection [19].

Fortunately, it is not entirely necessary dwell into the subtleties of nor-
malization. Discussion of coherence, for example, does not require the cal-
culation of any normalization factors. Also, in many applications one may
normalize the probabilities themselves at the very end of the calculations
without a need for a more explicit treatment. Terms of order O(mν/Eν) can
be neglected in the probabilities (but not the phase and coherence factors),
because no detection apparatus has the accuracy to observe such subtle phe-
nomena, and a misnormalization of this order is therefore rather insigni�cant.
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3.4 Gaussian wave packets

It is usually assumed [17] that wave packets have a Gaussian form, e.g. in
one dimension [16]

fSi (p) =

√
1√
πσSpi

e−
1
2

((p−pSi )/σS
pi

)/2. (51)

If one de�nes �mean� group velocities as follows

vgij =
vgi(σ

S
pi)

2 + vgj(σ
S
pj )

2

(σSpi)
2 + (σSpj )

2
(52a)

v′gij =
(vgiσ

S
pi)

2 + (vgjσ
S
pj )

2

vgi(σSpi)
2 + vgj(σSpj )

2
(52b)

and assumes pSi = pDi , the interference integral Iij(L) turns out to be [16]

Iij(L) =

√
2ηiηj

vgivgj(η2
i + η2

j )

× exp

(
−iL

(
∆m2

ij

pSi + pSj
−

(v−1
gi − v

−1
gj )(Ei − Ej)(pSi η2

i − pSj η2
j )

(pSi + pSj )(η2
i + η2

j )

))

× exp

(
−

(v−1
gi − v

−1
gj )2L2

2(η2
i + η2

j )

)
exp

(
−

(Ei − Ej)2η2
i η

2
j

2(η2
i + η2

j )

)
, (53)

with ηi = (vgiσ
S
pi)
−1 in the notation used in Section 3.3.

This result contains essentially the same physics as the more general
result in Eq. (47), as will be discussed shortly, but this more explicit form
allows numerical treatment in Section 5, which cannot be done for generic
wave packets.

4 Coherence

4.1 General remarks

In quantum mechanics the coherence of two states is essentially their abil-
ity to interfere. Fully coherent states can be described by a superposition
of the states, and interference may take place. If the states are, instead,
fully incoherent, there will be no interference. If the states are somehow
spatially localized, overlap in the coordinate wave functions is necessary for
coherence if the measurement process is spatially localized. A measurement
that determines which of the states is in question destroys coherence � this
happens in the double-slit experiment if the slit is determined and similarly
in neutrino oscillations if the mass state is determined.
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For two wave packets of massive neutrinos to be coherent they need
to overlap signi�cantly. If the wave packets have slightly di�erent group
velocities, they will slowly separate. When the wave packets become spatially
too separated and thus incoherent, no more oscillations are observed. It must
however be born in mind that these wave packets describe massive neutrinos,
and thus have no well-de�ned �avor. Flavor measurement is therefore not
deterministic even after coherence is lost, nor is it impossible to detect a
change in �avor.

4.2 Coherence in plane wave approximation

Even the plane wave approach gives an opportunity to analyze coherence
[7]. In the case of equal momentum oscillations are described by the angle
L∆m2

ij/2p. If the massive neutrinos are assumed to have a nonzero spread
δp in momentum as any physical particle, there will also be spread in the
oscillation angle. If this angular spread is of the order of 1, oscillations
are washed out. The distance at which this washout happens is called the
coherence length Lcoh

ij , and it satis�es

Lcoh
ij ∆m2

ij

2(p+ δp)
≈
Lcoh
ij ∆m2

ij

2p
− 1, (54)

that is

Lcoh
ij ≈

2p(p+ δp)

δp∆m2
ij

≈ p

δp

2p

∆m2
ij

. (55)

When L � Lcoh
ij the wash out is manifested by exp(−iL∆m2

ij/2p) ≈ δij ,
giving the incoherent transition probability

P inc(να → νβ;L) ≈
∑
i

|UαiUβi|2 . (56)

That is, the probability no longer depends on the distance L, but has a
constant value de�ned solely by the mixing matrix.

Similarly one can de�ne the oscillation length Losc
ij = 2p/∆m2

ij describing
the scale of the oscillations, using which the angle giving the oscillations is
L/Losc

ij and the coherence length is Lcoh
ij = (p/δp)Losc

ij .
Oscillation and coherence lengths de�ned this way may even be negative.

Here only their absolute values are considered (implicitly), so that Losc,coh
ij =

Losc,coh
ji .
The precise values of oscillation and coherence lengths have no speci�c

meaning, since they only indicate the relevant length scales. Oscillations will
be observable at lengths smaller than Losc, but not if L� Losc, and similarly
coherence will not be instantaneously lost at Lcoh. Numerical examples in
Section 5 will illustrate the relation between oscillation and oscillation length
and also coherence and coherence length.
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4.3 Coherence in wave packet treatment

In the wave packet approach coherence can be studied in terms of the in-
terference integrals Iij(~L) with i 6= j, as they are the source of oscillatory
behavior in the system. Frequent use will be made of the Riemann�Lebesgue
lemma, which can be stated as

lim
|~x|→∞

∫
dn~yf(~y)ei~x · ~y = 0 (57)

for all smooth functions f(~y) that vanish when |~y| → ∞. A mathematically
more rigorous statement and treatment of this lemma is not needed here.

This lemma can immediately be applied to Eq. (46). The ~p⊥ẑ-integral
vanishes if σ~pj⊥ẑ

L⊥ẑ � 1 and if σ~pi⊥ẑ
L⊥ẑ � 1, the same happens for the

~q⊥ẑ-integral. Here σ~pi⊥ẑ
is an e�ective wave packet spread in momentum

space combining σS~pi⊥ẑ
and σD~pi⊥ẑ

. In case of Gaussian wave packets σ~pi⊥ẑ
=√

(σS~pi⊥ẑ
)2 + (σD~pi⊥ẑ

)2 [17].

As noted in Section 3.3.1, wave packets have constant shape. By Heisen-
berg's uncertainty principle, σ~pi⊥ẑ

L⊥ẑ � 1 is equivalent to L⊥ẑ � σ~xi⊥ẑ
.

Thus for coherence the wave packet width perpendicular to the direction of
propagation must not be too much smaller than the distance of the detector
from the path of the wave packet. This is merely a requirement that the
neutrinos must not miss the detector, and it is easily achieved by placing the
detector in such a position (or equivalently, aiming the beam) that ~L ‖ ẑ.

Should this condition not be met, Iij(~L) will tend to zero even for i = j, so
the condition in question is not one of coherence but of general detectability
of the produced neutrino. It should be noted that the suppression of the
interference integral in the case of ill-placed detector is counter-acted by the
normalization (50) so that little or no change takes place in the probabilities.
However, this normalization tries to ensure that the sum of the three �avor
detection probabilities is unity, whereas the total detection probability will
obviously decrease if the detector does not lie on the neutrino path. The
above discussion in terms of suppression of Iij(~L) can be viewed as a hint
arising from wave packet treatment suggesting that neutrinos should hit the
detector.

Given this requirement of not missing the detector, one may neglect
directions perpendicular to ẑ and use the one-dimensional Eq. (47). The q-
integral will vanish if σp |1− vgi/vgj |L � 1, where σp = min{σpi , σpj}. De-
noting ∆vgij = |vgi − vgj |, this can be restated as L� Lcoh

ij = vg/(σp∆vgij).
This is a condition for signi�cant wave packet separation [17], and can easily
be understood to be so in terms of classical kinematics. When L � Lcoh

ij ,
the wave packets are coherent and the value of the integral is practically
independent of L.

Assuming that σpi = σpj and either Ei = Ej = E or pSi = pSj = p

gives vgi− vgj ≈ −∆m2
ij/2E

2 or vgi− vgj ≈ −∆m2
ij/2p

2, respectively. Since
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coherence length is uninteresting in very high accuracy, one can use E ≈ p
and vg ≈ 1 to see that in both cases Lcoh

ij ≈ (p/σp)(2p/∆m
2
ij). This is exactly

the result that was obtained in terms of plane waves and uncertainty.
Other conditions for non-vanishing Iij(~L) are found by demanding that

the functions in the integral overlap su�ciently well. All the shape functions
fS,Di,j Eq. (47) are strongly peaked at the origin, whence in order to have
signi�cant overlap the quantities δi, δj , and ∆Eij/vgj have to be su�ciently
small in comparison to the widths of the shape functions.

For the �rst two one may demand that δi � σSpi or δj � σSpj . This is
nothing but approximate momentum conservation in the process, and comes
therefore as no surprise. Similarly to neutrinos not missing the detector, this
is an obvious requirement. The interesting thing is that neither of these need
be imposed by hand, since they follow from a careful wave packet treatment.

The remaining requirement for coherence is ∆Eij/vgj � σp. For a par-
ticle on its mass shell3, E2 = m2 + p2. Di�erentiating this relation gives

EσE = pσp, (58)

where σE and σp is the uncertainties of energy and momentum of the pro-
duced neutrino, and thus vgjσp ≈ σE . This gives the coherence condition a
simple form in terms of energy only: ∆Eij � σE .

This has a physical meaning giving a crucial requirement not for the
relative position of the detector from the source but for the production and
detection processes. Should the opposite inequality ∆Eij � σE hold, the
energy of the system could be measured accurately enough to determine
which mass eigenstate is in question. In such a situation the neutrino is
composed of a single mass eigenstate and no oscillations will take place.
Also, the produced neutrino will not have a well-de�ned �avor.

Unless ∆m2
ij/2EσE ≈ vg |∆p| /σE � 1 as would be the case for Möss-

bauer neutrino experiments [20, 21], ∆Eij � σE also guarantees that ∆pij �
σp, as shown in [17]. This is similarly required in order to not have a de�nite
mass state. Thus ∆Eij � σE or equivalently ∆Eij/vgj � σp ensures that
the production and detection processes are suited for coherent neutrinos.

4.4 Restoration of coherence at detection

A possibility of coherent detection remains even if the wave packets have sep-
arated so that the massive neutrinos are incoherent. If the neutrino detector
has a high energy resolution, its time resolution is inevitably low. This may
give enough time for two or more incoherent mass states to interact with the
detector, causing the wave packets being observed coherently. [17]

3Neutrinos can be considered on-shell after traveling a distance x from the production
site such that px� 1. Also, since each mass state is on-shell and they have approximately
the same energy and momentum, their superposition also ful�lls the energy-momentum
relation of an on-shell particle. [17]
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If the momentum uncertainties σp above are e�ective uncertainties com-
bining the uncertainties of production and detection processes, the possibility
of restoration of coherence is already taken into account. It is therefore im-
portant to consider both production and detection processes when estimating
the wave packet width in either momentum or coordinate representation.

4.5 Wave packet spreading

Even if wave packets get separated by more than the initial size of the wave
packets, coherence may remain if wave packets spread to still overlap each
other. The spreading of wave packets is a common phenomenon in all quan-
tum mechanics, and its e�ect on coherent neutrino propagation needs to be
discussed.

Eq. (19) of the Section 3.2 gives the time evolution of the wave packet
length σx:

σx(t) = σx0

√
1 +

σ4
pt

2v2(1− v2)2

p2
. (59)

Using 1 − v2 = (mν/E)2 ≈ (mν/p)
2, ∆pij ≈ ∆m2

ij/2p, and t ≈ Lcoh
ij , one

obtains
σ2
ptv(1− v2)

p
≈
(
mν

p

)2 σp
∆pij

. (60)

For coherently produced ultrarelativistic neutrinos mν � p and σp & ∆pij .
Assuming σp/∆pij � (p/mν)2 yields σx(Lcoh

ij ) ≈ σx0, so the wave packet
spreading is insigni�cant for the loss of coherence.

4.6 The case of high �ux

If the �ux of produced neutrinos is high enough, the wave packets from di�er-
ent production processes may begin to overlap. Assuming that the neutrino
beam is directed (no neutrino has velocity components perpendicular to other
neutrino velocities), this overlap will not be lost at any distance. It might be
that the �avor detection probabilities become the incoherent probabilities of
Eq. (56) in such a case, but it seems also possible that the probabilities are
unchanged from standard ones.

To �nd the �ux scale at which such an overlap becomes signi�cant, it
is assumed that neutrinos are produced in a rectangular box with one face
facing the direction of the detector. The length of the edges perpendicular
to this face is h. An emitted neutrino is considered to be a box of length
σx‖ and width (to both directions perpendicular to the line to the detector)
σx⊥. The detector is assumed to be far away in comparison to the widths
of the neutrino source and detector, so that all observable neutrinos have
parallel velocities. Therefore only neutrinos heading towards the detector
are considered.
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Let a neutrino be produced at a distance h̃ from the face of the source
heading the detector and head towards the detector at approximately light
speed. When it has traveled the length l, it has swept approximately the vol-
ume min{h̃, l}σ2

x⊥. If the neutrino �ux density is J , there are J/h reactions
per unit time and cubed unit length in the source, and thus the number of
neutrinos produced this swept volume is min{h̃, l}σ2

x⊥lJ/h.

To see when the next neutrino � a neutrino with parallel velocity and
trajectories close enough to allow overlap � is produced, this number is set
to one. The corresponding value of l is denoted by l1. In the case of high
�ux l1 . σx‖. In a physical application the length σx‖ of the wave packet can
be at most in the scale of interatomic distances in the source, whereas the
thickness h of the source is numerous interatomic distances. Because h̃ ∼ h
for most neutrinos, it is assumed that l1 < h.

Under this assumption one obtains the equation l21σ
2
x⊥J/h ≈ 1 for l1,

which yields l1 ≈
√
h/J/σx⊥. Using l1 . σx‖ with this result gives the

condition

J(σx⊥σx‖)
2 & h (61)

for high �ux. If, on the other hand, J(σx⊥σx‖)
2 � h, the neutrino density

is so low that no signi�cant overlap between wave packets originating from
di�erent source processes takes place.

It must be noted, however, that such a high �ux e�ect on neutrino pro-
duction will only be signi�cant if the overlapping neutrinos originating from
di�erent production processes are coherent. This requires that the source of
neutrinos is � to some extent at least � a macroscopic coherent quantum
state. It is unclear whether such a situation is possible or not. The most
prominent possibility for such a phenomenon is the Mössbauer neutrino ex-
periment, where the entire lattice could act as a single state.

4.7 Summary

The previous analysis revealed several conditions for coherent neutrino os-
cillation (for a discussion and an explanation of the symbols used, see the
corresponding sections):

1. The produced neutrinos are ultrarelativistic. All calculations are based
on this assumption, and also a neutrino can only be detected with
current detectors if Eν � 1000mν .

2. Neutrinos must hit the detector (Section 4.3). This condition is trivial,
but does arise from the wave packet treatment.

3. Neutrinos must not travel too long distances (Sections 4.2, 4.3 and 4.4).
The requirement can be stated as L� Lcoh

ij = (p/σp)(2p/∆m
2
ij).
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4. The energy and momentum uncertainties must exceed the energy and
momentum di�erences between massive neutrinos (Section 4.3). Oth-
erwise the detector could be able to measure which mass state is de-
tected.

5. Wave packets can spread to counteract separation (Section 4.5). Spread
is negligibly small if σp/∆pij � (p/mν)2. This condition seems to be
easily satis�ed and is equivalent to (σp/p)(2m

2
ν/∆m

2
ij)� 1.

6. Neutrino �ux must not be too high (Section 4.6). The neutrino �ux
density J must ful�ll J(σx⊥σx‖)

2 � h in order to remain in the low
�ux regime, or the neutrino production must be incoherent. Whether
or not observable phenomena take place if the �ux is higher is unclear.

Whether or not these conditions are or can be met in future experiments
will be discussed in Section 6.

5 Numerical analysis

5.1 Preliminary assumptions and mixing parameters

In order to carry out numerical analysis, several assumptions have to be
made. The wave packets are assumed to be Gaussian as in Section 3.4, and
their momenta and momentum uncertainties are assumed to coincide, i.e.
pSi = pDi = p and σpi = σp for all i. The notation follows that of Sections 3.3
and 3.4.

Doing calculations to the �rst order in squared neutrino mass di�erences,
one �nds

Ei − Ej ≈ p+
m2
i

2p
− p−

m2
j

2p
=

∆m2
ij

2p
, (62a)

v−1
gi − v

−1
gj =

Ei
p
− Ej

p
≈

∆m2
ij

2p2
, (62b)

pη2
i − pη2

j =
E2
i

pσ2
p

−
E2
j

pσ2
p

=
1

pσ2
p

(p2 +m2
i − p2 −m2

j ) =
∆m2

ij

pσ2
p

. (62c)

It is assumed that vgi ≈ vgi ≈ 1 everywhere where their di�erence is not
needed, and similarly ηi ≈ ηj , which gives ηi ≈ σ−1

p .
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Under these assumptions Eq. (53) simpli�es to

Iij(L) ≈ exp

−iL
∆m2

ij

2p
−

∆m2
ij

2p2

∆m2
ij

2p

∆m2
ij

pσ2
p

2p · η2




× exp

−
(

∆m2
ij

2p2

)2

L2

4η2

 exp

−
(

∆m2
ij

2p

)2

η2

4


≈ exp

(
−i
L∆m2

ij

2p

)
exp

−(Lσp∆m2
ij

4p2

)2

−

(
∆m2

ij

4p2σp

)2
 . (63)

At short distances, when wave packets are still coherent, the probability
only depends on the ratio L/p. The L- and p-dependence of decoherence
phenomena (described here by the exponential function with real argument)
cannot be described in terms of the ratio. The reason for the suppression of
coherence phenomena at short distances is the smallness of the coe�cients
of L and p in the latter exponential function.

In the following the momentum is given the value p = 4 MeV, where the
reactor neutrino event rate approximately peaks and which is also suitable for
detection of electron neutrinos via inverse beta decay [22, 23, 24]. Assuming
that neutrinos can be localized in production and detection processes to the
atomic distance scale [22], the e�ective position uncertainty is σx ∼ 1 nm. By
the uncertainty principle the momentum uncertainty can be approximated,
and is given the numerical value σp = 200 eV in the present analysis.

The mixing matrix U is conventionally parametrized by angles θ12, θ13,
θ23, α1, α2, and δ so that [25]

U =

 1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13


×

 c13 s13 0
−s13 c13 0

0 0 1

 eiα1/2 0 0

0 eiα2/2 0
0 0 1

 , (64)

where the trigonometric functions have been abbreviated as cij = cos θij and
sij = sin θij . The angles θij describe the strength of mixing between the ith
and jth mass states. The Dirac phase δ is the only physically meaningful
phase if neutrinos are Dirac particles, but if neutrinos are Majorana particles
instead, the Majorana angles α1 and α2 are also have a physical signi�cance.

For numerical calculations the following values are chosen, based on the
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experimental limits [26]:

θ12 = 0.600967 (65a)

θ23 = 0.714450 (65b)

θ13 = 0.100000 (65c)

∆m2
21 = 7.59 · 10−5 eV2 (65d)

∆m2
32 = 243.00 · 10−5 eV2 (65e)

∆m2
31 = 250.59 · 10−5 eV2. (65f)

With these values one may estimate that

σp
∆31p

≈ 2pσp
∆m2

31

≈ 6 · 1011 � 1, (66)

and similarly the condition σE/∆31E � 1 of Section 4.3 is ful�lled, so that
the massive neutrinos are indeed produced coherently.

5.2 Neutrino oscillations on di�erent scales

With the parameter values of the previous section, i.e. p = 4 MeV and mix-
ing angles and squared mass di�erences given by Eqs. (65a)�(65f), transition
probabilities may be given numerical values as a function of L. To get an
estimate of length scales to investigate, the oscillation and coherence lengths
Losc
ij = 2p/∆m2

ij and L
coh
ij = (p/σp)(2p/∆m

2
ij) are calculated:

Losc
12 ≈ 20.806 km (67a)

Losc
13 ≈ 0.63 km (67b)

Losc
23 ≈ 0.65 km (67c)

Lcoh
12 ≈ 416000 km (67d)

Lcoh
13 ≈ 12600 km (67e)

Lcoh
23 ≈ 13000 km. (67f)

The transition probabilities for di�erent �avor neutrinos when an electron
neutrino is produced is plotted in Fig. 1 on various length scales of interest.
Fig. 1a shows how the oscillations behave at short length scales and also
implies that at very short scales (say, L ∼ 1 m) practically no oscillations
are observed.

Fig. 1b demonstrates the oscillations at a slightly larger scale, revealing
another level of oscillations. The period of the shorter scale oscillations is
2πLosc

13 ≈ 2πLosc
23 ≈ 4 km, whereas that of the longer scale oscillations is

2πLosc
12 ≈ 130 km, as can be seen in the �gure.
The last two plots in Fig. 1 demonstrate the loss of coherence. The

oscillation lengths are much smaller than the length scale plotted, wherefore
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(a)

(b)

Figure 1:
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(c)

(d)

Figure 1: Probabilities for detecting electron, muon, and tau neutrinos (blue,
purple, and brown lines, respectively) as a function of distance L when
an electron neutrino is originally produced at distance scales of (a) 50 km,
(b) 250 km, (c) 1 · 105 km, and (d) 2 · 106 km.
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the oscillation pattern is not visible. In Fig. 1c one may see a small decrease
in the amplitude of probability oscillations caused by the wave packet of the
heaviest massive neutrino ν3 being separated from those of the lighter ones
(that is, Ii3(L)→ 0 in Eq. (63) for i = 1, 2).

A much more signi�cant change in the probability pattern is visible in
Fig. 1d. All wave packets are separated from each other, and all oscillations
are lost. The chance of �avor change remains, and is indeed signi�cant.

As Figs. 1c and 1d show, only the amplitudes of the oscillations in proba-
bility are of interest at large distance scales, because the length scale greatly
exceeds that of the oscillations. Thus a simpler framework for the analysis
of loss of coherence may be obtained through the analysis of envelope curves
to the �avor probability curves.

Because it was assumed that δ = α1 = α2 = 0, U is real, and the
transition probability given in Eqs. (39) and (63) becomes

P (να → νβ;L) =
∑
i,j

UαiUβiUαjUβje
iϕijCij

=
∑
i

(UαiUβi)
2 + 2

∑
i<j

UαiUβiUαjUβj cos(ϕij)Cij (68)

with abbreviating notations ϕij = −L∆m2
ij/2p and

Cij = exp

−(Lσp∆m2
ij

4p2

)2

−

(
∆m2

ij

4p2σp

)2
 . (69)

Using −1 ≤ cos(ϕij) ≤ 1 one immediately obtains upper and lower bounds
for the transition probabilities:

P up(να → νβ;L) =
∑
i

(UαiUβi)
2 + 2

∑
i<j

|UαiUβiUαjUβj |Cij , (70a)

P low(να → νβ;L) =
∑
i

(UαiUβi)
2 − 2

∑
i<j

|UαiUβiUαjUβj |Cij . (70b)

The area between these curves is shown shaded in Fig. 2. Comparison of
Figs. 1d and 2 indicates that these bounds indeed give the envelope curves
of transition probablities except at small L, where the lower bound may
be negative. The �rst term in the envelope functions above is simply the
incoherent transition probability of Eq. (56).

For comparison, the behavior of the probabilities when a muon neutrino
is produced is plotted in Fig. 3. The pattern is distinguishable from that of
the electron neutrino, but very similar in its structure.

6 Coherence in future experiments

The coherence length for the ith and jth mass state given by Eq. (56) (ob-
tained for both plane waves and wave packets in Sections 4.2 and 4.3) was
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Figure 2: Upper and lower bounds � the oscillation envelopes � for prob-
abilities for detecting electron, muon, and tau neutrinos (blue, purple, and
brown shaded areas respectively) as a function of distance L at 2 · 106 km
range when an electron neutrino is originally produced.

Lcoh
ij = 2E2σx/∆m

2
ij (with the approximations σxσp ≈ 1 and p ≈ E). For

convenience, this can be written in the form

Lcoh
ij = 2 · 105 km

(
E

MeV

)2 ( σx
10−9 m

)( ∆m2
ij

10−5 eV2

)−1

. (71)

Using ∆m2
21 = 7.59 · 10−5 eV2 and E = 4 MeV as in Section 5.1 and estimat-

ing σx = 10−11 m [22], one obtains the coherence length Lcoh
21 ≈ 4200 km,

which is a feasible distance for oscillation experiments on Earth. If the wave
packet size is one order of magnitude larger than estimated here, incoherence
is beyond reach in any terrestrial experiment.

The solar neutrinos have smaller energy than those produced in reactors,
although roughly of the same order of magnitude. If their wave packet sizes
are anywhere near the nanometer scale or smaller, the neutrinos observed
on Earth are incoherent. Coherent detection is possible, however, if the time
resolution of the measurement device is low enough (as can be caused by
high energy resolution), as was discussed in Section 4.4.

A condition for high �ux, Eq. (61), was derived in Section 4.6. In the
case of high �ux neutrino wave packets originating from di�erent production
processes within the source overlap. If one assumes that the length of the
neutrino wave packet is equal to its width, σx⊥ = σx‖ = σx, then the low
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(a)

(b)

Figure 3: Probabilities for detecting electron, muon, and tau neutrinos (blue,
purple, and brown lines and shaded areas respectively) as a function of dis-
tance L when a muon neutrino is originally produced at distance scales of
(a) 50 km and (b) 2 · 106 km.
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�ux condition may be written as σx � σmax, where the limit wave packet
size is σmax = (h/J)1/4. For high �ux phenomena to take place, the di�erent
neutrinos should be produced coherently, which requires that the source is a
macroscopic coherent quantum state. The Sun or a nuclear reactor do not
meet this condition, but their wave packet sizes are compared to the one
required for high �ux to give an insight to the order of magnitude of the
high �ux requirement.

For solar neutrinos the �ux is approximately J = 6 · 1010 cm−2s−1 [27],
and the depth h of the source is estimated to be twice the radius of the solar
core, h = 0.5R� [28]. With these values one obtains σmax ≈ 4 m. Since the
wave packet size is usually assumed to be at most in the nanometer scale,
the solar neutrino �ux is low.

The �ux of neutrinos from a nuclear reactor are of the order of J =
6 · 1012 cm−2s−1 [29], and a the reactor size is estimated to be h = 1 m.
These estimates give the wave packet size the upper limit σmax ≈ 8 mm, so
the neutrinos are again safely in the low �ux regime.

The neutrino �uxes from these sources are so many orders of magnitude
lower than would be required high �ux that it seems unlikely to be able to
experimentally verify the existence or nonexistence of any possible high �ux
phenomena in near future. Whether or not such a high �ux would have
an impact on neutrino oscillation can only be analyzed theoretically unless
unexpectedly great experimental advancements are made.
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