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Preface

”...there is no scientific work which only one man can write”, says Galileo
Galilei in the 14th scene of Bertolt Brecht’s The life of Galileo. He refers to
his own work, the Discorsi [Gal38], that opened the era of the modern science,
suggesting that any scientific activity can be really meaningful only when it is
considered within a tradition, a community, a society. If this is true for the
milestone works that marked the history of the physics, it is not less true for a
doctoral dissertation.

The work presented in this thesis is not an isolated achievement, but it was
carried out at the Department of Physics of the University of Jyväskylä during
the years 2008-2011, within the Finland Distinguished Professor Programme
(FIDIPRO) [FID07]. The project, having for its objectives advanced studies in
theoretical nuclear structure physics and being linked with similar project of
research worldwide [UNE], has been for me the ideal stepping stone to educate
myself and get the necessary skills to enter more deeply in the fascinating field
of the nuclear structure.

I would like to express my gratitude to Prof. Jacek Dobaczewski for supervising
me, with competence and high professionalism, during this project. It has been
said that the learning process is a tree whose roots are bitter and fruit sweet:
now that I am very close to taste the fruit of my work, I understand how was
important to have a stimulating and professional support to my studies.

There are many other people from whom I learnt. First of all, I would like to
mention here the members of the FIDIPRO that influenced and supported me,
sharing with generosity their ideas and skills: Gillis Carlsson, Markus Korte-
lainen, Nicholas Michel, Alessandro Pastore, Jussi Toivanen, Pekka Toivanen,
Petr Vesely. All this people played an important role in completion of this
work and their support in all situations, coffee breaks (espresso!) included,
contributed to increase the enthusiasm for the topics of my research. Also the
staff members of the department of physics at Jyväskylä university deserve a
big thank, in particular several lecturers, such as Prof. Jouni Suhonen, Prof.
Robert van Leeuwen, Dr. Kimmo Kainulainen, and Dr. Markku Lehto.

Finally, I wish to thank Alice, my family in Italy, and all my friends for their
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encouragement during these years.

Jyväskylä, 2011 Francesco Raimondi



Abstract
In this thesis consisting of two publications and an overview part, a study of
two aspects of energy density functionals has been performed.

Firstly, we have linked the next-to-next-to-next-to-leading order nuclear energy
density functional to a zero-range pseudopotential that includes all possible
terms up to sixth order in derivatives. Within the Hartree-Fock approximation,
the quasi-local nuclear Energy Density Functional (EDF) has been calculated
as the average energy obtained from the pseudopotential. The direct reference
of the EDF to the pseudopotential acts as a constraint that allows for expressing
the isovector coupling constants functional in terms of the isoscalar ones, or vice

versa. The constraints implemented in this way imply a reduction by a factor of
two of the number of the free coupling constants in the functional. Three main
applications have been studied: we have considered the functional restricted by
the Galilean symmetry, gauge symmetry, and again Galilean symmetry along
with the spherical symmetry.

As second aspect concerning the next-to-next-to-next-to-leading order nuclear
energy density functional, we analyzed conditions under which the continuity
equation is valid for functionals or pseudopotentials built of higher-order deriva-
tives. We derived constraints on the coupling constant of the energy density
functional that guarantee the validity of the continuity equation in all spin-
isospin channels. We also linked these constraints to local gauge symmetries
for abelian and non-abelian groups.

Keywords: nuclear energy density functionals, pseudopotentials, continuity
equation
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Both paper I and II are focused on some particular aspects concerning the
nuclear EDF developed in Refs. [CDK08,CDT10]. The idea to proceed in the
development of the nuclear N3LO functional as the research project of the au-
thor’s doctoral studies, by performing an analysis of the N3LO pseudopotential
(paper I) and continuity equation (paper II), have been suggested by the su-
pervisor Prof. Jacek Dobaczewski. The supervisor and coauthors have also
contributed in critical evaluation of the obtained results, from the early stage
of the provisional results until the final results presented in both publications.

In paper I, the author has derived the two forms (central-like and tensor) of
the N3LO pseudopotential and listed all the significant terms, included the
relation of conversion between the parameters of the zero- and second-order
pseudopotential and those of the Skyrme interaction. The derivation concern-
ing the time-reversal invariance and hermiticity of the pseudopotential has been
carried out by the author, with an independent check by the supervisor. The
author has derived the condition of invariance of the N3LO pseudopotential
under the gauge transformation, and calculated the corresponding relations
defining the gauge-invariant pseudopotential. The entire analysis concerning
the relations between the pseudopotential and the EDF, from the averaging of
the pseudopotential over the uncorrelated wave function to the relations con-
necting the isoscalar and isovector parts of the functional, have been performed
by the author, both for the Galilean and gauge invariance cases. The author has
carried out the analogous analysis, performed for the case of assumed spherical,
space-inversion, and time-reversal symmetries of the EDF. Gillis Carlsson has
been a decisive guidance, with many practical pieces of advice, in implementing
the symbolic programming.
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In paper II, the theoretical link between the continuity equation and local
gauge invariance of the potential energy density has been established by the
supervisor and Gillis Carlsson. The author has extended this link for the
special case of the N3LO quasilocal functional, by deriving and implementing
the general condition that the N3LO potential must fulfill in order to obtain
the continuity equations in the four spin and isospin channels. The author
has then proceeded with the calculation of the constraints on the coupling
constants of the functional, which verify the general condition derived for the
N3LO one-body pseudopotential. The constraints in the four channels have
been calculated by the author with the use of symbolic programming. In this
respect, Gillis Carlsson and Jussi Toivanen have been a precious guidance in
solving some practical issues concerning the implementation of the codes.

Finally, in both publications the leading author’s role is underlined by him
being the first author, with broken alphabetical order.
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Chapter 1

Introduction

The ongoing theoretical efforts in nuclear structure physics have all in com-
mon the main target to bridge the gap with the experiments, by improving the
quality of description and predictability of the methods and approximations.
In particular, significative progress in deriving nuclear properties in ab initio

approach have been achieved for light nuclei, like for instance the no-core shell
model (NCSM) [NQS09], and coupled cluster (CC) [HPD07, HDH07] meth-
ods. Due to the high degree of computational complications, these methods
cannot be applied to heavy nuclei and nuclei far from stability in the nuclear
chart. For these nuclei, the method applied is the energy density functional
(EDF) approach [BHR03], which is based simultaneously, on physical insights
concerning fundamental nuclear properties and on the phenomenological input
of the optimization by experimental data.

In the recent years, a fruitful exchange of ideas and models with other many-
body physics disciplines, like condensed matter physics, has opened new hori-
zons of research for the low-energy nuclear structure. For instance, nuclear
physicists have learnt and applied with success the tools of the well-established
density functional theory (DFT).

DFT is a method to calculate the physical properties of many-electrons sys-
tems and it has been originally developed for calculations in quantum chemistry
and condensed matter physics [DG90, PW94, FNM03]. As a general tool for
the study of many-body systems, DFT has being extended and applied also
to nuclear physics; more precisely, the idea that the self-consistent mean-field
(SCMF) approaches in use in nuclear structure can be understood and further
developed as nuclear DFT, is emerged in the last two decades [PS89, LRV04].
In fact, nuclei are quantum many-body systems and DFT is at the present the-
oretical and computational state-of-art the only method that can be applied

13



14 1. Introduction

to all nuclides of the nuclear chart. The hope to repeat in nuclear physics the
spectacular achievements of the condensed-matter DFT is driving currently an
intense effort of studies and projects worldwide [UNE, FID07]. The challenge
is in principle well defined, namely the search of the universal energy density
functional, and the quest for a spectroscopic quality in the description of nu-
clear properties [ZDS08]. The new functional [CDK08] studied in the present
work takes a step forward in this search. In fact, the expansion in higher-order
derivatives of densities provides an extension of the standard Skyrme function-
als, which still require an improvement as it has been recently remarked, for
instance in the context of the optimizations of the model parameters [KRB09].

Moreover, DFT is a tool of choice for the low-energy nuclear structure calcu-
lations because it is a method able to treat many-body system with a reduced
computational effort, as compared to the direct solution of the Schrödinger
equation, which in nuclear physics is a partial differential equation of 3N spa-
tial variables, N spin variables and N isospin variables, with N nucleons in the
nucleus. Among the many possible ways to circumvent the task of the direct
solution of the Schrödinger equation, DFT is a method based on the defini-
tion of the ground-state energy of the system as value of a functional of the
density. The idea of the energy as a functional of the density instead of the
computationally expensive wave function is one of the key point of DFT. This
implies that the variational principle used to find the ground-state energy for
the system is performed by taking the density, an observable, as the variational
parameter.

The path towards applications of the universal EDF in practical calculations
is marked by three main stages:

I Basic derivations and studying of the theoretical features of the functional.

II Implementation of numerical codes.

III Optimization of the coupling constants of the functional by experimental
data.

The present work aims at giving a contribution to the first point of the list
above, for a particular approximation of the EDF, that is the functional ob-
tained as an expansion of the nuclear energy density in higher-order deriva-
tives of densities. For such a functional a numerical code is already avail-
able [CDT10], and adjustment of coupling constants is currently in progress [FID07].



Chapter 2

Nuclear Energy Density
Functional

In the following two sections we will give a general outline of the DFT, focusing,
in particular, on some issues and problems related to the applicability of DFT
to nuclei. In fact, the nucleus, unlike a system of electrons bound to the lattice
of nuclei, is a finite self-bound system which does not require the presence
of a real external potential in order to be bound. This simple fact implies
a conceptual problem also in the application of the Hohenberg-Kohn (HK)
theorem to nuclear systems.

2.0.1 Basic concepts of DFT

The HK theorem [HK64] is at the heart of the DFT and traditionally introduced
as the first step in any DFT primer. Because of the HK theorem, the DFT
can be regarded as a stronger version of the traditional mean-field approach.
In fact, if the general mean-field approach aims at calculating the energy of a
many-particle system from the knowledge of the two-particle density matrix,
the DFT aims at calculating the ground-state energy from the ground-state
density.

The HK theorem states that there exists an energy functional of the density
ρ(r) that we write as,

Ev[ρ] = FHK [ρ] +

∫

dr vext(r)ρ(r) , (2.1)

which has a minimum at the ground-state energy of the system with the cor-

15



16 2. Nuclear Energy Density Functional

responding ground-state density.

The interesting feature of Eq. (2.1) is the fact that the functional is split in a
part depending on v̂ext, the external potential acting on the many-particle sys-
tem, and a part denoted with FHK , the so called HK functional. FHK depends
on the kinetic energy operator T̂ and interparticle interaction V̂ , which is the
coulombic force in the electronic systems and full nucleon-nucleon interaction
in nuclear case. The HK functional is defined as an expectation value over the
many-body wave function,

FHK [ρ] = 〈Ψ[ρ]|T̂ + V̂ |Ψ[ρ]〉, (2.2)

and is universal in the sense that is common to all the systems sharing the
same interparticle interaction, no matter how is the external potential.

Eq. (2.1), with the fact that the energy is a functional of the density and at the
same time labeled by the external potential vext(r), is in fact a direct corollary
of the HK theorem. Its deep content is that the map between the set of the
external potentials vext(r) and the ground-state densities ρ0 is a one-to-one
correspondence, namely is invertible. Then of course, the existence of a link
between the energy and the external potential is given by the simple fact of
the Schrödinger equation.

The practical use of the HK theorem comes into play with the application of the
variational principle. In fact, the ground-state density ρ0 can be obtained by
minimizing the functional Ev over all the set of densities, for a chosen external
potential v̂ext. The procedure of minimization for the ground-state energy E0

and the ground state density ρ0 is justified by the obvious observation that,

Ev[ρ] = 〈Ψ[ρ]|T̂ + V̂ + v̂ext|Ψ[ρ]〉 > E0 if ρ 6= ρ0. (2.3)

Then, the minimum of the energy is obtained for the density that satisfies,

δEv0 [ρ]

δρ
= 0, (2.4)

for a fixed potential v0.

The Kohn-Sham (KS) construction [KS65] is the second pillar of DFT, and it
is based on the observation that the general result of the HK theorem does not
make any assumption on the form of the interparticle potential V̂ . Then, the
theorem is also valid for a non-interacting system. Despite being unrealistic, a
non-interacting system can be adopted as auxiliary system, where an external
potential vKS([ρ], r) leads to the same ground-state density of the interacting
system with the original external potential v̂ext. Here, the fact that two differ-
ent potentials produce the same density does not imply a violation of the HK
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theorem, given that we are dealing with two different systems, the interacting
and the non-interacting one. The non-interacting KS system is governed by
the KS Hamiltonian

ĤKS = T̂ + v̂KS([ρ]), (2.5)

while the ground-state wave function can be represented as a Slater deter-
minant, which in turn allows to express the KS equation as single-particle
equations,

(

−~
2
∇

2

2m
+ vKS([ρ], r)

)

φi(r) = εiφi(r), (2.6)

and the density by

ρ(r) =
A
∑

i=1

|φi(r)|2. (2.7)

By simple inspection of Eq. (2.6) we see that the KS problem has a self-
consistent nature, because the functional vKS([ρ], r) is implicitly defined by
the KS solution of Eq. (2.6) through definition (2.7). The standard implemen-
tation to solve the equations is then by iterating until convergence is reached.

We notice here that the key point of the solution to self-consistency is to choose
a good approximation of the functional vKS([ρ], r) in Eq. (2.6). In our work
we are just going to give a contribution to the search of such a functional, by
studying some features of one possible approximation of the EDF in nuclear
physics.

2.0.2 Nuclear DFT

Our discussion about the nuclear DFT is mainly referring to one possible class
of the nuclear functionals, the class of local or quasilocal functionals, whose
general form can be given as

E[ρi, τi, . . .] =

∫

dr E(ρi(r), τi(r), . . .)

=

∫

drHE(r), (2.8)

where the energy densityHE(r) depends on local densities built with derivatives
acting on nonlocal densities. The full set of definitions of such a densities for
the Skyrme EDF can be found for instance in Ref. [PRD04].

This form, which is not the most general one, can be derived from a nonlocal
density functional through the density matrix expansion (DME) method (see
Sec. 2.1.2). It is widely used in the current nuclear EDF theories [PRD04,
CDK08, CDT10] and the functional we use in our work is an extended version
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of the form in Eq. (2.8). The reasons of the success of this form lie both in
availability of computational codes for mean-field calculations [SDM11], which
can be adapted easily to the local functionals, and in strong physical insights
that we are going to discuss below.

Now we show how the form of functional (2.8) can be guessed by requiring
that some physical features are included in it. The minimal requisite for an
universal EDF, where universal means applicable to a system with any number
of nucleons, is that it must be a scalar and real function of the local density.
In view of the application of a constrained variational principle, one can fix the
number of particles through the introduction of the chemical potential λ and
gets,

E′[ρ(r)] = E[ρ(r)] − λ
∫

drρ(r). (2.9)

In order to get the single-particle picture according to the KS scheme and be
able to describe shell effects, we have to include the local kinetic density,

τ(r) =
[

(∇ ·∇′)ρ(r, r′)
]

r=r′
, (2.10)

and we get,

E[ρ(r), τ(r)] =
~

2

2m

∫

drτ(r) +H[ρ(r)], (2.11)

where H[ρ(r)] denotes the potential part of the energy functional E[ρi, τi] in
Eq. (2.8).

To include in the description the effects due to the effective-mass, surface, spin-
orbit coupling and other higher-order effects we may add dependence on the
gradients of the density and spin density, namely

E[ρ(r), τ(r),▽ρ(r), J(r), . . .] =
~

2

2m

∫

drτ(r) +H[ρ(r),▽ρ(r), J(r), . . .].

(2.12)

If we decide to include time-odd densities describing the time-odds effects,
we have the full-fledged quasilocal EDF of the kind in Eq. (2.8), which is a
generalization of the Skyrme functional. Such a generalized functional aims to
make a larger inclusion of the possible physics in a model independent picture,
which is typical of the effective field theories.

The EDF’s of the kind in Eq. (2.8) constructed as a functional of different local
densities and currents, like for instance the extension proposed in [CDK08],
can be compared with the KS scheme in many aspects, like for instance the
single-particle approximation or the solution to self-consistency. But we should



19

not forget the presence of conceptual differences between the KS scheme and
the local nuclear EDF. These differences are such that the eventual conversion
of the traditional SCMF approaches into a well-established ”nuclear DFT” is
still an on-going process. We present here one of these conceptual differences,
concerning the role of symmetries and the meaning of the HK theorem for
self-bound systems like nuclei.

The problem of the broken symmetries in the nuclear EDF originates from the
fact that nuclei unlike the electron system, are self-bound systems. Due to
the nucleon-nucleon net attractive interaction, nuclei do not need any external
potential to be bound, as the potential given by the static atomic lattice in
the Born-Oppenheimer approximation of the Coulomb DFT. This means that
the ’true’ many-body wave function of a self-bound finite system in the ground
state must obey the translational and rotational invariance. The fact that such
symmetries are broken in the SCMF calculations is well-known and different
techniques to restore such a symmetries beyond the mean field can be applied,
like for instance the transformation to an intrinsic system and the projection
techniques. But, if this works pretty well from the practical point of view,
a delicate caveat arises for the application of the HK theorem to the nuclear
systems: in fact the HK theorem states the existence of a universal functional
of the laboratory density, which must be equipped with all the required sym-
metries, whereas in the nuclear SCMF we ended up with a intrinsic density
which can be plagued by the spurious coupling with the center-of-mass motion,
as it turns out in the HF case. Of course one can apply all the machinery of
the restoration of the symmetries, but such an approach is working with the
N-body wave function, instead of the density. The necessity of the extension
of the HK theorem and KS procedure to self-bound systems in a consistent
theoretical fashion has then been claimed first in [E07]. Here we refer to a
recent solution to this problem, without entering in details that can be found
in [MBS09].

First of all, by using the Jacobi coordinates ξα (α = 1, ..., N − 1) one can
separate the general, translationally invariant, N-body Hamiltonian into one-
body operator acting in the space of the total center of mass R and (N−1)-body
operator in ξα space,

− ~
2

2M
∆RΓ(R) = ECMΓ(R) , (2.13)

N−1
∑

α=1

τ2
α

2µα

+ u({ξα})ψint = Eintψint , (2.14)

where τα denotes the conjugate momentum of ξα and the corresponding reduced
mass is µα = m α

α+1 .

Now, the density produced by the wave function Γ(R) describing the motion
of the center of mass of the system cannot be a good candidate as the density
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of the HK theorem, even though is the one relative to the laboratory frame.
The reason is easy to understand, being Γ(R) a solution of a free Schrödinger
equation and therefore delocalized in the space. On the other hand, the intrinsic
density relative to the bound state ψint does not require necessarily any external
one-body potential. In order to facilitate the formulation of the HK theorem,
an auxiliary external potential is introduced in the center-of-mass frame as
∑N

i=1 vaux(ri −R). The contribution of this auxiliary potential to the internal
energy must be taken into account in the following way,

Eint → Eint + 〈ψint|vaux({ξα})|ψint〉

→ Eint +

∫

dr vaux(r)ρint(r) . (2.15)

The internal energy Eint in the last equation is just the functional whose den-
sity can be mapped to the set of arbitrary vaux’s according to the HK theorem.
The only extra-caution one should take here is the fact that ψint must be by
definition a bound state, in order to guarantee the conclusion of the theorem
also when the limit vaux → 0 is taken. In this approach the KS scheme can be
recovered in the traditional way, with the single particle KS equations depend-
ing on the Hartree and exchange-correlation potentials. The main difference
with respect to the Coulomb KS scheme is given by the inclusion of the center
of mass correlations besides to the other correlations which are neglected in the
Hartree term.

2.1 Phenomenological approach
to the nuclear EDF

The application of the effective field theories (EFTs) [L97, P02] is quite recent
in the study of the properties of nuclear systems, even though the use of the
phenomenological effective forces in the microscopic description of the nucleus
has been a standard approach, widely used since more than fifty years and
anticipating some aspects of the EFT approach.

The long-standing search for the ”true“ nuclear interaction is a privileged
point of view to give an account of the influence of the EFT’s ideas in nu-
clear physics [D02]. A line of research for the nuclear interaction, started by
Yukawa [Y35], was devoted to the description of the nuclear force in terms of the
pions degrees of freedom. The one-pion-exchange model was able to describe
the attractive long-range of the nuclear force and later the larger mass mesons
ρ and ω were included successfully in this picture to explain the medium-range
part of the force. In this story, the further inclusion of the short-range part
through the particle-exchange model was never fully accomplished and the rea-
son of this is probably an intrinsic theoretical limit of this approach: in fact,
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when two nucleons are interacting at very small distances, let us say less than
0.5 fm, many effects like strong color-polarization of the nucleons and Pauli
blocking effect of the nucleons wave functions, come into play preventing the
idea of two nucleons interacting via exchanging physical particles to be applied.
The main point is that up to now, there is no a complete theoretical explanation
of the behavior of the nucleons when they interact at very high-energy regime.
The use of phenomenological parametrizations to mimic the unknown short-
range part of the force, or also both the medium- and short-range part as in
Argonne v18 interaction [WSS95], was seen as an acceptable compromise able
to include practically the effects of the short-range physics into the description
of the low-energy nucleon-nucleon scattering and structure of nuclei.

A recent ”change in attitude“ in considering the epistemological meaning of
the Standard model (SM) in particle physics, has changed substantially among
the practitioners the way to consider the so-called empirical or phenomenolog-
ical approach [C02]. The SM in its infancy, during 1970s, was considered the
fundamental theory of the matter and nongravitational interactions, as well as
the great accomplishment of the reductionism in natural science. Afterwards,
when the program of reduction of all the interactions into the SM framework
was stuck for many years, new positions about what must be considered as
physically fundamental have been emerged. The first one, still reductionist,
claims the SM and general relativity are both effective theories of an underly-
ing ”theory of everything”; the second one is the view that scientific theories
form a never-ending tower of EFTs in such a way that it does not really make
sense to postulate something like the ultimate theory. In this perspective, an
effective theory is qualified as emergent, namely it is not reduced to the degrees
of freedom of the high-energy theory, while a different dynamics, driven by a
new mechanism as the spontaneous symmetry breaking, brings novelty to the
theoretical description. Aside from the epistemological issues, the concept of
effective theory has become the relevant framework for low-energy theories like
the nuclear SCMF theory that we are discussing.

We give a list of the main features of a general EFT. This is here understood as
low-energy approximation where the effects of an arbitrary high-energy physics
are included in the theory, without the need of the details of the unknown high-
energy physics.

The key concepts of EFT can be listed as in the following [L97, D02]:

1. The idea of separation of scale, which is important for its theoretical
meaning and its practical use as well. For instance, the local density
approximation (LDA) assumed in the expansion of Eq. (2.8) or (2.16)
consists in the fact that the dependence of the energy density on the one-
body density matrix can be approximated by a dependence on the local
density and its derivatives. Such an approximation is based on the obser-
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vation that the most important part of the density matrix influencing the
energy is the local part. This approximation, practically implemented in
the DME approach, is possible because in the low-energy phenomena the
spatial structure of the density matrix is not resolved and a local Tay-
lor expansion can mimic the dependence to the density matrix. DME is
just one possible method which works in the spirit of the EFT exploiting
the separation of scale in energy, but other approaches are possible. We
mention here the EFT for nuclear interactions based on the chiral pertur-
bation theory, where an effective low-energy force is built starting from a
chirally symmetric version of the QCD Lagrangian which contains pions
as the basic degrees of freedom of the theory [ME11]. Also in this case
the assumption of separation between the soft and hard scales is oper-
ating when the high-energy contributions to the process are ”integrated
out“ and reabsorbed in the coupling constants of the effective Lagrangian
contacts terms.

2. Strictly connected to the separation of scale, it is the choice of the relevant
degrees of freedom that must be considered as building blocks for the
energy density or the interaction. In particular for the DME method, the
nonlocal objects like the one-body density matrix are removed from the
functional and only local densities are considered as the relevant degrees
of freedom. Nevertheless the nonlocal effects are taken into account in
the local approximation by introducing auxiliary functions, which convey
some informations relative to the nonlocal interaction, as we see in more
detail in Sec. 2.1.2.

3. The effective interactions (or functionals) as expansions of contact terms
mimicking the short-range physics. The operators in the contact terms of
the EFT are equipped by numerical coupling constants, which are fitted to
reproduce low-energy data. So, the coupling constants are theory-specific,
in the sense that they carry the informations concerning the high-energy
physics, while the local contact operators are model-independent. This
means that the details of the high-energy physics are not only unknown
but not necessary if the task is to study a low-energy behavior of a system.
In this sense there is nothing like the ”only true“ effective interaction,
but different EFT’s can reproduce equally well the low-energy data set
through which the coupling constants have been fitted.

4. The freedom in the choice of the effective interaction has a limit in the
respect of the fundamental symmetries of the theory. One of the guiding
principle of the expansion of the effective interaction that we introduce
in Eqs. (3.1) and (3.2) is the restriction of all possible terms by symme-
tries. The symmetries assumed were of course the ones that are known
to pertain globally to nuclear force, independently of the short-, medium-
or long-range considered.



2.1. Phenomenological approach
to the nuclear EDF 23

5. A point often misunderstood is the role of the higher-order terms in the
expansion of the effective interaction. We stress the fact that by intro-
ducing higher-order terms we are not approaching at all the correct form
of the true potential. More terms in the expansion means in principle
a better reproduction of the experimental data of the low-energy phe-
nomena. But these data modeling our effective interaction does contain
just the short-range effects on the low-energy phenomena and not the
short-range physics in general. Our effective theory cannot, by principle,
converge to the exact form of the nuclear interaction.

6. A last key idea of the EFT that we wish just briefly mention is the power
counting scheme. Technically the power counting is a procedure to de-
termine the power of the expansion parameter, namely the ratio between
the soft and the hard scale, for a given contribution (a Feynman dia-
gram) to the calculation of an observable. For the effective functional
in Eq. (2.16) a power counting scheme would provide a proper cut-off
scale, against which the powers of derivatives could be estimated. How-
ever, such a scheme, as it has been introduced in the chiral perturba-
tion theory, is not yet available. The use of derivatives of the regularized
zero-range interactions, with the Gaussian interaction as regularized delta
force, leads (through the exchange term) to non-local functionals [DG80],
which involve an high degree of numerical complication. For this reason,
a procedure of regularization has not yet been tried.

2.1.1 N3LO nuclear EDF

As example of nuclear phenomenological EDF, we present here the functional
built in terms of derivatives of densities up to N3LO introduced in [CDK08].
In order to construct this EDF, the strategies proper for effective theories de-
scribed in the previous section, have been applied. In particular, the choice of
the appropriate degrees of freedom, the one-body density matrix, and the build-
ing of the energy density restricted by imposing the invariance with respect to
selected symmetries. What has been obtained by applying such a construc-
tion, is a specific implementation and extension of the quasilocal functional we
presented in Eq. (2.8).

The total energy density in this case reads (isospin degree of freedom included),

H(r) =
∑

n′L′v′J′,t

mI,nLvJ,J′

C
n′L′v′J′,t
mI,nLvJ T

n′L′v′J′,t
mI,nLvJ (r), (2.16)

where Cn′L′v′J′,t
mI,nLvJ are coupling constants in front of the terms whose form is,

T
n′L′v′J′,t
mI,nLvJ =

[

[

ρt
n′L′v′J′(r)

[

DmIρ
t
nLvJ(r)

]

J′

]

0

]0

. (2.17)
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The description of the term in Eq. (2.17) gives us the chance to start introducing
the definitions of the building blocks that we are going to use in our work. The
local densities ρt

nLvJ(r) depends on the four indices nLvJ and they are defined
as,

ρt
nLvJ(r) =

{

[KnLρ
t
v(r, r

′)]J
}

r
′=r

. (2.18)

The local densities in Eq. (2.18) are composed by the nth-order and rank-L
relative derivative operator KnL acting on the scalar (v = 0) or vector (v = 1)
nonlocal density, and ranks L and v are then vector coupled to J . The index
t specifies the isospin channel of the density, that is isoscalar for t = 0 and
isovector for t = 1. The coupling of a derivatives operator with a local density
is named secondary density,

ρt
mI,nLvJ,Q(r) =

[

DmIρ
t
nLvJ(r)

]

Q
. (2.19)

The energy density in Eq. (2.16) is expressed in the language of the spherical
tensors and this implies a difference in the definition of the isovector terms when
compared to the Cartesian representation. In the latter, the isovector terms
depend on products of differences of neutron and proton densities, whereas in
the spherical representation the isovector channel involves the coupling of two

isovectors to a scalar, which brings a Clebsch-Gordan coefficient of
(√

3
)−1

. For
this reason, the isovector coupling constants for the spherical representation are
by the factor of

(√
3
)

larger than those for the Cartesian representation.

The possible terms entering in energy density (2.16) are selected according to
the invariance with respect to the time-reversal symmetry and the covariance
with respect to space inversion and rotation, as we are going to describe in
the following. When a derivation of the functional from the interaction is not
explicitly considered as in Ref. [CDK08], the functional must be explicitly built
equipped with all the symmetry of the nuclear interaction. In this respect, two
approaches are possible and both of them have been used in order to treat
the symmetries of the higher-order in derivatives EDF. They are referred as
”derivation after separation of symmetries” and ”derivation before separation
of symmetries” respectively.

The ”derivation after separation of symmetries” is applied when there are not
any symmetry-breaking terms of the local densities in the energy density, be-
cause they are previously removed through an analysis of the transformation
properties of the one-body density matrix under the symmetry group; in the
”derivation before the separation of symmetries” the symmetry-breaking terms
of the local densities are allowed to be in the energy density, while the resulting
EDF is anyway invariant for the reasons that we explain in the following. In the
standard derivation of the Skyrme EDF [PRD04] the time-reversal and isospin
symmetries are treated in the ”derivation after separation of symmetries” ap-
proach, while the space symmetries like space inversion or rotation are treated
within the ”derivation before the separation of symmetries” approach.
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We take the time-reversal symmetry as first illustrative example. For sake of
simplicity, we do not consider here the isospin degree of freedom. However, as
it is shown in Ref. [EBG75, PRD04], the rules of constructing the particle-hole
energy density with proton-neutron mixing are identical to those valid in the
case of no proton-neutron mixing. According to the transformation properties
of the many-body wavefunction under the time-reversal transformation T , the
non local densities,

ρ (~r, ~r′) =
∑

σ

ρ (~rσ,~r′σ) , (2.20)

~s (~r, ~r′) =
∑

σσ′

ρ (~rσ,~r′σ′) 〈σ′ |~σ|σ〉 , (2.21)

can be separated into the time-even and time-odd parts,

ρ(~r, ~r′) = ρ+(~r, ~r′) + ρ−(~r, ~r′), (2.22)

~s(~r, ~r′) = ~s+(~r, ~r′) + ~s−(~r, ~r′), (2.23)

where

ρ±(~r, ~r′) = 1
2

[

ρ(~r, ~r′)± ρT (~r, ~r′)
]

, (2.24)

~s±(~r, ~r′) = 1
2

[

~s(~r, ~r′)± ~sT (~r, ~r′)
]

, (2.25)

such that

ρT
±(~r, ~r′) = ±ρ±(~r, ~r′), (2.26)

~sT
±(~r, ~r′) = ±~s±(~r, ~r′). (2.27)

Given that the nuclear interaction is time-reversal symmetric, the derived HF
energy density will be composed only by squares of time-even and time-odd
densities of Eqs. (2.24)–(2.25). Consequently, the energy density itself is time-
even because there are not bilinear terms with opposite time-reversal phases.
For the N3LO EDF, we have in fact that

ρT (~r, ~r′) = ρ∗(~r, ~r′) = ρ(~r′, ~r),
~sT (~r, ~r′) = −~s∗(~r, ~r′) = −~s(~r′, ~r). (2.28)

The nonlocal densities in Eqs. (2.28) must be coupled with the derivative oper-
ators KnL, which are imaginary and antisymmetric with respect to exchanging
variables ~r and ~r′, that is the operation that performs the time inversion of the
relative momentum in the coordinate representation. As consequence, the total
parity of the scalar coupling of two primary densities ρnLvJ(~r) must fulfill,

(−1)n+v+n′+v′

= 1. (2.29)

As example of derivation before the separation of symmetries we give the one
for the space-inversion symmetry. In this case we see that the invariance of
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the energy density with respect to the symmetry transformation is not a nec-
essary condition for the invariance of the EDF, but it is enough to assume the
covariance with the symmetry S of the energy density, that is,

HS(~r) = H(S+~rS), (2.30)

where S+~rS denotes the space point transformed by the symmetry S.

The general covariance condition in Eq. (2.30) together with the space invari-
ance of the integrals are together sufficient conditions to guarantee the invari-
ance of the EDF, regardless of the symmetry properties of the many-body
states of the nonlocal densities entering in the energy density. So, the covari-
ance condition for the space-inversion symmetry is obtained from the parity
(−1)n+m of the tensors, appearing in the definitions of the secondary density
ρmI,nLvJ,Q(~r). The parity-covariant energy density will be then constructed by
coupling together densities that fulfill the condition,

(−1)n′+n+m = 1. (2.31)

2.1.2 Nuclear EDF based on DME expansion

Density matrix expansion (DME) is a convenient procedure to derive quasilo-
cal density functionals from an expansion of the nonlocal expression of the
one-body density matrix, which is the key ingredients in the Hartree-Fock cal-
culations. The DME was introduced in two seminal papers by Negele and
Vautherin [NV72, NV75], who showed how to link the computationally sim-
ple results based on a phenomenological force, the Skyrme interaction, to the
more fundamental mean-field calculations based on realistic nucleon-nucleon
interactions. Recently, there has been a renewed interest for DME [DCK10,
CD10, GDB10], also in connection with the attempts to derive EDFs from first
principles [DFP10, BFS10, SKB10].

The DME gives a positive response to the question about the opportunity
of approximating finite-range interactions with quasilocal density functionals.
In fact, as we explained before, DFT is based on the local density but the
interaction energy obtained from a local interaction, reads

E int =
1

2

∫

d3r1d
3r2V̂ (r1, r2)(ρ(r1)ρ(r2)− ρ(r2, r1)ρ(r1, r2)), (2.32)

where we did not consider spin and isospin indices for sake of simplicity.

The interaction energy in Eq. (2.32) is local in the first term, the direct term,
whereas it is nonlocal in the second term, the exchange one, being dependent
on the square of the nonlocal density ρ(r1, r2). This question is strictly related
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to the following one: to what extent a local contact interaction, as the Skyrme
interaction or the extension in order of derivatives we proposed in paper I,
can be a good approximation of a general local finite-range interaction? The
expression of the energy in Eq. (2.32) is in fact the result of the averaging over
the many-body wavefunction of the local interaction,

V̂ (r′1, r
′
2; r1, r2) = V̂ (r1, r2)δ(r

′
1 − r1)δ(r

′
2 − r2), (2.33)

whereas the quasilocal form of the functional in Eq. (2.16) can be directly
calculated by averaging over the many-body wavefunction the zero-range pseu-
dopotential, which is introduced and study in the Chapter 3 and that has the
general form,

V̂ (r′1, r
′
2; r1, r2) = V̂ (r1, r2)δ̂12(r

′
1r

′
2, r1r2), (2.34)

where we introduced the Dirac delta function,

δ̂12(r
′
1r

′
2, r1r2) = δ(r′

1−r1)δ(r
′
2−r2)δ(r1−r2)

= δ(r′
1−r2)δ(r

′
2−r1)δ(r2−r1), (2.35)

which ensures the locality and zero-range character of the pseudopotential.

As approximation, the DME exploits two important features of the nuclear
physics at low-energy scale: first, it relies on the fact that the nuclear interac-
tion is short-range, which guarantees the possibility to map nonlocal expres-
sions of the functional into quasilocal EDF’s; second, for the low-energy nuclear
physics, the separation between the energy scale of the phenomena and the en-
ergy scale of the short-range of the interaction, which allows the introduction
of the LDA in dealing with the one-body density matrix. In this respect, the
DME is an application of the key ideas of the EFT exposed in the previous
section. In particular the content of information pertaining to the nonlocal
interaction is only partially conveyed to the EDF through the calculations of
the coupling constants of the functional itself.

By way of illustration, we survey the main step of the DME procedure applied
to the exchange interaction energy in Ref. [DCK10], where an improved version
of the Negele-Vautherin DME has been introduced and applied to the Gogny
force [G75, DG80]. First of all, the one-body density matrix in the exchange
term of Eq. (2.32), once expressed in the total (R) and relative (r) coordinates
and derivatives, can be expanded with respect to the variable r,

ρ(r1, r2) = ρ(R, r) (2.36)

= π0(r)ρ(R) + iπ1(r)raja(R)ρ(R)

+
1

2
π2(r)rarb

[

1

4
∇a∇bρ(R)− τab(R)

]

+ . . . .
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The expansion is performed in the local direction or, in other words, the relative
coordinate derivatives ∂i are always calculated at ri = 0. This is enough
because the density varies in the nonlocal direction at the same scale as it does
in the local direction, as one could analytically check for the one-body density
matrix in the infinite matter. In Eq. (2.36) the one-body density matrix is
expressed through the current and kinetic densities,

ja(R) =
1

i
∂aρ(R, r)r=0, (2.37)

τab(R) = ∇(1)
a ∇

(2)
b ρ(r1, r2)r1=r2 , (2.38)

whereas the three auxiliary functions π0(r), π1(r) and π2(r) vanish at large r
and are introduced to guarantee the correct asymptotic behavior of the expan-
sion (2.36). Moreover, the auxiliary functions must be defined in such a way
that expansion (2.36) be compatible with the Taylor expansion of ρ(R, r), then
the following condition must hold,

π0(0) = π1(0) = π2(0) = 1, π′
0(0) = π′

1(0) = 0, and π′′
0 (0) = 0. (2.39)

In the definition of functions πi(r) is encoded the kind of LDA applied to the
one-body density matrix: usually LDA is practically implemented through a
dependence with respect to the Fermi momentum kF , which sets the scale at
which the density matrix varies. This dependence amounts to a dependence on
the local density ρ(R), when the LDA respect to the nuclear infinite matter is
adopted. The explicit definitions of the πi(r) functions read,

π0(r) =
6j1(kF r) + 21j3(kF r)

2kF r
and π2(r) =

105j3(kF r)

(kF r)3
, (2.40)

where jn(kF r) are the spherical Bessel functions. A supplementary condition,
required by the local gauge invariance of the energy, defines the π1(r) function
as,

π2
1(r) = π0(r)π2(r). (2.41)

Alternatively, the auxiliary functions can be calculated a posteriori, to repro-
duce in an approximate way the given density matrix ρ(R, r).

By calculating the product of nonlocal densities ρ(r2, r1)ρ(r1, r2) and plugging
it into the exchange part of Eq. (2.32), one finally gets the exchange interaction
energy within the quasilocal approximation (up to second order),

εint
exc = −

∫

d3R
1

2

[

V 00
π0 ρ

2(R) +
1

3
V 02

π2

(

1

4
ρ(R)△ρ(R)− (ρ(Rτ(R)− j2(R)))

)]

,

(2.42)
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where each term of the expansion is equipped with the corresponding coupling
constants, defined as moments of the interaction,

V πn
ij =

∫

d3rrnπi(r)πj(r)V (r) = 4π

∫

drrn+2πi(r)πj(r)V (r). (2.43)

The moments of the interaction have two main features to be underlined: they
are running coupling constants depending on the Fermi momentum kF or den-
sity ρ(R); in a few number of moments is contained all the physical informa-
tion we need about the dynamic of the short-range interaction. Again, we see
a strong collapse of information due to the separation of scale between the
low-energy nuclear states and short-range scale of the interaction.

2.1.3 Effective pseudopotential

The study of the two-body interaction between nucleons is the starting point
of the application of the techniques of many-body theory to nuclear structure.
Since 1950s, the long history of the theory of nuclear interactions has been
followed a twofold path: on one hand, the attempt to derive the nuclear force
from first principles, namely from some more fundamental theory; on the other
hand, the introduction and the use of the so-called phenomenological interac-
tions (bare or effective).

On the side of the first-principles approach [ME11], the problem seemed to be
solved in 1970s, when the “Pion Theories” program was accomplished also for
the intermediate-range part of the force with the 2π-exchange theory. But all
the results of the theories, which have used the mesons as ultimate degrees of
freedom, became suddenly simple models with the discovery of the quantum
chromodynamics (QCD) in 1980s. The latter was regarded at the beginning
as the new fundamental theory, and quarks and gluons the basic degrees of
freedom. Very soon it emerged the idea that the QCD-inspired derivation of the
nuclear force, also plagued by the intrinsic difficulty of the nonperturbativeness
of QCD at low-energy regime, was finally nothing else that another model, just
like the model based on pions and heavy mesons.

With the application of chiral expansion to low-energy nucleon-nucleon inter-
action by Weinberg [W90], the problem of the nucleon-nucleon interaction was
set on a new basis. It has been observed [ME11] that EFT applied to low-
energy nuclear phenomena, with the choice of nucleons and pions as degrees
of freedom, has the meaning of a return to Yukawa’s meson theory, but with a
crucial added ingredient, that is the broken chiral symmetry as a constraint on
the pions dynamics. We are not going to give any details about the derivation
of the nuclear forces from the EFT Lagrangians, because in our work we are
interested in a specific version of a phenomenological effective interaction, i.e.
a pseudopotential. But first, we want briefly to present the main ideas about
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the phenomenological bare interactions, focusing in particular on a procedure
quite recently introduced and particularly suitable for the treatment of the bare
forces, the low-momentum softening techniques of RG approach [BFS10].

Bare interactions can be considered as hybrid forces, because they are built from
a part derived in the framework of the meson field theory, the so called one pion
exchange potential (OPEP), and by a pure phenomenological part, introduced
to mimic the effects of the force in the short- and often medium-range of the
force. The phenomenological part contains up to 50 parameters, fitted in order
to reproduce the observed scattering phase shifts and deuteron data. At larger
distance, the bare forces are dominated by the OPEP contribution, which must
be common to all the different bare forces aiming at reproducing the phase shift
for orbital angular momentum L ≥ 6. The phenomenological part, driving the
short- and intermediate-range of the force, can vary according to the force
adopted: for instance, the central, tensor and spin-orbit parts of the original
Reid soft core potential, and also the explicit account of the charge-dependence
and charge-asymmetry contributions in the electromagnetic part of the Argonne
v18, which has been tuned to both pp and np scattering database [WSS95].

By defining the coupling strength of the pion to the nucleon as g2

~c
⋍ 0.081 and

the Compton wavelength of the pion 1
µ

= ~

mπc
, the form of the OPEP-potential

reads,

V OPEP =
g2

3~c
mπc

2 e
−µr

µr
(τ (1)τ (2))

{

σ(1)σ(2) +

(

1 + 3
1

µr
+ 3

(

1

µr

)2
)

S12

}

,

(2.44)
where S12 is the standard tensor term.

The main drawback of the bare interactions is not in the long-range part, but
in the strong repulsion at short distances, which makes the nuclear forces very
difficult to handle in the practical implementations. The problem of the hard
core is indeed the problem of the coupling of low to high momenta induced
by the interaction. This coupling can be seen considering the off-diagonal
matrix elements of an interaction, for instance the Argonne v18, calculated in
the momentum space. Large regions of the off-diagonal elements are non-zero,
with the consequence of a strong quenching of the probability of the relative
wave function for two nucleons at short distances, the short-range repulsive
correlation. An even more direct way to understand this coupling is manifested
in the expression of the scattering T-matrix in perturbation theory,

T (k′, k, E) = 〈k′|V |k〉+
∑

q

〈k′|V |q〉〈q|V |k〉
E − εq

+ . . . , (2.45)

where the summation over all the intermediate states q makes evident the
interplay between low- and high-momenta physics.
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The modern approaches aiming at curing the problem of the hard core are the
renormalization group (RG) method [BFS10], similarity renormalization group
(SRG) method [BFP07] and unitary correlation operator method (UCOM).
They represent different strategies to evolve nuclear N-body forces into low-
momentum interactions, making in this way possible the use of the many-
body perturbation theory and improving the convergence of the calculations.
They are applied in order to overcome the lack of well-established ab initio

nuclear EDFs, when compared to the situation in the study of the Coulomb
systems. This is due to the fact that the ab initio calculations in uniform
nuclear systems are not as refined as the same kind of calculations for the
electron gas, which are the standard starting point for the DFT for Coulomb
systems. The ultimate reason of this discrepancy is due to the non-perturbative
character of the nucleon-nucleon interaction. While the Coulomb potential is
derived straightforwardly from QED and its perturbative nature resulting in
the dominance of the Hartree-Fock (HF) contribution to the energy, makes the
DFT so suitable for electronic systems, the sources of non-perturbative physics
in the nuclear interaction require methods of softening of the hard core of the
potential.

For instance, the RG-based techniques, known also as ”Vlowk” [BFS10], de-
couples the high-energy modes from the soft ones by evolving the many-body
Hamiltonian through unitary transformations. The unitarity of the transfor-
mation guarantees that the average values of the operators corresponding to
physical observables are kept untouched, while the potential is softened and
evolved to become a low-momentum interaction, practically defined as a po-
tential that do not couple momenta k . 2fm−1 to larger momenta. One may
wonder whether this freedom in evolving the potential is allowed: the point
here is that for short-range interactions between finite-mass composite parti-
cle, the potential is not an observable anymore. The strong repulsive core of the
bare interactions currently used was in fact a result of the assumption, merely
dictated by numerical convenience, to take a local force to be parametrized by
the phase shift data.

Before the coming of the low-momentum potentials techniques, an alternative
form of interactions were introduced to overcome the hard core problems of the
bare potentials, the effective interactions [RS80]. Effective forces were in fact
introduced as a way out of the situation of the ill-behaved bare interactions.
In particular, the microscopic effective interactions as the Brückner G-matrix
consist in a re-summation of the infinite series of scattering processes of two
nucleons in the nuclear medium. Through this re-summation the bare interac-
tion, which was taken as starting point or zero order of the series, is cured of
the hard core problem.

Beside the microscopic effective interactions, we can consider the phenomeno-
logical effective interactions [RS80], which are more easy to handle in practical
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calculations and provide a better quantitative agreement with experiment, com-
pared to the microscopic ones. The main difference with respect to the latter is
the lacking of an explicit dependence on the energy, that is always produced in
a microscopic approach via the Lippmann-Schwinger for the scattering matrix.
In the phenomenological interactions, or pseudopotential, the energy depen-
dence is replaced by in different strength parameters adjusted to reproduce the
experimental data. For the SCMF models the two widely used effective inter-
actions are the zero-range Skyrme interaction [Sk56, Sk59] and the finite-range
Gogny force [G75, DG80].

In particular, the Skyrme interaction is a contact, local pseudopotential that
depends on relative momenta up to the second order. In the position-spin-
isospin representation it reads [PRD04],

V̂ (r′
1σ

′
1τ

′
1r

′
2σ

′
2τ

′
2, r1σ1τ1 r2σ2τ2) =

{

t0(δ̂
σ + x0P̂

σ) + 1
6 t3(δ̂

σ + x3P̂
σ)

ρα
0

(

1
2 (r1 + r2)

)

+ 1
2 t1(δ̂

σ + x1P̂
σ)
[

k̂′2 + k̂2
]

+ 1
2 te

[

k̂′∗ · Ŝ · k̂′∗ + k̂ · Ŝ · k̂
]

+ t2(δ̂
σ + x2P̂

σ)k̂′∗ · k̂ + tok̂
′∗ · Ŝ · k̂

+ iW0Ŝ ·
[

k̂′∗ × k̂
]}

(

δ̂σ δ̂τ − P̂ σP̂ τPM
)

δ̂12, (2.46)

where the Kronecker delta in the spin and isospin representation, and the ex-
change operators read

δ̂σ
σ′

1σ′

2σ1σ2
= δσ′

1σ1
δσ′

2σ2
, (2.47a)

δ̂τ
τ ′

1τ ′

2τ1τ2
= δτ ′

1τ1
δτ ′

2τ2
, (2.47b)

P̂ σ
σ′

1σ′

2σ1σ2
= 1

2 (δ̂σ
σ′

1σ′

2σ1σ2
+ σ̂σ′

1σ1
· σ̂σ′

2σ2
)= δσ′

1σ2
δσ′

2σ1
, (2.47c)

P̂ τ
τ ′

1τ ′

2τ1τ2
= 1

2 (δ̂τ
τ ′

1τ ′

2τ1τ2
+ ~̂ττ ′

1τ1
◦ ~̂ττ ′

2τ2
)= δτ ′

1τ2
δτ ′

2τ1
. (2.47d)

The two-body vector and tensor spin operators are

Ŝσ′

1σ′

2σ1σ2
= σ̂σ′

1σ1
δσ′

2σ2
+ σ̂σ′

2σ2
δσ′

1σ1
, (2.48a)

Ŝ
ab
σ′

1σ′

2σ1σ2
= 3

2

(

σ̂a
σ′

1σ1
σ̂b

σ′

2σ2
+ σ̂b

σ′

1σ1
σ̂a

σ′

2σ2

)

− δabσ̂σ′

1σ1
· σ̂σ′

2σ2
, (2.48b)
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and the relative momentum operators,

k̂ = 1
2i

(∇1 −∇2) , (2.49a)

k̂′ = 1
2i

(∇′
1 −∇

′
2) , (2.49b)

act on the delta functions in δ̂12, defined in Eq. (2.35). This action has to be
understood in the standard sense of derivatives of distributions.

We present in more details the Skyrme force in Sec. 3.2, in the context of the
comparison with the higher-order in derivatives pseudopotential introduced in
this work. Here, we are going to describe some features of the interaction
by following the original version of the Skyrme interaction. First of all, in its
seminal paper [Sk59], Skyrme explored the possibility of some additional terms.
Beside the fourth-order term that we introduce in Eq. (3.11), a four-body zero-
range term can be considered,

t4δ(r1 − r2)δ(r1 − r3)δ(r1 − r4), (2.50)

which Skyrme assumed as a many-body effect contribution, alternative to the
eventual introduction of momentum-dependent (finite range) terms. The four-
body terms was preferred because it adds just one new parameter t4. The
term in Eq. (2.50) can be expressed also as an equivalent two-body contact
interaction depending on the second power of the density. Analogously, the
three-body term,

t3δ(r1 − r2)δ(r1 − r3), (2.51)

can be represented, after the averaging over the even (spin saturated) many-
body wave function, as

t3δ(r1 − r2)ρ, (2.52)

where ρ is the nuclear density at the point of the interaction.

This term, in the analysis performed by Skyrme, turned out to be more prob-
lematic in the odd (spin not saturated) states, where it cannot be treated as
two-body density-dependent term. Another problematic issue investigated by
Skyrme was the capability of the two-body spin-orbit term in describing the
spectroscopic properties of light nuclei. In this respect, the conclusions were
that the spin-orbit term was not rich enough to be determined with sufficient
accuracy by the available data of the spin-orbit splitting.

In the later HF calculations with Skyrme functionals, the density dependent
term was treated with simple phenomenological arguments, and the term pro-
portional to ρ3 in the functional was generalized to a dependence on ρ2+α

with α ∼ 0.16 − 0.3 (see for instance parametrizations SkM [KTB80] and
SkM∗ [BQB82]), because the original term with the power of 3 dependence was
performing not very well in the description of the fission barriers and monopole
oscillations.
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In general, from a formal point of view, the density dependence of the Skyrme
interaction prevents to correctly interpret it as interaction [EKR10]. The prob-
lems arise from the simple term,

V̂3(r1, r2) =
t3

6
δ(r1 − r2)ρ(r1) (2.53)

that one should be able to express also in the second quantization formalism
as,

V3 =
∑

α1α2α3β1β2β3

Vα1α2α3β1β2β3a
†
α1
a†α2

a†α3
aβ3

aβ2
aβ1

, (2.54)

whose expectation value with respect to the mean-field state |Φ〉 gives

〈Φ|V3|Φ〉 =
∑

nmk

V
nmk,ñmk

. (2.55)

But if one performs the calculation of the expectation value for the density
dependent term in Eq. (2.53), one finds that the result is not fully antisym-
metrized as it should be, with the consequence that the term in Eq. (2.53) can
be considered at most as a formal generator of the functional rather than an
interaction. Moreover, the density dependence has an unpleasant consequence
for the calculations beyond mean-field level. If we consider for instance the
residual interaction in RPA, obtained as the second derivative of the functional
with respect to the density, we cannot recover the exact form of the initial
interaction. The consistency between mean-field and beyond mean-field calcu-
lations is, in this way, lost. The pseudopotential we are going to introduced in
Ch. 3 is not dependent on the density, having we chosen to extend the Skyrme
interaction as an expansion in order of derivatives. Anyway, in order to achieve
the correct saturation property, the direct and exchange components of the
two-body interaction are not enough. Then, in practical calculations using the
pseudopotential, one must think to add some dependence on the density. This
inclusion guarantees that the N-body components of the interaction are taking
into account.

Beside the discussion about the more suitable form for the interaction or the
functional, the issue of the optimization of the parameters or the coupling con-
stants, namely the fitting to experimental data [KLM10, KRB09], is a crucial
feature of the phenomenological functionals. Usually the observables selected
for the fit are related to the energy and spatial distribution of the nuclear mat-
ter in the nucleus: binding energies, proton radii and surface thicknesses, along
with the so called pseudo-observables obtained from various nuclear-matter
properties, that can be calculated in the analytically solvable models of infinite
matter. Also single-particle energies of doubly magic nuclei can be used as fit-
ting data, in order to pin down the properties connected to the shell structure of
the nuclei, even tough it turned out that recent attempts [KDM08] to improve
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the prediction power of the Skyrme functional through a refit based on single-
particle energies has not yet brought the spectroscopic-quality description we
wished for.

The different biases in selecting the set of observables has given rise to many
different parametrization in the literature for SHF. A recent parametrization
performing well in reproducing experimental masses, radii and deformation is
the UNEDF0 parametrization [KLM10], that we are going to present briefly
here as emblematic case of the optimization procedure.

The pool of fit observables for the UNEDF database is composed by 72 nuclei,
with a bias toward heavy nuclei, the ones that require necessarily a treatment
with SCMF models. A large part out of this set contains 44 well-deformed
(|β| & 0.25) even-even nuclei. The consideration of deformed nuclei in the
fit should improve the predictive power of the functional on the surface prop-
erties. The set of the 28 remaining nuclei is composed by spherical nuclei,
whose constraints in the fit are strong due to the fact that they deviate from
global mass trend. The algorithm of optimization implied is derivative-free, a
feature that guarantees better performance and precision in the minimization
calculation of the objective (least-squares) function. In the solution of the op-
timization problem is often required some trade-off decision: in the case of the
UNEDF, the best parametrization in reproducing the masses was able to give
a rms deviation of 0.966 MeV, but the value of the incompressibility in nuclear
matter at the end of the iteration was far too large, preventing the use of the
parametrization for the studies of monopole collective vibrations. The choice
was then to impose hard bounds on the nuclear incompressibility, at the cost
of a deteriorated rms deviation for masses equal to 1.455 MeV.

Another remarkable aspect of the modern optimization approach is the sta-
tistical analysis of the optimization results, in particular the test of eventual
correlations between the parameters [RN10, DSPM10]. The experimental in-
formation carried by the data can be in fact coded into the parameters in the
inter-dependent way, in the sense that one or more parameters of the interac-
tions can be functions of the others, leading to the ill-posedness of the inverse
problem. The inverse problem is the search of the best parametrization for a
give set of data and technically relies on the possibility to invert the matrix of
the variations of the observables with respect to a small change in the values of
the parameters. The problem of the inter-dependences among some parameters
can depend on the theoretical limits of the approximation used for the many-
body Hamiltonian, but also on the specific choice of data for the optimization
procedure.
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2.1.4 Galilean and gauge invariance of the EDF

We have seen that one of the main guiding principles in building effective
theories is to write Lagrangians or Hamiltonians restricted only by symmetry
principles. In the framework of the SCMF methods, the restoration of the
broken symmetries is the standard approach to the treatment of the symmetry
of observables under transformations [RS80, BR86]. In fact, one tries to capture
the relevant physics of a system by a description based on simple wave functions,
but the simplicity of the single-particle basis means that the many-body wave
function can break the symmetries of the nuclear Hamiltonian. For example, if
we do not choose plane waves as a basis of the independent-particle states, we
break the translational invariance. The standard practical method to restore
the symmetries or, in other words, to include correlations in the mean field wave
function, is the generator coordinate method [RS80], where a superposition of
independent broken-symmetry wave functions is introduced as an ansatz that
minimizes the energy and causes the many-body wave function to have the
required symmetry.

In this section, we discuss the properties of the gauge and Galilean symme-
tries when they are applied to the functional [DD95, CDK08]. The Galilean
invariance of the functional is the natural consequence of the assumption that
relativistic effects are negligible, and then the dynamics of the system is driven
by the Schrödinger equation instead of the Dirac equation.

The expression of the Galilean-transformed nonlocal density reads,

ρ′(rστ, r′σ′τ ′) = exp

{

i

~
p ·
(

r − r′
)

}

ρ(rστ, r′σ′τ ′), (2.56)

where p is a constant linear momentum of the boost transformation. As long
the interaction energy does not depend on the momentum p and on the as-
sumption of a stationary solution (vanishing density currents), we have the
following energy increase,

∆Eboost =
p2

2m
A, (2.57)

which is the translation energy of the boosted system.

Despite the fundamental character of the Galilean invariance, in many phe-
nomenological approaches not interested in the translational motion, the Ga-
lilean symmetry is not considered. Therefore, the EDF can be in the most
general case presented with the terms free from any constraints coming from
this symmetry.

The Galilean transformation considered in Eq. (2.56) for the nonlocal density
is in fact a special case of the general gauge transformation, whose action is,
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ρ′(rστ, r′σ′τ ′) = ei(γ(r)−γ(r′))ρ(rστ, r′σ′τ ′). (2.58)

where γ(r) in this case is an arbitrary real function of the position r.

In Sec. 3.6 we show how the N3LO EDF is derived from the pseudopotential.
EDF is obtained by averaging the pseudopotential over a Slater determinant,
which is an uncorrelated wave function, therefore we should expect to face the
problem of the breaking of the symmetries in the functional. On the other hand,
the results of the averaging in paper I, reviewed in Sec. 5.1.1, show that the sym-
metries of the pseudopotential are shared also by the derived EDF. In particu-
lar, since the pseudopotential is Galilean-invariant, the obtained EDF coupling
constants obey the Galilean-invariance constraints. Similarly, when parameters
of the pseudopotential are restricted to obey the gauge-invariance conditions
(see Sec. 3.5), the resulting coupling constants correspond to a gauge-invariant
EDF. The reason of these two invariances, with respect to Galilean and gauge
transformations, is due to the fact that the pseudopotential considered in our
work is local, according to expression in Eq. (2.33), that we rewrite here with
spin and isospin coordinates included,

V̂ (r′
1σ

′
1τ

′
1r

′
2σ

′
2τ

′
2, r1σ1τ1r2σ2τ2) = V̂ (r1σ

′
1τ

′
1r2σ

′
2τ

′
2, r1σ1τ1r2σ2τ2)×

δ(r′1 − r1)δ(r
′
2 − r2). (2.59)

In fact, one can see that expression of the interaction energy,

E =
1

4

∫

d r1r2r
′
1r

′
2

∑

σ1σ2

σ′

1σ′

2

∑

τ1τ2

τ ′

1τ ′

2

V̂ (r′
1σ

′
1τ

′
1r

′
2σ

′
2τ

′
2, r1σ1τ1r2σ2τ2)

(ρ(r1σ1τ1, r
′
1σ

′
1τ

′
1)ρ(r2σ2τ2, r

′
2σ

′
2τ

′
2)

−ρ(r2σ2τ2, r
′
1σ

′
1τ

′
1)ρ(r1σ1τ1, r

′
2σ

′
2τ

′
2)), (2.60)

becomes invariant with respect to the local gauge, when the locality of the in-
teraction is assumed (Eq. (2.59)), and it acquires the form of Eq. (2.32),namely,

E =
1

4

∫

d r1r2

∑

σ1σ2

σ′

1σ′

2

∑

τ1τ2

τ ′

1τ ′

2

V̂ (r1σ
′
1τ

′
1r2σ

′
2τ

′
2, r1σ1τ1r2σ2τ2)

(ρ(r1σ1τ1, r1σ
′
1τ

′
1)ρ(r2σ2τ2, r2σ

′
2τ

′
2)

−ρ(r2σ2τ2, r1σ
′
1τ

′
1)ρ(r1σ1τ1, r2σ

′
2τ

′
2)). (2.61)

as it is explicitly showed in the following.
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A general finite-range interaction energy is not invariant with respect to the
gauge symmetry, but when the interaction is assumed to be local as in Eq. (2.59),
then the corresponding interaction energy Eq. (2.60) turns out to be invariant
under the local gauge transformation. In fact, the direct term is invariant be-
cause it depends only local densities depending on only one position coordinate.
On the other hand, in the exchange term the gauge factors coming from two
density matrices cancel one another, because the position coordinates appear
in opposite order in the two densities, that is, ρ(r2, r1)ρ(r1, r2).

The transformations in Eq. (2.58) is generated by the identity operator and
corresponds to the standard abelian group U(1). This is just one case of a class
of different local gauge groups acting on the spin and isospin spaces,

U t
v(r) = exp

(

i
[[

γt
v(r)σv

]

0
τ t
]0
)

. (2.62)

The U(1) group corresponds to γ(r) ≡ γ0
0(r) and is an abelian group, be-

cause the only generator of the transformations, which is the identity operator,
commutes trivially with itself. U0

1 (r) and U1
0 (r) form the non-abelian gauge

groups SU(2). The generators of these two groups of transformations are the
Pauli spin and isospin matrices respectively, which do not commute because
of the well-known relation of commutation for angular momentum operators.
They represent the rotations in the spin and isospin spaces. U1

1 (r) corresponds
to the non-abelian gauge group SU(2)×SU(2) in both spin and isospin spaces.



Chapter 3

Pseudopotential for N3LO
nuclear EDF

3.1 Overview of the paper I

In this section we are going to recall the main contents exposed in paper I and
to list topics of the following sections, which have been left out from the paper I
for sake of brevity, or because they are related to the technical implementation
of the calculations, but are nevertheless helpful for a thorough understanding
of our results.

In paper I, we have derived a zero-range pseudopotential including all possible
terms up to sixth order in derivatives, and within the HF approximation we
have calculated the quasilocal EDF built of derivatives of the one-body density
matrix up to sixth order. The EDF derived from the pseudopotential turns
out to be constrained in such a way that the number of independent coupling
constants of the functional is reduced by a factor of two. These constraints have
been explicitly calculated for different symmetries imposed on the functional
and on the pseudopotential.

The detailed description of the general form of the pseudopotential was pre-
sented in Sec. II of paper I and the complete list of all the terms order by order
was given in Sec. IIB therein. In Sec. 3.2 of the present chapter we discuss
in more detail the consequence of the locality and zero-range character of the
pseudopotential, showing explicitly how the number of free parameters of the
pseudopotential reduces by half when the zero-range character is assumed. We
stress this point because it is at the basis of the constraints we can impose on the

39
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functional by the direct reference to the pseudopotential. In the same section
we are going to present also the correspondence between the pseudopotential
at NLO and Skyrme interaction, making in this way more transparent the con-
nection given in Sec. IIB of paper I by the relations of conversion between the
parameters of the pseudopotential and those of the Skyrme interaction.

Also the discussion of symmetries will be extended in Sec. 3.3 and, in particu-
lar, derivation of the condition for the gauge invariance of the pseudopotential
is presented in details (Sec. 3.5). This gives the details of the practical im-
plementation required to obtain the results listed in Appendix B of paper I,
concerning the set of the gauge-invariant combinations of the parameters and
terms of the pseudopotential. Since the hermiticity is a requirement that plays
an important role in defining the form of the pseudopotential, we decided to
complete the calculation of the adjoint pseudopotential given in Appendix A
of paper I, with an alternative derivation that can be found in Sec. 3.4.

Sec. III of paper I is mainly devoted to the presentation of the results con-
cerning the reference of the EDF to the pseudopotential. For assumed gauge
invariance of the EDF and pseudopotential, the constraints on the EDF that
are derived by averaging the pseudopotential up to N3LO are given as expres-
sions of a set of isovector coupling constants written as functions of the isoscalar
ones. These expressions have been obtained by means of the relations between
the coupling constants in a given isospin channel and parameters of the pseu-
dopotential, along with the inverse relations, namely the relations in which the
parameters are expressed as linear combinations of the coupling constants. The
same analysis has been repeated also for the imposed Galilean invariance and
the results collected in supplemental material of paper I.

The calculation of the averaging of the pseudopotential is lengthy and in paper
I we have just given the general idea about how it proceeds. In Sec. 3.7 we fill all
the steps of this calculation. First of all, the recoupling of the relative momen-
tum tensors in the pseudopotential is performed and results of the recoupling
for the second order are listed and compared with the corresponding Cartesian
expressions, which are required to derive the Skyrme functional. Such a com-
parison completes the one made between the pseudopotential at second order
and Skyrme interaction, and it has been practically used as a test to double
check our derivation of the recoupling of the momentum tensors, which is a
formula valid also for the higher orders.

Other derivations that we think are worth presenting here in detail are the ones
concerning the recoupling of the tensors composed by derivatives to the density
matrices, in order to get the secondary densities of the EDF, and to attain the
recoupling to the specific form of the functional used in Ref. [CDK08]. Both
recouplings are presented in Sec. 3.7.2.

A more specific overview concerning the numerical results obtained in paper
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I is given in Secs. 5.1.1- 5.1.2, where we treat, in particular, the case of the
EDF with conserved spherical, space-inversion, and time-reversal symmetries,
discussed in Sec. IV of paper I as simple case applicable to the spherical even-
even nuclei.

3.2 Zero-range pseudopotential

and Skyrme force

We introduce the N3LO pseudopotential as a phenomenological interaction rep-
resented in the spherical-tensor formalism, which extends the standard Skyrme
interaction to higher-order derivatives,

V̂ =
∑

ñ′L̃′,

ñL̃,v12S

Cñ′L̃′

ñL̃,v12S
V̂ ñ′L̃′

ñL̃,v12S
, (3.1)

where the sum runs over the allowed indices of the tensors according to the sym-
metries discussed in Sec. 3.3. The terms are accompanied by the corresponding

strength parameter Cñ′L̃′

ñL̃,v12S
, and explicitly read,

V̂ ñ′L̃′

ñL̃,v12S
=

1

2
iv12

([

[

K ′
ñ′L̃′

KñL̃

]

S
Ŝv12S

]

0

+(−1)v12+S
[

[

K ′
ñL̃
Kñ′L̃′

]

S
Ŝv12S

]

0

)

×
(

1− P̂M P̂ σP̂ τ
)

δ̂12(r
′
1r

′
2; r1r2). (3.2)

In Eq. (3.2), KñL̃ and K ′
ñL̃

are the spherical tensor derivatives of order ñ and

rank L̃ built of the spherical representations of the relative momenta,

k =
1

2i
(∇1 −∇2), (3.3)

k′ =
1

2i
(∇′

1 −∇
′
2), (3.4)

while the symmetrized two-body spin operators Ŝv12S are defined as,

Ŝv12S =
(

1− 1
2δv1,v2

)

(

[σ(1)
v1
σ(2)

v2
]S + [σ(1)

v2
σ(2)

v1
]S

)

. (3.5)

The definitions of the building blocks in the previous equations can be found
in Sec. IIA of paper I, defining also the exchange operator in spherical tensor
formalism as,
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P̂M P̂ σP̂ τ = (−1)ñ′ 1

4

(

1 +
√

3
[

σ
(1)
1 σ

(2)
1

]

0

+
√

3
[

τ
(1)
1 τ

(2)
1

]0

+ 3
[

σ
(1)
1 σ

(2)
1

]

0

[

τ
(1)
1 τ

(2)
1

]0
)

. (3.6)

The main feature of the Skyrme interaction is its zero-range form (contact
force) and this feature is of course shared by our pseudopotential. We stress
here an important consequence concerning the number of terms of a contact
force: it is easy to realize that a general zero-range nucleon-nucleon interaction
has half the number of terms compared to the general finite-range nucleon-
nucleon interaction. The argument goes in the following way. The general
form of a central force is [RS80],

VC(1, 2) =
(

V0(r) + Vσ(r)σ(1)σ(2) + Vτ (r)τ (1)τ (2)

+Vστ (r)σ(1)σ(2)τ (1)τ (2)
)

(

1− PMP σP τ
)

, (3.7)

where the operators PMP σP τ are the Cartesian version of the exchange oper-
ators in Eq. (3.6) expressing the Pauli principle. The action of the exchange
operators onto the antisymmetrized wave function is specified by the relation,
valid when the coordinate representation of the interaction is assumed,

PMP σP τΨ(x1, x2) = −Ψ(x2, x1), (3.8)

where we have used the collective coordinates xi ≡ (ri, σi, τi).

By using the relation of Eq. (3.8), Eq. (3.7) can be recast in such a way that
it contains just exchange operators,

VC(1, 2) =
(

VW (r) + VM (r)PM + VB(r)P σ + VH(r)PMP σ
) (

1− PMP σP τ
)

,

(3.9)

where the suffix relative to the different components of the force denote lin-
ear combinations of the former components of Eq. (3.7) and are named after
Wigner, Majorana, Bartlett and Heisenberg,

VW (r) = V0(r) − Vσ(r) − Vτ (r) + Vστ (r),

VM (r) = −4Vστ (r),

VB(r) = 2Vσ(r) − 2Vστ (r), (3.10)

VH(r) = −2Vτ (r) + 2Vστ (r).
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Terms Cartesian representation (Skyrme force)

1 V̂ 20

00,00

1
√

3
(k′2δ(r1 − r2) + δ(r1 − r2)k

2)

2 V̂ 20

00,20

1

3
(k′2δ(r1 − r2) + δ(r1 − r2)k

2)(σ(1)
· σ(2))

3 V̂ 22

00,22

1
√

5
((k′

· σ(1))(k′
· σ(2))δ(r1 − r2) + δ(r1 − r2)(k · σ(1))(k · σ(2)))

−
1

3
√

5
((k′2δ(r1 − r2) + δ(r1 − r2)k

2)(σ(1)
· σ(2)))

4 V̂ 11

11,00

1
√

3
(k′δ(r1 − r2) · k)

5 V̂ 11

11,20

1

3
(k′δ(r1 − r2) · k)(σ(1)

· σ(2))

6 V̂ 11

11,11

1
√

6
i(k′δ(r1 − r2) × k)(σ(1) + σ(2))

7 V̂ 11

11,22

1
√

5
(k′

· σ(1))δ(r1 − r2)(k · σ(2)) − 1

3
√

5
(k′δ(r1 − r2) · k)(σ(1)

· σ(2))

Table 3.1: Cartesian representation of the pseudopotential.

Now, if we consider a zero-range interaction the exchange operator PM for the
spatial coordinates turns into a simple phase and the first two component of
the interaction (3.9) are in fact the same operator and they can be grouped
together. The same stands for the last two components of the interaction (3.9)
and in all the zero-range interaction is formed by the half of number of inde-
pendent terms compared to the general central finite-range interaction. This
observation is crucial for the discussion in Sec. III of paper I, and reviewed in
Sec. 5.1.1, about the relations between the coupling constants of the EDF and
parameters of the pseudopotential.

Indeed the pseudopotential of Eq. (3.1), considered up to second order, is
strictly equivalent to the Skyrme interaction, which is instead traditionally
written in Cartesian representation. The equivalence between these two forms
of interaction can be seen explicitly by using Eqs. (9) of paper I, that give
a vocabulary of translation between the parameters of zero- and second-order
pseudopotential in spherical-tensor representation and those of the Skyrme in-
teraction. In Table (3.1) we show the Cartesian representation term by term
up to second order and in Eq. (3.11) we include also the fourth-order term
corresponding to the one originally considered by Skyrme,

V̂ 20
20,00 =

1

2

(

k′2δ(r1 − r2)k
2 − k′(k′δ(r1 − r2) · k) · k

)

, (3.11)

where in the last term of Eq. (3.11) both scalar products mix the primed and
non-primed coordinates.
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3.3 Symmetry properties of the

pseudopotential

The form and number of terms of the pseudopotential are restricted by im-
posing a certain number of symmetries, which pertain to a general two-body
force [RS80]. In the following we discuss the main symmetries applied to the
pseudopotential, leaving the derivations of the hermiticity for the next section.

• The invariance under an exchange of the coordinates. This symmetry is
ultimately connected to the fact that the particles in quantum mechanics
are indistinguishable and is equivalent to the invariance of the tensor with
respect to the interchange of the labels of the particle 1 and 2. The spin
operator of Eq. (3.5) was built to preserve the invariance under discussion,
whereas the coupling at higher orders of the relative momentum operators
k and k′ can be invariant only when the following condition is respected,

(−1)ñ+ñ′

= 1, (3.12)

that is, only for terms which are even in the order of derivatives. This
explains why the pseudopotential at N3LO in Eq. (3.1) is composed only
by the second-, fourth-, and sixth-order terms.

• Translational invariance. It is a very basic symmetry of physical systems,
whose energy must not depend on the system of reference adopted to make
measurements. In the case of the quasilocal potential, the translational
invariance is guaranteed by the fact that the building blocks of the spatial
part of the pseudopotential are relative momentum operators k.

• Galilean invariance. As before, the simple dependence on the relative
momentum k is enough to ensure the invariance of the pseudopotential
with respect to a transformation to a system moving with a constant
velocity.

• Parity invariance. The invariance of the phenomenological potential un-
der the space inversion reflects the more fundamental parity invariance
of the strong interaction. In the case of the N3LO pseudopotential, the
parity transformation brings a minus sign for each relative momentum op-
erator k: then to get the invariance we should require the same condition
of Eq. (3.12) already found for the exchange of coordinates transforma-
tion.

• Time-reversal invariance. The pseudopotential is required to be time-
reversal invariant because the Schrödinger equation of the system must
not depend on the direction of the time evolution. In Appendix A of paper
I, we give a detailed justification of the phase factor iv12 in the definition
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of the pseudopotential in Eq. (3.2), which guarantees the invariance under
the time-reversal transformation.

• Rotational invariance. The rotational invariance can be implemented nat-
urally on the pseudopotential written in the spherical tensor formalism.
In fact we required that all the terms of the pseudopotential be scalars,
namely tensors of rank zero. A special attention is needed here for the
spin operator of Eq. (3.5) when v12 = 1,

Ŝ11 = 1
2

(

σ(1) + σ(2)
)

. (3.13)

Since Ŝ11 is a vector, it must be coupled with another vector built from
relative-momentum operators. At second order one then finds the well-
known spin-orbit term, whereas at fourth and sixth orders one finds
higher-order spin-orbit terms (terms 6 and 14 in Table (IV) of paper
I and terms 6, 15, 20 and 25 in Table V of paper I).

• Rotational invariance in the isospin space. It is equivalent to the request

that the total isospin operator T = t
(1)
1 + t

(2)
1 commutes with the effec-

tive interaction. Given that the isospin operators, living in their proper
isospin space, do not couple with the operators momentum and spin, the
only isospin invariant coupling allowed is the one appearing is the isospin
exchange operator,

P̂ τ =
1

2

(

1 +
√

3
[

τ
(1)
1 τ

(2)
1

]0
)

. (3.14)

3.4 Hermiticity of the pseudopotential

In this section we show an alternative derivation of the hermiticity of the pseu-
dopotential in Eq. (3.2) and we complete in this way the discussion about the
symmetries of the pseudopotential made in the previous section. A derivation
has already been presented in Appendix A of paper I. The following deriva-
tion considers explicitly the fact that the pseudopotential has the Dirac deltas
and derivatives acting onto them. Therefore, the formal way to calculate the
adjoint of the pseudopotential must take into account the fact that the Dirac
deltas are distributions.

In order to do this, we consider the most simple term built with the spin and
relative-momentum tensors and respecting the symmetries of Sec. 3.3,

(i)v12

[

[

K ′
ñ′L̃′

KñL̃

]

S
Ŝv12S

]

0
δ̂12(r

′
1r

′
2; r1r2). (3.15)
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For the following calculation, we denote the term (3.15) expressed in second
quantization form through the field operators, in this way,

TV̂ ≡
∑

s1s′

1,

s2s′

2

∫

dr′
1dr

′
2dr1dr2(i)

v12

[

[

K ′
ñ′L̃′

KñL̃

]

S
Ŝv12S

]

0

×δ̂12(r′
1r

′
2; r1r2)Ψ̂

†(r′
1)Ψ̂

†(r′
2)Ψ̂(r2)Ψ̂(r1). (3.16)

Then, the Hermitian conjugate of the term TV̂ is

(

TV̂

)†
=

∑

s1s′

1,

s2s′

2

∫

dr′
1dr

′
2dr1dr2(−i)v12

(

∑

µ

(−1)S−µ

√
2S + 1

(

(

K ′
ñ′L̃′

KñL̃

)

S,−µ
Ŝv12S,µ

)

δ̂12(r
′
1r

′
2; r1r2)

)†
Ψ̂†(r1)Ψ̂

†(r2)Ψ̂(r′
2)Ψ̂(r′

1)

=
∑

s1s′

1,

s2s′

2

∫

dr′
1dr

′
2dr1dr2(−i)v12

∑

µ

(−1)S−µ

√
2S + 1

δ̂12(r
′
1r

′
2; r1r2)(−1)S−µ

Ŝv12S,−µ(−1)S+µ
(

K ′
ñ′L̃′

KñL̃

)

S,µ
Ψ̂†(r1)Ψ̂

†(r2)Ψ̂(r′
2)Ψ̂(r′

1),

=
∑

s1s′

1,

s2s′

2

∫

dr′
1dr

′
2dr1dr2(−i)v12

∑

µ

(−1)S−µ

√
2S + 1

δ̂12(r
′
1r

′
2; r1r2)

(

K ′
ñ′L̃′

KñL̃

)

S,µ
Ŝv12S,−µΨ̂†(r1)Ψ̂

†(r2)Ψ̂(r′
2)Ψ̂(r′

1). (3.17)

where we applied the Hermitian conjugation to the fields operators in the first
step and to tensors in the second step, whereas in the last equality we used the
fact that the relative-momentum operators and spin operator Ŝv12S commute.

The relative momentum operators and Dirac delta δ̂12(r
′
1r

′
2; r1r2) in the last

line do not commute. So, we use the fact that the pseudopotential is inserted
into integrals, when the coordinate representation is adopted. We can use the
trick of the integration by parts to move the Dirac deltas to the right-hand side
of the momentum operators. Each momentum transferred operator brings a
minus sign in the expression.

So, the Hermitian conjugate of the term TV̂ reads now,
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(

TV̂

)†
=

∑

s1s′

1,

s2s′

2

∫

dr′
1dr

′
2dr1dr2(−i)v12

∑

µ

(−1)S−µ

√
2S + 1

(−1)n+n′ (

KñL̃K
′
ñ′L̃′

)

S,µ

Ŝv12S,−µδ̂12(r
′
1r

′
2; r1r2)Ψ̂

†(r1)Ψ̂
†(r2)Ψ̂(r′

2)Ψ̂(r′
1)

=
∑

s1s′

1,

s2s′

2

∫

dr′
1dr

′
2dr1dr2(−i)v12

∑

µ

(−1)S−µ

√
2S + 1

(−1)S
(

K ′
ñ′L̃′

KñL̃

)

S,µ

Ŝv12S,−µδ̂12(r
′
1r

′
2; r1r2)Ψ̂

†(r1)Ψ̂
†(r2)Ψ̂(r′

2)Ψ̂(r′
1), (3.18)

and the factor (−1)S in the last equality of Eq. (3.18) comes from exchanging
the order of the operators KñL̃ and K ′

ñ′L̃′
coupled to rank S. The tensor is

not self-adjoint but we can hermitize it using the following expression, valid
for an operator Â depending on the indices n, L, n′, L′ and S, and defined as
Â = (i)v12 Ã(n,L, n′, L′, S), that is

1

2
(i)v12

(

Ã(n,L, n′, L′, S) + (−1)v12+SÃ(n′, L′, n, L, S)
)

, (3.19)

where the flip in the indices (n,L←→ n′, L′) is equivalent to the change of the
coordinates,

r′
1 ←→ r1 (3.20)

r′
2 ←→ r2,

which is required to guarantee the full hermiticity of the expression in the first
line of Eq. (3.17). Formula (3.19) applied to the tensor,

(i)v12

[

[

K ′
ñ′L̃′

KñL̃

]

S
Ŝv12S

]

0
δ̂12(r

′
1r

′
2; r1r2), (3.21)

gives the expression in Eq. (3.2).

3.5 Gauge invariance of the pseudopotential

In Sec. (3.3) we did not treat the gauge invariance as a general symmetry of
the pseudopotential, but we can impose it as further symmetry on the terms
of the higher-order pseudopotential. As matter of fact, the zero-range Skyrme
interaction is locally gauge-invariant and the Skyrme EDF is gauge-invariant
as well [EBG75, DD95]. This circumstance, which is highly non trivial due to
the presence of the momentum operators in the interaction, has been explained
from the fact that its velocity dependence has been introduced in order to mimic
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the finite-range effects of a local interaction. One can see that by going further
in the expansion on the relative momentum operators, the higher-order terms
of the pseudopotential are not anymore all stand-alone gauge invariant. By im-
posing the invariance under the gauge transformation, we force the parameters

Cñ′L̃′

ñL̃,v12S
to occur in certain linear combinations, which are gauge invariant.

These linear combination can be derived from a condition of invariance of the
pseudopotential under the gauge transformation, after having transferred the
action of the gauge transformation from the many-body wavefunction to the
pseudopotential,

V̂ ′ = e−iφ(r′

2)e−iφ(r′

1)V̂ eiφ(r1)eiφ(r2). (3.22)

In the following we fill the gap in the derivation of Eq. 13 of paper I from
Eq. (3.22) and we show how the gauge-invariant condition has been effectively
implemented. The results of this analysis can be read from Sec. IIC and from
Appendix B of paper I.

By using twice the Baker-Hausdorff lemma we can work out Eq. (3.22),

V̂ ′ = e−iφ(r′

2)

(

V̂ + [φ(r1), V̂ ] +
1

2
[φ(r1), [φ(r1), V̂ ]] + ...

)

eiφ(r2)

=

(

V̂ + [φ(r1), V̂ ] +
1

2
[φ(r1), [φ(r1), V̂ ]] + ...

)

+

[

φ(r2),

(

V̂ + [φ(r1), V̂ ] +
1

2
[φ(r1), [φ(r1), V̂ ]] + ...

)]

+
1

2

[

φ(r2),

[

φ(r2),

(

V̂ + [φ(r1), V̂ ] +
1

2
[φ(r1), [φ(r1), V̂ ]] + ...

)]]

+ . . . , (3.23)

where the commutators must be interpreted according to the following defini-
tion (i = 1, 2),

[φ(ri), V̂ ] ≡ φ(r′i)V̂ − V̂ φ(ri). (3.24)
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Then the condition for the gauge invariance of the pseudopotential is,

[φ(r1), V̂ ] +
1

2
[φ(r1), [φ(r1), V̂ ]] + . . .

+[φ(r2), V̂ ] + [φ(r2), [φ(r1), V̂ ]] +
1

2
[φ(r2), [φ(r1), [φ(r1), V̂ ]]] + . . .

+
1

2
[φ(r2), [φ(r2), V̂ ]] +

1

2
[φ(r2), [φ(r2), [φ(r1), V̂ ]]]

+
1

4
[φ(r2), [φ(r1), [φ(r1), V̂ ]]] + ... = 0. (3.25)

In Eq. (3.25) there are commutators, double commutators, and so on in a
sum composed by an infinite number of terms. At first order, we see that the
condition for the gauge invariance of the pseudopotential is

[φ(r1), V̂ ] + [φ(r2), V̂ ] = 0, (3.26)

which is in fact the condition of Eq. 13 of paper I.

This condition is sufficient to guarantee that all other high-order commutators
are null, provided that it is verified when two generic test functions F (r′1, r

′
2)

and G(r1, r2) are applied on it. The function F (r′1, r
′
2) represents a generic

function obtained as a product of the functions φ(r′1) and φ(r′2), that is,

F (r′1, r
′
2) ≡ φm(r′1)φ

n(r′2), (3.27)

for two integers m and n, and analogously for the other function G(r1, r2).
Both functions appears respectively on the left-hand side and on right-hand
side of the terms [φ(ri), V̂ ] in the expansion of Eq. (3.25).

Therefore the condition for the gauge invariance of the pseudopotential in
Eq. (3.26) is now,

F (r′1, r
′
2)
(

[φ(r1), V̂ ] + [φ(r2), V̂ ]
)

G(r1, r2) = 0, (3.28)

and it has been explicitly implemented as

F (r′1, r
′
2)φ(r′1)V̂ G(r1, r2)− F (r′1, r

′
2)V̂ φ(r1)G(r1, r2)

+F (r′1, r
′
2)φ(r′2)V̂ G(r1, r2)− F (r′1, r

′
2)V̂ φ(r2)G(r1, r2) = 0. (3.29)

In this section, we have applied the gauge transformation to the pseudopo-
tential and we have calculated the condition (3.29) that gives the constraints
among the parameters of the gauge-invariant pseudopotential. With the aid of
symbolic programming, we have obtained the specific set of constraints on the
parameters and terms of the pseudopotentials, which are collected in Appendix
B of paper I.
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3.6 The averaging of the pseudopotential

In the mean-field approximation, for instance in the HF theory, the ground-
state energy is obtained as the expectation value of the Hamiltonian over a
product state |Φ〉 and it turns out to be a functional of the single-particle
density matrix ρ,

EHF = 〈Φ|H |Φ〉 = Tr(T̂ ρ) +
1

2
Tr(Γ̂ρ), (3.30)

where the shorthand notation Tr denotes integration over spatial coordinates
and sum over spin and isospin indices. In Eq. (3.30), we find the one-body
kinetic energy T̂ , while the two-body interaction V̂ is contained in the single-
particle (p-h) self-consistent potential,

Γ̂(r′
1s

′
1t

′
1, r1s1t1) =

∫

d r2dr
′
2

∑

s2t2
s′

2t′2

V̂ (r′
1s

′
1t

′
1r

′
2s

′
2t

′
2, r1s1t1r2s2t2)ρ(r2s2t2, r

′
2s

′
2t

′
2).

(3.31)

By inserting our zero-range pseudopotential of Eq. (3.2) in the expression
of Eq. (3.31) and by inserting in turn the expression obtained in the HF-
energy (3.30), we can write the energy functional as a three-dimensional spatial
integral of a quasilocal energy density. This lengthy calculation yields a rela-
tion between the parameters of the pseudopotential and coupling constants of
the functional, according to the schematic expression in Eq. 21 of paper I, that
we report here for sake of clarity,

〈Cñ′L̃′

ñL̃,v12S
V̂ ñ′L̃′

ñL̃,v12S
〉 =

∑

C
n′L′v′J′,t
mI,nLvJ T

n′L′v′J′,t
mI,nLvJ . (3.32)

As important consequence of having derived the N3LO functional from a pseu-
dopotential is the fact that the energy functional is free from the self-interaction
problem [PZ81]. The self-interaction problem in DFT is due to the fact that
the exchange-correlation potential is given in an approximate way. The ap-
proximation may not take into account correctly the Pauli exclusion principle,
leading in this way to a nonphysical interaction of the particles with themselves.
The derivation from an interaction is a sufficient condition to guarantee that
the internal energy in the one-particle limit vanishes exactly. The averaging is
in fact performed within an HF approximation, where the self-interaction is re-
moved by the exact cancellation between direct and exchange terms. Of course,
the presence of an interaction is not a necessary condition and the removal of
spurious self-interactions in nuclear functionals can be also achieved directly
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on the functional, by imposing the constraints among the coupling constants
which lead to a vanishing functional in the one-particle limit [Ch10].

3.7 Technical details of the averaging procedure

In this section we discuss some technicalities concerning the calculation of the
averaging of the pseudopotential over the uncorrelated wave function, the Slater
determinant, that we have discussed in the previous section.

3.7.1 Recoupling of the relative-momentum operators

If we compare the tensorial forms of the pseudopotential and functional, we
see that both are composed by the same building blocks, differential and spin
operators. As a matter of fact, both pseudopotential and EDF have relative-
momentum tensors but, as manifested by different indices denoting the order
and rank of the K operators, they are built in different ways. In the pseudopo-
tential, the relative-momentum tensors are built as differences of differential
operators acting on two distinct particles, whereas in the EDF the relative-
momentum tensors only act on one particle at the time: the reason of this is
that the relative-momentum tensors in the interaction are interpreted as the
finite range component of the two-body interaction, while in the functional
these operators are used to build the higher-order densities of the single parti-
cle. Therefore, the averaging calculation has required a recoupling of spherical
tensors inside the integral in the averaging formula,

E =
1

4

∫

d r1r2r
′
1r

′
2

∑

σ1σ2

σ′

1σ′

2

∑

τ1τ2

τ ′

1τ ′

2

V̂ (r′
1σ

′
1τ

′
1r

′
2σ

′
2τ

′
2, r1σ1τ1r2σ2τ2)

ρ(r1σ1τ1, r
′
1σ

′
1τ

′
1)ρ(r2σ2τ2, r

′
2σ

′
2τ

′
2), (3.33)

and it has been performed with the aid of symbolic programming. We have
considered at each order of the expansion in derivatives, all the possible different
couplings of the spherical tensor derivatives entering in the pseudopotential,
whose general form can be read from Eq. (3.2) as,

[

K ′
ñ′L̃′

KñL̃

]

S
+ (−1)v12+S

[

K ′
ñL̃
Kñ′L̃′

]

S
. (3.34)

Considering all the possible values of the rank S, they are 5 at second order
(see Table III of paper I), 11 at fourth order (see Table IV of paper I) and 20
at sixth order (see Table V of paper I). Each different spherical tensor (3.34) is
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explicitly built as a coupling of the building block component, i.e. the vector
(rank 1) operator ∇ according to definitions given in Eqs. (3.3) and (3.4), and
it was applied on a generic test function. Then, from the resulting expression
was subtracted an ansatz given by a combination of all possible recoupled forms
suitable for the functional, that is,

∑

m′I′,n′L′,R′

mI,nL,R

C
m′I′,n′L′,R′

mI,nL,RS

[[

D
(1)
m′I′K

(1)
n′L′

]

R′

[

D
(2)
mIK

(2)
nL

]

R

]

S
, (3.35)

where Cm′I′,n′L′,R′

mI,nL,RS are the numerical coefficients of the combination of terms,

and the relative-momentum tensorsK
(1)
n′L′ and K

(2)
nL are built from the spherical

representation of the relative-momenta operators acting on one particle at the
time,

k1 =
1

2i
(∇1 −∇

′
1), (3.36)

k2 =
1

2i
(∇2 −∇

′
2), (3.37)

whereas the differential operators D
(1)
m′I′ and D

(2)
mI are built from the spherical

representation of the derivatives operators acting on one particle at the time,

D1 = −i(∇1 + ∇
′
1), (3.38)

D2 = −i(∇2 + ∇
′
2). (3.39)

We see that combination (3.35) preserves the total rank of the tensor in Eq. (3.34)
and also the total order must be preserved, namely, we require that

2(ñ′ + ñ) = m′ + n′ +m+ n. (3.40)

Also the spherical tensor (3.35) was applied previously on a generic test func-
tion. What we finally obtained by subtracting equations (3.35) and (3.34), was
required to be identically equal to zero, giving in such a way a set of equations

for coefficients Cm′I′,n′L′,R′

mI,nL,RS in Eq. (3.35). The analytic solution of this sys-
tem of equations was again calculated by using symbolic programming. In the
following we give the results of the recoupling for the 5 second-order tensors.
These expressions can be compared with the corresponding ones calculated in
Cartesian representation[PRD04],
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K ′
20 +K20 =

1

4

(

K
(1)
20 +K

(2)
20

)

− 1

16

(

D
(1)
20 +D

(2)
20

)

−1

2

[

K
(1)
11 K

(2)
11

]

0
+

1

8

[

D
(1)
11 D

(2)
11

]

0
, (3.41a)

K ′
22 +K22 =

1

4

(

K
(1)
22 +K

(2)
22

)

− 1

16

(

D
(1)
22 +D

(2)
22

)

−1

2

[

K
(1)
11 K

(2)
11

]

2
+

1

8

[

D
(1)
11 D

(2)
11

]

2
, (3.41b)

[K ′
11K11]0 =

1

4

(

K
(1)
20 +K

(2)
20

)

+
1

16

(

D
(1)
20 +D

(2)
20

)

−1

2

[

K
(1)
11 K

(2)
11

]

0
− 1

8

[

D
(1)
11 D

(2)
11

]

0
, (3.41c)

[K ′
11K11]1 =

i

4

([

D
(1)
11 K

(1)
11

]

1
+
[

D
(2)
11 K

(2)
11

]

1
+
[

K
(1)
11 D

(2)
11

]

1

)

− i
4

[

D
(1)
11 K

(2)
11

]

1
, (3.41d)

[K ′
11K11]2 =

1

4

(

K
(1)
22 +K

(2)
22

)

+
1

16

(

D
(1)
22 +D

(2)
22

)

−1

2

[

K
(1)
11 K

(2)
11

]

2
− 1

8

[

D
(1)
11 D

(2)
11

]

2
. (3.41e)

3.7.2 Recouplings on the functional

When the recoupling of the relative-momentum operators described in Sec. (3.7.1)
and summations over spin and isospin are performed, we are left with a func-
tional whose general form is now,

T ≡ 1

4

∫

d r1r2r
′
1r

′
2

[[

[[

D
(1)
m′I′K

(1)
n′L′

]

R′

[

D
(2)
mIK

(2)
nL

]

R

]

S
R̂v12S

]

0

]0

δ̂12(r
′
1r

′
2; r1r2), (3.42)

where a summation over all the indices of the tensor is implicit and we kept
the notation adopted in Eqs. (3.41) with superscript (1) and (2). We decided
to use the symbol T instead of E to denote the term in Eq. (3.42) because it
does not coincide exactly with the EDF, having we dropped in the integrand
the coupling constants and numerical coefficients coming from the traces and
the relative-momenta recouplings.

The tensor R̂v12S is defined similarly to the symmetrized two-body spin oper-
ator in Eq. (3.5) as,
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R̂v12S =

(

1− 1

2
δv,v′

)(

[[

ρ
t(1)
v′ ρt(2)

v

]

S

]0

+
[[

ρt(1)
v ρ

t′(2)
v′

]

S

]0
)

, (3.43)

with v12 = v + v′, through the different channels of the density matrix,

ρ
t(1)
v′ ≡ ρt

v′(r1, r
′
1), (3.44a)

ρt(2)
v ≡ ρt

v(r2, r
′
2), (3.44b)

and analogously for t′.

The expression of the tensors in Eq. (3.42) formally matches the structure of
the EDF, but we may notice that the form of the tensor in the integrand does
not match with the one on the r.h.s of Eq. (3.32), explicitly shown in Eq. (2.17).

In the following we show explicitly all the recouplings needed to get the form

T
n′L′v′J′,t
mI,nLvJ of the functional. The starting point is the spherical tensor,

T̂ ≡
[[

[[

D
(1)
m′I′K

(1)
n′L′

]

R′

[

D
(2)
mIK

(2)
nL

]

R

]

S

[

ρ
t(1)
v′ ρt(2)

v

]

S

]

0

]0

, (3.45)

which is a term in the integrand in Eq. (3.42).

Then we can proceed with the recoupling, in which the two tensors composed
by derivatives operators with index (1) and (2) are coupled with the two cor-
responding densities,

T̂ =

[[[

[[

D
(1)
m′I′K

(1)
n′L′

]

R′

[

D
(2)
mIK

(2)
nL

]

R

]

S
ρt(2)

v

]

v′

ρ
t(1)
v′

]

0

]0

=

R+v
∑

Q=|R−v|
(−1)R+R′+v+v′

√
2S + 1

√

2Q+ 1

{

R′ R S

v v′ Q

}

[[[

[

D
(1)
m′I′K

(1)
n′L′

]

R′

[[

D
(2)
mIK

(2)
nL

]

R
ρt(2)

v

]

Q

]

v′

ρ
t(1)
v′

]

0

]0

=

R+v
∑

Q=|R−v|
(−1)R+v−Q

√
2S + 1

√

2Q+ 1

{

R′ R S

v v′ Q

}

[[

[[

D
(1)
m′I′K

(1)
n′L′

]

R′

ρ
t(1)
v′

]

Q

[[

D
(2)
mIK

(2)
nL

]

R
ρt(2)

v

]

Q

]

0

]0

. (3.46)

The two tensors of rank Q in the last step of Eq. (3.46) require to be sepa-
rately recoupled in order to obtain a secondary density according to the defi-
nition (2.19). The first one becomes (we write explicitly here the limit r1 = r′

1

given by the Dirac delta in the pseudopotential),
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{

[[

D
(1)
m′I′K

(1)
n′L′

]

R′

ρ
t(1)
v′

]

Q

}

r1=r
′

1

=

L′+v′

∑

J′=|L′−v′|
(−1)I′+L′+v′+Q

√
2R′ + 1

√
2J ′ + 1

{

I ′ L′ R′

v′ Q J ′

}

ρt
m′I′,n′L′v′J′,Q(r1), (3.47)

and analogously the second one is,

{

[[

D
(2)
mIK

(2)
nL

]

R
ρt(2)

v

]

Q

}

r2=r
′

2

=

L+v
∑

J=|L−v|
(−1)I+L+v+Q

√
2R+ 1

√
2J + 1

{

I L R

v Q J

}

ρt
mI,nLvJ,Q(r2). (3.48)

By inserting Eqs. (3.47) and (3.48) into the coupling to a scalar in Eq. (3.46),
we can write the term in (3.42) as,

T =

∫

d r

R+v
∑

Q=|R−v|
(−1)R+v−Q

√
2S + 1

√

2Q+ 1

{

R′ R S

v v′ Q

}

(3.49)

×
L′+v′

∑

J′=|L′−v′|

L+v
∑

J=|L−v|
(−1)I′+L′+v′+I+L+v

√
2R′ + 1

√
2J ′ + 1

×
√

2R+ 1
√

2J + 1

{

I ′ L′ R′

v′ Q J ′

}{

I L R

v Q J

}

T
mI,nLvJ,t
mI,nLvJ,Q(r).

The recoupled form in the last line of Eq. (3.49) corresponds to the first form
of the nuclear EDF introduced in [CDK08] (see Eq. (28) therein). This is the
most general form which is suitable for the case of density-dependent coupling
constants. In our study, we do not consider density-dependent parameters
in the pseudopotential, therefore we are in the case of density-independent
coupling constants of the functional. Then, by performing integration by parts,
we are allowed to transfer tensor Dm′I′ from the first density to the second and
our averaging calculation will produce a functional whose terms have the form
showed in Eq. (2.17). In the following we present the explicit recoupling needed
in order to perform the integration by parts.

So we have,
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[[

[

D
(1)
m′I′ρ

t
m′I′,n′L′v′J′(r1)

]

Q

[

D
(2)
mIρ

t
mI,nLvJ(r2)

]

Q

]

0

]0

(3.50)

= (−1)m′

I+I′

∑

I12=|I−I′|
(2I12 + 1)(2Q+ 1)







I ′ I I12
J ′ J I12
Q Q 0







[[

[

D
(1)
m′I′D

(2)
mI

]

I12

[

ρt
m′I′,n′L′v′J′(r1)ρ

t
mI,nLvJ(r2)

]

I12

]

0

]0

= (−1)m′

I+I′

∑

I12=|I−I′|

√

2I12 + 1
√

2Q+ 1(−1)I12+Q+I+J′

{

I ′ I I12
J J ′ Q

}

(−1)J′+J−I12

[[

ρt
m′I′,n′L′v′J′(r1)

[

[

D
(2)
m′I′D

(2)
mI

]

I12
ρt

mI,nLvJ(r2)

]

J′

]

0

]0

,

where we see that both differential operators are now acting on the same co-
ordinate. Now, the two differential operators acting on the same density need
to be transformed into one differential operator with the same order m + m′

and rank I12. The coefficients of the transformation can be obtained through
the following derivation, made on the coupling of simple functions of the space
coordinate, and applied to the more complicated case of the differential opera-

tors. By using the expansion of the functions r
(2)
mI and r

(2)
m′I′ in solid harmonics,

we get[C10]

[

r
(2)
mIr

(2)
m′I′

]

I12M
=





∑

MIM ′

I

4π√
2I + 1

√
2I ′ + 1

Cr
mIC

r
m′I′r

I+I′

2 YIMI
YI′M ′

I





I12MI

=
4π√

2I + 1
√

2I ′ + 1
Cr

mIC
r
m′I′r

m+m′

2

[

YIMI
YI′M ′

I

]

I12MI

=

√

4π

(2I12 + 1)
Cr

mIC
r
m′I′r

m+m′

2 CI120
I0,I′0YI12M (ϑ, ϕ)

=

√

4π

(2I12 + 1)
Cr

mIC
r
m′I′C

I120
I0,I′0

√

2I12 + 1

4π

r(m+m′)I12M

Cr
(m+m′)I12

=
Cr

mIC
r
m′I′

Cr
(m+m′)I12

CI120
I0,I′0r(m+m′)I12M , (3.51)

where in the first step we used the condition I + I ′ = m +m′, which is valid
because the function expanded was in fact a power of r and the total order must
be conserved in the expansion, whereas in the second step we used a relation
involving a direct product of two spherical harmonics of the same argument
(see Eq. (10) of Ch. 5.6 in [VMK88]).
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With the use of the coefficients from Eq. (3.51), we can write the relation
between the two alternative forms of the EDF,

T
mI,nLvJ,t
mI,nLvJ,Q(r) = (−1)m′

√

2Q+ 1
I+I′

∑

I12=|I−I′|

√

2I12 + 1(−1)Q+I+J (3.52)

×
{

I ′ I I12
J J ′ Q

}

Cr
mIC

r
m′I′

Cr
(m+m′)I12

CI120
I0,I′0T

nLvJ,t

(m+m′)I12,nLvJ,Q
(r),

and by inserting back this relation in Eq. (3.49) we have obtained the fully
recoupled form of the term T as it is calculated through the averaging of the
pseudopotential in Eq. (3.42), namely,

T =

∫

d r

R+v
∑

Q=|R−v|
(−1)R+v−Q

√
2S + 1

√

2Q+ 1

{

R′ R S

v v′ Q

}

×
L′+v′

∑

J′=|L′−v′|

L+v
∑

J=|L−v|
(−1)I′+L′+v′+I+L+v

√
2R′ + 1

√
2J ′ + 1

×
√

2R+ 1
√

2J + 1

{

I ′ L′ R′

v′ Q J ′

}{

I L R

v Q J

}

(−1)m′

×
√

2Q+ 1

I+I′

∑

I12=|I−I′|

√

2I12 + 1(−1)Q+I+J (3.53)

×
{

I ′ I I12
J J ′ Q

}

Cr
mIC

r
m′I′

Cr
(m+m′)I12

CI120
I0,I′0T

nLvJ,t

(m+m′)I12,nLvJ,Q
(r).

In this section, we have worked out two technical results concerning the aver-
aging of the pseudopotential over the uncorrelated many-body wave function.
We list them briefly:

• The recoupling of the relative-momentum operators in the pseudopoten-
tial. Such a recoupling was needed in order to obtain the relative mo-
mentum tensors, entering in the definition of the higher-order densities
of the functional (Sec. (3.7.1)).

• The recoupling relating two alternative forms to write the functional, that

is the two forms denoted respectively by T
m′I′,n′L′v′J′,t
mI,nLvJ and T

n′L′v′J′,t
mI,nLvJ

(Sec. (3.7.2)).
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Chapter 4

Continuity Equation for
N3LO Nuclear EDF

4.1 Overview of the paper II

As we did in Sec. 3.1 for the paper on the pseudopotential, in this section we
review the main contents exposed in paper II and we introduce topics that were
not included in paper II. These topics are treated extensively in the following
sections in order to complete our study of the continuity equation for N3LO
EDFs.

In paper II, we analyzed conditions under which the continuity equation (CE)
is valid for the N3LO EDFs or pseudopotentials built of higher-order deriva-
tives. We derived constraints on the coupling constant of the functional that
guarantee the validity of the CE in all spin-isospin channels. We also linked
these constraints to local gauge symmetries for abelian and non-abelian trans-
formation groups.

In Sec. IIA of paper II, we recalled the CE for a single particle moving in a scalar
and vector local potentials. The CE can describe the conservative transport of
the probability scalar density [Me62], as in the case of the equation

∂

∂t
ρ(r, t) = − ~

m
∇ · j(r, t), (4.1)

59
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where the density and current are defined respectively as,

ρ(r, t) =
∑

σ

|ψ(rσ, t)|2, (4.2a)

j(r, t) =
∑

σ

Im
(

ψ∗(rσ, t)∇ψ(rσ, t)
)

. (4.2b)

We can be interested also in the conservative transport of the spin orientation
of the particle, then we end up with a CE relating the spin density sν(r, t) to
the spin current Jν(r, t),

∂

∂t
sν(r, t) = − ~

m
∇ · Jν(r, t) +

1

~

(

V1(r, t)×s(r, t)
)

ν
, (4.3)

where

sν(r, t) =
∑

σ′σ

ψ∗(rσ′, t)〈σ′|σν |σ〉ψ(rσ, t), (4.4a)

Jν(r, t) =
∑

σ′σ

Im
(

ψ∗(rσ′, t)〈σ′|σν |σ〉∇ψ(rσ, t)
)

, (4.4b)

and V1(r, t) is a vector real time-dependent potential.

In Sec. IIB of paper II, we put ourselves in the framework of the time-dependent
density functional theory (TDDFT) in order to generalize the CE to the case
of the many-body systems. The equation of motion for the one-body density
matrix ραβ is the starting point for the CE in the many-body theory,

i~
d

dt
ρ = [h, ρ], (4.5)

where the mean-field Hamiltonian hαβ is defined as the derivative of the total
energy E{ρ} with respect to the density matrix [RS80],

hαβ =
∂E{ρ}
∂ρβα

, (4.6)

and total energy is the sum of the kinetic and potential-energy terms,

E{ρ} = Ek{ρ}+ Ep{ρ}. (4.7)

We have presented the argument [BR86] stating that the potential energy den-
sity, that is,

Γαβ =
∂Ep{ρ}
∂ρβα

, (4.8)

which is gauge-invariant, produces the CE for the scalar-isoscalar density,

d

dt
ρ0
0(r, t) = − ~

m
∇ · j0

0 (r, t). (4.9)
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In particular, we showed that the gauge invariance of the potential energy is a
necessary and sufficient condition for the validity of the CE.

The argument was explicitly performed for abelian local gauge transformation,
defined as,

ψ′
α(rστ) ≡ (Uψα)(rστ) = eiγ(r)ψα(rστ), (4.10)

whose action on the nonlocal density was specified in Eq. (2.58). The local
gauge transformation in Eq. (4.10) can be generalized to the four local spin-
isospin groups according to Eq. (2.62). In fact, the invariance of the potential
energy under the transformations induced by the groups in Eq. (2.62), leads to
the corresponding CEs for densities in the scalar-isoscalar (v = 0, t = 0), scalar-
isovector (v = 0, t = 1), vector-isoscalar (v = 1, t = 0), and vector-isovector
(v = 1, t = 1) channels,

d

dt
ρt

v(r) = − ~

m
∇ · J t

v(r), (4.11)

where the spin-isospin densities can be expressed as traces of the density matrix,

ρt
v(r, r′) =

∑

στ,σ′τ ′

σσ′σ
v τ t

τ ′τρ(rστ, r
′σ′τ ′). (4.12)

The argument presented in Sec. IIB of paper II was confirmed by considering,
as potential energy, the one-body pseudopotential, which is obtained as varia-
tion of the N3LO EDF (2.16) with respect to the density matrix. For this pur-
pose, the strategy used in Sec. IIC was to start from the Schrödinger equation
with the one-body pseudopotential for the time evolution of the single-particle
wave function, and then derive a condition for the validity of the CE. The
definition and the main features of the one-body pseudopotential are reviewed
in Secs. 4.2.2- 4.3, whereas the general condition for the validity of the CEs in
all spin-isospin channel can be found in Sec. 4.2 and its complete derivation in
Appendix A. In particular, the contributions from the kinetic and pseudopo-
tential operators in the Schrödinger equation are treated separately in Sec. 4.2:
the former gives rise to the current density term in the CE and can be found in
Sec. 4.2.1, the latter produces the condition that sets the constraints between
the coupling constants of the EDF compatible with the CE and is presented in
Sec. 4.2.2.

As main result, we have obtained four different sets of constraints on the cou-
pling constants of the N3LO EDF that guarantee the validity of the CE in
the corresponding spin-isospin channels. All these results are displayed in Sec.
III and Appendix A of paper II. In general, we found that the validity of the
CE for a channel of the density matrix is equivalent to the invariance of the
N3LO EDF under a local gauge transformation. A more detailed overview of
the results obtained in paper II is given in Sec 5.2.1.
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4.2 Derivation of the CE’s for the four

channels of the density matrix

The Schrödinger equation for a non-relativistic spin- 1
2 particle with isospin

degree of freedom included, is

i~
∂

∂t
φl(rστ, t) = − ~

2

2m
△φl(rστ, t)

+
∑

σ′′τ ′′

< στ |Γ̂(r)|σ′′τ ′′ > φl(rσ
′′τ ′′, t), (4.13)

where Γ̂(r) can be in general interpreted as one-body pseudopotential, namely,
a local or quasilocal interaction which can depend on density. In our study,
we discuss the quasilocal one-body pseudopotential corresponding to the N3LO
functional [CDT10], which is presented in detail in Sec. 4.2.2.

The corresponding complex-conjugated equation of motion is

−i~ ∂
∂t
φ∗l (r

′σ′τ ′, t) = − ~
2

2m
△′φ∗l (r

′σ′τ ′, t) (4.14)

+
∑

σ′′τ ′′

(

< σ′τ ′|Γ̂(r′)|σ′′τ ′′ >
)∗
φ∗l (r

′σ′′τ ′′, t).

Now we multiply Eq. (4.13) by the complex-conjugated wavefunction and sum
over the single-particle index l,

∑

l

i~(
∂

∂t
φl(rστ, t))φ

∗
l (r′σ′τ ′, t) =

∑

l

− ~
2

2m
(△φl(rστ, t))φ

∗
l (r

′σ′τ ′, t)

+
∑

l

∑

σ′′τ ′′

(

Γ̂σσ′′

ττ ′′ (r)

φl(rσ
′′τ ′′, t)φ∗l (r

′σ′τ ′, t)
)

, (4.15)

and analogously for the complex-conjugated Eq. (4.15),
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−
∑

l

i~(
∂

∂t
φ∗l (r

′σ′τ ′, t))φl(rστ, t) =
∑

l

− ~
2

2m
(△′φ∗l (r

′σ′τ ′, t))φl(rστ, t)

+
∑

l

∑

σ′′τ ′′

((

Γ̂σ′σ′′∗
τ ′τ ′′ (r′)

φ∗l (r
′σ′′τ ′′, t)

)

φl(rστ, t)
)

, (4.16)

where we have introduced the notation,

< στ |Γ̂(r)|σ′′τ ′′ >≡ Γ̂σσ′′

ττ ′′ (r). (4.17)

Now we proceed by subtracting member by member the last two equations
and we use the definition of the one-body density matrix in the mean-field
approximation (Slater determinants), namely

ρ(rστ, r′σ′τ ′) =
∑

l

φ∗l (r
′σ′τ ′, t)φl(rστ, t). (4.18)

What we get, using the fact that the complex-conjugated density matrix is

ρ∗(rστ, r′σ′τ ′) = ρ(r′σ′τ ′, rστ), (4.19)

is finally

i~
∂

∂t

∑

σσ′ττ ′

ρ(rστ, r′σ′τ ′) =
∑

l

− ~
2

2m

(

(△φl(rστ, t))φ
∗
l (r

′σ′τ ′, t)

− (△′φ∗l (r
′σ′τ ′, t))φl(rστ, t)

)

+
∑

l

∑

σ′′τ ′′

(Γ̂σσ′′

ττ ′′ (r)φl(rσ
′′τ ′′, t)φ∗l (r

′σ′τ ′, t)

− (Γ̂σ′σ′′∗
τ ′τ ′′ (r′)φ∗l (r

′σ′′τ ′′, t))φl(rστ, t)). (4.20)

With Eq. (4.20) we have obtained a general equation which describes the trans-
port of the four channels included in the one-body density matrix. On the
r.h.s. two different terms appear, the first coming from the kinetic term of the
Schrödinger equation and the second depending on the one-body pseudopoten-
tial. These two contribution will be separately treated in the next sections.
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4.2.1 Contribution to the CE from the kinetic term

In this section we use the Cartesian notation in order to obtain the term of
the CE depending on the current density in the traditional form, leaving the
spherical tensor notation for the part depending on the pseudopotential. To
see the contribution of the kinetic part we multiply the first term in the r.h.s.
of Eq. (4.20) by the spin and isospin operators,

σσσ′

v τ t
ττ ′ ≡ 〈σ|σv |σ′〉〈τ |τ t|τ ′〉, (4.21)

and we sum up over spin and isospin coordinates. In this way, what we get is

∑

σσ′ττ ′

∑

l

− ~
2

2m

(

(△φl(rστ, t))φ
∗
l (r′σ′τ ′, t)

−(△′φ∗l (r
′σ′τ ′, t))φl(rστ, t)

)

σσσ′

v τ t
ττ ′

= − ~
2

2m
(2i)

∑

σσ′ττ ′

∇ ·
{

1

2i
(∇−∇

′) ρ(rστ, r′σ′τ ′)

}

r′=r

σσσ′

v τ t
ττ ′

= (− ~
2

2m
)(2i)∇ ·

{

1

2i
(∇−∇

′) ρt
v(r, r

′)

}

r′=r

= (−~
2

m
)(i)∇ · J t

v(r), (4.22)

where we introduced the definition of the current density,

J t
v(r) ≡

{

1

2i
(∇−∇

′) ρt
v(r, r′)

}

r′=r

. (4.23)

Therefore, combining Eq. (4.20) with Eq. (4.22), we get a generalized CE,

d

dt
ρt

v(r) = − ~

m
∇ · J t

v(r), (4.24)

only if the potential part in Eq. (4.20) does not contribute, namely when the
following condition is satisfied,

∑

lσ′′τ ′′

(Γ̂σσ′′

ττ ′′ (r)φl(rσ
′′τ ′′, t)φ∗l (r

′σ′τ ′, t)− (Γ̂σ′σ′′∗
τ ′τ ′′ (r′)φ∗l (r

′σ′′τ ′′, t))φl(rστ, t))

=
∑

σ′′τ ′′

(

Γ̂σσ′′

ττ ′′ (r)ρ(rσ′′τ ′′, r′σ′τ ′)− Γ̂σ′σ′′∗
τ ′τ ′′ (r′)ρ(rστ, r′σ′′τ ′′)

)

= 0. (4.25)
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In the next section we introduce the explicit form of the N3LO one-body pseu-
dopotential and we examine condition (4.25) for such a pseudopotential.

4.2.2 Contribution to the CE from
the one-body pseudopotential

The one-body pseudopotential has the following form in the spherical tensor
formalism [CDT10],

Γ̂(r) =
∑

γ,t

[[

U t
γ(r)

[

DnγLγ
σvγ

]

Jγ

]

0
τ t
]0

. (4.26)

where the potentials

U t
γ(r) =

∑

aαβ;dδ

Cβ,t
a,αχ

β;dδ
a,α;γ

[

Ddρ
t
δ(r)

]

Jγ
, (4.27)

are linear combinations of the secondary densities, here denoted as [Ddρ
t
δ(r)]Jγ

≡
ρt

mdId,nδLδvδJδ,Jγ
(r) (see Eq. (2.19)) and χβ;dδ

a,α;γ are numerical coefficients. We
remark here the use of a grouped notation for the indices, such as the Greek
indices γ = {nγLγvγJγ} and roman indices a = {maIa}. The precise defini-
tions of all the building blocks constituting the pseudopotential can be found
in paper II.

The following recoupling within a scalar is useful for the explicit calculation of
condition (4.25),

Γ̂(r) =
∑

γ,t

[[

U t
γ(r)

[

DnγLγ
σvγ

]

Jγ

]

0
τ t
]0

=
∑

γ,t

[[

[

U t
γ(r)DnγLγ

]

vγ
σvγ

]

0
τ t
]0

.

(4.28)

Then the matrix element of the one-body pseudopotential in spin and isospin
space can be written as,

Γ̂σσ′

ττ ′ (r) =< στ |Γ̂(r)|σ′τ ′ >=
∑

γ,t

[[

[

U t
γ(r)DnγLγ

]

vγ
σσσ′

vγ

]

0
τ t
ττ ′

]0

. (4.29)

After having inserted Eq. (4.29) in Eq. (4.25) and performed the entire deriva-
tion, one ends up with the following condition that implies the CE of the
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Eq. (4.24). This condition reads,

∑

γ

1

4

1√
2t′′ + 1

∑

vϕt

(−1)−v(−1)−tA(vγ , vϕ, v; t
′′, t′, t)

Lγ+vϕ
∑

J=|Lγ−vϕ|
(−1)Jγ+Lγ+vϕ+v

√
2J + 1

{

Jγ Lγ vγ

vϕ v J

}

∑

nϕLϕmf If

K
nγLγ

nϕLϕmf If
(i)nϕ(

1

2
)mf

∑

Jϕ

(−1)If +nϕ+vϕ+J
√

2Lγ + 1
√

2Jϕ + 1

{

If Lϕ Lγ

vϕ J Jϕ

}

∑

aαβ;dδ

(

1− (−1)vγ−vϕ+v(−1)t′′−t′+t(−1)nϕ+nγ+ma+md

)

Cβ,t′′

a,α χβ;dδ
a,α;γ

[[

[

Ddρ
t′′

δ (r)
]

Jγ

[

Dfρ
t′

ϕ(r)
]

J

]

vλ

]tr

= 0, (4.30)

where we introduced the following shorthand expression to denote the result of
the traces over the spin and isospin indices,

A(vγ , vϕ, v; t
′′, t′, t) =

(

2(δ(vγ+vϕ+v),0 +
1

2
(1− δ(vγ+vϕ+v),0)

(

√
2

i
)(vγ+vϕ+v)

√
3(−1)δ(vγ+vϕ+v),2(−1)vγ−vϕ

1√
2v + 1

)

2(δ(t′′+t′+t),0 +
1

2
(1− δ(t′′+t′+t),0)(

√
2

i
)(t

′′+t′+t)

√
3(−1)δ(t′′+t′+t),2(−1)t′′−t′ 1√

2t+ 1

)

. (4.31)

For sake of clarity, we give the link between the expression A(vγ , vϕ, v; t
′′, t′, t)

and analogous shorthand symbols A(vγ , vϕ, v) and A(t′′, t′, t) appearing in the
CE condition of Eq. (46) in paper II,

A(vγ , vϕ, v; t
′′, t′, t) = A(vγ , vϕ, v)(−1)vγ−vϕ

1√
2v + 1

×

A(t′′, t′, t)(−1)t′′−t′ 1√
2t+ 1

. (4.32)

Expression (4.30) must be considered as condition on the coupling constants
Cβ,t′′

a,α of the N3LO EDF, producing a set of constraints among these coupling
constants. The full set of constraints showed in paper II have been derived
from formula (4.30) implemented with a symbolic programming. The complete
derivation of condition (4.30) can be found in Appendix A.
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4.3 Complex conjugation of the

one-body pseudopotential

A simple inspection of Eq. (4.25) shows that the complex conjugation of the
one-body potential-energy term plays an important role in the assessment of
the correct relations among the coupling constants, which allow the CE to be
valid. The correct phase of the complex conjugated one-body pseudopotential
must then be carefully derived.

In the following we determine this phase by explicitly calculating the complex
conjugated field, that is,

Γ̂σσ′∗
ττ ′ (r). (4.33)

Before we have to define the phase convention for the isospin degree of free-
dom. The assumption we make is that the phases of isoscalars and the zero-
components of isovectors are the same, that is,

τ t=0,0 = τ0, (4.34)

τ t=1,λ={−1,0,1} =
{

1√
2

(τx − iτy) , τz, −1√
2

(τx + iτy)
}

, (4.35)

which is different from the definition we assumed, of the Pauli matrices in the
spin space,

σv=0,0 = σ0, (4.36)

σv=1,µ={−1,0,1} = −i
{

1√
2

(σx − iσy) , σz,
−1√

2
(σx + iσy)

}

. (4.37)

On the other hand, we start from the Biedenharn-Rose phase convention for
the isospin Pauli matrices as we did for the spin ones. In order to keep our
assumptions valid, we have to fix in the following way the phases for the adjoint
and the complex conjugation of the Pauli matrices,

τ tλ+ = Pt(−1)t−λ
(

τ t,−λ
)

, (4.38)

τ tλ∗ = Pt(−1)t−λ
(

τ t,−λ
)T
, (4.39)

for Pt = (−1)t, and

σ+
vµ = (−1)v−µσv,−µ, (4.40)

σ∗
vµ = (−1)v−µσT

v,−µ. (4.41)
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Now we can proceed by assuming the form of the one-body pseudopotential in
the space coordinates of Eq. (4.29) along with the form of the potentials U t

γ(r)
in Eq. (4.27), then we get,

Γ̂σσ′∗
ττ ′ (r) ≡

∑

γ,t

(

[[

U t
γ(r)

[

DnγLγ
σσσ′

vγ

]

Jγ

]

0

τ t
ττ ′

]0
)∗

=
∑

γ,t

∑

aαβ;dδ

(

Cβ,t
a,αχ

β;dδ
a,α;γ

[[

[

Ddρ
t
δ(r)

]

Jγ

[

DnγLγ
σσσ′

vγ

]

Jγ

]

0

τ t
ττ ′

]0
)∗

=
∑

γ,t

∑

aαβ;dδ

(−1)nγ+ma+mdCβ,t
a,αχ

β;dδ
a,α;γ

(

[[

[

Ddρ
t
δ(r)

]

Jγ

[

DnγLγ
σσσ′

vγ

]

Jγ

]

0

τ t
ττ ′

]0
)∗

, (4.42)

where we have used the fact that the coupling constants Cβ,t
a,α are pure real

coefficients, whereas the coefficients χβ;dδ
a,α;γ of the potentials can have a pure

imaginary phase which yields the factor (−1)nγ+ma+md . Next, we calculate
the complex-conjugated tensor in the last line of Eq. (4.42), namely,

(

[[

[

Ddρ
t
δ(r)

]

Jγ

[

DnγLγ
σσσ′

vγ

]

Jγ

]

0

τ t
ττ ′

]0
)∗

=
∑

MJγ mt

C00
mtm−tC

00
JγMJγ Jγ−MJγ

Pt(−1)Jγ−MJγ (−1)t−mt

(

Ddρ
t,−mt

δ (r)
)

Jγ ,−MJγ

∑

MLγ µγ

C
Jγ−MJγ

LγMLγ vγµγ
PDnγ Lγ

(−1)Lγ−MLγ

DnγLγ ,−MLγ
Ps(−1)vγ−µγσσσ′

vγ ,−µγ
Pt(−1)t−mtτ tmt

ττ ′ , (4.43)

where we have used the Biedenharn-Rose convention for the secondary densi-
ties,

[

Ddρ
tλ
δ (r)

]∗
JγMγ

≡ ρtλ∗
mdId,nδLδvδJδ,JγMγ

(r) (4.44)

= Pt(−1)t−λ(−1)Jγ−Mγρ
t,−λ
mdId,nδLδvδJδ,Jγ ,−MJγ

(r).

In Eq. (4.43) we applied the standard transformation rules for spherical tensors
under complex conjugation [VMK88],

A∗
λµ = PA(−1)λ−µAλ,−µ. (4.45)

The phase conventions for the factors PA for the building blocks of the N3LO
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operators can be read from Eqs. (4.39) and (4.41), that give for the expres-
sion (4.43),

∑

MJγ mt

C00
tmtt−mt

C00
JγMJγ Jγ−MJγ

(−1)Jγ−MJγ +Lγ−MLγ +vγ−µγ (4.46)

(

Ddρ
t,−mt

δ (r)
)

Jγ ,−MJγ

∑

MLγ µγ

C
Jγ−MJγ

LγMLγ vγµγ
DnγLγ ,−MLγ

σσσ′

vγ ,−µγ
τ tmt

ττ ′

=
∑

MJγ mt

C00
tmtt−mt

C00
JγMJγ Jγ−MJγ

(−1)Jγ−MJγ +Lγ+vγ+MJγ

(

Ddρ
t,−mt

δ (r)
)

Jγ ,−MJγ

∑

MLγ µγ

(−1)Lγ+vγ−JγC
JγMJγ

Lγ−MLγ vγ−µγ

DnγLγ ,−MLγ
σσσ′

vγ ,−µγ
τ tmt

ττ ′

=
∑

MJγ mt

C00
tmtt−mt

C00
JγMJγ Jγ−MJγ

(

Ddρ
t,−mt

δ (r)
)

Jγ ,−MJγ

(

DnγLγ
σσσ′

vγ

)

JγMJγ

τ tmt

ττ ′

=

[[

[

Ddρ
t
δ(r)

]

Jγ

[

DnγLγ
σσσ′

vγ

]

Jγ

]

0

τ t
ττ ′

]0

,

where in the first step we used the Clebsch-Gordan identity C
Jγ−MJγ

LγMLγ vγµγ
=

(−1)Lγ+vγ−JγC
JγMJγ

Lγ−MLγ vγ−µγ
, and in the next steps we recoupled the tensors

to a scalar in the spin and isospin space.

So, the global phase for each terms of the one-body pseudopotential is due
entirely to the χβ;dδ

a,α;γ coefficients and we obtain the expressions,

Γ̂σ′σ′′∗
τ ′τ ′′ (r′) = Γ̂

′σ′σ′′

τ ′τ ′′ (r′), (4.47)

for

Γ̂
′σσ′

ττ ′ (r′) =
∑

γ,t

[[

[

U
′t
γ (r)D′

nγLγ

]

vγ

σσσ′

vγ

]

0

τ t
ττ ′

]0

(4.48)

and
U

′t
γ (r′) =

∑

aαβ;dδ

(−1)nγ+ma+mdCβ,t
a,αχ

β;dδ
a,α;γ

[

Ddρ
t
δ(r

′)
]

Jγ
. (4.49)
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Chapter 5

Results

5.1 Results for the pseudopotential

5.1.1 General overview of the results concerning
the pseudopotential

For sake of clarity, we start this part of the thesis with a general review of the
main results achieved in our study on the pseudopotential.

The first result, exposed in Sec. II of paper I, was to have listed all possible
terms of the pseudopotential in Eq. (3.2), according to the symmetries discussed
in Sec. 3.3. We found the total number of 50 terms up to N3LO: at zero, second,
fourth, and sixth order, the terms are respectively 2, 7, 15, and 26 (see second
column of Table (5.1)). We could then notice that these numbers of terms
are exactly equal to those corresponding to the Galilean-invariant EDF in each
isospin channel. The same correspondence was found between the numbers of
terms of the gauge-invariant EDF and gauge-invariant pseudopotential, whose
analysis was performed in Sec. IIC of paper I, by imposing condition (3.29) on
the pseudopotential. The numbers of independent terms of the gauge-invariant
pseudopotential are of 2 at zero order, 7 at second order, 6 at fourth order, and
6 at sixth order, as it is showed in the third column of Table (5.1).

In Fig. 5.1 we show the comparison between the numbers of terms of the
Galilean-invariant pseudopotential, namely the full pseudopotential not re-
stricted by any symmetry but the ones already encoded in the definition of
an effective interaction as expansion in relative momenta, and gauge-invariant
pseudopotential. The total number of terms for the Galilean-invariant pseu-

71
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Figure 5.1: Number of terms of the pseudopotential (3.1) , plotted as a function
of the order in derivatives.

dopotential is 50, whereas the gauge symmetry brings a reduction of terms to
21. We stress again the fact that in both cases the numbers of terms is exactly
the same as the numbers of the free coupling constants of the EDF constrained
by the same symmetries.

The discussion of the gauge invariance allowed us to group the terms of the
pseudopotential in four different classes, composed by independent, dependent,
stand-alone gauge-invariant, and stand-alone gauge-noninvariant terms. The
last group is composed by terms whose parameters are forced to be equal to
zero by condition (3.29), therefore the corresponding parameters are called
vanishing parameters. The last but one group is composed by terms that ver-
ify alone condition (3.29), and we refer to the corresponding parameters as
unrestricted parameters. The first two groups are defined by the fact that it
may happen that the pseudopotential can respect the gauge symmetry only if
its terms occur in certain linear combinations, each of them verifying condi-
tion (3.29). One of the parameters of terms in each linear combination can be
selected (arbitrarily) as the independent parameter, and the others ones be-
come the dependent parameters expressed through the independent ones, as it
is showed in Appendix B of paper I. We stressed the fact that the choice of the
independent parameters is not unique, but the number of independent terms
at each order is a property of the gauge-invariant pseudopotential.

The distinction made above in four different classes of terms can be generalized
to any symmetry. We have then the distinction between independent, depen-
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dent, unrestricted, and vanishing terms. This grouping of terms can be found
for different symmetries applied on both coupling constants of the EDF and
parameters of the pseudopotential. Moreover, we can use the expression ’free
parameters’ (free coupling constants) to refer to the group of terms composed
either by the independent or unrestricted parameters (coupling constants). The
general trend valid for all the symmetries studied, is a reduction of the number
of the free terms as the result of the application of a certain symmetry, because
the symmetry can rule out terms of the pseudopotential (EDF), or force a sub-
set of terms to be dependent on another ones. It is easy to understand that
the reduction of the number of the free terms due to the symmetries imposed,
is crucial when we are dealing with effective interactions and EDF based on
expansions, as it is the case for our higher-order pseudopotential.

In Sec. IID of paper I, we presented the tensorlike form of the pseudopotential,

V̂ =
∑

ñ′L̃′,

ñL̃,v12J

C̃ñ′L̃′

ñL̃,v12J

ˆ̃
V ñ′L̃′

ñL̃,v12J
, (5.1)

where

ˆ̃
V ñ′L̃′

ñL̃,v12J
=

1

2
iv12

(

1− 1
2δv1,v2

)

×
(

[[

K ′
ñ′L̃′

σ(1)
v1

]

J

[

KñL̃σ
(2)
v2

]

J

]

0

+
[[

K ′
ñ′L̃′

σ(2)
v1

]

J

[

KñL̃σ
(1)
v2

]

J

]

0

+
[[

K ′
ñL̃
σ(1)

v1

]

J

[

Kñ′L̃′σ
(2)
v2

]

J

]

0

+
[[

K ′
ñL̃
σ(2)

v1

]

J

[

Kñ′L̃′σ
(1)
v2

]

J

]

0

)

×
(

1− P̂M P̂ σP̂ τ
)

δ̂12(r
′
1r

′
2; r1r2), (5.2)

which is built from the same building blocks of the form in Eq. (3.2). The
tensorlike pseudopotential is built from a different form of coupling of the
relative-momentum operators with spin operators. We determined the relations
between the two different coupling scheme of the pseudopotential, central-like
and tensorlike, by using the recoupling technique (see Appendix C of paper
I). At each order, the tensorlike form of the pseudopotential has more terms
than the central-like form, which means that not all the possible terms of the
tensorlike pseudopotential are linearly independent. At the end of Sec. II of
paper I we listed the linear combinations expressing the relations between the
dependent and independent parameters.

In Sec. III of paper I, the results concerning the averaging of the pseudopoten-
tial over the uncorrelated many-body wave function, are showed. The result of
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the averaging generates the N3LO EDF, and can be written as,

〈Cñ′L̃′

ñL̃,v12S
V̂ ñ′L̃′

ñL̃,v12S
〉 =

∑

C
n′L′v′J′,t
mI,nLvJ T

n′L′v′J′,t
mI,nLvJ , (5.3)

where the l.h.s. denotes the averaging of the pseudopotential (3.1) and r.h.s.
denotes instead the resulting EDF (2.16) with added superscripts t, which
denote the isoscalar (t = 0) and isovector (t = 1) channels.

The evaluation of the relations (5.3) produces a set of linear combinations in

which the coupling constants Cn′L′v′J′,t
mI,nLvJ are expressed through the pseudopo-

tential strength parameters Cñ′L̃′

ñL̃,v12S
. With these relations we could see di-

rectly that the symmetries of the pseudopotential are transferred on the EDF:
the EDF coupling constants obtained from Eq. (5.3) in fact obey the Galilean-
invariance constraints [CDK08], whereas the coupling constants obtained from
the gauge-restricted pseudopotential correspond to the gauge-invariant EDF.
In Sec. III of paper I we showed only the 12 second-order isoscalar and isovector
coupling constants expressed by the 7 second-order pseudopotential parame-
ters. In the supplemental material of the paper I, we included the analogous
relations expressing at fourth (sixth) order 45 (129) isoscalar and isovector
coupling constants to 15 (26) pseudopotential parameters.

We proceeded then in calculating the inverse relations, namely, we expressed
the parameters of the pseudopotential through both isoscalar and isovector
coupling constants of the EDF. This was possible because of the fact that once
either the Galilean or gauge invariance is imposed, the numbers of parameters
of the pseudopotential are the same, at each order, as the numbers of cou-
pling constants of the EDF for each isospin. The inverse relations, collected in
Sec. IIIA of paper I for the gauge invariance and in supplemental material for
Galilean invariance, were in fact a preliminary result for the analysis performed
in Sec. IIIB. There, by eliminating the pseudopotential parameters from pairs
of relationships connecting the parameters to isoscalar and isovector coupling
constants respectively, we derived a set of constraints expressing, at each order,
the isovector coupling constants through the isoscalar ones. Again, we listed
these relations in paper I (Sec. IIIB) for the case of gauge invariance, while
the similar expressions for the case of Galilean invariance were collected in the
supplemental material.

In Sec. IV of paper I we applied our results to the case of spherical even-even
nuclei; in other words, we assumed the spherical, space-inversion, and time-
reversal symmetries of the EDF and then we investigated the constraints on
the EDF coupling constants in this restricted case. At the NLO, when the
gauge symmetry is imposed on the EDF with the isospin degree of freedom
included, we have 8 independent spherical EDF terms at second order, 6 at
fourth order, and 6 at sixth order (see seventh column of Table (5.1)). Also for
the case of spherical symmetry it was possible to repeat the analysis producing
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the relations between parameters and coupling constants, and also the corre-
sponding inverse relations were found. In particular, at second order, where
we have one more independent coupling constant than independent pseudopo-
tential parameters, we used the fact that the isoscalar and isovector spin-orbit
coupling constants depend both on one spin-orbit pseudopotential parameter.
This fact allowed us to write the relation,

C
0000,1
11,1111 =

1√
3
C

0000,0
11,1111, (5.4)

and we were left in this way with seven second order coupling constants related
to the remaining seven parameters of the pseudopotential.

Since at second order the Galilean-invariant and gauge-invariant functionals
are equivalent, when the Galilean invariance is imposed on the spherical EDF,
we have to discuss just the fourth and sixth orders. At fourth (sixth) order, we
have 16 (28) independent terms, of which 4 (8) are of the spin-orbit character,
as it listed in sixth column of Table (5.1). Analogously to what we have just see
for the second order functional in the case of gauge symmetry, the higher-order
spin-orbit coupling constants are related only to the spin-orbit pseudopotential
parameters. Because of this, we could find the following constraints on the
spin-orbit coupling constants.

At fourth order,

C
0000,1
31,1111 = − 1√

3
C

0000,0
31,1111 −

2√
3
C

0000,0
11,3111, (5.5a)

C
0000,1
11,3111 = − 2√

3
C

0000,0
31,1111 −

1√
3
C

0000,0
11,3111, (5.5b)

and at sixth order the constraints,

C
0000,1
51,1111 = − 1√

3
C

0000,0
51,1111 +

2√
3
C

0000,0
11,5111, (5.6a)

C
0000,1
11,5111 =

2√
3
C

0000,0
51,1111 −

1√
3
C

0000,0
11,5111, (5.6b)

C
0000,1
31,3111 =

1√
3
C

0000,0
31,3111, (5.6c)

C
0000,1
33,3313 =

1√
3
C

0000,0
33,3313. (5.6d)

If now we consider Galilean-invariant and spherical EDF without spin-orbit
terms, we are left with 12 (20) fourth-order (sixth-order) coupling constants
related to the remaining 13 (22) parameters of the pseudopotential, that means
1 (2) possible relation(s) involving the remaining parameters. By considering
now also the spin-orbit ones, the number of independent coupling constants at
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Figure 5.2: Number of terms of the spherical EDF that is related to a pseu-
dopotential (solid lines), compared to the EDF not related to a pseudopotential
(dashed lines). Full squares and circles show results for the Galilean and gauge
invariance, respectively.

fourth order is 14, whereas the number of independent coupling constants at
sixth order is 24, as it can be read from tenth column of Table (5.1).

In Fig. 5.2 we summarize the discussion on the EDF with conserved spherical
symmetry in both cases when the reference to the pseudopotential is either
assumed or released. Also both Galilean and gauge symmetries are considered.

The principal result of our study can be grasped by comparing the four columns
of the EDF not related to pseudopotential with the correspective four columns
of EDF related to pseudopotential, in Table (5.1). We can see, in general, that
the reference of the EDF to the pseudopotential yields a reduction of the num-
ber of the free coupling constants of the functional, with the lower limit given
by the number of the terms of the pseudopotential restricted by the symmetry
under consideration. In particular, we get a reduction by half for the case of the
general EDF, namely not restricted by any further symmetry but the ones (typ-
ically the Galilean and gauge symmetries) imposed also on the pseudopotential.
The reduction is instead less important for the case of the spherical symmetric
EDF, because the spherical symmetry, defined as self-consistent symmetry of
the density matrix, can be just imposed on the functional and it is not defined
for a force.

It is worth remarking once again the importance of the reduction of the free
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Pseudopotential EDF

Not related to pseudopotential Related to pseudopotential

General Spherical General Spherical

Order Galilean Gauge Galilean Gauge Galilean Gauge Galilean Gauge Galilean Gauge

0 2 2 4 4 2 2 2 2 2 2
2 7 7 14 14 8 8 7 7 7 7
4 15 6 30 12 16 6 15 6 14 6
6 26 6 52 12 28 6 26 6 24 6

N3LO 50 21 100 42 54 22 50 21 47 21

Table 5.1: Number of terms of different orders in the pseudopotential (3.1)
and in the EDF up to N3LO (2.16), evaluated for the conserved Galilean and
gauge symmetries. The last four columns show the number of terms in the
EDF evaluated by taking into account the additional constraints coming from
the relation of the EDF to pseudopotential.

coupling constants in the functional, by means of either imposed symmetries or
other physical features as the reference of the EDF to an interaction. This result
may be appreciated in connection with the adjustment of model parameters
and the problems usually tackled by the practitioners of the optimization. In
fact the non-uniqueness of the sample of fitting data, the estimation of the
uncertainties in the extrapolations to other observables and of theoretical errors
associated to them, with the consequent arbitrariness in the weight attributed
in the global quality measure, are all hints of the insufficiency of the present-
day density functionals. An extension of these functionals is then in order, but
the increase of free coupling constants must be moderated on the basis of some
justified restriction imposed on the functional.

As we claimed before, the reduction by half of the terms of the general EDF
is due to the zero-range character of the pseudopotential, as it has been shown
also in Ref. [DCK10] in the framework of the density matrix expansion, by
a comparison between the Skyrme force and a general finite-range effective
interaction up to NLO. As we showed in Sec. 3.2 of the present work, the
ultimate reason is that the general zero-range effective interaction has half of
the terms compared to the general form of the finite-range effective interaction.

The review of the results has given to us the chance to correct two mistakes
contained in Sec. IV of paper I, namely the one devoted to the relations between
the pseudopotential and EDF with conserved spherical symmetry. The analysis
required to amend these mistakes will be discussed in next Sec. 5.1.2.
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5.1.2 Relations between the pseudopotential and EDF
with conserved spherical symmetry.
Erratum of Sec. IV of paper I.

In this section, we repeat the analysis performed in Sec. IV of paper I and
we correct the mistakes made there, due to the miscount of the number of the
fourth and sixth order terms in the Galilean-invariant and spherical symmetric
EDF.

The number of terms at higher orders when the Galilean invariance is imposed
on the spherical EDF, which was given before the set of Eqs. 24 of paper
I, should read as follows: we have at fourth (sixth) order 16 (28) indepen-
dent terms, of which 4 (8) are of the spin-orbit character. Let us note that
the number of the spin-orbit terms of the functional was correct for both the
higher orders. Therefore the relations expressing the spin-orbit EDF coupling
constants through the spin-orbit pseudopotential parameters and the resulting
relations between the isovector and isoscalar spin-orbit EDF coupling constants
were not affected at all by the miscount (see Eqs. (5.5a)–(5.6d)). The latter
has instead affected the analysis, carried out in the last paragraph of the Sec.
IV and in the supplemental material of the paper I, concerning the Galilean-
invariant and spherical EDF without spin-orbit-terms.

When we consider the fourth (sixth) Galilean-invariant and spherical EDF
without spin-orbit terms, we are left with 12 (20) coupling constants related
to the remaining 13 (22) parameters of the pseudopotential, that means 1 (2)
possible relation(s) involving the remaining parameters. Such relations can be
imposed in many different ways; in fact we have checked that not any of the 1
(2) parameters of the fourth- (sixth-) pseudopotential can be taken as expressed
through all the other parameters. Here we present one possible selection of the
dependent parameters.

At fourth order we can have

C42
00,22 =

7

3
C22

20,22 −
2

3

√
7C22

22,22, (5.7)

and at sixth order we can have

C62
00,22 = −4C42

20,22 +
49

5
C40

22,22 −
20√
7
C42

22,22 +
8

3
√

5
C44

22,22, (5.8a)

C51
11,22 =

11

18

√

35

3
C53

11,22 +
7

5
C31

31,22 −
11

2

√

7

15
C33

31,22 +
4

9

√
14C33

33,22. (5.8b)
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v = 0, t = 0 v = 0, t = 1 v = 1, t = 0 v = 1, t = 1

Order Total U V I D U V I D U V I D U V I D

0 4 4 0 0 0 4 0 0 0 4 0 0 0 1 0 1 2
2 24 6 0 8 10 3 7 6 8 2 10 4 8 1 11 1 11
4 90 6 54 6 24 3 57 6 24 2 64 4 20 1 65 1 23
6 258 6 200 6 46 3 203 6 46 2 216 4 36 1 217 1 39

N3LO 376 22 254 20 80 13 267 18 78 10 290 12 64 4 293 4 75

Table 5.2: Number of unrestricted (U), vanishing (V), independent (I), and
dependent (D) coupling constants of different orders in the EDF up to N3LO,
shown for the four spin-isospin channels.

The Eqs. (5.7)–(5.8) show how the parameters of the pseudopotential can be
constrained by means of the relation to the EDF, when this one is restricted
by a symmetry, in this case the spherical one. In other words, the indepen-
dent parameters of the pseudopotential that produces the spherical symmetric
functional, are 14 at fourth order and 24 at sixth order.

The corrections presented in this section will soon be submitted to Physical
Review C in form of the erratum of paper I.

5.2 Results for the continuity equation

5.2.1 General overview of the results concerning
the continuity equation

In the same way we did in Sec. 5.1.1 for the pseudopotential, we give in this
section a general review of the results obtained in paper II concerning the CE
for N3LO EDFs.

Table (5.2) summarizes the results for the CEs in the four spin-isospin channels,
as presented in Sec. III of paper II. For each choice of the indices (v, t), the
condition (4.30) sets constraints on the coupling constants Cβ,t

a,α of the EDF.
The constraints are obtained as solutions of a system of linear equations, where
each equation is obtained considering the coefficients standing at a given pair
of secondary densities in the last line of Eq. (4.30). The coupling constants
not appearing in any constraints are unrestricted (U), the other ones can be
involved in the constraints in different ways, namely, they can be vanishing
(V), independent (I), and dependent (D) coupling constants, according to the
same classification given in Sec. 5.1.1 for the parameters of the gauge-invariant
pseudopotential.
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The numbers of all the categories of coupling constants for all four channels of
CE is displayed in Table (5.2). The first row in the table displays the numbers
of the zero-order coupling constants, that are discussed in Sec. IIIA of paper
II. In particular, we pointed out the analogy between the CE in the vector
channel treated in Sec. IIA of paper II and the results for the zero-order EDF
in both vector-isoscalar and scalar-isovector channel. This analogy is manifest
when we consider the contribution coming from the vector potential to the CE
for the spin- 1

2 particle in Eq. (4.3). In Sec. 5.2.2, by calculating explicitly the
constraints on the zero-order coupling constants, we make clear that algebraic
rule of the vector product in Eq. (4.3) is equivalent to the coupling of pairs
of identical commuting rank 1 tensors to rank 1, which is identically null.
This explains why the coupling to rank v = 1 (t = 1) in the spin (isospin)
space for the vector-isoscalar (scalar-isovector) channel of the CE, in which
the identically null tensors formed by the pairs of densities at zero order leave
the corresponding coupling constants unrestricted. When instead in both spin
and isospin we have the coupling to rank 1, the selection rule above does not
apply anymore, because the two negative sign in the commutation of identical
densities cancel each other. Then we find the the constraints,

C
0000,1
00,0000 =

1√
3
C

0011,1
00,0011, (5.9a)

C
0011,0
00,0011 =

1√
3
C

0011,1
00,0011. (5.9b)

The results in Table (5.2) are divided in four groups of four columns, each
group for a spin-isospin channel. The first group gives the numbers of the
standard scalar-isoscalar (v = 0 t = 0) CE, which are discussed in Sec. IIIB
of paper II. The constraints found for this case are exactly the same as those
defining the gauge-invariant EDF up to N3LO [CDK08], showing in this way
the equivalence between the validity of the CE and invariance under the abelian
gauge transformation.

The second group of results in Table (5.2) pertains to the scalar-isovector (v = 0
t = 1) CE and it is discussed in Sec. IIIC of paper II. Unlike the scalar-isoscalar
CE which keeps the isospin channels disconnected, the scalar-isovector con-
straints connect the isovector and isoscalar coupling constants. We also notice
that the number of vanishing coupling constants is bigger than the previous
case, because the selection rule concerning the identical pairs couple to rank 1
comes into play in the isospin space.

The numbers of coupling constants of the vector-isoscalar (v = 1 t = 0) CE is
discussed in Sec. IIID of paper II and summarized in the third group of four
columns in Table (5.2). The coupling to rank v = 1 of the pair of densities in
condition (4.30) gives rise to constraints that now connect scalar and vector
coupling constants.
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The rightmost columns in Table (5.2) show the numbers of the coupling con-
stants of the vector-isovector (v = 1 t = 1) CE. These results are discussed in
Sec. IIIE of paper II, where the listed constraints contain coupling constants
which are related in both spin and isospin spaces. In fact, at all the orders,
all the dependent coupling constants can be expressed through only one vector
coupling constant, and this one can be chosen to be either vector-isoscalar or
vector-isovector.

In general, the relations among the coupling constants, in the four spin-isospin
channels, can be seen as the constraints on the EDF forced to be invariant
under the four local spin-isospin groups of Eq. (2.62). In particular, U0

0 (r)
gives the standard abelian gauge group U(1), U0

1 (r) and U1
0 (r) form the non-

abelian gauge groups SU(2), whereas U1
1 (r) corresponds to the non-abelian

gauge group SU(2)×SU(2).

5.2.2 Illustrative example of the zero-order one-body
pseudopotential contributions to CE

Because of its simplicity and the fact that it involves a small number of coupling
constants, the zero order is the only one in which the calculations can be
performed in a simple way without the help of the symbolic programming. To
perform such calculations is useful for understanding how the constraints on
the coupling constants appear from the derivation.

At zero order, the EDF has only four terms that we write down explicitly,

εLO(r) = C
0000,0
00,0000

[

[

ρ0
0000(r)ρ0

00,0000,0(r)
]

0

]0

+ C
0000,1
00,0000

[

[

ρ1
0000(r)ρ1

00,0000,0(r)
]

0

]0

+ C
0011,0
00,0011

[

[

ρ0
0011(r)ρ0

00,0011,1(r)
]

0

]0

+ C
0011,1
00,0011

[

[

ρ1
0011(r)ρ1

00,0011,1(r)
]

0

]0

. (5.10)

For comparison, we also give the Cartesian representation of the leading order
EDF, which reads [PRD04],

εLO(r) = C
ρ
0ρ

2
0 + C

ρ
1 ~ρ

2 + Cs
0s2

0 + Cs
1~s

2, (5.11)

with the relations between the coupling constants in spherical and Cartesian
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representations, that is,

C
0000,0
00,0000 = C

ρ
0 , (5.12a)

C
0000,1
00,0000 =

√
3Cρ

1 , (5.12b)

C
0011,0
00,0011 =

√
3Cs

0 , (5.12c)

C
0011,1
00,0011 = 3Cs

1 . (5.12d)

(5.12e)

The one-body pseudopotential corresponding to the functional in Eq. (5.10)
reads,

Γ̂σσ′

ττ ′ (r)LO = 2C0000,0
00,0000ρ

0
0000(r) + 2C0000,1

00,0000

[

ρ1
0000(r)τ1

ττ ′

]0
(5.13)

+ 2C0011,0
00,0011

[

ρ0
0011(r)σσσ′

1

]

0
+ 2C0011,1

00,0011

[[

ρ1
0011(r)σσσ′

1

]

0
τ1
ττ ′

]0

.

Condition (4.25) for the CE can be written at the leading order as,

∑

σ′′τ ′′

(

Γ̂σσ′′

ττ ′′ (r)LOρ(rσ
′′τ ′′, r′σ′τ ′)− Γ̂σ′σ′′∗
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σσσ′′
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τ t′
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]0
]

0

)

= 0. (5.14)

As it is explained in the derivation of Appendix A, we can select a specific spin
and isospin channel by multiplying on the right by the opportune spin and
isospin operators and by taking the traces after. We obtain then,
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∑
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(5.15)
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= 0,

where the values needed for symbols A(vγ + v′ + v) and A(t′′ + t′ + t) are
A(0) = 2, A(2) = 2

√
3, A(3) = 2

√
2 i (see Eq. (4.32)).

Now we consider the constraints among the EDF coupling constants deriving
from Eq. (5.15), when different spin-isospin channels are selected according to
the choice of the indices v and t.

Scalar-isoscalar channel (v = 0, t = 0)

For this selected channel we have,

σσ′σ
0 τ0

τ ′τ ≡ δσ′σδτ ′τ , (5.16)

and the condition in Eq. (5.15) becomes,
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Because of the simple properties of the Clebsch-Gordan coefficients, the two
terms in parentheses are equivalent and cancel each other exactly. Therefore
the condition in Eq. (5.17) cannot constrain any of the coupling constants in
the zero-order EDF of Eq. (5.10).

Scalar-isovector channel (v = 0, t = 1)

For this selected channel we have,

σσ′σ
0 τ1

τ ′τ ≡ δσ′στ
1
τ ′τ , (5.18)

and the condition in Eq. (5.15) becomes now,
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= 0.

We can simplify the calculation of the constraints resulting from Eq. (5.19)
by distinguishing three cases corresponding to different values assumed by the
isospin indices t′′ and t′:

1. both are null (t′′ = 0 and t′ = 0), then the condition is identically null
because we are left with the trace of the single Pauli matrix τ1

τ ′τ which
is null;

2. only one index is null (t′′ = 1, t′ = 0 or t′′ = 0, t′ = 1), then the two
terms in parentheses of Eq. (5.19) are identical and opposite in sign, in
an analogous way to what we saw for the scalar-isoscalar channel, and
again the condition is identically null;

3. both indices are not null (t′′ = 1, t′ = 1), then the coupling of the tensors
in the isospin space will give in all the cases, where the two spin indices
vγ and v′ must take the same value, two identical tensors coupled to the
odd rank t = 1. But such a coupling is ruled out by the selection rule
stating that an irreducible tensor of odd rank, obtained by the coupling
of two identical commuting tensors, is identically null [VMK88].
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So, in all three cases taken into account, there are no any constraints among
the zero-order coupling constants, which are left unrestricted by the scalar-
isovector channel.

Vector-isoscalar channel (v = 1, t = 0)

For this selected channel we have,

σσ′σ
1 τ0

τ ′τ ≡ δτ ′τσ
1
σ′σ, (5.20)

and condition in Eq. (5.15) becomes,
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In the case of the zero-order functional, where we do not have momentum
operators coupled with the spins, the treatment of the spin operators is specular
to the one of the isospin that we have previously considered in the case of the
scalar-isovector channel. We can then distinguish in Eq. (5.21) three cases of
different values assumed by the spin indices vγ and v′ as we did before for the
isospin. The three possible cases are, mutatis mutandis, the same ones found
for the scalar-isovector channel.

So, there are no any constraints among the zero-order coupling constants, which
are left unrestricted also by the vector-isoscalar channel.

Vector-isovector channel (v = 1, t = 1)

In this case we have
σσ′σ

1 τ1
τ ′τ , (5.22)

as the operators selecting the channel of the vector-isovector CE. It is clear that
now the possible cases we examined before in the spin and isospin spaces are
somehow mixed together. We then are going to solve explicitly the condition
in Eq. (5.15), by following the derivation we did in Sec. II-A of paper II.
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Once again, the starting point is given by the Schrödinger equation of a single
particle with spin and isospin degrees of freedom included,

i~
∂
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ψ(rσ′′τ ′′, t). (5.23)

By multiplying Eq. (5.23) with ψ∗(rσ′τ ′, t)σσ′σ
ν τr

τ ′τ , summing up over σ′, σ, τ ′

and τ , and taking the imaginary part, we obtain the CE for the isovector spin
density ρ1

1(r, t) in term of the isovector spin current J1
1 (r, t).

Let us treat separately the imaginary part relative to the potential in Eq. (5.23),
that reads
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√
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√
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√
3
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p
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√
3
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√
3
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√
3

ρ
1p
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ττ ′′

√
3

4
ρ0
1µ(r)σσ′′σ′

1−µ δτ ′′τ ′σσ′σ
ν τr

τ ′τ ). (5.24)
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We compute the trace over the spin and isospin indices in Eq. (5.24) and we
obtain,

= 2C0000,1
00,0000

∑

pq

∑

µ

(−1)1−p

√
3

(−1)1−q(−1)1−µ 1

2
ρ
1p
0 (r)ρ1q

1µ(r)

2(−1)1−µδµ,ν2
√

2(−1)1+rC1−r
1−p1−q

+ 2C0011,0
00,0011

∑

q

∑

µλ

(−1)1−λ

√
3

(−1)1−q(−1)1−µ 1

2
ρ0
1λ(r)ρ1q

1µ(r)

2(−1)1−qδq,r2
√

2(−1)1+νC1−ν
1−λ1−µ

+ 2C0011,1
00,0011(

∑

pq

∑

λ

(−1)1−p

√
3

(−1)1−λ

√
3

(−1)1−q 1

2
ρ
1p
1λ(r)ρ1q

0 (r)

2(−1)1−λδλ,ν2
√

2(−1)1+rC1−r
1−p1−q

+
∑

p

∑

µλ

(−1)1−p

√
3

(−1)1−λ

√
3

(−1)1−µ 1

2
ρ
1p
1λ(r)ρ0

1µ(r)

2(−1)1−pδp,r2
√

2(−1)1+νC1−ν
1−λ1−µ)

= −4

√

2

3
C

0000,1
00,0000

[[

ρ1
0(r)ρ1

1ν(r)
]

1ν

]1r − 4

√

2

3
C

0011,0
00,0011

[[

ρ0
1(r)ρ1r

1 (r)
]

1ν

]1r

+
4

3

√
2C0011,1

00,0011(
[[

ρ1
0(r)ρ1

1ν(r)
]

1ν

]1r
+
[[

ρ0
1(r)ρ1r

1 (r)
]

1ν

]1r
) = 0. (5.25)

From the last two lines of Eq. (5.25) we obtain the constraints among the
leading-order coupling constants for the case of vector-isovector CE,

C
0000,1
00,0000 =

1√
3
C

0011,1
00,0011, (5.26)

C
0011,0
00,0011 =

1√
3
C

0011,1
00,0011. (5.27)

In summary, we found that for the scalar-isoscalar channel (v = 0, t = 0),
scalar-isovector (v = 0, t = 1), and for vector-isoscalar (v = 1, t = 0), all the
zero-order coupling constants are unrestricted.

For the vector-isovector case (v = 1, t = 1) we found the constraints of
Eqs. (5.26-5.27), whereas we found that the coupling constant C0000,0

00,0000 is still
unrestricted.
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Chapter 6

Summary

The long-term goal of the study of higher-order EDFs or pseudopotentials, is
of course the application in practical calculations. But before proceeding with
the implementation of numerical codes, the basic derivations and the complete
investigation of the properties of the functional and pseudopotential must be
carried out as preliminary steps.

In this work, we contributed to this investigation, first by deriving the zero-
range nuclear N3LO pseudopotential with derivatives up to sixth order and
finding the corresponding N3LO EDF, obtained as the HF average energy of
the pseudopotential. The number of terms of the pseudopotential is twice
smaller then that of the most general EDF and this feature is due to the
zero-range character of the pseudopotential. We found explicit linear relations
between the parameters of the pseudopotential and coupling constants of the
EDF. Through the dependence of the coupling constants to the parameters,
we could derive linear relations between the isoscalar and isovector coupling
constants. The analogous analysis was repeated for gauge-invariant pseudopo-
tential. A separate analysis was conducted on the EDF restricted by spherical,
space-inversion, and time-reversal symmetries, which are relevant for describing
spherical nuclei. The reduction of the numbers of independent terms related
to imposing on the EDF the pseudopotential origins in spherical nuclei is rela-
tively small, when compared to the one for deformed, asymmetric, odd, and/or
rotating nuclei.

As second main point of our analysis of the N3LO EDFs, we have derived sets
of constraints on the coupling constants of the functional that guarantee the
validity of the continuity equation in the four spin-isospin channels. In the
scalar-isoscalar channel, the constraints found are the same of those pertaining
to the gauge-invariant functional. We extended the connection between the
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validity of CE and gauge invariance, also to vector and isovector channels. In
general, the validity of the continuity equations is equivalent to the local gauge
invariance with respect to spin and isospin rotations, respectively, which form
non-abelian groups of transformation. The contribution to CE coming from
the zero-order EDF have been explicitly calculated to show the role played by
the one-body pseudopotential in the derivation of the CE.



Appendix A: derivation of
the condition (4.30)

In this Appendix, we are going to show the complete derivation of the con-
dition (4.30) on the one-body pseudopotential for the validity of the CE. We
introduce the isospin index t′′ in order to distinguish between the isospin in-
dex in the one-body pseudopotential from index t′, which denotes the isospin
channel in the density matrix. Therefore, in the sum over γ is also included
the isospin index t′′.

The derivation starts by inserting expression (4.29) of the field in the r.h.s. of
condition (4.25),

∑

σσ′ττ ′

∑

l

∑

σ′′τ ′′

(Γ̂σσ′′

ττ ′′ (r)φl(rσ
′′τ ′′, t)φ∗l (r

′σ′τ ′, t) (6.1)

− Γ̂σ′σ′′∗
τ ′τ ′′ (r′)φ∗l (r

′σ′′τ ′′, t))φl(rστ, t))σ
σ′σ
vλ τ tr

τ ′τ

=
∑

σσ′ττ ′

∑

σ′′τ ′′

∑

γ

(

[[

[

U t′′

γ (r)DnγLγ

]

vγ

σσσ′′

vγ

]

0

τ t′′

ττ ′′

]0

ρ(rσ′′τ ′′, r′σ′τ ′, t)

−
[[

[

U
′t′′

γ (r′)D′
nγLγ

]

vγ

σσ′′σ′

vγ

]

0

τ t′′

τ ′′τ ′

]0

ρ(rστ , r′σ′′τ ′′, t))σσ′σ
vλ τ tr

τ ′τ = 0,

where the two operators σσ′σ
vλ and τ tr

τ ′τ are multiplied on the right side of the
condition, and the traces over the spin and isospin indices are taken in order
to select the opportune spin and isospin channels of the CE under considera-
tion. Now we can continue the derivation by applying the recouplings, that are
preliminary steps needed to calculate the traces over the spin and isospin,
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=
∑

σσ′ττ ′

∑

σ′′τ ′′

∑

γ

(

[[

[

U t′′

γ (r)DnγLγ

]

vγ

σσσ′′

vγ

]

0

τ t′′

ττ ′′

]0

1

4

∑

v′t′

(
√

3)v′+t′
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v′ ,
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τ t′
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]0
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−
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[
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γ (r′)D′
nγLγ

]

vγ

σσ′′σ′

vγ

]

0

τ t′′

τ ′′τ ′
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∑

v′t′

(
√

3)v′+t′
[

σσσ′′

v′ ,
[

τ t′

ττ ′′ , ρt′

v′(r, r′)
]0
]

0

)σσ′σ
vλ τ tr

τ ′τ

=
∑

σσ′ττ ′

∑

σ′′τ ′′

∑

γ

1

4

∑

v′t′

(
√

3)v′+t′(
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[

U t′′

γ (r)DnγLγ

]

vγ

σσσ′′

vγ

]

0

τ t′′

ττ ′′

]0

[

σσ′′σ′

v′ ,
[

τ t′

τ ′′τ ′ , ρ
t′

v′(r, r′)
]0
]

0

−
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[

U
′t′′

γ (r′)D′
nγLγ

]

vγ

σσ′′σ′

vγ

]

0

τ t′′

τ ′′τ ′

]0

[

σσσ′′

v′ ,
[

τ t′

ττ ′′ , ρt′

v′(r, r′)
]0
]

0

)σσ′σ
vλ τ tr

τ ′τ

=
∑

σσ′ττ ′

∑

σ′′τ ′′

∑

γ

1
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∑

v′t′

(
√
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U t′′

γ (r)DnγLγ
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[

σσσ′′
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[

τ t′′

ττ ′′

[

σσ′′σ′
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τ t′

τ ′′τ ′ , ρ
t′

v′(r, r′)
]0
]

0
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0
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[

U
′t′′

γ (r′)D′
nγLγ
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[

σσ′′σ′
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τ t′′

τ ′′τ ′
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[

τ t′

ττ ′′ , ρ
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v′(r, r′)
]0
]

0

]t′′
]

vγ





0






0

σσ′σ
vλ τ tr

τ ′τ ′

)

= 0. (6.2)

A further recoupling involving the spin and isospin operators σσ′σ
vλ τ tr

τ ′τ ′ is re-
quired. Let us notice that the total rank of the tensor is equal to the rank v
and t of the spin and isospin operators applied to select a specific channel of
the CE. So, the condition in Eq. (6.2) becomes
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=
∑

σσ′ττ ′
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∑

v′t′

(
√
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vγ+v
∑

V =|vγ−v|

t′′+t
∑

T=|t′′−t|

√
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√
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ττ ′′ , ρt′

v′(r, r′)
]0
]

0

]t′′
]

vγ

σσ′σ
v





V

τ t
τ ′τ
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σ′′τ ′′

∑

γ

1

4

∑

v′t′

(
√

3)v′+t′
vγ+v
∑
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∑
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√
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√
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∑
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√
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∑
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√
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∑

µ=−vγ

t′′
∑
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∑
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∑
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vγµV MV
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CV MV
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TMT
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(
(
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)
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vγµ τ
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ττ ′′σ

σ′′σ′
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t′p
τ ′′τ ′ρ
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v′−ν(r, r′)σσ′σ
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−
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v′ν τ
t′p
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vλ τ tr
τ ′τ )) = 0.

Now we are indeed in the position to take the traces over all the spin and isospin
indices. By using the shorthand notation of Eq. (4.31) for A(vγ , v

′, v; t′′, t′, t)
to denote the awkward factors coming from the computation of the traces, we
obtain
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=
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∑
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√
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∑
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√
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∑
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√
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∑
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∑

q=−t′′

V
∑

MV =−V

T
∑

MT =−T

Cvλ
vγµV MV

Ctr
t′′qTMT

CV MV

vγ−µvλC
TMT

t′′−qtr

(

(−1)−λ−rCv−λ
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(
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′, v; t′′, t′, t)
(

U
′t′′−q
γ (r′)D′

nγLγ

)

vγ−µ
ρ

t′−p
v′−ν(r, r′)

)

= 0. (6.4)

The traces in the last step have been calculated using the following relations,

Tr
{

σσσ′

1µ

}

= 0, (6.5)

Tr
{

σσσ′′

1µ σσ′′σ′

1ν

}

= 2(−1)1+µδµ−ν , (6.6)

and,

Tr
{

σσσ′′

1µ σσ′′σ′

1ν σσ′σ
1λ

}

= 2
√

2i(−1)1+λC1−λ
1µ1ν . (6.7)

The expression in Eq. (6.4) must be recoupled. Since the spin and isospin spaces
are separated Hilbert spaces, we rewrite the condition dropping the isospin
indices in such a way that we can work on a shorter formula. The recoupling
on the isospin space goes on the same line. The part of the condition depending
on the spin indices is then,



95

∑

γ

1

2

∑

v′

(
√

3)v′

vγ+v
∑

V =|vγ−v|

√
2V + 1

{

vγ vγ 0
v v V

} v′

∑

ν=−v′

(−1)v′−ν

(
√

3)v′

vγ
∑

µ=−vγ

V
∑

MV =−V

Cvλ
vγµV MV

CV MV

vγ−µvλC
v−λ
vγµv′ν

(
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ρv′−ν(r, r′)), (6.8)

where A(vγ , v
′, v) denotes obviously the part of the term in Eq. (4.31) depend-

ing only on the spin indices.

In the following part of the derivation, formula (6.9) below is useful to simplify
the products of 6-j symbols with Clebsch-Gordan coefficients,

vγ+v
∑

V =|vγ−v|

V
∑

MV =−V

√
2V + 1

{

vγ vγ 0
v v V

}
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=
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∑
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√
2V + 1(−1)V +v+vγ

1√
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√
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√
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1√
2V + 1
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√
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∑
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CV MV
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√
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δµ,µδλ,λ. (6.9)

With the help of Eq. (6.9), we can simplify the expression in Eq. (6.8) and get,

=
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γ

1

2
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1
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√
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∑
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√
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∑
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(
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)
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U
′

γ(r′)D′
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.

(6.10)
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The analogous simplification in the isospin space reads,

t′′+t
∑

T=|t′′−t|

T
∑

MT =−T

√
2T + 1

{

t′′ t′′ 0
t t T

}

Ctr
t′′qTMT

CTMT

t′′−qtr

= (−1)t′′−q 1√
2t′′ + 1

δq,qδr,r. (6.11)

Now, let us come back to the complete condition of Eq. (6.4) with the isospin
indices included,

=
∑

γ

1

4
(−1)vγ

1
√

2vγ + 1
(−1)t′′ 1√
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√
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∑
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∑
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∑
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ρ

t′−p
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)

, (6.12)

which becomes, by using the Clebsch-Gordan coefficient symmetry Cv−λ
vγµv′ν =

(−1)vγ+v′−vCvλ
vγ−µv′−ν ,

=
∑

γ

1

4

1
√
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1√
2t′′ + 1

∑

v′t′

(−1)−v−tA(vγ , v
′, v; t′′, t′, t) (6.13)

(

[[

[

U t′′

γ (r)DnγLγ

]
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ρt′

v′(r, r′)

]
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]tr

− (−1)vγ−v′+v+t′′−t′+t
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[

U
′t′′

γ (r′)D′
nγLγ

]

vγ

ρt′

v′(r, r′)

]

vλ

]tr
)

= 0.

A further recoupling is required in the tensor, because we want to couple the
differential operators DnγLγ

with the nonlocal densities, so we have
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∑
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√
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√
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]
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J
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)

= 0.

Now we have to transform each term composed by the differential operator
action on the density into a linear combination of secondary densities (2.19),
using the relations below,

DnγLγMLγ
=
∑

rRr′R

K
nγLγ

rRr′R′

∑

MRM ′

R

C
LγMLγ

RMRR′M ′

R
(i)r(

1

2
)r′

Dr′R′M ′

R
KrRMR

,

(6.15)

or in the recoupled form,

DnγLγ
=
∑

rRr′R

K
nγLγ

rRr′R′(i)
r(

1

2
)r′

[Dr′R′KrR]nγLγ
, (6.16)

and,

D′
nγLγMLγ

=
∑

rRr′R

K
nγLγ

rRr′R′

∑

MRM ′

R

C
LγMLγ

RMRR′M ′

R
(−i)r(

1

2
)r′

Dr′R′M ′

R
KrRMR

,

(6.17)

or in the recoupled form,

D′
nγLγ

=
∑

rRr′R

K
nγLγ

rRr′R′(−i)r(
1

2
)r′

[Dr′R′KrR]nγLγ
, (6.18)

where the coefficients K
nγLγ

rRr′R′ are numerical coefficients of the expansion (they
are 91 at N3LO) and the differential operators Dr′R′ are built from the deriva-
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tives operators in Eqs. (3.38)-(3.39). We make use of these relations and we
find

[

DnγLγ
ρt′

v′(r, r′)
]

J
=

∑

rRr′R

K
nγLγ

rRr′R′(i)
r(

1

2
)r′

[

[Dr′R′KrR]nγLγ
ρt′

v′(r, r′)
]

J

=
∑

rRr′R

K
nγLγ

rRr′R′(i)
r(

1

2
)r′
∑

Jη

(−1)R′+r+v′+J
√

2Lγ + 1

√

2Jη + 1

{

R′ R Lγ

v′ J Jη

}[

Dr′R′

[

KrRρ
t′

v′(r, r′)
]

Jη

]

J

=
∑

rRr′R

K
nγLγ

rRr′R′(i)
r(

1

2
)r′
∑

Jη

(−1)R′+r+v′+J
√

2Lγ + 1

√

2Jη + 1

{

R′ R Lγ

v′ J Jη

}

ρt
r′R′,rRv′Jη,J(r), (6.19)

where in the second step, we recoupled the differential operatorKrR to the non-
local density in order to obtain the tensor structure of the local densities (2.18).

We insert the result of the recoupling of Eq. (6.19) in the general condition of
Eq. (6.14), and we get,

=
∑

γ

1

4

1
√

2vγ + 1

1√
2t′′ + 1

∑

v′t′

(−1)−v−tA(vγ , v
′, v; t′′, t′, t) (6.20)

Lγ+v′

∑

J=abs(Lγ−v′)

(−1)Jγ+Lγ+v+v
√

2vγ + 1
√

2J + 1

{

Jγ Lγ vγ

v′ v J

}

(
∑

rRr′R

K
nγLγ

rRr′R′(i)
r(

1

2
)r′
∑

Jη

(−1)R′+r+v′+J
√

2Lγ + 1
√

2Jη + 1

{

R′ R Lγ

v′ J Jη

}

[[

U t′′

γ (r)ρt
r′R′,rRv′Jη,J(r)

]

vλ

]tr

− (−1)vγ−v′+v(−1)t′′−t′+t
∑

rRr′R

K
nγLγ

rRr′R′(−i)r(
1

2
)r′

∑

Jη

(−1)R′+r+v′+J
√

2Lγ + 1
√

2Jη + 1

{

R′ R Lγ

v′ J Jη

}

[[

U
′t′′

γ (r′)ρt
r′R′,rRv′Jη,J(r′)

]

vλ

]tr

) = 0.

Finally, the two tensors in the previous equation have the same structure, with



99

the only differences being the phase (−1)nγ+ma+md in the definition of U
′t′′

γ (r′).
Then we can write the general condition in a more compact form as,

∑

γ

1

4

1
√

2vγ + 1

1√
2t′′ + 1

∑

v′t′

(−1)−v−tA(vγ , v
′, v; t′′, t′, t) (6.21)

Lγ+v′

∑

J=abs(Lγ−v′)

(−1)Jγ+Lγ+v+v
√

2vγ + 1
√

2J + 1

{

Jγ Lγ vγ

v′ v J

}

∑

rRr′R

K
nγLγ

rRr′R′(i)
r(

1

2
)r′
∑

Jη

(−1)R′+r+v′+J

√

2Lγ + 1
√

2Jη + 1

{

R′ R Lγ

v′ J Jη

}

∑

aαβ;dδ

(

1− (−1)vγ−v′+v(−1)t′′−t′+t(−1)r(−1)nγ+ma+md

)

Cβ,t′′

a,α χβ;dδ
a,α;γ

[[

[

Ddρ
t′′

δ (r′)
]

Jγ

[

Dr′R′ρt
rRv′Jη

(r′)
]

J

]

vλ

]t̃r

= 0,

where we have used definitions (4.27)-(4.49) of the potentials U t
γ(r) and their

complex conjugated.

In order to conform the notation to the one adopted in paper II, we rewrite the
condition changing the indices (r′ → mf , R′ → If ,r → nϕ, R→ Lϕ, v

′ → vϕ,
Jη → Jϕ ),

∑

γ

1

4

1
√

2vγ + 1

1√
2t′′ + 1

∑

vϕt

(−1)−v−tA(vγ , vϕ, v; t
′′, t′, t) (6.22)

Lγ+vϕ
∑

J=abs(Lγ−vϕ)

(−1)Jγ+Lγ+vϕ+v
√

2vγ + 1
√

2J + 1

{

Jγ Lγ vγ

vϕ v J

}

∑

nϕLϕmf If

K
nγLγ

nϕLϕmf If
(i)nϕ(

1

2
)mf

∑

Jϕ

(−1)If +nϕ+vϕ+J

√

2Lγ + 1
√

2Jϕ + 1

{

If Lϕ Lγ

vϕ J Jϕ

}

∑

aαβ;dδ

(

1− (−1)vγ−vϕ+v(−1)t′′−t′+t(−1)nϕ(−1)nγ+ma+md

)

Cβ,t′′

a,α χβ;dδ
a,α;γ

[[

[

Ddρ
t′′

δ (r)
]

Jγ

[

Dfρ
t
ϕ(r)

]

J

]

vλ

]t̃r

= 0
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that is exactly the condition in Eq. (4.30).
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