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Abstract

During the recent decades, molecular electronics has established its place as one of the
promising fields in the nanoscience. The possibility to manufacture and control molec-
ular junctions where single molecules are squeezed between the conducing electrodes
has opened up new possibilities to develop nanoscale devices which could be employed
as building blocks for future nanoelectronic applications. The driving force for this new
branch of physics has been the experimental advances but also theoretical methods
have been under intensive study and many theoretical tools have been developed to
understand the electron transport processes in the nanoscale systems. This thesis fo-
cuses on developing a formalism that helps to understand the role of electron-electron
interactions and the physical principles behind the time-dependent electron transport
in such systems.

The formalism presented in this thesis is based on the theory of non-equilibrium Green
functions (NEGF) and, more specifically on the real-time propagation of the embed-
ded Kadanoff-Baym (KB) equations which are quantum-kinetic equations for the one-
particle propagator. This formalism allows for studying ultrafast dynamical processes
with femtosecond (fs) time resolution and have several advantages compared to other
methods. The Kadanoff-Baym formalism can be applied to both open and closed sys-
tems. It allows for non-perturbative treatment of the external driving fields, suitable
preparation of the initial state, inclusion of the initial correlation effect during time-
propagation and, in addition, can deal with the electronic interactions via self-energy
terms which guarantee that the conservation laws are obeyed. All these properties are
vital for treating open and correlated systems associated to the physical phenomena
such as electron transport.

In this thesis, we apply the Kadanoff-Baym formalism to study time-dependent non-
equilibrium processes of simple correlated molecular-like systems connected to elec-
tron reservoirs. We have found that the electron-electron interactions can have a major
impact on the time-dependent and steady-state transport properties as well as on the
spectral properties of the molecular device. The Coulomb interactions, when restricted
to the scattering region only, can lead to a significant renormalization of the molecular
gap in non-equilibrium conditions and can change the transient current flow consid-
erably. Furthermore, the electronic self-energies, when treated on different levels of
sophistication, can lead to very different temporal properties especially under the res-
onance conditions. As one of the essential results, we have also found that the initial
correlation effects and initial state dependence, when accounted properly, can influence
considerably on the transient dynamics.

As one of the other main topics regarding the time-dependent transport, we also investi-
gated the role of the Coulomb interactions between the molecular scattering region and
the electron reservoirs. Our findings suggest that these interactions can have big impact
on the dynamics of the molecular junction when driven out of equilibrium with a bias
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iv Abstract

voltage. We found that the Coulomb interactions between the subsystems can also lead
to strong renormalization of the resonances and change the transient and steady-state
properties dramatically. In the mean-field level, however, the treatment of these lead
interactions can give rise to current blockade and undamped post-transient dynamics
where the system does not relax towards a steady-state. These peculiar effects can be
cured with inclusion of the electron correlations which provide substantial damping to
the transients and account for the important image-charge effects via polarization di-
agrams. Our results show that the lead interactions in general and the image charge
effect can modify the current-voltage characteristics prominently and that these inter-
actions can restrain the bias dependent quasiparticle broadening under non-equilibrium
conditions.
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Notation

In this thesis all the matrix and vector symbols are written in boldface notation. Fur-
thermore, all the essential, important and new concepts are introduced with emphasized

style.
List of frequently used symbols

General symbols

H Hamiltonian operator
co=1,| Spin quantum number
x=(r,0) Position-spin Coordinate
1=(x,21) Position-spin-time coordinate
Zy (Effective) Charge of a nucleus k
6(x), 6(x,y), 6;; Delta functions
0(x), 0(x,y) Step functions
Z General time-index on the Keldysh contour
t Time-index on the real time track of the Keldysh contour
T Time-index on the imaginary time track of the Keldysh contour
U(zy,2,) (Contour) Time-evolution operator
Ay(1) Heisenberg picture representation of operator A:
Ay (1) = U(ty, t1)AX,)0(t,, to)
Tel-] (Contour) Time-ordering operator

B Inverse temperature (with k; the Boltzmann constant)
W Chemical potential

p= ée‘fjm ~#N)  Grand canonical density operator

( Expectation value of operator O

fle)= = Fermi-Dirac distribution function

Many-Particle theory

Pi(x) Creation operator in position-spin representation
P(x) Annihilation operator in position-spin representation
h(1) One-body part of the Hamiltonian

w(1,2) Interparticle interaction

f(x) =y (x)1)(x) Density operator in position-spin representation
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G(1,2) Interacting one-particle Green function

FS1LRAM Lesser (<), Greater (>), Mixed (],[), Retarded (R), Advanced (A)
and Matsubara (M) projections of F on Keldysh contour

g0(1,2) Noninteracting one-particle Green function

Alw) Spectral function

G,(1,2;2/,1") Two-particle Green function

¥MB(1,2) Many-Body self-energy

Y (1,2) Exchange-correlation part of the many-body self-energy

P(1,2) Polarization function

w(1,2) Screened interaction

A(1) Gauge function

®[G] Gauge invariant generating functional for the self-energy

Transport theory

Vs (ro)

hCa’ Vi,ka

we(t)

fo(@) = flo+W*)

Spin orbital at site k with spin-projection &,
Prs(ro) = (rolkd) = 6,55 pi(r)

Creation operators in basis representation
Annihilation operators in basis representation
Density operator in lattice representation
Embedding self-energy

Inbedding self-energy

Linewidth function for lead a

Hilbert transform of the linewidth function
Coupling matrix elements between

central region (i) and lead a (k)

Bias voltage for terminal a

Biased Fermi-Dirac distribution function
Number of rows in the terminal a
Time-dependent current for the terminal a
On-site potential term for lead a
Longitudinal hopping term for lead a
Transverse hopping term for lead o
Hubbard interaction term

Off-diagonal interaction terms









1 Introduction

About 50 years has already passed since one of the path-breaking physicist of our time,
Richard P Feynman, gave his classic talk at the annual meeting of American Physical
Society. His talk, entitled "There’s plenty of room at the bottom" [5], crystallized new
ideas which had been around in the physics community for a while, namely the visions
of manufacturing and controlling nanometer-scale devices which could be utilized in
broad range of science and in several technological applications. The idea of possibility
of improving the resolution of imaging devices and minituarizing the electrical circuits
until the inevitable limit, namely the size of an atom, would be reached opened up a
completely new area in the field of physics. Back then, these ideas were just visions
and no practical or technological solutions or methods were available to actually build
these kind of devices.

Today, few decades later, many of these ideas have already realized: Manufacturing
computer chips with 30nm technique has become routine and even single molecules
were squeezed between conducting electrodes. The scanning tunneling microscope was
developed in 1981 which made possible for the first time to actually see individual
atoms and manipulate their positions. As the size of the electronic systems decreases,
many of their physical properties also change on the way. In the single atom or molecule
scale, the electrical and transport properties are determined by quantum mechanics
and the classical descriptions can rarely be applied. This is due to the fact that in such a
small scale, the quantization of charge and individual electronic states take the leading
role for the physical properties. In that case, even small changes, such as single electron
tunneling events can make the difference to the observed physics. A typical example of
such a behavior is Coulomb blockade where the conductance of the nanojunction is
decreased due to the increase in the charging energy which blocks the current flow.
Coulomb blockade effect can be observed in, e.g., tunnel junctions and single electron
transistors (SET) [6, [7].

The theoretical methods become increasingly important as we go into the nanoworld.
There can be no understanding without proper theoretical description, especially when
the observed phenomena are quantum mechanical in their nature. Simulations pro-
vide useful way to find qualitative and quantitative trends for observables and other
quantities of interest by changing the system parameters: changing few parameters in
simulation is much easier that changing the whole test subject in experiment! With the
theoretical methods we can also make predictions of new phenomena, which might
not yet be within reach by the experimental techniques at the moment. So there is still
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plenty of room for theoretical work also.

1.1 Quantum transport — a quick overview

But why to be so enthusiastic about the charge transport? What makes it so special?
The electron transport, especially the phenomena of quantum transport has become
a hot topic since the first experiments on conductivity properties of single molecules
[8, 9, [10]. Charge transport processes are elementary processes which have a funda-
mental role in almost every phenomenon in physics, chemistry and biology. One of
the ultimate goals of nanophysics is to manufacture and control nanometer-scale sys-
tems which could potentially be used as building blocks for future electronic devices.
Every measurement or attempt to control or manipulate a system with such a small
size leads inevitably to electron transport phenomenon and, more precisely, to ultrafast
time-dependent charge transfer where the quantum effects can play very important role.
The fact that the quantum transport phenomenon involves open and interacting systems
driven out of equilibrium where ultrafast time-dependent processes are present, can
open up the door for completely new physical phenomena. It is therefore exceedingly
important to understand these fundamental processes from first principles.

Lot of effort has already been invested to understand both steady-state and time-
dependent transport phenomenon in nanostructures with many different approaches.
The early transport models based on the celebrated kinetic Boltzmann equation de-
scribes the particles with probability distributions f(r,p, t) the dynamics of which is
dependent on the external forces and inter-particle collisions [11, [12]]. This formu-
lation, however, often relies on phenomenological arguments about the microscopic
nature of the scattering processes but usually provides a relatively good starting point
for classical and semi-classical description of electron transport. The extensions of this
formalism, such as the theories based on Wigner functions [[13]] provide a similar frame-
work and have been widely used for studying both quantum and semi-classical trans-
port regime [[14, [15] 16} [17, [18]]. For investigating the truly quantum-mechanical and
ultrafast charge transfer processes with a systematic treatment of the inter-particle in-
teraction, rigorous microscopic theories are needed. While the detailed microscopical
models, such as Time-Evolving Block Decimation (TEBD) method [19], Density ma-
trix Renormalization Group (DMRG) method and its time-dependent version (tDMRG)
[20, 21}, 22} 23]] provide a numerically exact approach for studying interacting quantum
systems in and out of equilibrium, these models are often limited to finite and strongly
correlated systems with short-range interactions neglecting the long-range nature of the
Coulomb interaction. However, these models provide invaluable data for benchmark-
ing the accuracy of other methods [24, 25]. Among the theoretical tools mentioned
above, also the non-equilibrium dynamical mean-field theory (DMFT) has been applied
to study transient properties of strongly correlated systems [26].
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By far the leading formalism for treating larger interacting systems is the Density Func-
tional Theory (DFT) [27, 28, 29]. Density functional formalism maps the problem of
interacting particles into problem of effectively noninteracting particles while keeping
the resulting density profiles the same. The density functional method and its time-
dependent counterpart, Time-Dependent DFT (TDDFT) [130, 31]] rely on the effective
one-particle potential called exchange-correlation potential to capture the electronic ex-
change and correlation effects and has to be approximated. The density functional
method, being very successful for variety of ground-state systems, however has still
severe limitations in the time domain. The proper description of correlation effects and
history- and initial state dependency, important for processes such as charge transport,
excitation and ionization, demands time-nonlocal effective potentials which are still un-
der intensive development. For application of TDDFT approach in quantum transport
the reader is advised to see for example the references [32] [33] 34, 35, 36, [37].

In comparison to the density functional method, the non-equilibrium Green function
(NEGF) method [38],139, [11]] has become an increasingly popular tool to simulate both
steady-state [40), [41], 142} 43| 44, 45| 46| 47, 48|, [49]], transient [|50, 51}, 52| 53], 54, 55,
56, [57, 58], and AC dynamics [|59, |60, [61]]. NEGF formalism provides a systematic,
perturbative approach to handle electron-electron interactions on a different levels
of sophistication via the non-local self-energy operator, comparable to the exchange-
correlation potential in DFT. In NEGF method the self-energy accounts for the Coulom-
bic interactions to infinite order via the pre-determined selection or class of the self-
energy skeleton diagrams, i.e. the Feynman diagrams for the elementary interaction
processes. The focus in this method is then the proper selection of these diagrams. The
NEGF method in combination with the density functional theory has also gained a lot of
interest in modeling realistic and complex transport systems [[62, 163,164, 65]]. The NEGF
formalism, and especially the real-time Kadanoff-Baym approach, has also been applied
to study many-body effects in correlated clusters and quantum dots[l66, 67, 68,169, [70]]
and both real [[71],[72,[73]] and artificial [[74]] atoms and molecules. Although the general
formulation of Kadanoff-Baym method allows for its application to strongly correlated
systems, the recent time-dependent simulations for these systems have also pointed out
shortcomings of this method such as the possible existence of artificial damping in finite
clusters in response to relatively strong perturbations [|66]].

1.2 This work

The work of this thesis is focused on theoretical and numerical modeling of time-
dependent quantum transport in correlated metal-nanostructure-metal junctions using
a real-time NEGF method. This means that we are simulating the real-time dynamical
processes that happen as the electrons flow through and interact in a small and cor-
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related nanostructure after the switch-on of the bias voltage. These processes are, for
example, the development of the transient and steady-state current, charging effects,
excitation effects, polarization effects and so on. As a platform for modeling these pro-
cesses we use a transport setups, where a nanostructure (say, a quantum dot, quantum
wire or molecule etc.) is squeezed between two macroscopic and metallic electrodes.
The nanostructure is in physical contact with the electrodes so the electrons can pass
through it. The word correlation in this context refers to the electron-electron interac-
tions, but it is as frequently used to refer to the electron-electron interactions beyond
the mean-field level. In particular, the part of the interaction which cannot be treated
using effectively non-interacting single-particle equations.

In the simulations, we use the Keldysh-Kadanoff-Baym formalism [38] and its exten-
sion to open quantum systems to model transient response dynamics. This method
is a time-resolved NEGF method and is capable of dealing with electron-electron in-
teractions, memory effects, initial correlation and embedding effects, inhomogeneous
external fields and open systems. It offers a natural framework to model ultrafast time-
dependent quantum transport phenomena and to extract essential information out from
it via the basic quantity, the one-particle Green function. Instead of modeling the trans-
port phenomenon quantitatively with a detailed and atomistic description of lead band
structures, central regions and hybridization links, in this work I focus on qualitative
transport properties described by model Hamiltonians, with an emphasis on the time-
dependence and electron correlations. How do the electron correlations and initial cor-
relation effect influence the transient currents flowing through the system? How does
the dynamics of the lead regions behave and how does the image-charge effects influ-
ence the transport properties? These are some of the fundamental questions that are
investigated in the work of this thesis.

This thesis is organized as follows. In chapter [2] I first describe the theoretical foun-
dations of the non-equilibrium Green functions and Kadanoff-Baym formalism. In the
chapter [3|the Kadanoff-Baym method is then extended to open systems where the main
subject of interest is the modeling of two-terminal quantum transport. In section [4] I
show the numerical solutions of the embedded Kadanoff-Baym equations for various
cases of transport. The Section |5|is then dedicated for conclusions and outlook.
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In this chapter, the theoretical foundations of many-particle systems and quantum field
theory are reviewed. The purpose of this section is to give an overall description of the
non-equilibrium Green function theory and Keldysh formalism. For more detailed and
extensive review of the non-equilibrium Green functions and Kadanoff-Baym equations,
the reader is advised to look into Refs. 138} 39, [75, [76].

2.1 Many-particle systems

In quantum theory of many interacting particles, the system of interest is modeled
with a Hermitian Hamiltonian operator H operating in a linear space called Hilbert
space. Consider a system of N particles subjected to an external field u and interacting
with each other and with a positive background via a long-range interaction w. The
Hamiltonian operator describing this interacting many-particle system is given by

1 N N N, N 1 N
H(t)= —EZ:V? + ZZZJW(ri’Rf) + Zl:u(ri, t)+ EZW(ri’ri)‘ 2.1

i=1 j= i#]

The first part describes the kinetic energy of the individual particles, the second part
represents the interactions of each particle with the positive background formed by
N, fixed nucleus with each having the charge Z; placed at R;, j = 1...N,. The third
term u(r;, t) is the external potential for the electron at r; and it can be generally time-
dependent. Finally, the last term describes the long-range interaction between the par-
ticles, where the one half multiplier takes care that the interactions are not calculated
twice. We also assume that the interaction term is symmetric in the spatial coordinates,
so we have that w(r;,r;) = w(r;,1;). We have also adopted atomic units for the Hamil-

tonian, i.e., we have set e = i = m, = 1 to simplify the quantities.

Let us first assume that the external field is time-independent. According to the time-
independent Schroédinger equation, the Hamiltonian H operated on the wave function
U, (x4, ...,Xy) (which we assume to be the eigenstate of the Hamiltonian) returns the
corresponding energy, E,, of that state: HW, (X, ...,Xy) = E ¥, (X, ...,Xy). Here I have
denoted x; = (r;, 0;), where o; is the spin quantum number of particle i. The eigen-
states W, (xy,...,Xy) then contain all the information about the ground state (k = 0)
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and excited states of the physical system. For Bosonic systems, the wave function is
symmetric with respect to an interchange of two particles whereas for Fermionic sys-
tems, such as electronic systems, the wave functions are antisymmetric with respect to
an interchange of two particles, i.e.,

WX, ey Xy eees Xy ooes Xy ) = EW(Xy, 000 Xy oo, Xy o0, Xy ), (2.2)
where the upper sign (+) refers to Bosons and lower sign (—) to Fermions. This sym-
metry property for Fermions is known as the Pauli principle and it states that no two
particles with equal quantum numbers can occupy the same quantum state.

If the system is then subjected to a time-dependent perturbation, its dynamical behav-
ior is governed by the time-dependent Schrédinger equation, (i3, —H(t))¥(t) = 0 with
a suitable initial condition provided by the solution of the time-independent problem.
The knowledge of the stationary or time-dependent N-particle wave function would
allow us to calculate all the ground state properties and dynamical quantities such as
currents, densities, dipole moments, excitation and ionization energies and other ob-
servables of great interest with guaranteed satisfaction of conservation laws. The exact
solution of the Schrodinger equation becomes, however, increasingly complex as the
size of the system increases: The general N-particle wave function is dependent on 3N
spatial coordinates and if each coordinate has p entries the wave function is dependent
on p3N data entries which increases dramatically as the particle number N is increased.
This then renders any practical exact methods inapplicable and other, approximative
methods must be employed to treat equilibrium and non-equilibrium many-particle
systems.

2.2 Second quantization

For the description of non-equilibrium processes, it is preferable to switch from the
wave function -based framework, often referred as the first quantization, to operator
-based framework where the particles can be added to the system and removed from
the system via creation and annihilation operators. This framework is called second
quantization and it is the starting point for the perturbation theory and theory of non-
equilibrium Green functions. Let us go through the essential points of this formalism
and restrict our study to concern only Fermionic systems.

The creation operator, v f(x), operated on an N-particle state vector |X;, ..., Xy) of N-
particle Hilbert space ), creates a particle to the system to position-spin coordinate
x whereas the annihilation operator 1)(x) removes a particle from the system from
position-spin coordinate x. Explicitly, we have the following relations defining the ac-
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tions of these Fermionic field operators on the N-particle state

wT(X)lxlj--uXN) = |X1,...,XN,X>, (23)
N

PNy, o Xy) = D CDN O = XKy, X1 K1 oo Xyy). (24)
k=1

Here, the N-particle state [|xq,...,Xy) € ) is transformed into N + 1-particle state
X1, ..., Xy, X) € Hy,, Via the creation operator whereas the annihilation operator trans-
forms it into linear combination of N — 1-particle states (€ %,_;). Thus, the creation
and annihilation operators provide mappings between the Hilbert spaces of different
number of particles. Let us denote the collection of different particle number Hilbert
spaces as Fock space & = {#,, 74, ..., 7y, ..}. Then, any N-particle state |xy,...,Xy) €
6, can be obtained by consecutive application of creation operator on the empty O-
particle state |0) € 5,

Xy, .00 Xy ) = ‘pT(XN)---UJT(XJm)- (2.5)

By the definition of the creation and annihilation operators and (2.4), all the
many-body properties and also the symmetry properties of the N-particle wave
function ¥(x;,...,Xy) = (Xy,...,X1|¥), |¥) € H will be automatically built in to the
properties of 1 (x) and v (x). Explicitly, in the case of Fermions, the antisymmetry of
the wave function is mapped into the anti-commutation rules for the Fermionic field
operators

{$'0,9$x)} = s(x-x),
{47,970} = o, (2.6)
as can be easily checked from the definitions (2.3) and (2.4). Within the second quanti-
zation, any one- and two-body operators can be written in terms of the field operators.

The action of a general one-body operator O of N-particle Hamiltonian can be written
as

N

D o(x)Ixy, Xy

i=1

= f Xm[)T(X)O(X)’(/;(X)lXD T XN)) 2.7)

lelz'” JXN)

where the integral denotes the integration over the position coordinate and summation
over the spin degree of freedom: fdx = ZG f dr. A special and very useful one-body
operator is the density operator 7i(x) which is defined as

AX)[xy, -+, Xy) = 1/3"(X)1/3(X)|x1,--- , Xy )
= Z(S(X—xi)lxl,---,xi,---,xN). (2.8)
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Now, by employing this expression for the density operator together with the anti-
commutation rules (2.6)), we can also write the two-body operator W as

Wlxlju'sXN) = _ZW(XU ])lxls"'s 3'”5Xj7”')XN>
i#j

= EfdXdyW(x;Y)QIST(X)’(/;T(Y)#;(Y)Q/;(x)|xl:"':XN>' (2.9)

The full many-body Hamiltonian (2.1]) is then given by

- - N 1 I I
H(t) = J dx ' (h(x, ) (x) + EJ dxdyw(x,y)Y' )¢ (¢ x),  (2.10)

where the one-body part contains the external field and the background potential,
1 Ak
h(x, t) = —§V2 —ZZJW(I‘, R;) +u(r, t), (2.11)
j=1

and the long-range interaction for Coulombic systems has the behavior w(x,y) ~ 1/|r,—
r,|. Equation is nothing more than a reformulation of the original Hamiltonian
operator in terms of field operators in coordinate representation. Let us next turn our
attention to non-equilibrium dynamics and review some useful definitions from time-
dependent quantum mechanics and statistical physics. We shall later use them to intro-
duce the main statistical quantity of the NEGF formalism, the Green function.

2.3 Nonequilibrium dynamics

2.3.1 Evolution of many-body states

Consider a normalized N-particle wave function |¥(t)) € 54, which satisfies the time-
dependent Schrédinger equation [id, — H(t)]|¥(t)) = 0. The time-evolution of the
state |¥(t)) from its initial configuration |¥(t = t,)) = |¥,) can be characterized by
introducing a time-evolution operator U(t,t,)

[W() = U(t, o) ¥(to))- (2.12)

Since the wave function |W¥(t)) satisfies the Schrodinger equation, it can be easily shown
that the evolution operator obeys the following equations

i0,U(t,t) = H()U(t,t),
i0,U(t,t") = —U(t,t"HH(t), (2.13)
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with the boundary condition U(t, t) = 1. If we now integrate the first equation of (2.13)
from t’ to t (t > t') and iterate the resulting equation, the time-evolution operator
acquires the form known as Dyson series

00 -\ t t t
. —1 . . .
U, t)=1 +Z( n') J dt1J dt2-~-J dt, 7 [H(t)H(t,)---H(t,)], (2.14)
n=1 : t/ t/ t/
which can be written compactly as
U(t,t)Y=T {e‘ifrtfdm@} (t > t)). (2.15)

In the Eq. (2.14) we introduced so called time-ordering operator J which in its general
form reads

Q[Al(tl)Az(tz)"'An(tn)]
= Z(_l)FPQ(tP(l)J tp2))0(tp2ys tpz)) ** O(tpn1)s tpan)
P

XAP(l)(tP(l))AP(Z)(tP@)) o ‘Ap(n)(tp(n)),
(2.16)

with 6(t,t") =1 if t > t’ and zero otherwise. The time-ordering operator simply con-
structs all the possible chronological products from the operators A;,A,,---A_ where
the operators with later times are located to the left. It should be kept in mind that
the Hamiltonian operator H is a Bosonic operator since it contains an even number
of Fermionic field operators. In case that some of the operators A, (t,) are Fermionic,
the parameter F, denotes the number of interchanges between the Fermionic operators
during the construction of desired ordering. For example, for two Fermionic operators
A (x,t;) and A,(x,t,) with t; # t, we have

T [A (% t)A(x,5)] = 0(ty, to)A; (%1 61)A, (X t5) — O(t, t1)A, (X t5)A (%, 11),
= =T [A)(x,t:)A(x1t1)] - (2.17)

In the limit of equal times, we define that the time-ordering operator leaves the ordering
untouched, i.e., we have that

T [Al(x1t)A2(X2t):| :A1(X1t)A2(X2t) (2.18)

The time-ordering operator should not be confused with regular Hilbert space opera-
tors, since it does not operate on wave functions or state vectors. A similar derivation
can be performed also for the case where t < t’ which gives

U(t,th)Y=9 {e‘if:fd”:“f)} (t<t)), (2.19)
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and describes the backward time-propagation of a state from later time t’ to earlier time
point t. Furthermore, the time-ordering operator is replaced with the anti-chronological
time-ordering operator

g[Al(tl)AZ(tZ)“'An(tn)]
= Z(—l)FPQ(fpu) — tp))0(tpay — trzy) ++ O(tpiuo1y = trm))
p

XAP(n)(tP(n))AP(n—l)(tP(n—l)) . 'AP(I)(tP(l));
(2.20)

ordering the operators with earliest times to the left.

Since the norm of the time-dependent wave function (W(t)|¥(t)) must be conserved
in the time-propagation, it follows that U is unitary: U'(t, t,) = U~'(t, ty) = U(ty, t).
Moreover, U also satisfies the group property U(t,t") = U(t,t)U(t,t’), i.e. the propaga-
tion over a specified time-interval can be performed in a piecewise-continuous manner.

2.3.2 Statistical averages and time-dependence

Let us next consider statistical averages of operators and the time-evolution of ensem-
bles when they are subjected to time-dependent perturbations. An ensemble is a col-
lection of identical and isolated systems where each of these systems is in a unique,
normalized state characterized by |¥;). Upon a measurement, the corresponding prob-
ability to find the system in a state |¥,) is given by p; with the constraint »_ :pi = 1.The
ensemble average of an operator O is then defined in the following way

(0) = p(¥]01w), 2.21)

which is simply a weighted sum of the quantum averages with respect to the individual
states of the ensemble. A useful way to characterize the ensemble of systems is the
so called statistical density operator p = > pil¥;)(¥;|, which allows us to write the
ensemble average of the operator O as

©) = Y p(wloIw),
= > p{¥12,)(2,|01%,),
i,k
= Tr{p0}. (2.22)

Here the trace Tr{A} denotes the expectation values of an operator A with respect to the
many-particle states |®,) of the ensemble.
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It is our interest to study processes where a system is initially (t = 0) in equilibrium
and we then switch on the external field to drive the system out of equilibrium. For this
purpose, we need to consider canonical averages which are able to describe systems
in thermal equilibrium with the environment. We know from the statistical physics
that there exists a density operator, which considers the ensemble in contact with a
heat/particle bath thus allowing heat and particle exchange between the bath and the
ensemble. Such a system-bath configuration has a well defined and unique chemical
potential u and in the equilibrium condition they are at the same temperature T. The
density operator for this Grand canonical ensemble is given by

p = 1 o~ BH- .UN)
fZ’
(0.9] o0 1
= ZZPN [Un ) (Pn | 5 Py, = —e Pl N) (2.23)
N=0i=1 z

where % = Tr{e ##-#")} is the partition function, f = 1/ (kg T) is the inverse temper-
ature with k; the Boltzmann constantﬂ and u is the chemical potential coupled to the
density operator N of the system. The Py, gives the probability for the system to have N
particles and to be in the state ¥y ) from all the possible individual N-particle ensem-
ble states. The energy corresponding to the N-particle state ¥y ) is then given by Ey .
Now, according to equation (2.22) the equilibrium expectation value of the operator O
in the Grand canonical ensemble becomes

(0) = %Tr {e7PE1D0Y

1 o o0
= EZZ‘? B(Ey, HN) i|O|‘IINi>’

N=0 i=1

e PE (U, |O|
— 2 "! | ">, (2.24)

D e

where in the last step the summation is performed over the multi-index k = (N, i) char-
acterizing the many-particle states in the Fock space and the energies E;, = Ey, — uN are
associated to the grand canonical equilibrium Hamiltonian H, = H — uN for t < t,.

If we now switch on a time-dependent perturbation at t = t,, each of the individ-
ual states of the ensemble, | ¥, ), will evolve in time according to |¥,(t)) = U(t, t,)|¥,).
The expectation value of the operator O, i.e. the equation (2.22) together with (2.24)),

'From now on we set ky = 1



12 Theory

can then be extended to time-domain as

(O(0) = D P60 (),
k
1 . - P
= 5 2 HETt, 000t )W),
k

1 ~ ~
= % ; e_ﬁEk <‘Ifk|OH(t)|\pk>:

= Tr{pOH(t)}, (2.25)
with the statistical density operator
e_ﬁHO

— P (2.26)

p:

In equation (2.25) we defined a Heisenberg picture representation of the operator O:
Op(t) = U(to, 1)OU(t, o), (2.27)

which captures the time-dependence from the many-particle states into the operators
themselves. In the Heisenberg picture, the operators satisfy the Heisenberg equation

2 04(t) = [04() Hy(0)] +i [ 20 2.28
157000 = [0u(0. Bu(0)] +1 57000 (2.28)

which follows directly from the equations (2.13). This allows us to track the time-
evolution of the expectation values as

10, (0(6)) = ([0u(0), Hy(D)] ) +i ((2,0(1)),, ) (2.29)

2.3.3 Keldysh contour

The equations (2.25) and provide now an abstract way to evaluate the time-
dependent expectation values of operators using the forward and backward time prop-
agators and then evaluating the statistical average in the grand canonical ensemble.
However, this equation can be made more general by extending the definition of the
time-evolution operator and the time-ordering operator. If we look at the definition of
the forward time-evolution operator and the statistical density operator (2.26)
it can be noticed that the Boltzmann factor e #% appearing in can be written in
terms of the evolution operator as

e P = U(t, — i, t,). (2.30)
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to —if

Figure 2.1: Keldysh contour consisting of forward (t_) and backward (t, ) real-time branches and the
thermal imaginary track ranging from t, to t, —if3.

This now corresponds to an imaginary time-propagation from t, to t, — i3 with the
Hamiltonian H,. The expectation value (2.25) then attains the form

(6(6)) = Tr {U(t — iB, to)U(to, )O(D)T(t, to) }
= Tr {U(t, — 1B, )}

Equation (2.31)) can be interpreted as forward time-evolution of the system from ¢,
to t where the operator O(t) acts and then backward propagation from t back to t,
followed by the imaginary time-propagation from t, to t, — if3. By the introduction
of the imaginary time-propagation (2.30), it is then natural to extend the meaning of
time-argument from purely real times t to complex times z where the complex time
argument z belongs to the time contour depicted in Fig. This contour, consisting
of forward (t_) and backward (t,) real-time branches and the imaginary equilibrium
branch, is called the extended Keldysh contour which we from now on simply call the
Keldysh contour.

(2.31)

In fact, the piecewise time-propagation procedure of equation (2.31) can be thought of
as a forward time-propagation along the Keldysh contour. Since each time-evolution op-
erator is known on the different branches of the contour, we may write the expectation
value (2.31) compactly as

Tr{ﬂc [e_ifcdm(i)()(z)}}
(o [e T}

where 7 is now the contour time-ordering operator, the same as in the equation (2.20)
but the time-indices on the Keldysh contour C.

(0(2)) = (2.32)

To conclude this subsection, we have derived the equation (2.32]), which describes the
time-evolution of the expectation value of operator O in response to the external time-
dependent perturbation. The equation (2.32)) takes into account correctly the initial
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state before the time-dependent field is switched on and this initial state describes the
system in thermal equilibrium with a heat/particle bath. It should be noted that the
time-evolution is, however, performed for the system which is disconnected from the
heat/particle bath, i.e., the heat bath is used only to prepare the initial state for the
system under investigation.

This expectation value can be extended to more than one operator and it opens up a
way to define correlation functions. For example, consider the operators 0; (1), 0,(2),...,
Oy(N), where 1 = (x,t;),2 = (Xot,),...,N = (xyty) are the collective indices for
position-spin and time coordinates. Then we can define a general N-point correlation
function C(1,...,N) on the Keldysh contour as

C(L,...N) = (F[014(1)0,4(2)...0yx(N)])

= Tr{U(to —if,t0) 7 [Ol,H(l)OZ,H(Z)'"ON,H(N)] } (2.33)

Tr{ﬁc [e—ifcdzH(z)} }

Usually, in the context of quantum field theory, the operators O,(k) are replaced by
the field operators and these correlation functions are then called Green functions. In
the next chapter we take a deeper look into this concept and define the main tool of
NEGF formalism, the one-particle Green function. We also inspect the properties of
this correlation function and derive the equations of motion for the one-particle Green
function on the Keldysh contour.
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2.4 Nonequilibrium Green functions

In the following discussion, we shall restrict ourselves to Fermionic, such as electronic
systems only.

2.4.1 One-particle Green function

The basic quantity in the theory of non-equilibrium Green functions is the one-particle
Green function G(1,2) which is defined as the expectation value of contour-ordered
product of creation and annihilation operators in the following way:

{7 [ ler O gy }
G(1,2) = —i S TTCSTAY , (2.34)
Te{0(to —iB, t0) e [¥u(DY](2)]}
o Tr{U(to—iB,to)} ’
= —i(T [Pu(P;(2)]). (2.36)

This definition describes a process where a particle is created to the system at (x,t,) = 2
and the N + 1-particle system is then evolved in time until a particle is removed from
the system at (x;t;) = 1. Depending on the relative time-ordering of the field operators,
the same procedure can be performed for holes, i.e., for particle removal process. In that
case, a particle is removed from the system at (x;t;) = 1 and the ionized N — 1 -particle
system is evolving in time until a particle is added back to the system at (x,t,) = 2. In
other words, the Green function gives the probability amplitude for a process where a
particle or hole is created into the system at some position and then removed later from
a different position. This process is often visualized as a particle/hole propagation in the
system. It is easy to check from the definition that the Green function satisfies important
boundary conditions, the so called Kubo-Martin-Schwinger boundary conditions, which
are given by

(2.35)

G(xto—iB,2) = —G(x,ty,2), (2.37)
G(1,x%,t0— i) = —G(1,%,t,). (2.38)

These boundary conditions are fundamental properties of all the Fermionic Green func-
tions defined by and they are valid for higher order Green functions as well. The
KMS boundary conditions are used to determine unique solutions for the equations of
motion as we shall see later.

Let us now look explicitly into the different time-orderings of the creation and anni-
hilation operators on the Keldysh contour. We can write the Green function in two
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pieces:
G(]-’ 2) = 6(21122)G>(1’ 2) + 0(22: Zl)G<(1; 2): (239)

where 6(z,,2,) is the contour step function

1 2, later on the contour than z,

0(21,2,) = { (2.40)

0 2, earlier on the contour than 2,

Here we introduced the greater (G”) and lesser (G~) Green functions

G7(1,2) = —i(Pa(P}(2)), (2.41)
G(1,2) = +i (Y5 2,1)). (2.42)

In the definition of the lesser Green function, an extra — sign is introduced due to the
interchange of the Fermionic operators by the contour ordering operator. The greater
and lesser Green functions are now the particle and hole propagators and they contain
the information about the dynamics of N + 1-particle system (electron affinities) and
N — 1-particle system (ionization) correspondingly. Furthermore, it can also be easily
checked that the greater and lesser Green functions obey very useful symmetry relations

[G§(1,2)} T _es), (2.43)

[G>(x1t,x2t) - G<(x1t,x2t)} = —i6(x; — Xy). (2.44)

From the lesser and greater Green functions we can derive so called Retarded (G*) and
Advanced (G?) real-time Green functions

GR(1,2) = Q(tl,tz)[G>(1,2)—G<(1,2)},

= —i0(ty,t,)A(1,2), (2.45)
GA(1,2) = —Q(tz,tl)[G>(1,2)—G<(1,2)],

= 10(t,, t1)A(1,2), (2.46)

where we also defined the spectral function A(1,2) as

A(1,2) = i[G>(1,2)—G<(1,2)], (2.47)
= ({du), 95 2)}).

The retarded and advanced Green functions encapsulate both the ionization and elec-
tron addition processes into one correlation function with a restricted action in the time-
domain. It can be checked effortlessly that the retarded and advanced Green functions
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are related to each other and to lesser and greater Green functions via the following
relations

GR(1,2) - G%1,2) = G7(1,2)-G<(1,2), (2.48)
[G"(1,2)]" = G642, (2.49)

The lesser and greater Green functions (2.41)) gives also rise to two mixed time-variable
Green functions

G1(1,2) G=(Xt;,Xoty — iT5), (2.50)
G'(1,2) = G™(X3to—iTy,Xty), (2.51)

where the other time-argument lies on the real-time axis (t;,) and the other one is
on the imaginary track (7,,) of the Keldysh contour, 7,, € [0, 8]. By construction,
these components will play a role in accounting the initial correlations and initial state
dependence from the vertical track of the time-contour. Finally, apart from the mixed
Green functions, we can define the equilibrium, or Matsubara Green function GM where
both of the time-arguments lie on the imaginary track of the contour:

G"(1,2) = G(xyto—1iT1,Xto —iT5),
0(71, T2)G™ (Xt — 1Ty, Xty — iT5) + 0(T2, T1)G™(Xy o — iT1, Xp b0 — iT5).
(2.52)

This Green function, being completely real-time independent, corresponds to the ground
state and also the initial state for the system under investigation.

2.4.2 Connection to observables

The Green function provides a direct access to several interesting properties of the
system. For example, the equal-time limit gives directly the particle spin density at
space-time point 1 = x;t;

(A1) = (Ph((1)) = —iG=(1,17), (2.53)

and the total number of particles at time t; can be obtained by integrating particle
density over spatial coordinates

Ny (t1) = _iJ dx;G=(x;t1,%; tD (2.54)
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Furthermore, the expectation value of any one-body operator O can be obtained via the
equal-time lesser Green function

x'=x

(0(0)) =—iJdx{o(x’,t)G<(xt,x’t+)} , (2.55)

which can be extended to include the interaction energy as well and thus obtain the
total energies of the interacting quantum systems, such as atoms and molecules [[72]]
via the Galitskii-Migdal formula [[77, 39]

E(ty) = (H(ty))
= —%fdxl{[i8t1+h(1)} 6*(1,2)} .

2.4.3 Spectral properties from the Green function

As already mentioned, the Green function contains the information on the induced dy-
namics of a particle/hole propagation in the system. In fact, with a simple derivation
of so called Lehmann representation, following directly from the definition of the
Green function, it can be seen that the frequency space lesser and greater Green func-
tions are peaked at the removal and addition energies of the system. For unperturbed
and isolated system at zero temperature the real-time expressions of these functions
are given by

: —iel (- *
G<(1,2) = +i) e gk (x)gk (x,), (2.57)
P
. Nt (p N
G7(1,2) = —i) e gk (x))gk (x,), (2.58)
P
where €} ' =Eyy —E;y_; and €} "' = E y 1 — Eqy with Eg y, Ej v+ the ground state

energy of N-particle system and k’th energy of N =+ 1-particle system correspondingly.
Moreover, g]’f,_l(xl) = (¢k,N—1|¢(X1)|\PO,N> and g§+1(x1) = (‘I’O,N|1/;(X1)|q’k,1v+1> are the
amplitudes corresponding to the phase factors e} ' where the states [ ¥, y) and |®; y1)
are associated to the energies E, y and E; y.,. The functions and oscillate
in relative time t = t, — t, with the energies e} "' and e} " which equal the ionization
potentials (removal energy of an electron) and electron affinities (addition energy of

an electron) of the system. If we then Fourier transform the real-time Green functions

(2.57) and (2.58)) to frequency space according to

de .
Gg(xl,xz,w) = fz—e“‘”G§(x1,x2, t), (2.59)
T



2.4 Nonequilibrium Green functions 19

2
A
//\‘L
N A%
\\\ z
N
\\\{:
\\5
< T htl
G (t1,t2) AN 2
holes
>
G (t11t2) \\\
particles
> t1

Figure 2.2: The double-time plane cartoon of the Green functions GS(t, t’).

and use the spectral representation for the delta function

dt .
6(w) = —e'®t (2.60)
2T

we obtain the frequency space formula for the particle and hole propagators

G§(X1,X2: w)=+i Z gzlf,;l(xﬂ gﬁ;l(xz) o(w — Egﬂ s (2.61)
k
with a characteristic delta-peak structure.

In the similar fashion we can construct more general non-equilibrium spectral function
(2.47) in w-space by transforming it with respect to the relative time coordinate t =
t, — t, for a given center-of-time coordinate T = (t; + t,)/2:

dt e - t t
27 2 2

which reduces to normal Fourier transform when the system reaches time-translational

invariance. The figure demonstrates the Green function components in double-time

plane together with the time-axis t.

The spectral function is closely related to the density of states (DOS) which can be
obtained by simply taking the trace (integrating) over the spatial degrees of freedom.
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Furthermore, for finite temperatures, the Green function and the spectral function are
related to each other via fluctuation-dissipation theorem

G (w) = if(wAw), (2.63)
G (w) = —i[1- f(w)]A(w), (2.64)

which relates the fluctuations contained in the particle and hole Green functions G(w)
to the dissipative effects described by the spectral function A(w) via the Fermi distribu-
tion function f (w) [[11]]

flw) (2.65)

- eflo—u) 4 1°

For infinite or embedded and correlated systems the level structure described by the
series of delta-functions (see Eq. ) broadens and the well-defined single-particle
spectrum transforms into a quasiparticle spectrum with a finite lifetime specified by the
broadening. As we shall see later, the electronic correlations and embedding effects can
give rise to substantial broadening and damping to the Green function which reflects to
the spectral properties and physical observables.

2.4.4 Equation of motion and the self-energy

Now, as we have defined the one-particle Green function, we can derive the equation
of motion for it. Let us first consider the Heisenberg equation for the creation
and annihilation operators. By applying equation ll to (1) and 1[);(1) with the
Hamiltonian (2.10), we get with a simple derivation

i0,%y(1) = [¢Pu(1),Hy(z1)],
= h(yYy(1)+ f d2w(1, 201 (29 (2) (1), (2.66)

i0,95,(1) = [¢5(1),Hy(z1)],
= —h(l)z/i};(l)—fdzw(l,z)zﬁz(l)zﬁ}z(z)%(z) (2.67)

Here we introduced a shorthand notation 1 = (x,2;) and the integration is performed
over the space, spin and over the time contour: fd2 = f dx, f . d%,. Furthermore, the
two-body term is written compactly as w(1,2) = 6(2,,2,)w(X;,X,), where the 6(2;,2,)
is the contour delta-function.
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If we now take a partial time derivatives from the Green function (2.39) and use (2.41])
with the above equations for the field operators we obtain

i9,G(1,2) = 5(1,2)+h(1)G(1,2)—iJd3w(1,3)G2(1,3;2,3+), (2.68)

-i9,G(1,2) = 5(1,2)+h(2)G(1,2)—iJd3w(2,3)G2(1,3_;2,3), (2.69)

where we denoted 6(1,2) = 6(x;,X,)6(21,2,) and defined the two-particle Green func-
tion G,(1,3;2,3%):

Gy(1,3;2,3") = +(Z [du(WAaGB)L2)])
= — (7 [uWPuWLEPL2)]) (2.70)

Here n* (n=1,2,---) means that the time-argument is taken infinitesimally later (4)
or earlier (=) on the contour, i.e., n* = lim, _{x,,2,=n} and the limit is taken after the
time-ordering to keep the field operators in the correct order. The two-particle Green
function contains two creation and annihilation operators and it then describes the
propagation of two particles, two holes, or a particle and a hole in the system depend-
ing again on the relative time-orderings of the field operators. The two-particle Green
function arises now from the commutator of the field operator with the two-body inter-
action term which actually describes the scattering of particles in an interacting system.
Therefore, to be able to determine the time-dependence of the one-particle Green func-
tion, we should have knowledge on the time-dependent two-particle Green function
which we know only by solving the kinetic equations for G,. However, as we have al-
ready seen, due to the interaction term in the Hamiltonian, our kinetic equations for G,
will be dependent again on the three-particle Green function G;. In fact, this hierarchy
between the Green functions continues and the determination of a general n-particle
Green function

Gy, 1, ,n) = (=) (T [Pu(D) - (P ()P (1] ), 2.7D)

demands the knowledge of n + 1 -particle Green function. These higher order Green
functions describe the processes that may occur as an additional interacting particle
is propagating in the system, i.e., they contain the information of all the higher order
scattering processes induced by the propagating particle.

A general strategy to continue from here is to cut the hierarchy for the Green functions

and to close the equations of motion by introducing electronic self-energy operators o™®
and 2M® in the following way:

—inBw(l,B)G2(1,3;2,3+) = stzMB(LB)G(B,z), (2.72)

—idew(z,B)Gz(l,S‘;z,B) = Jd3G(1,3)iMB(3,2). (2.73)
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It is not difficult to show that the self-energies are actually the same, ¥® = $MB,
Now, by closing the equation of motion for the Green function, we encapsulate all
the complicated electron-electron interaction processes into the self-energy and the
remaining problem is then to find suitable approximations for this quantity.

The self-energy insertion can be thought of as a scattering potential where the particle
propagates and the sophistication of the self-energy determines the mechanisms how
the electrons are interacting with each other. This will have a major influence on the
physical properties that the Green function is able to capture from the system. With the
introduction of the self-energy, the equations of motion can then be written compactly
as

{iazl—h(l)}G(l,Z) - 6(1,2)+JdBZMB(l,B)G(B,Z), (2.74)

{—i@zZ . h(2)}G(1,2) — §5(1,2) +f d3G(1,3)ZM8(3,2). (2.75)

The simplest solution to the equations of motion (2.74) and (2.75) can be obtained by
simply switching off the long-range interactions, w = 0. The equations of motion for
the resulting noninteracting Green function g, then simply reads

{ié’zl—h(l)}go(l,Z) —= 5(1,2), (2.76)
{—iﬁZZ—h(Z)}go(l,Z) — §5(1,2), 2.77)

which have the solutions
g5(1,2) = Uz, 20)85 (%120, Xo20)U (20, 22), (2.78)

where U and U are the time-evolution operators operating into the direction specified
by the arrow. Moreover, the quantities g, (x;2,,X,2,) are the initial density matrices

Tr {e_ﬁﬁolﬁT(Xz)‘ﬁ(xl)}

g5 (%120, Xp%) = i e , (2.79)
Tr {e ou) (%)Y (x,)
g5 (X120, X020) = —i { o {e_ﬁlho} = } (2.80)

with h, the noninteracting Hamiltonian on the vertical track of the Keldysh contour.

The noninteracting Green function can also be used to transform the integro-differential



2.5 Self-energy approximations and conservation laws 23

equations of motion (2.74) and (2.75)) to equivalent integral equationsﬂ

G(1,2) = g0(1,2)+Jd3d4g0(1,3)Z}MB(3,4)G(4,2),

and the KMS boundary conditions guarantee the uniqueness on this solution. In fact,
the boundary conditions for g, automatically provides the correct boundary conditions
also for the full Green function G. Equation is generally known as the Dyson
equation and it provides a way to obtain iterative solution to the full interacting Green
function starting from a noninteracting or mean-ﬁeldﬂ g, and a selection for the self-
energy. Let us next derive self-consistent and conserving many-body approximations for
the electronic self-energy, which is the key quantity in including the electron correlation
effects into the dynamics of the Green function.

2.5 Self-energy approximations and conservation laws

2.5.1 Hartree-Fock and 2nd Born approximations

The self-consistent self-energy approximations can be obtained by expanding the full
interacting Green function in powers of the two-body interaction w and this
perturbation expansion of G is probably the most popular way to introduce self-energy
operator and to construct higher order approximations for it. This method will also lead
to the Dyson equation (2.81) with an irreducible electronic self-energy insertion M®
[39,75]]. However, an alternative approach based on variational derivatives can be used
in determining X for different level of sophistication. The basic idea of this method is to
investigate how the variations in the external potential v affect the one-particle Green
function, i.e., we are interested in the quantity 6G(1,2)/6v(3). For this purpose let us
calculate the functional derivative directly from the definition of the Green function
(2.35)

!One can obtain this by simply multiplying the first (second) equation of motion with g,(1’,1)
(g0(2,17)), partial integrating over the 1 (2) variable and using the KMS boundary conditions together
with the fact that the Green functions go to zero when the separation of the spatial variables becomes
large.

2We will see this in the next subsection, where we consider different many-body approximations for
the self-energy.
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s61,2) 5 | T{% [ pai@] )
= —i

sv(3)  &v(3) Tr{?c [e—ifCH(i)dz’:I} ’

) _‘Tr{(% 555 [emoe ] i) |}

= —i Tr{ﬂ'c [e_ifcﬁ(i)df} }

A e o e )
i Tr{ﬂc [e_ifcg(g)dg] }Tr{ﬂc [e—ifCH(i)dg} } .

(2.82)

This equation simplifies when we insert the explicit functional derivative of the contour
evolution operator

o —i [ HA(z)dz _ —i [ H(z)dz . 5H(5) _
7\ L) = ‘%{e e X{_IL 5v(3)d2}}’

= 7 {—i e O ﬁ(s)}, (2.83)

since

SH(z) = f dx 5v(x2)A(x). (2.84)

In the last step of equation (2.83) we have inserted a contour time-argument t, into
the density operator 7(3) = fi(x5t5) to take into account the different time-orderings by
the contour time-ordering operator. The equation (2.82) now becomes

5G(1,2) e
sy - G(13230+1n(3)6(,2), (2.85)
= —Gy(1,37;2,3)+i(A(3))G(1,2), (2.86)

where G,(1,3;2,3") (G,(1,37;2,3)) is again the two-particle Green function (2.70). It
is worth stressing that, since the one- and two-particle Green functions satisfy the KMS
boundary conditions, also the 6G(1,2)/6v(3) satisfies the same boundary conditions.
Solving the equation for —iG, and inserting it back into the equations of motion
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and (2.69), we get
{iazl—h(1)}c;(1,2) — 6(1,2)+G(1,2)Jd3w(1,3)(ﬁ(3))

i | d3w(1,3 9G(1,2) 2.8
+1 W( , )T(B), ( . 7)
{-ia, -n2}6(1,2) = 5(1,2)+G(1,2)Jd3w(2,3)(f1(3)).
| d3w(2,3 5G(1,2) 2.88
+i w(2, )T(S) (2.88)

Let us next find an explicit expression for 6G(1,2)/6v(3) by calculating the variation

of equations (2.74) and (2.75)

, 5G6(1,2) 5%(1,4)
{lazl—h(l)} e 6(1,3)G(1,2)+Jd4 5 642
+J d4x(1,4) 5?5:':;)2), (2.89)
, 5G(1,2) 5G(1,4)
{—l@ZZ—h(Z)} 5 = 5(2,3)G(1,2)+Jd4 5y 42
+J d4G(1,4) 5;(?:;)2). (2.90)

These equations can now be solved for 6G(1,2)/6v(3). For example, by multiplying
(2.89) with G(1’,1) and partial integrating over the space-time variable 1 we obtain

Jd1G(1’,1){iazl—h(1)}5§v((1?’))2) s Jd1{{—iazl—h(1)}G(1’,1)}5§v((1§)2)

J ) 5G(1,2)
+ | d1d4G(1',4)x(4,1)

gom 0G(1',2)
6v(3) ov(3) ’

(2.91)
where in the first step we used the KMS boundary conditions (2.37) for G and 6G/dv
and in the second step the equations of motion (2.75)). This gives directly the expression
for 6G(1,2)/6v(3)

5G(1,2) 5%(4,5)
ov(3) ov(3)

A similar procedure can be also done for the adjoint equation (2.90)). Let us now define
a so called vertex function I'(12; 3)

= G(1,3)G(3,2)+J d4d5G(1,4) G(5,2). (2.92)

0%(1,2)

r(12;3)=5(1,2)5(2,3) + 55

(2.93)
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and write the equation for 6G(1,2)/6v(3) as

0G(1,2) _ d4d5G(1,4)r(45,3)G(5,2 2.9
5V(3) _j“' (54)(45)(:)' (-4)

By inserting this back into the equations and we get
{iaz1 — h(1)}G(1,2) — §5(1,2)+ G(l,Z)J d3w(1,3)(A(3))
+ if d3d4d5sw(1,3)G(1,4)r(45,3)G(5,2),
= §5(1,2)+ J d3%(1,3)G(3,2), (2.95)

and similarly for the adjoint equation

{—i@zZ —h(z)}G(l,z) 5(1,2)+G(1,2)fd3w(2,3)(ﬁ(3))

+ iJ d3d4d5w(2,3)G(1,4)r(45,3)G(5,2),
= 5(1,2)+ J d3G(1,3)2(3,2). (2.96)
The self-energy can now be identified as
»(1,2) = —i5(1,2)f d3w(1,3)G(3,3%) + if d3d4G(1,3)w(1,4)T(32,4),

= —i6(1,2)Jd3w(1,3)G(3,3+)+iG(1,2)w(1,2)

53(3,2)
5v(4) ’

53(3,2)
ov(4) ’

where (A(3)) = —iG(3,3") and in the last step we denoted the first order terms in w
by

+if d3d4G(1,3)w(1,4)

= Y [G,w](1,2) + iJ d3d4G(1,3)w(1,4) (2.97)

TG, w](1,2) = —15(1,2)J d3w(1,3)G(3,37) +iG(1,2)w(1,2). (2.98)

These first order terms constitute a Hartree-Fock (HF) approximation for the electronic
self-energy and due to the instantaneous nature of the two-body interaction, w(1,2) =
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Figure 2.3: HF and 2B self-energy diagrams.

o(ty, t,)w(xy,X%,), it is a time-local approximation for the electron interactions. The
first term describes the classical Hartree potential at 1 produced by the charge den-
sity throughout the space and the second term is the space-nonlocal exchange poten-
tial originating from the Pauli exclusion principle and the antisymmetry of the wave
function. Equation provides now an iterative framework to construct higher or-
der approximations for the self-energy by simply evaluating the functional derivatives
0%(3,2)/6v(4) with the lower order self-energy terms.

The second-order expansion of the self-energy can then be obtained by evaluating
5xHMF(1,2)/6v(3) and inserting it back to the equation (2.97). Keeping only the terms
up to w? we have the 2nd Born (2B) approximation for the self-energy:

L2B[G,w](1,2) = ZHF[G,W](1,2)+G(1,2)Jd3d4w(1,3)w(2,4)G(4,3)G(3,4+)
—J d3d4G(1,3)w(1,4)G(3,4)G(4,2)w(3,2). (2.99)

The terms appearing in the expansion can be visualized by using the Feynman diagrams
as we show in Fig. (2.3). The first second order term in (2.99) corresponds to the
bubble diagram and the other term corresponds to the second order exchange diagram.
The bubble diagram can be physically interpreted as particle/hole propagation from
2 to 1 and during the propagation, it excites a particle-hole pair, i.e., it polarizes the
surrounding medium. The 2B approximation is the simplest approximation to account
for correlation effects and it is nonlocal in both space and time variables.

2.5.2 GW approximation

The self-energy expansion generates now the different electron interaction pro-
cesses when the Green function is perturbed with an external potential v. How would
the electronic self-energy look like if we would not only consider the changes in the
external potential v but also in the Hartree potential produced by the surrounding



28 Theory

medium? To account for the changes in the surrounding charge density, let us consider
an effective potential V as a sum of the external potential and the Hartree potential

V(1) =v(1)+J d5w(1,5)(A(5)). (2.100)

We can now use the chain rule

(2.101)

5 d45V(4) )
sv(3) 5v(3) 6V (4)

to calculate the change in the Green function due to the change in the total effective
field V. The equation of motion (2.87) can then be written

{i@zl—h(l)}G(l,z) - 5(1,2)—|—G(1,2)Jd3w(1,3)(ﬁ(3))

+i | d3d4w(1 3)6G(1’2) V() 2.102
: W@ vy (2102
where the term 6G(1,2)/6V(4) can be obtained by using the equation (2.94)
5G(1,2) rds 5G(1,2) 6v(5)
sV(4) s5v(5) 6V(4)’
— [ as! [ asa7c. o7, 51607,2) 2
- J > > 5 5V(4)J
= JF d6d7G(1,6)['(67,4)G(7,2), (2.103)
where we denoted
£(67,4)= | dsr(67,5 22> (2.104)
> TSV (4) '
By inserting back to (2.102]) we get
{iazl _ h(1)}G(1,2) — 5(1,2)+ G(l,Z)J d3w(1,3)(a(3))
J . oV(4)
+i | d3d4d6d7w(1,3)G(1,6)I(67,4)G(7,2)——,
ov(3)

= 5(1,2)+J d3%(1,3)G(3,2), (2.105)
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where the self-energy can be identified as

»(1,2) = &(1, 2)Jd5w(1 5)(Ai(5)) + Jd3d4d5 G(1,5)w(1, 3)5—((3))1"(52 4),

— 5(1, 2)Jd5w(1 5)( n(S) Jd4d5 G(1,5)W(1,4)(52,4),

/

ZH(LZ) xc(]- 2)
= ¥u(1,2)+2,.(1,2). (2.106)

The first term is again the classical Hartree potential (3;) and the second part is the
exchange-correlation (%,.) part of the self-energy. Moreover, in equation (2.106]) we
also defined

w(l,4) = fd?; (1, 3)5V((:)) (2.107)

This term is called screened interaction because it accounts for the polarization effects
of the medium to the effective interaction between the particles as we will see later.
Equation (2.107) can be written explicitly by inserting the functional derivative of the
total effective field V

[ 5 (a(5))
w(,4) = w(1,4)+ | d3d5w(1,3)w(4,5)———,
J ov(3)
WL+ | d3dsdew(, w4, 52N OVE)
[
= w(1,4)+ | d5d6W(1,6)P(5,6)w(4,5), (2.108)
J
where we further defined A
p(1,2)= 2L (2.109)
’ s5V(2)’ '

as the density response at 1 due to the change in the total effective field at 2. Fur-
thermore, P can be related back to I' by employing the equation (2.103) with equal
time-indices in the Green function

P(1,2)= —if d3d4G(1,3)'(34,2)G(4,17). (2.110)

We have now obtained the self-energy expansion (2.106), which depends on the screened
interaction W (2.108) and I that can be written explicitly by using the equations (2.93)),
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([2.100), ([2.106) and

IN 12 3 - 6 1,2 5 2 3 + —XC( ’ )
( > ) ( s ) ( ) ) 6‘,(3) )
6ZXC(17 2) 6G(4, 5)

5G(4,5) 6V(3)°

= 6(1,2)56(2,3)+ | d4d5d6d7 08y(1,2)
B ’ ’ 5G(4,5)

= 5(1,2)6(2,3)+Jd4d5

G(4,6)[(67,3)G(7,5).
(2.111)

Furthermore, the Screened interaction is dependent on the polarization function P
(2.110), which again relies on the vertex I" and the Green function. As we already
know, the Green function depends on the self-energy through the Dyson equation
so this set of equations must be solved self-consistently. These equations sim-
plify if we first approximate the the vertex function by first choosing %.,. = 0. This gives
I'(12,3) = 6(1,2)5(2,3) and the self-consistent equations then become

rV(1,2) = —i5(1,2)Jd3w(1,3)G(3,3+)+iG(1,2)W(1,2),
P(1,2) = -iG(1,2)G(2,17),
w(1,2) = w(1,2)+fd3d4w(1,3)P(3,4)W(4,2),

- J d3e'(1,3)w(3,2),
(2.112)

where

e(1,2)=5(1,2)+ J d3w(1,3)P(3,2),
is the dielectric function.

The set of equations forms the GW approximation for the electronic self-energy
and it was originally derived by Hedin [[78]]. Figure illustrates the self-energy and
the screened interaction W of GW approximation. The polarization processes described
by P are captured by the dielectric function € which modifies (=reduces) the interac-
tion strength between the particles to yield the screened interaction W, much weaker
than the bare interaction w. The polarization P describes an elementary process in for-
mation of a Coulomb hole around the test particle by exciting/pushing the surrounding
electrons. This particle together with the positively charged screening cloud forms an
entity called quasiparticle and the interaction between these quasiparticles is described
by the screened interaction W [[79]. The concept of quasiparticle is valid for any ap-
proximation that accounts for nonlocal electron interaction processes, such as the 2B
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Figure 2.4: GW self-energy and screened interaction diagrams.

approximation. When the self-consistency of equations is met, the self-energy
then accounts for the mean-field HF diagrams but also an infinite sum of polariza-
tion processes provided by W. The GW approximation is often called as dynamically
screened Hartree-Fock for their similar form for the self-energy.

2.5.3 Conservation laws and conditions for X

The introduction of the self-energy operator together with the equations of mo-
tion (2.74), and the self-consistent approximations (2.98), and
for X motivates to look at the conditions that the approximate self-energy must fulfill
in order to satisfy the important conservation laws. What are the requirements for the
approximate 3 that the particle number, energy, momentum and the angular momen-
tum are conserved as the equations of motion are solved? There is a simple answer to
this question and it is provided by Baym [|80]. It states that whenever the self-energy is
obtained from an underlying gauge-invariant functional ® as

0®[G]

2[G](1,2) = 562 1)’

(2.113)

then the above conservation laws are fulfilled. To illustrate this, let us consider the
particle number conservation law:

dn(1)
dt,

+V;-j(1) =0, (2.114)
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where

n(l) = (a(1)) =-iG(1,17),

W = (W) = ([0 (Taba) ~ (T D) 1],
1
_ _E{ [vl _ vz} G<(1,2)} ) (2.115)

2=1

are the density and current density correspondingly. If we now subtract the adjoint
equation of motion (2.75) from (2.74) we obtain a relation

{iﬁzl +i6, —h(1) + h(z)}G(Lz) - J d3 {2(1,3)G(3,2) - G(1,3)2(3.2)}. (2.116)

In the limit 2 — 17 the partial time-derivatives form a total derivative with respect to
z, and the kinetic energy terms in the one-body Hamiltonians form a total divergence

[h(l) _ h(z)} G(1,2) = —% (v1 + v2) : (vl _ vz) G(1,2),
- v, [{—%(vl—vz)cu,z)}z:ﬁ] 2.117)

Inserting the equal-time Green function —iG(1,1%) = n(1) and multiplying both sides
with —1 we get
dn(1)

dt,

+v, (1) = f d3 {G(1, 3)5(3.1) — £(1,3)G(3, 1)}. (2.118)

In order to satisfy the continuity equation, the right hand side of this equation must
vanish. This is indeed true, when the self-energy is obtained from (2.113]). To see this,
let us first introduce a gauge transformation to the one-body part of the Hamiltonian

(2.10)

dA(1)
ot,
This corresponds to gauge invariance of the external electromagnetic field where the
change VA(1) of the vector potential and simultaneous change —3J, A(1) of the scalar
potential keep the external electric and magnetic fields unchanged. It can be shown

that the equations of motion for the field operators (2.66) and (2.67) are invariant in
the gauge transformation if we also introduce a phase factor to the field operators, i.e.,

1/;H(1;A) = qL/;H(l)em(l),
PL(L,A) = Pl (1)e7D), (2.120)

h(1,A) = %{—iV—VA(l)}2+u(1)— (2.119)
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with A(xt,) = A(xt,—if3). The transformations (2.119) and (2.120) then yield a gauge
transformation for the Green function

G(1,2; A) = e"VG(1,2)e NP (2.121)

which follows directly from the definition of the Green function (2.35). From (2.97)
and we also see that the gauge transform of the Green function reflects to the
self-energy as

2(1,2;A) = M5 (1,2)e AP, (2.122)

since the phase factors at the internal vertices cancel in the self-energy. We can now
employ the gauge invariance of the functional ®: The variations of ® with respect to
the gauge field A must vanish since #[A] = ®, so we have

5& = f d1d2¥%(1,2: A)5G(2,1;A) =0, (2.123)
where 6G(2,1; A) is obtained from and is given by

5G(2,1:A) = i{5A(2) _ 5A(1)}G(z, 1: A). (2.124)

Inserting this back to the equation (2.123) and using the explicit forms (2.121) and
(2.122]) we obtain

56 = ifd1d22(1,2){5/\(2)—5A(1)}G(2,1),

— ifd1d2{G(1,2)Z(2,1)—2(1,2)G(2,1)}5A(1),
— 0. (2.125)

Now, since A is an arbitrary scalar function, it must be that

J d2 {G(1, 2)%(2,1) - 5(1,2)G(2, 1)} —0, (2.126)
and we then recover the continuity equation from (2.118)
dn(1) :
+V,-j(1)=0. (2.127)
dt,

To conclude, the results of this analysis was that the particle number is conserved if
the approximate self-energy is obtained from the gauge invariant functional & via the
relation (2.113). It can be proved that by obtaining the self-energy from (2.113), also
the other conservation laws are automatically fulfilled, which makes these self-energy
approximation physically relevant. The self-energies are then said to be ®-
derivable self-energies.
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The gauge invariant ®-functional can be obtained, as showed by Luttinger and Ward
[181]], by closing the irreducible self-energy diagrams with a Green function line and
multiplying the closed diagram with suitable numerical constants to avoid multiple
counting of resulting self-energy diagrams. The closing of the self-energy diagrams with
a Green function makes the resulting object gauge invariant as each of the gauge factors
will cancel at the vertices. The explicit form for the ®-functional is given by

2[G]=). %trc{zg”c}, (2.128)

n,k

where n denotes the number of interaction lines, k enumerates the different n’th order
self-energy diagrams and the trace means integration of all the internal vertex variables
over the Keldysh contour C.



3 NEGF Formalism In
Time-Dependent Quantum Transport

In the previous section we derived the Kadanoff-Baym equations for the correlated and
isolated systems. Let us now turn our attention to open quantum systems and gen-
eralize the Kadanoff-Baym equations to multi-terminal quantum transport setups. We
first introduce the model Hamiltonians suitable for a quantitative analysis of transport
through simple molecular systems. As a follow-up, the essential concepts such as lead
self-energies are discussed and the essential equations related to the quantities of inter-
est are demonstrated.

3.1 Pariser-Parr-Pople model Hamiltonian

The approximative numerical methods and models always demand assumptions on the
underlying physical system. In this work we focus on qualitative description of the
time-dependent quantum transport and the transport properties through simple atomic
chains and molecular systems and for this purpose we need a suitable model descrip-
tion for the many-body Hamiltonian (2.10). One of the popular model descriptions is
provided by the Pariser-Parr-Pople (PPP) model [|82, 83]], originally designed to pro-
vide accurate description of the low-energy properties of -conjugated systems, such as
polymers and other carbon-backboned molecules. In the PPP model it is assumed that
the chemical and physical properties of the conjugated nanostructures are primarily
determined by the delocalized m-orbitals. The m-orbitals are formed when the atomic
2p, orbitals overlap and hybridize while the "core" formed by the 1s orbitals and the
hybridized sp? orbitals (the o-bonds) are kept frozen. This assumption motivates us to
consider each atomic site k having one localized spin-orbital ¢;;(rc) = 65, ¢, (r) with
a small but finite overlap & with the nearest neighbor orbitals [[75]]

[Slu = fdx¢:g(x)¢zo(x),

{1 k=1
_ (3.1

¢ k and [ nearest neighbours := (k,[)

35
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where S = 1+ ¢ is the overlap matrix. Even the functions ¢,;(x) do not form an
orthogonal basis, we can construct one by using S

Pro®) = > (@S], (3.2)
l
&
~ Lowt|1-5] .
Do () = 5 Brro() = 5 Drino (), (33)

where in the second step we expanded S~1/2 into linear order in ¢. It can be easily
checked from (3.2)) that the new orbitals ¢,;(x) form an orthonormal basis which is
still localized, but slightly spread out over the nearest neighbor sites.

We can now use this finite basis to expand the creation and annihilation operators in
the following way

¢(X) = Z('Pka’(x)akcr’: (34)
k,o!

PR = Y e, (3.5)
k,o!

where the G, and dza annihilate and create electron to lattice site k with spin o corre-
spondingly and they obey the anti-commutation rules

{8l @i} = 6400
{a("” a("')} - 0. (3.6)

io? jo!

If we now focus on the spin compensated system with ¢;,/(x) = 6,5, ¢x(r) and use the
above expansions for the field operators, we can write the second quantized Hamilto-
nian (2.10) in a lattice basis as

- v 1 e
H(t)= ZZhij(t)aLajU + > ZZWU“ afaa;a,ako/ala, (3.7)
ij o

ijkl oo’

where the matrix elements of the one and two-body parts in the general PPP basis ¢,(r)
are then given by

hy(t) = def(r)h(r,t)%(r),

Wi = f drdr’ (1) (FIw(r, ), ()¢ (1). (3.8)
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with h(r, t) the spin-independent one-body part of the Hamiltonian
1
h(r,t) = —-V>= > Zw(r,Ry) +u(r,¢), (3.9)
2 k

with Z, the effective positive charge of nucleus k screened by the frozen core-electrons.
Since the basis functions are localized around each atomic site, we can now retain only
the main local and nonlocal contributions from h;; by neglecting all the other than
nearest neighbor terms. In the similar fashion, for the two-body part w; ;;, we account
only those nonlocal terms which describe the interaction between the two localized
charge clouds at different atomic sites, i.e., we set w;;; & 6;,0 xw;;, where w;; ~ 1/|R;—
R;| is the long-range behavior of the interaction matrix elements for i # j. We can
therefore write the lattice Hamiltonian as

H(t) = ZZhU(t) a,,0;, + = ZZWU IUA]J'U/aJG/aw+ ZWU iZj, (3.10)

ij oo’

= Ze(t)n +ZZhU wAJU—FZWuannll—I- Zwl](n —-Z)(n; - Z)),

i#j
(3.11)

where - Zl jWi;ZiZ; is just an added constant in the Hamiltonian due to the effective
interacuon between the nucleﬂ A; = Y., A, and the matrix elements are denoted as

hi(t) = {6-(t): i_zk;éizkwik_"vvi(t) =] (3.12)

h;=b (i, j)
Here ¢, is the diagonal expectation value of kinetic energy operator plus the local posi-
tive background

2

h;=¢€= J dr @?(r){—% - Zw(x, Ri)}‘Pi(r) (3.13)

and it is often called as the on-site energy in the nearest neighbor approximation. The
diagonal potential terms are then affected by the effective background due to the sur-
rounding ionic lattice, Y, i Zxwy and the time-dependent external potential

Wi(t) = f dr o (r)u(r, t)p;(r), (3.14)

which we consider as local potential for simplicity. Moreover, the off-diagonal terms are
denoted by time-independent elements h;; which are called the hopping parameters.

!This quantity is added in order to have the second form of the Hamiltonian and does not have a
physical significance in this context.
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These matrix elements allows the lattice sites to share kinetic energy by tunneling the
particles between the neighboring sites. Let us from now on call the nearest neigh-
bor approximation as tight binding (TB) approximation. The Hamiltonians (3.10) and
now serve as starting points for modeling lattice systems and especially investi-
gating the quantum transport system.

3.2 Basis representation of G and X

By the definition of the localized basis (3.2)) and the representations for the field op-
erators (3.4) and (3.5), it is also necessary to have the lattice representations for the
Green function G(1,2) and the self-energies %(1, 2). We can write the expansions in the
following way

G(1,2) = G(x121,%,2;)

= D L 0r(x)9i(%,)Gy (21, %,), (3.15)
kl

2(1,2) = X(X121,Xy25)
= D o)X (21, %), (3.16)
kl

where the indices k,[ encapsulate both the spatial and spin degrees of freedom. Here
the components G,;(z;,2,) are simply given by the time-ordered product of creation
and annihilation operator a, (z,) and a;(z;)

Gu(z1,22) = —i (T [aw(z))a](z)]) - (3.17)

Just like in the position-spin representation, we can define the lesser and greater Green
functions in the lattice as

Ga(z,2) = +i(d](2)a(z)), (3.18)
Ga(z1,2) = —i(a(24/(z,) . (3.19)

It is now straightforward to calculate the explicit expressions for the Hartree-Fock, Sec-
ond Born and GW self-energies in the lattice PPP-basis. The self-energy components are

2We neglect the subscript H referring to Heisenberg picture from the lattice field operators.
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given by
(HF) ZEF(Zly‘ZZ) = Zg‘(zl:ZZ))
= 5(z1>22){5ij Zwikpkk(zl) - Wijpij(zl)}; (3.20)
k
(2B) Z?JB(ZDZZ) = EgF(szz) + Gij(zhzz)z wiW ;1 G (22, 21) Gy (21, 22)
Kkl

- Z Wy Wi Gi(21,25) G (22, 21)Gy(21,2,),  (3.21)
K

(GW) ZiGjW(zl,zz) = Z}f}(zl,zz) +1G;(21,2,)W;;(21, 2,), (3.22)

where p;;(z;) = —iG;(zl,zIr ) is the density matrix and
23(21,22) = 5(21:22)51']‘ Zwikpkk(zl): (3.23)

K
is the Hartree-part of the self-energy and
Wii(21,2) = w;;6(21,2,) + Zwik f Py (21,2)W;(5,2,)dz, (3.24)
Kl

Py(21,2,) = —iGi(21,22)G(22,21), (3.25)

are the screened interaction and the polarization function.

3.3 Quantum transport Hamiltonian

Modeling the two-terminal transport in nanostructures has become one of the most pop-
ular subjects in computational and theoretical nanophysics. A typical quantum trans-
port system consists of two macroscopic and metallic electron reservoirs (leads) and a
significantly smaller scattering region (for example, a quantum dot, quantum wire, or a
molecular system) which is squeezed between the two reservoirs, see Fig. for the
topology of this system. The model Hamiltonian operator describing this two-terminal
quantum transport setup is usually written in three different pieces as

Here, the first part is the Hamiltonian for the central region, i.e., the model descrip-
tion for a quantum dot, quantum wire or a molecule. Within the notation of second
quantization, it has the expression as Eq. (3.10)

- SO 1 ni mn A
A=Y > hy(0)dld;, + EZWU dd' i dy, (3.27)
ij

i,jeC o
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L C R
hLC hC R
MB
hLL hCC 5 ECC hRR
-— -—
hCL hRC

Figure 3.1: Schematic view of the quantum transport setup: The Correlated central region (C) is coupled
to the left (L) and right (R) metallic electrodes via tunneling Hamiltonians H,c and H¢,, @ =L,R.

where again the indices i and j label the atomic sites in the central region, o and o’
are the spin-indices and h;;(t) is the one-body part of the central region Hamiltonian

with the nearest neighbor parametrization. Furthermore, &l'g and d,, are the electron
creation and annihilation operators for the central (C), often referred as device, region
and the two-body matrix elements w;; are the electron-electron interactions within the
C-subspace. We choose the interaction matrix elements in the following way
Wi =
wy=1 75;, (3.28)
2li—jl

which is suitable for systems with chain topology. The second part in eq. (3.26)) is the
Hamiltonian for the semi-infinite leads and it attains the form

Hleads(t) = Z i Z I:h(lxj + Wa(t)5iji| alti‘o-aajca’ (329)

a=LRi,jea O

where hf‘j is the nearest neighbor Hamiltonian of the lead a = L,R. Moreover, Ejm and
Cjoq are the creation and annihilation operators for the lead a and W*(t) is the time-
dependent local potential applied to the lead a, i.e, the bias voltage. In this model we
assume that the bias voltage, generated by applying an electric field over the system, is
simply a homogeneous potential shift in the leads: The external electric field is assumed

to be screened instantly due to the generated Hartree-field.

The third part in the full Hamiltonian (3.26) describes the physical contacts or cou-
plings between the central region and the leads. The explicit expression for this tunnel-

ing Hamiltonian is
A=Y Y S, [&;éjaa + a}'waw}, (3.30)
a=LRieC ©
jEa
where V; ;, are the matrix elements of the coupling Hamiltonian. Finally we have re-
duced from the Hamiltonian the chemical potential u coupled to the total particle num-
ber operator N = N¢ + Y, N,. Next we shall proceed to investigate the equations of
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motion for the Green function in this semi-infinite transport lattice and extend them to
treat continuum systems.

3.4 Embedded Kadanoff-Baym equations

The quantum transport Hamiltonian describes now an infinite system with the
electron-electron interactions limited to C-subspace and the direct implementation of
the equations of motion for this Hamiltonian is practically impossible. However, due
to the restricted domain of the w;; -elements, we can contract the Hilbert space of the
infinite site lattice to the interacting domain only. Let us start from the equation of
motion for the one-particle Green function, which in the site basis representation reads

{i@z _ h(z)}G(z,z’) — 16(z,2) +J dz5MB(z, 2)G(Z, 7)), (3.31)
{—iaz, - h(z’)}c;(z,z’) = 15(2,2") +J d2G(z,2)ZM(3,2"). (3.32)

Here the one-body Hamiltonian, the many-body self-energy and the Green function
have been written in the block matrix form as

h; he O 0 (1\)/113 0 G G G
h=| hyg he hg |, 2= 0 Y 0 [,G=| Gg G G |, (3.33)
0 Hic hyy 0 0 o Gr, Gpe Ggr

where the subscripts refer to the matrix indices in different subspaces, such as CC =
{i,j} € Cor LC ={i € L,j € C} and the lattice Green function is given by

{7 |10, ()a], ()]}
Tkt Tr {e—ifH(fZ)de}

le(z,zl) = —id (334)

where we have explicitly written the spin indices o;. Since the Hamiltonian is invariant
upon the rotations in spin-space, also the Green function is diagonal in the spin indices.

The equations of motion (3.31]) and (3.32) can be cast into equivalent Dyson equations
by expanding the full interacting and connected Green function G(z,2’) in terms of
disconnected and noninteracting Green function g(z,z") which obeys the equation of
motion

{iaz _ hd(z)}g(z,z’) — 16(z,2), (3.35)
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where hi(z) is the diagonal part of the total one-body Hamiltonian in (3.33). By sepa-
rating the off-diagonal contributions h° of the one-body Hamiltonian, h(z) = h%(z)+h°

and using (3.35]) we get

r r
G(z,2) = glz,2)+ | g(z,2)h°G(z,2")dz+ | g(z,2)2"8(3,2)G(2,2")dz dz,
J J
(3.36)
[ [ _ _ _
= g(z,2)+ | G(z,2)h°g(2,2))dz + | G(z,2)3M®(2,2)g(z,2')dzdz,
J J
(3.37)
By projecting the equation of motion (3.31]) into CC subspace,
{iaz - hcc(z)}Gcc(Z:Z/) = 16(z,2) + J diZﬁ“g(z,Z‘)Gcc(i,Z’)
+ D he,Gocl(z,2), (3.38)
a=L,R
and using the aC-projection of (3.36))
Gac(z: Z/) = J gaa(zs i)haCGCC(ia Z/): (339)

we obtain a closed equation of motion for the one-particle Green function projected on
the central region

{iﬁz - hcc(z)}GCC(z, 2)=18(z,2) + J dz [zgﬂg + zem,cc} (2,2)Gec(Z,2)).  (3.40)

Similarly, for the adjoint equation of motion one obtains

{—ia; . hcc(z’)}GCC(z,z’) = 16(z,2) + J % Gee(2,2) [zgﬂg + zem,cc} (z,2)). (3.41)
Here we introduced the embedding self-energy

z:em,CC(Z)Z/) = Z hCagaa(Z:Z/)haC’ (342)

a=L,R

accounting for the time-dependent effects of the leads, encapsulated by g,,(z,2), to
the central region via the tunneling Hamiltonians h., and h .. We see that the equa-
tion of motion (3.40) is exactly of similar form as if C would be a closed system,
but the self-energy is just replaced with the summation of the many-body self-energy
and the embedding self-energy. We are then able to employ the implementation of
the Kadanoff-Baym equations for closed systems in both ground-state [[84, [73]] and
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in non-equilibrium [|85]. The only difference of solving the embedded Kadanoff-Baym
equations for the transport setup is the selection for the basis, which in this case is
chosen to be the site basis for the PPP model system. It is worth noting that the embed-
ded equation of motion (3.40)) can, in principle, handle arbitrary number of terminals a
with each having unique coupling matrices h, and h, to the scattering region and also
unique internal structure and time-dependence determined by the lead Green functions

8ua(2,2).

The solution of the equations (3.40) and (3.41) in the ground-state and in the time-
domain provides an access to the important time-dependent and steady-state properties
of the system through the two-time Green function G¢.(z,2’). For example, the time-
dependent total particle number in C is given by

Ne(t) = —iTrC{GCC(t, t+)}, (3.43)

where the trace is taken over all the localized one-particle states (site-indices) of the
central region.

3.5 Equations of motion on the Keldysh contour

Projection ¢(z,2’) = fa(z,i)b(i,z’)di c(z,2’)=a(z,z)b(¢/,2)

c(t,t)) c=a -b*+af-b>+alxbl ¢ =a> b
c<(t,t') c=a“-b*+ak-b-+al«b! cc=a~-b
al-b~+a~-p*
cR(t,t’ R =af. bt =
(&) ak-b>+a -p?
A < < R
a*-b~+a b
At t’ A=a*p A=
(& 6) a*-b” +a” -bk
cl(t, 1) c'=af-bl +alxbM c=alb
c(7,t) cd =al-bA+aM xb! c=alb
M(r,7) cM =aM «pM cM = aVpM

Table 3.1: The Langreth rules for extracting the different Keldysh contour projections for convolution
integrals and product functions.

The equations of motion (3.40) and (3.41) now serve as the starting points for the ki-
netic equations on the Keldysh contour. The equations of motion together with the self-

consistent and conserving self-energy approximations (3.20), (3.21)) and (3.22) form
now a closed set of integro-differential equations. The right hand side of the equations

of motion contains the convolution integral of the self-energy with the Green function.



44 NEGF Formalism In Time-Dependent Quantum Transport

As we have already seen, the Green function and, consequently, the self-energy have dif-
ferent components depending on the relative order of the field operators. The contour
integration is then performed with the functions

X(21,%5) = 6(21,2)8%(21,2,) + 0(21,2,)87 (21, 25) + 0(25,21)E (21, 25), (3.44)
G(z1,2,) = 0(21,2)G7(21,2) + 0(24,2,)G (21, 2,), (3.45)

where ¥ = X, + 3, and %°(z,,2,) is the time-local part of the self-energy. These
functions belong to the Keldysh space where the contour integrals split into several
components according to the Langreth rules [186, [31] shown in the table (3.1). By em-
ploying the integration rules to the equations of motion and (3.41)), we obtain
for the real-time Green functions

i8t1G§(t1, ty) = h(t))G(ty,t,) + [ZR GZ+32%-G'+ 3 *G[] (t1,t3), (3.46)
= h(t,)G (11, t2) + 5 (61, t5)

—i0,G>(t1,t;) = G(ty,t)h(ty) + [G"-B5+G*- ¥+ G« 3] (1,,1,).  (3.47)
= G§(t1:tz)h(t2)+12§(t1,t2),

where I1§,2 are the S-projections of the convolution integrals on the Keldysh contour.
Similarly, one obtains for the mixed Green functions
ianG](tl: Ty) = h(t1)G](t1: Ty) + [Z}R G+ 3 *GM] (t1,72), (3.48)
= h(tl)G](tly Ty) + I](tlﬁ T2)s

~i0,G/(1,t,) = Gl(ri,t)h(t,)+ [G-Z+ 6"« 3] (v,,t,),  (3.49)
= G[(Tl: ty)h(t,) + Ir(Tla ty),

where Il(t,,7,) = I5(t;, t, — iT,) and I'(7,,t,) = I>(t, — iT,, t,) are the mixed time-
variable projections of the convolution integral Finally, one can also calculate the
imaginary track projection of the EOM and one finds

(-0, —hy)GM(t—1) = 18(r—71)+i [ZM *GM] (t—1"), (3.50)

with GM(t — 7/) = —iG(—i7, —i7’) and T (7 — 7/) = —i%(—i1,—i7’) and where we
have explicitly written the functions depending on the relative time. In the above equa-
tions, we have used a shorthand notations - and = for the real and imaginary time
convolution integrals on the Keldysh contour

[a-b](z1,2,) = J a(z,, t)b(t,z,)dt, (3.51)

B
[axb](z1,2,) = —iJ a(z,, 7)b(7,2,)dT. (3.52)
0

3Similar notation applies to other mixed quantities also
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Now, since the lesser and greater Green functions and the self-energies have the sym-
metry properties

[Gg(tb tz)]T = —G5(ty, 1)),

[Z}§(t1, tz)]T = —Z5(ty, 1),

[6'(=,0]" = Glt.p-m),

[2(r,0]" = =(t6-7),
with G~ (t,t) = —i6,,, + G, (t,t), it is then necessary to only solve G=(t,,t,) and
%=(tq,t,) for t; < t, and G (t,t,) and X~ (t,t,) for t; > t,. One can also check that
the convolution integrals obey the symmetry relations [Iiz(t, tH]" = —Iil(t’, t) and

I'(—it,t) = [1'(t,—i(B — 7))]". The symmetry properties then imply that, in practice,
we only need to solve the kinetic equations involving only I7,I5 and I' and the other
components are determined through the above symmetry relations.

The last equation is disconnected from the real-time and mixed-time equations
and it describes the ground state solution for the one-particle Green function. The equa-
tions (3.46),(3.47),(3.48),(3.49) together with the ground-state solution form
the so called Kadanoff-Baym equations which can be solved numerically for different
physical systems. The numerical implementation of the Kadanoff-Baym equations was
done by N.E. Dahlen and was first applied to atoms and molecules in [[71]]. The numer-
ical algorithm for solving the Dyson equation and performing the time-propagation is
presented in detail in references [73]] and [85].

3.6 Embedding self-energy and spectral broadening

In this work we consider the noninteracting parts of the electron reservoirs as two- or
one-dimensional semi-infinite tight binding lattice structures. In the two-dimensional
case, we assume that the leads have a finite width but infinite length. The general
expression for the embedding self-energy is given by (we drop the CC indices from the
%)

Zem(z’zl) = Z hCagaa(Z’z/)haC = Z Zem,a(zyz/) (353)

a=L,R a=L,R
where the coupling Hamiltonians have the matrix elements
[healic = Vika
[hac] ki = Vkais (3.54)

with i € C and k € a. Furthermore, the embedding self-energy has a similar structure
as the Green function

Tema(2,2) = 0(z,2)3 ,(2,2)+0(z,2)2 (3,2, (3.55)
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where

[22,.],. @)= D Visa [85,] 1 &%) Vi, (3.56)

k,lea

and the lead Green functions g< (z,2") are expressed in the localized one-particle ba-
sis. For semi-infinite noninteracting leads the Green function g< (z,2’) can be obtained
from the Green functions in the delocalized orbital basis g;a(z z") which have the ex-
pressions

(8] @2 = i8(f(e,) — Ve et @z, (3.57)

[85.],,(52) = i8f (pq)e I cramutwe@niz, (3.58)

Here €,, and W?(t) are the energy of the k’th delocalized orbital and the time-dependent
bias voltage of the lead a correspondingly and 6 is the unit matrix in the delocalized
orbital basis of the lead. The basis transformation to the site basis can be obtained via
the transformation matrix D which diagonalizes the Hamiltonian of the noninteracting
lead a

Dh,, D' = diag(e,,), (3.59)

and provides a mapping of the Fermion operators from the orbital basis (d;,d,) to the

localized site basis (cl,cT) Consequently, the Green functions and 1l trans-

forms to the site basis as

g (z,2)=Dg> (3,2))D', (3.60)
so we have
I: ema] (ZZ) = Z aa kl(ZZ)Vlan
k,lea
= Z Vinka [Pl [85,],, (22 [D']  Viga:  (3.61)
klrsea

We can furthermore define so called linewidth function T in the following way

|: mn,a (6) - 27—52 m,ka D]kr 5(6 era)[D' ]rs sa,n (362)

k,r,s

and using this and the explicit expressions for the Green functions (3.57) and (3.58)),
the embedding self-energies then have the form

P s | . /
Y22 N = ie"tlo W (z)dzf i [f(e) —1] T, (e)e itemmE=), (3.63)

S (F ey 95 de : /
35l (7) = el f - f(ETa(e)e e, (3.64)
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which can be easily evaluated numerically. It is then clear, that the form of the em-
bedding self-energy depends on the structure of the lead, i.e. the energy spectrum and
eigenfunctions which construct the linewidth function I'. In the appendix it is
shown that for two-dimensional semi-infinite lead a with R, rows, longitudinal (A)
nearest neighbor hopping bi, transverse (7) nearest neighbor hopping b and on-site
energy a, this function is given by

Ry
Fonel€) =Y [DZ],, T () [DF1], (3.65)

IJA

where
72

Tona(€)= % 1- 4|§—;|2 e(2|b*| - |E), (3.66)
and E = € — a, — €,,, with €,, = —2|b"| cos (R’:L). Here the matrix elements U are
given by the eigenfunctions of the transverse TB chain, [D”];, = Iﬁsin (%).

Moreover, the coupling matrix elements V,, ;;, describe the physical connections be-
tween the sites m of the central region and the sites I of the first layer in lead a and
vice versa.

In Fig. we show an example of the real-time embedding self-energies and
(3.64) in double-time plane for two-dimensional semi-infinite lead with nine rows and
with lead hopping parameters b* = b® = —2.5. For this plots, the coupling matrix is
now assumed to have connections only to the terminal site of the central row (in this
case 5th row) of atoms of the two-dimensional lead and we set the coupling strength
to be V = —1.0 so the embedding self-energies then equal the lattice Green function
at that particular lattice position. We also consider the system at zero temperature
(B =120) with u = 0 and unperturbed (W*(t) = 0). As can be seen, both the real and
imaginary parts oscillate in relative time with the frequencies equal to addition/removal
energies and the oscillation is strongly damped due to the dissipative environment
(energy continuum). Furthermore, the time-diagonal of Im~3_(¢t,t7) = V2Im g<(t,t")
gives the time-dependent spin-orbital occupation of the terminal site, n°(t) = 0.5 since
the coupling elements are set to V = —1.0. The lower panels shows the behavior
of the mixed self-energy component (Green function) X!(t, 7). For t = 0 these func-
tions equal the Matsubara Green function g (7) which is a real function and is peaked
around the edges of the imaginary time-interval T € [0, ]. The Matsubara Green func-
tion obeys the anti-periodicity property, g¥ (7 + 8) = —g" (1), even it cannot be seen
from this plot due to the restricted time-interval. The mixed Green functions also damp
as the difference between the time-arguments increases. The greater (>) quantities
ReX! (7,6),Im%! (7,t) and ImE (t,t’) can be obtained by simply multiplying the
corresponding lesser (<) quantities with —1.

For the time-translational invariant case, i.e., when the bias voltage is time independent
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Re =5, (tth|

Figure 3.2: Embedding self-energies for a single site coupled to the terminal site of 5th row of the
two-dimensional semi-infinite tight binding lattice. The parameters are chosen as follows: b* = b* =
—25,a=p=0,=120,W*=0,R, =9 and V = —1.0.

or the system has reached a steady-state, the embedding self-energies can be expressed
in w -space

< de .. . -
zima(z—zl): —piez z)z:e>m&(6)J (3.67)
5 271: 5
where
3 a(0) = ilfy(w) - 1]T,(w), (3.68)
S5 (@) = ify ()l (w), (3.69)

with f,(w) = f(w—W?®) and ' ,(w) = I',(co— W?). Furthermore, we can also calculate
the retarded and advanced self-energies by Fourier transforming the real-time functions
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SRA (¢ ) =20(£t Ft)[B> (t—t) -2

em,a em,a em,a

(t — t")] which gives

i
Tna(©) = Au(@) F STo(w), (3.70)
where
do' T, (")
A(w)=2 | — ) (3.71)
2T W — W

is the Hilbert transform of the linewidth function and I' ,(w) = —2h,,Im {gﬁa(w)} h,c
is essentially the imaginary part of the retarded Green function of the lead a weighted
with the coupling matrices. The coupling of the correlated central region to the en-
ergy continua of the leads introduces a finite broadening to the many-body states of
the central region. To see this more clearly, let us take the retarded Green function of
the correlated central region by extracting the retarded component from and as-
sume that the system is in the steady-state when all the quantities depend on the time
difference. We can then obtain the spectral function A..(w) of the central region as

Acc(@) = ——Im {6} (o)},

1 1
= ——1 b)
T { 1w +in) —hee — Bfo (@) = Zemcc(®@) }
1
_ = r(e) ~ , (3.72)
T [1w —hee — A(w)]” +7(w)?

where A(w) = Re (Z?E’R(w)) + A, (w) and y(w) = Im Z??’R(w)) —TI'(w)/2 are the
real and imaginary parts of the self-energies. Equation (3.72]) gives the local density
of states (LDOS) matrix for the correlated domain C in the presence of the electron
reservoirs. We see that the delta peaks positioned at the energies of the many-body
levels of the isolated central region broaden to Lorentzian-shaped resonances due to
the finite imaginary part in y(w) due to the embedding self-energy. Moreover, the real
part of the embedding self-energy shifts the positions of the peaks to higher or lower
energies depending on the sign of A(w) at the given energy of particular energy level.

In Fig. we demonstrate the impact of the embedding self-energy on the energy
levels which are physically coupled (finite coupling matrix elements h¢,/c = —1.0)
to the semi-infinite one-dimensional tight binding lead with the lead TB parameters
a =u = 0,b* = —2.5 and zero temperature. In the left panel we plot the real (A(w))
and imaginary (I'(w)/2) parts of the retarded embedding self-energy (=Green function
at the terminal site of the lead) in frequency space, see Eq. (3.70). As can be clearly seen
from the equation of I'(w) and from the left panel of Fig. the imaginary
part (for 1D system) is nonzero only within the frequency regime [—2|b*|,2|b*|] and
has a maximum at w = 0 with —ImZ* (w = 0) = V?/|b*|. In the right panel we then
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Figure 3.3: Left panel: Retarded embedding self-energy (the Green function at the terminal site of the
lead) in frequency space for one-dimensional semi-infinite lead with V = —1.0 and b* = —2.5. Right
panel: Spectral function of a six-level system coupled to continuum described by the embedding of left
panel (thin curve) and a constant complex number I' = 0.1 (sharp peaks).

show the corresponding spectral function of a six-level system (energy levels positioned
at €; = —4,—3,—-2,2,3,4) where each of the levels is coupled to semi-infinite tight
binding lead described by the embedding in the left panel (broad peaks, violet color).
In addition, we also show the spectral function which is coupled to so called wide-
band lead where the retarded embedding self-energy is approximated by a structureless
imaginary constant £X_(w) ~ i, ' = 0.1 (blue,sharp peaks). We see that the levels
coupled to the TB lead shift due to the finite real part of X (w) whereas the wide-
band approximation keeps the level positions static. Furthermore, it can be seen that
the broadening of the spectral peaks depend on the energy domain since in the TB
approximation the I'(w) has frequency dependency: The closer the edge the level is
positioned, the smaller I'(«w) will be and the less it broadens the spectral peak. If the
level falls outside the lead continuum, it does not get broadened. In contrast to the
frequency-dependent I'(w), in the wide-band approximation the levels are broaden
equal amount.

It is also interesting to see how the physical parameters of the lead changes the form
of the embedding self-energy in the two-dimensional case. In Fig. we show the
real and imaginary parts of % (w) for different lead TB parameters for 2D lead with
9 rows with a simple terminal site coupling between the hybridized quantum system
C and terminal site of 5th row. In the top left and bottom right panels the embedding
self-energy is plotted with the equal longitudinal and transverse hoppings b* = b* =
—1.0 (top left) and b* = b™ = —2.5 (bottom right) whereas for the top right and
bottom left panels the hoppings are not equal anymore. As can be seen from equation
the embedding self-energy is a sum of individual 1D self-energies (see Fig (3.3))
which are shifted and separated from each other on the w axis with the transverse
channel eigenvalue —2|b*|cos(An/(R+1)) (A=1,...,R and R = 9). Furthermore, since
the coupling matrix element is chosen to be nonzero only to the terminal site of 5th
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Figure 3.4: 2D retarded embedding self-energies for different lead parameters. A lead with 9 rows is
considered here.

row, the prefactors }% sin? (}%) arising from the eigenfunctions of the transverse

channel give nonzero contributions only from every second site index A, i.e. for A =
1,3,5,7 and A = 9. In general, however, the hybridization/coupling matrix can have
multiple links between the hybridized nanostructure and the particle reservoir. Now,
depending on the strength of the hopping parameters, the width of the imaginary part
changes. For purely semi-infinite two-dimensional lattice, this width would be given
by [—2|b*| — 2|b%|,2|b*| + 2|b%|] but already a finite lattice in transverse direction
approaches this limit. The structure of the embedding SE is then simply determined the
relative separation of the individual channel contributions, i.e. the parameters b* and
b* and, as shown in the off-diagonal panels of Fig. , it can have a dramatic impact
on the shape of % (w) and furthermore to the non-equilibrium dynamics in transport
systems through the spectral broadening and level shifting.

As a final check before continuing with the transport theory, let us see how the em-
bedding self-energy behaves as a function of the number of rows in the transverse
direction. For this purpose, we plot in Fig. the ¥ (w) for R, = 3 (top left),
R, = 5 (top right), R, = 7 (bottom left) and for R, = 9 (bottom right) rows. It can
be clearly seen that the "resolution" of the embedding improves as the number of rows
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Figure 3.5: 2D retarded embedding self-energies for different lead widths R, = 3,5,7 and R, = 9 with
the coupling only to the terminal site of 5th row. The parameters used for this plot are: b* = b* =
—2.5,u=a=0.0and V,5; =V, ;5 = 1.0.

is increased: The real and imaginary parts start to form a smoother function with less
dramatic discontinuities and in the limit of R, — oo (not shown here) the embedding
self-energy becomes completely smooth function. It it, however, our interest also to in-
vestigate the transient dynamics in the lead regions as well which motivates us to keep
the particle reservoirs a finite width. Let us next turn our attention to how to extract the
time-dependent dynamics of the particle reservoirs from the embedded Kadanoff-Baym
equations.

3.7 Lead density dynamics and Inbedding self-energy

The solution, G, of the compact form of the embedded Kadanoff-Baym equations
(3.40) allows not only the access to the time-dependent properties of the central re-
gion, but also to the dynamics of the lead regions. To see this, we first project the
equation of motion to aa-subspace

{iaz - haa(z)}Gaa(z, %) = 16(2,2") + hycGey(2,2), (3.73)
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and use the Ca-projection of the equation (3.37)

Ge,(z,2) = J dz Gee(2,2) hey 840(2,2). (3.74)

We then obtain the equation for the full lead Green function G,

{i&‘z - haa(z)}Gaa(z,z’) —16(2,2) + J A2 % 102, 2) Bual®, 7)), (3.75)

where we denoted the inbedding self-energy as
z:in,otot(z‘" Z/) = haCGCC(Z: Z/)hCa- (376)

The equation (3.75) can now be solved for G,,(z,2") with help of aa-projection of Eq.
(3.35) and the result becomes

G, (2,2)=g,,(2,2)+ f J dz2dz 8,,(2,2) B, 4o (Z,2)80a(Z,2). (3.77)

We can now from this equation obtain the time-dependent density in the lead a by
simply extracting the lesser-component (G=) and taking the equal-time limit z = t,2" =
t* in the Green function. The density in the localized spin-orbital k of the lead a is then
given by

na,k(t) = _iG;k(t: t+)

ng,k(t) — 1 {J f dédé gaa(t:é)zin,aa(g,g)gaa(g) t+)}

<

kk

— ng,k(t)—l{g<2ﬁlgA+gR2;gA+g-|zfngA

+gR'zﬁl'g<+g"-23n*g[+g1*2§¥{*gf} (t,t")
aa,kk
(3.78)

where we denoted ng’k(t) = —igofa’kk(t, t*) and in the last step the lesser component
was written explicitly using the Langreth rules on the Keldysh contour. As can be seen,
the time-dependent density is given by the density of the uncontacted lead ng,k(t) plus
an additional "perturbation" (the second term) induced by the presence of the interact-
ing scattering region C.

3.8 Time-dependent current

As one of the main observables, we are interested in the time-dependent current flowing
through the interacting-noninteracting interface between the central region and the
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leads. We refer these as the left and right currents, I, (t) and I(t) correspondingly and
the sum of these currents as the total current I(t). The current flowing through the
interface a (a = L,R) is given by

o = 2O

= T, {i0,GL(t, ) +i0,GL (6} (3.79)
where we have defined the current with respect to the change in the total particle
number in the lead a, i.e., we say that we have a positive current/particle flow to the
lead «a if the number of particles is increasing in a -domain. One can also define the
current flow with an extra minus sign to refer to the real current which is opposite to
the direction of the electron flow, but it is only a matter of convention and will not
change the formalism in any way. The time-derivatives are now obtained from (3.31))

and (3.32)

10,G; (t,t) = 156(t,t")+h, ()G (t,t")+h,GS (¢, 1) (3.80)
—i0,G; (t,t)) = 16(t,t)+ G (t,t ), (t)+ G .(t,t )he, (3.81)

Subtracting (3.81) from (3.80), tracing over aa, setting t" =t we obtain

L(t) = —Tra{hacGéa(t,t’)+G:C(t,t’)hCa}tl : (3.82)

=tt

Now, by using the symmetry of the second piece

lestttme} = ~[heGgin),
we obtain
L(t) = —2ReTra{haCGéa(t,t+)},
= —2ReTr{ G5, (6, thyc ). (3.83)

Finally inserting the Ca-projection of the equation (3.37) we get the formula for the
time-dependent current through the interface a:

L(t) = —2ReTrC{ J diGCC(t,i)Zem’a’CC(i,t+)}<

o0

= —2ReTr{ f 4t [Ge(t, D%, oolF 1)+ GR(6, DB, (B9 |
0

B
—iJ A% Go(t, )T o o5, £}, (3.84)
0
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where X, , cc is again the embedding self-energy of lead a in CC indices. The first two
terms describe the real-time contributions to the time-dependent current. Since the
Green function, many-body self-energy and the embedding self-energy are in general
time-nonlocal quantities, the real time-integrals will be performed over the history of
the Green function and embedding self-energy. The nonlocal terms induce memory to
the system and the first two terms integrate it into the time-dependent current. The last
term, however, allows for the initial correlation and embedding effects to contribute to
the real-time current, since the mixed-time variable quantities (], [) holds the memory
of the initial state corresponding to the imaginary track of the Keldysh contour.

If we assume that in the long-time limit, when t — oo, the last term due to the memory
of the initial state becomes zero, the current formula reduces (see appendix [A.0.2)) to
the well-known Meir-Wingreen formula for the steady-state current [[40]]

s ) “dw - )
IS = —iTr, %Fcc’a(co){GCC(co)—anfa(co)Acc(a))} . (3.85)
where
1
Acc(©) = —5{Gh ()~ GL(w)], (3.86)
— 1 R
- —Elm{GCC(w)}, (3.87)

is the spectral function of the interacting central region with

Ger(w) = ! (3.88)
«“ 1(w £in) — hee — BeL (@)’
and
Focal®) = —2Im{3% ()}, (3.89)

is the imaginary part of the retarded embedding self-energy. Moreover, f,(w) = f(w +
W?) is the Fermi function of the W%-biased lead a. Equation is then a gen-
eralization of the Meir-Wingreen formula and the time-dependent current formula of
Wingreen et al. [|61), 50] to the transient time-domain and it correctly takes into ac-
count the corrections to the transient current due to the initial thermalization via the
last integral term.






4 Numerical simulations

In the previous chapter we introduced the many-particle formalism to treat open and
correlated quantum systems in nonequilibrium situations. This chapter is dedicated to
applications of this formalism to two-terminal quantum transport. Instead of giving just
an overall view of the research articles published for this thesis, I will demonstrate the
main topics of the research articles with examples and focus also on topics which were
not discussed in the published work. In this sense, this chapter extends the research
articles and forms an entity that supports the already published work.

In the first section we look at the general transport properties of correlated quantum
dot/two level systems coupled to semi-infinite noninteracting leads. We shall first in-
vestigate the basic time-dependent features which are present in the charge transport
processes from the point of view of electron-electron interactions and correlation ef-
fects but also from the point of view of the electron reservoirs. The second section is
then dedicated to an overview of the initial correlation effects and their implications on
the transport features. These first two sections then contain most of the essential scien-
tific content that was reported in the research articles [[1]] and [2]]. In the third section
the traditional transport setup is then elaborated to include the Coulomb interactions
between the central scattering region and the electron reservoirs. An overview on how
the lead interaction effects change the transient and steady-state transport features is
given and it encapsulates the work reported in the research article [13]]. The last section
then summarizes the work published in journal article [4] concerning time-dependent
alternating fields.

4.1 General transport properties of embedded quantum
systems

Quantum wires are propably the most simplest systems to simulate the time-dependent
transport phenomenon in the context of molecular electronics. A quantum wires are
wire-like systems where the electrons are confined to move effectively in one dimen-
sion and the properties are determined by the quantum mechanics. In our model de-
scription, a quantum wire can be realized by simply placing atomic sites with nearest
neighbor hopping next to each other into wire-like formation. This wire can then be
attached to electron reservoirs and we then have a very simple model for transport sim-

57
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Figure 4.1: Transport setups for correlated two-site system coupled to two-dimensional noninteracting
electrodes (A) and for two-level system coupled to one-dimensional electrodes with lead-molecule inter-
action (B)

ulations which can be modeled with the PPP/TB Hamiltonian given by Eq. (3.26). In
the research articles [1] and [2]] we investigated the transport properties of this kind of
quantum wires attached to semi-infinite one -and two-dimensional leads.

We can, alternatively, work in the eigenbasis of the wire Hamiltonian and express the
central wire as delocalized orbitals coupled to the terminal sites of the left and right
leads. The mapping between these different pictures is provided by the unitary transfor-
mation matrix containing the eigenvectors of the wire Hamiltonian and, in this sense,
they contain exactly the same physics with the only difference that all the matrix el-
ements of one and two-body Hamiltonian and the coupling Hamiltonian are in the
delocalized basis. In some cases, such as in the research article [|3]] the orbital-based
approach provides much easier way to analyze the physics of the electron transport
and the implications of the long-range Coulomb interaction on the properties of the
system and we shall now employ both approaches to demonstrate some of the general
transport properties of simple quantum systems.

4.1.1 Model transport setups

Let us consider two quantum transport setups depicted in Fig. (4.1). In the panel (A)
we have a interacting two-site system connected to two-dimensional semi-infinite leads
(I=left lead, r=right lead) with finite width. We shall use the following parameters for
this setup: hopping b, = —0.75 between sites 1 and 2, terminal site couplings V; =V, =
—0.35 between the leads and central wire, longitudinal and transverse lead hopping
b* = b™ and the Coulomb interaction w,; = w,, = U, = 1.0 and w;, = w,, = 0.5 for
the sites in the central region. The disconnected two-site system then has the Hartree-
Fock energy levels at /¥ = —0.5 and /¥ = 1.5 with the HF gap A = 2.0.

In the panel (B) we then have a simple two-level system (orbital representation of
wire-like system) with the levels denoted by H (HOMO, highest occupied molecular
orbital) and L (LUMO, lowest unoccupied molecular orbital) with the corresponding
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single-particle energies h;; = €;, i = H, L. The two-level system is also coupled to left

and right one-dimensional noninteracting electrodes (b* = —1.0) via weak tunneling
Hamiltonians Vy,; ; = V., = —0.2 and we denote the local Coulomb interaction ma-
trix elements as w;; = U, = 1.0 for the electrons occupying the same single particle

level i = H, L and the off-diagonal interaction matrix elements between the levels as
Wy, = Uy, = U,y = w;y = 1.0. In this model we also consider the long-range Coulomb
interaction between the molecular levels and the terminal sites of the leads. This is in-
teraction strength is denoted with U. Furthermore, we choose the single particle levels
€, = —2.0 and €, = —1.0 which then, together with the interaction matrix elements,
yield the HF levels at €’" = —1.0 and e}* = 1.0 with the gap A = 2.0.

For the sake of simplicity, in both transport setups we choose zero-temperature limit,
half-filling for the leads and set the chemical potential between the Hartree-Fock energy
levels of the isolated central region. The case of finite temperatures is left outside of this
thesis and will be a subject of later investigations.

4.1.2 Transient and steady-state properties — mean-field study

We first demonstrate the transient and steady-state properties of the molecular junction
as a response to the suddenly switched bias voltages and we also address the question
how the Coulomb interaction changes qualitatively these properties. We shall work all
the time within the weak interaction regime to compare the physics to the results pub-
lished for moderately strong interactions [[1, 2]]. For this purpose let us first consider the
transport system (A) of Fig. Let us first choose two-dimensional leads with 9 rows
for the model. Later we shall also briefly address the effects of lead dimensionality to
the currents and lead dynamics. To generate a finite current flowing through the system
we drive the system out of equilibrium with a symmetrically applied bias voltages cor-
responding to near-resonance and far from resonance conditions. In Fig. we show
the transient right currents Iz(t) flowing through the right interface between the molec-
ular device and the lead together with the corresponding steady-state spectral functions
A(w) of the molecular region with different electronic self-energy approximations. For
the self-energy, we choose HE, 2B, 2B without the second exchange diagram (labeled as
2B-2ndEX) and GW approximation. For the sake of completeness and interest, we also
show the same curves for the noninteracting system to demonstrate the fundamental
differences and contrast between the noninteracting and interacting systems.

In the left panels we show the results for bias voltage W! = —W" = 0.9 while the right
panels contain the results for bias W! = —W" = 1.5. By looking at the top left panel, a
first observation is that the transient and the steady-state currents are strongly depen-
dent on the self-energy approximation. Let us first investigate the steady-state proper-
ties before analyzing the structures of the short-time transients. For W! = —W" = 0.9
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Figure 4.2: Transient right currents and steady-state spectral functions for noninteracting system, HE 2B,
2B-2ndEX and GW approximations in the weak interaction regime, U, = 1.0. Left panels: bias voltage
W!=—W" = 0.90, Right panels: bias voltage W! = —W" = 1.50. The chemical potential is u = 0.5.

the noninteracting system clearly produces the largest current while the HF steady-
state current is remarkably smaller than the currents given by the correlated approxi-
mations. For stronger bias, W! = —W" = 1.5 however the noninteracting system and
HF approximation behave very similarly and the steady-state values of the currents are
equal. Moreover, the noninteracting and HF currents both are larger that the corre-
sponding currents given by correlated approximations (2B, 2B-2ndEX, GW). To clarify
this behavior more, let us first look at the steady-state spectral functions in the middle
panels. It can be seen that for the mean field HF approximation, the steady-state gap
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between the molecular quasiparticle levels is much larger than for noninteracting sys-
te This is easily understood, since the electron-electron interactions push the levels
further out from each other and opens up the molecular gap compared to the non-
interacting system. This is also the simple reason why the noninteracting system pro-
duces larger current for W! = —W" = 0.9 than HF: the steady-state current is directly
proportional to the density of states (DOS) inside the conducting bias window region
[u+W",u+ W' =[-0.5,1.4]. For HF approximation with bias W! = —W" = 0.9, the
resonances are still outside the bias window at €; ~ —0.5 and €, ~ 1.5 which results as
diminished DOS and blockage of the current flow. In other words, the current cannot
flow through the molecular region without having any conducting channels in between
the conduction bias region.

If we then look at the spectral functions for the higher bias value, W! = —W" = 1.5
(middle right panel) we see that the HF and noninteracting spectral functions are al-
most on top of each other: the HF molecular gap has collapsed in response to the large
bias voltage whereas the noninteracting levels are independent of the bias voltage. The
new non-equilibrium steady state levels are then positioned around €; ~ —0.25 and
€, ~ 1.25. This phenomenon encapsulates the first qualitative difference between the
interacting and noninteracting transport and has been investigated by Thygesen [[44]]
and also in the research articles published for this thesis. The gap collapse in the in-
teracting system is directly related to the polarization of the molecular region, i.e., the
charge balance between the occupied and unoccupied quasiparticle levels. Already in
the HF level the finite interactions together with the changes in the level occupations
collapses the molecular gap and changes the DOS (and consequently the current) de-
pending on the applied bias. One can then say that for interacting systems, the spectral
function A(w) is also a bias dependent function A = A(w, W!/").

!The noninteracting spectral function is shifted up in the frequency axis with 0.5 to make the equilib-
rium chemical potentials aligned. This has no effect on the physics of the system.
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4.1.3 Transient and steady-state properties — effect of electron cor-
relations

Let us then go beyond the noninteracting and mean-field approach and investigate the
2B and GW properties. As stated earlier, the correlated approximations produce larger
currents already for the bias W! = —W" = 0.9. This phenomenon relates also to the bias
dependent gap collapse but with the difference that the correlated non-equilibrium gap
collapses for smaller biases compared to the mean-field HF approximation, and that
the spectral functions broaden significantly. This is again one of the fundamental differ-
ences between the HF and correlated approximations in the context of quantum trans-
port. In the 2B and GW level one accounts for the polarization (particle-hole excitation)
processes which are strongly enhanced as the system is driven out of equilibrium while
HF misses these effects completely. This enhancement of polarization due to increased
quasiparticle scattering can lead to drastic broadening of the spectral peaks and more
efficient charge distribution between the quasiparticle levels with smaller bias voltages
than the HF approximation. This improved charge distribution between the levels then
nourishes the gap collapse and increases the DOS inside the bias window which then re-
sults as larger currents. The results we see are in good agreement with the ones reported
earlier [[44]. As can be seen from the lowermost panels, the correlated spectral func-
tions widen heavily compared to the noninteracting and mean-field HF spectra which
retain their sharp features under both conducting and non-conducting conditions.

It is also interesting to compare the 2B results to 2B-2ndEX approximation where the
second order exchange diagram is neglected from the self-energy. Although this approx-
imation neglects the second order exchange process, it is however physically acceptable
in a sense that is is also a conserving approximation and yields currents which obey the
continuity equation. In this approximation it is then only the first bubble diagram which
plays a role compared to mean-field HF approximation. We observe that for small bi-
ases, the 2B and 2B-2ndEX currents are on top of each other indicating that the second
order exchange effects are almost negligible when the quasiparticle scattering is weak.
Increasing the bias voltage we see a slight difference in the currents and correspond-
ingly in the spectral functions as the current for 2B-2ndEX approximation is pushed
down about 6% and the corresponding spectral function is also broader than the spec-
trum for the full second order approximation. It is then the second order exchange
diagram which reduces the broadening of the spectral functions and corrects the spec-
tral properties slightly towards the more exact values. It should also be noted that the
GW approximation contains only the infinite series of polarization diagrams and ne-
glects completely the higher order exchange effects. However, one would expect that
the higher order exchange terms does not contribute significantly as already the second
order correction has a marginal impact to the total value of steady-state current.
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Figure 4.3: Transient right current vs. the applied symmetrical bias voltage and time for HE 2B and GW
approximations in the weak interaction regime, U, = 1.0.

4.1.4 Current-Voltage characteristics

In order to have a clear picture of the whole bias voltage regime, in Fig. we
also show the time-dependent right currents and in Fig. the steady-state right cur-
rents I3 for bias voltage regime W! = —W" € [0,2] with the different approximations
including the noninteracting system. It is clearly visible that both the noninteracting
system and HF approximation produce a sharp jump in the current when the bias volt-
age hits the resonance while in the correlated approximations this jump is suppressed
by the correlations. In the resonance conditions, the transient and steady-state currents
have a quite large qualitative difference. After relatively long charging phase (for ex-
ample the HF transients at the resonance) the currents settle to a steady state which
is strongly dependent on the approximation as already stated earlier. It is clearly visi-
ble in the current-voltage characteristics how the resonance voltage (the quasiparticle
gap) depends on the electronic self-energy approximation as the 2B and GW gap starts
to collapse at W! = —W" ~ 0.8 while the HF gap follows the same trend at around
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W!= —W" ~ 0.95. To see the spectral broadening effect as a function of the bias volt-
age, in Fig. we also show the A(w, W!) for both Hartree-Fock and GW approxima-

Figure 4.5: The bias-dependent non-equilibrium steady-state spectral functions A(cw, W') for the inter-
acting central region in HF (left panel) and GW (right panel) approximations.
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Figure 4.6: Imaginary part of lesser Green function at the site 1, G;5(t,t"), for HF (left panel) and
GW (right panel). The system is propagated up to t = 20 a.u. before switching on a symmetric bias
wl=-wr=15.

tions (2B is very similar to GW). One can observe very well how the HF spectral peaks
keep their sharp features after hitting the conducting bias window whereas the GW
(and 2B similarly) broadens dramatically. This broadening then reflects to the current-
voltage characteristics as a smooth increase of the current as the bias increases. In
contrast, the HF I-V has almost no structure beyond the resonance bias voltage except
a little jump around the bias value W! = —W" ~ 1.3 arising from the structural change
of I'(w) of the two-dimensional lead around the frequency value w ~ W'.

4.1.5 One-particle Green function and screened interaction

The significant collapse of the 2B and GW spectral function reflects also to the one-
particle Green function and screened interaction W(t,t"). The former is demonstrated
in Fig. [4.6) where we show the imaginary part of the lesser Green function for the first
site in the central region, G(t,t’) in double time-plane. To emphasize the temporal
structural change, the system is first propagated to t = 20 a.u. before switching on
the symmetric bias voltage W! = —W" = 1.5 in the leads. The behavior of the Green
functions are well in line with the observed spectral functions: the HF Green function
stays oscillatory after t = 20 a.u. indicating a sharp peak structure but changes the fre-
quency slightly whereas the 2B Green function damps very quickly after the switch-on.
The damping time-scale is also relatively close to the time-scale it takes for dynami-
cal observables like transient currents to reach a steady-state. Furthermore, the time-
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Figure 4.7: The real part of trace of the retarded screened interaction, Re Tr W' (t, t’) for ground state
(left panel) and for high bias case Wl=-w"=15 (right panel).

diagonals of the lesser Green functions give directly the occupation number (per spin)
of the site 1 which in both cases stay very close to equilibrium density.

In Fig. we show also the real part of trace of the retarded screened interaction,
ReTrW'(t,t")=0(t —t')ReTr [W~(t,t") — W=(t,t’)] for the ground state (left panel)
and for the high bias case (right panel). As we can clearly observe, the W'(t, t") be-
comes highly damped in the non-equilibrium situation, whereas in the ground state it
remains as an oscillatory function with a small decay rate induced by the lead con-
tinua. This behavior is again related to the damping in the Green function. The W' is
also closely connected to the density response function: Since 2B and GW transients
and steady-state results are very close, the screening process in the self-energy is domi-
nated by the first particle-hole (bubble) diagram P(t,t") = G(t, t")G(t’, t). This diagram
describes the response of the system to an external perturbation and it gives an approx-
imate formula for the screened interaction W(t,t") ~ w +wP(t, t")w. As can be clearly
seen, the retarded response indicated by the off-time-diagonal values of Tr W™ becomes
also very weak due to the strong quasiparticle scattering and decreased lifetime of the
quasiparticle states.

Let us briefly summarize the findings so far. We have found that the time-dependent fea-
tures and steady-state properties of the currents are strongly influenced by the electron-
electron interactions. This is also one of the most important messages of the research
article [[1]] and [2]] and is in good agreement with the previous studies on steady-state
correlated molecular transport [44]]. The electron interactions have a two-fold impact
on the transport processes: on one hand, it causes the collapse of the molecular gap
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arising from the polarization of the central molecular region and, one the other hand,
broadens the resonances significantly when treated on correlated level within 2B or GW.
Both features reflect to the electron/hole propagator and, consequently, to the spectral
properties and screened interaction which become highly damped as the system is ex-
posed to external driving fields.

4.1.6 Transient spectroscopy - fingerprints from the electronic tran-
sitions

Let us then turn our attention to the temporal properties of the individual transients.
As we have already seen, the transients currents (as well as densities) have superim-
posed oscillations which can be traced back to the electronic transition properties of
the equilibrium and non-equilibrium system. The transient oscillations originate from
the electronic transitions between the biased Fermi levels of the leads and the ground
state / non-equilibrium quasiparticle states of the central molecule and also from the
internal electronic transitions inside the interacting molecular region. Furthermore, it
is easy to understand from the previous analysis that the correlated approximation
yield more damped transients especially in the high-bias regime. To demonstrate the
transitions more clearly, we show in the Fig. the transient site densities of the
central region, denoted by n;(t) and n,(t) (panels a) and b)), transients dipole mo-
ments d(t) = Y. _.x;n;(t) of the central region (panels ¢) and d)) as well as their
Fourier transforms d(w) (panels e) and f)). The top panels imply that as the system is
driven out of equilibrium, the molecular region gains a small but finite dipole where the
charge accumulates to site 2 and depletes from site 1 while keeping the total amount
of charge constant in the molecular region.

Fourier transforming the dipole moments we get access to the electronic transition
spectrum of the system, which reveals that for the large bias regime the most domi-
nant transitions occur between the molecular levels ( peak 1) ) and between the biased
Fermi levels and the molecular levels ( peaks 2) and 3) ). For the bias Wl=—-W"=0.9
the transition between the molecular levels is actually the most visible one and the
other peaks are more or less suppressed. The diagram at Fig. demonstrates the
transitions of panel f) of the Fig. which then also determine the temporal oscilla-
tions in the transient observables. The most dominant peak (peak 1) is smeared over a
range of frequencies from 1.5 to 2.0 since the resonances are shifted dynamically from
their ground-state positions €; &~ —0.5,¢, ~ 1.5 (molecular gap = 2.0 ) to the non-
equilibrium positions €; ~ —0.25, €, ~ 1.25 (molecular gap = 1.5) as the bias voltage
is applied to the system. The peak 2 describes the low-energy transitions from the bi-
ased Fermi level of the left lead to the initially unoccupied level (LUMO) of the molecule
as well as the transition from the initially occupied level of the molecule (HOMO) to
the biased Fermi level of the right lead. This transition is also smoothened out over the
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Figure 4.8: Transient site densities ( panels a) and b) ) dipole moments ( panels c¢) and d) ) and their
Fourier transforms (panels e) and f) ) under resonance conditions plotted using symmetrically applied
bias voltages for HE 2B and GW approximations in the weak interaction regime, U, = 1.0. The diagram
in the Fig. depicts the electronic transitions visible in the panel f).

energy range ~ [0.5,0.75] due to the renormalization of the molecular levels. The last
peak (peak 3) describes the electronic transitions from the biased Fermi level of the left
lead to the initially occupied level of the molecule and also from the initially unoccu-
pied level to the biased Fermi level of the right lead with energy range ~ [2.25,2.5].
The correlated approximations yield a similar spectrum although the peaks are sub-
jected to much stronger damping due to the correlation effects. As we have showed
in the research article [2]], the transition spectrum becomes much more complicated
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Figure 4.9: Electronic transition diagram corresponding to the panel f) of Fig. (4.8]). The peaks closest
to u correspond to the nonequilibrium steady-state spectrum while the outermost peaks are the ground
state spectral peaks.

for multilevel systems as there are more possibilities for electronic transitions to occur.
From this analysis we can now conclude that the temporal properties of the transients
contain a wealth of information on the underlying spectral structure of the molecular
region in and out of equilibrium and also on the energetics of the electronic transitions
occurring during the transport process.

4.1.7 On the time-scales of the transients

Returning back to the first plot (4.2)), the time-scale of the transient current oscillations
has a strong dependency on the applied bias and also on the approximation for the
electronic self-energy. For noninteracting electrons, however, it has been shown that
the transient time-scale is closely related to the I'(w) at the Fermi level [51] as the
transient time-scale is proportional to e, Since I (I" ~ 2V?2/|b*| for 1D lead) effec-
tively gives the lifetime T ~ 1/I" of a quantum state connected to semi-infinite lead,
one can interpret it in real-time as the average time an electron spends on the level
before getting dissipated into the leads. In the case of Coulomb interactions, the anal-
ysis complicates due to the levels shifts in non-equilibrium and especially due to the
correlation effects which broaden the spectral functions and shorten the lifetime of the
quasiparticle states. In this case one can, however, roughly approximate this time-scale
with 77! & T+ ImXZ™B(w = u), where the imaginary part of the many-body self-energy
gives the lifetime due to the correlation effects. It should be also noted that, apart from
the bias dependent spectral broadening and gap reduction, the transient time-scale is
also dependent on the resonance conditions, i.e., whether the quasiparticle levels are
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Figure 4.10: The transient right currents (left panels) and the corresponding occupation numbers (per
spin) for the initially unoccupied level of central region (right panels) with different self-energy approxi-
mations. The bias voltages are chosen in a such way that the system is close to resonance conditions with
the leads.

aligned with the biased Fermi levels of the electron reservoirs. This will be discussed

next.
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4.1.8 Resonance conditions

The resonance conditions can lead to nontrivial and relatively long charging times in
the interacting systems. This is demonstrated in Fig. for HF and 2B in compari-
son with the noninteracting system for several near-resonant bias voltages. In the left
panels we show the transient right currents and in the right panels we show the time-
dependent occupation numbers n;(t) (per spin) for the initially unoccupied (LUMO,L)
level. The LUMO occupations are obtained by projecting the time-dependent density
matrix y(t) = —iG=(¢, t*) into the HF basis of the uncontacted central region. We first
observe that the noninteracting current as well as the occupation of LUMO level in-
creases steadily as the bias is increased under the resonance conditions. However, for
Hartree-Fock a qualitative difference arises: The Hartree-Fock potential created by the
charge density in the molecule starts to dynamically collapse the non-equilibrium gap
as the system is charging, i.e., the relative occupations of the HOMO and LUMO levels
start to change, see for example the initial current and level occupation transient for
bias W! = 0.95. This initial charging phase accelerates the dynamical gap collapse with
the result that the levels move inside the conducting bias window and the current in-
creases. What then follows is a decaying, relatively long low-frequency oscillation orig-
inating from the transitions 2) and 3) of Fig. and finally the current settles down
to a steady-state. Increasing the bias voltage shortens the initial charging phase as the
potential differences between the levels and the biased Fermi levels of the leads become
finite. In other words, the levels are shifted inwards, away from the resonances with the
leads. This then speeds up the initial charging process and the transient development
is then dominated by the tunneling factor I'.

The lowermost panels show a similar behavior also for the 2B approximation. In that
case the charging phase can extend to more than 100 a.u.t to build-up the polarization
charge which eventually collapses the molecular gap and brings the system to con-
ducting state. For the purpose of interest, we also show the resonant current for the
2B-2ndEX approximation (dashed curve). It can be seen that the resonant charging
time changes dramatically if we neglect the second order exchange correction to the
self-energy. This is quite easy to understand since under the resonance conditions the
system is very sensitive to slight changes in its configuration. However, the main point
for this study is to address the existence of regimes where the different many-body ef-
fects/processes can have significant role in determining the time-scales for transients.

4.1.9 Dynamics of the leads

In the previous chapter we derived the embedded Kadanoff-Baym equations (3.40)
and (3.41) together with the equation for the density dynamics for the lead regions
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Figure 4.11: Time-dependent density distribution in the left electrode with 9 rows. Top left: t = 1.0, Top
right: t = 4.0, Bottom left: t = 7.0 and Bottom right: t = 15.0.

(3.78). It is then interesting to demonstrate how the electron densities develop in the
lead regions, since it helps to draw more detailed picture of the whole electron trans-
port process through a narrow quantum system. Furthermore, it also provides a simple
approach to stress the commonly used assumption that the lead regions remain in ther-
mal equilibrium during the transport process. In the research article [[2] we calculated
the lead density dynamics for a two-dimensional lead with the width of 9 rows. As a
comparison, it is interesting to see how the width of the electron reservoir affects the
time-dependent density pattern observed in the lead. For this purpose we show in Figs.
14.11} {4.12] |4.13|the density distribution snapshots, t = 1.0,4.0,7.0 and t = 15.0 for the
two-dimensional left leads with different widths, R = 9 (Fig. [4.11), R = 5 (Fig.
and for R = 3 (Fig. and for 2B approximation. In these plots, the vertical index
enumerates the rows and the horizontal index denotes the atomic layer which increases
when moving deep inside the lead. In all cases, the correlated central wire is attached
to the lead via a single link to the terminal site of the middle row (the dark area in the
middle of the right edge).

A common feature for all the leads is that the charge is depleting from the leads via
diamond-shaped pathway. This pathway essentially describes the spatial distribution
of the Fermi surfaces in the half-filled semi-infinite leads. The zigzag-pathway is most
clearly visible close to the right edge of the lead where the charge depletion is the
strongest and it becomes slightly broken deeper in the lead where the electron waves
flowing via different paths interfere. Furthermore, decreasing the width of the leads,
also the depletion of the charge density increases which is natural since decreasing the
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Figure 4.12: Time-dependent density distribution in the left electrode with 5 rows. Top left: t = 1.0, Top
right: t = 4.0, Bottom left: t = 7.0 and Bottom right: t = 15.0.
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Figure 4.13: Time-dependent density distribution in the left electrode with 3 rows. The time-indices
from top to bottom: t =1.0,4.0,7.0 and t = 15.0.
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lead width the surface area through which the charge density flows is also diminished.
One can from the Figures [4.11| and [4.12] also observe a density pattern which is best
visible near the "impurity" site which is coupled to the central region. This density
pattern describes the Friedel oscillations which arise exactly from the impurity site at
the edge of the lead: the electrons scatter from the impurity potential and interfere
with the incoming electron waves. This interference then forms the deviation pattern
in the electronic density which is enhanced by the non-equilibrium conditions. These
oscillations are not visible in the ground state due to the weak coupling to the leads
since the weak coupling diminishes the impurity effect to the terminal site of the lead
and renders the Friedel oscillations negligible.

In Fig. [4.14 we also show the cross-section site densities for the different leads at differ-
ent times during the transient phase. The cross-sections are taken in the middle along
the longitudinal lead axis. In the horizontal axis the site index then refers to the site
index along the cross section starting (i=1) from the terminal site which is linked to the
central region and ending 20 layers deep inside the lead. The times corresponding to
the different panels are t = 1.0,4.0,7.0 and t = 15.0 starting from top left and ending
to bottom right panel. First one notices that the dynamics of the one-dimensional lead
differs remarkably from the two-dimensional leads as the charge depletion is much
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Figure 4.14: Cross-section site densities for leads with different width for different times. Top left: t = 1.0
top right: t = 4.0, bottom left: t = 7.0 and bottom right: t = 15.0.
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Figure 4.15: The influence of the lead dimensionality on transient currents for HF (top left) and 2B
(top right). The bottom panels show the I-V curves for one-dimensional leads (1 Rows) and for two
dimensional leads (3,5 and 9 Rows).

stronger for 1D leads. One can also observe the characteristic Friedel oscillation pat-
tern for the one-dimensional lead as the decaying density oscillates at every second
site according to cos(2kzx)/x, where k; = /2 for the one-dimensional semi-infinite
half-filled lead and x is the distance from the terminal site [|87].

We can also clearly observe how the width of the lead affects the charge depletion: in-
creasing the width, the density deep inside the lead approaches the equilibrium density
0.5 and after 10 layers the density of the 9-row lead stays closest to the equilibrium
distribution with only 0.4% deviation from the equilibrium. From these results we can
directly verify that the common assumption that the leads remain in thermal equilib-
rium once the bias voltage is switched on, holds very well for the simulations performed
here. For HF approximation, the charge deviations (not shown here) are slightly larger
due to the larger current response for the selected bias voltage.
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4.1.10 Lead dimensionality and currents

Before completing this section, the figure [4.15|finally demonstrates how the single tran-
sient currents and the current-voltage characteristics are affected by the dimensionality
of the leads. In the top panels we plot the single transient currents for bias voltage
W! = —W" = 1.5 for HF and 2B approximations with the lead widths R = 1, 3,5 and
R = 9. As we can clearly see, the temporal structure of the transients is not strongly
affected by the dimensionality while the steady-state current is remarkably altered due
to the diminishing of the coupling factor I' as the dimensionality changes (see Figs.

and[3.5)).

4.2 Initial state dependence and Initial correlation ef-
fects

The (embedded) Kadanoff-Baym equations come with a built-in initial correlation con-
tributions, which manifest themselves in the set of integral equations (3.46]), (3.47),
and (3.49). The initial correlations can basically be separated into two pieces.
On one hand one can speak of initial correlations with the reference to the initial
electron-electron interactions in general, but on the other hand one can refer to the
time-nonlocal correlations present in the real-time propagation of the Kadanoff-Baym
equations which have their origin in the initial state of the system. In the latter case,
these initial correlations arise from the collision integrals where the time-integration
is performed with the mixed-time components (],[) over the imaginary track of the
Keldysh contour. In the case of mean-field HF approximation, this kind of electronic
initial correlation effects are absent and the only contribution from the initial state
arise from the initial embedding effects. These initial embedding effects account for
the memory of the initial contacting, i.e., the physical hybridization to the leads while
the initial e-e correlation effects describe the memory of the possible Coulomb interac-
tions present in the initial state. In the long-time limit, when the temporal separation
of the time-indices in G and ! increase, the contributions arising from the initial
correlation effects vanish and do not contribute to the steady-state properties. It is then
the transient structure where we expect to see changes as we neglect these correlation
factors.

To demonstrate the implications of the initial electron-electron interactions and initial
correlation effects to transients, we show in Fig. [4.16| the transient right currents for HF
and 2B approximation for the high bias regime (top panels) and also for the resonant
biases W! = —W" = 0.91,0.95 (HE bottom left panel) and Wl = —Ww" = 0.75 (2B,
bottom right panel) together with the transients where we neglect the initial correla-
tion terms. For HF approximation, these initial correlation terms consist only on em-
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Figure 4.16: The effect of initial correlation and embedding effects on transient currents. In the top
panels, a bias of W! = —W" = 1.50 is used while in the bottom panels the system is brought into
resonance with the biases W! = —W" = 0.91,0.95 (bottom left, HF) and W! = —-W" = 0.75 (bottom
right, 2B).

bedding self-energies er[l while the correlated approximations have initial correlation
contributions from both the embedding self-energies and the many-body correlation
self-energies E}\;IL. We refer the HF curves without the initial embedding self-energies
as HF1. Furthermore, for 2B approximation, the curves including the initial embedding
self-energy but neglecting the initial many-body self-energy terms are labeled as 2B1
and the curves neglecting both the initial embedding and e—e correlation terms are
labeled as 2B2.

We see that for the high bias region both the HF (top left panel) and 2B (top right panel)
approximation have a weak dependence on the initial correlation and embedding ef-
fects. The neglect of the initial embedding effects leads to very similar dynamics as the
full solution for the current and the only practical difference is that the oscillations oc-
cur at different phase. The same effect happens for 2B approximation. Furthermore, we
also see that for 2B the initial electron-electron correlation effects are almost negligible.
These observations can be easily explained by remembering that we are investigating
the effects arising from the weakly coupled molecule with relatively weak interaction
parameters (U,/|b”| = 0.4). Furthermore, for this large bias regime, the system is also
far from resonance and the initial charging time is relatively short especially for 2B
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approximation. This then renders the initial correlation effects relatively ineffective for
the short timescales.

Let us then focus on the bottom panels where we show the similar plots for HF and 2B
but for the resonance conditions where the levels are aligned with the biased Fermi lev-
els of the leads and long charging times take place. We see that for HF approximation,
neglecting the initial correlations increases the transient currents slightly while keeping
the dynamical structure very similar (bias 0.95). By tweaking the bias voltage in such
a way, that the temporal charging times increase, we start to see much larger changes
in the currents (bias 0.91). For the 2B case we observe much more drastic behavior.
Neglecting the initial e-e correlations in 2B shortens the charging time remarkably (2B
— 2B1). Similar effect happens also if we further neglect the initial embedding effects
which then shortens the charging phase roughly with a factor of two compared to the
full transient current including both the initial embedding and electronic correlations.
As we have seen earlier, the transient transport features are quite sensitive under the
resonance conditions which also explains the quickening of the charging times as the
initial correlation terms are neglected. It is then a clear demonstration that these terms
act as dissipative quantities in the equations of motion and in the equation for the time-
dependent current which slow down the temporal charging processes. The above results
also show that even though we work in the relatively weak interaction regime it is pos-
sible to point out the importance of the initial correlation and embedding effects on
the transients. The take-home message of this study is that the time-dependent quan-
tum transport simulations are very sensitive to the initial conditions and one should
properly account for both the equilibrium embedding and electronic correlation effect
in the time-propagation. Otherwise, one may obtain transient features with remarkable
discrepancies.
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4.3 Lead interactions and image charge effects

So far we have demonstrated some basic properties of time-dependent transport pro-
cess when the electron-electron interactions are restricted only to the central scatter-
ing region. As we have seen, the transient and steady-state DC transport properties of
these models are strongly dominated by the structure of the contacts together with the
many-body effects which lead to bias dependent gap closing and renormalization of the
quasiparticle levels of the molecular region. The question arises, that how these features
change if we account for the Coulomb interactions between the molecular region and
the electron reservoirs? It has been demonstrated both experimentally [I88], [89] and
theoretically [90] (91}, (92, 93| 45| 146]] that the gap between the highest occupied molec-
ular orbital (H,HOMO) and lowest unoccupied molecular orbital (L,LUMO) can reduce
dramatically when the molecule is brought into the vicinity of a metallic conducting
surface. This reduction of the gap is due to the image charges which are formed in the
metallic surfaces and is present even the molecule has only a capacitive coupling to the
surface charges. In this sense, the image charge formation is purely a property of the
long-range interaction between the molecule and the conducting surface. It is therefore
expected that the image charge formation changes remarkably both the transient and
steady-state transport properties.

In the research article [3]] we investigated these effects in the time-domain by using a
simple two-level system inspired by earlier studies on the topic [45]. Firstly, a few words
are in place to clarify how to treat this problem within the Kadanoff-Baym formalism.
To start with, we use the transport model B) of Fig. with the Hamiltonian (3.26))
where we consider the molecular region together with the interacting terminal sites of
the leads as the interacting central region. The one-body part and the interaction part
of this "hybrid" central region can then be written in the matrix notation as

—2U + W(t) 1% V; 0
B v, ey —2U0 0 V.
[h]l](t) - ‘/l 0 EL _ 2U Vr P (4-1)
0 V. V.  —2U+W'(t)
0O U U 0
_| U Uy Uy U
[W]l_] - U ULH U() U ) (42)
0 U U O

where the rows and columns of these matrices are indexed from left (top) to right
(bottom) asi =1;,H,L,1,. Here the indexes i = 1; and i = 1, refer to the interacting
terminal sites of the leads. Furthermore, the factors —2U at the terminal sites arise
from the positive ionic background of the molecular region whereas the corresponding
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—2U terms at the molecule come from the positive background of the terminal sites.
Furthermore, W!(t) and W'(t) are the time-dependent local potential terms due to
the bias voltage which is also applied to the interacting terminal sites. Now, since the
interacting terminal sites are included to the hybrid central region, the embedding self-
energies are given by %, 1,(2,2") = |b’1|2gaa’2z(z,z’). Here the lead hopping elements
b* act as the coupling matrix elements that capture the dynamics of the lead Green
functions g,, ,,(2,2’) at the terminal noninteracting lead sites 2 to form the embedding
self-energy to the central region.

4.3.1 Image charge effect and spectral properties

Before starting with the time-dependent transport, let us briefly introduce how the
image charge formation changes the spectral properties of the molecule when it is
Coulomb-interacting with the metallic surface of the lead. For this purpose, let us ana-
lyze the situation where the molecule is interacting only with a single metallic surface
modeled with a semi-infinite tight binding lead. The Figure shows the behavior
of the ground state spectral function of the molecule for different approximations and
for different interaction strengths U = 0,0.5,1.0 and for U = 1.5 when the molecule
is hybridized to the conducting metal surface with a coupling strength V = —0.2. The
first observation is that the correlated approximations have a very different qualitative
behavior compared to mean field HF as the interaction strength is increased. For the
HF approximation the HOMO and LUMO spectral peaks move slightly apart from each
other, i.e., the gap between the molecular levels opens up whereas for the correlated
2B and GW approximations the gap starts to close as the molecule-lead Coulomb inter-
action is increased. Another feature which is actually more or less common for all the
approximations is that the intensity of the spectral peaks decreases when the interaction
U increases.

Let us investigate the HF case first. The broadening and outward shifting of the HF
spectral peaks is related to a collaborative effect of the Coulomb interaction and hy-
bridization between the molecular levels and the leads. In fact, as we have shown in
detail in research article [13]], the key processes that are responsible for the spectral peak
broadening are the first order exchange processes ¥, = UGy, and X;; = UG,,. These
terms are nonzero only for nonzero hybridizations V and, for the finite lead-molecule
Coulomb interactions, they renormalize the coupling matrix elements V. — V + UGy,
and, furthermore, the whole embedding self-energy as

Yem — 1/(1 = UC)?*Z,. (4.3)

Here C is just a constant which is weakly dependent on U for small U values. This
renormalization provokes a significant increase of the embedding self-energy which
then flattens the spectral peaks and moves them slightly outwards (see Fig. [3.3)) from
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Figure 4.17: The equilibrium spectral functions for the HE 2B and GW approximations with different
molecule-lead interaction strengths U = 0,0.5,1.0 and for U = 1.5. Here the lead hopping is b* = —1.0
with hybridization V = —0.2.

the original positions corresponding to U = 0. In the case of zero hybridization, no
renormalization occurs and the HF spectral peaks are completely independent on the
lead-molecule interaction.

The situation changes for 2B and GW approximations. The gap closing in the 2B and
GW level compared to the HF encapsulates again the fundamental differences between
the mean-field approach and the correlated 2B and GW approximations: 2B and GW
account for the polarization, i.e., the formation of the particle-hole pairs while the HF
accounts only the Hartree and exchange effect in the interacting "hybrid" region. In
other words, the more sophisticated 2B and GW approximations are able to account for
the polarization of the metallic lead while HF lacks completely this effect. To understand
this polarization process more intuitively, one can think of adding an extra electron to
the LUMO level of the molecule. In the 2B and GW level this extra electron couples
not only to the density at the terminal site (HF), but also to the whole particle-hole
continuum of the lead region which is described by a single polarization bubble diagram
at the terminal site of the lead. This particle-hole continuum (bubble diagram) describes
now the charge-neutral excitations of the lead as a response to the added electron to
the LUMO. This excitation process depletes the charge density from the terminal site of
the lead leaving behind a positive ionic background which then screens out the excess
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Figure 4.18: Ground state satellite spectrum above the main LUMO spectral peak for 2B approximation.
The molecule-lead hybridization strength is set to V = —0.2 and the lead hopping parameters b* = —0.6

charge of the added electron. It is this screening process which then lowers the addition
energy of the LUMO level and renormalizes the molecular gap. It has been shown by
Thygesen [[45]] and by us [I3]] that GW approximation is able to describe the image
charge formation very accurately and agrees very well with the exact results.

The charge depletion (excitation) from the terminal site of the lead is now exactly the
process of image charge formation and it appears in the correlated spectral functions
as long tails above (below) the main LUMO (HOMO) peaks. These tails describe the
continuum contribution of the different excited states of the lead to the spectral func-
tion and the intensity of this satellite spectrum depends strongly on the molecule-lead
interaction and the response function P of the lead (P ~ bubble diagram ~ 1/b* for 1D
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Figure 4.19: The greater Green functions G/, (t,0) for HF (panel a) and 2B (panel b) approximations
for U = 0.0,1.0,1.5. The lead hopping is set to b* = —1.0 and the coupling constant is V = —0.2. The
inset shows the initial transient of the U = 1.0
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lead). This satellite spectrum is emphasized more clearly in Fig. where we show
the LUMO spectral function for 2B approximation for different molecule-lead Coulomb
interaction strengths and for a narrow-band lead with b* = —0.6. The shoulder above
the main peak has width of 4|b*| equal to the bandwidth of the lead and the shoulder
becomes more pronounced as a function of the interaction strength.

All the above spectral features induced by the finite hybridization together with the
Coulombic molecule-lead interaction reflect to the temporal structure of the Green
functions. The figure illustrates these features for the real part of the greater
Green function G, (t,0) for both HF (left panel) and 2B (right panel) approximations.
We clearly see that the broadening of HF spectral peaks originate from the heavily
damped Green functions with a renormalized relaxation time-scale 7, ~ I'"*(1—CU)?
as U increases. Similar feature is also present for 2B with the difference that a small
transient develops in the early beginning of the curve corresponding to U = 1.5. This
transient phase can be identified as the build-up process of the image charge which is
a process with time-scale 7., ~ 1/|b*|. We can now conclude that the lead-molecule
hybridization and Coulomb interaction can significantly change the competing time-
scales between the relaxation (tunneling time-scale) and the screening (image charge
formation) processes.

4.3.2 Transients and steady-state properties: HF study

Let us next move on to investigate how the lead interaction effects change the non-
equilibrium transport properties. It is natural to first discuss the properties on the HF
level and then continue with the more sophisticated 2B and GW approximations. The
figure |4.20| shows the short-time transient right currents for HF approximation for a
range of bias voltages W! = —W" € [0, 1.2] and for different strengths of the molecule-
lead interaction U = 0.0,0.5 and U = 1.0. The bottom right panel also shows the
current-voltage characteristics corresponding to the different panels. In the case of
U = 1.0 the HF currents remain very oscillatory and the corresponding steady-state
current values are the average values around which the oscillation happens. The top
left panel (U = 0.0) shows a typical bias sweep with already well known properties
for the transient and steady-state currents: vanishingly small electron flow through the
system until the bias voltage reaches the resonance (around W! = —W" ~ 0.85) which
results as a sudden jump in the I-V curve and lengthened charging times. By intro-
ducing a finite Coulomb interaction between the molecular levels and the leads, the
behavior starts to change. We see that the transient oscillations are emphasized and
the resonance voltages are significantly lowered as the resonance is reached already at
W!=—-W" ~ 0.7 for U =0.5and W! = —W" ~ 0.6 for U = 1.0. Furthermore, the I-V
curve corresponding to U = 1.0 also develops an additional step structure for a narrow
bias interval W! = —W" ~ [0.55,0.6]. The shifting of the resonance in the current-
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Figure 4.20: Time-dependent right current for HF appoximation for different molecule-lead interactions,
U = 0.0,0.5 and for U = 1.0. The bottom right panel shows the current-voltage characteristics corre-
sponding to the 3D-plots.

voltage characteristics has its origin at an improved polarization of the molecular re-
gion for larger U. To support this statement, the Fig.[4.21]shows the individual transient
currents and densities for the bias voltage 0.8 together with the ground state (GS) and
non-equilibrium steady-state spectral functions. One can clearly see from the panel d)
that the polarization increases drastically by increasing the interaction strength U. As
we already know, this polarization (described by the relative occupations ny(t) and
n; (t)) leads to a HOMO-LUMO gap collapse (panel b) which then induces a significant
increase in the current (panel a). For this model, one can approximate the positions of
the HF resonances with the equations (see Eq. (4.1]))

HF HF
€ A hHH + ZHH’

ey — 2U + Uyny + 22Uy n; +2U[nq, +ny;], (4.4)

&

HF HF
€ ~ h+X%,,

€, —2U + Uyn;, + 22Uy ny + 2U[nq, + ny;l, (4.5)

which agree very well the observed spectral peak positions of panel b) when evaluated
using the densities of panel ¢) and d) together with the parameters for the interaction
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Figure 4.21: Time-dependent right currents (panel a), terminal site densities (panel ¢) and HOMO,
LUMO densities (panel d) for HF approximation with U = 0.0,0.5 and for U = 1.0. The panel b) shows
the ground state (GS) and non-equilibrium steady-state spectral functions.

matrix elements.

The additional step in the -V curve has also very interesting origin. For the bias volt-
ages corresponding to the narrow step-like region, the molecule acquires excess charge
during the charging phase, see Fig. This excess charge induces Hartree potentials
to the terminal sites of the leads which then temporarily block the current flow and
a metastable step-structure is formed into the current-voltage characteristics. Increas-
ing the bias voltage, a maximal current flow is then retained and the metastable state
vanishes.

The resonance shifting and the formation of this metastable region are not the only
peculiar properties that can be observed for the mean-field HF approximation. In fact,
longer time-propagation reveals that for the bias voltages larger than the metastable
biases, the system does not even reach a steady state. We demonstrate this property in
Fig. for the bias voltage W! = —W" = 0.8 by propagating the system up to 350
a.u.t. We see that for short propagation times the system seems to settle down do a
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Figure 4.22: Time-dependent occupation in the molecular region, N,;(t) = ny(t)+n;(t), as a function

of the bias voltage. The molecule gains excess charge for the bias region W! = —Uy € [0.55,0.6] which
causes a temporary blocking of the current.

well-defined steady state. However, the switch-on process induces time-dependent os-
cillations into the system which are kept alive and nourished by the finite bias voltage
and the mean-field Coulomb effects. These oscillations develop in time and the system
end up into an oscillatory state where the currents and densities oscillate dramatically
around their average non-equilibrium values. The panel b) of Fig. also shows the
Fourier transform of the total current |I,,,(w)| = |[;(w) + I.(w)|. The Fourier spectrum
shows peaks at the odd multiples of the main frequency region which mainly corre-
sponds to the electronic transitions between the dynamically renormalized molecular
levels.

The formation of the metastable current region is sensitive not only to the molecule-
lead Coulomb interaction but also to the hybridization strength V'". The figure
shows for V" = —0.3 how the metastable bias region extends to relative large bias
regime W! = —W" € [0.425,0.7] and the system becomes unstable for the larger bias
voltages. One can therefore conclude that the formation of the metastable region is
actually governed by the renormalization effect of the embedding self-energy due to
the molecule-lead Coulomb interaction. In fact, the same phenomenon can drive the
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Figure 4.23: The unstable behavior of HF approximation. a) Time-dependent currents, c) terminal site
densities, d) HOMO-LUMO densities. Panel b) contains the Fourier transform of the total current of panel
a). The lead-molecule interaction U = 1.0 and W! = —-W" =0.8.

system to non-stationary solutions observed with larger bias voltages: the density ma-
trices Gy, and Gy, ; become highly oscillatory functions which leads to dynamical
renormalization of the embedding self-energy as the prefactor of £, (see Eq. (4.3))
or, equivalently, the effective coupling matrix elements Vg (t) = V + Upp,, 1(t) o0s-
cillates in time. The result is a strongly oscillating, self-consistent and self-sustaining
non-stationary solution for the currents and densities.
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Figure 4.24: Time-dependent right currents as a function of bias voltage for HF approximation with
Vi=V"=-0.3and U =1.0.

4.3.3 Transients and steady-state properties: correlated approxi-
mations

Let us next investigate how the transport properties change if we account for the
correlation-induced effects via the self-energy. The Figs. [4.25| and |4.26| shows now the
transient right currents and I-V characteristics for 2B and GW approximation with dif-
ferent lead-molecule Coulomb interactions. As expected, the correlated approximations
produce much less oscillatory currents with a stable steady-state due to the enhanced
spectral broadening. This is something that one would expect from the basis of earlier
analysis since the higher order self-energy diagrams provide substantial dissipation to
the system which fights back the self-nourishing oscillations arising from the mean-
field effects. Furthermore, just like for the HF approximation, the resonance voltages
are clearly shifted towards smaller bias voltages since both the 2B and GW approxima-
tions contain the singular HF part in the self-energies. This shifting of the resonance
is however accented by the image charge effect which closes the equilibrium gap (see
Fig. and redistributes the spectral weight between the main quasiparticle peaks
and the satellite spectra arising from the leads. One can also observe that the sharp
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Figure 4.25: Time-dependent right current for 2B approximation for different molecule-lead interac-
tions, U = 0.0,0.5 and for U = 1.0. The bottom right panel shows the current-voltage characteristics
corresponding to the 3D-plots.

jump of the current at the resonance is smeared out as the lead-molecule interaction is
increased and that the metastable region is completely absent in the I-V curves. These
features are clear evidences of the interplay of image charge effect together with the
bias dependent gap closing mechanism discussed earlier. The bias dependent closing
and image charge effect spread the spectral weight of the main peaks and the sharp
jump in the I-V washes out.

As the final comparison, the Fig. shows the non-equilibrium steady-state spectral
functions A(w, W') of the whole interacting region corresponding to the left panels of
figures|4.20] [4.25|and [4.26] The left panels of Fig. are obtained for the molecule-
lead interaction U = 0 and the right panels correspond to U = 1.0. From this figure one
can obtain a clear picture how the lead interaction effects change the non-equilibrium
spectral properties. Let us first focus on the HF spectrum. The comparison of the left
and right panels for HF shows immediately that the spectral structure is significantly
transformed in the metastable bias region as the main spectral peaks are pushed down
in energy and also two sharp edges are formed at the edges of the lead continua. These
two edges are the manifestations of the Hartree-potentials at the terminal sites of the
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Figure 4.26: Time-dependent right current for GW appoximation for different molecule-lead interac-
tions, U = 0.0,0.5 and for U = 1.0. The bottom right panel shows the current-voltage characteristics
corresponding to the 3D-plots.

leads when the molecular region is filled with an excess charge and it is also this charge
gain that pushes the main peaks to lower frequencies, out of the bias window and
partially blocking the current flow. For larger biases the gap narrows drastically and the
peaks sharpen which is consistent with the strong temporal current oscillations.

The correlated spectral functions show also very interesting behavior. For U = 0O the
gap collapse broadens the HOMO and LUMO spectral peaks to flat distribution over the
whole energy continuum [W" —2|b*|, W! 4 2|b*|]. For U = 1.0 the situation is different
and the spectral features remain relatively sharp for the whole bias voltage region. One
can also see that for 2B approximation, the molecular gap is actually opening up rather
than closing while the GW peak positions are not altered significantly. We can therefore
say that the interaction between the molecule and the lead in a correlated level can
have an opposite effect to the non-equilibrium spectral properties than the interactions
restricted to the molecular region only.

The above results summarize the essential content of research article [3]]. In conclu-
sion, we investigated the mechanism how the molecule-lead interactions can renor-
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Figure 4.27: The non-equilibrium steady-state spectral functions A(w, W!) = Ao, wh G =
1,H,L,1r.) for U = 0.0 (left panels) and for U = 1.0 (right panels) with different self-energy ap-
proximations corresponding to figures [4.20] [4.25| and [4.26]

malize the lead-molecule hybridizations and the whole embedding self-energy. In the
HF level, this has profound consequences on ground-state, non-equilibrium the steady-
state and transient properties of the system when driven out of equilibrium with a bias
voltages. Firstly, the renormalization of the embedding can lead to nontrivial dynamical
effects such as current blockage and undamped post-transient dynamics where the sys-
tem does not reach a steady-state. These peculiarities can be cured by treating the e—e
interactions within 2B or GW level which dynamically accounts for the important image
charge effects, i.e., the gap closing and satellite spectra, and also the bias dependent
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gap closing mechanism. Interestingly, the molecule-lead interactions, when treated on a
correlated level, can retain the sharp features of the non-equilibrium spectral functions.

4.4 AC transport

AC driven systems are the basic building blocks for modern day electronics. The ap-
plication of AC perturbations to nanoscale systems offers a whole new playground for
simulating the current and density responses of lead-molecule-lead junctions to alter-
nating external fields. The Kadanoff-Baym formalism offers a natural framework to
study this problem as the treatment of general time-dependent fields requires the same
computational cost as the sudden-switches of time-independent biases or gate voltages.

In the journal article [4]] we scratched the surface of this topic by briefly studying the
AC-Bias response of a quantum wire connected to one-dimensional leads. The essential
content of this article can be summarized as follows: By applying either symmetrical
or asymmetrical AC bias voltages, the currents, densities and dipole moments gener-
ate very high level harmonics of the basic driving frequency w, of the external time-
dependent AC bias voltage. One can also, by using anti-symmetrical fields, selectively
generate only the odd higher harmonic frequencies (2n+1)w, up to n = 9 which is very
far from the linear response regime. By introducing an external AC bias that break the
antisymmetry, also the even harmonics 2nw, can be observed. We also found that the
generated harmonics are emphasized around the energies corresponding to the aver-
age HOMO-LUMO transitions and also the electronic transitions between the molecular
levels and the biased Fermi levels of the leads. This implies that one can, also in the
case of AC fields, find fingerprints of the underlying spectral structure of the molecular
region and the electronic transitions from the measured transient AC current. In this
case, the HOMO and LUMO energy levels are also dynamically renormalized due to the
alternating bias voltage, i.e., the positions of the molecular levels depend on the phase
of the bias voltage.



5 Summary & Outlook

Simulations are an essential part of research. They support experiments by providing
a well-defined and controlled environment to reproduce the measured physics and, in
many cases, predicting new phenomena which may have not been yet realized exper-
imentally. In this sense quantum transport, as a relatively new and important branch
of nanoscience, is an ideal playground for both the experiments and theory. Whenever
one deals with systems the dynamics of which is determined by quantum mechan-
ics, one ends up working with quantum transport process. Actually, every measure-
ment, whether it is subjected to quantum mechanical, mesoscopic or even macroscopic
systems, leads to a process where an external measurement apparatus is interacting
with the test subject and, one way or another, induces charge and/or energy transfer
processes in the subsystems. From this point of view, understanding the charge trans-
port processes, and especially quantum transport processes is of utmost importance
for all the fields within nanoscience. The work presented in this thesis has taken one
step further in understanding the basic principles of quantum transport through small
molecular-like structures where the electronic interactions have a significant role. Let
us briefly summarize the topics covered in this work.

In this thesis I have given an overview of the NEGF formalism and derived the quantum
kinetic equations of motion, the Kadanoff-Baym equations, for the one-particle Green
function. This powerful formalism was then applied to open systems and extended via
a projection technique to account for arbitrary number of electron reservoirs to yield
embedded Kadanoff-Baym equations. This set of equations, consisting of the equation
for the initial state, i.e., the Dyson equation, and the set of real-time equations were
then numerically solved for the molecular quantum systems coupled to source and
sink terminals. For the interacting model Hamiltonian we adopted the PPP description
suitable for the low-energy properties of conjugated hydrocarbons while the electron
reservoirs were modeled as one -and two-dimensional semi-infinite tight binding leads.
Within this model, we then calculated the current and density responses of the system
to applied bias voltages.

Our results suggest that the electron-electron interactions, and especially the elec-
tron correlation effects beyond the mean-field, play a leading role in both the time-
dependent and steady-state transport properties of the metal-molecule-metal junctions.
In non-equilibrium situations when the interacting scattering region is subjected to
current flow from source to sink terminal, the Coulomb interactions can give rise to
a substantial renormalization of the molecular levels and also of the molecular gap.
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This has profound consequences on both time-dependent and steady-state conductivity
properties of these junctions. From the steady-state point of view, the interactions can
lead to dramatic shifts and broadening of the conductance peaks and, on a mean-field
level, can introduce anomalous step-structures to the current—voltage characteristics.
These anomalous step-structures can be identified as situations where the current is
temporarily and partially blocked.

From the transient point of view, the mean-field treatment of interactions can lead to
overestimation of the transient features. The HF treatment of the Coulomb interactions
lacks dissipative effects and this is reflected in the transient currents and densities which
remain highly oscillatory during the whole transient time. These oscillations reflect
the electronic transitions between energy levels of the central molecular region and
also between the central region and the electron reservoirs. In fact, the mean-field
treatment of long-range Coulomb interactions between the molecular device and the
source/sink terminals can lead to dynamics where the time-dependent currents and
densities do not reach a steady-state. This kind of dynamics is a prime example of the
instantaneous nature of HF potential which neglects the history dependence. In contrast
to the mean-field dynamics, the electron correlation effects on 2B or GW level account
for these important memory effects which repress the overestimated transient features
originating from the mean-field treatment.

The results reported in this thesis and in our research articles also suggest that the
transient features are also sensitive to the initial conditions, i.e., to the initial state
which corresponds to the equilibrium solution provided by the Dyson equation. The
Kadanoff-Baym formalism accounts this initial state dependence via the collision in-
tegrals where the non-local self-energy act as memory kernel to the initial state. Ne-
glecting these memory terms can have a considerable effect on the transient dynamics
especially under resonance conditions where the system can experience relatively long
charging times. Our findings therefore advocates a proper treatment of the initial state
and initial correlation terms during the time-evolution.

We have seen so far that the embedded Kadanoff-Baym equations offer a general, and
flexible framework to deal with non-equilibrium quantum systems connected to elec-
tron reservoirs. This framework makes possible to study such a vast range of different
topological systems driven with AC/DC perturbations that including them in one thesis
is an impossible task. However, it is useful to point out the different applications which
could be of great interest for the future research.

Apart from the AC biased systems, AC gated systems provide also an intriguing applica-
tion for further research. For example, the implication of long-range electron correlation
effects on phenomena such as photon assisted tunneling [|94, 95] is still unexplored.
The AC fields together with electron correlations could also be applied, for example,
to electron pumping [96, 55] where an alternating time-dependent potential is used
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to transport electron between source and drain electrodes. In addition to the research
on AC fields, the extensions of transport topics involving spintronics, superconduct-
ing leads [[97], shot noise [[98]], lead plasmons, Coulomb blockade and higher order
tunneling processes, such as co-tunneling [99] to correlated time-dependent transport
would offer challenging and interesting fields for future investigations with the real-
time Kadanoff-Baym approach.






Appendix A:
Embedded KB-equations

A.0.1 Embedding self-energy for two-dimensional semi-infinite TB
lattice

The purpose of this appendix is to give an accurate description of the embedding self-
energy for two-dimensional lattice. Let us go through in detail the derivation of article
IT Appendix B of this thesis.

Consider a two dimensional site lattice a with R, rows and M, columns, see Fig.
(A.0.1). The tight-binding Hamiltonian for this system reads

R, M,
H= ZZ [he] s €riaCria — BN (A.1)
[T

where I,J (and also other capital indices in a-domain) runs through the rows and i, j
(and other small indices in a-domain) runs through the columns of the site lattice.
Thus the index pairs Ii and Jj comprises the spatial coordinates of the sites in the two-
dimensional lattice. Here h}, describes the nearest neighbor hoppings of electrons from
site to another both in horizontal and vertical directions. The matrix elements of the
Hamiltonian can further be separated as independent components depending on
the spatial direction:

[hy ]y = [hﬁ]ij 6y + [h;]u 6 (A.2)

where hﬁ and h™ are the longitudinal (A) and transverse (7) hopping matrices with the
matrix elements

a, 1=j
[hé] = bi i, j nearest neighbours
0 otherwise (A.3)

[hf] _ | by I,J nearest neighbours
L 0 otherwise
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Figure A.1: Two-dimensional tight binding site lattice for lead a with R, rows and M, columns.

Hereby the Hamiltonian (A.I]) becomes

Ry M, Mg R,
H - ZZ I:hi] ij E;Aiaalja + ZZ I:h;] 1J 5;-(16‘]1*(1 - MNa (A4)
T i i 1J

Since the Hamiltonian is separable, the single-particle eigenvalues of are given
by the sum of longitudinal and transverse channel eigenvalues, eﬁa and €, where
k enumerates the orbitals in longitudinal direction and K in transverse direction. Fur-
thermore, the eigenfunctions are product functions of the corresponding channel eigen-

functions, i.e., the eigenfunctions of hi and h}.

Our aim is to calculate the noninteracting Green function and the embedding self-
energy in the localized site basis for the two-dimensional lattice. For this purpose, let
us expand the Fermionic field operators of the domain a using the localized site orbitals
as

Pu®) = D 05X (A.5)
Jj

Pl = > o X, (A.6)
Jj

where ¢;;,(x) is the localized orbital at site coordinate Jj. Let us then consider the
basis transformation from the localized site basis to the nonlocal orbital basis spanned
by the wave functions yg;,(X)

T = DS [Ur] 4 [UR], 100 (A7)
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or inversely

Cria®) =Y [UZ] [URT],. Zika)- (A.8)

Kk

Here yyi,(%) is the delocalized orbital corresponding to the transverse and longitudinal
eigenvalues €,  and ei‘a and U’ and Uﬁ are unitary basis transformation matrices which
diagonalize the separate Hamiltonians

[UARLULT], = el 6
[0S ] = ekabia
(A.9)
UG =G = 1y,
UV UIUL = Ly,
Inserting into and it immediately follows that the Fermionic operators
transform as

M,.R,
Cliq = Z [U ]IK[U Jix Qxkas

KK

M, R, (A.10)
~F A1k A
Cria = [U.17. [U. 15 11(1’

l

=

where @;,, and dy,, are the Fermionic creation and annihilation operators in the delo-
. . . - ATy - . At AT 1
calized basis obeying {dyy,,a;,,} = Ok 0k and {Axyy, Ar1q} = {axp,,a;,, =0

Now, by using the notation in Eq. (A.10) for the Fermionic opertors, we can write the
embedding self-energy for the lead a as

I: ema (Z 2z ) = Z m,Ika [gaa]lk,.]l (Z’Z/) VJla,nJ (A]-]-)

IJkl

where the Green function for the lead a is given by

[8aal e &%) = —i(T [eran(@En(@)]),
= Y U Uk [Buadnopa(z:2) [URT]4 (UL, (A12)
ABcd
with
I:g;a]Ach (Z,Z/) = iéABécdf(eAca)e_isz/(EACd_H+W&(2))d2) (A].S)

I:gza]Ac,Bd (272/) = l5AB 5cd [f(EAca) - 1]e_ile(EAca_M+Wa(£))di- (A14)
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Here f(e) = 1/(eP“= 41) is the Fermi-Dirac distribution function and €, , = e?a—i-efm,
where

N N km

€., = aq—2|b/|cos 1) k=1,...M,, (A.15)
a

. . Kn

€xq = —2|b}|cos 11/ K=1,..,R,, (A.16)

Using this, we can write the lesser component of the self-energy in the following way

[ em a] (Z z )
Z Ika UT IA[Uk]kc{lf(EAca)e enca M+Wa(z))dz}[UA'] [UT ]AJVJlan
IJAklc

IJA
{27‘[2 Ika kc 5(6 eAca)[Ui’T]clVJla,n}
klc

/

-~

anjﬁa(e 6Aaz)

g [ de i /
= te W | £ { ) UL U Ta T (€ — €gea) f €76

J A

J/

-~

[T imn,a€)

.fz We()dz [ de : /
= ie7 O | 22 F ()T, (€)™ (Aa.17)
J

In the equation for Fﬂff’a(e — €,,), the summation over the lead indices can be reduced
if we consider the coupling matrices V,, ;;, and Vj, , to have nonzero elements only
between the central region and the first layer of the two-dimensional lead a, i.e., we set
k =1 = 1. Furthermore, by using the explicit expressions for the transformation matrix
elements

N 2 . kcm
[U ] = sin , (A.18)
ol ke M,+1 M,+1

[UT] 2 sin IAn (A.19)
= 1 o
al1a R,+1 R,+1)’
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we then obtain
M,

a

Ff,{,’ia(e - eAa) = 27TV IlaVJla nZ[UA]lcé(e - eAca)[Ué’T]cl

c=

4'77'-Vm Ilavjla n
T M, +1 Z w11 ) 06 ™ Eac)

c=1

4'TCVm IlaVJlan Me .2 e
- — sin 0(€e —€ey)dc
M,+1 . M,+1

a

(A.20)

where €,., = efa + €, and in the last step we consider the continuum limit as M,
becomes large. The integral can now be easily evaluated by changing the variables to

y = —2|bA| Ccos ( =) which in the limit M, — oo gives the integration limits from
—2|b2| to 2|b2|. We then have

4V, .V M cr
| sinz( )5(e—eAca)dc
1

M,+1 M,+1

2|b2|
— 2V IlaV.Ilan —GT _y)d_)’
|b7& 2|b/1 4|b7&|2 Aa
2V IlaVJlan
— 2 2R 1 - ©(2|b* — |E A.21
o zw (21671 - 1B (A21)

+1) LA=1..R,.

L — -~ _ P T T A
where E=€—a,—€, and e} = 2|ba|cos(Ra

The lesser component for the embedding self-energy for two-dimensional semi-infinite
lead a is then finally given by

et [ywe@az Ra

(ZD) I:Z:m’ail mn (Z> Z/) = lW ; Vm,Ila [UZ]IA [UZ’T]AJVJla,n
a

aa+62a+2|b§| 2
€E—a, — € . /
XJ f (e)\/ 1 g T i ge,
a

A2
e —2(b| 4|b7|

(A.22)
and in the case of one-dimensional semi-infinite lead, the self-energy simplifies to
ot [y W@z

(1D) I: ema:| (ZZ) = iWleavla,n

a +2|b |
’ (e—a,)? _, ;
x fle)]1— Sl emitemege,
J:za—2|b§| 4|bl|2

(A.23)
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The greater component of the embedding self-energy, Z:ma(z,z’), can be obtained by

simply replacing the Fermi function f(e) with f(e) — 1. Also the other components
(1,[, M) follow by considering the time-indices on the different domains on the Keldysh
contour.

A.0.2 Meir-Wingreen formula from the time-dependent current ex-
pression

In the equation for the time-dependent current (3.84), let t grow until the initial corre-
lation effects have died out. This means that

Gl(t, f)Z}Lm,a(i’, t)— 0 tlarge.

The resulting equation for the current will become

Ia(t)=—2ReTr{J dt{G<(t t)z.“;‘ma(t t)+ GR(t, 0=, (E t)}}. (A.24)
0

Here all the matrices are in the central region indices and the trace is taken over this
domain. Let us assume that in this limit, the Green function and the embedding self-
energy depend only on the time-differences, that is

G=(t,t) = G~ (t—1t),

ema(t t) = ema(t_t)
GR(t,t) = GR(t-1),
ema(t t) = Z:m,a(f—t)-

Then we can express the above terms as a Fourier transformation, for example

“dw ..
G (t—1)= f z—we-lw(f—f>G<(w). (A.25)
TT

—00

The equation for the current can then be written as

I(t) = —2ReTr{f dtf —eteltm f)G<(w)f ——e o t)z:/:ma(w)

J p—ie(t=0) GR(w)J e (=) ;< (cb)} (A.26)
N 27_5 em,a
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Changing the time-integration variable from t to relative time-coordinate T as t —t = T
we have

I(t) = —2ReTr{f dTJ _l‘”G<(w)J I“TE‘zem(co)

J e " GR(w) J elo" z;m,a(ca)}. (A.27)

Let now t go to infinity and let us denote the steady state current as Ig. Furthermore,
by rearranging the integration variables and combining 7 -dependent exponentials to
the right under the time-integral we get

s “ dw - ®dé (o—5)
I° = —2ReTr —G~(w) (co) dre ilw=&)T 4
a o 27.C o 2 ema
27t5(w @)
dw OO o
J R(w)J —Z}:m a(c”o)J d’re_l(‘“_“’”},
27[5(23—&)) g
” dew R <
= —2ReTr 2—G<(co)2’2ma(w) +GHw)zg, (w) ;. (A.28)
The symmetry relation of the Green function,
[G<(t—t)] = -G=(t' - 1), (A.29)
directly implies that
[G<(w)} L= _GY(w), (A.30)

Using this with the expressions for the embedding self-energy and retarded Green func-
tion

em,a

em (X(w) = lf(l(w)ra(w))

B (0) = A0)+ 5T W),

Re[iGR(w)} - %[GR(CO)—GA(Q))], (A.31)
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where A(w) and I'(w) are real matrices and f,(w) = f (w + U,), we have

ReTr [G* ()T, ()] = %Tr G ()3, (@) + {6 (@), ()} ],
- %Tr:G<(co)F"(w)],
ReTr| GR()Z, ()] = éTr:{GR(w)—GA(co)} ful@)re(w)],

and the steady-state current through the interacting-noninteracting interface a will
then become

*d
5 = —iTr{J_OO %r“(w){cﬁ(wﬂfa(w) [GR(w)—GA(w)]}}, (A.32)

or equivalently

e[ de .
I, = —iTr {J —l"a(a)){G<(a)) — 2mfa(co)A(co)}} X (A.33)
21

—00

To summarize, the terms appearing in the previous equations were given by:

1

GR(A) —
(@) = T —he - @)’

ZR(A)(O)) _ Zﬁﬁ)(wHZZR(A) (w),

em,a

em,a

Aw) = g}f de' T, (w')

2 w— "’

W (w) = Aa(w):F;ira(w),

2 F?
ra(w) = hCahacm 1- (%) @(Zlbl _E):

Toa(0) = if,(0)Te(w),

z]e>m,oc((’o) = i(fa(w)_l)ra(w);

where £ = w —a, — U, (1D).
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