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In this Thesis, transport in complex nonequilibrium many-particle systems is studied
using numerical master equation approach and Monte Carlo simulations. We focus
on the transport of the center-of-mass of deformable objects with internal structure.
Two physical systems are studied in detail: linear polymers using the Rubinstein-Duke
model and single-layer metal-on-metal atomic islands using a semi-empirical lattice
model. Polymers and islands are driven out of thermodynamic equilibrium by strong
static and time-dependent external forces. Topics covered in this work include intro-
ductions to nonequilibrium statistical mechanics, master equations and computational
methods, with construction and numerical solving of master equations, and numerical
optimization. For small systems (up to ~10° states), solving master equations numeri-
cally is found to be efficient, especially when studying parameter sensitive and elusive
properties, such as drifts caused by the ratchet effect. Speed and accuracy of the
method allows optimization with respect to continuous model parameters and transi-
tion cycles, which helps in understanding the coupling between the internal dynamics
of deformable objects and their center-of-mass displacement.

Firstly, we study transport of polymers in spatially periodic time-dependent poten-
tials using a standard and relaxed versions of the Rubinstein-Duke model. Two types
of potentials, flashing and traveling, are considered with stochastic and deterministic
time-dependency schemes. Rich non-linear behavior for the transport velocity, diffu-
sion and energetic efficiency is found. By varying the polymer length, we find current
inversions caused by a 'rebound’ effect that is only present for objects with internal
structure. These results are different between reptating and non-reptating polymers.
Transport is found to become more coherent for deterministic time-dependency scheme
and as the polymer gets longer. The results show that small changes in the molecule
structure (e.g. the charge configuration) and the environment variables can lead to a
large change in the velocity.

Secondly, we study transport of single-layer metal-on-metal islands using a semi-
empirical lattice model for Cu atoms on Cu(001) surface. Two types of time-dependent
driving are considered: a pulsed rotated field and an alternating field with a zero av-
erage force (an electrophoretic ratchet). The main results are that a pulsed field can
increase the velocity in both diagonal and axis directions as compared to a static
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field, and there exists a current inversion in an electrophoretic ratchet. In addition
to a 'magic size’ effect for islands in equilibrium, a stronger odd-even effect is found
in the presence of large fields. Master equation computations reveal nonmonotonous
behavior of the leading relaxation constant and effective Arrhenius parameters. Op-
timized transition cycles shed light on microscopic mechanisms responsible for island
transport in strong fields.
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1 Introduction

Research of transport of complex molecular and micro-scale objects has flourished in
the last two decades. Important discoveries have been made and knowledge has been
gained on molecular motors, polymers and in surface physics, where the development
in experimental and computational techniques have reached the level which allows
studying and manipulation of individual molecules and atoms [85, 34, 33|. Theoret-
ical research of simplified models has a center stage in unraveling the operational
principles of these systems. In this work two complex micro-scale systems are studied:
linear polymers and single-layer atomic islands [5, 86, 110, 139]. We apply a master
equation approach and simulations, and concentrate on the transport properties of
polymers and islands under the effect of strong static and time-dependent external
forces. Topics covered in this work include introductions to nonequilibrium statisti-
cal mechanics, master equations and computational methods, with construction and
numerical solving of master equations, and numerical optimization.

Statistical mechanics consists of two rather different parts: equilibrium and nonequi-
librium statistical mechanics. A system is said to be in thermodynamic equilibrium
when it is thermally, mechanically, radiatively and chemically in balance, i.e. there are
no net flows of matter or energy, no phase changes, and no unbalanced potentials or
driving forces, within the system [27]. An equilibrium system experiences no changes
when it is isolated from its surroundings. If any of these conditions is not met, the
system is in a nonequilibrium state |75].

The success of equilibrium statistical mechanics has been spectacular. It has been
developed to a high degree of mathematical sophistication, and applied with suc-
cess to subtle physical problems like the study of critical phenomena. By contrast,
the progress of nonequilibrium statistical mechanics has been much slower. For sys-
tems in equilibrium, everything is well understood and validated, but as the systems
and processes of interest are taken further from thermodynamic equilibrium, their
study becomes much more difficult. We still depend on the insights of Boltzmann
for our basic understanding of irreversibility, and further progress has been mostly
on dissipative phenomena close to equilibrium, resulting in Onsager reciprocity rela-
tions, Green-Kubo formula, and related fundamental results [75, 27, 138]. Theory of
nonequilibrium systems is still immature and under development. Indeed, developing
a fundamental and comprehensive understanding of physics far from equilibrium is
recognized to be one of the 'grand challenges’ of our time, by both the US National
Academy of Sciences and the US Department of Energy [33, 201]. Perhaps the most



2 Introduction

striking feature of nonequilibrium systems is the possibility for mass transport. Trans-
port near equilibrium is covered by the linear response theory and is generally well
understood. On the other hand, far from equilibrium, complex and strongly system-
dependent, non-linear transport phenomena arise. The motivation behind this work
is to gain understanding about these phenomena.

The master equation approach is an efficient way to study the statistical mechanics of
complex nonequilibrium many-particle systems. In this work, we concentrate on the
numerical methods for large master equation sets and provide in-depth analyses of
discrete state polymer and single-layer metal island models in nonequilibrium condi-
tions. Both polymers and atomic islands have large numbers of internal configurations.
Our main focus lies on the transport properties of these deformable objects, which
are very different from objects without internal structure, such as point-like particles.
Nonequilibrium state is obtained by introducing strong static and time-dependent
potentials that force the system out of equilibrium.

In the first part of this work, we concentrate on the numerical solution methods of
master equations. If the number of master equations is of order 10° or less, numeri-
cally exact results for the probability distribution and observables of nonequilibrium
models can be computed. As opposed to the Monte Carlo simulations, which is the
traditional numerical method, speed and accuracy of the numerical master equation
method allows numerical optimization with respect to continuous model parameters
and transition cycles. This helps in understanding the coupling between the inter-
nal dynamics of deformable objects and their center-of-mass displacement. Numerical
master equation approach has been previously used mostly in studies of chemical re-
action networks (e.g. stoichiometry) and related fields [63]. In this work, we show that
this method can be also used as a standard tool in studies of complex many-particle
systems in nonequilibrium statistical physics. This has became possible mainly due
to the recent advances in computer technology and numerical methods, particularly
in linear algebra and optimization. In this Thesis, we will cover all necessary theoreti-
cal and numerical aspects of the master equation method for nonequilibrium discrete
models.

The Thesis is organized as follows. In Chapter 2, the theoretical basis of nonequilib-
rium systems, the ratchet effect and master equations are presented. The presentation
is kept general without making assumptions of any specific models. In Chapter 3 we
present and define the models and observables studied in this work. In Chapters 4
and 5, methods to set up and solve master equations are discussed. In Chapters 6
and 7, results for the repton and island model are presented and discussed. Finally,
in Chapter 8, the summary and outlook of this Thesis is presented.



2 Theory

In this Chapter, the general theoretical background of the Thesis is presented. To keep
the representation compact and readable, many mathematical details are omitted. We
concentrate on systems with a finite discrete set of states, with brief exceptions made
in Sections 2.1.4 and 2.2.1.

2.1 Statistical mechanics

2.1.1 Systems in and out of equilibrium

The fundamental property of the equilibrium is that the probability to find the system
in a given state follows the Boltzmann distribution [138]

Peg(y) = e *sT, (2.1)
where y denotes the microstate of the system with energy E(y), kg is the Boltzmann
constant, T is the temperature and Z = » exp (—E(y)/kpT) is the partition function
over all available microstates in the canonical ensemble. The second requirement for
thermodynamic equilibrium is the local detailed balance condition [138]

Pea W (Y, y) = Pea (¥ )W (y,9), (2.2)

where W (y/,y) is the transition rate (probability per unit time) for a transition from
state y to state 3. The products of the form P(y)W (y,y’) are called probability flows
or currents. Together with the distribution P, these flows have a special role in charac-
terizing the steady states uniquely [200]. For discrete time systems, W is the transition
probability (see Section 2.2.3 for more details). The detailed balance condition is a
very strong property, because it indicates that there cannot be net currents between
any states in the system, and if W (y, y’) is non-zero, then also W (y/, y) must be non-
zero. From the detailed balance condition, it also follows that the dynamics of the
equilibrium system is independent of the direction of time and the entropy produc-
tion of the system is zero.

For a nonequilibrium system, equations (2.1) and (2.2) do not hold. There is no general
paradigmatic theoretical framework that describes nonequilibrium systems, neither in
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thermodynamics nor in statistical mechanics |75, 194|. Especially, this means that
there is no general principle whereby one can calculate the distribution of the sys-
tem’s states from the sole knowledge of the system’s invariants or external constraints
imposed on the system. At present, the most promising results in the search for uni-
versal properties of nonequilibrium systems are the fluctuation and pumping theorems
[76, 29, 8. These theories go beyond linear response regime (see below), but the prac-
tical usefulness of these expansions remains an open question. They provide certain
limits and requirements for the work and current distributions, but do not provide an
actual access to their distributions [8]. Numerical methods remain the main tool to
study complex systems far from equilibrium.

In this work, we only consider ergodic (irreducible) systems, which means that the
system has a non-zero probability to visit all microstates regardless of the initial
state. If this is not true, then the system consists of disconnected sub-systems (the
system is decomposable) and each sub-system can be treated as separately from each
other. Any ergodic system finally relaxes to an unique steady state corresponding to
a function W if allowed to run infinitely long. For equilibrium systems, W must be
time-independent and lead to the Boltzmann distribution with the detailed balance
[138]. A nonequilibrium state can be steady or transient. A transient nonequilibrium
state appears, for example, after the system is suddenly pushed out of equilibrium. If
the system is pushed out of equilibrium with periodic or constant forces, the system
will end up in a nonequilibrium steady state. In this work, we mainly concentrate on
the latter type of nonequilibrium systems.

2.1.2 Linear response theory

It is known empirically, that for a large class of irreversible phenomena and under a
wide range of experimental conditions, irreversible flows are linear functions of thermo-
dynamic forces {120, 27]. Majority of studies and theory of nonequilibrium statistical
mechanics are limited within the linear response regime near the equilibrium. When
thermodynamic forces are introduced in a system in thermodynamic equilibrium, ir-
reversible dynamics with currents appear. If the forces are small, the response of the
system can be linearized such that

X = Z L;;Fj;,
J

where F}; are the thermodynamic forces and X; are the resulting currents. The co-
efficients L;; are called Onsager kinetic coefficients. Positive definiteness of entropy
production requires that L;; > 0 and by the local detailed balance condition, one gets
Onsager’s principle L; ; = L;; > 0 [107]. Many well-known relations, such as Ohm’s,
Fourier’s and Fick’s laws, indeed rely on the linear response. The cornerstone of the
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linear response theory is the fluctuation-dissipation theorem, which states a general
relationship between the response of a given system to an external disturbance and
the internal fluctuation of the system in the absence of the disturbance. Perhaps the
best known example of the fluctuation-dissipation theorem is the Einstein relation

D= [LI{TBT,

where D is the diffusion coefficient at equilibrium and g = v/F is the mobility, which
is the drift velocity of the object, divided by the total force F' affecting the system.
This means, that v o< D for small forces, i.e. the equilibrium diffusion coefficient can
be determined from nonequilibrium currents near equilibrium, which is often much
easier than trying to evaluate D directly. By checking the linearity of the drift, one can
also get an idea of how close to equilibrium the system is. The fluctuation-dissipation
theorem is useful because it gives a relation between two quantities related to two
essentially different processes, e.g. drift and fluctuations.

2.1.3 Graph representation

The function W in Eq. (2.2), which consist of allowed transitions between microstates,
can be also understood as a graph: If W (i, ) > 0, there is a connection (edge) between
states (wvertices) ¢ and j. The process defined by W then becomes equivalent to a
random walk on a graph [16, 117, 95|. The topology and the complexity of the graph
depends on the details of the system. A time-dependent set of vertices connected by
edges is called a path and its time-independent counterpart a sequence. For an ergodic
system, the graph consists of a single strongly connected component, i.e. there exists
a sequence between any two vertices in the graph. Sequences with the same starting
and ending vertices are called cycles, and they have a special importance in the theory
of nonequilibrium systems. For equilibrium systems, it follows from Eq. (2.2) that for

every cycle C' one has
Wi

(i,4)€C

where (7, j) is a directed edge in the configuration graph. A system with this prop-
erty is said to have a balanced dynamics. This condition does not generally result in
Eq. (2.2). For non-equilibrium systems, the right-hand side of the above equation is
replaced by exp(A(C)) for some cycles, where the affinity (or a macroscopic force)
A(C) of the cycle measures the deviation from equilibrium and is generally non-zero.
Cycles with non-zero affinities are sometimes called ’irreversible rate loops’. In his
seminal paper in 1970s, Schnakenberg formulated a theory of macroscopic observ-
ables as circulations of local forces, and identified the total entropy production of a
thermodynamic system using cycles and their affinities [165]. It is currently unclear,
whether there exists an intuitively accessible and simple relationship between current
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circulations and non-zero affinities [33|. It has been found, that circulations give rise
to the stochastic resonance effect [142]. One of the major differences between equilib-
rium and nonequilibrium systems is, that, for an equilibrium system, the steady state
distribution P, does not depend on the topology of the graph, i.e. for an ergodic
system, the distribution remains the same for different placements of edges between
vertices. However, for transport properties, the topology of the graph is important for
both kind of systems.

2.1.4 The ratchet effect

The properties of nonequilibrium systems depend on how they are driven out of equi-
librium. In this work we are especially interested in systems under thermal random
motion with the presence of time-dependent forces, whose time-averaged force remains
zero, but yet there exists net transport of mass. The transport arises as a subtle inter-
play between nonlinearities in the system and broken symmetries. This type of noise
induced transport is generally known as a ratchet effect [148] and it is different from
the usual predictable mechanical transport, that follows directly from the gradients
of the forces. Due to fluctuations, the time-evolution of state variables, such as the
position of an object, are not directly coupled to the time-evolution of potentials, and
large deviations from an average trajectory can occur. State variables of microscopic
systems in noisy environment are therefore said to be loosely coupled with potentials,
whereas a macroscopic apparatus always displays tight coupling.

For biological systems, ratchet effect poses one of the mechanisms how they manage
to keep themselves in ordered states even while surrounded by significant thermal
noise and environmental fluctuations. In the inorganic and macroscopic world, trans-
port always take place along a gradient of the potential, such as gravitation, electric
field, chemical imbalance and temperature differences. This is not how transport is
achieved for most biological systems. For example, thermal gradients are essentially
impossible to maintain over small distances, hence the thermal gradients necessary to
drive significant motion are not realistic. With the ratchet effect, directed motion is
possible without long-range gradients [11, 85, 4, 182].

The ratchet effect discussed here takes place when the following conditions are met:
(1) the system is spatially periodic, (2) there is some asymmetry in the potentials, and
(3) the system is out of equilibrium. We will next distinguish between the main types
of ratchets. For this, it is more convenient to consider a single overdamped! Brownian
particle in a periodic one-dimensional potential V(x + L,t) = V(z,t), where L is the
spatial period of the potential. The main classification of ratchets remains the same

!For overdamped particles the effect of inertia is neglected, i.e. an approximation #(t) ~ 0 is
applied.
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for discrete systems and non-Gaussian noises. The equation of motion for a Brownian
particle, also known as the Langevin equation, in a medium is

d
Nt = —EV(x, t)+ F+y(t) +e(t),

where 7 is a friction coefficient, F' is a constant load-force, y(t) is a time-dependent
force and £(t) is a random motion (noise). The most studied and familiar type of
noise is the Gaussian one (i.e. white noise), for which (e(¢)e(s)) = 2nkgTd(s —t) and
2nkgT = D is identified as a diffusion coefficient.? The potential V' is expected to
originate from the medium, whereas F' and y result from external fields.

Based on the choice of V', two distinct types of ratchets can be defined: fluctuating
potential ratchet with V(z,t) = V(z)[1 + W (t)] and traveling potential ratchet with
V(z,t) = V(x — W(t)). In the first one, the amplitude of the potential and in the
second one the location fluctuates. For the first type, two especially interesting and
widely used potential types can be identified:

e On-off ratchet: V(z,t) € {V(z),0}, F = y(t) = 0.
e Rocking ratchet: V(z,t) = V(z) and (F +y(t)): =0

The ratchet effect occurs when d(x) /dt # 0 for (—dV (x,t)/dz+F+y(t)) = 0, i.e. there
is a net drift in the presence of a vanishing mean force.

For the ratchet effect to take place, the magnitude of potentials V', y and F' are
typically of same magnitude as the thermal energy kgT. For zero temperature, the
ratchet effect vanishes. Current inversions, which means that the transport direction
turns around, are found to be rather common and can usually be generated by particle
interactions and tuning of variables (e.g. diffusion constant, friction, potential shape
and period) [148, 106, 196, 32, 38, 31, 26, 109, 100]. Since the systems utilizing the
ratchet effect work under nonequilibrium conditions, they are exactly solvable only in
simplest cases. Some exact results can, however, be often derived at different limits,
such as very small/large potentials and slowly/fast changing potentials, for which the
results from the equilibrium statistical mechanics can be utilized in some form.

The first major contribution towards the studies of the ratchet effect was by Smolu-
chowski in his Gedankenexperiment in 1912, regarding to the absence of directed
transport in a system consisting only a single heat bath [174]. The next important
step was taken by Feynman using the famous 'ratchet and pawl’ model, for which the
quantitative analysis was published in 1962 and which showed, that that external work
is required for the machine to perform useful work [62].3 However, it was the works by

2For this reason, the term Brownian motor is often used for objects that utilize the ratchet effect.
3See Ref. [89] for an exactly solvable discrete counterpart of the 'ratchet and pawl’ model.
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Ajdari, Prost, Magnasco et al. in early 1990’s, that provided the inspiration for a whole
new wave of great theoretical and experimental activity, and progress within the sta-
tistical physics community [141, 118]. Another root of Brownian motor theory origins
from the intracellular transport research, specifically the biochemistry of molecular
motors and molecular pumps [186]. Most studies, especially the theoretical ones, have
concentrated on one dimensional systems and white thermal noise. More recently, two-
dimensional systems, complicated potentials, colored noises and non-point-like objects
have been considered [54, 97, 68, 121, 140, 22, 14, 169, 190, 59, 187, 60, 149, 187]|. The
ratchet effect has been also studied in other contexts, such as the game theory, where
the so-called Parrondo’s paradox is a discrete counterpart to the Brownian particle
version [133].

2.2 The Master equation

In this section we derive, motivate and discuss properties of master equations which
form the mathematical framework of this work. Master equations describe the time-
evolution of a system, that can be modeled as being in exactly one of countable number
of states at any given time, such that the switching between the states is treated
probabilistically. A system governed by the master equations can be interpreted as
random walks and are therefore often called jump processes.

Despite the simplicity of the master equation, it has been a subject for decades of
theoretical research and countless applications. Typical examples of usage in physics
are lattice models (e.g. simple exclusion and zero-range processes) and Fermi-Golden
rule in quantum mechanics. Theoretical research of nonequilibrium systems have been
mostly done within the context of master equations, resulting in e.g. fluctuation and
pumping theorems. A large portion of theoretical and numerical research of master
equations have been done particularly in the area of chemistry, where they are used to
model chemical reactions (e.g. reaction networks). The popularity of master equations
is also explained by their close relation to the Fokker-Planck equation and different
types of random walks, in both discrete and continuous space and time.*

2.2.1 Derivation

In the following, a derivation of master equations is given, starting from a generic
random process. More comprehensive and mathematically rigorous derivations can be

4For example, the Fokker-Planck equation gives the distribution for a particle governed by the
Langevin equation [152]. On the other hand, these two can be recovered from the appropriate discrete
random walks at the limit of infinitesimal spatial and/or temporal steps.
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found in several textbooks such as [129, 73, 66].

Consider a stochastic process Y (¢) in continuous time and space. According to the
Bayes’ rule, the following identity holds for the joint probability:

P(y1,t1;y2,t2) = P(yr, t1) Py, to|va, th),

where P(ys,ta|y1,t1) is the conditional probability and y; := Y (¢;). Now, if for all
successive times t] < ty < --- < t,, the condition

Py, tisy2,tas .o Uns tn) = P(yr, t1) P(Yas to; - o5 Yny taltn, t1)
= P(y1,t1) P(Yn, tn|Un—1,tn-1) - .. P(y2, ta|y1, t1),

holds, then the process Y (t) is called a Markov process. Such process is completely
determined if one knows P(y,t) and P(ys,ta|y1,t1), i.e. the probability to be in the
given state in a given time, and the probability for a transition to another state from
the previous [177]. The future state of the process depends only on the present state
and not on the past history. For the case n = 3 and integrating the equation above,
one receives the identity

P(ys, t3;y1,t1) = /P<y37t3|y27t2)P(y27t2|y17tl)dy27 (2.3)

which is known as the Chapman-Kolmogorov equation for Markov processes. A Markov
process is fully determined by P(y, t) and P(ys, t2|y1, t1), but these functions cannot be
chosen arbitrarily. Two properties are required: Non-negative and properly normalized
functions P(y,t) and P(ys, ta]y1, t1) satisfying Eq. (2.3) and

Plya,ts) = / Plys, 1) Plya, taly, t1)dun

uniquely define a Markov process.

The conditional transition probability can be expanded in time such that
P(ya, 1+ 0tlyr, t1) = 0(y1 — ya) [1 — A(y1)dt] + 5tH (yoltn) + O(6¢%), (2.4)

where H(ys,91) > 0 is the transition probability per unit time from y; to y,. The
coefficient 1 — A(y;)dt is the probability that no transition takes place during dt.
Normalization requires that

A(p) = /H(yglyl)dyl-

Substituting this into (2.3) and taking the limit 6¢ — 0 leads to the differential form
of the Chapman-Kolmogorov equation,

dp(ya t’?/o, tO)

cneto) [T )P/ onsto) = H )Pt o))
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which is known as the master equation. For a system with a discrete state space,
which is the case considered in this work, master equations have a form

dP,(t)

# = Z [Hy,y’Py’(t) - Hy’,ypy(t)] ) (2-5)

y'#y

where the function H includes all states of the system with H, , > 0 for allowed
transitions between states and zero to others. This type of a process is also called as a
continuous-time Markov chain. The expected transition time from state y to state 1/
is given by 1/H, ,,. Therefore, the average lifetime of state y is simply 1/ Zy, 2y Hy oy
Alternatively, master equations can be written in the form

dPy(t) B
=D [y (D) = Ty (D),

Y'#y
where J, ,(t) := H, , P,(t) is the probability flow from state y’ to state y.

Because H creates the dynamics for the process, it is called a stochastic generator
of the Markov chain. Particularly in physics, it is also known as a Liouville oper-
ator or a stochastic Hamiltonian. Although the underlying process is random, the
time-evolution of the probability is deterministic. Random realizations (paths) of the
process can be sampled with Monte Carlo methods, whereas the probability distribu-
tion can be numerically computed with differential equation solvers. These methods
are discussed in detail in Chapter 5.

Finally we note that, from the Markov property, it follows that the waiting time distri-
butions of jumps are exponentially distributed. This can be also seen by starting from
the so called generalized master equation, which includes arbitrary time-dependent
memory kernels. By assuming exponential waiting times, the memory kernels then
reduces to constants, which are identified as rates H,,, leading to Eq. (2.5). See
Refs. [96, 57| for additional details of this connection.

As an example, at the end of this subsection, let us consider a homogeneous continuous-
time random walk on one-dimensional infinite lattice. At time ¢t = 0, the random

walker is at the origin, i.e. n(t = 0) = 0, and the walker moves to left or right
neighbor lattice site with a finite rate v > 0. Master equation for this process is
dP,(t)

et YP,_1(t) + v Py (t) — 2vP, (1),

where P, (t) is the probability for n(t). To solve this, we note that since jump times
and directions are clearly two independent processes, the solution of this process has
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the form

where P(t) is the probability for i events until time ¢ and P;(n) is the probability
to end up at point n with ¢ jumps. The first is the Poisson distribution, while the
latter is given by the Bernoulli distribution shifted to the origin. Plugging them in,
the complete solution reads

Po(t) = ; (7t) eﬁ(—tv)% (FTn)f!(HTn). _ exp(—t) (1),

where I,,(7t) is a modified Bessel function. For large spatial and temporal scales, this
process is analogous to Brownian motion on real axis. For more than one rate, the
problem becomes much more complicated, since the above two processes are no longer
separable. The models studied in this work (see Sections 3.3 and 3.4) can be viewed as
extensions of this simple model, with much more complicated state-space with non-
homogeneous and time-dependent rates, hence only the numerical solution methods
can be applied.

2.2.2 Transition rates

The master equation is only useful if one knows the transition rates of the process. For
a physical model, there are basically two ways to get them. The first way is to calculate
them from some 'microscopic’ model. The other is to derive them from experimental
or simulation data. If master equations are used to model a thermodynamic system,
the elements of H must be chosen such that the equilibrium conditions (2.1), (2.2)
and ergodicity, discussed in Section 2.1, are fulfilled. There is no guarantee that these
conditions are fulfilled if the rates are taken directly from an experiment or some mi-
croscopic simulation. In this work, we only consider models for which these conditions
hold.

Conditions (2.1) and (2.2) do not specify the transition rates uniquely, but only their
ratios. Despite the large number of studies with discrete nonequilibrium models, the
importance of choosing the rates H; ; has not got much attention. However, this choice
becomes very important when studying transport in complicated potentials. The usual
choices for the rates are [84, 92]

min {1, e®—Ed/kTY (Metropolis)
H; ;)T ={ eEi—E)/2%ksT (exponential )

[1 + e(Ei_E]')/kBT} - (Kawasaki),
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where the constant I' > 0 sets the time-scale. All three definitions lead to Boltzmann
distribution in equilibrium and fulfill local detailed balance (2.2), but generate the
different kinds of dynamics.

Being fast and simple, the Metropolis form is usually the first choice for the rates.
Especially when studying the ratchet effect, it can be a poor choice since it does not
take into account the slope of the downhill moves (rate being limited to I'), that can
be important for the dynamics. This is also the case for the Kawasaki form, since
it is basically just a smoothened Metropolis function. Differences between the above
three rate types are demonstrated in Section 6.1 for the repton model. The selection
of suitable rates must be made on experimental or other system-specific grounds.

2.2.3 Properties and representations

In this Section we consider some important general properties of the master equation
set. As noted before, we consider only systems with a finite number of states.’

Matrix form and eigenstates

Setting Hy, = —>_,, Hy ,, master equations of the form (2.5) can be written in a
compact matrix form

dP(t

O _ o), (26)

where the probabilities of states are given by components of vector P(t). In the liter-
ature, matrix H is sometimes called a ()-matrix. It has following properties:

e If H is nonsymmetric, its left and right eigenvector sets (1;| and |¢;) are dif-
ferent but have the same eigenvalues \;. Eigenvector sets are non-orthogonal,
i.e. {pilp;) # 0 for i # j (and similarly for (¢;|), but create a bi-orthogonal set

(il p;) = 0 for all i # 3.
e [ is negative semidefinite, i.e. its eigenvalues are less than or equal to zero.

e There exists at least one eigenstate with an eigenvalue zero. If H is irreducible,
there is exactly one eigenstate corresponding to eigenvalue zero, meaning that
the steady state is unique.

e Non-zero eigenvalues can contain an imaginary part, in which case they come
in complex-conjugate pairs.

SMany of the properties covered in this Section also hold for countably infinite number of states,
but then many mathematical complications related to uniqueness and normalization arise.
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The right eigenstate corresponding to the eigenvalue zero is the most important one,
since it is the steady state solution of time-independent H. The steady state is a time-
homogeneous probability distribution which describes the system in the long-time
limit. The corresponding left eigenstate can be used to compute expected values of
observables (see below).

Above properties essentially follow from elementary linear algebra and the following
form of the Perron-Frobenius theorem: If a square matrix A is non-negative and
irreducible, then

1. A has a positive real eigenvalue X which is equal to its spectral radius, 7.e. A=
max, |Ax(A)|, where \y(A) denotes the k' eigenvalue of A.

2. X corresponds to an eigenvector with all its entries being real and positive.

3. X is a simple eigenvalue of A.

This theorem applies to H through its time-development operator (discussed later)
with the properties given above [94, 65].

The non-symmetry property of H turns out to be problematic for both theoretical
and numerical analysis [69]. This is especially true in the absence of detailed balance.’
Complex eigenvalues result in oscillations in time-dependent states and can be related
to the stochastic resonance effect [142, 143]. Since the columns of the matrix H sum
to zero, the rank of the matrix is always one less than the dimension of the matrix,
i.e. the matrix H is singular. However, this poses no problem, since we also have
normalization conditions, which ensures the uniqueness of the linear and eigenvalue
problems related to H.”

The matrix H has right and left vectors corresponding to the same eigenvalues,
i.e. Hlp,) = Njpy) and (Y, |H = (¢, |\,. Using normalization (¢;|¢;) = d;;, the

formal solution of (2.6) is given by |P(t)) = exp ( I, H(s)ds) |P(0)), where |P(0))
is the initial state. This time-dependent state |P(t)) is a transient state. For a time-
independent H, this can be expressed using the eigenvectors

[P(1) = Y (| P(0)e™]py),

Y

which is known as the eigenfunction expansion.

5With detailed balance, the matrix H can be diagonalized using the equilibrium steady state Pd
with a transformed symmetric matrix ﬁ” = (P;q / Pfq)l/2 H;

"For example, when solving problems Hz = 0 and Hxz = b, one can replace one row of H with
ones and use normalization conditions.
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If an observable of interest can be put into a matrix form, i.e. it only depends on the
probability distribution, its expected value can be computed using

(O(t)) = ZOiPi(t) = (¥lO[P(1)), (2.7)

where O is the operator of the observable and (1| is the left eigenstate corresponding
to the eigenvalue zero such that (9| P(t)) = 1 holds. To compute long-time averages,
the steady state distribution for |P(t)) is used, which is either time-independent or
periodic in time. Note that, if the chosen basis is the natural basis, which is usually the
best choice, the operator O is a diagonal matrix and one can also compute (O(t)) =
Tr(OP(t)). Similarly, the variance (O)* — (O?) describing the fluctuation, can be
computed using the operator with squared elements.

Operator formalism

For some stochastic systems, H can be naturally build with local operators. For such
operator formalism to be efficient, a compact, fixed lattice representation is required.
By compactness, we mean that the matrix H is irreducible, hence there are no empty
rows or columns corresponding to null states when using the natural basis.® In physics,
such models are often one or two dimensional simple models of particle motion. Typical
examples are simple exclusion processes (1D), zero-range processes (1D), Hubbard
model (1D) and Ising model (1D and 2D). In the operator formalism, the stochastic
generator has a general form

H =Y [E(I)-D(I)],

IeLl

where the index set I goes through a fixed finite lattice £, and operators £ and D
include off-diagonal (i.e. interactions) and diagonal elements. Operators £ and D
contain second quantization type local operators constructed with a tensor product.
The repton model presented in Section 3.3 has a compact operator representation,
whereas the model for single-layer metal islands presented in Section 3.4 has not. This
has a large impact on numerical computations with the matrix methods “(see Chapter

4). The operator representation is a necessity for some computational methods, such
as DMRG (see Section 4.1.1 and Appendix A).

As an example, let us consider an open Totally Asymmetric Simple Exclusion Process
(TASEP), which is a well-known one-dimensional nonequilibrium particle model with
fermionic occupation rules and nearest-neighbor exclusion-type interactions [33|. Par-
ticles enter the lattice from the left with the rate a and escape from the right with
the rate 3, while particles in the bulk have rate 1. See the illustration in Fig. 2.1. For
this model, the operators become

8For an example of a non-compact representation with null states, see the DMRG topic in Section
4.1.1, where the outer-coordinate representation of the repton model is discussed.
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Figure 2.1: An Illustration of the open TASEP model with 10 sites (L = 10). For the current
configuration, there are five allowed particle transitions available.

T
)

Hyaspr = »  [E(i) = D(i)] + Y [E(i,i + 1) — D(i,i + 1)]

i=1,L i=1

~

—1
0 1 1,0
= <a1 — n1> +p (aL — nL) + [aiaj+1 —N N

=1

where L is the length of the lattice, operators a; and aZT annihilate and create a
particle at the lattice site i, and n{ and n} are the occupation operators corre-
sponding to an occupied (1) and empty (0) site. The operators are of the form

X; = [Hf;ll ]12®} X [Hf:jH ®112}, where the operator X has dimension 2 x 2. Note
that the dimension of the local operators does not correspond to the dimensionality
of the lattice. For example, if the particle exclusion restriction of the TASEP model
is lifted, the system become a zero-range process, for which the dimension of local

operators is infinite (i.e. the number of particles at a site is unlimited).
Random processes in discrete time

For some applications, such as simulations, it is more natural and easy to consider
random processes in discrete time. Dealing with discrete-time process is usually easier
both theoretically and numerically. We now consider the connection between contin-
uous and discrete-time Markov chains. For a more comprehensive discussion of the
subject, we refer to [129, 177].

Consider a finite-state discrete stochastic system whose time-development is given by

Py(t+1) = Z Wy (8) Py (1),
y'#y
where W, ,/(t) is the probability for a transition from y’ to y at time ¢, and >, W; ;(t) =
1 for all 5.2 This type of a process, in which a step only depends on the previous
step, is known as a Markov chain. Using the matrix form, this can be written as

P(t+1) = W(t)P(t). The operator W (t) is then called a transfer matrix or a stochastic
matrix.

9Since time is used here only for 'bookkeeping’, any positive increment instead of 1 can be chosen
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Given a continuous-time Markov process defined by a stochastic generator H, one can
easily construct a corresponding discrete-time process with matrix W by re-scaling
the elements of H such that

W= il 2Dty ifi# ]
" 0 if i =jor Hy; = 0.

The sequences produced by the discrete-time process W have the same probability
distribution as those produced by H. Also, since W is just a re-scaled version of H,
they both produce the same steady state. The waiting times between transitions are
determined by the exponential distribution with the corresponding rates being the
diagonal elements of H (i.e. total escape rates). Knowing both the sequence and the
waiting times between transitions, gives the paths of the process H. This is indeed
how continuous-time Monte Carlo method operates (see Section 5.3). To construct
a matrix W with a chosen time-step At > 0, there exists unique time-development

operator such that W = exp (fst:() H(s)ds) 10

Going another way around, i.e. from a general W to H, is not meaningful, since the
discrete process W may not have a continuous-time representation and even if it has,
W already contains more information than H. Also, if the process W has a continuous-
time representation, it does not need to be Markovian. Therefore, by simply taking a
matrix logarithm of an arbitrary W produces a matrix with both positive and negative
complex elements.!! However, if W has no self-loops, i.e. its diagonal values are zero,
we can formally create H in the following way. Consider a discrete-time process given
by a transition matrix W = eW + (1 — €)1, where 0 < € < 1. Such process is known
as a lazy random walk, because for small € it has a large probability to stay in the
current state. The time-evolution of this process is given by P(t+¢€) = W P(t). At the
limit € — 0 this gives dP(t)/dt = (W — 1) P(t), where W — 1 is a continuous-time
Markovian random process with the same steady state. However, the time-evolution
of this process is not equivalent to that of the discrete time process W for which the
time-step is not infinitesimal.

Despite the close mathematical similarity, there is a fundamental difference between
continuous and discrete-time random processes. With a discrete-time process, one
can even model a completely deterministic motion, whereas master equations always
model a random process. In many situations, the discrete-time process is more suitable,
such as in studies of machines, games, queues, internet and traffic [145, 81]. Since the
number of transitions is always precisely known for the discrete-time system, study
of transition paths becomes much easier.'?

ONote that for time-dependent FH, operators must retain the proper ordering,
i.e. exp(Hy)exp(Hy) = exp(Hsy) exp(Hy) = exp(H; + Ha) only if Hy and Hy commute.

UFor a logarithm to produce a valid H, matrix W must have additional properties, see e.g. Ref. [39]

12For example, see Ref. [51], where fluctuation theorems are studied using a discrete-time model.
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Sequences of the discrete process

Let us consider a system described by Eq. (2.5) with time-independent rates. From
Eq. (2.4) we find that the probability for a system to remain in a given state x at
times [0, ¢] and then jump into a next reachable state y between time [t,t + dt] is'?

Py, tly,0)dt = H, , exp(—tK,)dt,

where H, , is the transition rate and K, := >, H,, is the total escape rate from
the state y.

Now consider n subsequent transitions at times t; < t, < --- < t,. Such time-
dependent transition series are called paths or trajectories. The path without time-
stamps is called a sequence. When given an initial state x(0) at time ¢t = 0 and time
T > 0, there are two distributions related to a sequence occurring within the time-
window [0, 7T]: (1) the probability f [z, z2,...,2,|z0,T] that a path is completed in
time ¢, < T such that the system stays in a final state z,, for a time 7' —¢,, and (2)
the probability density g [z1, 2, ..., 2|20, T] that a path is completed exactly in a
given time 7" without waiting at the final state, i.e. the final transition to state x,
occurs exactly at T'. Denoting k; := H,, ,, , and K; := z#i Hy, 2, ,, the latter of
these distributions can be derived [179, 161] and it is given by

—1)ri=t grit e~ KT
g[l'l,xg,---,l'n|l'0,T] :k1k2 ki Z _1 ‘aKn—l H (K K)
J#

where n’ is the number of distinct escape rates and r; the count for an escape rate
K;, such that r;, n’ € [1,n] and Z?l r; = n. This weight can be also written as
g(ty +ty+ -+ +t, =T), which is a probability consisting of n independent random
variables. This distribution results from integrating over all transition times ¢; with
t=1,2,...,n — 1, which can be done straightforwardly in the Laplace space. Using
this result, probability f can be computed by integrating g [179]

T

[l xo, .o xn|z0, T :/ g[r1, 29, ..., T2, 8] e Knt1(T=9) g g
s=0

7‘1—1 aﬂ—l

e—KiT
= kiko.. . K, Z — D) 9K HJ#(K K,

where r;, 1 € [1,n + 1], i.e. the summation now includes also the escape rate K, of
the final state. The exponential function contributes to the waiting time at the final
state x,, until T

BP(y, tly,0)dt = Hy ,dt[1 — Kyt/n+o(t/n)]" = Hy/,ydtexp( s e yt/n+o( t/n)}) now
let 7 — oo.
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As an example, let us consider the homogeneous Poisson process for which k = K;
for all 4, and x; = i is the number of discrete events. We have then n’ =1 and ry = n
and, by using the equation above, we get

knTnflefkT
glri, e, . wnl2o, T] = W;

which is a well-known Erlang distribution. For the probability f we then get

T n.n—1,—ks nmn ,—kT
k"s" e k™T"e

o xn|mo, T = Y2 kT =~
f[l'l,l‘g, y & |I’07 ] /SZO (n_ 1>' € S n|

Now let us consider cycles (i.e. z,, = xy) in a general Markov process. The weight of
a cycle should include three aspects: (1) The probability to be in some of the cycle
states (a starting point), (2) the probability for a complete cycle to occur, and (3) the
expected time for the completion of the cycle. Because of the Markov property, these
probabilities are independent of each other and the result is a product of the three.
The mean waiting time for a cycle is given by [ sg[x1, @2, ..., Zy|T0, s] ds, which
is simply the sum of the individual waiting times >, 1/K;. Although this result is
intuitively evident, it is not straightforward to see from a complicated formula of g,
which requires ordering of the terms. This means that there is no need to compute
g (or f) to find mean cycle completion time. The probability to be in one of the
cycle states is simply P,, + P,, +---+ P,,. Clearly the cycle probability remains the
same despite the starting point of the cycle. Finally the probability that the cycle is
completed is given by [[_, k;/K;, i.e. at each state the process must pick the correct
transition over others. With these three combined, we define a cycle weight

k;
(Ziec Pl) Hiec K; _ (Ziec R) Hie(] ki
EiGC K% Zz’ec HjeC,j;éi Kj

The dimension of this weight is inverse of time, so it could be called a cycle rate. This
weight defines a type of a measure that one can use to compare cycles. For example,
by multiplying w(C') with a total center-of-mass displacement during the cycle, one
receives a new weight corresponding to average transport velocity over the cycle. For
nonequilibrium systems, w(C') depends on the direction of the cycle and the ratio
w(C)/w(C) = [I;cc ki/ki, where k; indicates the corresponding inverse rates for the

w(C) = (2.8)

inverse cycle C, differs from the unity. Using this cycle weight, one may compare cycles
and, more importantly, find the ones that correspond to the largest (or smallest) cycle
weight.
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In this Chapter, we describe the observables and models on which we shall concen-
trate in this Thesis. We start by defining the underlying lattice and the types of the
potential. After this, the observables of interest are defined. Finally, the models for
linear polymers and single-layer atomic islands are defined.

3.1 External potentials

In order to study long-time center-of-mass transport, models studied in this work are
placed on infinite one or two dimensional lattices. Without loss of generality, we fix the
lattice constant (i.e. the spacing between nearest-neighbor sites) to 1. For a periodic
potential, it is equivalent to study a model confined in a single period of the potential
and apply periodic boundary conditions. For a one dimensional periodic potential,
this means V' (z 4+ L) = V(x), where L > 0 is the spatial period. In higher dimensions
there, might be several period lengths depending on the potential and the geometry of
the lattice. The stochastic generator H only needs to include potential states within a
single period. If the potential is homogeneous in space (e.g. only external fields exists),
one can take L = 1.

The assumption of infinite lattice is a good approximation for real systems if the
medium is much larger than the period length and the size of the moving object
of interest. This is indeed the case with most microscopic systems, where the moving
objects are in molecular or atomic scale. Then one can limit the study to steady states
of the periodic systems and neglect boundary effects.’ This approximation is essential
to keep the size of the state space of the system reasonable. Therefore in majority of
theoretical studies of transport in microscopic systems, such as Brownian/molecular
motors and the ratchet effect, periodic boundary conditions are assumed [148|.

In this work, we consider two types of external potentials: (1) non-homogeneous po-
tentials that are periodic in space and time, for which we apply notation V' (z,t), and
(2) spatially homogeneous time-dependent fields, which we denote by E(t). For V,
we consider flashing and traveling potentials (see Section 2.1.4), and for £, we con-
sider both static and time-dependent potentials. Potentials are temporally varied by

'However, boundary effects are important when studying transport in two and three dimensions
with confined space, such as tubes [2].

19
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switching cyclically between two different potentials. This switching process is either
instantaneous or smooth in time. We shall consider both stochastic and deterministic
switching in the instantaneous case.

3.1.1 Deterministically time-dependent potentials

When the temporal variation of the potential is periodically deterministic, the gen-
erator has the property H(t) = H(t + 7), where 7 > 0 is the temporal period. For
the special case of instant switching, rates H, ,(t) are piecewise constant functions in
time and the stochastic generator is given by

Hy17y/ 5 t E [077_1)
H t6[71,71+7'2)

Y,y

Hyy(t)=14 " (3.1)
S—1
Hiy, , te€ [23:1 7'5,7'> ,

where, for s = 1,..., 5, the matrix H® is the time-independent stochastic generator in
the potential V; (all having the same spatial period) and the lifetime of the potential
is 7,, with the total period being 7 = Zle 7s. This type of potential switching,
where the order of the potentials is fixed, is called cyclic (i.e. V; — Vo — ... Vs —
V1). In this work, we call these instantaneous types of time-dependent potentials as
deterministic potentials (in Article II these are known as Type 2 potentials). A special
case of this is the on-off potential with S = 2, V5 = 0 and V; # 0, which is the working
principle of the flashing ratchet defined in Section 2.1.4.

In addition to non-continuous switching, we also consider the following smoothly vary-
ing potential V(z,t) = Vi(x,t)sin®(7t/7) + (1 — sin®(wt/7))Va(z,t). In this scheme,
potentials V7 and V5 alternate smoothly and symmetrically, such that the time av-
eraged potential is simply (Vi + V2)/2. We call this a smoothly varying potential (in
Article II this is known as Type 3 potential).

3.1.2 Stochastically time-dependent potentials

Instead of periods 7; being fixed for the instant switching scheme (3.1), they could
also be random variables. If the distribution of random periods 7; is not an exponen-
tial distribution, i.e. switching is non-Markovian, the time-evolution is governed by a
generalized master equation [96], which includes memory-effects and is hard to solve
even numerically. For Markovian switching, i.e. when the waiting time distribution
is exponential, potentials can be directly included into the master equations without



3.1 External potentials 21
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Figure 3.1: An illustration of the time-evolution of max, [V (z,t)] for three types of potentials in
the case § = 2.

need for generalized master equations. Then the problem turns into solving an aug-
mented set of master equations for the probabilities P, s(t), where s is the state of
the potential. The augmented stochastic generator H remains independent of time
and the system is directly solvable via solving the eigenstate corresponding to the
steady state (see Section 2.2.3). In addition to being computationally easy to handle,
Markovian switching is a good approximation for many naturally occurring potentials.
For example, the ATP-ADP energy cycle in cells is essentially Markovian. Because of
these properties, Markovian time-dependent potentials are applied in majority of the
ratchet effect studies [148]. In this work, we shall call potentials with Markov type
temporal periods and instantaneous switching, as stochastic potentials (in Article 11
these are known as Type 1 potentials).

For the Markov type cyclic switching, the augmented stochastic generator correspond-
ing to the deterministic one in Eq. (3.1) is

dPS7 (t) s s
d—:: = Z [Hy,y’PS,y,(t> - Hy',yps,y(t)} +
y'#y

1 1
PS—L?J(t) - _P&y(t)?

Ts—1 Ts

where 7, is the expected lifetime for a potential s, and the periodicity 79 = 74 is
applied. Since the time periods are random, one may expect that the average response
of the system as a function of 7 becomes smoother, because of mixing of time-scales.
When compared to deterministic potential, there is more variation in paths, which
requires more iterations when determining expectation values with the Monte Carlo
method. See Fig. 3.1 for an illustration of all three time-dependency schemes for the
case S = 2.

3.1.3 Simple limits of the temporal period

When studying time-dependent potentials, it is useful to first consider simple limits
of the temporal period 7. Let us first consider the case 7 — 0, such that 7; > 0 for all



22 Models

1 <4 < S. In this case, the very rapidly changing potential becomes an effective mean-
field potential, and the dynamics is generated by the mean-field stochastic generator
H. For deterministic potentials that vary smoothly in time, the mean-field operator
has elements

. 1 [7
Hyy = _/ Hy y(t)dt.
T Jo

For instantaneous type deterministic and stochastic potentials, elements reduces into
Hy, =5, H, /T, where 7;/7’s are the weight factors. Long-time expected values

can be computed using the steady state of the generator H. Although this limit is
mathematically well defined, from the physical point of view it is artificial, because for
real systems, there is a finite response time for changing the potential state (e.g. charge
re-distribution to build up an electric field) and for an object to respond (e.g. inertia).
If these effect are taken into account, it means that no net transport is expected to
occur at the limit of very fast switching.

Now assume that 7 is very large.? For instantaneous type deterministic and stochastic
potentials, the system converges (arbitrary close) towards the steady state, before the
potential is switched again (e.g. ’on’ or ’off” for a flashing ratchet), and the time spend
in the transient state becomes negligible. For smoothly varying potentials, the system
remains very close to equilibrium at all times. The expected values of observables
approach their adiabatic values, that, for smoothly varying potentials, are computed

with e
0y=1! / (1)),

T

where (O(t))ss is computed using the steady state of the operator H(t). For instanta-
neous type deterministic and stochastic potentials, the computation again reduces into
(0) = >, 7:(0)s/7, where (O), is the expected value of the measurement operator
computed in the steady state of the generator H*.

When it comes to transport, the special interest lies in the situation with non-zero net
transport for finite values of 7, while it disappears at 7 — oo. For instantaneous type
deterministic and stochastic potentials, the transport for large 7 is then governed by
the relaxation behavior occurring at the switching of the potential. Let d;; denote
the expected travel distance of the center-of-mass within the potential j, using the
steady state of the potential ¢ as an initial state and then letting the system fully
relax. For cyclic switching, summing over all d;;’s then gives the total expected travel
distance within one complete period 7. Travel distance during one cycle is given by d =
Zle d; i+1. Because of the finite relaxation times for all real systems, d can be already
computed by considering time-scales of the order of the largest relaxation times in
the system. Therefore, for very slow switching, the velocity can be approximated
by the adiabatic velocity v,q = d/7. For complex systems, even the sign of v,q is

2For instantaneous type deterministic and stochastic potentials, also all 7,’s for s = 1,...,S are
assumed large separately. If ratios 75 /7’s are kept fixed, this will inevitably happen when 7 gets large.
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generally unknown beforehand. This is often the situation when studying the ratchet
effect and will be studied further in Chapter 6. For a smoothly varying potential, the
situation is somewhat more complicated, since the potential is constantly changing.
If one assumes that the system remains all the time arbitrary close to equilibrium,
the velocity is always zero and so one also gets d = 0. However, for certain types of
potentials, there exists so called reversible transport and one can obtain a non-zero d
even while doing the computation at equilibrium [131].

3.2 Observables

In addition to probabilities P,(t) themselves, the most interesting information lies in
different types of observables. In this work, we are mainly interested in transport prop-
erties, namely the velocity and diffusion properties. For objects that are deformable
(i.e. not point-like), such as polymers and atomic islands, other interesting observables
are the size and shape of the object.

From theoretical point of view, the two types of observables are different: transport-
related observables depend on the paths taken by the stochastic system (e.g. the
velocity and diffusion) and other observables depend only on the probabilities P,(t)
(e.g. shape and size measurements). In addition to transport properties, for example
energy consumption and entropy production of the system belong to the first category.
Path dependent observables are more complicated to compute, since they cannot be
measured directly from probabilities. Probability-dependent observables are easier to
compute, but the construction of their measurement operators can still be compli-
cated, especially when using the recursion method (see Section 4.1.1).

3.2.1 Velocity and diffusion coefficient

The transport properties of the object are computed from the time-dependent center-
of-mass distance vector x(t). For the steady state, the velocity v and the effective
diffusion coefficient D.g are defined as

v = lim M
t—o0 t

1 . 1 2 2
Deg = QE&Z [(z*(t)) — (2())?] .
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where d is the dimension of the system. These definitions are usually applied when
using the Monte Carlo method. Derivative forms of the previous are

v = lim 1/t+TMds

t—oo T

Deg = - lim / [ D afa(an 0N g

2d t—oo T

which are useful for systems with temporally periodic deterministic potentials, espe-
cially when using the master equation method. Equivalence of these two definitions
can be easily shown by differentiating the first formulae or using integration by parts
to the latter one. In practice, it is enough to take a large enough ¢ such that the steady
state is reached within required numerical accuracy. We also define the Peclet number

vl

Pe =
¢ Deff7

where /¢ is the length scale of interest of the transport, such as the size of the object
or the spatial period of the potential. The Peclet number is a dimensionless measure
of the transport coherence. For perfectly deterministic transport, one has Deg = 0
and thus the Peclet number diverges, which means that the transport is completely
coherent without any fluctuations.

3.2.2 Energetic efficiency

Keeping up a nonequilibrium state requires energy. Especially for non-artificial molec-
ular motors working in the cells, the efficiency is essential because of the limited energy
available [11]. It is also an interesting aspect for artificial motors. However, the defi-
nition of the efficiency is complicated for microscale systems. In the literature, several
kinds of definitions of the efficiency have been proposed for Brownian motors, which
are not directly comparable against each other [148, 185, 132, 45, 189, 180|. We are
not aware of any work in which several measures of efficiency would have been sys-
tematically compared on the same model. Here we adopt the basic thermodynamic
definition based on the work done against an opposing force F', i.e. the output power
of the motor is given by vF, where v is the average velocity. The input power Wi,
comes from externally induced potential state changes, which force the traveling ob-
jects in a higher energy state depending on its position with respect to the potential.
This approach is different from the other proposed scheme, where the object gains
constant amounts of energy by, e.g. ATP hydrolysis, regardless of the location. We
assume that the energy becomes dissipated into the environment, when the object
returns to a lower energy state, i.e. this energy is not reduced from the input energy.
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For cyclically changing potentials, we define the steady state input power as

2521 Zy max [O, E;“ - Eﬂ Ts_lps,y stochastic
Win={ 2 >, max [0, Ex* — ES] P,(>75_, 7) deterministic
% Zy ftho max [07 d%t(t)} Py(t)dt smoothly varying,

where E; is the total energy of the microstate y in the potential s, and similarly £, (t)
is the total energy at time ¢. The efficiency is defined by n = vF/W;,. This definition
is applied to compute energetic efficiency of the flashing ratchet transport (see Section

6.5).

It has been found, that some real-life molecular motors can exhibit very large efficien-
cies, e.g. around 60% for Kinesin and up to 90% for F1-ATP [56]. When compared
to these, the efficiency of the flashing ratchet model is very low for single particles
(see e.g. Ref. [132]), but it can be greatly increased for some many particle systems
[169, 190]. Despite the size of the machine, the trade-off must be made between the
energetic efficiency and the speed; increasing the first, typically decreases the latter.
Indeed, the reversible ratchets that operate near equilibrium exchibit efficiencies near
100% while being extemely slow [131].3

Besides the efficiency, we are also interested in the stopping force Fi,, which, when
applied, causes the long time velocity go to zero. The larger Fyp, is, the stronger the
molecular motor is. For example, it has been found in Ref. [54| that for polymers
working as Brownian motors in the flashing ratchet, Fy,, depends on the length of
the polymer by increasing as the polymer gets longer.

3.2.3 Shape deformations

For systems containing deformable objects, the observables related to the size and
shape may carry interesting information. This is especially true if their shape deforma-
tions are directly connected to the transport properties, i.e. objects move by changing
their size and shape instead of sliding. To compute these observables, some effort must
be made to create operators for them, or measure them from the simulations. When
using the master equation method, expectation values and their fluctuations can be
computed as explained in Section 2.2.3 as these types of observables do not depend
on paths. Both steady state and transient expected values are of interest. In Chapters
6 and 7, we study the shape deformations of polymers and atomic islands.

3For a reversible ratchet, both v and Wi, approach zero at the adiabatic limit such that their
fraction remains non-zero.
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3.2.4 Relaxation time

When a physical system is pushed out from its steady state, it takes some time before
the system can return into the steady state. Responses to the perturbations are never
immediate. Given two events or measurements of the system temporally close to each
other, there is always some amount of correlation between them. The average time
required to return back to steady state after perturbation, or to correlations to wear
off, is called the relazation time. A system can contain several relaxation times, related
to different processes and observables. The longest of these times is called the leading
relaxation time. Roughly speaking, the leading relaxation time defines the maximum
timescale needed for the process to 'forget’ its initial state and to become uncorrelated.

For stochastic processes the relaxation time is defined for distributions in the sense
how fast they decay, i.e. |P(t) — Pys| — 0, where Py is the steady state. Especially in
mathematics, this is also called mizing. For master equations, the relaxation times are
given directly by the eigenvalues \; of the stochastic generator H (see e.g. [113, 117]).
This can be seen from the transient solution (2.6). The real parts of \; are always
negative and the relaxation times are defined by 1/|Re(\;)|. The leading relaxation
time is therefore given by the inverse of the largest non-zero eigenvalue, i.e. the spectral
gap between the first and the second eigenvalue. If H includes both the potential with
some spatial length (i.e. L > 1) and an object with internal states, the relaxation
times describe both internal and spatial relaxation.*

The leading relaxation time is the property of the master equation set and is indepen-
dent of the initial state, hence it is not directly related to the relaxation time found in
experiments or simulations where one usually measures the relaxation of some macro-
scopic observables, such as the shape and size of deformable objects [36]. Instead, it is
related to the computational effort of finding a steady state using numerical methods,
such as integration and iterative eigenstate solvers (see Chapter 5). As the leading
relaxation time increases (i.e. the second eigenvalue approaches zero), the search for
the steady state becomes more time-consuming and error-prone.

3.3 The Rubinstein-Duke model

Reptation theory describes the rheological behavior of linear polymers in conditions
where the density of obstacles such as other polymers or pores of the medium is very
high. In such conditions only the polymer heads are able to move into previously
unoccupied space, thus creating a 'tube’ for the polymer to move back and forth.

4This situation arises, for example, for the repton model studied in Chapter 6 with periods L = 3
and L = 6.
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The polymer motion under these conditions is called reptation. In the first theoretical
study of the reptation in 1970s, de Gennes predicted scaling laws for the dependence
on the polymer length L for viscosity (i.e. the tube renewal time) scaling as ~L? and
the diffusion constant scaling as ~L~2 [67]. These assumptions were later confirmed
with experimental and computational methods [104, 116]. One of the most notable
computational models for reptation was proposed by Rubinstein in 1987 [156]. In his
model, the network of obstacles is modeled by a lattice and, by assuming that the
correlation length between the polymer segments is smaller than the distance between
the lattice sites, the problem can be discretized to a simple particle hopping model.
In 1989 Duke extended this model by allowing it to include an external field [55], thus
giving birth to the Rubinstein-Duke (RD) model. Soon after this, theoretical research
of the model started to flourish. The main interest has been in the scaling of the
diffusion coefficient and the relaxation time as a function of polymer size, and also
the behavior under static fields (see Ref. [110] for a review of results and models). The
original RD model can be easily extended by adding external potentials and modifying
the rules. Our aim is to study the RD and its modification in non-homogeneous time-
dependent potentials. Technical details and the stochastic generator of the RD model
are described next.

3.3.1 The stochastic generator

In the RD model, the polymer is divided into N units, called reptons, which occupy
the sites of a regular 1-3 dimensional lattice. The number of reptons that each site can
accommodate is unlimited and self-avoidance effects are neglected. Each configuration
is projected onto an axis along the diagonal of the unit cell and it is identified by the
relative coordinates y; = x;41 — x; of neighboring reptons along the chain, where z;
indicates the projected coordinate of the i*" repton. The relative coordinates can take
three values y; € {—1,0,1} and there are thus in total 3¥~! different configurations
for a chain with N reptons. See Fig. 3.2 for an illustation of this mapping procedure.
When two or more reptons accumulate at the same lattice site, they form part of a
stored length, which can then diffuse along the tube. In terms of relative coordinates
a segment of stored length corresponds to y; = 0 and therefore allowed moves are
interchanges of 0’s and 1’s, i.e. for adjacent reptons (y;, yi+1) = (0,£1) <> (£1,0). On
the other hand, the end reptons of the chain can stretch 0 — 41 or retract +1 — 0
to the site occupied by the neighboring repton. The dimension of the medium (before
the projection), enters the RD model by modifying the transition rates of the head
reptons. This is the standard RD model.

In order to study the effect of the intrinsic transition rules of the reptons in time-
dependent potentials, we will compare the results for the RD model with the results of
a non-reptating polymer allowing the breaking of the tube. With the above definition,
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Figure 3.2: An illustration of the Rubinstein-Duke model (right) as a projection of the reptation in
two-dimensions (left). In the Rubinstein-Duke model, black arrows indicate reptation moves, whereas
the moves with blue arrows are for the relaxed model (see text).

moves with (0,0) <> (£1,F1) are also allowed. We call this relaxed model the free-
motion model (FM model). Dynamics of the FM model is similar to that of the
classical Rouse polymer model, where the polymers are not restricted into tube and
can also move freely sideways [154]. In Fig. 3.2, black arrows indicate allowed moves for
both models, whereas the moves with blue arrows are only allowed in the FM model.
The stochastic generators for the RD and FM models only differ such that there are
more non-zero matrix elements for the FM model. Similar types of extensions and
modifications of the RD model have been previously studied in different contexts
[130, 53, 164|. In this work, we use a generic term repton model to include both RD
and FM model.

Technically, the repton model is similar to a quantum mechanical open spin-1 chain,
which consists of NV — 1 sites with three possible states (+1, 0 or —1) and interactions
described above. Because of the nearest-neighbor interaction, the repton model has
a compact and simple operator representation which enables a recursion method in
building of the operators (see Section 4.1.1). Any operator in the repton model can
be constructed using local 3 x 3 sized operators that operate on the individual bonds
between reptons (i.e. values of y;). In the space of the complete polymer, these local
operators (X) have a tensor product form given by

i—1 N-1
Xi = [H ]13® H ®]13
k=1

k=i+1
where N is the number of reptons. The dimension of X; and the stochastic generator

X

?
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itself is 3V, To consider the polymer dynamics in a non-homogeneous medium with
the potential V(z) = V(x + L), in addition to the internal state of the potential, also
the external state of the potential must be added to all operators. For this purpose,
one marker repton, which gives the spatial location of the polymer with respect to
potential, must be chosen. Although we are free to choose any repton [103|, choosing
one of the head reptons is most convenient. Choosing the left head repton, all operators
then have the form Y; ® X;, where the L x L-sized local operator Y; works in the state-
space of the potential and gives the spatial location. The state of the polymer has the
representation

|marker repton) ® |polymer configuration) = |®;) @ |V, ),

where |®; ) has dimension L and |¥,) has dimension 3V ~!. The stochastic generator
of the repton model in periodic potential can be cast in the form

Hiy =Y |4+ (By,l(t) + i Mi,y,l(t)” , (3.2)

=1 i=1

where the operators A and B are responsible for the dynamics of the heads and the
operator M creates the dynamics for the bulk reptons. The reptons are assumed to
carry charges which are affected by external potentials. When no external potentials
exist, rates for all available transitions are set to 1. Existing external potentials mod-
ify the rates according to the Kramers rate theory (see Section 2.2.2). We consider
models with both uniform and non-uniform repton charge distributions. The detailed
definition of operators and their practical construction are given in Section 4.1.1.

3.3.2 Observables of interest

Properties of the RD model at equilibrium and in static field are well known. At equi-
librium (7.e. no external potentials), the leading behavior for the diffusion coefficient
is Dy ~ [(2d + 1)N?]"', where d is the dimension of the medium, and for the tube
reneval time (the relaxation time) 7 oc N3. The behavior of 7 has been found to be sen-
sitive to dimension d, since lowering d leads to larger exponent for the relaxation [25].
By allowing additional movements to standard RD model, the cross-over from the rep-
tation towards Rouse dynamics with Dy oc N~! and 7 oc N? occur [53]. In large static
fields, RD polymers create V-shaped trap configurations®, which causes the velocity
to decay exponentially towards zero as the driving field is increased [193, 102]. As the
force affecting the polymer depends on the total charge of the polymer, the velocity
for large polymers can become decreasing already in small fields. This slowing-down is

5Trap configuration are states which require lots of energy to escape from. Without escaping a
trap configuration, the transport cannot occur.
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a problem for the applicability of experimental techniques such as gel-electrophoresis,
which is used to sort the DNA chains according to their length [172]. The phenomenon
where polymers with different lengths move equally fast (or slow) in a field, is known
as the ’band collapse’ and when this occurs, polymers cannot be separated based on
their length.

The situation is, however, completely different when the static field is replaced with
a time-dependent non-homogeneous potential. The velocity and diffusion properties
of such system are very hard to predict because of the complex temporal and spa-
tial interaction between the polymer and the potential. The transport properties are
therefore our main interest. Some of the previous work involving polymers and time-
dependent fields have shown some interesting properties, such as current inversions
[134, 54, 97]. Also experimental research has been conducted by considering separating
of DNA by utilizing the ratchet effect [13].

Among other interesting observables are the Peclet number and energetic efficiency
of the polymer transport. In order to study the correlation between the shape defor-
mation of the polymer and center-of-mass velocity, we also define the following oper-
ators: the zero-bond count (number of 0-bonds), the kink count (number of (41, —1)
or (—1,+41) bond pairs), the head-to-head length (distance |z; — x| between first and
last repton) and the total length (maximum distance max; ; (z; — x;) between any two
reptons). The corresponding operator definitions and their recursive construction of
these observables are found in Section 4.1.1. For example, for the configuration in
Fig. 3.2 the values for of these operators would be 3 for zero-bonds, 1 for kinks, 0 for
the head-to-head length and 3 for the total length. Separating the head-to-head and
the total length is important since it provide a means of distinguishing between linear
and bent (such as V and U shaped) conformation of the polymer.

3.3.3 Non-uniform charge distributions

The usual assumption in the studies concerning polymer transport is that the polymer
is homogeneous, i.e. in discrete models all monomers are identical with the same charge
and mass. We shall relax this assumption and study the effect of the non-uniform
charges for the repton model. Previous works on the RD model have considered some
aspects of this. In Ref. [25], a magnetophoresis model (i.e. one charged head repton)
was considered, and in Ref. [52], it was shown that when it comes to the velocity,
all charge distributions are equivalent in small fields (i.e. linear response regime).% In
Ref. [150], it was noticed that the drift in constant field depends strongly on the posi-

6This is clear, since in the linear response regime only the total force affecting the object matter,
and the diffusion coefficient is given by the Einstein relation. Similar equivalence does not hold for
systems involving non-homogeneous potentials.
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tion of the charged repton within the polymer, and in Ref. [102], non-homogeneously
charged RD polymers in large fields were studied. A recent study of dimer kinetics in
a periodic potential shows that if the connected particles are non-identical, directed
drift can be generated even in a symmetric potential [68].

We want to find the optimal charge distributions for the RD and FM polymers which
results in the largest possible drifts. The optimal charge distribution can be expected
to give some (indirect) information about the polymer conformations and reptons that
dominate the transport (i.e. have the largest impact on the velocity). Optimization
of periodic potentials has been previously considered for single particle systems [18,

49, 199].

3.4 The model for single-layer metal islands

Diffusion of adsorbates is perhaps the most elementary transport process occurring on
surfaces [86]. It is crucial for more complex surface phenomena, such as crystal growth,
associative desorption, heterogeneous catalysis and chemical reactions. We are inter-
ested in the diffusion of metallic atom islands on a smooth surface. In the basic setup,
the island consists of single layer of atoms lying on the surface of the bulk material
consisting of similar atoms. Atoms move in hopping manner between the minima of
the regular surface potential created by the bulk atoms and the island. Equilibrium
properties of these type of systems are well known, as well as near-equilibrium proper-
ties under small electromigration forces” in the linear response regime [5]. Also some
properties under strong forces have been studied with continuum models [137]. We are
interested in the properties of single-layer atom islands under the effect of strong and
time-dependent external forces, in particular, in the behavior of small islands with
up to 20 atoms, where the discreteness and finite-size effects are strongly present and
etropic effects are not yet dominant. We apply an idealized model of hopping atoms
in the square lattice with nearest-neighbor energetics [123]. Technical details and the
stochastic generator of this model are described next.

3.4.1 The stochastic generator

The model consists of two-dimensional atom islands on an unbounded square-lattice
surface. In this set-up, each atom has up to four nearest and four next-nearest (di-
agonal) neighbors. To keep the islands unbroken, we require that each atom must be
connected to the island with at least one diagonal neighbor. The dynamics is created

"Electromigration force is the force caused by collisions between the atoms of the island and
field-driven electrons in the bulk.



32 Models

1)
r’

(3)t.. 000 000
0,0 00 ,,00 )/

([ [ ) o

Figure 3.3: An illustration of the model with a 6-atom (N ) island going through 4 consecutive
transitions and used notation for the angles v and « (see text) Small arrows indicate the transitions
and their corresponding values of the Ay ; parameter in Eq. (3.3).

by single atom hops in continuous time with rates given by a semi-empirical model
parameterized by the embedded atom method [123|. Within this model, the changes
in the binding energy for an atomic transition is computed from the change in the
nearest neighbor atom count. Despite its simplicity, the energetics given by the model
is in good agreement with molecular dynamical computations (see [98] for the most
recent results). The transition rate I'; ; from the initial state (i) to the final state (f)
is given by

—Eg —max {0, EgAy;} + Efz(t))) , (3.3)

I'pi(t) =vexp < T

where v is an effective vibrational frequency, Es is the energy barrier for the atom
transition along the island edge, EgAy; (Af; = —3,...,3) is the change in the binding
energy with nearest neighbor bonds, and E,(t) gives the time-dependent contribution
(positive or negative) to the transition rate by an external electromigration-type force
and depends on the magnitudes and directions of the field and atom displacement.
The model and its parameters are illustrated in Fig. 3.3.

For Cu on Cu(001) we use Eg = 0.260 eV and Es = 0.258 eV [123|. We set v
and the lattice constant to 1. Since the barrier Eg appears in all transitions, it can
be integrated in the prefactor by defining a new temperature-dependent prefactor
v = vexp(—FEs/kgT). Due to the large separation of energy barriers, there are at
temperatures T' < 1000 K four well-separated microscopic rate parameters in the
system in zero field and up to six for large fields (E ~ Eg) in the direction of the main
axes of the lattice. Depending on the direction of the field, the energetics gets more
complicated as demonstrated in Fig. 3.4, where we have plotted all 16 unique rates
I';; that appear for the case £/ > 0 and o = 23°. Although experimentally realizable
electromigration forces in most cases are too small (order 107 eV [122, 153]) to cause
significant non-linear effects alone, combined with other methods that can decrease
energy barriers, such as strain, manipulation with scanning tunneling microscopy and
electric fields [136, 78|, non-linear effects are expected to emerge.

Although this simplified model is not microscopically accurate, it captures the key
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Figure 3.4: Separation of time-scales in terms of possible jump rates I' for the island model as a
function of the field strength at temperature 7' = 500 K for field direction ov = 23° (see Fig. 3.3 for
the definition of the angle «).

elements of the dynamics, respects the detailed balance condition (for E;(t) = 0)
to avoid spurious currents and is straightforward to apply in computations. We want
to apply a simplified model as we do not wish to study only a particular system
but rather to investigate properties which should not depend on the finest details
of the atom-atom interaction. Therefore, we use a simple kinetic model containing
as few parameters as possible. Since experimentally realizable field amplitudes in
electromigration are really small, transport properties of non-continuous islands have
been previously studied only within the linear-response regime with very small fields
(E <0.01eV).

As the detachment of atoms from the island is forbidden in our model, the number
of atoms in the island remains a constant. This is a well-justified approximation for
small fields (i.e. Ef; < Ep) and temperatures far below the melting point of the metal
(1358 K for Cu). Also, if the density of free surface atoms is such that evaporation
and condensation are balanced, the island size could be kept constant on average
also with unrestricted dynamics. When the detachment /attachment processes are rare
compared to other processes, the properties of the variable size islands follow from
those of the fixed size islands, because the island size remains fixed for long periods
of time, thus allowing relaxation between events. In such cases, for example the mean
velocity of the variable size island under a driving force is a combination of velocities
of fixed size islands over a wide time scale. Only when the detachment /attachment
processes become very frequent, which necessarily occurs at high temperatures and
very strong fields, this commonly used picture of noninteracting islands with different
sizes is no longer valid. On the basis of previous studies at (or near) equilibrium



34 Models

(e.g. [167, 80]) and the results of Chapter 7, at least within temperatures below
800 K and E < 0.1 eV one can assume that the dynamics is not dominated by
the detachment/attachment processes and island transport is mainly controlled by
the periphery diffusion.

The velocity of the center-of-mass of the island is given by a vector ¥ = (v,, v,) and ¥ =
(x,y) is the center-of-mass position at the surface using the main axes of the lattice.
We define the measuring direction by angle v, i.e. we measure v = v,, cos(7y)+wv, sin(7).
The field is defined by the amplitude £ > 0 and the angle « of the field direction,
i.e. E = (E cos(c), Esin(«)). The effective diffusion coefficient Deg can be computed
with a projected distance x., = cos(7y)z + sin(v)y.

To illustrate atomic transitions and the effect of the field, consider a non-zero field
with o = 90° such that £ = (0, E)) in Fig. 3.3. The energy barriers for the four
transitions shown are decreased by E and similarly increased for the corresponding
inverse transitions. For av = 45°, the barrier of transition (1) is decreased by 2E/v/2
and that of transition (0) by E/v/2. In what we shall call the Monte Carlo (MC)
model, two independent separate jumps are required to go around a corner [processes
(1)-(3)], whereas in the Master Equation (ME) model such transitions occur by direct
diagonal jumps.

3.4.2 The reduced model

The number of configurations for two dimensional islands becomes huge even for small
number of atoms. To be able to study islands up to NV = 12, we reduce the number of
island configurations by allowing only states that do not include configurations with
only diagonally connected atoms or parts of the island. To facilitate going around
the corner, which is necessary for long-range transport of the island, we allow direct
diagonal jumps like those shown in Fig. 3.3 (numbers (1-3)). In the MC model, going
around the corner is possible by two jumps. The energy barrier of the diagonal jump
is approximated by a sum of the binding energy difference between the initial and the
intermediate state and the energy difference caused by the field. Further reduction
was made by disallowing vacancies (i.e. holes) inside the islands, which however only
has a minor effect on the number of available states. This way we have defined the
ME model.

These approximations cause only minor differences between MC and ME models in
equilibrium (E = 0), where the weights only depend on the total energy of the con-
figuration, and the islands prefer compact rectangular shapes. For nonequilibrium
states, major differences between the models are expected, especially for field ampli-
tudes approaching the binding energy E ~ Ep. This is mainly because of the trap
configurations and the diagonal jump approximation. The difference between the MC
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and ME models depends on how important the corner states are for the dynamics.

The allowed island configurations are known as polyominoes (or lattice animals), and
their counting and statistical properties are known at least up to N < 47 [90]. Since
the practical limit for numerical master equation computations is about 10° states, the
largest system studied in this work is the 12-atom island with 468837 states (505861
if vacancies are allowed). From now on, we call this reduced model the ME model,
whereas the full model is called the MC model. For a comparison, only up to 8-atom
islands could be treated by applying the ME method directly to the full MC model
without any above reductions (see Section 4.1.2 for details). The ME model does no
have the kind of compact operator representation as the repton model has, therefore
we rely on an enumeration method in creating the stochastic generator H and other
operators. This is covered in Section 4.1.2.

Neither the numerical master equation nor Monte Carlo method can be applied as
such to study properties of the islands at very low temperatures. As the temperature
decreases, the difference between the largest and the smallest rate increases, which
eventually leads to a very stiff set of linear equations (i.e. H is badly scaled). This
limits the minimum temperature for practical computations to be around 500 K. When
computing the steady state (i.e. solve Hx = 0), the stability of computations can be
somewhat improved by using a diagonal pre-conditioning matrix with entries 1/H;;
(this works because H is weakly diagonally dominant). This decreases the lowest
reachable temperature to be near 300 K for the velocity. However, this procedure
was not generally found to improve computations of the effective diffusion coefficient
that requires solving linear equations of the type Hx = b (additional details in Section
4.2.1). In general, reaching low temperatures with stable numerics would require coarse
graining techniques to reduce the separation of rates, and it is a possible continuation
for this work.®

3.4.3 Observables of interest

Equilibrium properties of islands (and also voids) are well known [5, 198, 183, 80|.
For example, the center-of-mass diffusion coefficient for large islands is proportional to
e Fer/ksT N=a wwhere F.q is an effective Arrhenius barrier and « is a scaling exponent.
In most situations the most important diffusion mechanism is the periphery diffusion
for which « = 3/2 and Eeg =~ 0.75 eV have been obtained. For small islands up
to 20 atoms or so, many-body effects have a dominating role and there exist strong
'magic size’ effects, hence the diffusion coefficient is strongly size dependent. For small
driving forces, large islands become deformed and move with an oscillatory fashion

8This kind of idea has been applied in Ref. [163], where low temperature coarse graining is carried
on by hand for islands N =3...5.
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[122, 20, 157, 153].

Our main interest lies in the steady state velocity as a function of field direction «,
amplitude E and temporal period 7. For time-dependent fields, island transport be-
comes also frequency dependent. Due to the interplay between island configurations
and strong time-dependent forces, one could expect phenomena such as current in-
version or increase to appear (see e.g. Ref. [134, 3|). Because of the square lattice
geometry, the (001) surface is a good candidate for investigating the effects of rotated
field, which would be less pronounced for e.g. the (111) surfaces. The relationship
between transport properties and these parameters has not been systematically stud-
ied beyond linear response regime. We are also interested in shape deformations of
the islands, such as the average thickness and length in the direction of an axis, the
relaxation time and the effective Arrhenius barrier in strong fields.



4 Setting up the equations

In this and the following Chapter, we describe the numerical methods used in this
work. The main emphasis is on the direct numerical solution of master equations, but
also the Monte Carlo method is discussed. In this Chapter, we cover the construction of
master equation sets and derivation of equations related to the observables. Solving
these equations is discussed in the following Chapter. Explicit construction of the
master equation set is necessary to find a numerical (or algebraic) solution using
the linear algebra, whereas in the Monte Carlo method, master equations are formed
implicitly during the computation.

4.1 Constructing the master equation sets

The first step of the numerical master equation method is to build and store the
equations. Master equations and operators are written by using the sparse matrix
representation. For small systems up to a dozen states or so, H can be build manually
by hand. For large systems, their construction must be done using a program suit-
able for the given model. The construction methods basically fall into two categories
(or their combination): The brute-force enumeration method and the recursive ma-
trix method. In the brute-force method, all microstates are found (enumerated) and
then the matrix H and operators are constructed by finding the allowed transitions
between these states. Both of these steps are usually time-consuming and require ef-
ficient algorithms to minimize the computational cost. The enumeration method can
always be applied, similarly as the Monte Carlo method can always be applied to
solve expectation values. The island model requires this type of an approach. The
recursive matrix method uses recursive approach by increasing the system size step
by step, while building H and operators using efficient matrix operations (namely the
multiplication). This method is typically very fast, since most of the computation time
is spent doing matrix computations. However, this requires that H and all operators
of interest have a compact operator representation (i.e. no null states, see Section
2.2.3), which enables enlargement of the system size by recursion. The repton model
fulfills this requirement. In the following sections we go through these two approaches
in detail for the repton and island models.

Building of large master equation sets of complex systems is an error-prone procedure.
Whereas the problems with the numerical methods, such as an incomplete convergence

37
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of eigenstates or numerical inaccuracies, are usually obvious, errors in the matrix H
and the operators can be easily missed. Errors such as incorrect rates and transitions
between states, e.g. if H has too many or few elements, can have a large effect on the
transport properties. Therefore a few basic tests should be applied to ensure that the
equations are indeed correct. In addition to most obvious tests, including a manual
checking for the smallest systems and comparison of results against previously known
ones, one should check that (1) the equilibrium distribution indeed has Boltzmann
weights, (2) there are no local currents in equilibrium and (3) observables are consis-
tent with respect to symmetries (if present). The detailed balance check is important,
since local currents may be present even if the net current is zero. This situation
typically arises when the rates are taken directly from incomplete experimental or
simulation data, which can result in cycles with non-zero affinities in equilibrium (see
Section 2.1.3). The last test applies to models where the parameters and observables
have certain symmetry properties. For example, the velocity direction must be re-
versed when all the potentials are reversed. Also, if the system consists of identical
particles, the observables should remain the same for all of them. !

4.1.1 Recursive method for the repton model

If the system has a compact operator representation and there is a straightforward
way to construct a large system by enlarging the smaller one, one can utilize the
recursive method to build H and operators related to the observables. The most
typical examples of such systems are one dimensional spin chains (e.g. Heisenberg
and Hubbard chains) and classical particle models (e.g. simple exclusion processes,
zero-range process and Ising chain) where only the nearest-neighbor interactions are
present. Next we describe in details the recursive method for the repton model, whose
stochastic generator was discussed in Section 3.3.1.

The stochastic generator

In the repton model, every bond between reptons can be in three states; up (+1),
down (-1) or flat (0). In the following, we shall call these states A, B and @. For these
three states, we may introduce the local operators for measurement and changing of
the bond state. Following the previous works (see e.g. [130]), we use the notation
na,np and ng for the bond state measurement operators. Operators a and b are
the annihilation operator for states A and B, turning the bond states into state &.
Corresponding creation operators, which create bond states A and B from the state
@, are a' and bf. With these operators, the dynamics of the polymer can be defined.
In natural basis, we define these operators with matrices with the following non-zero

'For example, consider a homogeneous repton model for which the head reptons are identical.
Due to this symmetry, all measurements should be now invariant between the heads.
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Figure 4.1: Ilustration of the allowed transitions in RD (black arrows) and FM (black and blue
arrows) models for a six repton polymer in one of its configurations in the potential V(x,t). The
letters a, b, c represent the operators corresponding to the moves and are defined in the text.

elements

[nA]l,l = [n®]22 = [nB]gg =1

) )

[a]2,1 = [aT]Lg = [b]2,3 = [bT]:')Q =L

)

After adding the non-homogeneous periodic potential V(x) = V(x + L) with L > 1
and the marker repton, the transition rates of all reptons depend on the position of the
marker repton and all other bonds separating it from the marker. In the following, we
choose the leftmost head repton as the marker repton. The dimension of the marker
state is L, so the dimension of the total system of equations becomes L x 3V~!. For
I =1,2,...,L, the state measurement operator of the marker repton is n;, and the
dynamics is created with operators ¢;” and ¢;", which move the marker repton to the
next and the previous location on the potential (using periodic boundary conditions,
L+1— 1and 0 — L). For these operators, we apply matrices with the following
non-zero elements

[CI_L_” =1forl #1, [cﬂlﬂ,l =1forl#L
[Cl_]L,l = [CJLFL,L = [, = 1.

In Fig. 4.1 we show one configuration of a 6-repton polymer with all allowed moves
and their corresponding operators.

Transition rates are denoted by

D(g,i) = exp[(V(i) = V(i + 1)) q]
Ulg,i) = exp [(V(1) = V(i = 1)) q],
indicating up (U) and down (D) moves of the reptons (see Fig. 3.2) with charge q.

The effect of the field £ can be included by adding ¢F and —gF inside the exponen-
tial functions of D and U. We keep temperature fixed, hence the factor 1/kgT can
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be absorbed into V and E. Rates are generally time-dependent, but to ease up to
notation, we drop the t-dependency from now on. Using the above definitions, we can
now define the following three operators that appear in Eq. (3.2) for the head (A and
B) and bulk (M) reptons

Ai(q) = {U(q,1) + D(q,1)}iz10 — Ulq, Dl — D(q, )b},
+ D(q,D)fiary — D(q,Dary + U(g, Ditpay — U(g, )by

Byi(q) ={U(g,l + f(N = 1Ly)) + D(g, L + f(N = 1,9)) }non-1,,
—U(g,1+ f(N = Ly))ay_y,, — D@1+ f(N = Ly)bh_
+ D(q,l+ f(N = Ly))nan-1y:— D(g, 1+ f(N = 1,y))an-1,,
+U(q, 1+ f(N = Ly)npn-1y0 — Ulg. L+ f(N = 1,y))bn_1,y,

M;ya(q) = Ulg, 1+ f(1, y))(nA,i,y,lnG,i-i—l,y,l+n®,i,y,lnB,i+1,y,l_ai,y,laIJrl yl—bT,ylbi+1,y,z)
+ D(q, 1+ [(i,9)) (noigin i1yt + By Neit1yl — jy (i1 — b; ,y7lbz+1 yl)
+ QU(q, L+ f(2,9) (NaiginB i1yl + NojiyiNe,itlyl — Qigibitiyl — b;'r,y,la;rJrl,y,l)
y))

+ QD(q, 1+ f(4,

T T
(”B i dPA 1yl T Moy iNe i1yl — DigiQiviyl — ;1000 z)v
3,071+ 1y,

where {2 = 0 defines the standard Rubinstein-Duke repton model and €2 = 1 defines
the free motion model, and

ar = ¢ a ELL = cl’aJ{

bu=cb bl =]

ﬁz,Ll =Nz

Liyl = (I | Tg(y.4), ) oy
1—1
Nziyl = T I I Ng(y,5),d | Tai

with z € {a,b,a’,b'}, z € {A, @, B}. The function g(y,i) € {A, @, B} gives the state
of the 7** bond in the configuration vy, and the function f

Fliy) = (U lna; —np¥,), 1<i<N-1 (4.1)

j=1

gives the position of the repton ¢ + 1 in marker-centered coordinates. Here |¥,) is the
configuration vector for the state y (see Section 3.3.1), and in natural basis, it has
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only one non-zero element. The detailed forms of the functions ¢ and f depend on
the selection of the state basis. In efficient recursive construction method, reptons can
be added only such way that the new repton replaces the old marker repton (i.e. in
Fig. 4.1 new reptons must be added on the left of repton labeled 1).

Macrostate operators

In this work we are interested in macrostate operator that measure the head-to-
head length, the total length, and the number of number of zero-bonds and kinks.
Macrostate operators are formed from (large) sets of microstates that correspond to
the same value of the macrostate (e.g. there are many microstates corresponding to
the same total length of the polymer). Using the notation above, the formal definitions
for these observables for the N repton polymer are

y € F #{1<i<Nig(y,i) =2} =n.,
€EFN #{1<i<N-1g(yi)=A/BAg(y,i+1) =B/A} =n
€ Fy [f(N=1Ly)l=n
y € F,g’; ; Irllﬁx[f(k,y) —fllby)=ny, k1=1,2...,N—1,
where n,,ny,ny = 0,1,...,N —1 and n;, = 0,1,..., N — 2. Put in words, the set
FnZZ contains all such polymer configurations that contain n, bond states of type
. The set F K contains all configurations that have n, kinks in them. The set F)! H
and F¢ contam all such configurations with head-to-head length n; and total length
Ng. Slnce the total length also includes the head-to-head length, one can verify that
#FY > #FH holds for all i. By using sets F' and Eq. (2.7), the operators can be
constructed and expected values of measured observables computed. The practical
procedure to form operators is explained below.

Since the stochastic generator and the measurement operators used in this work are
more complex than in the previous works on the RD model, we show in some detail
the idea of the recursive operator construction in the current case. Let {O’i, ey O;}
be a set of macrostate operators and let {wi, e ,w;i} be some weights associated
with them for a system with ¢ sites. Operators for observables are then constructed
as O" = Y " w,0L. We assume that the set includes all the necessary operators
that are required when adding a new site. Here site is a general term, which for
example could mean single particle states for classical systems and spin states for
quantum systems. Let us assume that the new sites are added on the right such that
|new state) = |old state) ® |new site). The basic algorithm to add new sites (until V)
goes as follows

1. Build an initial set of operator(s) OL, where n =1,...,n;.

2. Forallm=2,3,...,Nand n=1,...,n,,, build:



42 Setting up the equations

or= Y  orlen

(k,j):K(TLm,1 ,TL)

3. Build the full operator ON = 3"V w, OF,

where n,, is the total number of operator required for the size m system. The details,
of how to construct a new set of state operators for the enlarged system by joining the
states of the new site and the old operators, are hidden in the function K (n,,_1,n) that
determines the summation process. The complexity of this function and the number
n,, of the required operators depends on the type of the operator. Practically it is the
n,, that determines the computational effort needed to build large operators, since K
is just a ’bookkeeping’ function.

We next concentrate on the repton model for which sites mean bond states between
the reptons. With some effort, one can determine n,, for the macrostate operators,
and the results are as follows

e Zero-bonds: n,, = m + 1 (number of zero-bonds)

e Kinks: n, = max[3,3(m — 1)] (number of kinks and state of the rightmost
bond)

e Head-to-head length: n,, = 2m + 1 (signed distance between the heads)

e Total length: n,, = (1—k)(3k—2m—7) > (14 m) (3 + m) /3, where k = [2]
(see example below)

The number of required operators is therefore oc m? for the total length and oc m for
others.

We now consider a concrete example for a total length operator, which is the most
complex operator used in this paper. When one enlarges the size of this operator
with new particles, one must keep track of the maximum distances of the rightmost
repton from all the other reptons both above and below it. For example, in Fig. 4.1
these distances would be 2 (from repton no. 4) and 0 (no reptons below the rightmost
repton). We define these as up (u) and down (d) distances, respectively. Total distance
is then d + u.

In Fig. 4.2 we show all 9 microstates of the 3-repton polymer. Since there are five
combinations for u and d distances, the macrostate operators 0(2270), 0(2072), . 0(2071)
are formed with each of them including one or more microstates. This is shown
in the figure with red numbers in the (d,u)-plane. When a new repton is added,
a function K is used to combine old macrostate operators with state operators of
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Figure 4.2: All 9 configurations (microstates) of the 3-repton polymer with 5 macrostate operators
that are formed from them. The macrostates are indexed by the corresponding (d,u). As a new
particle is added, there are new (d,u) combinations available and the number of macrostates is
increased by three. The relation between the microstates and macrostates is illustrated in the (d, u)-
plane, where the red (gray) and blue (light gray) numbers indicate the number of microstates for 3
and 4 repton polymers.

the new site ({na,ng,np}), and hence the number of macrostate operators is in-
creased by three. Examples of the required operations includes 0?270) = 0(2170) ® na
and 0?1,1) = 0(2270) ® ng. After addition, there are 27 microstates in eight macrostate
operators (blue numbers in the figure). Note that in the actual computations only the
information about the d and u values is needed. Here the tracking of the microstates
was done for illustration purposes only. As more reptons are added, the 'triangle’ that
presents available (d, u) states gets larger.

DMRG method for the repton model

For the models of the recursive type, there exists a computational method known
as the Density Matrix Renormalization Group (DMRG) that can be applied to ex-
tend the master equation method to very large system sizes. The DMRG method was
proposed by White in 1992 in his seminal paper [195] as a method to study large
one-dimensional strongly correlated quantum mechanical systems. In the years that
followed, this method was further developed and used in numerous studies. Most com-
monly DMRG is used to study one-dimensional quantum systems, such as Heisenberg
and Hubbard models. With small modification, it can be also applied to classical
stochastic models and it has been applied to study the RD model and simple exclu-
sion processes [25, 130, 70]. In previous works of the RD model, only the case with a
static field has been considered. In the following, we describe how to apply the DMRG
method for the repton model including a periodic external potential. The universal
parts of the DMRG method, which are not directly model-dependent, are described
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Figure 4.3: An illustration of the system structure used in the DMRG computations in the case of 9-
repton polymer in the potential with L = 4. White reptons belong into the two reduced blocks, while
the the reptons with black spheres remain unreduced. The repton marked with a gray rectangle, is
the marker repton and it also remains unreduced. The position of the marker repton changes during
sweeping.

in Appendix A.2

In our implementation, the construction of the repton model is illustrated in Fig. 4.3
for the case N = 9 and L = 4. The total system is constructed from the left, right
and middle parts. Left and right parts (the reptons marked with spheres) contain
the chain of the bond states (three possible states for each bond) starting from the
middle 'marker’ repton (the repton marked with a gray square), which has L possible
states. For the left part, the bond state indicates the repton position compared to the
nearest-neighbor repton at the right hand side, and for the right part it is the repton
at the left hand side. This construction allows adding new reptons (i.e. bonds) at both
sides of the marker repton (the repton marker with gray spheres). These new bonds
are truncated in the DMRG procedure. The marker repton is added only when the
stochastic generator of the complete system is needed, and it is never truncated.

When compared to the case with only a static field, inclusion of the non-homogeneous
potential creates some complications. Since the state of the marker repton is not
reduced, the dimension of the stochastic generator is increased by a factor L. One
must also store L times more operators for the reduced left and right parts. In the
extended model, a transition rate of the repton depends on the state of the marker
repton and all other bonds between the repton and the marker (governed by the
function f defined in Eq. (4.1)). The standard DMRG method is not designed for this
type of situation, hence it is generally unclear how this affects to the computational
cost and accuracy of the method. Also, the velocity and position along the potential

2For those who are not familiar with the DMRG method, I suggest reading the appendix before
continuing.
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can be only measured for the marker repton.3

After testing different constructions, potential types and parameters, we found that
the symmetric block structure above leads to best results. For example, including the
marker repton state in left or right block (or both), and truncating it, was found to
produce very inaccurate results. In addition to above inner coordinate representation
based on the bond states, we also considered the outer coordinate representation with
the actual repton positions (i.e. all reptons are marker reptons). However, such rep-
resentation is compact only for the case L = 3. For L > 3, there will be lots of null
states related to the non-allowed polymer configurations (broken polymers), which
makes this representation very inefficient because of the additional work needed to
get rid off the null states during the computation. Also, the two-term interaction of
the inner coordinate representation becomes three-term interaction when using outer
coordinates. For the special case L. = 3, this representation however was found to
be somewhat more efficient in the DMRG computations by allowing more efficient
truncation (smaller matrices).

To study time-dependent potential, one must either do numerical integration (deter-
ministic and smoothly varying potentials) or add an additional potential state in the
stochastic generator (stochastic potential). In our first effort, we tried the latter one,
which turns the problem into solving the steady state using the time-independent
DMRG method. We tried adding the potential state in various positions of the sys-
tem, including the the edges and the middle. We also tried both truncating it or
leaving it non-truncated, similar to the marker repton. Unfortunately, none of these
approaches were successful due to the numerical inaccuracies and instabilities. Adding
the potential state increases the dimension of the system and creates a complex global
interaction, which was found to increase the computational cost beyond the practical
limit. In our second approach, we used deterministic and smoothly varying poten-
tials, for which the potential state is not included in the stochastic generator (see
Section 3.1.1), but instead one uses time-dependent DMRG method to do numerical
integration in time. This method was found to work quite well. However, since the
integration is computationally very expensive, we were unable to reach the periodic
steady state of large systems, and hence were forced to limit our studies into studying
the relaxation process only. The results of these studies are presented in Section 6.2.

4.1.2 Enumeration method for the island model

If the system has no simple operator representation or short interaction distance,
the recursive method cannot be applied to construct the stochastic generator and

3Since the polymer is unbroken, long-time transport properties do not depend on whether one
measures directly the center-of-mass location (all reptons) or just one repton.
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Figure 4.4: Enumeration lattice for a size 4 polyominoes (i.e. no corner connections). The site filled
with a black sphere is always filled, whereas positions of red spheres visit every allowed configuration.
Sites marked with crosses cannot be filled.

operators of interest. In such cases, a brute force type enumeration must be applied.
In this method, all possible configurations are enumerated, which for large systems
needs an efficient algorithm. Similarly as in the recursive case, typically such algorithm
starts with a few particles and then the number of particles is increased until the given
limit. An efficient algorithm only produces a new configuration with each iteration,
never repeating the previous ones. For the reduced island model (see Section 3.4.2),
the compact operator representation is not known and we apply enumeration method.

As explained in Section 3.4.2, island configurations in the reduced model are polyomi-
noes. An efficient brute-force enumeration method for polyominoes was introduced
by Redelmeier [147]. In this method, an enumeration lattice, as illustrated in Fig. 4.4
for the case N = 4, is used. One starts with a single filled site in a fixed position at
the bottom of the lattice and fill other sites using the nearest neighbors. By keep-
ing track of the previously filled sites, one can go through all possible combinations
efficiently. Although the original algorithm only applies to configurations with only
nearest neighbor connections (i.e. no corner connections), the next-nearest neighbor
sites can be included by a minor modification of the original algorithm. The total
number of island configurations, with and without holes and corner connections, is
shown in Table 4.1 for islands up to 10 and 12 atoms. Since the maximum number of
configurations is around 10° states for the numerical master equation method, states
with corner connections must be omitted in order to study islands up to 12 atoms.
Note that, if a stochastic type time-dependent potential is used, the dimension of
the matrix is increased by a factor S (see Section 3.1.2). After the enumeration, the
building of the stochastic generator and measurement operators begins. For this we
use configuration projections.

The construction process of the stochastic generator and measurement operators con-
sists of the following steps:

1. Enumerate all states using Redelmeier’s method. For each state, save projections
and other information required by measurement operators.
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Table 4.1: Number of island configuration as a function of the atom count.

with corners NO COIrNers
N all solid all solid
2 4 4 2 2
3 20 20 6 6
4 110 109 19 19
5 638 622 63 63
6 3832 3664 216 216
7 23592 22094 760 756
8 | 147941 135609 2725 2684
9 | 940982 843941 9910 9638
10 | 6053180 5310754 | 35446 34930
11 - - 135268 127560
12 - - 505861 468837

2. Construct the stochastic generator by comparing projections based on possible
nearest-neighbor transitions

3. Determine reaction classes and measurement related information for transitions.
Discard all illegal transitions that may occur.

4. Construct final matrices by substituting values, such as reaction rates I'.

After the enumeration (step 1), elements of the stochastic generators are found by
finding all allowed transitions between the configurations (step 2). This is the most
time-consuming part of the computations, as in the general case, it scales as a square
of the total number of states (comparing all configurations against each other). How-
ever, for the island model we can take advantage of that only single atom transitions
are allowed (for general transitions, some pattern recognition algorithm would be re-
quired). Therefore we sort the states by their projection along coordinate axes and
their diagonals, which greatly reduces the number of states that need to be com-
pared against each other. See Fig. 4.5 for an illustration of the projections. After
this, transitions can be classified by their reaction classes (see Section 3.4.1) and also
measurement information computed (if not already done within step 1). We ended up
with matrices that include rate classes and other information such as displacements
(step 3). Steps 2 and 3 could be also done simultaneously. Resulting matrices are
stored. Before numerically solving the master equations, the final matrix is created
by putting the actual rates into the matrix (step 4). This final step is fast, since the
matrices are very sparse. In principle, all parts of the matrix computations can be
parallelized, for example by dividing the matrices in smaller parts.

Finally, we note that although the reduced island model has no compact operator
representation, one can apply recursive method to count the number of different con-
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Figure 4.5: Four projections of a single island configuration with two example transitions for the
reduced island model.

figurations. For this purpose, a transfer matrix method has been developed [90]. Sim-
ilar method has been also used to count self-avoiding random walks. However, this
method is very complicated and it cannot be directly applied to actually construct
a stochastic generator. As we only need to enumerate states with no more than 12
atoms, the brute force method is fast enough for our needs.

At the end of this subsection, to get some idea of the structure of the stochastic
generators for the repton and island models, in Fig. 4.6(a), we show the average
number of transitions (edges) from a state (vertex), and in Fig. 4.6(b), the total
dimension of H as a function of the number of reptons and atoms. For both models,
we consider generators with internal configurations only, i.e. L = S =1 (see Section
3.1). While the total number of states grows exponentially, the average number of
allowed transitions for a state grows only linearly, being less than 12 even for the
largest systems. Although the repton and the reduced island models correspond to very
different types of physical systems, their H matrices have quite a similar structure. We
found that their numerical properties are also quite similar when it comes to solving
numerical linear algebra and integration problems, which most likely results from the
similar structure of the matrices.
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Figure 4.6: (a) Average number of transitions per state and (b) total number of states for the repton
(including both the RD and FM model) and the reduced island model as a function of the number
of reptons and atoms.

4.2 Expected values of path-dependent observables

As noted in Section 2.2.3, computing expected values of observables with an operator
representation is straightforward. Unfortunately, many interesting observables do not
have such representation, or at least it is not apparent because they depend on the
paths of the stochastic process. The most important examples of such observables are
the velocity v and the effective diffusion constant D.g. In this Section, we describe
how such observables can be computed.

To receive a more general picture, it is convenient to introduce the concept of a
counting process. The counting process is a real valued stochastic process whose time-
evolution is governed by another stochastic process, which in our case is a process
defined by the stochastic generator H. The physical scenario described by a count-
ing process is the measurement of some quantity by adding its increments whenever
the underlying transition, that is associated with the increment, occurs. The required
assumption is, that the measurement does not perturb the dynamics of the original
process on which the measurement is performed. These two conditions define a count-
ing process [76, 57|. In the case of v and Deg, the counting process is the position of
the center-of-mass.

In the following, we derive the equations that can be solved numerically to find v
and D.g, but these techniques also work for other similar type of counting processes.
Computation can be done either directly or using generating functions, leading to

41f the system is two or three dimensional, we consider the projected position of the center-of-mass
along the chosen direction.
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slightly different types of equations.

4.2.1 Direct method

In 1983, Derrida derived the analytical closed-form solution for the random walk
in a periodic one-dimensional lattice with arbitrary rates [46]. Since then, the same
methodology has been used to solve other simple random walk models. Although
closed form expressions for the velocity and the diffusion coefficient can be computed
only for simple systems, the technique can be applied to any system numerically.
A similar methodology has also been used in the context of solving Fokker-Planck
equations by discretization [188].

Let us consider a stochastic generator H and a counting process x(t) defined by incre-
ments of an anti-symmetric matrix D, i.e. for all H,, the corresponding increment
is Dy, and if H,,» = 0, also the increment is zero. Now, it is possible that there are
two (or even more) different D, for a non-zero transition H,,, when y # . In such
case, one must either distinguish these different branches, i.e. work with tensors D;’y,
and H, ,, or expand the state space such that branching disappears. For example,
when studying center-of-mass transport, one may simply increase the period length
L. Although the latter method makes the state space larger, it is often much more
practical. Branching does not typically occur for complex particles systems, including
the repton and island models, and especially when the number of configurations is
large®. From now on, we will therefore assume that there is no branching or it has

been eliminated.

In the case of transport properties, counter z(t) is the position of the center-of-mass
and D, is the displacement in the chosen direction. By using the definitions given
in Chapter 3.2.1, one then arrives into equations

o(t) = Z Z Dy yHy ,(t)qy(t) (4.2)
Deg(t) = Z Z Dy yHy oy (t)sy(1) + % Z Z Di',yHy’,y@)Qy(t)a (4.3)

where s and ¢ are auxiliary functions such that - ¢, = 1 and > s, = 0. The
derivation of these equations is straightforward and is given in Appendix A.2. The

SFor a simple example of branching, consider a single particle ASEP model with two sites (L = 2)
and periodic boundary conditions. For the displacement counter, the total number of transitions
between the two states is four, because there are always two possible directions for a particle to
jump. This branching disappears with L = 3.
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time-evolution of s and ¢ is given by

L) S 00~ Hy (00,0
dsét(t) = > [Hyy ()5 (1) = Hy oy ()5 (8) + Hy o (8) Dy (£)] = 0 (1) (8).

!

Y

In the matrix form, these can be written as
v(t) = (1D o H(t)[q(t))
Degi(t) = (11D o H(t)|s(t)) + %<1|(D o D)o H(t)|q(t)),

A — bipjq(o)
d‘sd(tt» = H(t)|s(t)) — Do H(t)|q(t)) — v(t)|q(t)),

where o is the entry-wise matrix product. Since s(t) depends on v(t), vectors ¢(t) and
s(t) must be solved simultaneously.

In the case of time-independent H, in the steady state with lim, . ¢(t) = @ and

limy o, s(t) = 9, the derivatives become zero and the computation of v and Deg
require solving two linear problems
0= H|Q)

0=HI|S) - Do H|Q) —v|Q),

where the first one is an eigenvalue problem, giving () and the steady state velocity v.
Using these, S can be then computed from the second linear problem. Because of the
eigenvalue zero, the matrix H can be multiplied from the left with any pre-conditioning
matrix, which can make the numerical solution easier. Note that pre-conditioning
is possible only for the eigenvalue zero and cannot be applied, for example, when
computing relaxation constants.

4.2.2 Generating function method

Instead of applying above direct method, one can also apply generating functions.
This proves very useful especially for time-independent systems and this approach is
applied widely in theoretical research of nonequilibrium systems [8, 47, 76]. As before,
we consider the counting process z(t) with increments D, ,,. We now define a joint-
distribution P,(z,t) for the system to be in state y and the counting process having
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value x at time ¢. The normalization of P,(z,t) is given by
ZPy(xat):Py(t) ZPy(t):l-
x Yy
For this extended distribution, we define set of master equations

dP, t
% - Z [Hyvy'Py’(x + Dyyy%t) - Hy’,yPy(‘T,t)] :
y'Fy

By summing over x, one recovers the original master equation. Let us now introduce
the moment generating function for z,

Fy(\t) =) _eMPy(x,t).
The moments of x are then given by

(z(t)") = d% > Fy(\ )0

Using the identity >, >~ e P,(x + 2,t) = >, e*F,()\, t) and the extended master
equations, the time-development of F' is

dF,(\, 1) i
yd—t — Ze/\ Z [Hyvy/Py/(jL' + Dy’y/7t) — Hy/,yPy(x,t)]

x y'#y
= Z Hy,y/e_’\Dyvy’ Z eA(”Dyvy/)Py/ (x+ Dy, t) — Hy Z e)‘mPy(x, t)
y'#y z x
=Y [Hyye Pu Fy(M\t) — Hy yFy(A1)] .
y'#y

This can be expressed in the matrix form dF)(t)/dt = H,(t)F\(t), where H) is called
a modified or a twisted generating function. The largest eigenvalue of H), for which
we use notation A(A), is now positive for all A # 0 and therefore the norm of F' is
an increasing function of time. This can cause serious problems for numerical inte-
gration if A and integration time are large. Instead of numerical integration, one can
solve Laplace transformed F)(s), which however requires taking a computationally
expensive numerical inverse transform.

Let us now consider the time-independent H). In this case, the long-time behavior of
F (A, t) is dominated by A(\) and we can approximate

(@) =) Fy(z,t) ~ DO,
Y
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Figure 4.7: The largest eigenvalue A of the modified stochastic generator H) for (a) 9-atom reduced
island model and (b) 10-repton RD model as a function of parameter A for various static field
amplitudes E. For the island model v = o = 0° for the measurement and field directions and
T =700 K.

The initial state becomes negligible for large ¢. The long-time limits of cumulants can
now be computed by differentiating A. First two moments are

! dA(N)

lim - (z) = 22

A e N
Lo 0 _ PAR)
tli)rl;.lot [(x >_ <x> :| - d)\2 \—o .

For D being the displacement matrix for the center-of-mass, these are v and D.g.
Alternative derivations using direct Fourier transforms can be also used [181]. This
approach turns out to be especially useful in solving simple systems analytically (see
e.g. [163, 64]).

When compared to the direct method, computing the steady state velocity and the
effective diffusion coefficient for a time-independent system is straightforward, since
there is no need to solve a linear problem. However, this requires computation of
several eigenvalues of H), using different \’s around A\ = 0 and taking numerical
derivatives. Also no pre-conditioning can be applied since eigenvalues are generally
non-zero for all but A = 0.

To demonstrate how the function A(\) looks like near A = 0 for a center-of-mass
transport, in Fig. 4.7 we have plotted A(\) for the (a) 9-atom reduced island model
and (b) 10-repton RD model using three different field amplitudes E. The shape of
the A curves correspond to the complexity between the rates and displacements. For
the repton model, the field affects similarly for all rates, whereas for the island model
the effect of the field depends also on the values of D, (also the rates are more
complicated).
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Apart from the numerical issues, the main difference between the direct and the gen-
erating function method is that the latter provides all cumulants of the counting
process, not just the first (e.g. v) and the second (e.g. Deg). Although not very useful
when studying only transport, higher cumulants might become useful for some sys-
tems, for example, when studying phase transitions (e.g. see a study of the TASEP
model in Ref. [70]). However, because of numerical issues, we have found the direct
method numerically more feasible in most cases. Finally, as noted in Section 2.1.2,
one can also apply the linear response theory to compute D.g at equilibrium. This
involves computation of v in small static fields and doing a linear fit. Although this
method does not allow determination of D.g beyond the linear response, it can be
used for a simple checking of the results given by the two methods or simulations.
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In this Chapter, we consider the numerical methods to solve equations described in
Section 4.2 and do numerical optimization over the model parameters and sequences,
and we also describe the Monte Carlo method.

Since only handful of nonequilibrium systems can be solved analytically, numerical
methods are essential in studying these systems. Typical exactly solvable models in
statistical mechanics are one-dimensional and simple, examples being simple exclusion
processes (including TASEP), the Potts model and the Ising model [119, 101, 178]. To
solve master equations that cannot be solved analytically, there are three approaches
depending on the number of equations (in parenthesis): The symbolic method (up to
~10), the numerical method (up to ~10°) and the numerical approximative Monte
Carlo method (all sizes). For the first two, the limits are somewhat model dependent as
some systems are much easier to solve than others. In the symbolic method, functional
expression for the probability distribution and observables are found for example using
software such as MATHEMATICA and MAPLE. Even for systems with a few master
equations and parameters, the resulting expressions are usually lengthy and compli-
cated, but a thorough analysis is them possible (e.g. see [163, 89, 162, 163, 175, 193|).
As the number of equations gets beyond 10 or so, this approach becomes impossible
due to computational cost. In the latter part of this Chapter, we concentrate on the
last two approaches.

For small and medium sized systems, numerical solution of the master equations is
possible. Although functional forms are unknown, numerical values for the probabil-
ity distribution and observables can be computed, typically with a high floating point
precision. In this work, we call this approach the numerical master equation method.
This method also allows one to do numerical optimization with respect to cycles and
continuous parameters, as we will see in this Chapter. The practical upper limit for
the number of equations depends on the details of the model, such as how far the
system is from equilibrium, and on the topology of the transition graph. Using cur-
rent desktop computers and standard numerical and optimization methods, we have
found that the practical upper limit of equations for the master equation method
is roughly around 10°. For larger systems, the computational cost (time and mem-
ory requirement) rapidly increases, thus making the method impractical. Since the
computational complexity of methods in numerical linear algebra and graph analysis
typically increases very rapidly as a function of the system size, simply increasing
the computational power cannot push this upper limit much further. To study much

%)
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larger systems with the numerical master equation method, approximate methods,
such as DMRG, must be applied.

For the Monte Carlo method, there is no upper limit for the number of equations,
because master equations are not explicitly constructed. It can, in principle, be used
for systems of arbitrary complexity. The upper limit for the systems size is set by the
required accuracy, since increasing the system size usually leads to larger statistical
error and increased computational cost. Since the numerical results obtained with
the Monte Carlo method typically contain significant statistical error even for small
systems, the accuracy is much worse compared to the numerical master equation
method. This can make studying of certain elusive properties, such as drifts caused by
the ratchet effect, and optimization practically impossible. The Monte Carlo method
is discussed further at the end of this Chapter.

There is currently a large number of different numerical methods for each type of
problem that is encountered when using the numerical master equation method. As
discussed in Chapter 2, there are several fundamental differences between equilibrium
and nonequilibrium systems. Similarly there are differences in how these systems can
be solved numerically, especially when it comes to linear algebra. It is often impossible
to know beforehand which method works best for a given model and parameters, hence
testing of different methods is important when studying large systems. In this Chapter,
in addition to summarizing the available methods, we also compare some of them for
the repton and island models.

All data analysis and most of the computations in this work were done within MAT-
LAB, either by using the scripting language with MEX-extensions ! or using MATLAB
only as a front-end for executables written in C+-+ and Java. Most numerical meth-
ods that we apply are built-in in MATLAB or are available via official Toolboxes. All
computations in this Thesis were carried on with mid-range desktop PCs available in
2008-2011. Computation times vary from seconds to several days, depending on the
problem type and the number of master equations. For example, solving steady states
for the smallest systems (8 particles or less) takes only a few seconds, while numerical
integration via DMRG of large systems can take weeks.

'MEX functions are compiled binaries that can be executed directly using the MATLAB envi-
ronment.
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5.1 Numerical linear algebra and integration meth-
ods

Now we turn into numerical solution methods of the equations appearing in Section
4.2. When studying steady states, the method of choice depends on whether the system
is explicitly time-dependent or not. For a time-independent system (i.e. elements
of H are constant), the problem is reduced to an eigenstate and linear problems,
whereas in the general case, numerical integration is required. Unfortunately, since the
stochastic generators of master equations represent a group of very different types of
matrices, there are no tricks or methods that could make the numerical computations
significantly easier. Only if the system has some additional properties, such as H
having weakly connected components or a special structure (e.g. tridiagonal), some
special techniques become available [63]. However, since this does not apply to most
stochastic generators, or even those models studied in this work, we do not make any
additional assumptions on the stochastic generator at this point.

5.1.1 Solving eigenstates and linear problems

It has become evident that to solve the steady state distribution, the leading relaxation
time and fluctuations of path-dependent observables, one needs to solve eigenvalue and
linear problems or integrate in time. For the eigenvalues and eigenstates, we only need
those two corresponding to the smallest eigenvalues. The two linear algebraic prob-
lems are defined by Az = Az and Az = b, where x and b are vectors, A is a real square
matrix and eigenvalue A is real or complex. Since the first problem is equivalent to
solving roots of high-order polynomials, only iterative solving methods can be applied.
For the linear problem, the selection of methods is much broader and there are both
direct and iterative methods. Direct solvers are typically designed for dense matrices
and they work by factorizing the matrix into a product of simpler matrices whose
inverse is easy to find (namely using the LU decomposition).? Both of these method-
ologies has its advantages. Direct methods tend to be generic, robust, predictable and
efficient. But their scalability is limited as they require lots of memory and become too
slow for large matrices. Iterative methods scale much better and require less memory,
but are usually more fragile, less robust and, for the very small problems, slower than
direct methods. For very large systems, direct methods are generally unusable, and
we therefore concentrate on the iterative methods. In the following, we summarize the
most important iterative methods in linear algebra. A more comprehensive listing and
details of the methods can be found in many textbooks, such as [17, 71, 159, 160]. We

?Direct methods can be also applied for sparse matrices, but because this requires additional
steps for re-ordering of matrix elements and determining suitable data structures, it is not usually
efficient. See e.g. Ref. [43] for more details.
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start by defining the Krylov subspace, which is the key concept behind almost every
iterative method today.

Krylov subspace

Given a matrix A and a non-zero seed vector v, a Krylov subspace is defined by
Ki(A,v) = span(v, Av, A%, ..., A" ),

where k is the size (dimension) of the subspace. Algorithms that operate, one way or
another, on Krylov subspaces are called Krylov subspace methods and they are among
the most advanced methods currently available. In these methods, instead of working
with original matrices, the problem is projected on the Krylov subspace which results
in significantly smaller matrices. As the problem size is reduced, one may apply direct
methods, such as QR factorization®, for solving eigenvalues and linear equation solvers
to solve sub-problems.

Because the vectors A% are non-orthogonal and become linearly dependent when
k > n, and also because the corresponding basis set of K} tends to become badly
conditioned for large k, methods relying on Krylov subspace frequently involve some
orthogonalization scheme. For nonsymmetric matrices, this has lead to development of
the Arnoldi iteration method, which can be used to construct an orthogonal basis for
K. Krylov subspace methods usually have good convergence properties for extremal
eigenvalues, a good numerical stability and the required storage space for algorithms
is small [158].

Iterative solution of eigenvalues

The working principle of eigenvalue solvers is based on the power iteration. Starting at
the random vector x, iteration of the form z; = Axg, x9 = Az, ... converges towards
the eigenstate with the largest absolute magnitude. Similarly, iteration with a shifted
and inverted matrix (A — oI)~! converges towards the eigenstate with the eigenvalue
closest to o of the original problem. However, this requires either solving the inverse
matrix or a linear problem (A — ol)z;41 = x; at each iteration. The full spectrum of
A can be solved iteratively using QR iteration. For large and sparse matrices these
methods are however too inefficient and hence the Krylov subspace methods are used
[160].

With the Arnoldi iteration, an orthonormal basis vy, v, ..., v, can be constructed for
K(A, o) such that VkTAVk = Hj,, where the column vectors of V) contain the basis
and Hy is a Hessenberg matrix. Eigenvalues and states of H are known as Ritz eigen-
values and Ritz states. A number of the Ritz eigenvalues, typically a small fraction

3For a real matrix A, QR factorization is defined by A = QR, where @ is orthogonal and R an
upper triangular matrix.
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of k, will usually constitute good approximations of the corresponding eigenvalues of
A and the quality of the approximation will usually improve as k increases. How-
ever, the number of iteration steps is unpredictable and can be very high with the
basic Arnoldi algorithm. In 1992, Sorensen introduced the implicitly restarted Arnoldi
method (IRAM) [176], which limits the dimension of the search space while main-
taining the structure of the Krylov subspace. In this algorithm, one starts with k
steps of Arnoldi iteration and then repeats the following four steps until convergence
[112]: (1) sort Ritz eigenvalues into wanted and unwanted sets with sizes m and ¢
(i.e. Kk = m+ q), (2) do implicitly shifted QR iteration corresponding to unwanted
eigenvalues, (3) reduce the Krylov subspace using polynomial filtering (the new di-
mension is m), (4) do ¢ steps of Arnoldi iteration.

The computational complexity of IRAM depends on the structure and spectrum of
matrix H (dimension N) and the choice of parameters k, m and ¢. With a naive
analysis of the IRAM algorithm, the total number of floating point operations for a
single IRAM step is (cyq + 10mp — 4q + 4¢* + 2m?) N + O(k?), where cy is the coef-
ficient for a single matrix-vector multiplication [17]. For dense matrices ¢y = N and
for sparse matrices cy is a constant (much smaller than N), or a slowly increasing
function of N. The overall complexity of the method is, however, unknown. IRAM
can be considered as the state-of-the-art method to solve large nonsymmetric eigen-
value problems. Through ARPACK library, it is a part of many scientific computing
applications, including MATLAB.*

Iterative solution of linear problems

Solving a linear system iteratively is somewhat more involved than solving eigenval-
ues and there are several different types of methods available. For weakly diagonally
dominant matrices, it is known that the solution for Az = b can be found by simple
iterative methods such as Gauss-Seidel and Jacobi methods [87]. However, for these
type of stationary methods, i.e. where the iteration process remains independent from
the previous iteration steps, convergence is slow for practical use, hence much faster
non-stationary methods have been developed. In the following, we concentrate on
these type of solvers. Here we only summarize the basic principles behind main types
of iterative solvers.

When choosing an iterative method, one must choose between short recurrences®

and the optimality of the solution. Currently, among the best iterative methods for
solving a linear problem are the following Krylov subspace methods or their variants:
Congugate Gradient (CG), Conjugate Gradient Squared (CGS), generalized minimum
residual (GMRES), Bi-conjugate gradient (Bi-CG), Bi-conjugate gradient stabilized

4See Ref. [82] for other freely available software for solving large sparse eigenvalue problems.
5This means that only the results of one foregoing step is needed for the next step and memory
requirement is independent from the number of iterations
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(Bi-CGSTAB) and quasi-minimal residual (QMR).

The general idea of solving Ax = b iteratively, is to seek an approximative solu-
tion z; from an affine subspace zy + Kj by imposing the Petrov-Galerkin condition
b — Az L Ly, where both K and L; are subspaces of size k and x is an initial guess.
For Krylov subspace methods, the subspace K, is the Krylov subspace and different
methods arise from different choices of the subspace L;. In the first class of meth-
ods, one chooses L, = K or L, = AK}, which is the minimum-residual variation.
These are often called orthogonalization methods. In the second class of methods, one
chooses Ly as a Krylov subspace for A” (transpose of A), which leads to biorthogo-
nalization methods. Iterative methods can be divided roughly between the following
three categories [192]:

1. Normal equation methods (e.g. CG and LSQR).
2. Biorthogonalization methods (e.g. Bi-CG, QMR, CGS and Bi-CGSTAB).
3. Orthogonalization methods (e.g. GMRES).

Normal equation methods are based on the fact that a matrix A7 A is always symmet-
ric and positive definite, hence one can solve problem A” Az = A”b with methods such
as Conjugate Gradients (CG), which is considered to be the ’original’ Krylov subspace
method. However, when applied to the matrix AT A, the convergence depends on the
squared condition number and singular values of matrix A and one is required to do
two twice as many matrix-vector multiplications. Because of these, the convergence is
typically slow. The same goes also for derived methods, such as LSQR, which solves
the problem in the least-squares sense. In the following we concentrate on two latter
categories.

Biorthogonalization methods

Biorthogonalization methods are based on the bi-Lanczos algorithm which is a non-
symmetric version of the Lanczos method. These type of methods are intrinsically
non-orthogonal, which makes them harder to analyze theoretically and no optimality
is guaranteed. The advantage is, that they use short three-term recurrence, which
makes them memory-efficient.

In the bi-Lanczos algorithm one, constructs a similarity transformation W' AV, = Ty,
where T} is a tridiagonal matrix (from which the three-term recurrence essentially
follows), matrix Vj is defined by the basis vy, . . ., vx_1 of Kx(A, vp) and similarly matrix
Wi by wo, ..., w1 for Ki(AT wy). Vectors {v;} and {w;} form a bi-orthonormal
system, i.e. (w;|v;) = 0;;. The LU decomposition of the tridiagonal system 7T}, =
LUy can be updated from iteration to iteration, which leads to a recursive update of
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the solution vector. This variant of the bi-Lanczos method, which avoids to save all
intermediate vectors, is known as the Bi-conjugate gradients method (Bi-CG).

The QMR method is closely related to the Bi-CG method. For a matrix Ry created

from the residual vectors ro, 1, ..., 51 with r; = b— Awx;, we can write the recurrence
relations AR, = Ry.17T;, where T; is (k + 1) x k tridiagonal matrix. This leads to a
least squares problem |b — Azx| = |Vii1(Ber — Txy)|, where B is a constant given

by the Bi-CG method. The optimal solution y is called the quasi-minimal residual
approximation and it can be solved in straightforward manner. The method based on
this approximation is the QMR method. Experiments suggest that the QMR method
has a smoother convergence behavior than Bi-CG, but it is not essentially faster.

Each step of the Bi-CG and QMR algorithms requires a matrix-by-vector product with
both A and AT, where the latter only contributes by giving proper scalars required
during the algorithm. However, one can also work without A” by noting that the
inner product of the residual vectors r;, = b — Az; and 7; = b — ATZ; can be written
as (ri|ry) = (Pi(A)ro| P(AT)To) = (Pi(A)Pj(A)ro|o) = 0 for i < j, where P; is a
polynomial of the degree i implicitly defined by the Bi-CG method. By doing so,
explicit calculation of the vectors 7; can be avoided, nor is there any multiplication
with the matrix AT. The resulting CGS method converges often faster than Bi-CG,
but due to the squaring, build of rounding errors tend to occur and CGS usually shows
a very irregular convergence behavior.

The BI-CGSTAB method is a variation of CGS, developed to remedy above numerical
problems. Instead of squaring the Bi-CG polynomial, in the Bi-CGSTAB method
one applies 7; = Q;(A)P;(A)ry using better i'" degree polynomials for Q;, namely
Qi(x) = (1 —wiz)...(1 —w;z) with suitable constants w; for j = 1,...,4. In the Bi-
CGSTAB method, w;’s are chosen to achieve a steepest descent step in the residual
direction by minimizing r;. Further generalizations have been proposed to improve

numerical stability, which has lead to variations of the method such as Bi-CGStab2
and Bi-CGSTAB(l) methods [173].

Orthogonalization methods

Orthogonalization methods are based on long recurrences and have certain optimality
properties. The long recurrences imply that the amount of work per iteration and
the required memory grow as the number of iterations increase. Therefore it becomes
necessary to use restarts or to truncate vector recursions. The most notable method
of this class is the GMRES method with its numerous variations.

In the basic GMRES method, the Arnoldi method is used to compute an orthonormal
basis for the Krylov subspace K (A, rg). This results into upper (k+1) x k Hessenberg

matrix H r satisfying AVj, = Vi1 Hi. Then the approximate solution z; = x+ z; with
2z, € Ki(A, 1) minimizing the residual |ry| = |b — Azg| = min,, |ro — Az| is found.
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This optimization problem is solved using the identity z, = zg + Viyr and deter-
mining y; from a resulting least squares problem. GMRES is a stable method with
no breakdown, and due to the optimality, convergence is guaranteed. However, after
some number of iterations, the method must be restarted to limit the size of the sub-
space. Restarting destroys the optimality and the related super-linear convergence.
This problem has lead to proposal of several modifications of the original GMRES
method, such as GGMRES and MGMRES [30].

For nonsymmetric matrices, it is often difficult to choose an iterative method. No
single method is the best for all matrices and there are always examples in which
one solver outperforms the other. Therefore, in practice, many solvers must be tried
in order to find the best one for a given problem. In general QMR, CGS and Bi-
CGSTAB are simple and reasonably fast for a large class of problems. If break down
or bad convergence appear, GMRES method can be applied. Finally, LSQR always
converges, but usually too slowly [184]. When the matrix transpose is available, which
is always the case with the master equations, one suggested order of methods to apply

is QMR, Bi-CGSTAB, CGS and lastly GMRES [17].

We have compared above methods for the repton and reduced island models by solving
Deg with the direct method described in Section 4.2.1 and using a stochastic poten-
tial. Computations were made using build-in functions of MATLAB. For the repton
model, we consider the RD model with a 10-atom polymer in a L = 3 flashing ratchet,
and for the island model we consider a 11-atom island in the electrophoretic ratchet.
Parameters are kept similar to those used in Chapters 6 and 7. The corresponding
sizes of H matrices are 708588 (RD) and 255120 (island). The parameters for the lin-
ear solvers are kept close to their typical default values as defined in MATLAB. The
typical convergence behavior for different methods is shown in Fig. 5.1, measured with
the residual norms and starting from the same random initial states. The computa-
tion times averaged over 20 independent runs are collected in Table 5.1. The LSQR
method was omitted from this table since it fails to converge within a reasonable
time. For all the rest, computations were allowed to run until successful convergence
(or failure). Results reveal, that the Bi-CGSTAB method is the best choice for these
models with its combined performance in speed, stability and accuracy. The CGS
method is equivalently fast, but as expected, it is more unstable, which can be seen
from large fluctuations of the residual norm. The QMR method is stable, but slower
than Bi-CGSTAB and CGS. However, the QMR method performs much better when
solving periodic stationary states for a smoothly varying potential using the simple

SComputation time depends on the used hardware, therefore the values here are only valid for
comparison against each other.
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Figure 5.1: Comparison of different methods to solve the effective diffusion coefficient for (a) the
RD model with N = 10 in a L = 3 stochastic flashing ratchet with V. = 1, and (b) the reduced
island model with NV = 11 in the electrophoretic ratchet with temperature 1000 K, field F; = 0.05 eV
and time-symmetry z = 1/4.

Table 5.1: Computation times in seconds, averaged over 20 runs with random initial states.

Method Rubinstein-Duke | Reduced island
Bi-CGSTAB 47.1 39.2
Bi-CGSTAB(1) 64.1 55.2
CGS 43.8 39.8
GMRES 503.0 731.3
QMR 77.5 76.3

multi-shooting scheme (see Section 5.1.2). The stability of the GMRES method is ex-
cellent, but it is very slow. It is notable that the results for repton and island models
are very similar, although the models themselves are physically very different.

5.1.2 Numerical integration

For explicitly time-dependent stochastic generators or when studying transient states,
numerical integration is needed. Starting with an initial state P(t = 0), there are basi-
cally two ways to find P(t): performing numerical matrix exponentiation or integrating
the equations of motion.

The first way is to apply the matrix exponential [125]. Computing the time-development
operator O(t) := exp( fstzo H(s)ds) directly requires the full spectrum of H, which is
clearly out of reach for large matrices. Also the matrix O(t) is always dense. Therefore
matrix O(t) cannot be evaluated for large systems. Instead of solving O(t), one can
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also use Krylov subspace projection to compute the product O(t)P(0) based on the
approximation P(t) = [exp(f;:O H(s)ds)} P(0) ~ pk(fst:o H(s)ds)P(0), where py is
a polynomial of degree k [170]. This type of method takes a full advantage of the
sparsity and, as other Krylov subspace based methods, is usually fast and memory
efficient. However, accuracy of this approximation varies and depends on the problem.

Also, for the explicitly time-dependent stochastic generators, one must take additional
effort to integrate [1_ H(s)ds.

The second method involves using general ordinary differential equation (ODE) in-
tegration algorithms, such as Euler and Runge-Kutta methods. These methods are
simple, but since they are general ODE solvers, they do not take advantage of linear
property of the problem. The basic working principle of these methods is alike; time is
divided into small steps and the solution P(t) is approached step by step starting from
P(0). For example, in Runge-Kutta methods, the state is updated with the scheme
P(t+h) = P(t) + 3.1, v;, where v; is a vector computed in the middle point of
the interval (¢,¢ 4+ h) using weights z;. There are several ways to choose k, x; and v;
(see e.g. [50]). One of the most widely used ones is the 4'® order Runge-Kutta (RK4)
method with £ = 4 and having even-spaced time intervals. To increase the efficiency,
instead of keeping h as a constant, it can be varied during the computation in an
adaptive manner. This requires an error-control scheme to choose a proper h. For
RK4 method, this leads to so called adaptive Runge-Kutta 4-5 method, where 5th
order (k = 5) result is compared against RK4 result, thus giving a scheme to choose
a proper h.

Temporally periodic solutions

Next we consider solving a periodic boundary value problem of the type P(t) = P(t+
7), which is the time-dependent steady state. Formally this problem can be cast into
time-independent form with

eHeff’T' _T {efsT:O H(s)ds} ’

where T is the time ordering operator. In the long-time limit, the time-dependent
solution with full integer cycles (i.e. P(t) = lim,,_,o, P(t +n7)) is given by the eigen-
state corresponding to the eigenvalue 1 of the operator Heg.” Unfortunately, Ho.g can
be explicitly computed only for very small or special types of driving protocols and
systems [144|. However, one can apply ODE integration algorithms.

In addition to previous two methods for transient states, there are also numerical
methods designed for boundary value problems [9]. For a boundary value problem,
the solution can be computed by creating a mesh grid for the interval [0, 7] and then

"In mathematics periodic systems are typically studied using the Floquet theory, see Ref. [23] for
its application for stochastic models.
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finding a solution in each mesh point simultaneously. This is known as a multiple-
shooting approach, whereas single-shooting has to be used if two previous methods
are applied to find a periodic solution. The advantage of the single-shooting method
is that it takes advantage of the speed and adaptivity of regular initial value ODE
solvers. However, this method is more complicated and the memory requirement is
much higher than by using the single-shooting method. The mesh grid must be dense
if an accurate solution is required. In the special case of a smoothly varying function,
such as H(t) with a smoothly varying potential, a simple multiple-shooting scheme
can be straightforwardly applied as follows. By using the first order discretization,
one can approximate
_P(t+At)— P(t— At)

H(OP() ~ - ,

with At = 7/m and m is the number of discretization steps. In the matrix form, this
leads to a linear problem HP = b, where H includes H (t) for all m time-steps and
the discretization operator. The normalization is preserved by setting b; = 1V i =
Y,2Y,...,mY, where Y is the dimension of H(t). Although the size of the square
matrix H is mY , it has a simple structure, and given a good initial state, the problem
is not too hard to solve numerically.

To find a periodic solution, a good initial state is usually required to reduce the com-
putation time, especially when using the single-shooting method. Without additional
information, there are two good choices for an initial state: the distribution that corre-
sponds to a steady state of H(t) with a fixed time at interval [0, 7] and a combination
of distributions for several times. The first choice works fine if 7 is large compared to
the leading relaxation time. If this is not the case, the second choice is better. A simple
combined state is a linear combination Y, ;P°/ SN | x;, where PS is the steady
state of H(t;) and weights z; can be chosen symmetrically or they can be optimized
for the specific system. For example, when studying a system with two potential states
(i.e. S = 2) and the deterministic scheme (see Section 3.1.1), one good initial state is
(Tlpls—l-TQPQS) /T.

Verifying the periodicity of the steady state is easy when using the multiple-shoot
method, for which the approximate error is usually readily provided by the method.
For the single-shooting method, the converge can be verified for example by keeping
track of the difference |P(t) — P(t — 7)|. In addition to P itself, one should also keep
track of the values of observables of interest to help decide when the adequate con-
vergence is reached.®

8For example, adequate precision for a periodic steady state velocity v is typically obtained much
sooner than for the effective diffusion coeflicient Deg.
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Figure 5.2: Comparison of the Krylov subspace based matrix exponential method (blue line) and
Runge-Kutta 4-5 method (red line) for integration of distribution P(¢). (a) Computation time as a
function of the integration time ¢ for the island model. (b) Components of the solution P(t = 500)
for the RD model.

We end this Section by comparing the RK4-5 and Krylov subspace matrix exponential
methods to solve the transient state P(t), starting from a randomized initial state
P(0). Matlab’s build-in implementation of RK4-5 is used, and for the exponential
method, we use Expokit?, which is also coded using MATLAB. For both methods,
similar error tolerances are used, while keeping other method-dependent parameters
close to their recommended defaults. We use the reduced island model in a static
field and the RD model in a static ratchet potential (i.e. S = 1) with L = 3. We set
N =11 for both models. In Fig. 5.2(a), the computation time is shown as a function
of the integration time ¢, averaged over 10 independent runs for the island model.
The behavior for the RD model was found to be almost identical. As expected, the
matrix exponential method is generally much faster than Runge-Kutta integration
when ¢ is large. Only with small values of ¢, the Runge-Kutta method is slightly
faster, because there is no need to set up a Krylov subspace. However, the accuracy
of the matrix exponential method is found to be poor for large ¢ as the numerical
error accumulates. This is demonstrated in Fig. 5.2(b) where we have plotted the
snapshot of all components of P(¢ = 500) in an increasing order for the RD model. In
the Krylov subspace method, small components cannot be computed accurately, while
the Runge-Kutta method provides accurate results for all components. Because of this,
the matrix exponential method results in inaccurate values for the velocity. Therefore,
we find Runge-Kutta method more suitable for solving transient and time-dependent
steady states.

Yhttp://www.maths.uq.edu.au/expokit
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5.2 Optimization

The good numerical accuracy of the master equation method also makes it possible
to perform numerical optimization. In this Section, we describe methods that can be
applied to optimize scalar valued observables with respect to model parameters and
sequences. This leads us to two separate and specialized fields of nonlinear constrained
optimization of smooth functions and combinatorial optimization of cycles on graph.

5.2.1 Optimization with respect to cycles

Consider a system described by a stochastic generator H. As noted in Section 2.1.3,
a nonequilibrium state results in a nonvanishing current on graph that represents the
state space. Depending on the details of the model and on the way the driving forces
are implemented, some cycles become statistically more important than the others. We
are interested in cycles that become most important with respect to a given measure.
Such cycles can give important insight for example on how the transport process
proceeds microscopically. To compare cycles, one needs a measure and a computational
method to determine the most important cycles. One type of a measure, based on
the probability of the cycle, was considered in Section 2.2.3 (see Eq. (2.8)). In this
Section, we introduce another one which is suited for very large graphs. We begin
by introducing algorithms for cycle enumeration and mean cycle ratio optimization,
which are both well-known problems in computational graph analysis [105]. In the
following, only basic knowledge of the graph theory is expected (see e.g. Ref. [15]).

Cycle enumeration

The task of finding all simple (i.e. non-intersecting) cycles of the graph is known as
cycle enumeration. All known methods for this problem use a brute-force approach.
For directed graphs, there are two efficient methods by Johnson and Tarjan [91], both
from the 1970’s. These methods are based on the standard depth-first search and use
backtracking and pruning, which significantly improve the efficiency of computation
because there is re-counting of already found cycles. Not much progress has been
made since these algorithms, and Johnson’s algorithm is still considered to be the
fastest one with an upper time bound of O ((n + m)(c + 1)), where m is the number
of edges, n is the number of vertices and ¢ is the number of simple cycles [114]. Since
the number of cycles has usually a factorial dependency on n and m, the running time
of this algorithm becomes huge for large graphs. The worst case scenario occurs when
the graph contains very long cycles, including one or several Hamiltonian cycles.!? In
such cases, the number of simple cycles is very large even for small graphs.

10Hamiltonian cycle is a simple cycle that includes all vertices of the graph.
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Optimal cycle ratios

Consider a directed graph with n vertices and m edges. Each directed edge e is as-
sociated with two real numbers: a positive or negative weight Wj(e) and a positive
weight Wh(e). Let us define two object functions,

o Zeec Wl (6)

p(O) - Zeec WQ(G) (51)
_ 2ecc Wi(e)

where C' is a simple cycle and |C| is the number of edges in the cycle C (i.e. cycle
length). Using these, we define two combinatorial optimization problems: the mini-
mum cycle ratio (MCR) p* and the minimum cycle mean (MCM) v* with

p"=minp(C)
7" = miny(C),

where the minimization is performed over all simple cycles. Since the MCM problem
is just a special case of the MCR problem, any algorithm that solves the latter can
also solve the first. We concentrate on the MCR problem. The need to solve this type
of problem originates from the classical tramp steamer problem, where the captain of
the steamer wants to know what ports the steamer should visit, and in which order,
in order to maximize his average daily profit. Traditionally W; and W, are therefore
identified as a cost and a transit time [105].

The solution of the MCR problem can be associated with the sign changes of cycle
weight computed with ) .. W(e), where W is a modified weight function. To see

this, let us define a new edge weights /W(e) = Wi (e) — pWa(e) where p is an arbitrary
real number. Using these new weights, three situations appear for a given p [1]:

e A negative cycle exists: Zeec/W(e) <0< p>pC)>p

e No negative cycles: ZeeCW(e) >0< p<p"<pC)

e Zero cycle: Y . W(e) =0« p* = p(C)
Starting with an arbitrary value of p and using a shortest path algorithm that can
detect a negative cycles in the graph, and by iterating p, one can approach the precise

value for which the last negative cycle disappears and thus find p*. Negative cycles
can be found for example by using the Floyd-Warshall algorithm [191].
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Several algorithms have been proposed for an efficient numerical implementation of
this general idea. A list and comparison of algorithms is given in Ref. [42|. It has
been found that Howard’s algorithm [83| is one of the fastest algorithms available
[41, 42, 40]. Efficient implementation of this method can be found in the Boost C++
library.!* There are two known lower bounds for the running time of this algorithm: its
running time is at most O(nmc), where ¢ is the number of simple cycles, or its running
time is at most O(n?*m(max(W;) — min(W;))/€), where € is the required numerical
precision of the algorithm [42|. However, these are only approximations and the exact
complexity of Howard’s method is not known. Since the second of these upper limits
for the running time does not depend on the number of cycles, it is evident that this
problem is much easier than the enumeration.!?

Optimized cycles for nonequilibrium systems

It is evident that finding a cycle related to the largest measure via enumeration is
computationally too expensive for all but very small graphs. There is no efficient
way to find a simple cycle with a maximal (or minimal) weight using the measure
of the type (2.8). Solving this problem exactly requires full enumeration, which is an
impossible if the graph is large and has long cycles. Therefore we propose using a
measures of the type (5.1) and (5.2), and use them to find cycles that are important
for the transport. Because the circulations are directed, we also reduce the number of
cycles by considering only directed graphs where the direction of the edges goes along
the net probability flows.

We start by noting that if a system is closed and the probability is conserved, there
must also be a cycle with circulation. The situation is analogous with electric flows in
a closed circuit. For a time-independent steady state, this follows from noticing that
for every vertex, one must have 0 =) . [J,; — J;,] for all y. Similarly, for the periodic
time-dependent steady state P(t) = P(t+7) one has 0 = [ 3" [Jy(s) — Jiy(s)] ds
for all y. These conditions ensure that if there are net flows in the graph, there is at
least one cycle in the directed probability flow graph.

Once the steady state distribution P of H is found, the net currents between the
states can be computed as J;; = P°H,;; — P]SH]-J V i,j. If PS and H are time-
dependent, we consider their expected values integrated over a single steady state
temporal period. We then create a graph G such that if J;; > 0, there exists a
directed edge i — j in G with a weight .J; ;. The choice Wi(e) = J(e) and Wa(e) = 1
creates a MCM type measure in the sense 'net transition rate/edge’; and the choice
Wi(e) = 1 and Wy(e) = 1/J(e) creates a MCR type measure in the sense ’average
net transition rate’ for a cycle. Using the previously introduced notation, we define

1Boost C++ is an efficient peer-reviewed library of algorithms http:\\www.boost.org
12This is, of course, expected, since any cycle related optimization problem can be solved exactly
by doing the full enumeration of cycles.
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object functions

_ ZeeC J(e)
|
Y
Doeec 1/ I(e)

These measures are always positive and have a dimension ’1/time’. Having a simple
linear form, the first measure is robust against the appearance of arbitrary small
rates, whereas the second measure rapidly drops to zero if very small weights appear.
Therefore the first measure is numerically more stable, whereas the second measure is
intuitively more pleasing, since there is a heavy penalty for cycles with slow net flows.
Both measures rely on net currents and therefore they only work for nonequilibrium
states. Note that for irreversible transitions, such as those appearing in the TASEP
model, the currents are directed by construction and both measures are well suitable
also in such case. When compared to the measure w(C) defined in Eq. (2.8), there are
two differences. Firstly, the number of cycles is significantly reduced since the graph is
directed, thus making the computations much easier. Secondly, in w(C'), the sampling
is made over cycles (i.e. how often the cycle is realized during the process), whereas in
above measures v(C') and p(C'), the sampling is made over the expected probability
flows of individual transitions, which are then combined into a cycles by using the
graph topology. Being unable to optimize the stochastic sequences using w(C'), we
instead optimize the flows occurring in the corresponding master equations (which
are deterministic). These problems are fundamentally different, but according to our
numerical studies using small polymers and islands, the optimized paths typically turn
out to be the same ones.

(5.3)

(5.4)

Measures (5.3) and (5.4) can be augmented with an additional weight function. For an
observable defined with an edge weight function f(e), we can take Wi(e) = f(e)J(e)
and Ws(e) = f(e), leading to

’Y(C)f _ Ze€C|fé|e)J(e) (55)

_ ZeGC’ f(e)
ZeEC 1/J(6) .

Now let us consider the case, where the function f is given by center-of-mass displace-
ments D(e) of transitions. Then the dimension of the measures become ’distance/time’
and they can have negative and positive values. We call cycles with maximal p(C') and
v(C) dominating processes, and cycles with maximal (or minimal) p(C')p and v(C)p
dominating transport processes.

(5.6)

Whether there is a difference between p and pp, and v and ~vp, depends on the
details of the system. It may turn out, that v and p only include transitions that are
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not responsible for directed transport, but transitions of non-transporting diffusive
motion only. Formally, this means that ) _. D(e) = 0 and in that case we call the
process non-transporting, as the net transport for the cycle is zero. This is typical to
ratchet transport, since the object spends most of its time near the minimum of the
potential, being unable to move until the suitable state of the potential and internal
state is reached. Therefore pp and vp carry more interesting information about the
transport, as they also take into account the displacements. If the cycle has a property
Y ecc D(e) # 0, we call it a transporting process. However, it is not guaranteed that
the dominating process is a transporting process in either case.

To study dominating transport processes, it is sometimes useful to consider a reduced
system instead of the full one. Such situations typically arise when temporal and/or
spatial states of the potential are included in the master equations, but one is only
interested in the internal dynamics of the transported objects (e.g. polymers and
islands). Then one can sum over all non-interesting states of the master equation set
to receive averaged J and D that correspond to a reduced system. For example, for
the repton model with a stochastic potential with S > 1 and L > 1, averaging over all
potential states reduces the dimension of these graphs from SL3"V~! to 3V ~!. Dealing
with the reduced graphs instead of full ones, also makes the optimization of v and p
easier.

Graph optimization based on measures (5.3)-(5.6) is straightforward and fast, and, in
principle, can be done for all finite discrete stochastic nonequilibrium systems. This
method is suitable in situations where the network is too large and complex to be
studied 'manually’ (see e.g. [35] for studies of small networks). Whether this analysis
of dominating cycles is worth the effort, depends on the complexity of the system
and the importance of the internal dynamics of the objects to the transport pro-
cess. For complex many-particle systems, this analysis can reveal interesting details
of the transport, as demonstrated in Sections 6.7 and 7.4. Interest of analyzing cycles
has been also recently emerged in other fields, such as microbiology [99]. Also other
approximate methods to determine dominant paths instead of cycles have emerged
recently [61].

As an example of full enumeration, we apply Johnson’s method to enumerate all di-
rected cycles for a 5-atom island in a static field by using the reduced island model.
In Fig. 5.3, we show the total number of cycles by their length for £ = 0.04 eV.
Depending on the field amplitude and direction, the total number of cycles is of order
10°. Considering that there are only 63 vertices and around 170 edges in the corre-
sponding directed graph J, the number of cycles is already huge and the computation
takes several days. Majority of the cycles are long, and even Hamiltonian cycles are
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Figure 5.3: The number of directed cycles with different lengths for the 5-atom reduced island model
with £ =0.04 eV, T =800 K and v = a = 0°.

common. The shape of the distribution is found to be quite similar for both island
and repton models. Because of the large number of cycles, full enumeration becomes
practically impossible for systems over 100 states or even less.

5.2.2 Optimization with respect to continuous parameters

The master equation method allows fast and accurate computation of observables.
This opens up an opportunity to apply optimization methods to model parameters.
Although some parameters of interest might be discrete, from a computational per-
spective it is usually easier to consider continuous parameters. In this Section, we
consider local optimization of scalar valued observables (denoted by the object func-
tion f) computed using master equations. Since the observables are determined by the
master equation system, they are continuous and smooth with respect to the param-
eters.!?> We also review some of the most important optimization methods currently
available. A more comprehensive listing and details of the methods can be found in
many textbooks, such as |37, 74, 128|.

First we must determine the type of optimization, in which the following three aspects
are important. Firstly, since computing of observables involves solving eigenstates
and/or integration, the object function is clearly non-linear. Secondly, since we do
not know the functional form of the object function, we can’t directly evaluate its
derivatives. Thirdly, parameters of the model typically have some physical constraints
they must obey, at least upper and lower bounds. Such constraints can be linear or
non-linear. In addition to the known constraints, there are often so called "hidden

13 Although functional forms for observables cannot be generally computed, we know that they
consists of basic arithmetic operations.
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constraints’ which are related to points in the feasible space where object function
cannot be evaluated, because of technical reasons. Such a situation usually occurs if
the master equation set scales badly (i.e. becomes stiff). We are thus dealing with a
nonlinear constrained optimization problem.

For a nonlinear constrained optimization problem, there are two classes of methods
available; derivative-based and derivative-free. In the former class, derivatives of the
object function, computed either directly or approximated by finite-differences, are
used to determine the optimality and search directions [74, 128|. The latter class of
methods relies entirely on values of the object function, without using derivatives in
any form. These methods do not generally require the object function to be smooth or
even continuous, and they are also often designed to tolerate noisy object functions.
Majority of the research effort has been devoted to derivative-based methods, whereas
derivative-free methods have become of more interest only within the last decade [37].
Which of the methods works the best, depends on the problem at hand.

Problem formulation

The general constrained optimization problem is

¢(r)=0ViekFE

ci(r)>0Viel (5:7)

min f(z) subject to {

TER™

where E and I are sets of indices for equality and inequality constraints, respectively.
Alternatively, constraints can be written in somewhat more transparent form as

Cn(x) <0, Coq(x) =0, Az <bp, Aeq?®=beq, L<z<U,

where matrices A and A.q, and vectors bi,, beq, L and U, create linear constraints,
functions ¢, and ¢, create non-linear constraints. If equality constraints are present,
then depending on the size and rank of the matrix A.,, the dimension of the state space
can be often reduced by suitable basis transformation. The solution is approached
iteratively by going through a large number of points in the feasible state-space, until
the current iterate fulfills the optimality conditions. An iteration process requires
solving the following sub-problems: (1) how to move to the next iteration point, (2)
how to fulfill constraints, and (3) testing for the optimality of the solution.

Derivative-based methods

The traditional way of optimization relies on the derivatives of the object function.
Since in our case the derivatives are unavailable, they must be estimated by finite
differences. This usually works well if the object function is a well-behaved and does
not contain noise. Two most widely used derivative-based methods for nonlinear con-
strained problems are active set and interior point methods, which differ in the way
how the constraints are taken into account.
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Moving to the next iteration, one uses either line search or trust region strategy. In
the former, one chooses a unit vector p, and a scalar a > 0 such that x; + ap, gives
an improved iterate. A popular way to choose p, is the Newton method using the
second-order Taylor series approximation my(€) == f(zx + €) ~ f(zx) + €LV f(x1) +
€'V f(z)e/2. For a positive-definite second derivative, the Newton direction is found
by solving my(p) = 0.1 Instead of the pure Newton direction, computationally less
heavy Quasi-Newton direction is typically applied, where instead of a true Hessian, an
approximation is used and updated iteratively.!> Once the direction has been fixed,
the step distance a can be found by solving a one-dimensional minimization problem

mingso f(@x + apy).

In the trust region strategy, the information gathered about f is used to construct a
simple model function f;, which mimics f near the current point . The region where
Jx 1s considered a good approximation of f, is the trust region. Within this region,
the candidate step pj, is found by solving the subproblem min,, fi(x; + px), which is
much easier for ﬁ than f itself.!® During the optimization, the trust region can be
enlarged or shrunk as needed.

The local optimality of the solution can be determined from the first and second
derivatives. However, most modern optimization methods are based on the so-called
Karush-Kuhn-Tucker (KKT) conditions, which give first-order necessary optimality
conditions for the Lagrangian function L(z,v) = f(x) — >, vici(x), where ~;’s are the
Lagrange multipliers. The KKT approach to nonlinear optimization generalizes the
method of Lagrange multipliers, which allows only equality constraints.

Active set method

Active set methods are based on the observation that, in general, it is much simpler to
solve equality-constrained problems than to deal with inequalities. The conventional
active set approach is divided into two phases; first f is ignored while a feasible point is
found for the equality constraints, next f is minimized while feasibility is maintained.
One starts by making a guess of the set W of constraints, that are satisfied as equalities
at an optimal point. Using the Lagrangian, one then solves a problem in which the
constraints in the active set W are imposed as equalities, and the constraints not in W
are ignored. Then, one checks whether the resulting point satisfies the KK'T conditions
using Lagrangian multipliers. If so, a local optimum has been found, otherwise a new
choice for the active set is made, and the process is repeated. The path of points never
leaves the feasible region, but it can hit its boundaries. Particularly, active set strategy

14For non positive-definite case, the definition of pj is modified to make it satisfy the descent
condition while retaining the second-order information [128].

150mne chooses the new Hessian approximation By 1 which mimics the property V2 fy,(zx11 — ) ~
V fr+1—V fr.. The most popular formula updating B is a Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method.

16Unlike in the line search methods, the direction and distance are solved simultaneously.
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is applied within Sequential Quadratic Programming (SQP) methods, which convert
the nonlinear optimization problem into linear-constrained quadratic sub-problems.
A detailed description of the SQP method can be found in Ref. [128].

Interior point method

In interior point method, the problem (5.7) is reformulated in the form

Coq() =0
min [f(m) - uZln(si)] subject to ¢ én(x) —§=0
’ k §>0
where the scalar p is positive. The components s; of the vector § are called slack
variables. This new object function has smooth barriers at the limits of the feasible
region. The path of generated points never leaves the feasible region and cannot hit
its boundaries. This type of penalty barrier approach consists of finding approximate

solutions to the barrier problem and reducing p towards zero, from which the solution
for the original problem is recovered. Further details can be found in Ref. [128].

Interior point and SQP methods are considered to be very powerful algorithms for
large-scale nonlinear optimization problems. Active set approach typically requires a
larger number of iteration steps, while a single iteration is computationally inexpen-
sive. Interior point approach requires a smaller number of more expensive steps. For
very large problems, interior point methods are often more efficient. However, when
a good estimate of the solution is available (a 'warm start’), the active set approach
may converge rapidly.

Derivative-free methods

The methods designed not to rely on derivatives or their approximations, are called
derivative-free or direct search methods. The performance of derivative-free meth-
ods is not usually comparable to that of derivative-based methods in accuracy or in
number of parameters to be optimized. The stopping criteria are also a challenge in
absence of derivatives and when f includes noise. When compared to the derivative-
based methods, derivative-free methods are reasonably straightforward to implement
for any model and therefore they can be used as the method of first recourse. The
requirements from a user are minimal and algorithms themselves require setting only
a few parameters [37].

Here we only consider the most basic derivative-free method known as the pattern
search method (also known as as the directional direct-search method). Pattern search
methods are characterized by a series of exploratory moves that consider the behav-
ior of the object function at a pattern of points. The exploratory moves consist of
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a systematic strategy for visiting the points in the lattice in the immediate vicinity
of the current iterate point. This is called polling. There are several different choices
for creating a search mesh and performing the polling. For example, the mesh can be
created by using the generalized pattern (GP), the generating set (GS) and the mesh
adaptive direct (MADS) algorithm. Put in short, the GP method uses axis directed
basis vectors, whereas GS can take into account the linear constraints in search direc-
tions. MADS is a further generalization of GS type algorithms by allowing even more
flexible search directions. The number of basis vectors is either N + 1 or 2N, where N
is the number of variables to be optimized. Polling can be complete or partial, which
means that as soon as a better value for f is found, polling is stopped. The search
grid is typically enlarged or shrunk during the run. Iteration is stopped when the
tolerance for the object function or the minimum grid size is met. Constraints can be
taken into account by adding penalty for constraint violations or using a hard barrier.
However, handling of constraints is typically crude when compared against interior
point and active set approaches.!” Additional details of different methods and theory
can be found in Ref. [37|. For a listing of freely available derivative-free optimization
software see Ref. [151].

To compare active set, interior point and pattern search optimization methods, we
have computed the optimal charge distribution and the optimal temporal flashing
period for the non-homogeneous RD model, such that the velocity function v(q,7) :=
v(q1,q2,--.,qn,T) is maximized and minimized. Non-zero velocity is generated by a
stochastically flashing ratchet with S = 2, L = 3 and Vjux = 1 (this potential is
discussed in more details in Chapter 6). This constrained optimization problem is a
rather complicated one in the sense, that there are several local maxima and minima
and the parameter space includes two types of variables (charges and temporal period).
There are N 41 variables to optimize. We consider a situation where the total charge
is limited by an equality >, ¢; = @ or an inequality ), ¢; < Q). The temporal period
7 has only a lower bound 7 = 0, but for better numerical stability, we set limits
107* < 7 < 10° (these are the ’hidden constraints’ discussed previously). We use
MATLAB implementations for all three methods (active set method is implemented
in the SQP algorithm).'® Randomized near-uniform (i.e. ¢; &~ 1 V 4) initial charge
distributions are used. In this test, we set N = 9, which already requires several hours
of computing.

Solving the problem several times using different methods, it becomes evident that the

17Constrained derivative-free optimization is still a subject of intense research and most derivative-
free methods are currently designed only for unconstrained problems.

18 A1l three methods are included in Optimization Toolbox (version 5.0) and the Global Optimiza-
tion Toolbox (version 3.0).
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Figure 5.4: Example optimization runs of (a) the inverse and (b) the main velocity for the RD
model, with N = 9 in a stochastic flashing ratchet, with S = 2, L = 3 and Vj,.x = 1. The same
initial state is used for all three methods.

global maxima and minima are found at the boundary of the feasible space, i.e. we may
use condition Zf\il ¢; = Q. The problem involving the inequality is more complicated
to solve and all three methods usually fail to find a good solution, especially SQP. This
emphasizes the importance of a proper problem formulation before the optimization.
In Fig. 5.4, a typical convergence behavior of the methods is shown. For the pattern
search method, satisfactory results were reached using GS pattern with 2N basis
vectors and a complete polling. Using other patterns or only N + 1 basis vectors, often
fails or leads to slower convergence. The velocity is shown as a function of the iteration
number when optimizing the velocity in both (a) inverse and (b) main direction (the
difference between these are explained in Section 6.3). The latter optimization turns
out to be much more complicated, because of several very deep local minima created
by accumulation of the charge on a single repton (this is expected, because of the
exponential form of the rates). In Table 5.2, the computational times, the number
of iterations and the number of function evaluations are shown as a median for 10
independent runs.

There is no explicit winner between the methods. The convergence of the pattern
search method is rapid at the beginning, but then slows down. It fails to find the
global minimum for the inverse direction, but finds it for the main direction, although
with a slight violation of constraints. Choosing the proper polling pattern and type is
essential, which requires testing many combinations. This method also needs lots of
function evaluations. The SQP method converges well and reliably for both problems
and requires less function evaluations. It is also most robust against changes of the
initial state. However, it fails badly when using inequality constraints. The interior
point method is reliable, but converges more slowly and requires lots of evaluations.
As expected, both the SQP and the interior point method respect constraints well.
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Table 5.2: Median results over 10 independent optimization runs with random initial states, using
the interior point (IP), the pattern search (PS) and the SQP method.

Inverse direction Main direction
1P PS | SQP IP PS | SQP
Time (1072) | 185 112 108 77 116 63
Iterations 232 139 132 108 209 82
Evaluations | 2790 | 1580 | 1645 | 1223 | 1523 | 931
Value (10%) | 0.209 | 0.204 | 0.209 | 11.43 | 12.82 | 11.43

5.3 Monte Carlo method

Monte Carlo methods form the largest and the most important class of numerical
methods used for solving statistical physics problems [126]. The idea of the method is
not to compute probability distributions directly, but approximate those by averaging
over a large number of sampled paths, that are generated using random numbers.
The law of large numbers ensures that the expected values of observables approach
those computed directly by solving master equations. The Monte Carlo method can
be used for any type of systems and all observables. For discrete-time systems, clas-
sical Metropolis algorithm is often used to create the dynamics for simulations. For
continuous-time systems a popular continuous-time Monte Carlo method was intro-
duced by Bortz et al. in 1975 [21], and since then, several improvements have been
made [28]. This method is known as the kinetic Monte Carlo or N-fold algorithm and
it works by sampling sequences and waiting times separately (the theory behind this
was discussed in Section 2.2.3).

In the N-fold algorithm, transitions (reactions) are divided in different classes accord-
ing to their rate. During the simulation, one keeps up a list of all available reactions for
the current state of the system. Time-steps and reactions occur randomly such that
they correspond to the dynamics of the master equations. In this work, we implement
the kinetic Monte Carlo method using the following algorithm (see Ref. [88]):

1. Initialization. Generate an initial state, create reaction lists and set elapsed
time to zero.

2. Time-step generation. Increase the time by generating an exponentially dis-
tributed time-step using the total escape rate.

3. Picking a reaction. Randomly pick a reaction from the list and test check
whether it is allowed. If the reaction is not allowed, go to step 6.

4. Allowed reaction. Make the transition into a new state and remove the reac-
tion from the list.
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5. Adding new reactions. Add new reactions that became available. Go to step
7.

6. Forbidden reaction. Remove the reaction from the list.

7. Continuation. If the ending criterion is met, end simulation. Otherwise go to
step 2.

The only model-dependent parts of the algorithm are the initial state generation,
adding and checking reactions. In our implementation, the reaction list is created
using a linked list.!? Technical details about each step can be found in Ref. [88].

The major downside of the Monte Carlo method is the low accuracy. Accurate re-
sults require lots of computation time and careful monitoring to ensure validity of the
results. One must choose the number of independent iterations and simulation time
carefully to get correct (steady state) sampling, while simultaneously trying to keep
computational time as small as possible. If low quality or unsuitable random number
generator is used, bad sampling may occur and the results will be unreliable. Com-
puting certain types of observables, such as relaxation times, may be complicated.
Since the data computed via Monte Carlo method is noisy, post-processing, including
smoothing and (polynomial) fitting, is usually needed to extract information, such as
maximum and minimum values and numerical derivatives.

Although the Monte Carlo method is straightforward, the efficient implementation
for a specific model can be tricky. To get accurate results, finding and checking the
reactions cannot be too time consuming, hence the usefulness of the method depends
on the complexity of the model. If the model is very complicated, e.g. the interactions
are long-ranged and there are lots of reactions, manipulating the data structures can
become the bottleneck for the simulations.

Adding new reactions in the island model

The core part of the kinetic Monte Carlo algorithm is adding reactions to the reaction
list. This is typically the most time-consuming part of the algorithm. For the island
model, the search for new reaction takes place in the neighborhood of the hopping
atom shown in Fig. 5.5. Moving a single atom affects 16 neighbor lattice sites and
their atoms, by either allowing or blocking moves and/or changing energy barriers.
For those sites numbered with 1-6, transitions can be created or blocked and the
barriers changed. For sites numbered with 7-16, only the barriers might be changed
for some of the transitions. It is easy to see, that increasing the interaction length
would greatly increase the number of affected neighbor atoms, thus increasing the

19We also implemented a binary tree list, which, however, in most situations turned out to be less
efficient for the island model.
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Figure 5.5: The local neighborhood that has to be checked in the kinetic Monte Carlo simulation
after the transition of a single atom (sphere at the middle). For sites marked with gray, only the
energy barriers of the already existing reactions can be affected and for the rest, new reactions are
created or old ones disabled.

computational cost of the simulation. More technical details of the kinetic Monte
Carlo simulations for the island model can be found in Ref. [79].



6 Results for the repton model

In this Chapter, we present selected results from Articles I and II for the repton model
introduced in Section 3.3. Also some additional results not found in the Articles are
presented in Section 6.2. The results shown in this Chapter are computed using the
numerical master equation method. Since the repton model includes a large number
of parameters, some of them must be fixed, primarily those that have a minimal
qualitative impact on the results. In addition to the repton count NV, other parameters
in the models have the following interpretations:

e The environment <« the potential V(z,t) = V(z + L, t + 1)
e The medium < tube deformation §2 (0 for RD, 1 for FM)

e The polymer internal fine-structure <+ charges ¢y, ..., qyx

The single most important parameter is the temporal period 7 of the potential, which
is also easily controlled in experimental set-ups. The parameter {2 models the porosity
and viscosity of the medium by either restricting the polymer strictly into the reptation
tube (2 = 0) or not (2 = 1). We set L = 3 for the spatial period (with the only
exception made in Section 6.2), and use two potential states (i.e. S = 2). These choices
allow both maximal N/ L ratio and keeps matrix sizes feasible for the numerical matrix
equation method. With these choices, a flashing ratchet is defined by setting V(1) =
0, Von(2) = Vinax/2, Von(3) = Vinax, and Vog(x) = 0 Vz, and the traveling potential
is defined by Vi(1) = V5(2) = Vinax and zero for Vi(2), V1(3), Va(1) and V5(3). These
potentials are illustrated in Fig. 6.1. The maximum potential strength V., has only a
small effect on the results and is set to unity if not mentioned otherwise. The direction
of the potentials is set up in such way, that the expected long-time 'main velocity’
is positive and the long-time ’inverse velocity’ (if present) is negative.! Potentials are
changing in time in stochastic, deterministic or smoothly varying manner, as explained
in Section 3.1.

Note that in Article I the main velocity has a negative sign and the inverse velocity is positive,
whereas in Article II is it other way around. Here we have made a compromise by plotting —v and
—d in some figures.

81
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Figure 6.1: Sketch of a flashing non-symmetric ratchet (left columns) and the traveling symmetric
ratchet (right columns) for L = 3 (two period lengths shown). In these potentials, the chosen main
velocity direction is on the left.

6.1 Choosing the rates

As discussed in Section 2.2.2, the selection of rates is important for the nonequilibrium
systems. To demonstrate this, in Fig. 6.2 we have plotted the steady state velocity
and diffusion coefficient of the 8-repton RD polymer in a stochastic flashing ratchet
and traveling potential. Although all three curves for flashing and traveling potentials
share a similar shape, the scales are different and large differences can be seen in the
limit where the temporal period 7 — 0. Only exponential (in a flashing ratchet) and
Metropolis (in a traveling potential) dynamics lead to zero drift in this limit, which
is a physically expected situation (see Section 3.1.3) and is also consistent with the
single Brownian particle models [12, 109, 155]. Therefore we choose these rates for the
repton model.

6.2 Relaxation in a flashing ratchet

First we study the relaxation process of the repton model in a flashing ratchet potential
depicted in the left column of Fig. 6.1. In Fig. 6.3, we have plotted the time-dependent
velocities of 10-repton polymers during their relaxation, when the potential state is
switched at ¢ = 0 and the polymer is in equilibrium at ¢ < 0 with zero average
velocity v(t < 0) = 0. In Fig. 6.3(a), the uniformly charged RD and FM polymers are
compared (the total charge ) = 10). The time-dependent total displacement of the
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Figure 6.2: The effect of the jump rate scheme. The velocity and the diffusion coefficient of the
8-repton RD polymer as a function of the temporal period 7 in a stochastic flashing ratchet with
L = 3 and Viax = 1 (left) and the traveling potential (right), with exponential (blue dash-dotted
lines), Metropolis (black solid lines), and Kawasaki (red dashed lines) rates.

center-of-mass,
t
d(t) = / [Uon—mff(S) + Uoff_mn(s)] dS,
0

is shown in the inset figure. The asymptotic value d := d(oco) was previously dis-
cussed in Section 3.1.3. For rigid objects without internal configurations and without
deformable shapes, clearly vo, o (t) = 0 because there is no directed center-of-mass
motion for ¢ > 0. However, for other objects there is a non-zero relaxation time related
to the internal configurations of the object, hence vy, o (t) is generally non-zero. We
call this relaxation a rebound effect. For the repton model in a flashing ratchet, it is
found that v, o (t) has an opposite sign compared to vo_son (), Which is considered
as the main velocity. As noted in the beginning of this Chapter, we have chosen the
directions such that veg_on(t) > 0 is expected.

The rebound effect is much stronger for the RD polymers, and with combined effect
of the weaker main velocity, causes the current inversion, where the long-time velocity
is negative (i.e. the polymer travels 'backwards’). For the FM model, the rebound
effect is generally too weak to allow current inversion. One can also notice the much
faster relaxation of the FM model. In Fig. 6.3(b) the effect of non-uniform charge
distribution is shown for the RD model with total charge Q = 6.2 All the charge put

2To study polymers with a single charged repton, the total charge cannot be too large, otherwise
the master equation set becomes stiff.
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Figure 6.3: The velocity after the potential is switched at ¢ = 0 for a deterministic flashing ratchet
at the large 7 limit. (a) RD (red lines) and FM (blue lines) polymers with homogeneous charge
distributions and a total charge @ = 10. (b) RD polymers using a middle-centered (blue lines),
homogeneous (red lines), the first repton (black line) and the second repton (green line) charge
distributions with Q = 6. Note the different y-axis used for the black and green lines, because of the
large scale difference. In both figures N = 10, L = 3 and Vj,, = 1. The integrated total displacement
is shown in inset figures.

into a single repton leads to a large drift towards positive direction, since the rebound
effect is non-existing. This is because all internal states have an equal probability,
hence there cannot be net velocity when the potential is turned off. Although the
head-charged polymer (repton 1 or 6 in Fig. 4.1) is faster shortly after the potential is
turned on, the polymer with the second repton charged (i.e. repton 2 or 5 in Fig. 4.1)
produces a larger total displacement due to the longer relaxation process. On the
other hand, the rebound effect can be maximized by concentrating the charge on the
middle reptons. In this example, total charge was distributed according to percent-
ages [0, 5,10, 15,20, 20,15,10,5,0] for ¢i,...,qo. The reason for such a distribution
becomes evident later in Section 6.4.

In Fig. 6.4, similar data is shown for the case L = 6 so, that when the potential is
turned on, its profile remains identical to the case L = 3, but the scale is doubled
(i.e. lengths of the slopes are 4 and 2 steps). Now the rebound effect is not enough
to cause current inversion for neither RD nor FM polymers. Despite the stronger re-
bound effect, using the middle-centered charge distribution actually leads to increased
velocity in the main direction. This is caused by the very slowly decaying velocity into
the main direction.

Next we take a closer look at the travel distance d(t) of the center-of-mass during a
single, very large time-period 7 of a flashing ratchet. The results for (a) L = 3 and
(b) L = 6 are shown in Fig. 6.5. For N = 1,2, there are no bulk-reptons, so the mean
travel distances of RD and FM polymers may differ for N > 3 only. For the L = 3, the
calculation reveals that for long RD polymers (N > 5, a ’critical length’) the rebound
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Figure 6.4: The velocity after the ratchet potential is switched at ¢ = 0 for a deterministic flashing
ratchet at the large 7 limit. Blue and red lines are for the homogeneously charged RD and FM
polymers, and black lines for the middle-centered charged RD polymer. The data is for N = 10,
L =06, Vihax =1 and @ = 10.

effect wins (i.e. d < 0) and the polymer starts traveling backwards, while the single
particle and all FM polymers are traveling to the expected positive main direction.
The rebound effect is also present in FM polymers, but it is not strong enough to
reverse the direction of the velocity.

For the case L = 6, polymers up to 11 reptons can be treated with exact numerics,
whereas time-dependent DMRG is used for larger ones. The asymptotic limit d(oo)
can be reach only with the exact numerics. The results for DMRG are limited up to
d(200) because of the high computational cost.> Time-steps of At = 0.05...0.07 and
error tolerance 10~% were used. Unfortunately, the velocity is a very slowly decaying
function for the ’off-on’ process and a notable difference between d(200) and d(oco)
remain. From the behavior of d(t), one can however assume that d(t = oco) remains
always smaller than d(t) with finite values of ¢ and large RD polymers. Based on
this and our Monte Carlo simulations for large 7’s (data not presented here), we may
conclude that the current inversion does not occur for uniformly charged RD polymers
in the case L = 6. Similar results were also found for L = 4 and L = 5, hence the case
L = 3 seems a special case for the RD model. Using non-uniform charge distribution,
d becomes closer to zero, but still remains positive for L = 6. However, since optimal
charge distributions are not known for large RD polymers and d approaches zero
as the polymer gets larger, current inversion still cannot be completely ruled out
for very large polymers N > 25 with optimal charge configurations. One could also
try to reinforce the rebound effect by adding longer-range interactions (e.g. stiffness)
between reptons which might also lead to current inversion for L > 3.

3These results required already more than a month of uninterrupted parallel computing to finish.
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Figure 6.5: (a) Expected travel distances d(t) of the RD polymers (blue lines) and FM polymers
(red lines) in a deterministic flashing ratchet (L = 3 and Viyax = 1) as a function of the polymer
length in single time-period at asymptotic limit (i.e. the steady state is reached before the switching).
Different t’s are indicated with different marker types. (b) The similar data for L = 6. Polymers up
to N = 11 were computed with exact numerics and larger ones with time-dependent DMRG. The
asymptotic limit d(t = co) is reached only using exact numerics.
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6.3 Velocity and diffusion in the steady state

6.3.1 Flashing ratchet

We fix the symmetry parameter © = 7og/7 to x = 1/4, 1/2, 3/4 and examine the
7 dependence of the steady state velocity v and the Peclet number Pe = |v|/Deg in
stochastic potentials. The results in Fig. 6.6 reveal a complex behavior of the velocity.
The overall form of the curves is as expected: the velocity and the Peclet number
have some (local) maxima around In (7) ~ 0. For small 7, the single particle remains
the fastest in all cases excluding z = 1/2 for FM polymers, where it is the slowest
one. However, as 7 gets larger, longer polymers eventually become faster, which is
caused by their longer relaxation time (short polymers have already reached their
steady state). This can be clearly seen from Figs. 6.6(b) and (c), but it also takes
place in figure (a) to some extent. Similar behavior of coupled particles being faster
than single ones and also having current inversions were also reported in Ref. [100].
Although the relaxation times are quite different, the maxima of the velocity fall close
to In (7) & 1 for all polymer lengths and the position of the maximum Peclet number
is almost constant. The velocity sign change occurs for some polymers when 7 is very
large or when 7 is small and x > 1/2.

The behavior of the Peclet number is very clear and similar in every case: the larger
the polymer, the larger the Peclet number. Thus the transport of longer polymers is
more coherent than that of shorter ones. Similar behavior was found in a continuum
model consisting of elastically coupled Brownian particles [187]. By comparing the
values of the Peclet number between polymer types, we see no significant differences
between the curves. There is a slight difference for large values of 7, where the Peclet
number remains larger for FM polymers. This holds with every choice of parameters,
excluding the possible current inversion points (e.g. the interval In(7) = —1...0 in
Fig. 6.6(c)).

Next we compare the differences of the three potential time-dependency schemes
(stochastic, deterministic and smoothly varying) in a flashing ratchet potential, for
which the differences are more distinct. In Fig. 6.7 we have plotted v and the Peclet
number of N =5 and N =9 (similar behavior is observed for other values of N) RD
and FM polymers as a function of 7 for all three time-dependency schemes. Some clear
differences between the schemes can be seen. The maxima for the velocity and the
Peclet numbers are reached for smaller 7 for the stochastic scheme than for two others.
The deterministic scheme has the largest v and the smoothly varying the smallest,
and the same goes for Pe. However, this order changes for the inverse velocity, where
deterministic and smoothly varying schemes are equally good. The time-dependency
scheme turns out to have an effect on the current inversion phenomena, since the
smoothly varying scheme is able to invert all RD polymers with N > 2, whereas
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Figure 6.6: Velocity and Peclet numbers of the RD polymers (left column) and FM polymers (right
column) in a flashing ratchet (L = 3, Vipax = 1) with N = 1 (solid black), N = 3 (dash), N =5
(dot), N = 7 (dash-dot), N = 9 (solid blue). The value of the symmetry parameter x = 75 /7 is (a)
x=1/4, (b) z =1/2 and (c) z = 3/4.
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Figure 6.7: Velocity and Peclet number for 5 (blue lines) and 9-repton (black lines) RD (left) and
FM polymers (right), for deterministic (solid lines), smoothly varying (dashed lines), and stochastic
(dash-dotted lines) schemes.

stochastic and deterministic only those with N > 5. Despite this, the differences
between deterministic and smoothly varying are small (deterministic being slightly
‘better’).

6.3.2 Traveling potential

Next we study transport in the stochastic traveling potential depicted in the right
column of Fig. 6.8. For this potential the symmetry parameter is x = 77 /7. A Similar
velocity and diffusion behavior as previously reported in Ref. [109, 26| for a single
particle is expected. In Fig. 6.8, we show v as a function of z with three different 7’s
(Fig. 6.8(a)-(c)): 7 — 0,In(7) = 3 and In (7) = 7. The behavior for the single particle
is as expected; the velocity is antisymmetric with respect to x = 1/2 and goes to zero
at x = 0, 1/2, 1. With longer polymers the velocity changes sign non-trivially for
large 7 (Fig. 6.8(c)) for both polymer types. This result is unexpected. An example of
the behavior of the diffusion coefficient is shown in Fig. 6.8(d) for N = 9 and different
7's. Deg always reaches its maximum at x = 1/2 and decreases as the system goes to
a static potential state at x = 0 and 1.

Next we fix x = 1/4 and examine the 7 dependence in detail. In Fig. 6.9, we have
plotted v and the Peclet number for In (1) = —4...7.5. As N > 2, current inversions
can be seen around In (7) & 2 for both polymer types. As before, the single particle
remains the fastest for small 7, but eventually the velocity curves begin to intersect
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Figure 6.8: Velocity and Peclet numbers of the RD polymers (left column) and FM polymers (right
column) in the traveling potentials (L = 3, Vijax = 1). (a-c): velocity as a function of the symmetry
parameter x = 71 /7 with 7 — 0 (a), 7 = exp (3) (b) and 7 = exp (7) (¢) with N = 1 (solid black),
N = 3 (dash), N = 5 (dot), N = 7 (dash-dot), N = 9 (solid blue). (d): the effective diffusion
coefficient for N =9 with 7 — 0 (solid), 7 = exp (3) (dash) and 7 = exp (7) (dot).
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Figure 6.9: Velocity and Peclet numbers of the RD polymers (left column) and FM polymers (right
column) in the traveling potential (L = 3, Viyax = 1) as a function of the mean time-period 7 with
the symmetry parameter x = 71/7 and N = 1 (solid black), N = 3 (dash), N =5 (dot), N =7
(dash-dot) and N = 9 (solid blue). For the left inset of (a) In(7) = 2.85 and In (7) = 2.05 for the
right inset.

as 7 gets larger and the single particle is not always the fastest (see e.g. the N = 3
FM polymer in Fig. 6.9(a), right column). The behavior of the Peclet number is as
before: Longer polymers have more coherent transport, excluding the possible current
inversion points and their neighborhood. With small values of 7, the Peclet number is
also the same for both polymer types, but because of unequal velocities for moderate
and large values of 7, also differences exist.

The insets of Fig. 6.9 show the velocity as a function of N =1...11 in detail. We have
chosen In (7) = 2.85 for RD polymers and In (7) = 2.05 for FM polymers. With these
choices, the current inversion occurs between N = 6 and 7 for both models. In the
insets of Fig. 6.9(b) we have plotted the overall velocity minimal values in the interval
In(r) = —4...7.5 as a function of N. The distinction between the polymer types
is very clear. FM polymers travel increasingly fast backwards whereas RD polymers
eventually stop moving as N gets larger. The current inversion of the RD polymers
N > 10 would require a smaller fixed .

The magnitude of the velocity, typically between 107° and 1073, is comparable with
the velocity caused by a flashing ratchet. The Peclet number values of the polymer
motion remain small (< 0.1) for both potential types, indicating very low coherence
of transport.
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6.4 Non-uniform charge distributions

We now consider non-uniform charge distributions where the charges of the reptons
differ. As already seen for the relaxation studies, changing the charge distribution
has a dramatic effect on the velocity. To set up the optimization problem, we define
constraints Zfil ¢ = @, ¢g > 0 and 7 > 0. The objective function is the velocity
v(q1,q2, - -, qn, T). Some additional technical details and comparison of methods were
discussed in Section 5.2.2.

Using the SQP method, extensive computations were carried out to find the charge
configurations with the largest possible velocity in main (forward) and inverse (back-
ward) transport directions and Pe for various polymers and parameters. It was found
that changes in the velocity are so large that one can safely limit to maximizing v
alone, since in this case Pe is dominated by the velocity. In the following, some of
the optimization results are presented for the 8-repton polymers with () = 8 in the
stochastic potentials with V.. = 1 and L = 3. The data for the basic model with
an uniform charge distribution (i.e. ¢; = 1V1i) is also shown for comparison. Note
that since reptons are equal in the sense that their charge is allowed to vary between
[0,Q], a non-symmetric distribution is equal with its mirror-symmetric counterpart
with respect the center bond (or repton, if N is odd). In the figures, only one of
such distributions is shown. For symmetric charge configurations, such as uniform
and middle-centered, the solution is unique.

In Fig. 6.10, the properties of the RD polymer in a flashing ratchet are plotted as a
function of 7 with configurations that give maximum velocities in positive (main) and
negative (inverse) directions, and the corresponding optimization results are called
either positive or negative. We found that the velocity in the positive direction is
always maximized by putting all charge near either of the heads, but charging the
head reptons does not necessarily lead to the largest current. This holds for both
RD and FM polymers for all studied polymer lengths up to N = 13 at least. In
this situation, only one repton feels the potential and very large transition rates are
generated by the exponential function. This one repton then forces the whole polymer
to advance. As discussed in Section 6.2, there is no rebound effect when only one
repton is charged.

The optimal charge distributions in the negative direction are more interesting, since
no large accumulation of the charge is seen, and the charge is distributed over several
reptons. A symmetric distribution means that neither of the heads is leading and
the heads are forced to compete with each other. This would be very inefficient in
constant-field transport. Depending on the value of V., other slightly different local
optimal distributions are found. In Section 6.2, it was demonstrated that the rebound
effect is strong for the RD polymers with a middle-centered charge distribution.
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Figure 6.10: Velocity, diffusion coefficient and Peclet number for the 8-repton RD polymer in a
flashing ratchet with uniform (blue dash-dotted lines), negatively optimized (red dashed lines), and
positively optimized (black solid lines) charge distributions as a function of the temporal period 7.
The histogram shows the charge distribution along the polymer for each case in the same order. In
the leftmost figures v and Pe for the positively optimized case have been scaled by an additional
factor 1/10.
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Figure 6.11: Velocity, diffusion coefficient and Peclet number for the 8-repton RD polymer in the
traveling potential with uniform (blue dash-dotted lines), negatively optimized (red dashed lines),
and positively optimized (black solid lines) charge distributions. The histogram shows the charge
distribution for each case in the same order.

In Figs. 6.11 and 6.12, we show the same analysis for the traveling potential. For RD
polymers, the optimal distributions have no ’clear’ or symmetric structure. As in the
case of a flashing ratchet, the negatively optimized polymers are actually faster than
uniformly charged polymers in both direction.

In conclusion, the charge distribution has a large effect on the polymer transport
velocity and coherence on the flashing and traveling potentials. Since the velocities
generated by the ratchet effect are generally very small and difficult to observe, this
could be of interest from the point of view of applications.

6.5 Efficiency of the transport in a flashing ratchet

In Figs. 6.13 and 6.14, we show the maximum efficiency 7,.x = max (n(7)) of the
RD and FM polymers as a function of a load force F' = vazl Eq;, where E is the
field strength, with flashing ratchets and traveling potentials of the stochastic and
deterministic type. The points where ny.x(F) = 0 for ' > 0 define the stopping
forces Fiop. Insets of the figures show the same data scaled with F* = F/Fg,, and
N ax = Nmax (F™)/ max nmax (F*) for each polymer size, which reveal the shapes of the
curves.
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Figure 6.12: Velocity, diffusion coefficient and Peclet number for the 8-repton FM polymer in the
traveling potential with uniform (blue dash-dotted lines), negatively optimized (red dashed lines),
and positively optimized (black solid lines) charge distributions. The histogram shows the charge
distribution for each case in the same order.
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Figure 6.13: Maximum efficiency for RD (black solid lines) and FM (blue dashed lines) polymers
as a function of the load force F' with N = 1...9 in stochastic (left) and deterministic (right) flashing
ratchets. In each case, the rightmost curve is for N = 9 and the bold lines (the less interesting special
cases N = 1,2) are shared for both RD and FM polymers. Insets: Rescaled data 7. as a function
of F*, with black triangles for RD polymers and blue squares for FM polymers.
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Figure 6.14: Maximum efficiency for RD (black solid) and FM (blue dashed) polymers as a function
of the load force F' with NV = 2...9 in stochastic (left) and deterministic (right) traveling potentials.
In each case, the rightmost curve is for N = 9 and the bold lines (the less interesting special case
N = 2) are shared for both RD and FM polymers. Insets: Rescaled data 7%, as a function of F™*,
with black triangles for RD polymers and blue squares for FM polymers.

We notice that for the FM polymers the efficiency is generally larger and they can
maintain their velocity in an opposing field better than the RD polymers in a ratchet.
When plotted as a function of E, there is a constant stopping field for all N > 3
FM polymers in both potentials with values around —0.0026/—0.0016 for stochastic
and —0.0038/—0.0043 for deterministic ratchet/traveling potentials. This results from
the fact that the reptons of the FM polymer are less correlated than those of the
RD polymer and reptons in a FM polymer thus behave more independently . For
a ratchet, the deterministic scheme is found to be 2-4 times more efficient and can
withstand almost a double load force when compared with the stochastic. The stopping
force is larger for FM polymers. For the traveling potential, differences are more
drastic, as for the deterministic scheme the stopping force is about two times and
the efficiency almost one order of magnitude larger when compared to the stochastic
scheme. Rescaled curves reveal that despite the large differences in scales, shape of
the curves are almost identical for all polymer lengths and both types.

The numerical values of the efficiency are very small. This is a generally known trait
especially for flashing ratchet models [132], but it also results from the choice of the
rates, since the velocity plays dominating role in efficiency. By using the optimized
values for V.., x, and q, the efficiency could be increased by a couple orders of
magnitude. Results show that Fy,p increases as a function of N, which is in agreement
with some previous work [54, 169]|. The efficiency nmax, however, decreases as the
polymer gets longer for all other but a stochastic traveling ratchet, which is surprising.
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6.6 Time-evolution of observables

To gain better insight in the internal dynamics of the polymer, we now turn to the
expected values of the four observables Z (zero-bond), G (total length), K (kinks)
and H (head-to-head distance) for the RD polymer. In Figs. 6.15 and 6.16 we have
plotted the steady state time-evolution of the observables against each other with the
8-repton RD polymer in a deterministic ratchet and traveling potentials with several
values of 7. The previously found optimized charge distributions are used. Note that
these distributions are only approzimately optimal for the deterministic potentials,
but this approximation is found to be very good. For small 7, the observables are near
their mean-field values (large spots in the figures), which are independent of t. For
very large 7, the curves 'freeze’ (bold lines) since the steady states are reached before
the potential is switched.

For a ratchet, the maximum positive velocity (black lines) is a result of small changes
in the polymer average shape, which is caused by the fact that only a single near-
head repton is charged and the rest of the polymer is in pure random motion. The
maximum negative velocity (red lines), however, is a result of more complex processes,
which cause much more variation in the average shape, even more than for a polymer
with uniformly distributed charges (blue lines) with all the reptons charged.* There
is almost one-to-one correlation between G — H pair (as expected), which results that
the phase trajectories for the G — Z and H — Z pairs are almost indistinguishable,
and therefore the pairs G — H and G — Z are not presented here. The connections
between other pairs are more involved, especially between H — K and G — K. For
them, the current inversion is seen as a deformation of loops between K — Z, H — K
and G — K pairs for uniform and negatively optimized polymers (no current inversion
for positively optimized polymer).

For the traveling potential, the curves are more distinguished from each other and
are more complicated. There are fast deformations in the curves as the time goes on.
There is a clear similarity between Figs. 6.15 and 6.16. Positively optimized polymers
have the smallest spread in the observables and negatively optimized the largest. This
is similar behavior as seen for a flashing ratchet, albeit the potential and the charge
distributions are very different. The results show that there is a clear connection
between the average polymer velocity magnitude and direction, and shape deforma-
tions. Deformations during ratcheting for one’s part depend strongly on the charge
distributions.

In Figs. 6.17 and 6.18 we have plotted the relaxation as a function of time of the
observables in a flashing ratchet and the traveling potential for the 8-repton RD

4In Article II, there is a misprint with the red and blue color codes, as they should be other way
around. The color coding given here, is the correct one.
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Figure 6.15: Time evolution of the 8-repton RD polymer observables in a deterministic flashing
ratchet with uniform (blue lines), positively optimized (black lines) and negatively optimized (red
lines) charge distributions. In each case, the big spots correspond to the (mean-field) limit 7 — 0,
the bold curves show the 7 — oo limit and the other curves the behavior for a few selected finite
values of 7.
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Figure 6.16: Time evolution of the 8-repton RD polymer observables in the deterministic traveling
potential with uniform (blue lines), positively optimized (black lines) and negatively optimized (red
lines) charge distributions. In each case, the big spots correspond to the (mean-field) limit 7 — 0,
the bold curves show the 7 — oo limit and the other curves the behavior for a few selected finite
values of 7.
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Figure 6.17: Relaxation in real time ¢ of the 8-repton RD polymer in a deterministic ratchet
potential, with uniform (blue line), positively (black lines) and negatively (red lines) optimized
charge distributions. Dashed lines (when present) are for the ’on — off” and solid ones for the ’off —
on’ processes.

polymer with uniform and optimized charge distributions. The data is the same as
shown in Figs. 6.15 and 6.16 for the large 7 limit (bold lines). The largest changes are
observed in roughly the same time scale, around In(¢) & 2, for all observables. Steady
state values of observables for the positively optimized polymer in a flashing ratchet
are independent of the potential state (on or off). In addition to the kink dynamics,
large differences are seen in zero-bond dynamics. Note that for positively optimized
polymer, values remain unchanged during 'on — off’ switching and are therefore not
shown in the figure. This is because, in the steady state, the potential has no effect on
the conformations of the polymer, which would require more than one charged repton.
For the traveling potential, the time-evolution of the observables is more complex.

6.7 Transition sequences

We now turn to the dominating transport cycles of the polymer motion using mea-
sures (5.3) and (5.5) for v, with the weight function f given by the center-of-mass
displacements. It is found that the common transportation type is what we call the ’s;-
so-scheme’ consisting of cyclically accumulated (lengths s; and se with |s; — so| = 1)
and elongated parts of the polymer. Corresponding to the direction of moves, this
scheme can be either positive (up) or negative (down). To illustrate the scheme, we
have sketched the positive 4-5 scheme in Fig. 6.19. The numbered arrows indicate the
order and direction of the corresponding repton moves. After all marked moves are
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Figure 6.18: Relaxation in real time ¢ of the 8-repton RD polymer in the deterministic traveling
potential, with uniform (blue line), positively (black lines) and negatively (red lines) optimized charge
distributions.

done, the initial state is recovered and the cycle is repeated. We concentrate on eight
different situations for the RD polymer: transport in positive and negative directions
in a ratchet and traveling potential, using uniform and optimized charge configura-
tions (i.e. 2x 2 x 2 = 8). In the five cases out of these eight, the dominating transport
process is the s;-s9-scheme.

In Fig. 6.20 we show the remaining three situations that are not of the type above.
Note that for negative transport in a ratchet with the uniform charge distribution,
the mechanism is almost the 4-5-scheme.

In Table 6.1, we have collected the core results of this subsection. The last column lists
the ratios of average cycle velocities v, per edge, divided by the average velocity for
all transitions v,y = v/5832, where 5832 is the total number of edges in the directed
graph G (see Section 5.2.1). This ratio is significantly larger for uniformly charged
polymers, indicating that the optimization process increases the velocities in a large
number of paths and makes differences between paths smaller. It is also somewhat
surprising that there is not much difference between the dominating mechanisms for
forward or backward motion, and for uniformly charged polymers in a ratchet they
are actually the same. One can therefore conclude that the current inversion for the
RD model is not caused by some abrupt 'phase transition’, but by gradual changes in
the probability distribution along internal states.
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Figure 6.19: Illustration of the positive 4-5-scheme for the 8-repton polymer. The arrows and
numbers indicate the direction and the order of the transition for the corresponding reptons. For
clarification, the process is shown here in two parts.

Figure 6.20: Dominating transport cycles for the inverse velocity in the traveling potential (L = 3
and Vipax = 1) with (a) the uniform charge distribution, (b) the main velocity in the traveling
potential with the uniform charge distribution, and (c) the backward velocity in a ratchet with the
optimal charge distribution.

Table 6.1: Dominating transport cycle types for polymers in ratchet and traveling potentials for
forward (F') and backward (B) transport, with uniform (unif.) and optimized (optim.) charge distri-

butions.

Case Cycle Ve/Vanl
Ratchet potential

unif. F pos. 4-5 46,4

unif. B neg. 4-5 5H4

optim. F pos. 2-3 6,5
optim. B Fig. 6.20(c) 164
Traveling potential

unif. F Fig. 6.20(b) 60,0
unif. B Fig. 6.20(a) 371
optim. F pos. 2-3 29,4
optim. B neg. 1-2 91,3
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6.8 Discussion

We have studied reptation of polymers in time-dependent potentials by analyzing the
master equations of pure and modified Rubinstein-Duke model. We found complex
dynamics that results from the non-pointlike structure of the polymers by the coupling
between the potential and polymer internal states.

By varying the temporal period 7 of flashing ratchet and traveling potentials, we
found non-trivial inversions of the polymer drift direction, which cannot occur with
pointlike particles. The Peclet number grows as the polymer gets longer and is largely
independent of the polymer type, thus allowing more coherent transport for longer
polymers. The overall polymer dynamics in ratchet potentials was found to be very
model specific. It was found that a deterministically flashing potential is superior com-
pared to a smoothly or stochastically varying potential in terms of velocity, coherence
and energetic efficiency. However, despite the scaling in velocity and diffusion, the
time-dependency scheme of the potential only has a minor effect on the qualitative
results.

By using the stochastic potential scheme, we computed the optimal charge distribu-
tions to maximize the steady state velocity in flashing ratchets and traveling poten-
tials. The differences in transport properties and dynamics between these and the
uniformly charged polymers were found to be drastic. By studying the relaxation in
ratchet potentials, it was found that non-uniform distributions cause very slow or
fast velocity relaxation depending on which transport direction was preferred. Chang-
ing the charge distribution also changes the mechanism of how the polymer reshapes
itself with respect to the potential. This mechanism either amplifies or reduces the
'rebound’ effect that is responsible for the current inversion of the RD polymers in a
flashing ratchet with L = 3 and large 7 for polymers with more than 5 reptons. This
type of current inversion was not found with other types of flashing ratchet potential.

The current inversion phenomenon was investigated by using the optimal charge distri-
butions which were found by using the numerical optimization method. The expected
values of certain macroscopic observables (e.g. length and zero-bond count) were com-
puted and large differences between differently charged polymers were found. The
graph optimization method described in Section 5.2.1 was used to identify the domi-
nating transport processes of the polymer transport and was found to be very useful
in characterizing polymer motion. To further investigate the origins of the current
inversion phenomenon, additional studies with a refined reptation model taking into
account effects such as bending rigidity and excluded-volume effects, is needed.

While above results provide useful insight into the behavior of linear polymers in a
ratchet potential, the nature of the model employed imposes limitations on its rele-
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vance to experimental systems. Currently, no experimental data is available for direct
comparison against the results discussed here. Majority of the experimental research
on the ratchet effect for polymers has been for the DNA segments moving in vari-
ous types of periodic potentials [13, 10]. The simple repton model cannot accurately
model a real DNA in such situations. On the other hand, simple discrete dynamics
is a good model for many natural [197] and artificial molecular motors [85, 93|. As
the complexity of artificial motors is increasing, many-particle effects similar to those
discussed here are expected to emerge (e.g. parallel motors).



7 Results for the island model

In this Section we present selected results from Article IIT for the island migration
model introduced in Section 3.4. We apply both the numerical master equation method
to study the ME model (also called the reduced model, see Section 3.4.2) and Monte
Carlo simulations to study the MC model (the full model, see Section 3.4.1). Both
of these methods have been separately used in several previous studies of islands
[24, 122, 163, 183, 115, 157, 124, 153, 167, 80, 162|. We apply them both in order to
utilize their strengths and also compare their differences.

We have carried out extensive computations for islands with N < 100 atoms. Selected
MC simulations were also performed for larger islands up to thousand atoms. All re-
sults are computed with the parametrization given for Cu atoms on the Cu(001)
surface. We consider temperatures 7" = 400...1000 K and field strengths E =
0...0.25 eV varying the field direction (the angle a) and the measurement direc-
tion (the angle 7). To reduce the amount of data shown below, we present detailed
results for the ME model (data with better numerical accuracy) and selected results
for the MC model (allowing larger islands).

For better comparison between different values of £ and T in a time-dependent field,
we have re-scaled 7 such that 7 = 1 always corresponds to the largest rate available
for the island. Therefore the value of 7 in the figures is a multiple of the fastest rate
in the system, which is the jump along the terrace in the field direction (i.e. Ay; =0
and Ey; = E in Eq. (3.3)) and hence depends on both values £ and T'.

With the Monte Carlo method, all results were averaged from 100-2000 independent
runs (more iterations for small islands). The approach to the steady state was con-
firmed from the position and geometry data. Using the geometry data, such as the
perimeter length and the island width/length, was found to be important, since the
actual relaxation observed through the island shape can take significantly longer than
it appears from the position data alone. The initial states for the simulations were
sampled from the corresponding equilibrium shapes. Since these states are generally
far from the nonequilibrium steady states, the simulations quickly become difficult
for large islands because of the long times needed to reach the nonequilibrium steady
state. Also because of the greater migration velocity, simulations with the field direc-
tion along the axis tend to be more accurate when compared to the diagonal fields.

105



106 Results for the island model

7.1 Pulsed field and electrophoretic ratchet

We consider two types of time-dependent fields: the pulsed field and the electrophoretic
ratchet. The variation of the field is taken to be discrete, i.e. with two constant fields
varied temporally corresponding to two sets of rates Fk,i with k& € {1,2}. The periods
of the fields are 71 and 75 with the total period 7 = 7 +75 and the symmetry parameter
x=m7/T.

For MC computations, the field variation is deterministic, whereas for the ME com-
putations stochastic (Markovian type) switching is applied. These choices allow the
best possible computational accuracy for both methods, avoiding serious numerical
problems arising from the bad statistics of the Monte Carlo simulations or numerical
integration of stiff master equation sets. This choice also allows comparison between
these types of variation.

For the pulsed field, we consider the measurement angles v = 0° (in the direction of
the coordinate axis) and vy = 45° (the diagonal direction). The field angles are £« (for
v = 0°) and 45° £ « (for v = 45°). The velocity is always positive when 0° < a < 45°.
Field periods and amplitudes are taken to be identical (i.e. x = 1/2 and E; = Es),
so that the average velocity is always in the measurement direction v (see Fig. 3.3).
This type of a pulsating field is used in gel electrophoresis to increase the mobility of
the DNA samples [172].

The electrophoretic ratchet, also known as a zero-integrated field, is defined by choos-
ing v = 0° with « taking values 0° and 180°. As the total force affecting the island is
F =2NE/kgT, by choosing 71 F; = 1 F where forces F} and F; are in opposite direc-
tions, the average force integrated over time is always zero (hence the term ’ratchet’).
In the (perfect) linear response regime (i.e. v < DegF'), this leads to zero mean ve-
locity. Beyond that, non-zero velocity is expected. This type of time-dependent force
has been previously studied in the context of electrophoresis [72, 171] and in ratchet
effect studies [22]. If one chooses E; > FEs, the expected velocity based on the single
atom case always has a positive sign. However, for N > 1, the sign depends on the
model properties and is generally unknown. The electrophoretic ratchet is therefore a
good tool to study and quantify many-particle effects.
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7.2 Static field

7.2.1 Velocity as a function of field

The velocity as a function of the field is shown for N = 4...20 (MC model) and
N =4...12 (ME model) in Fig. 7.1, using v = a and T" = 500 K. There are noticeable
differences between ME and MC models especially for £ > 0.1 eV as the velocities
begin to decrease for the largest N > 7 islands in the ME model. This 'negative
conductivity’” type effect is caused by the trap configurations as demonstrated in
Fig. 7.1(f) for N = 11 and in Fig. 7.1(e) for N = 12, where velocities and probabilities
of the main trap configurations are shown as a function of E with (f) diagonal and
(e) axis directed fields and temperatures 400 K, 600 K and 800 K. In the diagonal field
there are several energetically equivalent trap configurations for the 11-atom island,
hence the probability of the main trap configuration does not reach 1.

Within the linear response regime (with a field up to £ ~ 0.01eV), the velocity is
affected by the diffusion coefficient and the 'magic size’ effect! strongly affects the
velocity for small islands (N < 11); in the regime E > 0.1eV the velocity depends
strongly on whether N is odd or even and the velocity is significantly larger for odd-N
islands. This effect is stronger for the axis-directed field, for which all odd-N islands are
faster and curves become ’bunched’ in two distinctive groups with a noticeable gap in
between. At least for smaller islands, this is caused by the fact that the even-N islands
easily fall into complete rectangle shapes of width 2 (i.e. two atom rows). Escaping
this shape requires breaking two nearest-neighbor bonds. For odd-/N islands, such a
compact shape is unavailable, and hence they have faster transition paths available
(this aspect is studied further in Sec. V). Around E ~ 0.1 eV the velocity behavior
clearly changes for all but the smallest islands. At E ~ 0.25 eV the velocity is no
longer increasing for the MC model.

The behavior of the island N = 10 is somewhat special for both the ME model
and the MC model, since at low temperatures the velocity is decreasing for £ =
0.02...0.05eV. At larger fields, the behavior becomes similar to large even-/V islands,
indicating that 10 atoms is already enough to capture the characteristic behavior of
larger islands.

The simulation data (not shown) indicates that in fields £ ~ 0.1 ¢V and beyond,
the island becomes strongly deformed and would be much more likely to break up for
diagonal fields when compared to axis-directed fields with the same magnitudes. The
reason for this is that the islands on average have less atomic bonds in a diagonal

'In small fields, the velocity and diffusion are greatly reduced for islands that can form a compact
near-square rectangular configuration with a minimum escape barrier of 2E . The smallest islands
with this property contain 4 =2 x 2, 6 =2x3, 8=2x4, 9=3x 3, 12 =3 x 4 atoms.
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Figure 7.1: (a)-(d) Island velocity in the (a and b) MC model N =4...20 and (¢ and d) ME model
N =4...12 at T = 500 K with (a and ¢) v = 0° and (b and d) v = 45°. (e)-(f) Velocity (dashed
lines) and probabilities Piap (solid lines) of the main trap configurations shown in the inset figures
in the ME model for (¢) N =12 and (f) N = 11. The vertical axes on the left shows Py, and the
axes on the right shows v. Corresponding temperatures, as indicated here with the dashed v lines,
are 800 K (red upmost), 600 K (yellow middle) and 400 K (green lowest).
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Figure 7.2: Change of average geometry of various island sizes at T = 500 K as a function of field
amplitude (o« = v = 0°) measured by the island (a) average thickness and (b) width perpendicular
to the field (see text). Note that the density of data points is higher than the density of plotting
symbols. The data is for the MC model.

field, which more easily results into break-up of the island.

In Fig. 7.2 we show the transition of the island geometry as a function of the axis-
directed field (v = a = 0°) for the MC model. The geometry is characterized by the
average thickness and width of the island, which can be computed from the maximum
elongation of the island in both parallel and perpendicular to the field: Width is given
by the perpendicular size and thickness by the number of atoms N divided by the
parallel size.?

Three distinctive steps in the curves of Fig. 7.2 corresponding to widths 1, 2 and 3 are
seen (i.e. on average the island consist of 1-3 rows of atoms). Step 3 becomes visible
only for large enough systems (/N ~ 50), whereas the other two steps are visible for all
systems. For smaller islands (N < 100) there is a clear even-odd effect for the island
size at £ =~ 0.05...0.20 eV. The average shape of even-N islands is flatter, which
indicates that they are usually found in their tightly-bound rectangle configurations,
whereas the sizes of odd-N islands can vary more freely. The increase of the width for
large islands in fields F ~ 0.2V is caused by configurations where, instead of a single
rod, there are several smaller rods that together occupy adjacent rows and consecutive
small rods have single row misplacement in perpendicular axis direction (see Fig. 1 in
the supplemental material of Article IIT). Only increasing the field further, a single rod
structure with smaller total energy becomes a dominating configuration. For average

2For example, consider the island configuration in Fig. 4.5 with N = 10 and v = a = 0°. Thickness
for this configuration is 10/4 and width is 4.
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thickness, there is also local minimum at £ ~ 0.02 eV. Similar behavior can be also
found by using other measures, such as the variance of the width (see Fig. 2 in the
supplemental material).

7.2.2 The effect of the measuring and field angles

Now let us consider the case o # «. In Fig. 7.3 the effect of the field angle « is shown
for N = 6...12 for the measuring directions v = 0° and v = 45° computed for the
ME model using £ = 0.08 eV and 7' = 500 K. To find out the proportional velocity,
we scale the results by corresponding v(y = «). In the following we present results for
the interval a € [y, + 90°] from which the results for all angles can be extracted.

In contrast to the single particle in the case v = 0°, the maximum velocity is not
always at a = 0°, but can indeed have a value between 0° < a < 90° depending on
the island size. Increasing F and decreasing 7' leads to increased velocity, however
the field £ must be large enough for the non-linear effect to appear. The maximum
velocity is found with o = 15...25° for islands over 10 atoms. Rotating the field
slightly (i.e. increasing |y — a) creates a small field component in y direction. This
decreases the barrier for the corner rounding process on one side of the island, which
leads to increased velocity.

For the measuring direction v = 45°, the maximum velocity is found for 45° < o < 90°
for all but the smallest islands. This is expected from the single particle case. However,
there are two local maxima for islands of size N > 10 located both sides of the
angle a = 90°, creating a small deviation of approximately 15° from angle 90°. The
global maximum is found around a &~ 70° and the second one around 105°. For the
smallest islands N < 7, no increase is found. As demonstrated for the case N =11, a
two-maximum structure appears when the field gets strong enough. Transport in the
diagonal direction is generally more difficult compared to the axis direction because
of the absence of stable rectangular configurations. By rotating the field, rectangular
shapes become stable and the velocity increase occurs for a much larger range of field
angles than for v = 0°.

The findings above can be also verified for the MC model with some differences in
the odd-even effect and in field amplitude response. The maximum increase of the
velocity is plotted in Fig. 7.4 for islands N = 4...24 with several field amplitudes
using the MC model. The odd-even effect is strong for N < 15 and only for larger
islands, deviations begin to appear. The results for the MC model show that in the
case 7 = 0° velocity increase, caused by the rotated field, is larger for even-N islands
than odd-N islands, and in the case 7 = 45° it is other way around. The optimal
angles for odd-N islands are smaller than for the even-N islands in the case v = 0°,
whereas for the case v = 45° the behavior is just the opposite.
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Figure 7.3: Velocity increase in directions (a and b) v = 0° and (¢ and d) v = 45° as a function
of field angles at temperature T'= 500 K. (a) Velocity scaled with v(aw = 0°) for N = 6...12 and
E =0.08 eV. (b) Case N = 12 with several field amplitudes £ = 0.01...0.11 eV. (c¢) Velocity scaled
with v(aw = 45°) for N = 6...12 and F = 0.07 eV. (d) Case N = 11 with several field amplitudes
E =0.01...0.11 eV. The data is for the ME model.

Figure 7.4: Maximum velocity increase for N = 4...24 compared to (a) v(0°) and (b) v(45°) for
several field amplitudes £ = 0.028...0.1 eV in T' = 500 K. The data is for the MC model.
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The results above show that the velocity depends strongly on the measurement and
field directions and the velocity can be significantly increased by setting a small
15°...25° difference between the field and measurement directions. This can be ex-
ploited by using a time-dependent field. For the case 7 = 45° a velocity increase can
be expected based on the single atom case, however the optimal field angle for islands
is not a ~ 90°, but has a double maxima structure with optimal angles around 70°
and 105°. This deviation from the single atom case results from the corner process.
By introducing a small non-axis-directed field component, going around the corner
is made easier. For the same reason, the velocity increase is present also in the case
~v = 0°, where the maximum velocity is found for field angles v = 20°. It is also found
that there is a strong odd-even island-size effect affecting the amount of velocity in-
crease and also the values of optimal «. For the case v = 0°, even-N islands become
significantly faster and for the case v = 45° the behavior is just the opposite. Here
the results differ between the ME and MC models, especially for the case v = 0°, as
the ME model does not reproduce the odd-even effect or the increase for the small-
est islands. This indicates that the configurations with only diagonal bonds between
parts of the island, present only in the MC model, become important in this particular
situation.

7.2.3 Energy barriers and the leading relaxation constant

Energy barriers

An effective energy barrier for the island dynamics can be found via Arrhenius plots
In(Deg) or In(v) vs. B = 1/kgT. If the effective barrier is constant for a large temper-
ature interval, it means that the transport process is similar in that region and a data
collapse is possible. In previous studies concerning equilibrium and very small fields,
it has been found that the effective barrier is around 0.75 eV for large islands N > 10
[80, 122, 115, 124| and varies between 0.5...0.8 eV for the smallest islands [168].
With nearest-neighbor count energetics, this is roughly equivalent to transitions that
break two nearest-neighbor bonds. The effective barrier is typically lower for small
islands and in higher temperatures [124, 183|. We used the ME model to compute
accurately the temperature dependent effective barriers for small islands for several
field amplitudes. Because of a large statistical error, a similar study would be compli-
cated by using only simulation data. Because of the computational difficulties in low
temperatures (especially for D), we show only those values that remain reliable and
omit the results for the lowest temperatures where data becomes noisy.

In Fig. 7.5, the running slope of the Arrhenius curve or the effective activation barrier
is shown for several field amplitudes for N = 11 (a and ¢) and 12 (b and d) using
both D.g (a and b) and v (¢ and d) in direction v = a = 0°. In zero field, an effective
barrier around 0.7 eV is found with only a minor temperature dependence. However,
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Figure 7.5: Running slope of the Arrhenius curves computed using (a and b) Deg and (¢ and d) v
for (aand ¢) N =11 and (b and d) N = 12 with axis directed field (i.e. v = o = 0°) and amplitudes
E=0....1€V.

as the field gets stronger, the effective barrier depends strongly on the temperature.
At temperatures around 700 . .. 800 K a distinctive local minimum is found for N = 11
using D.g, which indicates some type of change in the diffusive property of the island
transport. For v, there is a local maximum instead of a minimum. A strong even-odd
effect is visible. At low temperatures, the field has only a minor effect on the effective
barrier for even islands, whereas the effect is large for odd islands. The spread for the
effective barriers is much smaller for the scaling of v when compared to that computed
using D.g, otherwise the behavior is similar. The behavior for v = 45° is found to be
very similar and is not shown here. Since islands N = 11 and N = 12 already have
characteristics of large islands (see [183] and Sec. VI), we expect similar behavior to
be observed also for somewhat larger islands.

There is no well-defined effective energy barrier in the presence of an electric field.
In addition to the field amplitude, the effective barrier depends strongly on the tem-
perature, especially for temperatures above 500 K. In the general case, velocities and
effective diffusion coefficients of small islands do not follow any simple scaling laws
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Figure 7.6: Leading relaxation constant ® as a function of field amplitude for N = 3...12 re-scaled
with zero field values (shown in inset) with 7'= 600 K and v = a = 0°.

such as in the case of the linear response [122]. Also the effective barriers for diffusion
and the velocity differ.

The leading relaxation constant

Next we study the leading relaxation constant of the ME model. The expected result
is that the relaxation constant decreases monotonously as the field gets stronger.
However, because of the trap configurations of the ME model, the relaxation constants
must eventually increase rapidly as the field becomes very large. We are aware of only
one previous study where the relaxation constant and few other eigenvalues were

computed directly, for vacancy islands using a discretized continuous-space model
[77].

In Fig. 7.6, we show the leading relaxation constant ® in zero field (inset figure) and
as a function of the axis directed field for N = 3...12 in 7" = 600 K. Within the
linear response regime, the relaxation times are indeed decreasing for all N. However,
for N = 9...12 there exist local maxima with £ = 0.02...0.06 eV. This effect is
not caused by intersections with other eigenvalues, in that it is a genuine property
of the second eigenvalue (as identified at £ = 0). For N = 9, the phenomenon is
strongest. The locations and heights of the maxima are slightly shifted by changing
the temperature. For fields beyond E > 0.1 eV, we can confirm that that relaxation
times for N > 7 increase rapidly. However, the computations become cumbersome
and the data is noisy because of the instability of solving eigenvalues iteratively for
highly non-symmetric matrices.

The maximum of ® seems to appear shortly after the field amplitude reaches the
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non-linear regime. The location of the maximum is around 0.06 eV for island sizes
9 and 11 and around 0.03 eV for island sizes 10 and 12. Also, this effect seems to
become weaker as the island size increases from N = 9 to N = 12. The increased
relaxation time does not have an evident correlation with the transport properties in
this Section. Although for N = 10 and N = 12 a slight correlation can be seen with
Figs. 7.5(b) and (d), where the effective barrier turns from decreasing into increasing
around 0.03 eV, however this cannot be directly related to any microscopic processes.

7.3 Time-dependent field

7.3.1 Pulsed field

From the static-field results, we expect that the velocity can be increased by rotating
the field. In its most simple form, this can be utilized by introducing a pulsating
field with a varying angle and setting a temporal period 7 larger than the relaxation
time of the island (the adiabatic limit). In most cases, this would lead to increased
long time velocity. For example, using two (strong) fields with angles +20° and large
equal temporal periods, would increase the long-time transport velocity of almost all
islands, and especially those with even NV, in direction 0°. In the following we study
the behavior of islands for small values of 7. As before, we re-scale the velocities with
the corresponding velocity without rotation (i.e. v(a = 7)).

In Fig. 7.7, we show velocities for N = 4...12 with T" = 500 K and o = £10°
compared to the static field velocity in the direction a = v = 0°. For all but N = 10,
the velocity can be slightly increased for small 7. Odd-N islands have a distinctive
local maximum around 7 = 10'...102, but the largest increase occurs typically at

the adiabatic limit. For larger islands N > 10, minimum velocity is found with 7 ~
10%...10%

In Fig. 7.8, we show similar results for v = 45°. Because of the double-maximum
structure, we show results for both a = 45420° and 45450° keeping other parameters
the same as before. Again, the large 7 limit yields the largest velocity for almost all
islands. For N € {8,10,12} small local maximum occurs around 7 = 10*...10° for
suitable parameters. This is demonstrated in detail in Fig. 7.8(c) for N = 8 for
several field amplitudes. For N = 9 and N = 11 the minimum is created around
7 =103...10% Tt can be also found for N = 12 by fine-tuning the parameters (data
not shown).

Similar results are also found for larger islands using the MC model. Although there
is some structure (such as local maxima) for small 7 values for large N, there is no
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Figure 7.7: Velocity increase in the pulsed field for N = 4...12, T = 500 K, F = 0.06 eV with
v =0° and o = £10°. The data is for the ME model.

longer any noticeable increase for the velocity for small 7’s. Increase is found only at
the adiabatic limit. In Fig. 7.9 we show the velocity for N = 20 with several values of
a for v = 0° and v = 45°.

The results indicate that the steady state velocity of the islands in a pulsed field
depends strongly on the period 7 for small islands, but the dependency becomes
weaker for large islands N > 10. For large islands, a significant increase in velocity
is found only at the adiabatic limit (large 7) for both v = 0° and v = 45°. A small
7 tends to increase the velocity of small islands. There is a velocity minimum at
7 ~ 10* for all large and also many small islands, indicating the sensitivity to this
specific period. Alternatively, the same period produces a maximum velocity for some
small even-N islands. Lowering the temperature significantly increases the sensitivity
of the velocity to the 7.

7.3.2 Electrophoretic ratchet

In Fig. 7.10 we show the velocity of islands N = 4...12 in an electrophoretic ratchet
as a function of 7 for the ME model using 7" = 500 K, z = 1/4 and E; = 0.03 eV
(i.e. By =0.03z/(1 —x) =0.01 eV). For N € {4,10,12}, there is a current inversion.
For all other N, the velocity remains positive.

For N = 4 and N = 10, the current inversion is expected, since velocities computed
at the simple limits of 7 — {0, 00} have a different sign. We call this an adiabatic
type current inversion. As explained in Section 3.1.3, at 7 — 0 the velocity follows
from the mean-field stochastic generator. For F; > F,, the mean-field velocity is
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Figure 7.9: Velocity increase in a pulsed field with several pairs of the field angle « (values |a — 7|
are shown in the figure) for N = 20 and 7' = 600 K with field amplitude F = 0.05 eV for (a) v = 0°
and (b) v = 45°. The data is for the MC model.

expected to be positive in the non-linear regime, because of the exponential rates.?
At the adiabatic limit 7 — oo, the velocity approaches v,g = zv(E;) — (1 — z)v(E?).
The sign of v,q therefore results from the shape of the velocity curve v(E), which can
be non-monotonous and depends strongly on the island size (see Fig. 7.1). Therefore
both signs for v,q are possible in theory. For the island model, the negative sign for
Vaq 1s typical for N = 4 and N = 10, but very rare for others. For N = 12, the
simple limits typically yield the same sign and instead the inversion results from a
time-dependent field in a non-trivial fashion.

The velocity for N = 12 is shown in more detail in Fig. 7.11 with temperature
T = 500 K and T' = 700 K and several field amplitudes. The temperature and the
field amplitude have a very large effect on the velocity in an electrophoretic ratchet.
The current inversion easily disappears for increasing the temperature or the field
amplitude.

The results for the MC model are similar. There are indeed deep minima for 7 =
10* ... 106 for large islands which creates a current inversion. This is shown in Fig. 7.12
for several islands. For large islands, two local maxima appear at 7 = 103...10%. Since
the current inversion occurs typically only at finite values of 7, it is indeed caused by
the interaction between time-dependent field and atoms. For small islands N < 15,
there is a strong odd-even island size dependency which eventually disappears for
larger islands. For an electrophoretic ratchet this odd-even effect becomes important
already at much smaller fields than in the case of a static field. This is because the

3For example, consider a single free particle affected by the field E; > 0 on the right and Ey =
Eix/(1 — x) on the left with temporal periods 71 = z7 and 75 = (1 — z)7. For the corresponding

. E _ —E )
mean field rates I'yigny and T'eg;, one has FI:l‘g“ —zeitl-zle” 2 o fr 0 <z < 1/2, i.e. the mean

oft e F14+(1—x)ek2

field drift I'r — ', > 0 is always on the right.
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Figure 7.10: Velocity in an electrophoretic ratchet with N =4...12 and = = 1/4 as a function of
7 with T'= 500 K and E; = 0.03 eV. The data is for the ME model.
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Figure 7.12: Velocity in the electrophoretic ratchet with 7' = 600 K and 2 = 1/4 for the MC model.
(a) Velocity for the large islands as a function of 7 for E; = 0.04 eV. (b) Minimum velocities for
several islands N =4...91 for E; = 0.02...0.06 eV.

ratcheting mechanism with an alternating field direction tends to force islands into
thin rectangular shapes.

We conclude that the 7-dependency in an electrophoretic ratchet is found to be much
stronger than in the case of a pulsed field. With suitable field periods 7 around
10%...10°% a velocity inversion occurs for all large islands (N > 10) and also for
smaller even-/N islands. Especially for smaller islands with N < 20, the inversion
depends strongly on the temperature and field strength, disappearing at large tem-
peratures. Compared to velocity increase in a pulsed field, inversion phenomena are
observed already with very small field amplitudes near the linear response regime
(E ~ 0.01 eV). An electrophoretic ratchet have been previously studied within the
context of reptating polymers where a similar type of current inversion was found as
a function of polymer size [134].

7.4 'Transition sequences

In this Section, we present typical transport mechanisms computed using the cycle
optimization method of Section 5.2.1 for small islands using the ME model. We found
that the dominating transport cycles for time-dependent fields are usually the same as
those for the static field, especially for the electrophoretic ratchet where two directions
of motion are competing. Also the results for the v = 0° and v = 45° are qualitatively
similar (the 'zig-zag’ configurations appear only for islands much larger than N = 12).
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Figure 7.13: The dominating transport cycle for (a) N =11 and (b) N = 12 in large fields in axis
direction.

For time-dependent fields, dominating cycles differ from the static field case only for
small values of 7, for which the islands have no time to go through a full static-field-
type cycles before the potential is changed. Therefore the dominating transport cycles
cannot be used to explain the velocity increase by a pulsed field in large 7 limit or
velocity inversion for the electrophoretic ratchet with 7 = 10%...10°. In the following,
we set T'= 600 K and try various field amplitudes £ and report a few optimal cycles
of the type (5.6), with function f being the displacement matrix D. It was found that
the results are usually the same for both (5.5) and (5.6).

In a static field, typically two kinds of dominating cycles are found corresponding to
the small and large fields. For small fields, £ < 0.1 eV, the island remains nearly
square and for large fields, £ > 0.1 eV, the island becomes flatter. In Fig. 7.13 we
show dominating transport cycles for (a) N = 11 and (b) N = 12 in a large axis-
directed field. The cycle shown for N = 11 is found for all small odd-N islands in large
fields and proceeds by breaking only single nearest-neighbor bonds. This is a similar
mechanism as previously proposed being the easiest diffusion pathway for N = 5
[183]. For N = 12 and other small even-N islands, the previous type cycle would
lead to configuration that requires breaking of two nearest-neighbor bonds, whereas
the optimized cycle shown in Fig. 7.13(b) can work with only single bond-breaking
transitions. Unlike one might expect based on the Fig. 7.2, optimal cycles involving
islands with an expected width 1 are not found even for very large fields £ ~ 0.25 eV.
This is probably because of the trap configurations that appear for the ME model.

In Fig. 7.14, we show the dominating cycles in the pulsed field case for N = 9 and
N = 10 with small 7. In Fig. 7.14(a) the cycle is shown for N = 9 using v = 0° and
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Figure 7.14: A dominating cycles in pulsed field with small 7. (a) N = 10 with v = 45° and
a = 45 4+ 25°, gray color indicates v = 20° state. (b) N = 9 with v = 0° and o = £20°, gray color
indicates o = —20° state.

a = £20°, and in figure Fig. 7.14(b) for N = 10, v = 45° and a = 45 + 20°. With
these parameters, the velocity is increased when compared to the static field case (see
Section 7.3.1). The configurations for « = —20° and o = 20° are shown in gray and the
change of potential occurs between the gray and black frames. The cycles are basically
the same as for the static field case except that the barriers for the transitions are
lowered due to the pulsed field. This stochastic-resonance-type mechanism, where the
time-scales of two processes are matched, explains the results seen in Section 7.3.1 for
the increase of the velocity for small 7.

7.5 Discussion

We have studied the dynamics of single-layer metal-on-metal islands under strong
static and time-dependent forces with a continuous-time Monte Carlo and numeri-
cal master equation methods. The aim was to study complex non-linear transport
phenomena arising when islands are driven out of equilibrium, far beyond the linear
response regime. Several non-linear effects were identified, most importantly the in-
crease of the velocity by a rotated field and velocity inversions in the electrophoretic
ratchet. Although the behavior was found to be highly complex, depending strongly
on many parameters such as temperature, field (angle, amplitude and period) and
island size, generic behavior could be identified.

First, we studied static-field transport up to field strengths corresponding single bond-
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breaking energy barrier (i.e. term Ep in Eq. (3.3), 0.260 eV for Cu(001)). For large
fields, many differences arise when compared to equilibrium or linear-response condi-
tions because typical island configurations are no longer nearly square, but are heavily
deformed by the field. A strong even-odd dependence on the island size was found,
which has an influence to even large islands (up to ~100 atoms). The range of field
amplitudes £ = 0.01...0.1 eV for Cu was found to be especially interesting from the
point of view of velocity increase and inversion, since for larger fields these phenom-
ena tend to disappear. In this regime, the model is also expected to remain somewhat
realistic, based on the observations of the island geometry changes (no rod configu-
rations) and simulations (small island break-up rate). This is also the regime, where
the results for the MC and ME models coincide. The direction of the field with re-
spect to the axis was found to have a large effect on the drift. Introducing a small
deviation between the measurement and field angles usually leads to an increased ve-
locity. Although this is expected in the case of the diagonal measurement direction,
it was also found in the direction of axis, which purely results from many-particle
interactions coupling the internal degrees of freedom with the center-of-mass motion.
A two-maxima structure for the velocity was found as a function of the field angle. By
computing the second-highest eigenvalue of the stochastic generator (the highest one
being zero), it was found that the leading relaxation time displays a non-monotonous
behavior as a function of the field strength for small islands. The physical meaning of
this is unclear and further studies are needed.

When a periodic time-dependent variation was added to the field, a complex de-
pendence between the velocity and the field period was found. First we studied the
pulsed-field case using symmetrically rotated fields around the measuring direction
along the axis and the diagonal. It was found that the velocity was increased at very
large periods (i.e. slowly varying field), and maxima/minima were found for smaller
periods. The second type of field was an electrophoretic ratchet that creates a time-
dependent force with a zero mean force. It was found to produce current inversions
for all large islands. There are two types of inversion: a genuine time-dependent in-
version and an adiabatic inversion for a slowly varying field. Since current inversions
are not possible for a single atom, it is a pure many-particle effect. In theory, this
type of electrophoretic ratcheting would allow separation of islands based on their
size. In contrast with the velocity increase phenomenon for the pulsed field, current
inversion occurs already in very small fields near linear response regime. One must,
however, note that velocities in the electrophoretic ratchet are very small compared
to velocities in non-zero mean force fields.

For both types of time-dependent fields, it was found that for certain large field
switching periods (namely for 7 = 10*...10° for temperatures 7' = 400...700K),
the velocity has a minimum for large islands. This time scale corresponds to an atom
breaking two nearest neighbor bonds, which is the effective energy barrier process
found in this and all previous studies for this model.
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Our results indicate that the typical large island behavior begins already for islands
with just above 10 atoms and the small-size effects become much weaker for larger
islands. A similar result was also found in previous studies in equilibrium [183]. For
this reason, the behavior of the 10 atom island was found to be somewhat special.
Most phenomena found in this work can already be produced with islands up to 12
atoms. In general, lowering the temperature tends to make velocity increase, current
inversion and 7 sensitivity much stronger at the expense of significantly reducing the
absolute velocities. The current inversion in the electrophoretic ratchet may disappear
completely in large temperatures. This indicates that a large separation in time scales
is a required element for these phenomena (at high temperature limit, all rates become
equal). Increasing the field amplitude amplifies the velocity increase and inversion up
to some point. Very strong fields, however, can have a decreasing effect. Because of this
complex dependence on temperature and the field, a data collapse by dimensionless
E/T is not possible far from equilibrium, which is in contrast to the linear response
regime [122].

The ME and MC models were found to be generally in good agreement. Using suitable
parameters, both models were able to reproduce most of the key findings of this
Chapter - especially in small fields. The largest differences were found for the smallest
islands N < 8, for which the aggressive state reduction (i.e. the island must be
connected via nearest-neighbor bonds) of the ME model appears to have the largest
effect. The vacancy diffusion process was not found to have any significant effect for
the ME model. Also, the type of the variation of the field, stochastic or deterministic,
was found to have only a minor effect. This is because the time-scale separation
of different processes are large, hence the time-scales remain well separated also for
random field periods.

By applying the ME model, we were able to investigate large portions of the parameter-
space with high accuracy, compute effective exponents of the Arrhenius curves, relax-
ation times and also identify typical reaction pathways of the islands during transport.
The numerically exact ME method shows its power in making the non-linear effects
and their systematics discernible. However, the MC model arguably remains physi-
cally more realistic than the ME for the treatment of atoms diffusing around a corner
and for the deterministic field switching scheme.

Since the barrier structure of our semi-empirical model for the processes on fce(100)
surface is quite generic [123|, one can expect similar non-linear phenomena to be
present also in other metal-on-metal systems. As long as distinctive barriers exist, the
non-linear transport properties reported here are not limited to any precise values of
barriers. Although our model is simple, it displays a rich variety of phenomena. This
emphasizes the complexity of nonequilibrium many-particle systems and that there is
still much to be done in exploring transport in the presence of time-dependent fields.
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As discussed in Section 3.4.1, the electromigration force currently achievable in ex-
periments is too small to cause strong non-linear effects discussed here. Our simple
model does not allow a direct comparison with experimental data, but our conclusions
are generic in nature. By introducing more accurate energetics and adding new micro-
scopic transition types, it is possible that some phenomena disappear while new ones
appear, which we demonstrated by comparing the MC and ME models. It would be
also interesting to study similar properties on other lattice geometries such as close-
packed surfaces, with the effect of steps, strain, detachment/attachment processes
and other types of driving or interfering forces included. Experimental results for an
electrophoretic ratchet mechanism in the absence of periodic potentials would be of
interest also for other types of two and three-dimensional many-particle systems. One
may assume that current inversions are indeed common. So far these experiments have
been limited to study DNA separation techniques [72, 171, 172].



8 Summary

In this work, we have studied nonequilibrium properties of many-particle systems by
numerically solving master equations using linear algebra (’direct’) and by Monte
Carlo ('indirect’) methods. The focus of this work has been in solving the transport
properties with a direct method. We have thoroughly discussed relevant practical as-
pects of the theory and the numerics of master equations and their applicability in the
studies of complex many-particle models. We have tested a suitable set of linear alge-
braic and optimization methods related to the direct method. Both direct and indirect
methods were applied to study transport of polymers and metal-on-metal islands in
non-homogeneous time-dependent potentials. Although the equilibrium properties of
these models are well known, predicting transport properties far from equilibrium is
very difficult, because the velocity and diffusion coefficient no longer have a linear
relationship. Currently, the only way to gain access to such nonequilibrium properties
is by simulation or by solving corresponding master equations numerically.

Although the repton and island migration models are different, they share many com-
mon properties. Because of the similar structure with roughly same number of edges
per nodes in the transition graphs, both models exhibit similar numerical behavior in
linear algebraic and integration computations. Both models also exhibit explicit non-
monotonous response to the potential strength. For models with more than one spatial
dimension, the directions of the potential and measuring are of a special interest be-
cause of inherent spatial anisotropy. As seen for the island model, a properly chosen
direction can increase the velocity. For time-dependent potentials, velocity minima and
maxima typically appear as a function of the temporal period of the potential. This
is caused by correlations between the time-scales of the center-of-mass displacement
and internal configurations of the many-particle system. The most striking feature is
the current reversal phenomenon that was found in both repton and island models.
Although this phenomenon is quite typical when the direction of the forces caused by
the potential are changing (e.g. flashing ratchet potential and electrophoretic field), its
occurrence and details depend strongly on the details of the model. Detailed discussion
of results can be found in the discussion sections of Chapters 6 and 7.

Hopefully the results and methods presented in this work also support the efforts
to better understand cooperative transport occurring in biological systems and to
develop complex artificial molecular motors. Especially having externally adjustable
parameters to control molecular motors, such as time-dependent potentials studied in
this work, are an important aspect in designing artificial molecular motors [93, 19].
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Due to the advances in computer technology and numerical methods, direct solution
of the master equation has become a practical method only within the last decade or
so. As demonstrated in this work, an ordinary desktop computer can handle systems
large enough for large-system characteristics to appear. The master equation method
has several advantages. The most important is its numerical accuracy, which can
be typically pushed all the way to the extent of floating point arithmetics for non-
stiff master equations. Even for stiff systems, the accuracy is usually much better
than in Monte Carlo simulations. The second advantage is that the computation
is fast, which allows more extensive exploration of the parameter space. Unlike the
Monte Carlo method, the master equation method is typically robust against the
choice of the initial state, and the arrival to the steady state is straightforward to
verify. Also less manual work is required to compute, verify and analyze the results
as compared to what is typically needed in the Monte Carlo method. Good accuracy,
rapid computations and full knowledge of the available configuration space allow using
efficient optimization methods to find optimal parameters and transition cycles.

The most severe limitation of the master equation method is the size limitation. In
this work, the practical upper limit for stochastic many-particle systems with sparse
transition graphs (e.g. repton, island and TASEP models) was found to be around
108 states. This limit is often easily met, since the number of states typically grows
exponentially with the number of particles. The upper limit is set by the scaling of
the computing time and memory consumption as a function of the number of equa-
tions. Iterative algorithms that are applied to solve eigenstates, linear problems, and
optimize cycles and parameters, are beyond linear. Therefore simply increasing the
computing power and time cannot overcome the size limitations. To study larger sys-
tems, reduction methods (e.g. DMRG) must be applied, which however makes the
method less robust and numerically unpredictable because of additional approxima-
tions. Compared to Monte Carlo method, the master equation method is not well
suited for studying non-Markovian systems. Also setting up the master equation sets
and related operators takes some effort, whereas in Monte Carlo simulation, knowing
the full configuration space is not required.

There are several ways to extend this work. Detailed discussion for extending the stud-
ies of repton and island models can be found in the discussion sections of Chapters 6
and 7. The presented framework including computational methods and model analy-
sis are, however, readily applicable to other models as well. For the master equation
method, large separation of timescales makes the equation set stiff, which causes severe
numerical instabilities and inaccuracies. Current techniques to overcome this problem
are typically based on the assumption of quasi-steady states [44, 135, 146]. However,
these techniques cannot be directly applied to study transport in many-particle sys-
tems, because stochastic generators are often too complicated and one must also keep
track of displacements. Instead, a desired way would be to apply idea of Ref. [163],
where both stochastic generator and related operators (e.g. a displacement matrix)
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were reduced to smaller ones. Turning this procedure into a general and numerically
efficient algorithm is, however, technically challenging. The cycle optimization results
in this work suggests that dominating cycles remain relatively short even for large sys-
tems. Since the total number of short cycles is quite small, optimization with general
weight functions might be possible, at least approximatively. Finally, in order to make
a numerical master equation method a standard numerical tool to study transport in
complex nonequilibrium systems, a comprehensive testing of available numerical linear
algebraic, optimization and reduction methods and different types of many-particle
models would be in order.



A Time-dependent DMRG

In this Appendix, we describe the time-dependent DMRG method. Steps concerning
the construction of the operators are model-specific and are discussed in detail in
Section 4.1.1 for the repton model. Here we only go through the basic working princi-
ples behind the method, technical details can be found in Ref. [166]. Time-dependent
DMRG is based on the normal DMRG, which is often called the ground-state DMRG
method, so we begin with that.

Consider a one-dimensional many-particle system (such as a Heisenberg or a repton
chain) in a state |¥), which is either a wavefunction or a probability distribution for
the ground state or the steady state. This is called a target state and more than one
target state can be used. Instead of presenting this state in the basis of the full system
of all sites, we can alternatively express it as an entangled state of two (or more) sub-
systems such that |¥) = 32N Z;Vil ¢ ;|1) ®1j), where |i) and |j) are basis vectors of
separate subsystems and ¢; ; are coefficients. For one-dimensional systems the natural
choice for subsystems is to use left (basis |i)) and right (basis |j)) parts. Theorem,
known as Schmidt decomposition, states that there exists orthonormal basis |i1) and
lia) such that |¥) = Zﬁfmin[Nl’Nﬂ aili1) @ |ig) with Y, a? = 1. Such decomposition
can be found by creating and diagonalizing reduced density operators p; and ps with
elements [p1];, = >, c;jci/7]~ and similarly for py;. By the construction p; and po
have the same spectrum.! This decomposition is at the center of the DMRG method.
Coefficients «; include information about the correlations between subsystems. If there
is no correlation, only one of the coefficients is non-zero [127].

Now suppose that we want to use only n < M basis vectors for the first (left) subsys-
tem, i.e. we want to find a truncated state |U) &~ |U). By using basic lincar algebra,
one can show that such truncation minimizing the norm [|¥) — [¥)|2 is achieved by
choosing the states with largest weights «;. From this partial set of most important
eigenstates, one can create a truncated change-of-basis operator, which can be used to
truncate states and operators accordingly. Based on this theoretical framework, during
1992-93, White proposed DMRG method to study one-dimensional quantum systems
[195]. The proposed algorithms are commonly known as infinite-size and finite-size
algorithms. The infinite-size algorithm is used to construct reduced operators for large
systems by starting with a small system, which can still be diagonalized exactly. Then

'In practical computations, typically one only needs to find a truncated basis for one of the
blocks (the ’system’). Given a target state(s) and block dimension, this can be done without creating
decompositions and more than one density matrix.
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one increases the system size by adding new sites and using the truncation procedure
based on density matrices and Schmidt decomposition. The finite-size algorithm is
similar, but instead of increasing the system size, it is used to improve the state and
operators created with the infinite-size algorithm.

We now present the basic steps of the infinite-size algorithm, which already includes
the central parts of the DMRG method.

1. By using the left and right subsystems, form a superblock Hamiltonian H con-
taining L sites and having dimension N; x Ns.

2. Compute the ground/steady state |¥) = SN Z;le ¢ |1y @ |4) for H.

Ny No
4,1’ =1 7,3'=1

3. Form the reduced density matrix p; = ) i) (¢'| for the left

part and similarly p, for the right one.

*
Ci,jci’,j’

4. Diagonalize p’s to obtain n; < N; and ny < N, eigenvectors with the largest
eigenvalues separately for the left and right part. Using these vectors, create a
reduced basis transformation operators O; and Os.

5. Transform Hamiltonians and all associated operators for both subsystems into
their reduced eigenbasis using O operators.

6. Add new sites into the newly reduced subsystems. Now the total number of sites
in the subsystems is N + 2. Goto step 1. Now L — L + 2, Ny — n; x M; and
Ny — My X ng, where M; and M, are the dimensions of new sites (typically
My = Ms).

To increase the accuracy and stability, infinite-size algorithm should be always ac-
companied by the finite-size version. The finite-size algorithm is a modification of
the above scheme. Instead of increasing the system size, one keeps the system size L
fixed all the time and performs 'sweeping’. Sweeping is done by adding new sites into
one block while reducing them from the other. Operators for the shrunk blocks are
retrieved from the memory in which they were stored during previous steps (either
during infinite-size algorithm or previous sweeps). After couple of such sweeps, where
both blocks have been fully shrunk and grown, more accurate operators and target
state(s) are obtained. See Fig. A.1 for an illustration of the both infinite-size algorithm
and sweeping.

Dividing the system into smaller parts and then using the information of all parts
to reduce the subsystems is the key idea of the DMRG method. The amount of
entanglement between subsystems regulate the success of the truncation [7]. Basis
truncation is kept under a given truncation tolerance, which is typically small (e.g. ~
10719). This is the single most important parameter in the method. Block sizes are
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increased step-by-step and it is required that the operators can be build recursively.
The size of the reduced basis must remain small, typically less than a hundred or so.
Due to its working principle, DMRG can be efficiently applied only to one-dimensional
systems with short interaction lengths. There has been attempts to extend DMRG
technique to include two-dimensional systems and more complicated many-particle
interactions, but with poor results. The best performance is received for open system,
although periodic systems can be also handled with less precision.

Instead of targeting the ground or steady states, one can also target time-dependent
states. This is the case with the time-dependent DMRG method which uses Runge-
Kutta approach [58|. After computing the target state |¥(¢)) at t = 0 using time-step
At and the infinite and finite-size algorithms, one can compute

|ky) = AtH()[V(¢))

|ko) = AtH(t + At/2) [|U(t)) + 1/2|k1)]
|k3) = AtH (t + At/2) [|[U(t)) + 1/2|k2)]
|ky) = AtH (t + At) [|[W () + |k3)] -

Using these, approximations for the intermediate states are

(e At/3)) ~ [U(0) + 1o 811k + 14lk) + 14]ks) — k)
Nt + 208/3)) 2 [W(1)) + - [16]k) + 20[k) + 20[R) — 2k}

Wt + A1) & 2 (1) + 20ka) + 2lks) + [Ra)]

which are used as the target states. After sweeping, all operators are well adapted to
these states and one can advance t + At in time and repeat the process.

During the past 20 years a large number of modifications and improvements of these
original algorithms have been proposed, involving different block arrangements, finite-
temperature extension, state estimation and better targeting, time-development and
technical improvements. More recently, focus has shifted towards matrix product state
formalism, instead of working with matrices and vectors as presented here. This has
lead to new extension of the DMRG method and better theoretical understanding
how it works [166].



132 Time-dependent DMRG

@ -=sie : @@ \
--@—_____ |

[ ] =block
\ —@—@—
1. [ HO @ ] | S —
2. [ roel ] -8 *
C 00 \

3 | | | | 00—

Figure A.1: Tllustrations of the DMRG procedures. On the left, one iteration of the infinite-system
DMRG algorithm is shown: (1) Free sites are added in left and right blocks, (2) the super-block is
formed and a target state (e.g. the steady state) is solved, (3) both blocks are renormalized. On the
right, one complete ’sweeping’ for the finite-size algorithm and time-dependent DMRG is shown.



B Derivation of equations (4.2) and
(4.3)

In this Section we derive equations (4.2) and (4.3), which are valid for any finite
master equation system. The derivation follows the seminal work by Derrida [46] and
later works closely related to it, such as [64, 26, 101, 178]. For a general system, we
are only able to derive the equations which are to be solved using numerical methods.
See also Ref. [188] where similar derivation is done for the discretized Fokker-Planck
equation.

Let us consider a finite discrete stochastic system with states y € {1,2,..., N} and let
us define a real-valued counting process x, such as the displacement of the center-of-
mass, given by an antisymmetric matrix D, i.e. moving from state i to j increases (or
decreases) the counter by D;; and with D, ; = 0 and no branching. Then for an ergodic
system, one can start from any state and construct the relative spatial positions of
all N states using D), this defines values x, € R for the counter. Let the primitive
period of the counter be L > 0 and define xé = x, + Ll with [ € Z. This means,
that in the configuration graph of the model, there exists one or more simple cycles
C such that Z@.’ fec D;; = L. For the center-of-mass transport in particle models,
one may conclude that there cannot be simple cycles with a different L, because the
period is bind to the displacement of the center-of-mass, which results from a precise
number if single particle moves (e.g. reptons or atoms)!. However, this is merely a
technical requirement to simplify the derivation. As we will see, expressions for v(t)
and Deg(t) only depend on H and D. Finally, note that one can have xg, = xé for
some I # [ and/or 3y # y. This is typically the case when the configuration graph has
a complicated structure.

Let the joint probability for a state y in a period [ be given by p; with its time-evolution
given by the master equation

dpl (t) I+f(y,y') )
# = yZ [Hy,y’py' () — Hy’,ypy(t> )

/

where H,, = 0 and the anti-symmetric function f takes values {—1,0,1}, depending
on whether the state y" actually belongs to the previous (I—1), the same (1) or the next

1Because |zF — 2| is fixed for all [, the assumption of two or more different periods immediately
leads to a contradiction
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(I +1) period. This "bookkeeping’ function depends on how one chooses z,. However,
as we will see, it has no effect on the final results because it will disappear in the
summation over all periods [. The n'" moment of the counter is

-y Y6

Definitions for the velocity and the effective diffusion coefficient are given in Sec-
tion 3.2.1. After these preliminaries, let us begin the derivation by defining following
auxiliary functions

Z Dl (t) — (2 (t))q, (1),

where z(¢) is the value of the counter at time ¢. One can see that conditions >, ¢, =1
and Zy sy = 0 hold. From now on, we drop the explicit ¢-dependency to simplify the
notation. Taking time derivative and using master equations, we have

I+ f(
Z Z [ vy’ Dy ) Hy’,ypﬂ = Z [Hyyay — Hy ya,]

l=—0c0 ¢ y'
1 () ] d(z) .
Z Z [ vy Dy o Hy’,ypy} T 0 Gy — (T)Gy-
l=—00
I+£(y.y")

For the value of the counter, we can write :1: =, + D, for states y' reachable

from y. Now we can re-arrange terms

l I
_ Z Z [ < yJ/rf vy) 4 Dyy) () Hy/,yxlyply] — (z) Z (Hy gy — Hy 4q,]

l=—00 ¥/ Y
d(x)
T ar W
—ZHyy [Zxﬂrfyy Hf(wy) ] ZH ’ylzxp _ ]
l=—00 l=—00

- I+ f (v’ d<i’7>
X Dy 3 i - 2,

l=—00
d{z)
= Z Hyysy — Hy ySy + Hyy Dy yay] — dt — Ay
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Time-derivatives of the first two moments can be now computed.

o(t) = Z Z Z [ l+f ") _ Hy7y/p;/]

l=—0c0 ¥y’
- Z Z Z [ y p;jrf(yl’y) + Dy’,yHy',yPZ - x;’Hy,y’pé/]
Yy l=—o0
= Z Z Dy yHy y Z pé
y vy l=—0c0

= Z Z Dy yHy Gy
y oy

By using identity (x;,)Q = (xﬁf(y,’y)) + 2D, yxiff(y Y4 D; 4 We get
- 1\2 ! 2 !
= § : § :(xy’) E : [Hy’,ypy+f(y v — Hy,y’py/}
l==c0 ¢ Y

- 5 S {[ (et ) w2yt 03]yl

l=—c0 ¥y y’

- (%)2 Hy,y’p;’}

Z ZZ [QDy SO Dz’,y] Hy ypiH o)

l=—00 ¥y

_ZZZDyyHyyZmypy+ZZD v yy-

l=—00

Inserting these into the definition of Deg(t), with d = 1, we get

Ld(z(t)*) d(z(t))
2 dt — {z(t) dt

:Zszy nypy—'— ZZD yyqy Zszy v yly
vy oy l=—o0
_ZZDyy [pr - ZZD Hy yq,
l=—o0
:ZZDW/ "wSy T35 ZZD Hy yy-
vy oy
In the case of time-independent H, taklng the limit ¢ — oo gives the long-time velocity

and diffusion coefficient for the center-of-mass transport. For time-dependent systems,
integration over time is required.

Deg(t) =
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