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Abstract

We formulate the Helmholtz equation as an exact controllability problem for the
time-dependent wave equation. The problem is then discretized in time domain with
central finite difference scheme and in space domain with spectral elements. This
approach leads to high accuracy in spatial discretization. Moreover, the spectral el-
ement method results in diagonal mass matrices, which makes the time integration
of the wave equation highly efficient. After discretization, the exact controllability
problem is reformulated as a least squares problem, which is solved by the conju-
gate gradient method. We illustrate the method with some numerical experiments,
which demonstrate the significant improvements in efficiency due to the higher order
spectral elements. For a given accuracy, the controllability technique with spectral
element method requires fewer computational operations than with conventional
finite element method. In addition, by using higher order polynomial basis the in-
fluence of the pollution effect is reduced.

Key words: Exact controllability, Helmholtz equation, Spectral element method,
Mass lumping
PACS: 43.20

1 Introduction

The Helmholtz equation is a fundamental equation for time-harmonic wave
propagation. It occurs in a number of physical applications such as underwater
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acoustics, medicine, and geophysics. It can also be used to model the scattering
of time-harmonic acoustic waves by an obstacle.

We consider a controllability method for the numerical solution of the two-
dimensional Helmholtz equation with an absorbing boundary condition de-
scribing the scattering of a time-harmonic incident wave by a sound-soft ob-
stacle:

−ω2U −∇2U = F, in Ω, (1)

U = 0, on Γ0, (2)

−iωU +
∂U

∂n
= Yext, on Γext. (3)

Function U(x) denotes the total acoustic pressure consisting of the scattered
wave Uscat(x) and the incident wave Uinc(x) = exp(i~ω · x), where i is the
imaginary unit and the vector ~ω gives the propagation direction. The angular
frequency is denoted by ω = ‖~ω‖2, and the corresponding wavelength is given
by λ = 2π

ω
. In a problem formulated this way, the wavenumber is equal to the

angular frequency. Functions Yext and F in the equations above depend on the
incident wave, and are of the form

F = −ω2Uinc(x)−∇2Uinc(x), (4)

Yext = −iωUinc(x) +
∂Uinc(x)

∂n
, (5)

where n is the outward normal vector to domain Ω. In scattering problems with
constant wave number the right-hand side function F is zero, but it becomes
nonzero with nonconstant ω. Here we keep ω constant but the controllability
method is not restricted in this respect.

The domain Ω is bounded by the surface of the obstacle Γ0 and an absorbing
boundary Γext (see Fig. 1). On the absorbing boundary Γext, we impose the
conventional first order boundary condition [1]. This is the simplest alterna-
tive and not accurate in approximating the Sommerfeld radiation condition.
However, it is sufficient for the presentation of the controllability method of
this article. We shall consider more sophisticated boundary conditions and
absorbing layers in future.

Many solution techniques have been proposed for the Helmholtz equation (1)-
(3). For example, various fictitious domain and domain decomposition meth-
ods have been applied to the corresponding finite element problems. A com-
mon quality of these methods is that they lead to large-scale indefinite linear
systems, which are solved iteratively. It is difficult to develop efficient precon-
ditioners for the iterative solution, especially if the material coefficients are
varying. Preconditioners for solving the Helmholtz equation are considered in
[2] and [3], and multigrid based preconditioning introduced in [3] has given
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Figure 1. Obstacle Θ, domain Ω, and the two parts of the boundary ∂Ω = Γ0 ∪Γext

of the domain Ω.

promising results.

Another difficulty in the finite element solution of the Helmholtz equation is
the pollution effect, which deteriorates accuracy when wave number increases
even if discretization resolution is kept fixed (see, e.g., [4]). Many techniques
have been developed to reduce the pollution effect and during recent years
various methods using plane waves as basis functions have turned out to be
succesful (see, e.g., [5], [6]). In this work, we adhere to a polynomial basis, but
increase the order of the basis functions to reduce the pollution effect.

We use the idea of Bristeau, Glowinski, and Périaux presented in [7] to for-
mulate the Helmholtz problem as an exact controllability problem for the
time-dependent wave equation. Exact controllability approach is inspired by
the Hilbert Uniqueness Method (HUM) introduced by Lions [8] as a systematic
method to address controllability problems for partial differential equations.
This controllability technique was used also in [9], where it was combined with
a fictitious domain method, and Lagrange multipliers were used to handle the
Dirichlet condition.

As in [10], we discretize the wave equation in space domain with spectral el-
ements, which combines the geometric flexibility of finite elements with the
high accuracy of spectral methods. The basis functions are higher order La-
grange interpolation polynomials, and the nodes of these functions are placed
at Gauss-Lobatto (GL) collocation points. The integrals in the weak form of
the equation are evaluated with the corresponding Gauss-Lobatto quadrature
formulas. As a consequence of the choice, the mass matrix is diagonal.

We use the central finite difference scheme for time discretization. This scheme
is second order accurate and with a diagonal mass matrix also fully explicit,
which are both essential properties for computational efficiency. Only matrix-
vector products are needed in time-dependent simulation, but the scheme
needs to satisfy the CFL condition, which limits the length of the time step
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(see [10] for details).

After discretization, exact controllability problem is reformulated as a least
squares problem, which is solved with the preconditioned conjugate gradient
(CG) algorithm. Computation of the gradient of the function to be minimized
is an essential stage of the method. This is performed by the adjoint equation
technique. In [7], the gradient was derived on the continuous level, and the
same formula was used also on the discrete level. We discretize first the wave
equation and the function to be minimized. Then, we compute the gradient
directly for the discretized problem.

The rest of the paper is organized as follows: The formulation of the exact con-
trollability problem is considered in Section 2. The discretization of the exact
controllability problem is described in Section 3. In Section 4, we present the
least-squares problem and consider its conjugate gradient solution. Finally, in
Section 5, we study the performance of the method with numerical experi-
ments.

2 Exact controllability formulation

Instead of solving directly the time-harmonic equation, we return to the corre-
sponding time-dependent equation and look for time-periodic solution. Direct
time-integration of the wave equation can be used to reach the time-periodic
case, but convergence is usually too slow to be useful in practice. As the results
in [7] indicate, the convergence can be vastly improved by control techniques.

Solution of the time-harmonic equation (1)-(3) is equivalent to finding a peri-
odic solution for the corresponding time-dependent wave equation. The period
T corresponding to the angular frequency ω is given by 2π

ω
, and the T - peri-

odic solution can be achieved by controlling the initial conditions such that
the solution and its first time derivative at time T coincide with the initial
conditions.

We introduce the Hilbert space Z for the initial conditions e = (e0, e1) ∈ Z
by

Z = V × L2(Ω), (6)

where
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V = {v ∈ H1(Ω) such that v = 0 on Γ0}. (7)

Then, we have the following exact controllability problem: Find initial condi-
tions e ∈ Z such that equations

∂2u

∂t2
−∇2u = f, in Q = Ω× [0, T ], (8)

u = 0, on γ0 = Γ0 × [0, T ], (9)

∂u

∂t
+
∂u

∂n
= yext, on γext = Γext × [0, T ], (10)

u(x, 0) = e0,
∂u

∂t
(x, 0) = e1 in Ω, (11)

u(x, T ) = e0,
∂u

∂t
(x, T ) = e1 in Ω, (12)

hold with

f(x, t) = −ω2uinc(x, t)−∇2uinc, (13)

yext(x, t) =
∂uinc(x, t)

∂n
− Re(iωUinc exp(−iωt)), (14)

where uinc(x, t) = Re(Uinc(x) exp(−iωt)). When the exact controllability prob-
lem is solved, the complex-valued solution U of (1)-(3), is obtained by U =
e0 + i

ω
e1.

The spectral element discretization of the problem is based on the weak for-
mulation of the classical wave equation (8)-(10): Find u satisfying u(t) ∈ V
for any t ∈ [0, T ] and

∫
Ω

∂2u

∂t2
v dx+

∫
Ω
∇u · ∇v dx+

∫
Γext

∂u

∂t
v ds (15)

=
∫

Ω
fv dx+

∫
Γext

yextv ds

for any v ∈ V and t ∈ [0, T ].
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3 Discretization

For the spatial discretization of the wave equation (8)-(11), we use spectral
element method, which combines the geometric flexibility of classical finite
elements with the high accuracy of spectral methods. The computational do-
main is divided into quadrilateral elements, and in each element a local higher
order polynomial basis is introduced. The degrees of freedom corresponding
to the basis functions are located at the Gauss-Lobatto integration points
of the elements. This method is especially useful for the solution of time-
dependent wave equations, because it leads to a diagonal mass matrix also
with a higher order basis [10] (see also [11]). This fact is very beneficial for the
time-dependent simulation with explicit schemes. After spatial discretization
we have the semi-discrete equation

M∂2u

∂t2
+ S ∂u

∂t
+Ku = F , (16)

where vector u(t) contains the nodal values of the function u(x, t) at time t,
and satisfies the initial condition (11) at time t = 0. Because both the mass
matrix M and the matrix S are diagonal, explicit time stepping with central
finite differences requires only matrix-vector multiplications. Stiffness matrix
is denoted by K, and F is the vector due to the functions f and yext.

The time discretization of the semi-discrete equation is performed with the
standard central finite differences. This method is second order accurate with
respect to the timestep ∆t and leads to an explicit time-stepping scheme. Both
properties are essential for computational efficiency.

The time interval [0, T ] is divided into N timesteps, each of size ∆t = T/N .
After replacing the time derivatives in the semidiscretized form (16) by the
appropriate approximations and taking into account the initial condition (11)
we obtain the fully discrete state equation, which can be represented in the
matrix form



I

C0 M

B C D
. . . . . . . . .

B C D

B C D





u0

u1

...

...

uN

uN+1


−



I 0

0 ∆tB

0 0
...

...
...

...

0 0



e0

e1

−∆t2



0

1
2
F0

F1

...

...

FN


= 0, (17)
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where ui and F i are the vectors u and F at time i∆t, and e0 and e1 are the
initial conditions. The matrix blocks C0, B, C and D are given by the formulas

C0 =
∆t2

2
K −M, (18)

D =M+
∆t

2
S, (19)

C = ∆t2K − 2M, (20)

B =M− ∆t

2
S, (21)

while I is the identity matrix. In the next section, when describing the control
algorithm, we use for the state equation the short form

s(e,u(e)) = 0, (22)

where e = (e0, e1)T contains the initial values and u the vectors ui. We denote
the state equation by s0(e,u(e)) = 0 in the special case with F i = 0 for all i.

4 Control problem

The exact controllability problem for computing T -periodic solution for the
wave equation involves finding such initial conditions e0 and e1 that the so-
lution u and its time derivative ∂u

∂t
at time T would coincide with the initial

conditions. For the numerical solution, the exact controllability problem is re-
placed by a least-squares optimization problem with the functional J , which
is, on the discrete level, of the form:

J(e0, e1,u) =
1

2

(
uN − e0

)T
K
(
uN − e0

)
+

1

2

(
∂uN

∂t
− e1

)T
M

(
∂uN

∂t
− e1

)
,

(23)

where ∂uN

∂t
= uN+1−uN−1

2∆t
and ui, i = N − 1, N,N + 1, are given by equation

(17).

The purpose is to minimize functional J , which depends on the initial condi-
tions both directly and indirectly through the solution of the wave equation
(8)-(11).

Since vector u depends linearly on the initial conditions e0 and e1, J is a
quadratic function, and (23) can be minimized by solving the linear system
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∇J(e0, e1) = 0. This is performed by an optimization algorithm which requires
the gradient of the functional J with respect to the control variables e0 and
e1.

Our algorithm differs from the one in [7] with respect to the spatial discretiza-
tion and the gradient computation. In [7], the gradient was derived on the
continuous level, and the same formula was used also on the discrete level.
This approach does not lead exactly to the gradient of the function to be min-
imized. That is why we proceed in different order and discretize the problem
before deriving the gradient formulas. However, our experiments in [12] indi-
cate that the two ways to compute the gradient lead to practically the same
convergence for the CG method.

By the adjoint equation technique we see that

dJ(e,u(e))

dek
=
∂J(e,u)

∂ek
− pT

∂s(e,u)

∂ek
, k = 0, 1, (24)

where p is the solution of the adjoint equation

(
∂s(e,u)

∂u

)T
p =

(
∂J(e,u)

∂u

)T
. (25)

In the matrix form corresponding to (17) this equation is given by



I C0 B

M C B

D . . . . . .

. . . . . . B

D C

D





p0

p1

...

...

pN

pN+1


=



0
...

0

∂J
∂uN−1

∂J
∂uN

∂J
∂uN+1


, (26)

where
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∂J

∂uN−1
=

1

2∆t
M(e1 −

∂uN

∂t
), (27)

∂J

∂uN+1
=

1

2∆t
M(

∂uN

∂t
− e1), (28)

∂J

∂uN
= K(uN − e0). (29)

The gradient components are then the following:

dJ(e,u(e))

de0

= K(e0 − uN) + p0, (30)

dJ(e,u(e))

de1

=M
(
e1 −

∂uN

∂t

)
+ ∆tBp1. (31)

We solve the least squares problem with a preconditioned conjugate gradient
(CG) method. The transition procedure to compute the initial approximation
of e0 and e1 for the CG algorithm is the same as in [7] as well as the block-
diagonal preconditioner

L =

K 0

0 M

 . (32)

Each CG iteration step requires computation of the gradient ∇J , which in-
volves the solution of the state equation (17) and its adjoint equation (26).
Also solution of one linear system with matrix L and some matrix-vector op-
erations are needed.

Solution of a linear system with the preconditioner requires the solution of
systems with the stiffness matrix K and the diagonal mass matrixM. Efficient
solution of linear systems with the matrix K is critical for the overall efficiency
of the control method. At this stage, we use a modification of Kickinger’s [13]
algebraic multigrid (AMG) introduced in [14]. The use of AMG methods for
spectral elements has recently been studied in [15].

Values of the control variables e at the ith iteration are denoted by ei0 and

ei1. Solution of the adjoint state equation is p = (p0, ∂p
0

∂t
), and the gradient

variable is g = (g0, g1). By s0(e,u(e)) = 0 we denote the state equation (17),
where F i = 0 for all i. Then, the CG algorithm for solving the least-squares
problem is the following:

Algorithm 1 Preconditioned CG algorithm
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Compute the initial values e0
0 and e0

1.

Solve the state equation s(e0,u(e0)) = 0.

Solve the adjoint state equation
(
∂s(e0,u(e0))
∂u(e0)

)T
p =

(
∂J(e0,u(e0))

∂u(e0)

)T
.

Compute the gradient vectors g0 and g1 by the formulas (30) and (31).

Solve linear system with the preconditioner Lw = −g.

Set c0 = −(w,g), c = c0 and i = 1.

Repeat until norm < ε

Solve the state equation s0(w,u(w)) = 0.

Solve the adjoint state equation
(
∂s(w,u(w))
∂u(w)

)T
p =

(
∂J(w,u(w))
∂u(w)

)T
.

Compute the gradient updates v0 and v1 by the formulas (30) and (31).

Compute ρ = c
(w,v)

.

ei = ei−1 + ρw.

g = g + ρv.

Solve linear system with the preconditioner Lv = −g.

γ = 1
c
, c = −(v,g), γ = cγ.

w = v + γw, i = i+ 1,

where norm is either absolute or relative euclidean norm of the variable c,
which is the gradient of the functional J .

5 Numerical examples

In order to validate the method, we consider the solution of various test prob-
lems. The main purpose of the tests is to study the accuracy of the spectral
element discretization and its influence on the efficiency of the method. We also
demonstrate the application of the method to some sample scattering prob-
lems. Mesh generator provided by Numerola Ltd. is used to divide the compu-
tational domain into square elements, each having a side length h. Numerical
experiments have been performed on an HP 9000/785/J5600 workstation at
552MHz PA-RISC 8600 CPU.

The time discretization scheme used here is only second order accurate. In con-
nection with higher order elements, the temporal error is larger than the spatial
error, unless time steps are very small. Therefore, the number of timesteps is
chosen such that stability and accuracy demands are ensured also for higher
orders.
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5.1 Accuracy of the spatial discretization

There are five factors which affect the accuracy of the final solution to the
controllability problem.

(1) spatial discretization, which is performed by the spectral element method,
(2) time discretization, which is performed by central finite differences,
(3) approximation of the geometrical boundaries, which is piecewise linear,
(4) stopping criteria of the CG method, which sets a lower bound for the

error,
(5) approximation of the radiation condition.

In the first tests, the aim is to study the accuracy of the spatial approximation,
and we try to eliminate or isolate the other factors from the solution. Firstly,
we use only such geometrical shapes, which can be approximated exactly by
the spectral element mesh. Secondly, we modify the right-hand side function
of the problem such that we know the analytic solution. This modification
eliminates factor 5 from the error. Thirdly, we use a high number of time steps
to reduce the time discretization error. Stopping criteria of the CG method
can not be eliminated, but manifests itself as a lower bound for the error and
can thus be easily controlled.

The boundary Γext coincides with a rectangle with the lower left corner at the
point (0.0, 0.0) and the upper right corner at the point (4.0, 4.0). In the center
of this rectangle, we have a square obstacle Θ with side length 2. We modify
the functions in the scattering problem such that the analytic solution of the
problem is known to be the plane wave uinc. For this purpose, we introduce
an auxiliary function ŷ ∈ H1(Ω) which satisfies the conditions uinc(x, t) =

cos(ωt − ~ω · x), ~ω = ω
(
− 1√

2
, 1√

2

)
, ŷ|Γ0 = uinc, ŷ|Γext = ∂ŷ

∂n
|Γext = 0, and

yext = ∂uinc

∂t
+ ∂uinc

∂n
.

Then, the function û defined by û = u − ŷ satisfies equation (8) with the

nonzero right-hand side f = −∂2ŷ
∂t2

+ ∇2ŷ as well as equations (9) and (10).
After solving û, solution to the actual test problem is given by u = û + ŷ. In
these experiments, we have chosen to use 300 timesteps per one time period
[0, T ], and the stopping criterion works with norm =

√
c
c0

and ε = 10−5.

In the first experiment, we construct a mesh with h = 1/4 in the computational
domain. This mesh is used to solve the test problem with wavenumbers ω = π
and ω = 2π. The mesh resolution is given by λ/h = 2π/ωh. Fig. 2 shows the
error when the order of the spectral basis is increased. As the order increases,
the error decreases until the error of the time discretization or the stopping
criterion is achieved.
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Figure 2. Maximum error with respect to the order of the polynomial basis for two
different values of the mesh resolution such that h = 1/4.

The number of non-zero entries in the stiffness matrix is essential for computa-
tional efficiency, since the time stepping scheme involves mainly matrix-vector
multiplications. We extend the first experiment by studying the error in terms
of the number of nonzero matrix entries. The results of Fig. 2 are repeated
in Fig. 3 as r-refinement. The error curves of the h-refinement are obtained
by keeping the order fixed (r = 1) and doubling the resolution of the mesh
consecutively. Based on the results, it seems clear that it is better to increase
the order than the resolution to improve efficiency.

This conclusion is further supported by Fig. 4, which shows the CPU times
for these experiments. Naturally the CPU time increases as the resolution
or the order is increased but it seems to depend linearly on the number of
nonzero entries in the stiffness matrix. The conclusion, that total CPU time
for the SEM is much less than the total CPU time for the FEM for same
accuracy, follows from these findings. To show the benefit of preconditioning,
computations corresponding to h- and r-refinement with ω = 2π are repeated
without preconditioning (see Fig. 4). The preconditioned minimization seems
to be at least an order of magnitude faster, and CPU time required by the
AMG preconditioner is less than 3% of the CPU time for the whole algorithm.
Thus, significant savings result from the AMG preconditioner.

We performed another set of experiments by varying the resolution of the
mesh with the order of the basis. More specifically we used lower resolution
with higher orders according to the equation λ/h = 27−r. Fig. 5 shows the
error with respect to increasing wavenumber for orders 1-5. The effect of the

12



10-4

10-3

10-2

10-1

100

103 104 105 106

M
ax

im
um

 e
rr

or

Number of non-zero elements in the stiffness matrix

 

h-refinement, r=1, ω=π
h-refinement, r=1, ω=2π
r-refinement, h=1/4, ω=π

r-refinement, h=1/4, ω=2π
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Figure 4. CPU time of h- and r-refinements in seconds.

pollution term is clearly visible in the error curves. We expected to see a
more pronounced reduction in the pollution effect with higher orders. Now it
is almost similar with all orders. Perhaps the difference could be observed by
extending the test to higher wave numbers.
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Figure 5. Behaviour of the error with respect to the wavenumber for different orders
of the polynomial basis such that λ/h = 27−r.
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Figure 6. Behaviour of the error with respect to the non-zero elements in the stiffness
matrix such that λ/h = 27−r.

Fig. 6 shows the same errors in terms of the number of nonzero matrix entries.
These results support the conclusion that certain error level is reached more
efficiently by applying higher order spatial discretization.
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r

Type of the obstacle 1 2 3 4 5

non-convex semi-open cavity DOF 2112 8064 17856 31488 48960

iter 152 123 122 122 122

two non-convex semi-open cavities DOF 1221 4635 10241 18039 28029

iter 90 95 95 95 95

convex cavity (square) DOF 864 3264 7200 12672 19680

iter 45 65 45 45 41
Table 1
Number of iterations (iter) and degrees of freedom (DOF) with different scatterers.

5.2 Scattering examples

In this section, we consider ordinary scattering problems (8)-(11), where f = 0,
yext = ∂uinc

∂n
+ ∂uinc

∂t
, and the incident plane wave is of the form uinc(x, t) =

cos(ωt − ~ω · x). We use the propagation direction ~ω = ω
(
−
√

3
2
, 1

2

)
, angular

frequency ω = 3π, and mesh stepsize h = 1
8
. There are slightly over five

elements per wavelength. To guarantee demands for accuracy also for higher
orders, we have chosen to use 600 timesteps per one time period [0, T ], and
the stopping criterion works with norm =

√
c and ε = 10−3.

In the first scattering problem, the lower left corner of the domain surrounding
the obstacle is at the point (0.0, 0.0) and the upper right corner is at the point
(7.75, 4.25). Internal width and height of the cavity are 5 and 5

4
, and thickness

of the wall is 1
4

(see Fig. 7). The second scattering problem is solved in rectangle
[0, 5] × [0, 4], where we have two non-convex semi-open cavities (see Fig. 8).
Internal width and height of each cavity is 3

4
and 5

4
. Thickness of the wall is

1
4
, and distance between cavities is 1. We also consider scattering by the same

square obstacle as in the previous section. Number of iterations with different
scatterers are shown in Tbl. 1, and contour plots of the numerical solutions
with r = 3 are in Figs. 7-9.

As we can see, the number of iterations is substantially less in the case of
convex square scatterer than in the cases of non-convex scatterers. In all the
experiments it appears that preconditioning keeps the number of CG iterations
bounded with respect to r.
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Figure 7. Contourplot of scattering by a non-convex semi-open cavity.

Figure 8. Contourplot of scattering by
two non-convex semi-open cavities.

Figure 9. Contourplot of scattering by a
square.

6 Conclusions

The spectral element discretization used in this article results in a global
mass matrix that is diagonal by construction. No inversion of a mass matrix is
needed, which leads to a very efficient implementation of the control algorithm.
With the higher-order spectral element method, certain error level can be
reached with lower computational work than with conventional FEM.

Computational effort of the method seems to have linear dependence on the
number of non-zero elements in the stiffness matrix. The number of precon-
ditioned CG iterations appears to be independent of the order of the spectral
element basis, which confirms the efficiency of the AMG preconditioner, and
makes the solver feasible for higher orders.

It is worth mentioning that the time discretization used here is only second
order accurate, which restrict the efficiency of the scheme with higher order
elements. In future, it could be of interest to use more accurate, i.e. higher
order, time schemes.
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