JYVASKYLA STUDIES IN COMPUTING
155

Jyri Leskinen

Distributed Multi-Objective
Optimization Methods for Shape
Design using Evolutionary
Algorithms and Game Strategies

¢
|

JYVASKYLAN YLIOPISTO

JYVASKYLA STUDIES IN COMPUTING 155

Jyri Leskinen

Distributed Multi-Objective
Optimization Methods for Shape
Design using Evolutionary
Algorithms and Game Strategies

Esitetddn Jyvaskyldn yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen auditoriossa 1
syyskuun 22. pdiviand 2012 kello 12.

Academic dissertation to be publicly discussed, by permission of

the Faculty of Information Technology of the University of Jyvéaskyld,
in building Agora, auditorium 1, on September 22, 2012 at 12 o’clock noon.

)

UNIVERSITY OF H JYVASKYLA

JYVASKYLA 2012

Distributed Multi-Objective
Optimization Methods for Shape
Design using Evolutionary
Algorithms and Game Strategies

JYVASKYLA STUDIES IN COMPUTING 155

Jyri Leskinen

Distributed Multi-Objective
Optimization Methods for Shape
Design using Evolutionary
Algorithms and Game Strategies

)

UNIVERSITY OF H JYVASKYLA

JYVASKYLA 2012

Editors

Timo Mannikko

Department of Mathematical Information Technology, University of Jyvaskylad
Pekka Olsbo, Ville Korkiakangas

Publishing Unit, University Library of Jyvéaskyla

URN:ISBN:978-951-39-4844-3
ISBN 978-951-39-4844-3 (PDF)

ISBN 978-951-39-4843-6 (nid.)
ISSN 1456-5390

Copyright © 2012, by University of Jyvaskyla

Jyviaskyld University Printing House, Jyvéskyld 2012

ABSTRACT

Leskinen, Jyri

Distributed Multi-Objective Optimization Methods for Shape Design using Evo-
lutionary Algorithms and Game Strategies

Jyvéaskyla: University of Jyvaskyld, 2012, 86 p.(+included articles)

(Jyvaskyld Studies in Computing

ISSN 1456-5390; 155)

ISBN 978-951-39-4843-6 (nid.)

ISBN 978-951-39-4844-3 (PDF)

Finnish summary

Diss.

This research investigates innovative new methods for increasing the efficiency of
shape design optimization are studied. Considerable improvements on algorith-
mic convergence can be achieved by splitting the geometry of a single-objective
problem into an equivalent multi-objective problem and solving it by using com-
petitive Nash games from the field of game theory. Further efficiency improve-
ments can be achieved using a “distributed one-shot” method introduced in this
work by decomposing the computational domain and solving both the geometry
and domain simultaneously in a single “global” Nash game. The method is inher-
ently parallel and is suitable for distributed platforms. Optimization is done us-
ing evolutionary algorithms allowing global and non-smooth optimization. Im-
plementation of modern graphics processing units for the introduced methods is
also studied. The methods are evaluated on academic model problems from the
field of computational fluid dynamics, available in the Finnish Design Test Case
Database. The numerical results presented validate the new approach and open
the door to more complex optimization problems of industrial interest.

Keywords: competitive games, computational fluid dynamics, distributed opti-
mization, domain decomposition, evolutionary algorithms, finite ele-
ment method, GPGPU, Nash algorithms, shape optimization

Author

Supervisors

Reviewers

Opponent

Jyri Leskinen

Department of Mathematical Information Technology
University of Jyvaskyld

Finland

Professor Jacques Périaux

Department of Mathematical Information Technology
University of Jyvaskyld

Finland

International Center for Numerical Methods in Engi-
neering (CIMNE)

Polytechnic University of Catalonia

Spain

Professor Pekka Neittaanmaki

Department of Mathematical Information Technology
University of Jyvaskyla

Finland

Professor Marek Rudnicki

Institute of Information Technology

Faculty of Technical Physics, Applied Mathematics and
Information Technology

Technical University of Lodz

Poland

Professor David Greiner

Institute of Intelligent Systems and Numerical Appli-
cations in Engineering (SIANI)

University of Las Palmas de Gran Canaria

Spain

Professor Marko M. Mikela

Department of Mathematics and Statistics
University of Turku

Finland

ACKNOWLEDGEMENTS

During my years as a graduate student I became familiar with the joys of mathe-
matical optimization and the strange world of evolutionary algorithms, and I got
hooked. In the beginning of my postgraduate studies I was introduced to compu-
tational simulation, and a whole new world opened to me. For making possible
the adventure in this wonderland, I have to thank many people.

First of all, I would like to express my greatest gratitude to my supervisors,
Professor Jacques Périaux and Professor Pekka Neittaanméki for giving me this
opportunity, and for all their guidance. I would also like to thank all the reviewers
for giving me crucial feedback and new insights into my work.

I thank all the current and former postgraduate students in the University of
Jyvéskyld with whom I worked and had inspiring discussions. I would also like
to thank all my coworkers in the Design Project team, Hong Wang, Anu Penttild,
Tero Tuovinen, Kati Valpe, and Tuomo Varis, for the opportunity to work in such
an interesting project.

I would like to thank Professor Frédéric Hecht from the Paris 6 University
for making available such a great scientific software tool for free use by anybody,
and for all the instruction he personally provided.

I'am also deeply grateful to all the secretaries in the Department of Mathe-
matical Information Technology for taking care of practical matters. I thank the
Department, the COMAS Graduate School and TEKES for their financial support.

I'will be forever indebted to my parents, who have always inspired and sup-
ported me. I am most deeply to my wife Xiaohua, who never stopped believing
in me even when I myself did, and to my son Tapio who has made the world such
a better place.

LIST OF FIGURES

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10
FIGURE 11
FIGURE 12
FIGURE 13
FIGURE 14
FIGURE 15
FIGURE 16
FIGURE 17
FIGURE 18

FIGURE 19
FIGURE 20
FIGURE 21
FIGURE 22
FIGURE 23

FIGURE 24
FIGURE 25
FIGURE 26
FIGURE 27
FIGURE 28
FIGURE 29
FIGURE 30
FIGURE 31

Design process cyclecocoeeiiiiiiiiiiiiiiiiiii 20
Parallelized evolutionary algorithm..................coooooii. 22
Mutation operator in differential evolution 24
Example island model genetic algorithm topology 26
Decomposed domainccceeeeiiiiiiiiiiiiii 27
Matching and nonmatching meshes.......................... 28

Outcomes of games.................oooooiiiiiiiiiiii 31

Migration in Nash genetic algorithms......................ccooo 35
Convergence of Nash algorithms..............ccccccoiiii. 37
Mathematical test function landscapes (2 dimensions).............. 39
Algorithm convergence (mathematical functions) 42
Three-ellipse element geometry.................ccocoooiiiii 45
Bi-NACAQ012 airfoiloooooiiiiiiii 46

Bi-NACAOQ012 airfoil geometry: Bézier curve parameterization. 48

Multi-disk element geometryccooooiiiiiiiiiiiiiiin 49
Domain decomposition using Nash games.............................. 51
Geometry decomposition example: Domainsc....oe. 53
Geometry decomposition example: Convergence of the algo-

rithms........ 54
Geometry decomposition example: Final results...................... 55
Hierarchical and global Nash game structures......................... 56
GNGCA architecturescccoeeeiiiiiiiiiiiiiiii 58
Bi-NACAQ012 geometry reconstruction: Decomposed mesh...... 60

Bi-NACAQ012 geometry reconstruction: Algorithmic conver-
oS T PP 61

Bi-NACAQ012 geometry reconstruction: Final results............... 62
Increase of GPU efficiencycccoooiiiiiiiiiiiiiiiiiiiiii 64
GPUs: Thread/block Structurec.oveiniiiiiiiiiiiiiiiieeenen 66
GPUs: Memory structure...............oooiiiiiiiiiiiini 66
GPUs: Host/device memory bandwithscccccceeini. 66
GPU example: Mesh refinement..............ccccooiiiiiiiiiiiiiiii. 68
GPU example: Efficiency of GPU compared to CPU 69
GNGCA in hybrid CPU/GPU environment: Convergence........ 72

LIST OF TABLES

TABLE 1
TABLE 2
TABLE 3
TABLE 4
TABLE 5
TABLE 6
TABLE 7
TABLE 8
TABLE 9
TABLE 10
TABLE 11
TABLE 12

TABLE 13
TABLE 14

TABLE 15
TABLE 16

Prisoner’s Dilemmaoooooiiiii
Differential evolution algorithm parameter values...................
Mathematical functions: Results for De Jong’s function
Mathematical functions: Results for Rastrigin’s function
Mathematical functions: Results for Schwefel’s function...........
Mathematical functions: Results for Griewank’s function
Three-ellipse element geometry: Parameters
Three-ellipse element geometry: Design variables....................
Bi-NACAQ012 airfoil geometry: Design variables.....................
Multi-disk element geometry design variables.........................
Geometry decomposition example: Results....................c...o.
Bi-NACAQ012 geometry reconstruction: Algorithmic perfor-

GPU example: Comparison of efficiencycccccvvveiiiiiin.
GNGCA in hybrid CPU/GPU environment: Tested configu-

TAtiONS ..o,
GNGCA in hybrid CPU/GPU environment: Results................
GNGCA in hybrid CPU/GPU environment: Solver efficiency...

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES
LIST OF TABLES
CONTENTS
LIST OF INCLUDED ARTICLES
1 INTRODUCTION ...cciiiiiiiiiiiiiiiiiiiiiiiiiiinnnssnnnnveeneeeeeeeenne 13
1.1 Objectives of the researchcccccooeiiiiiiiiiii 15
1.2 Organization of the thesis.....................oooo 15
1.3 Author’s contributions in included papers...............cccoevviiiiii. 16
2 SHAPE DESIGN OPTIMIZATIONccctttiiiiiiiiiieieieeeieeeeeeeeseeecennnns 18
2.1 Mathematical optimization...............ccoooiiiiiii 18
2.2 DESIZN PIOCESS ...vvuuuniieeeeiiiiiiiiiie e 19
2.3 Overview of optimization algorithms........................... 20
2.3.1 Gradient-based methods 20
2.3.2 Evolutionary algorithms...............cccooooiii 21
2.4 Solving state equations...................ccccc 26
2.5 Domain decomposition methods...................coo 27
2.5.1 Alternating Schwarz method 28
3 GAME THEORY FOR MULTI-OBJECTIVE DESIGN OPTIMIZATION .. 30
3.1 Overview of game strategies...............ccccooiiiiiiiiiiii 30
3.1.1 Cooperative gamesooooiiiiiiiiiiiinneeiee, 30
3.1.1.1 Multi-objective optimization.................cccccceennnnn. 31
3.12 Competitive gamesooooiiiiiiiiiiiiinnni, 32
3.1.3 Hierarchical gamesooooiiiiiiiiiiiiii 33
3.2 Nash genetic algorithms...................... 34
3.3 Virtual Nash algorithms........................ 36
3.3.1 Mathematical examples......................oo 36
4 MODEL PROBLEMSuciiiiiiiiiiiiiiiiiiiiiiniinntnnssseseeeeee e ee s 43
4.1 Inverse or optimization problems for multiple (ellipse) ellipsoid
CoONfigUurations ... 43
4.2 Reconstruction of BINACAOQ012 geometry using discrete and con-
tinuous optimization...............ooooeeiii 47
421 Shape reconstruction problem......................oooooeei 47
4.3 Multi-disk element geometry........................ 48
5 NASH GAMES COALITIONS.....ccuttttririiriiieiiieeeeeeeeeeeeeeeeeeeeeeeennens 50
51 Domain decomposition using virtual Nash approach................... 50

5.2 Nash games and geometry decomposition.....................coooeinns 51

52.1 Geometry decomposition examplecccevvviiiiniii... 51

5.3 Global Nash Game Coalition Algorithm ... 52
53.1 Implementation...........ccoooooiiii 57
5.3.2 Shape reconstruction example......................ooooiiiiiiiinnnn, 57
6 INCREASE OF PERFORMANCE WITH GPUS FOR SOLVING OPTI-
MIZATION PROBLEMScooiotitiiiiiiiiiitiieeeeeeeinnneee e 63
6.1 GPU architecture.....................cci 64
6.2 Efficiency of GPUs................cccoc 67
6.3 Implementation of GPUs for global Nash games 70
7 CONCLUSIONS AND FUTURE WORK.......ccoviiiiiiiininnieeeeeecnnnneeen. 73
YHTEENVETO (FINNISH SUMMARY) ..cceeteiiiniriereeeneniniinieeeeesiinnneeeeeenn 75
REFERENCES.....ccctttiiiiitiiiieiiiititieeeeceetteee e sseetnnee e e s enaanee e s e e nnnns 76

INCLUDED ARTICLES

LIST OF INCLUDED ARTICLES

PI

PII

PIIT

PV

pv

Jyri Leskinen, Jacques Périaux and Frédéric Hecht. Nash Games and Adap-
tive Meshing in a Steady-State Navier-Stokes Shape Reconstruction Prob-
lem. Evolutionary Methods for Design, Optimization and Control. T. Bur-
czynski and J. Périaux (eds.), pages 109-114, 2011.

Jyri Leskinen and Jacques Périaux. A New Distributed Optimization Ap-
proach for Solving CFD Design Problems Using Nash Game Coalition and
Evolutionary Algorithms. To appear in Domain Decomposition Methods in Sci-
ence and Engineering. R. Bank, M. Holst, O. Widlund and].C. Xu (eds.).

Jyri Leskinen and Jacques Périaux. Distributed evolutionary optimization
using Nash games and GPUs — Applications to CFD design problems. To
appear in Computer and Fluids (ParCFD 2011 conference special issue).

Jyri Leskinen, Hong Wang and Jacques Périaux. Increasing Paralellism of
Evolutionary Algorithms by Nash Games in Design Inverse Flow Prob-
lems. To appear in Computational Methods in Engineering Design and Opti-
mization (special issue of Engineering Computations).

Hong Wang, Jyri Leskinen, DongSeop Lee and Jacques Périaux. Active
Flow Control of Airfoil Using Mesh/Meshless Method Coupled to Hier-
archical Genetic Algorithms for Drag Reduction Design. To appear in Com-
putational Methods in Engineering Design and Optimization (special issue of En-
gineering Computations).

1 INTRODUCTION

Shape design is in central role in the design industry since the performance and
the high-tech operability of a product quite often depends on its shape. Because
of the ubiquitous nature of shape design problems, a large number of optimiza-
tion solutions for different applications can be found in the literature. To illustrate
this, several examples of applications are listed below.

In many cases, the mass of a supporting structure has to be minimized in or-
der to reduce weight or lower construction costs. On the other hand, the strength
of the structure is critical preventing catastrophic failures. Structural shape opti-
mization problems has been studied e.g. in [48, 121, 124].

One of the most traditional fields involving shape optimization is aeronau-
tics. A typical example is minimization of drag, and its importance in reducing
fuel consumption [29, 73, 53]. Over the years, the increased efficiency of numer-
ical simulations has steadily made them more realistic (and hence relevant from
the industry point of view). Starting from physically simple compressible poten-
tial flows [58], the models have become steadily more complex involving three-
dimensional, turbulent Navier-Stokes flows solved in massive cluster environ-
ments [59]. Other examples involving shape design optimization and computa-
tional fluid dynamics include car and ship industries [27], medicine (e.g. blood
flow [98]), and paper machine technology [49].

Antenna optimization is another example in the area of design optimization,
where the goal is maximization of signal strength [117, 61, 101]. Stealth aircraft
design where the reflecting radar signal is minimized presents an opposite prob-
lem [72].

Noise generated by air traffic is a major issue. Sources of that noise include
jet exhausts and sonic booms. The structure of the aircraft itself is also a major
source of noise. Similarly, the rotating blades of wind turbines produce noise.
Solutions to these problems benefit from aeroacoustic shape optimization, which
consists of finding shapes that produce the minimum amount of noise [24].

It is well known now that in order to reach satisfactory results, a design en-
gineer needs good optimization tools. Traditionally, shapes are built “by hand”
based on engineers’ experience and tested using physical prototypes. This re-

14

quires high level of engineering experience. In addition, building and testing
prototypes is very time-consuming and expensive.

Fortunately, recent advances in computer technology and improved simu-
lation software have significantly reduced the need for costly prototyping and
physical testing. In many single-objective design problems, optimization per-
formed by an experienced engineer can rapidly produce good results. However,
for more difficult problems, especially for problems involving multiple objec-
tives, advanced computer-based optimization is needed.

From the introduction of integrated circuit technology until the mid-2000s,
the efficiency of central processing units increased steadily. New processors clocked
at higher frequencies were able to process larger amounts of data, speeding up
the simulation “for free” without the need of updating the algorithms.

However, this trend no longer prevails. Due to limitations arising from the
laws of physics, miniaturization of microcircuits can continue only so far. Tradi-
tional software does not run much faster in modern computers compared to the
ones built nearly a decade earlier.

Facing this problem, CPU manufacturers created an alternative strategy. In-
stead of increasing the number of transistors or clock frequency, they added more
computing cores to the CPU chip. If the CPU had two cores, two program in-
stances could run simultaneously without an appreciable loss of speed.

This multi-core approach must now be taken into account in the develop-
ment of new algorithms. In high-performance computing, algorithms well-suited
for parallelism have been hard to come by for decades. In the case of shape design
optimization, parallelism can be implemented in two ways. One way to tackle it
is to divide the problem into smaller subproblems and to be solved, which re-
sults in an objective function value that is then passed to a sequential algorithm.
Another approach is to use intrinsically parallel algorithms, such as evolutionary
algorithms, which operate on populations of solution candidates.

Efficient parallel optimization algorithms are critical in modern optimiza-
tion approaches. With intelligent methods, good solutions can be found even
when the problem is difficult. On the other hand, fast optimization methods can
reduce the computational time drastically, resulting in faster design cycles and re-
duced design costs. Furthermore, algorithmic speed-ups can provide reasonable
alternatives to traditionally impractically slow methods.

The computer science discipline of parallel computing taken to the extreme
can be seen in the recent development of graphics processing units (GPUs). Orig-
inally developed for fast 3D gaming, modern GPUs can also be used for solving
more general inverse and optimization problems of higher complexity modeled
by nonlinear partial differential equations. The often impressive results produced
by GPUs have made them a popular alternative in high-performance computing.
However, since these GPUs were designed for processing graphics, they are not
as versatile as traditional CPUs. Bandwidth and memory issues coupled with the
fact that GPU cores are designed to perform simple instructions can reduce the
usability of GPU processing in general shape optimization cases.

The importance of shape design and increasingly ubiquitous parallelism

15

coupled with emerging technologies demonstrate the need for new optimization
methods. This research is one step further in developing new efficient methods
for distributed shape design optimization.

1.1 Objectives of the research

This study has three main goals. First, the speed-up of evolutionary algorithms
is studied using ideas from the field of multi-objective optimization and game
theory. Efficiency of the so-called “virtual” Nash approach for separable func-
tions (Sefrioui and Périaux [107]) is evaluated on model problems. In this study;,
a binary-coded Nash genetic algorithm was replaced by a modern adaptive vari-
ant of the popular differential evolution algorithm.

The second goal of the study is the development of a new “distributed
one-shot” method. It combines the Nash evolutionary algorithms with domain
decomposition methods and geometry decomposition methods. Unlike in tra-
ditional shape optimization methods, where the direct problem is solved com-
pletely for each new design, one-shot methods solve the state equations which
model the physical problem simultaneously with shape optimization. However,
because of the nature of the algorithms, gradient-based methods are unlikely to
produce good results for complex problems where global optimization is needed.

The third goal of the study is utilization of GPUs and evaluation of their
associated performances in the context of a distributed design cycle. The pro-
posed innovative methods were tested on selected simple inverse shape design
problems in the field of computational fluid dynamics.

1.2 Organization of the thesis

The content of the thesis is organized in the following manner. In Chapter 2, a
review of various optimization methods used in the study is given. The state-of-
the-art methods are also briefly described.

Chapter 3 consists of game-theoretical aspects of shape optimization. An
approach where evolutionary algorithms are enhanced by breaking down the
complexity of the detailed design problem into subproblems coupled with Nash
game strategies is described and tested. Depending on the physical modeling, a
distributed approach is introduced by splitting the decision vector and the objec-
tive function into separate subvectors and subfunctions, respectively, and associ-
ating a so-called “virtual” multi-objective problem to the original single-objective
problem. In this research, this breakdown strategy is achieved using intensively
virtual competitive Nash games. The advantages of the geometry decomposition
(or in a more general case, split of territory of the design variables) used by the
Nash method are presented and discussed.

16

The three test cases used in this study are listed in Chapter 4. Two of them
are from the Finnish Design Test Case Database (TA3, three-ellipse element geom-
etry and TA10, Bi-NACAO0012 geometry, available online at <http:/ /jucri.jyu.fi>).
The third test case, multi-disk element geometry, was designed for this thesis.

An innovative approach that combines the Nash games with parallel meth-
ods such as evolutionary algorithms and domain decomposition methods is in-
troduced in Chapter 5. The flow field and geometry are reconstructed simultane-
ously with the help of a new “distributed one-shot” strategy using a single global
Nash game for both the flow analyzer and the geometry optimizer. The perfor-
mance of the approach is evaluated on simple 2D geometries in potential flow
described in Chapter 4. The results are analyzed and discussed.

Graphics processing units and their performances in shape design optimiza-
tion are discussed in Chapter 6. Sample results are introduced including the inte-
gration of the methods in the distributed Nash approach described in the previ-
ous chapter. The conclusions and future prospects are stated in the final chapter.
The results for the proposed method in the hybrid CPU/GPU environment stud-
ied in Section 6.3 are yet to be published.

1.3 Author’s contributions in included papers

Paper 1 is a study of the efficiency of the Nash geometry decomposition method
based on Nash genetic algorithm (Nash GA) introduced in [107]. The author ap-
plied the method for an adaptive variant of the differential evolution algorithm
(jDE, Brest et al. [12]). The approach was tested on mathematical test functions
and the three-ellipse element position reconstruction problem in laminar Navier—
Stokes flow (full test case definition in Section 4.1). The approach was found
to improve algorithmic efficiency. The observed improvement is purely due to
the algorithm, as parallelization was not used. In addition, in order to acquire
good results, the mesh employed was adapted during the iterative flow compu-
tation process. This mesh regeneration process causes massive numerical noise,
for which the authors proposed a solution by including layers of a constant mesh
around the ellipses. The reduced noise resulted in improved algorithmic conver-
gence.

In Paper II, a novel “distributed one-shot” method developed by the au-
thor is introduced. Based on the original idea of hierarchical Nash algorithms
by Périaux et al. [95], the proposed global Nash game coalition algorithm (GNGCA)
combines domain and geometry decomposition into a single global Nash game.
The approach was tested on the multi-disk element geometry position reconstruc-
tion problem (Section 4.3) in compressible potential flow. The results show that
by reconstructing the shape on subdomains and repairing the global flow field
simultaneously, considerable speed-ups can be achieved. It was also found that
the reconstruction of flow plays a major role in the efficiency of the method.

Paper III describes the implementation of a legacy compressible Navier—

17

Stokes flow solver for Nash geometry decomposition methods and GPUs. The
original code was developed by B. Mohammadi (NSC2KE [82]) and implemented
for GPUs by the author. The Bi-NACAOQ012 geometry reconstruction problem
(Section 4.2) using three different Euler flow conditions was tested. The jDE al-
gorithm was tested with and without the Nash geometry decomposition method.
The algorithms were evaluated using two GPU cards, two CPU cores, and 20 CPU
cores in the comparisons. The Nash geometry decomposition method brought
clear improvements in the efficiency in low-Mach cases. However, the selected
geometry decomposition did not work in cases where shocks were present. The
performance of the GPUs on a dense mesh produced massive speed-ups (up to
26) compared with the standard CPU approach, indicating that a single GPU card
should be superior to the 20 CPU configuration used in the testing. Tests using
a synchronous differential evolution algorithm produced identical results, con-
firming the numerical stability of GPUs in evolutionary computing.

Paper IV is a study conducted by the author to compare different levels
of parallelization of evolutionary algorithms. The selected algorithms are jDE,
jDE using the island model (based on the idea of Miihlenbein [84]), Nash-jDE
using geometry decomposition, and GNGCA. The methods were tested on Bi-
NACAQ012 geometry reconstruction and three-ellipse element geometry posi-
tion reconstruction problems in incompressible potential flow. The results show
GNGCA is the most efficient and comparable to the Nash approach using two
masters and two slaves even though the threads responsible for the flow recon-
struction were idle for most of the time. For simulating an optimal load balancing,
GNGCA was also run with two slave threads, leading into further improvement
in efficiency. The island model did not bring any algorithmic improvement, prob-
ably because of the relative simplicity of the objective function landscape.

In Paper V, the authors explore the use of hierarchical genetic algorithms,
using models of different levels of fidelity for speeding up the optimization pro-
cess. The idea is based on the work by Sefrioui and Périaux [106]. The top layer
consists of a single subpopulation operating on a precise model. On the middle
layer, two subpopulations operate on a model of intermediate accuracy. The bot-
tom layer, consisting of four subpopulations (two for each middle layer popula-
tions), operates on a coarse model. The method was validated using a real-world
optimization problem consisting of an RAE5243 airfoil in transonic compressible
Euler flow. The precise model employs an accurate but computationally intensive
meshless method based on the finite volume method. The intermediate model
uses a hybrid mesh/meshless method and the coarse model fast but less accurate
mesh-based method. The hierarchical approach brought considerable improve-
ments in both the CPU cost and in the quality of the final results. The meshless
method and the solver were developed by Ms. Hong Wang. The hierarchical
genetic algorithm was implemented by the author.

The numerical tests in Papers I-IV and Chapters 5 and 6 were conducted
by the author. In addition, all test cases listed in Chapter 4 were designed by the
author.

2 SHAPE DESIGN OPTIMIZATION

Shape optimization is a branch of optimization where the aim is to find the best
shape of a structure [52]. In broad sense, shape optimization deals with all prob-
lems in which the geometry is subject to optimization. It can be divided into three
main types. In sizing optimization only the size is modified, otherwise the shape
is kept unchanged. Optimization of the thickness of a supporting beam is an ex-
ample of sizing optimization. In a more strict sense, shape optimization consists of
finding the optimal geometry by modifying the shape. The shape can be highly
deformed, but the topology of the object does not change. A typical example is
minimization of drag of an airfoil by deforming the original shape. Finally, topol-
ogy optimization allows even larger changes because the underlying topology is no
longer constant. Holes in the structure can be added or removed. Topology opti-
mization has been used for instance in constructing optimal internal supporting
structures.

2.1 Mathematical optimization

Optimization in general is a process which consists of finding the optimal solution
x* = (x1,x,...,xy) from a set of admissible solutions S that minimizes (or max-
imizes) a real-valued function f : S — IR subject to some additional constraints.
Mathematically this can be formulated as follows:

min f(x)
subjectto g(x) < 0 @D
h(x) = 0,

where g: S — Rand h : S — R are given functions.

The set of parameters x is called design vector. Maximization problems can
be trivially transformed into minimization problems by simply changing the sign
of the objective function.

19

In shape design optimization, a mathematical model that describes the phys-
ical behavior of the system must be constructed. This is done with the help of
partial differential equations (PDEs) called state equations which are solved in a
given region (domain, (3).

Shape design problems can be considered as optimization problems con-
strained by state equations,

foin f (u(Q), Q) @
subjectto ¢ (1(Q2),Q)) = 0

where 1(Q)) is the solution to the PDE in the domain Q) € S(, (the set of admissible
domains) and the constrain ¢ = (1(Q), (}) consists of the governing state equa-
tions. The shape of the domain () depends on the selected shape parametrization
and the values of design vector x.

2.2 Design process

Shape design is an iterative process typically consisting of the phases described
below. First, a mathematical model for the optimization problem is constructed.
The appropriate state equations are selected. The range of geometry changes is
determined. Depending on the properties of the objective function, a suitable
optimization algorithm is selected.

The optimization algorithm controls the optimization process (illustrated in
Figure 1). It produces new solution candidates (i.e. design vector values) which
describe the given geometry. In industrial design, shape parameterization is typ-
ically done using parameterized CAD models.

In the second phase, the computational domain is discretized using a mesh.
If the changes in geometry are sufficiently small, the mesh can be updated by
deformation instead of time-consuming remeshing. Massive mesh regeneration
should be avoided because it introduces numerical noise into the objective func-
tion.

The resulting mesh is passed to the matrix assembler, which constructs a
new linearized system of equations Au = f based on the mesh and the PDEs. The
system of equations is passed to the solver which sends the computed solution
u to the analyzer for computing the corresponding objective function value. The
new objective function value is passed back to the solver. Finally, once the optimal
solution has been found, it is visualized and analyzed.

Since all the aspects of the problem are rarely known a priori, the problem
formulation and optimization process itself may require several iterations before
a satisfying design can be found.

20

CAD

‘wrered

preprocessing

design vector —
model update optimizer

postprocessing

ejep | | [opou

A19011008
obj. function

mesh generation analyzer

FIGURE 1 Design process cycle.

2.3 Overview of optimization algorithms

Successful optimization depends on the selected algorithm. As the so-called “no
free lunch” theorem states, there cannot be a single algorithm that is optimal for
all kinds of problems [125]. Instead, the most suitable algorithm must be selected
based on the a priori information of the problem.

If the shape design problem does not involve very large geometric changes
(i.e. the objective function is probably simple) and if the function evaluation is
computationally very intensive, gradient-based methods should be used. In more
general cases, for example in developing completely new designs, global search
methods are better in finding new solutions.

In the following, optimization methods used in shape design optimization
are discussed. The methods used in this work are described in detail.

2.3.1 Gradient-based methods

Classical optimization methods employ gradient information. They are the most
efficient methods in continuous optimization because of comparatively small num-
ber of function evaluations needed. Convergence to a local optimum is guaran-
teed, depending on the accuracy of the gradient computation and smoothness of
the function.

Shape optimization methods can be divided into two groups [69]. Loosely
coupled optimization refers to methods that do not require specific information on
the function gradients. Instead, they are calculated using finite differences. This
“black box” approach is straightforward but can be prohibitively slow if there are

21

many design parameters. For example, if 7,4;,, is the number of dimensions of the
problem, and 7., is the number of function evaluations needed to achieve the
desired result, the algorithm will need the order of 1, X 14y, function evalua-
tions. If the problem is computationally intensive, this may be too expensive to
calculate.

In contrast, the adjoint methods use tightly coupled optimization. Instead
of computing the gradients separately, they use the adjoints of the original state
equations. This reduces the number of evaluations to 2#n,,,; (the factor 2 comes
from the doubling of governing equations). The efficiency can be further im-
proved by so-called one-shot methods which combine the state equations, their
adjoints and design equations into one large system of equations removing the
need of iterative optimization [5, 67].

2.3.2 Evolutionary algorithms

Neither the gradient or direct local search methods can work adequately in the
case of multi-modal objective functions. Therefore, search methods that operate
globally in the whole search space are required. These methods are stochastic in
nature and their convergence to an optimum cannot be guaranteed.

There are a number of different global methods developed. The most pop-
ular are undoubtedly the so-called evolutionary algorithms (EAs) which mimic
natural evolution. These include genetic algorithms [56], evolutionary strate-
gies [100, 105] and evolutionary programming [33], which all were originally in-
troduced in the 1960s. A more recent method is the popular differential evolution,
developed in the 1990s [115, 116]. Other population-based methods include parti-
cle swarm optimization where the solution candidates move as “swarms” around
the most promising areas [63], and ant colony optimization methods which sim-
ulate the movement of ants using “pheromones” [26]. Examples of other com-
monly used global heuristic methods include simulated annealing [64] and tabu
search [40].

Due to their inherently parallel nature, parallelization of evolutionary algo-
rithms is straightforward. Indeed, parallelization of EAs is considered an “em-
barrassingly parallel” problem [13]. The master process sends the solution candi-
dates to slaves, and they send the corresponding objective function values back
to the master (Figure 2). If the objective function computation takes a fixed time,
the implementation of a parallel evolutionary algorithm is trivial. However, in
shape optimization the evaluation time may be highly variable because of the
variable number of nodes in the mesh and the convergence rates of the solver for
example. Therefore, non-generational approaches should be considered.

Evolutionary algorithms for shape design optimization have been under
intensive research because of their global scope and problem-independent ap-
proach. Several approaches have been proposed in order to improve the accuracy
and high computational cost of the methods.

The amount of computation required can be reduced by replacing the costly
function evaluation. One group of popular methods is the metamodels [122]. A

22

slave 1

siave 2| | oom

slave n

FIGURE 2 Parallelized evolutionary algorithm. The work is distributed to slave pro-
cesses which can solve the objective function using further levels of paral-
lelization.

mathematical model is constructed based on a limited set of actual objective func-
tion values. This computationally inexpensive model is then optimized. Until the
algorithm has converged, a new set of function values are produced and the op-
timizer is restarted. The process is repeated until an adequate solution has been
found. There exists a variety of different methods for constructing metamod-
els, for example neural networks which are especially suitable for curve fitting.
For example, in [38] an advanced metamodel-based evolutionary algorithm us-
ing neural networks was implemented.

Multi-level algorithms operate on two or more levels in order to minimize
computational cost [39, 62]. In multi-level evaluation, a high-fidelity (accurate)
model is coupled with a faster low-fidelity model. For example, by using simpler,
less accurate state equations low-fidelity models can be produced. Alternatively,
different mesh densities can be used. One genetic algorithm using a hierarchical
tree of populations, with each level operating an objective function of different ac-
curacy was introduced in [106]. Other examples of multi-level algorithms include
multi-level search (e.g., gradient-based search coupled with global metaheuris-
tics) and multi-level parameterization, where the number of design parameters
are reduced at lower accuracy levels.

Another approach is to hybridize the evolutionary approach by employing
local search methods in order to improve algorithmic convergence. Following the
idea of “memes” by R. Dawkins [19], memetic algorithms are a class of evolutionary
algorithms that do not directly follow the idea of Darwinian evolution [83, 51].
At its simplest, a memetic algorithm is a hybrid evolutionary algorithm which
implements local search within the search cycle. More advanced methods use
operators, for example for maintaining population diversity in order to prevent

23

premature convergence [87].

Genetic algorithm (GA) First introduced in the 1960s by J. Holland [56], genetic
algorithms became popular after the publication of the seminal book of D. Gold-
berg in 1989 [46]. Of the evolution-based methods, genetic algorithms follow
most closely the natural evolution. The algorithm is simple: first, a set (population)
of solution candidates (individuals or chromosomes) is constructed and the candi-
dates are evaluated. Some of the individuals, preferably but not only the fittest
ones, are selected for parents. Using a process called crossover to combine the
parent chromosomes, new offspring are formed. Some of the offspring are also
subjected to mutation. The best offspring, or the best individuals from the com-
bined population of parents and offspring, are selected for the next population.
Usually the fittest individual, called elite, is automatically selected in order to pre-
vent the loss of the most promising candidate solution. Crossover and mutation
generate new solution candidates, whereas selection controls the convergence of
the algorithm. A general genetic algorithm is listed below.

1. Generate initial population po p(o).
2. Until the termination criteria has been satisfied, compute a new generation:
(a) Select parent chromosomes popg) € popl).
(b) Generate initial offspring population popgi) by recombining the par-
ents (crossover).
(c) Mutate some of the offspring in popgl).
(d) Select individuals for next generation, pop(i+1), from the offspring and
parent populations.

(e) Continue from step (2).

Because genetic algorithms are extremely versatile, they have been applied to a
vast number of problems, ranging from continuous problems such as shape op-
timization to combinatorial problems such as finding minimum travel distances
in the traveling salesman problem. The chromosomes were originally encoded
using binary strings, each binary value representing a “gene”. The accuracy of
the binary-valued algorithm can be adjusted by changing the length of the bi-
nary string. In continuous optimization, real-valued chromosomes differ from
the traditional idea of genes, but can be more efficient because the crossover and
mutation operators can be selected based on the geometry of the problem. For
example, the blend crossover (BLX [30]) produces new offspring that are often
located between the parents. Binary string based methods such as the one-point
crossover produce offspring that can be located far from both of the parents.

Differential evolution (DE) Differential evolution, introduced by Storn and
Price in 1995, was designed for continuous global optimization [115, 116]. The
idea of the algorithm is very simple yet efficient. In traditional genetic algorithms,
crossover plays the major role in constructing a new individual, mutation being

24

FIGURE 3 Mutation operator in differential evolution.

a minor component. In differential evolution, like in evolutionary strategies, new
individuals are primarily constructed with the help of the mutation operator. One
of the strengths of the algorithm is that it is very simple and requires only three
control parameters.

The algorithm proceeds as follows. As in the case of genetic algorithms, the
initial population of size NP is formed randomly. An intermediate individual
X, is generated by differential mutation. First, three different random individu-
als are selected (x; k). The difference between x; and xi is multiplied using the
mutation factor F. The result is added to the third individual x; (Figure 3).

The final offspring x, is produced by randomly mixing the variables of the
intermediate offspring and the individual x, in the parent population using the
crossover rate CR. In order to prevent the final individual from being identical to
Xy, one gene is copied directly from the intermediate offspring. Finally, the new
offspring is evaluated and compared to x,. The fitter one is selected for the next
generation. A sketch of the algorithm is listed below.

1. Generate initial population pop of size NP.
2. Until the termination criteria has been satisfied

(a) Repeat foreachn € {1,...,NP}:
i. Select unique random values ,j,k € NP.
ii. Mutation: X, := x; + F - (xj — xk)
iii. Crossover:
— Select random value m € D (D is the number of dimen-
sions).
- Foreachd € {1,...,D},d # m:
If rand(0,1) < CR, x,[d] := x,[d], else x,[d] := x,[d].
iv. Selection: If f(x,) < f(x»), replace x,, with x,.
(b) Continue from step (2).

There are many variants of the original algorithm. The one described above is re-
ferred to as the DE/rand /1/bin variant. Other variants introduced by the devel-
opers replace the individual x; by the elite individual, resulting in faster conver-
gence in some functions (DE/best /1/bin), or use more than one vector difference

25

in producing new individuals (e.g. DE /rand/2/bin). The crossover operator can
also be replaced (e.g. DE/rand/1/exp). For comparison of various differential
evolution variants, please refer for example to [80].

A large number of further modifications can be found in the literature [88].
One of the variants (jDE [12]), is used extensively in this thesis. Instead of using
fixed values for the control parameters F and CR, each individual is assigned
with its own value, F; € [Fnin, Fmax] and CR; € [0,1],i = 1,...,NP. For the
initial population, the values are selected randomly. When new individuals are
introduced, the old value is either retained or replaced by a new random value,

FF1 = (Fax — Fmin) - 1and(0,1) + Fin ifrand(0,1) < 7
1—"!“rl = Ff otherwise

and similarly
CRS! = rand(0,1) ifrand(0,1) <
C R;‘H = CR;‘ otherwise

The authors use the value 77 = 1 = 0.1 for the probability adjustment parame-
ters. This value was adopted in the present work.

The island model In nature, organisms rarely form a single population where
the genetic material is transferred freely. Geographical and other obstacles cause
a single species to split into several subpopulations with limited genetic interac-
tion between them. Prolonged isolation leads to a high genetic difference between
the different populations. To illustrate the idea, one can consider an archipelago
which is settled by a new species. Originally the populations on different is-
lands are fairly homogeneous, but over time the populations diverge to different
species, each of which is specialized to the environment of their particular island.

The island model genetic algorithm is based on this idea [84]. An evolution-
ary algorithm that operates on a single population is in constant danger of losing
genetic diversity leading to premature convergence. If the population is divided
into several groups (demes) which have limited communication between them,
the algorithm can retain higher diversity. If the objective function is highly multi-
modal, this approach is especially useful because the subpopulations can explore
different local optima.

The populations are not completely separate, however. After a certain pe-
riod, for example after a fixed number of generations, some of the individuals,
usually the elites migrate to other populations replacing some of the original in-
dividuals. The migration process requires a topology between the subpopula-
tions. Popular topologies include hypercube, two or three-dimensional grid and
torus [90]. An example torus structure is illustrated in Figure 4.

The island model provides an additional layer for parallelization. For exam-
ple, each population can be operated on a different computer or cluster of com-
puters. Compared to the standard approach, the method is more robust against
high latency since the information exchange between the populations is limited.

26

FIGURE 4 Example of the island model topology (torus, [84]). The neighbors of the
dark gray population are marked with lighter gray.

2.4 Solving state equations

Except for the very simplest of cases, PDEs cannot be solved analytically. Numer-
ical methods are used instead. In order to be solvable in computer, the original
problem must be discretized. Several different discretization methods applicable
to the purpose have been developed. Of these, the most commonly used are the
finite differences (FDM), finite elements (FEM), and finite volumes (FVM) [15]. Each
of these methods discretize the domain using a mesh (or a grid), which consists
of nodes and edges connecting them. Methods that do not require meshing in-
clude the boundary element method (BEM [6]) and meshless methods that operate
on clouds of points [9, 123].

The finite difference method is the most straightforward of the methods. It
is easy to implement and, compared to the other methods, is not mathematically
complex. The main drawback is that it can operate only on regular grids, which
limits the use of the method to relatively simple geometries.

The finite element method is a very versatile PDE discretization method. It
can operate on unstructured meshes allowing complex geometries. However, in
order to make them solvable, the original PDEs have to be transformed into a
weak form.

The finite volume method is based on the evaluation of volumes around the
mesh nodes. Because the flux remains constant in adjacent volumes, the method
is conservative and especially suitable for computational fluid dynamics prob-
lems. The method can also be implemented for unstructured meshes.

In this study, both finite element and finite volume methods are used. For
an in-depth description of the methods, please refer to [55, 96, 15].

Depending on the method used, discretization results in a system of linear

27

FIGURE 5 A sample domain decomposition problem.

equations
Au =f, (3)

where A is a sparse matrix, u is the value of the approximate solution and f is the
right-hand side containing values from the boundary conditions and forces.

There are many methods for solving linear systems with large sparse ma-
trices. Direct methods solve the system of equations using factorization. Itera-
tive methods compute approximate results iteratively until the target accuracy
has been achieved. The former kinds of methods are efficient on moderate-sized
matrices, but because of higher memory requirements, they are not suitable for
large-scale problems. Iterative methods are more memory-efficient. The most
relevant methods for this work are the UMFPACK unsymmetric multifrontal
sparse LU factorization package [18], and the preconditioned conjugate gradient
method [54].

2.5 Domain decomposition methods

The term domain decomposition method (DDM) refers to a group of methods for
splitting a domain or a discretized system of equations into smaller problems.
There are several reasons for doing this [109]. The classical application, intro-
duced by H. Schwarz in 1870, was to solve elliptical boundary value problems
analytically for complex shapes [104] (Figure 5 depicts this classic example).

Domain decomposition methods are commonly used as preconditioners ei-
ther in order to speed up the solution time or to make a poorly conditioned sys-
tem better behaving [79]. For example, if the solver can solve a matrix one-tenth
the size of the original one much more than ten times faster, solving the problem
using DDM with ten subdomains could result in faster convergence.

The most relevant application of domain decomposition for this study is the
parallel solution of a system of equations (3). In addition to obvious increases in
solution time due to parallelism, DDM makes it possible to solve massive prob-
lems too large for a single machine.

28

FIGURE 6 Examples of nonmatching and matching meshes.

Two common classes of domain decomposition methods are the Schwarz
methods, which use overlapping domains, and the Schur complement methods (also
known as substructuring methods) where the domains are connected by an internal
boundary and do not have common nodes elsewhere [109]. The former method
is straightforward, while the latter one is more efficient in parallel computing
because less information needs to be passed when the global domain is recon-
structed. Examples of more advanced methods include the FETI method (finite
element tearing and interconnect [31]), which further reduces communication over-
head between subdomains.

The overlapping meshes can be either matching or non-matching (Figure 6).
In the matching case the meshes share the nodes on the overlap. In the non-
matching case, extra caution has to be taken when the global domain is recon-
structed. In this work, only overlapping subdomains which use matching grids
are studied.

2.5.1 Alternating Schwarz method

Let us consider the following Poisson boundary value problem:

—Ap = f in Q

p = g on 90 @

With two overlapping subdomains ((2; U)y = Q), overlap Oy, = Q1 Ny # O),
the equation becomes

—A(pl = in Ql
P1 on 801 \ F1 (5)
1 = ¢ on Iy

0Q =

and
*Aq)z = f in Qz

¢ = g on I\ (6)
¢2 = ¢1 on Iy

29

where I'; and I'; are the overlap boundaries (Figure 5).

The original domain decomposition method, known as the alternating Schwarz
method, operates in the following manner. The process is started by selecting the
initial values for the overlapping boundary I'1. The equation (5) is solved and
the new values of ¢, are passed to I';. Similarly, the values on the boundary I'y
are replaced with the updated value of ¢,. The process is iterated until the dis-
crepancy between ¢ and ¢, on the boundaries I'y, I'; and in the overlap 5 is
minimized.

One alternating Schwarz iteration is

1
Al = f in O
1
go'f+2 = g on a0 \I; @)
n+sy n
?1 = ¢ on I
and
—Apitt = f in O
g7 =g on Ay\I; ®)
n+l _ Nty
g = ¢ - on Iy
With a minor modification, the Schwarz method can be parallelized:
—Ag"tt = f in 4
9/ = g on I\ ©)
P = ¢ on Ty
and
—AgiTl = f in Oy
pil = ¢ on AW\ (10)
py7" = ¢ on I

3 GAME THEORY FOR MULTI-OBJECTIVE DESIGN
OPTIMIZATION

In this chapter several different game strategies that can be applied to shape de-
sign optimization are described. The Nash algorithms are discussed in detail. The
Nash approach can be applied on single-objective optimization problems using a
process called “virtualization”. Finally, the efficiency of the method is tested on
several mathematical functions.

3.1 Overview of game strategies

This section provides a brief introduction to the game theory. A game is played
between a group of players (from one to infinity) who each have a set of strategies
with certain payoffs. In a typical game, each player maximize his/her payoff.
Normally it is assumed that the players are rational, i.e. they always choose the
best available strategy. However, they may not have all the information available,
and the game may be affected by chance. The players’ strategies are typically
conflicting: for example, if Player 1 increases his payoff by selecting strategy A,
Player 2 correspondingly loses.

There are several types of games. For example, the players may form a coali-
tion to try to maximize their combined payoff, or they could act sequentially. In
this section, three types of games relevant to this thesis are introduced: coopera-
tive, competitive, and hierarchical games.

3.1.1 Cooperative games

A cooperative game, or Pareto game (after V. Pareto who introduced the idea [94]), is
a game where a coalition of players try to maximize their combined payoff. Multi-
objective optimization problems consisting of two or more conflicting criteria can
be considered as Pareto games.

The idea of a multi-objective problem can be illustrated with a simple exam-

31

Pareto front
Nash equilibrium

fa(x1.%2)

0 1 2 3 4 5
f1(x4.%2)

FIGURE 7 Example Pareto front and (dominated) Nash equilibrium.

ple [21]. Let us consider a person who is going to buy a new car. The person has
two criteria, quality and price. Obviously, he is interested in buying a car which
is as inexpensive as possible and of as good quality as possible. Unfortunately,
these objectives are in conflict, and he will not be able to find a car which is both
inexpensive and of good quality. Therefore, he has to pick several candidates
with different prices and qualities. Some of the cars are both more expensive and
worse in quality than others. Those he can reject immediately. The rest form a
set of cars from which he can pick the one he prefers. Based on these two cri-
teria, both being equal, he cannot select the best solution automatically without
additional information about the problem.

More formally, a decision vector x* € S (S is the set of available strategies)
is Pareto optimal if there does not exist another decision vector x € S such that
filx) < fi(x*) foralli = 1,...k and there exists at least one j such that f;(x*) <
fj(x) [81]. A decision vector that is not Pareto optimal is dominated. The set of
optimal points is called a Pareto front. In higher dimensions, it is called a Pareto
surface. An example of a simple two-dimensional convex and continuous front is
illustrated in Figure 7.

3.1.1.1 Multi-objective optimization

Multi-objective optimization usually consists of capturing the Pareto front. In real
life cases, a satisfactory solution has to be selected, using multi-criteria decision
making, from the set of Pareto optimal solutions [11].

In industrial design, multi-objective problems are the norm. Typically sev-
eral coupled physical phenomena affect the system leading to conflicting criteria
(multi-physics optimization). When a complex system such as an aircraft is being
developed, several engineering disciplines have to be taken into account (multi-
disciplinary optimization). Examples from the field of aeronautics include diverse
problems such as minimization of sonic boom and maximization of lift [68], op-

32

timization of lift on multi-element airfoils for different flow regimes [97], maxi-
mization of lift and minimization of radar visibility [78], to name a few.

A wide variety of multi-objective optimization algorithms has been devel-
oped. Some early approaches were based on weighted sums, i.e. the multi-
objective problem was transformed into a single-objective problem and then solved
using single-objective algorithms [112]. This approach is very limited because it
cannot recover the front properly if it is not convex.

Evolutionary algorithms are particularly well-suited for multi-objective op-
timization because they operate on populations of solution candidates. In addi-
tion to the global approach, the parallelism provided by populations help the al-
gorithm in capturing the global Pareto front [35]. Examples range from the early
vector evaluated genetic algorithm (VEGA) [103] to more sophisticated algorithms
such as multiple objective genetic algorithm (MOGA) [34], non-dominated sorting ge-
netic algorithm (NSGA) [110], strength Pareto evolutionary algorithm (SPEA) [126],
Pareto archived evolution strategy (PAES) [66], and the popular NSGA-II [22]. For
a comprehensive review of evolutionary multi-objective algorithms, please refer
to [17, 16]. A survey on a wide variety of multi-objective methods for design
problems can be found in [3].

Hybrid evolutionary algorithms for speeding up algorithmic convergence
are also common in multi-objective optimization [119, 108]. Various memetic
multi-objective algorithms are described in [45].

3.1.2 Competitive games

The nature of the game changes dramatically if the players do not cooperate.
Competitive games, also known as Nash games (after]. Nash who formalized them
in 1950 [86]) are games where the players maximize their payoffs by taking into
account the available strategies of their opponents.

Competitive games can be illustrated using the classical example known as
the Prisoners” dilemma [99]: Two men are arrested, but there is not enough evi-
dence for a conviction. Therefore, both the men are given two options: either
betray your partner or remain silent. The person committing betrayal walks free,
and his partner will serve a ten-month sentence. If they both remain silent, they
both have to serve for two months for a minor charge. If they both betray each
other, they have to serve six months each. The men are separated and cannot be
aware each other’s decisions.

The payoff matrix of the game is shown in Table 1. In the first case, a pris-
oner assumes his accomplice will not betray him. If he himself betrays his partner,
he will avoid the prison sentence. On the other hand, if he correctly assumes that
his accomplice will betray him, he would save four months of prison by doing
likewise. Again, the “betray” strategy would be better.

Since both of them are assumed to be rational and the game is symmetric,
they will betray each other, and both will serve a six-month prison term even
though they could save four months by selecting the “remain silent” strategy.
This situation, called the Nash equilibrium, is stable because after reaching it nei-

33

TABLE 1 Payoff matrix of the Prisoner’s Dilemma. The Nash equilibrium is in bold.

Prisoner 2
silent | betray
silent | (2,2) | (10,0)
betray | (0,10) | (6, 6)

Prisoner 1

ther of them can improve their payoffs any further.

Let us define the Nash equilibrium mathematically. Consider a two-player
game. Let S and S, be the set of strategies and J; and |, the payoff functions of
Player 1 and 2, respectively. A strategy pair (x1,x2), X1 € S1, X2 € Sy is a Nash
equilibrium if and only if

Ji(%1,%) = inf Ji(x1,%2)

X%Esl (11)
Jo(%1,%) = inf Jo(%1,x2)

XpESy

This can be trivially expanded into an n-player game,

]1(21/3?21-'-/3?11) - inf]1(x1/f21-~-/xn71/32n)
X1€51
]2(21/ f21-~-1xn) - inf]Z(XlleI-“/xnfl/ Xn)
XpESy (12)

lnf]Tl(xlr XZ/ ey anlr xn)

]ﬂ(ferZ/ e rfi’l)
X, €Sy,

The idea of Nash games can be applied to optimization. A multi-objective
optimization problem can be solved as a Nash game where the different crite-
ria are optimized by different players. For example, wing shape optimization
involving minimization of drag and maximization of lift can result in an ade-
quate compromise at the Nash equilibrium if it is located close to the Pareto front,
avoiding the time consuming Pareto search. Likewise, hybridizing Pareto games
with competitive games can provide substantial speed-ups because the algorithm
can be seeded with good solutions from the Nash game [70, 71].

3.1.3 Hierarchical games

The last game type described in this manuscript is called hierarchical game, or
Stackelberg game (after H. F. von Stackelberg who introduced it [111]). It is a strate-
gic game where one player, called leader, moves first, and the other players, fol-
lowers, react [77]. The game can have perfect information, the players knowing,
beforehand, all the possible information and the situation they currently are in.
A typical Stackelberg game situation arises when a new company appears
into a market dominated by another company. The new company has to select
the optimal strategy based on the actions of the market leader. Distributed shape

34

design optimization, where the computational domain is decomposed into sub-
domains and solved for every design, could be considered a kind of Stackelberg
game where the shape optimizer is the leader and the domain decomposition
method is the follower [95].

Hierarchical games result in Stackelberg equilibria [25]. Let f; be the criterion
of theleaderand f;,i = 1,..., N the criteria of the followers. Then the Stackelberg
equilibrium is a result where the leader optimizes all the controllable variables
according to his own strategy based on the Nash equilibrium of the followers,

nxggfl(x)r (13)

where x = (x1,x2,...,xy) and S = S X Sy X - -+ x Sy is the space of admissi-
ble strategies. The values (x,x3,...,xy) come from the Nash equilibria of the
followers,

fi (Xl,fz,. ..,J?N) = inf fi (xl,fz,.. .,XN) fori=2,...,N (14)

x;€S;
3.2 Nash genetic algorithms

If the objective function is smooth and unimodal, locating Nash equilibria is
straightforward with gradient-based methods. However, as is frequently the
case, in real life the situation is often more complicated. In order to solve Nash
equilibria for difficult objective functions, Sefrioui and Périaux introduced the
Nash genetic algorithm [107].

Being a multi-population algorithm, it shares similarities with the island
model genetic algorithms. However, there are several notable differences. Each
of the objective function is assigned with a player and a population. Players are
allowed to manipulate only the design parameters assigned to them. This is done
using standard genetic operators. After each epoch, such as one generation, the
players exchange their elite individual values. The algorithm converges into a
Nash equilibrium. The migration process is illustrated in Figure 8.

In order to demonstrate the Nash approach, let us consider the following
simple multi-objective problem:

{ filxr,x) = (0 =172+ (v — 1) (15)
falx,x2) = (x2—3)%+ (11— x2)?
The Nash equilibrium can be found analytically using rational sets. Let D be the
rational set of Player 1 and D, be the rational set of Player 2:

Dl(fl,XQ) c 51 X 5_2 such that fl(fl,ﬁQ) < f1(x1,x2)

Dz(xl,fz) c S_l X 52 such that fz(xl,fz) < fz(xl,xz) (16)

The reaction sets consist of solutions that satisfy the following conditions

Dy, = ix ngill'm =0 a7
Dy = X afzgxlfxz) =0

X2

Xi—1Yi—2

XiYi1

Xie+1 Yk

X2 Vi1

Xi—2Yr-1

X1 Yk

XiYiq1

X1 Yit2

35

generation k — 1

generation k

generation k + 1

generation k + 2

FIGURE 8 Migration process in Nash genetic algorithms. Player 1, who controls popu-
lation 1, sends its elite values X} of generation k to Player 2, and vice versa.

36

By applying (17) to the original system of equations (15), the rational reaction sets
can be computed:

%}3{3‘2):0 S 2x1—1D)+2x1—x)=0 & xp=2x—1
x1+3

) 0 o 20-3)-2r1—x) =0 & 1=

(18)

The Nash equilibrium is the intersection of the two sets. Solving (18) yields the
result x; = % and x, = % The Nash equilibrium exists and is unique, (x1,x2) =
(3,%). The corresponding solution is (f, f2) = (&, 8).

The validity of the Nash approach is tested using differential evolution with
a population size of NP = 10 per player. The elite values are listed in Figure 9.
The algorithm is able to converge into the Nash equilibrium successfully in a few

dozen generations.
3.3 Virtual Nash algorithms

In some cases, the objective function can be divided into subfunctions so that

=

f(x)=)_fi(xi) (19)

i=1
These functions function are called (linearly) separable. Separated functions can be
divided into a set of subfunctions forming a “virtual” multi-objective problem. If

f(x)=0,x=0 (20)

is the global minimum of the function, and

N
min f (x) = ;minf,« (x)=0 (21)

it is known that the global Nash equilibrium is located there [14].

Since the search space depends on the dimensionality of the problem, it is
apparent that the complexity of the problem can be reduced if each function is
solved separately because separating the search space restricts the movement of
the algorithm. One effect of the reduced movement is that the number of possible
local optima where the algorithm can get stuck is reduced. The idea of handling a
single-objective problem using multi-objective methods is explored for example
in [65, 60].

3.3.1 Mathematical examples
To illustrate the effect of the Nash approach, it is tested on selected additively

separable mathematical functions listed below (the functions are illustrated in
Figure 10). The number of dimensions is 1y, = 12 allowing five different Nash

0.8

0.6

Objective function value

0.4

0.2

25

Variable value

Recovery of Nash equilibrium

Objective function evaluations

f
L f; 4
0 20 40 60 80 100 120 140
Objective function evaluations
Recovery of Nash equilibrium
T T T T T — T
X2
T
/
0 20 40 60 80 100 120 140

37

FIGURE 9 Convergence of the differential evolution algorithm into the Nash equilib-
rium (f, f2) = (5, 5), (x1,%2) = (3, 3)-

38

TABLE 2 Selected parameter values for the jDE algorithm.

population size NP max (:p’;ﬁ, 15)
mutation factor F [01,1.0]
crossover rate CR [0.0,1.0]

F replacement probability 7 0.1
CR replacement probability 7 0.1

decompositions, 7piayers = {2,3,4,6,12}. A differential evolution variant with
adaptive control parameters is used (jDE, described in the Section 2.3.2). The
parameters listed in Table 2 are used for each test function. The algorithms are
terminated when the best value is within the machine precision from the opti-
mum, or when the maximum number of combined objective function evaluations
n;; = 10° is reached. The algorithms are run in parallel with N players controlling
processes and a total of 12 slave processes. In order to prevent premature con-
vergence due to the loss of diversity, the non-elite individuals of the population
are disturbed using Gaussian mutation if the normalized standard deviation of
the fitness values of the population has decreased below the given threshold of
Ogin = 1071

De Jong’s sphere function. One of the simplest test functions,
NMpdim
fa(x) =Y x7,x € [-5.12,5.12], (22)
i=1
is both smooth and has only one global minimum, x; =0,i =1,..., ngy, [20].
Rastrigin’s function. The function
Ndim

fo () = 10mgip, + Y, (7 = 10c0s (27x1)), xi € [-5.12,5.12] (23)
i=1

is highly multi-modal, and there is a total of 11"n Jocal optima [85]. The global
optimum f (x) = 0Oislocated atx; =0,i =1,..., ngjp,.

Schwefel’s function. The function
Ndim
fe (x) = 418.9829n4;, +) x;sin (\/ |x,«|> ,x; € [—500,500] (24)
i=1

has several deceptive local minima [105]. The global optimum f(x) = 0 is located
far from the origin at x; = —420.9687,i =1, ..., n4y,.

39

gy

N
AR

R SN

i o
NS
P

i
g
N
gy g NN
i i
i
/g

FIGURE 10 Test function landscapes (14, = 2). Top left: De Jong’s sphere function. Top
right: Rastrigin’s function. Bottom left: Schwefel’s function. Bottom right:
Griewank’s function (close-up).

Griewank’s function. In order to test the efficiency of the methods in the case
of nonseparable functions, the Griewank function was included [47].

0 =143 5 Tfeos (%) me] 25)
i (x) =1+ — Ccos (—_),x' € |—600, 600 25
i=1 4000 ;3 Vi)'

It is a highly multimodal function. The product introduces dependency between
the variables. For multi-objective cases, the subfunctions were formulated as

fas) =¥ o+ - (1T (%) 26)
d, (Xk) = T — - COos | —=

k /7, 4000y . Vi

where k is the index of the player, I is the set of design variable indexes that
the player is allowed to operate, n(I;) = i The global optimum f(x) = 0 is
located at the origin, x; =0,i =1,..., ngjp.

The averaged results for 10 runs are listed in Tables 3-6 and the conver-
gence curves are shown in Figure 11. Based on the results, it is evident that the
“multi-objectivization” of the functions has a strongly positive effect on algorith-
mic convergence, accuracy and robustness. In the case of separable functions,
every instance managed to find the optimum. Increasing the number of players
(and thus decreasing the dimensionality) reduced the average algorithmic con-
vergence rate in each case. Only in the case of Schwefel’s function the six-player
case had some difficulties in converging. As expected, the Griewank function

40

TABLE 3 Results for the algorithms in the case of De Jong’s function. The number of
players, the best and the worst objective function values and the total number
of objective function evaluations are listed with the mean final objective func-
tion values and corresponding standard deviations. The number of successful

runs is also listed.

De Jong
Myl fmin fmax frmean f
1 8.9491E-61 1.4950E-54 1.8725E-55 1.9922E-108
2 1.9956E-92 3.7196E-84 4.1370E-85 1.2206E-167
3 3.0678E-121 2.5941E-109 2.5954E-110 6.0557E-218
4 5.6038E-151 8.0443E-120 8.0443E-121 5.8240E-239
6 2.8402E-150 7.7971E-135 8.6737E-136 5.3964E-269
12 7.6899E-161 1.6489E-135 1.7071E-136 2.4308E-270
itin itmax itmean Ojt success
1 18276 19795 1.8807E+04 4.9446E+02 10/10
2 11479 15051 1.3181E+04 1.0573E+03 10/10
3 9049 10945 9.9960E+03 6.8587E+02 10/10
4 7430 10669 8.8830E+03 9.6376E+02 10/10
6 7329 8854 8.0620E+03 5.7772E+02 10/10
12 6326 7334 6.8450E+03 3.8969E+02 10/10

was the most difficult to solve. Compared to the Nash algorithms, each of which
managed to converge at least once, the standard approach failed to converge to
the global optimum. The 12-player algorithm was the most robust, converging

most often.

TABLE 4 Results for the algorithms (Rastrigin’s function).

Rastrigin
Myl fmin fmzzx fmean Uf
1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
4 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
6 0.0000E+00 1.2434E-14 1.9540E-15 1.4798E-28
12 0.0000E+00 5.4179E-13 5.5245E-14 2.6308E-25
itin itmax itmean o success
1 32373 45603 3.8334E+04 3.4432E+03 10/10
2 20705 26049 2.3317E+04 1.7828E+03 10/10
3 14257 21165 1.8295E+04 2.3320E+03 10/10
4 12518 17619 1.5363E+04 1.5529E+03 10/10
6 12150 23455 1.5205E+04 3.1932E+03 10/10
12 9302 11868 1.0957E+04 7.2137E+02 10/10
TABLE 5 Results for the algorithms (Schwefel’s function).
Schwefel
Myl fmin frmax frmean Uf
1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
4 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
6 0.0000E+00 5.6843E-14 1.1369E-14 5.1698E-27
12 0.0000E+00 1.7053E-13 2.8422E-14 2.7465E-26
itin itmax itmean Ojt success
1 23801 27459 2.5589E+04 1.2613E+03 10/10
2 14874 18950 1.6635E+04 1.5429E+03 10/10
3 10683 13444 1.2266E+04 9.7536E+02 10/10
4 9632 15005 1.1018E+04 1.4224E+03 10/10
6 9551 19521 1.2675E+04 3.4319E+03 10/10
12 8054 10378 9.0150E+03 6.7358E+02 10/10

41

42

TABLE 6 Results for the algorithms (Griewank’s function).

Griewank
Myl fmin fmax fmean Uf
1 27134E-03 2.6325E-02 1.4776E-02 6.4229E-04
2 4.3891E-47 4.0681E-02 1.3768E-02 1.6092E-03
3 25541E-55 2.5682E-02 6.3574E-03 7.5716E-04
4 4.6981E-93 2.8089E-02 1.1327E-02 1.1476E-03
6 2.1575E-94 2.6974E-02 1.1129E-02 1.4481E-03
12 9.2516E-148 2.4820E-02 4.6771E-03 6.5575E-04
itmin itmax itpean Ot success
1 100000 100000 1.0000E+05 0.0000E+00 0/10
2 57118 100000 9.5711E+04 1.2865E+04 1/10
3 50704 100000 8.6121E+04 1.8138E+04 4/10
4 35293 100000 7.9561E+04 2.6339E+04 4/10
6 29653 100000 6.7449E+04 3.2792E+04 5/10
12 11243 100000 4.1567E+04 3.8487E+04 7/10
107 0 50‘00] 1’0‘000 15‘000 LZO;)OO 25‘000 30000 0 10‘000 20;:)00 30‘000 40;)00 502}00 60‘000 70‘000 80‘000 90;)00 100000

Number of objective function evaluations

Number of objective function evaluations

FIGURE 11 Convergence of the algorithms. The dotted lines depict the best and the
worst values at the corresponding objective function iteration.

4 MODEL PROBLEMS

In this chapter, the optimization test cases used in this study are described. Most
of them are simple academic geometry reconstruction problems from more real-
istic cases of aeronautical interest. The first and the second test case are available
in the Finnish Design Test Case Database!. All the test cases have been developed
by the author.

4.1 Inverse or optimization problems for multiple (ellipse) ellip-
soid configurations

This academic test case? was developed in order to study algorithmic conver-

gence by splitting the inverse problem (recovery of the target pressure on a sur-
face) into smaller subproblems. It also provides a way to study the behavior of
algorithms with meshes of different quality. Finally, it can be expanded into a
simple test platform for multiphysics optimization (computational fluid dynam-
ics, computational electromagnetism, and aeroacoustics), both in 2D and 3D.

The test case includes three different problems: an aerodynamic reconstruc-
tion problem, a radar wave problem, and an aeroacoustics problem. The aerody-
namic reconstruction problem, which was used in this work, consists of recovery
of the original position of two ellipse (2D) or ellipsoid (3D) elements using poten-
tial, Euler, or Navier-Stokes flows for Re = 100 and Re = 500.

The computational domain and geometry are defined by the parameters
listed in Table 7. The geometry is shown in Figure 12. The allowed ranges of
design variables are listed in Table 8.

The flow is described by incompressible laminar flow. At upstream entrance
the flow has the velocity components v, = cos(«) and v, = sin(a), where & =

1 The database with test cases and computed results is available to the public at the address

<http:/ /jucrijyu.fi>.
Full definition of the test case TA2 available at the address <http:/ /jucri.jyu.fi/?q=testcase/
5>.

44

TABLE 7 Parameters for the geometry and computational domain.

s = 40 height (and width) of the bounding box
s = 80 length of the bounding box
(x0, Y0, 20) (—30,—20,—20) front lower left corner of the bounding box
I 2.0 length of the ellipse/ellipsoid 1
hi, w7 = 05 height (and width) of the ellipse/ellipsoid 1
x1,¥1,z1 = (—=7.0,—0.5,0.0) reference position of the ellipse/ellipsoid 1
nq -3.0° reference angle of the ellipse/ellipsoid 1 (clockwise)
I 10.0 length of the ellipse/ellipsoid 2
hy,wy, = 1.0 height (and width) of the ellipse/ellipsoid 2
x2,¥2,22 = (0.0,0.0,0.0) position of the ellipse/ellipsoid 2
%) 0.0° angle of the ellipse/ellipsoid 2 (clockwise)
Iz = 35 length of the ellipse/ellipsoid 3
h3, w3 = 05 height (and width) of the ellipse/ellipsoid 3
x3,¥3,23 = (7.5,—0.5,0.0) reference position of the ellipse/ellipsoid 3
a3 = 3.0° reference angle of the ellipse/ellipsoid 3 (clockwise)

TABLE 8 Allowed ranges for design variables for the three-ellipse element geometry
reconstruction problem.

Xs Ys as [°] Xf Y af [°]

min -10.00 -1.50 -10.00 7.25 -1.50 0.00
max -6.50 0.00 0.00 10.00 0.00 10.00
target -7.00 -0.50 -3.00 750 -0.50 3.00

45

FIGURE 12 Three-ellipse element geometry.

5.0° is the angle of attack. At downstream exit there are free boundary conditions
and on the surfaces of the ellipse/ellipsoid elements, no-slip conditions apply.
The kinematic viscosity v = % orv = %, corresponding the Reynolds number

values Re = 100 and Re = 500.

The objective function is defined as the L? error norm of the computed and
reference surface pressure,

2
target
Pi — P;

Ji(xi) = /r

1

(27)

where x; is the local design vector of the ellipse/ellipsoid i = 1,...,3 and p and
p!?& are the computed and target surface pressure distributions. T; is the bound-
ary of an ellipse element. The global objective function is the sum of the subfunc-
tions,

3
J(x) =Y Ji(xi) (28)
i=1
where the vector x; = {x;,y;,«;} refers to the design parameter of the ellipse

elementi=1,...,3.

46

0.4 T
Q4
0.2 f
0.1}
Y2
0 Q4o
"1
_01 L
_03 L 4
Q,
-0.4 .

0 0.2 0.4 0.6 0.8 1

FIGURE 13 Bi-NACAO0012 airfoil geometry with example domain decomposition.

TABLE9 Allowed ranges for design variables for the Bi-NACAQ0012 geometry recon-
struction problem.

min max target

upper x; -1.00 -0.50 -0.50
airfoil vy, 015 035 0.25
lower x;, -0.50 0.00 -0.50
airfoil y, -0.35 -0.15 -0.25

47

4.2 Reconstruction of BINACA0012 geometry using discrete and
continuous optimization

This test case® consists of the recovery of the positions of two stacked NACA0012
airfoil geometries using (1) discrete and (2) continuous search space (Figure 13).
In this work, the continuous case was studied. The distance of the airfoil is
0.5 chord lengths measured at the leading edge.

The original test case was introduced in [23]. The challenge of the geometry
is that the proximity of the airfoils induces a shock between them and the solver
and mesh quality must be good enough to capture it. When a non-zero angle of
attack is introduced, an additional shock appears above the upper airfoil.

The target of the problem is to recover the original positions of the airfoils by
minimizing the pressure difference between the computed and target pressure.
The objective function is

2
Ju (xu/yu) = % / Pu — Pi{arge?t
" target 2 (29)
Je(xe,ye) = %/ pe—p, "
Iy
and
J=Tu+Ts (30)

et
are the re-

where I, ; are the solid boundaries of the airfoils and p, , and pﬂg
spective pressure distributions.

The continuous problem consists of four design parameters (coordinates of
the leading edges of the airfoils). The target positions and allowed ranges are
listed in Table 9.

The test case can be run using two flow conditions. In the first case, the angle
of attack & = 0.0°, free-flow Mach number M, = 0.55 and Reynolds number
Re = 5000. A shock should form between the airfoils. In the second case, the
angle of attack is increased to # = 6.0°, resulting in a more complex pressure
distribution. In the case of Euler flow, slip boundary conditions apply on the solid
boundaries and in the case of Navier-Stokes flow, no-slip boundary conditions
apply. In the far field, non-reflection boundary conditions apply.

4.2.1 Shape reconstruction problem

In Paper III, the test case was expanded into a shape reconstruction problem
where (1) the positions were kept constant, the airfoils were deformed and (2)
the airfoils were allowed to both move and deform. The shapes of the airfoils
were parameterized using Bézier curves (Figure 14). The thicknesses of the air-
foils were modified using n — 2 control points for each airfoil, where n is the

3 Full definition of the test case TA10 is available at the address <http:/ /jucrijyu.fi/?q=

testcase/49>.

48

0.4

0.35 |

03}

0.25 |

02}

0.15 |

0.1

FIGURE 14 An example 6th order Bézier curve parameterization (four control parame-
ters for symmetrical airfoil).

TABLE 10 Allowed ranges for design variables for the multi-disk element geometry
reconstruction problem. The positions are described using polar coordinates.
Index k = {1, ...,n.}, where n, is the number of disks. The radii are sy = 0.5
for the central element, s; = 0.125 for the surrounding elements, and s, = 20
for the far field boundary.

187 9k
target 2.0 —k% -
min 0.6375 6" — 7
max 2.5 Glimgd + 0

order of the Bernstein polynomial. The control points were allowed to move in
y-direction.

4.3 Multi-disk element geometry

This purely academic problem was developed in order to test the efficiency of the
global Nash method described in detail in Chapter 5. The problem consists of a
disk element (with the radius sp = 0.5) located at the origin. It is surrounded by
ne = 2,...,6 smaller disk elements (sy = 0.125, Figure 15). Except for the central
element, the elements are allowed to move freely within their confined spaces.
The range of movement depends on the number of elements. The allowed ranges
and target positions are listed in Table 10.

The target is to minimize the difference between the prescribed and the cal-

49

k+1

k+2

FIGURE 15 Multi-disk element geometry parameterization. Element k can move freely
within the region defined by Ary and Af;.

culated surface pressure distributions:

T80 = —— - (py— p"5")’ (31)
k (ks O npror i~ Pj

where npy is the number of surface pressure points of the element k and np;y; is
the total number of pressure points. The global objective function is the sum of
subfunctions,

NP
J(r,0) =Y Ji (ri, 6k) (32)
=

The arrangement of the disks allows the study of different domain and ge-
ometry decompositions. The problem can be made more challenging by intro-
ducing element deformation.

5 NASH GAMES COALITIONS

In this chapter, which forms the core of the thesis, the Nash approach is applied to
distributed shape optimization. The methods are described and performance in-
creases due to splitting the shape reconstruction problem using the virtual Nash
approach illustrated using academic test problems. Nash games employing do-
main and geometry decomposition are combined into a single global game as a
“distributed one-shot” method, which is validated using the Bi-NACA0012 ge-
ometry.

5.1 Domain decomposition using virtual Nash approach

Domain decomposition can be seen as an inverse problem in which the objective
function is the discrepancy between the subdomain state solutions in the subdo-
mains of the overlapping area,

JF (8".8%) = | e1(6™) — p2(8®))| (33)

where ||-|| is the appropriate norm and ¢ and ¢, are the solutions of ()1 and (),
in the overlapping domain (), respectively (Figure 16). The vectors g(!) and g(?
refer to Dirichlet boundary condition values on the interface boundaries. The vec-
tors are modified by the flow optimizer. The objective function [F tends to zero
once the state solution in the global domain has been successfully reconstructed.

This problem can be solved using the virtual Nash approach where the
problem consists of two functions [95],

minJF (87,8%) = [o1(s?) - 92(8?)|
. 5(1) o2)) — 5(1)) 59
r{gl(gl]Fz(g '8) = Hq)l(g) — #2(g)H

(12)

The most straightforward way to select g, is to use the values of ¢ on
the boundary nodes (if P1 finite elements are used). However, this leads to a

51

8 8
T T
I I
I I
(2) 1 (1)
84 8y
Ql ?01,2 c‘g Qz
I I
I I
géna" ! e
I I
I I
2| Lol
Top %o o Tip
I I
2) ! [N EY
SE)¢ ¢S§)
I I
I I
s) .8

FIGURE 16 Domain decomposition using Nash games. The overlap is minimized by
(12)
i

modifying the boundary point values g

high-dimensional problem which is slow to solve. In [95] an internal flow with
a parabolic profile in a nozzle is studied. The simple problem allowed parame-
terization using only one control variable. In complex external flow cases with
non-trivial geometries this kind of simplification is not possible. A more sophis-
ticated approach would be to apply an optimizer to improve the convergence of
a standard domain decomposition method.

5.2 Nash games and geometry decomposition

The virtual Nash approach is well-suited for distributed shape optimization. The
decision vector can be split between the players, making it a “geometry decom-
position” method. By dividing the geometry into a set of subgeometries, the
dimensionality of the problem can be reduced, leading to improved algorithmic
convergence. In addition, the virtual games can be used for parallelization.

The efficiency of the method is strongly coupled to the geometry of the prob-
lem. A poor choice can easily lead the algorithm into a deceptive minimum and,
therefore, prevent it from converging.

5.2.1 Geometry decomposition example

To illustrate the effect of a selected geometry decomposition, a simplification of
the Bi-NACAQ0012 geometry is tested. Instead of NACAOQ012 airfoils, the shapes
of two elliptical elements are recovered in a potential flow with an angle of attack
of & = 6.0°. The following geometry decompositions were tested (Figure 17):

1. Standard approach: no geometry decomposition.
2. The ellipses are optimized separately, one player for each element.
3. Player 1 optimizes the extrado and Player 2 the intrado surface.

52

TABLE 11 Results for the different geometry decompositions; n;; is the number of ob-
jective function evaluations and ¢ is the wall-clock time in seconds.

case N t
1 3553 449.02s
2 4326 317.29s
3 2551 151.02s
4 3447 228.84s
5 1511 88.75s
6 1768 108.47s
7 2185 140.26s

4. The control points alternate between the players. Player 1 operates the odd
and Player 2 the even control points.

5. Four players. Each player optimizes one side of an ellipse.

6. Four players. Player 1 optimizes the leading side of the upper ellipse and
Player 2 the trailing side and so on.

7. Four players, alternating control points.

All cases are tested using the jDE algorithm with populations of 5 x n4;,, individ-
uals where 1, is the number of design variables per player (14, = {16,8,4}).
The algorithms are terminated when the threshold objective function value of
fmin = 1073 is reached. In order to ensure fair comparison, all algorithms use
equal number of slave processors (a total of 24). The results are listed in Table 11
and the convergence curves in Figure 18. The example results are illustrated in
Figure 19.

It can be seen from the results that in most of the cases geometry decompo-
sition improves convergence. Although the standard approach spent most wall-
clock time, case (2) required the largest number of objective function evaluations,
suggesting that the simplest geometry decomposition does not produce an algo-
rithmic speed-up in this case. However, other decompositions are clearly better,
case (5) being the most efficient.

5.3 Global Nash Game Coalition Algorithm

Geometry and domain decomposition using the Nash approach can be combined.
The idea of hierarchical Nash games [95] is the following. As described in the pre-
vious section, a flow can be reconstructed using a Nash game. Similarly, using
geometry decomposition a shape can be reconstructed as a Nash game. Each
time the geometry players produce a new candidate geometry, the flow players
repair the flow. In the game theoretical sense, geometry reconstruction can be
considered as the leader in the Stackelberg game, and flow reconstruction as the

0.4

0.2

-0.2

-0.4

0.4

0.2

-0.2

-0.4

0.4

0.2

-0.2

0.4

53

Geometry decomposition 1

target

FIGURE 17 Different geometry decompositions. Single player: (1) No geometry decom-

position. Two players: (2) Separate surfaces. (3) Extrado/intrado surfaces.
(4) Alternating control points. Four players: (5) Top/bottom surfaces. (6)
Leading/trailing surfaces. (7) Alternating control points.

54

Convergence of Nash algorithms

0.1 T T T T
jDE (1 player geometry 1) —_—
Nash-jDE (2 players, geometry 2)
Nash-jDE (2 players, geometry 3) -
Nash-jDE (2 players, geometry 4)
Nash-|DE (4 players, geometry 5)
© Nash-jDE (4 players, geometry 6)
(—?, Nash-jDE (4 players, geometry 7)
Z
S
©
c -
2
[
=
©
2
o)
(@]
0.001 . . s A " . o
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Number of objective function evaluations
Convergence of Nash algorithms
0.1 T T T T
DE (1 player geometry 1) ——
Nash-]DE (2 players, geometry 2)
Nash-jDE (2 players, geometry 3) -
Nash-jDE (2 players, geometry 4)
Nash-jDE (4 players, geometry 5)
g Nash-|DE (4 players, geometry 6)
3 Nash-jDE (4 players, geometry 7)
c
il
k3]
c -
2
[
=
k3]
2
o
@]

0.001 L =
0 50 100 150 200 250 300 350 400 450

Wall-clock time [s]

FIGURE 18 Convergence of the algorithms in the different geometry decomposition
cases.

Nash geometry test case: Geometry

0.4 j i Reference
Geometry 1 ———
03 | Geometry 2
. Geometry 3 -
Geometry 4
02+ 1 Geometry 5 ———
Geometry 6 -
Geometry 7 -~
0.1 | q
ok]
-0.1 |+ q
-0.2 | q
-0.3 R
04 . . I . .
-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Nash geometry test case: Pressure distribution
15 i i Reference ——

Geometry 1 ———
Geometry2 ———
Geometry 3
Geometry 4

Geometry 5 ———
Geometry 6 -
Geometry 7 -

Reference ——
Geometry 1 ———
Geometry2 ———
Geometry 3
Geometry 4
Geometry 5 ———
Geometry 6 -
Geometry 7 -

FIGURE 19 Example final results for geometry decomposition.

global Nash game
(shape + flow reconstruction)

FIGURE 20 Hierarchical and global Nash game structures. In the case of hierarchical
game, the flow reconstruction is done completely by flow players FP; for
each shape candidate generated by the shape players SP;. In the global
case, all players act simultaneously.

follower that reacts to the changes of the leader. The hierarchical Nash game
structure is illustrated in Figure 20.

The hierarchical Nash game can be seen as an enhancement to the tradi-
tional approach, where optimization is done by distributing the evaluation of the
objective function by means of domain decomposition. In both cases, the flow has
to be completely reconstructed for each new geometry candidate. This sequential
process imposes a serious bottleneck.

In order to avoid reconstructing the flow field completely for each new ge-
ometry candidate, a new method is introduced in this study. In the proposed
method, the flow and geometry players operate simultaneously in a single global
Nash game [75, 76]. Unlike in the hierarchical approach, the flow does not need
to be completely reconstructed when the geometry is being optimized. In this
sense, the method resembles one-shot methods.

The proposed method, the global Nash game coalition algorithm (GNGCA),
which forms the core of this thesis, operates in the following manner. The do-
main is divided into two or more subdomains. The geometry to be optimized
is distributed to the Nash shape players. Simultaneously, the flow players start
to minimize the discrepancy on the overlapping areas. After each epoch, the
shape players distribute their elite geometry information and flow players their
updated boundary values. In this work, each subdomain has one or more Nash
players. Cases where the subgeometries span two or more subdomains were not
studied. In such situations, local flow could be solved with the help of standard
domain decomposition methods or a Nash game leading to a locally hierarchical
approach. The process is illustrated in Figure 20.

Although standard one-shot methods converge very quickly, GNGCA has
several advantages. First, the proposed method is inherently parallel. The flow
and shape players can be implemented on different CPU cores, computers, or

57

computing clusters. Second, the method inherits advantages from domain de-
composition methods. Instead of computing the whole domain, computation
can be limited to a local subdomain for geometry players. Finally, the approach
is very flexible when it comes to selecting the algorithms. For simple linear ellip-
tic state equations, standard domain decomposition methods can be applied; for
nonlinear cases, local or global search methods can be used. If the objective func-
tion is relatively simple and smooth, local search methods can be applied; global
methods can be used in more difficult cases where standard one-shot methods
cannot produce good results.

Interaction between shape and flow players is limited because flow infor-
mation is only updated after each epoch. This is important in the cases where
minimization of information transfer is critical. Examples of such situations in-
clude distributed computing over large distances (high latency) and GPU com-
puting where the data transfer between the system memory and the graphics card
should be minimized.

The method was validated with the help of inverse shape and position re-
construction problems. However, the method should be applicable to direct op-
timization problems in cases where the global Nash equilibrium is located at the
optimum.

5.3.1 Implementation

The structure of the global Nash algorithm is highly distributed and allows a
wide variety of implementations. In this study, both distributed and centralized
approaches were used. The former allows a more flexible architecture, but in
order to make sure that each player has up-to-date information, some sort of
controlling process is preferable, especially when the system grows large. The
“master” process holds the information on the current best design vector, as well
as the boundary information. The information is passed through the master node.
Examples of centralized and distributed architectures are illustrated in Figure 21.
In a theoretical utopian situation where the flow is always fully reconstructed,
GNGCA should perform identically to the jDE algorithm except for the faster
solution rate provided by DDM. In practice, the flow always remains more or
less incomplete, misleading the shape players. Deterministic approaches, such as
gradient-based algorithms, may not be able to converge. In the case of evolution-
ary algorithms, it is important that the shape players do not converge too early
since the algorithm could get stuck in some suboptimal region. Therefore, maxi-
mizing the efficiency of flow players is important for a successful convergence of
the method.

5.3.2 Shape reconstruction example
In order to illustrate the efficiency of the global Nash approach, a two-element

airfoil geometry reconstruction problem is considered (Bi-NACA0012, described
in Section 4.2). In order to increase the solver solution time difference between

58

li

/
- ! slave) U slave | N < -
\ \

~ 4 ~ 4

FIGURE 21 Example GNGCA architectures consisting of two flow and two shape play-
ers. Top: Centralized architecture where the information is passed through
a master node which retains up-to-date flow (g(i)) and geometry (s()) data.
Bottom: Distributed architecture where the information is passed between
the players. The 0,..., N slave processes, which perform the actual flow
computations, communicate only with the player nodes, which in turn con-
trol the optimization and domain decomposition algorithms.

59
the global and the decomposed domain, compressible potential flow is used:

v'pv¢lt,f =0 in Qu,@

Qur = Vo On I'g

d

Tub = 0 on Ty (35)
Qu = @¢ on Iy,

¢ = @u on Iy,

where u and / refer to the upper and lower subdomain, respectively. The pressure
p is computed using the formula

_ p
p= {1+721M§o (1—|v|2)} (36)
1

The constant ¢ = 1.4 is the ratio of specific heats for air and f = =5 = 2.5.
The free-flow Mach number is M. = .3, guaranteeing the flow being subsonic
in the whole domain. Because of the sharp edges present, the angle of attack is
kept at « = 0.0° in order to minimize the effect of singularities at the trailing
edges. The shape deformation is limited to 8 design variables. In order to see the
effect of parallelization, 2k, k = {1,...5} slave processes are used. For the shape
reconstruction, the jDE algorithm is used with the threshold objective function
value of f,i,, = 1077.

Algorithmic convergence rates are listed in Table 12 and convergence of the
algorithms in Figure 23. Decomposed mesh is illustrated in Figure 22 and exam-
ple results in Figure 24. It can be seen that with a small number of processors
GNGCA is clearly the fastest algorithm by a large margin, even though only two
subdomains were used. The performance of GNGCA is better than described in
Paper II. This can be explained by the fact that the overlap is located far away
from the elements, unlike in the multi-disk element geometry problem where the
overlap touches element surface (Neumann boundary). Of the tested algorithms,
the geometry decomposition approach (Nash-jDE) scales best when the number
of processors are increased (Figure 23). The effect of incomplete flow reconstruc-
tion becomes apparent on GNGCA when a large number of slaves are used.

60

0.6

0.4

0.2

-0.2

04}

06 f f
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

FIGURE 22 Decomposed mesh.

TABLE 12 Algorithmic performance in the Bi-NACAQ012 geometry reconstruction
case. The parameter n refers to the number of slaves, t is the wall-clock time
in seconds, and 7;; is the combined number of objective function evaluations.
The first speed-up column refers to the speed-up gained from adding slaves,
the second column to the performance difference compared to GNGCA with
the same number of slaves.

Mg t Mt speed-up
DE 2 1.1786E+03s 4974 1.0000 7.8594
4 6.3631E+02s 4394 1.8522 9.4935
8 2.3521E+02s 3053 5.0108 4.5220
16 1.7497E+02s 3819 6.7360 5.0377
32 1.8397E+02s 4368 6.4065 5.3054
Nash-DE 2 4.3434E+02s 1279 1.0000 2.8964
4 25813E+02s 1521 1.6826 3.8512
8 1.7307E+02s 2034 2.5096 3.3273
16 7.1452E+01s 1683 6.0788 2.0572
32 4.1446E+01s 1924 10.4797 1.1952
GNGCA 2 1.4996E+02s 1150 1.0000 -
4 6.7026E+01s 1026 2.2373 -
8 5.2015E+01s 1567 2.8830 -
16 3.4732E+01s 2039 4.3176 -
32 3.4676E+01s 3078 4.3246 -

61

Bi-NACAO0012 shape reconstruction

DE (2 slaves)
DE (
DE
DE (16 slaves)
DE (32 slaves) -----
Nash-DE (2 slaves)
Nash-DE (4 slaves)
Nash-DE (8 slaves)
Nash-DE (16 slaves) k
Nash-DE (32 slaves) -----
GNGCA (2 slaves)
GNGCA (4 slaves) ---=----
GNGCA (8 slaves) = 4
GNGCA (16 slaves)
GNGCA (32 slaves) -----

Objective function value

0 200 400 600 800 1000 1200
Elapsed wall-clock time [s]

Bi-NACAO0012 shape reconstruction
102 . . . T x x

(2 slaves)
(4 slaves) --------
(8 slaves) oo

DE (16 slaves)

DE (32 slaves) -----
Nash-DE (2 slaves)
Nash-DE (4 slaves)
Nash-DE (8 slaves)

Nash-DE (16 slaves) k
Nash-DE (32 slaves) -----
GNGCA (2 slaves)
GNGCA (4 slaves) ---=----
GNGCA (8 slaves) - 4
GNGCA (16 slaves)
GNGCA (32 slaves) -==-~

OO0

E
E
E

Objective function value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of objective function evaluations

Bi-NACAO0012 shape reconstruction: Scaling of the algorithms

JDE (extrapolated) ---&---

jDE (actual) —=—

Nash-jDE (extrapolated) ------
Nash-jDE (actual) —=—
GNGCA (extrapolated) ---@---
GNGCA (actual) —=—

Elapsed wall-clock time [s]
< 5
S %

OA

2 4 8 16 32
Number of slave processors

FIGURE 23 Convergence curves for the Bi-NACA0012 geometry reconstruction case.
Top: Convergence as wall-clock time in seconds. Middle: Convergence as the
number of objective function evaluations. Bottom: Scaling of the algorithms
as the function of the number of slaves. The two-slave result for each of the
algorithms was used as the baseline for extrapolation.

62

Bi-NACA0012 test case: Geometry
0.4

04

06 -04 -02 0 0.2 0.4

Bi-NACA0012 test case: Pressure distribution
0.4

0.6

0.3 |

0.6 -
-08 -06 -04 02 0 02 04 06 08

FIGURE 24 Example final ressults.

Reference

jDE =

Nash-DE »

GNGCA (player1) o
GNGCA (player2) o

Reference

jDE

Nash-jDE

GNGCA (player 1)
GNGCA (player 2)

ooem

Reference --------

J —

Nash-jDE ——
GNGCA (player 1) ——
GNGCA (player 2) ——

6 INCREASE OF PERFORMANCE WITH GPUS FOR
SOLVING OPTIMIZATION PROBLEMS

In order to satisfy the growing demands of the nascent 3D gaming industry,
hardware-based 3D graphics acceleration was introduced in the mid-1990s. Later
generations of graphics hardware have become more sophisticated and com-
pared to CPUs, far more efficient in certain tasks. The dramatic increase in the
efficiency of GPUs is illustrated in Figure 25.

Drawing a single pixel on the computer screen does not need much infor-
mation about the surrounding pixels. Therefore the process can be easily done
in parallel. Following Flynn’s taxonomy, GPUs are massively parallel SIMD ma-
chines, not unlike the vector processors which were popular in supercomputers
from the 1970s to the 1990s [7, 120]. The vast increase in GPU processing power
has been made possible by increasing the number of computing cores, which has
no physical limitations similar to those arising from transistor miniaturization.

In order to be able to accelerate complex graphical features in computer
games, GPU processors were made programmable, opening their processing ca-
pabilities to applications they were not originally designed for. Early GPU ap-
plications were done using OpenGL and required in-depth understanding of the
system. Modern development platforms such as CUDA by NVIDIA [91] and
platform-independent OpenCL [1] have considerably simplified GPU software
development making it a cost-effective alternative for high-performance comput-
ing.

The advantages of general purpose GPU computing were realized by the
high-performance computing community, and early on it was adopted for scien-
tific computing. Applications of GPU computing include MRI reconstruction [114],
data mining [36], molecular modeling [113], and quantum physics simulation [2]
to mention a few. A review of early applications can be found in [37]. Flow sim-
ulation is computationally intensive and can be easily implemented on a parallel
environment, making it a good application for GPUs [50]. Flow computations
based on the finite difference method can be done node-wise on GPU cores [28].
Computations based on the finite element and the finite volume methods have
also been implemented [41, 102]. The Lattice-Boltzmann method is especially

64

Performance increase (GPU/CPU)

3500 . . .
NVIDIA GPU ——
P~ NVIDIA GPU (double precision) ---B-- GTX680
2 3000 | INTEL CPU @~ n
9
[T
2 2500
3
=
©
g 2000
- GT)}(:/O
E‘ 1500 GTX480
3
ks GTX28 (/'/
g 1000
g
8 500
s 7800GTX Bloomfi\%d
Woodcresfiarpertown ,,,_‘?S'tfﬂ?ﬁ ___________
N SPRTTITTIIIE,;.».z:!‘_:: R ..
2004 2006 2008 2010 2012

Year introduced
FIGURE 25 Increase of the efficiency of NVIDIA GPUs compared to Intel CPUs [93].

suitable for GPUs [10].

Scientific GPU computing has found its way to supercomputers, and some
of the fastest machines in the world now include clusters of GPUs [118]. The
results are often impressive: speed-ups in the range of 100x or more have been
reported in the literature [89]. However, critics have pointed out that the compar-
isons have not always been fair to the traditional CPUs [74].

Despite the advantages, GPUs have serious limitations that must be con-
sidered. First of all, since GPUs are massive parallel systems, the problem that
GPUs are applied to must be such that it can be split into a large number of sim-
ple computations. Standard issues arising from parallel computing, such as race
conditions, must also be avoided. The memory structure poses its own limita-
tions, which have to be taken into account when the software is being developed.
In order to achieve an optimal speed-up, the computing cores should be kept as
occupied as possible during computations. Compared to the traditional CPU pro-
gramming, implementation of GPU code has much higher impact on efficiency.

6.1 GPU architecture

In order to understand GPU computing, some knowledge of the underlying hard-
ware and memory structure is required. In this work, the CUDA development
platform was used and therefore the terms used here are those introduced by the
NVIDIA Corporation [91].

The CPU is called host whereas device refers to the graphics card. Functions
that are run on GPU are called kernels. Each computing core on the device can run
a single instance of kernel, called thread. The threads which are run on physically

65

connected cores form a block. The threads in a block are run simultaneously. The
collection of blocks is called kernel grid, the size of which is determined by the
program during the launch of a kernel. Figure 26 depicts the thread hierarchy in
NVIDIA graphics cards.

The main memory on the device is called global memory. Any thread can
access it and it is the location where the data to be processed is sent from the
host. Random access to the global memory is time-consuming because fetching
the data may require several clock cycles since memory accessing is done syn-
chronously. If the data is organized along the threads, the number of cycles can
be minimized. This property, called coalescence, had a major impact on the effi-
ciency of older GPUs. Fortunately, this has been corrected in modern GPUs.

Each of the blocks has a common shared memory, which only the threads
within a block can access. It is much faster than the global memory, and in order
to maximize the efficiency of the code it is recommended that it should be used as
much as possible. Unfortunately, the size of the shared memory is very limited,
up to 48 kilobytes in modern GPUs [92].

Other memory types include read-only constant memory where global con-
stants are stored. Thread-specific scalar variables are primarily stored into the
fast but limited register memory. If the register memory becomes full, or local ar-
rays are used, the excess data is stored into a local memory which despite its name
is actually a part of the global memory that has been reserved to a single thread.
Excessive use of local memory has a negative impact on the efficiency of the code.
Finally, texture memory is a form of cached global memory and is less used in gen-
eral purpose GPU computing. The GPU memory structure in NVIDIA cards is
illustrated in Figure 27.

Memory bandwidth between the host and the device is shown in Figure 28.
The most striking aspect is how limited the bandwidth between the host and
device memory is. Minimizing data transfer between the two types of memory is
one of the most important considerations in producing efficient GPU code.

Another limitation of GPUs conserns the double-precision floating point
arithmetic. Single-precision floating point arithmetic is much faster and accu-
rate enough for most graphics processing. However, it is often not enough when
scientific computing is concerned. Older graphics cards did not have the capacity
to process double-precision floating point numbers which necessitated the use of
much slower software-based emulation [44]. Modern GPUs based on brands such
as NVIDIA Tesla and Fermi have cores capable of doing double-precision arith-
metic although less efficiently [32]. For example, the NVIDIA GeForce GTX 480
graphics card operates at %th of the single-precision capability when double pre-
cision is used [4]. Best speed-ups on GPUs can be achieved using mixed pre-
cision, where the fast single-precision computations are corrected using double
precision [42].

66

Grid

Block (0,0) Block (1,0) Block (2,0)
Block (0,1) Block (1,1) Block (2,1)
Block (0,0)

Thread (0,0) | | Thread (1,0) | | Thread (2,0)
Thread (0,1) | | Thread (1,1) | | Thread (2,1)

FIGURE 26 Thread/block structure.

o
oW
O

GPU grid

Block 0

Block

1

‘ Shared memory

‘ Shared memory ‘

Registers

Registers

Registers

Registers

{ I

1

1

‘ Thread 0 ‘ ‘ Thread 1

‘ Thread 0 ‘ ‘ Thread 1

Local Local
memory memory

Local
memory

[Local
memory

" Global memory

-{ Constant memory

-‘ Texture memory

FIGURE 27 Device memory structure.

CPU
processin cache CO-prOCeSSOr
elements
40 GB/s
6-12 GB/s 20-80 GB/s I
1-8 GB/s :
system device
memory memory

FIGURE 28 Device/host memory bandwidths [43].

67
6.2 Efficiency of GPUs

From the point of view of solving partial differential equations, the two main as-
pects that affect the speed-up of GPU computing are the size and the structure
of the mesh. Sparse matrices, especially those produced using finite elements on
unstructured meshes, are problematic for GPU computing because with them ef-
ficient utilization of threads and memory becomes complicated. Therefore many
GPU applications operate on grids or dense matrices.

In order to illustrate the speed-up of GPU computing on unstructured meshes
of varying size, a simple potential flow problem is solved using the CUSP precon-
ditioned conjugate gradient solver [8]. Consider the three-ellipse element geom-
etry domain (), where the Laplace equation is used as the state equation,

—-Ap = 0 in Q

¢ = x on Iy (37)
9
% = 0 on 1“1,2,3

A mesh with four different levels of refinement is tested using a single
GeForce GTX 580 graphics card. The original mesh (7},) is divided 2, 3, and 4
times (’7'%, Ty, and 7-%) The meshes are illustrated in Figure 29. The results

4

for computations are listed in Table 13 and the speed-ups compared to a CPU-
optimized conjugate gradient method are shown in Figure 30. For a fair com-
parison, the times, including overhead caused by data transfer between the com-
puters and between the CPU and GPU, are also included. It can be seen that
with the use of a small mesh the speed-up is nonexistent, but it becomes dra-
matic (nearly 25) when the mesh becomes large, illustrating the behavior typical
in GPU computing. When the overhead is taken into account, the benefit of the
GPU approach is much less evident. This is in part due to the fact that the test
problem is very simple. For example, if the matrix has to be solved repeatedly (as
in the case of nonlinear partial differential equations), the difference in efficiency
between GPUs and CPUs could become more apparent. Also, a proper GPU clus-
ter environment can reduce the transfer time. Furthermore, the overhead can be
hidden by performing the data transfer when the GPUs are computing the result
(cf., for example, [57]).

In this work, GPU computing is limited to solving the linearized system
of equations (Au = f). The matrix A and vector f are computed on the master
computer and transferred to separate computers accommodating the GPUs. Af-
ter finishing the computation, vector u containing the computed solution is sent
back to the master. A more sophisticated approach would be to minimize the
data transfer and overhead by doing as much as possible on-the-fly on the GPUs.
However, efficient implementation of this is beyond the scope of this study.

68

45
&

N

A
NeE

=

=

L
=
i

S

i

>
YA

VA

\/

0
0

Ty

i

YA

0
Tasar

vy

VAl
\/\
i
VAV

N/
o5

X
v

Ay

aravav,

=~

i
5

vas
s

2
S

=P
S

Vas

5

=5

%
_G
D —

1~

2529

=
D
EVAVANN

SASL
VAV AV
VASTAN
AVA V.3

TASSSN
SN
SIS

-5.5
7AVA
%
‘
-5.5

NS

"N

%)

N
N

%

AV

VAN
eAN
SNy

S5

<25
N

&1
Qy,
v

-6.5

VAN
2

4y,

-6.5
XX
&

Y,

S

Q

S
AVAVAVAVAS:

AVAVAVAS

AVAVAY

4y
VA

7

VA

Y,

2\

\/

VAY,
VAVA

VAVAVAN

('('(’(
VAVA

2
1V

2\
\/

4

é»

a)
=
Yz
A

-7
ZHA2X

i

=
yvd

KKK
o

5
K

=

K
D

S

RN
2
N

—

75
)
75

A\
2

Va)
V]

va)
V4

A
\/

0

VA

V4
1V

JAVAY

]

VAYA
vavi

7\

7

VAV
AVAVAY

VaY
AVaVAVAY

8

17

L]
v,
VAY

7=
AN

7
aw,

7
=
ISEH

15 7S

iy,

£

=

0.5
-1.5

-0.5

FIGURE 29 Mesh refinement in the case of three-ellipse element geometry. Top: Original

Middle: Mesh where the elements are divided once (7). Bottom:

2

mesh 7.

Mesh where the elements are divided twice (7;).

4

69

300 T T T T T
CPU —— x
CPU+overhead ------ o
GPU —»—
250 p GPU+overhead ---&--- 4
=
o -
£
<
[53
o
9 L
T
3
o
Q
1723
2 4
]
w
0 100000 200000 300000 400000 500000 600000
Number of mesh nodes
GPU vs CPU (total time)
0.1 T T T
CPU (1x mesh) —&—
CPU (2x mesh) —=—
CPU (3x mesh) —&—
GPU (1x mesh) ----e---
GPU (2x mesh) -------
] GPU (3x mesh) ----e---
©
>
[=4
k<]
k]
c
2
[
=
B
2
Q H
] 1 H
0.01 i 1
—
1 10 100 1000 10000
Elapsed wall-clock time [s]
GPU vs CPU (solver time)
0.1 T T T T
CPU (1x mesh) —&—
CPU (2x mesh) —=—
CPU (3x mesh) —&—
GPU (1x mesh) ----=---
GPU (2x mesh) -
] GPU (3x mesh) -------
©
>
[=4
k<)
©
f=4
e]
[
=4
©
2
Qo
]
0.01 1
L]
0.1 1 10 100 1000 10000

Elapsed wall-clock time [s]

FIGURE 30 Top: Efficiency of GPU compared to CPU. For a more fair comparison, the
overhead is included. Middle: Initial convergence of the jDE algorithm us-
ing meshes of different refinement levels. For comparing the optimal effi-
ciency of GPUs, the solver-only time is included (bottom).

70

TABLE 13 Comparison between CPU and GPU when the conjugate gradient method is
used.

nodes CPU [s] CPU [s] GPU [s] GPU [s] solver actual
+overhead +overhead performance
[xCPU]

Th 8967 0.278374 1.14831 0.330020 2.66052 0.84 0.43
7‘% 35464 2.36992 4.45027 0.782007 5.08469 3.03 0.88

Ty 141042 23.3545 30.4248 2.23112 153214 10.47 1.99
4
7'% 562534 259.542 286.906 10.4392 59.5071 24.86 4.82

6.3 Implementation of GPUs for global Nash games

In this section, the impact of GPU computing on the efficiency of GNGCA is
demonstrated. Because of the limited number of graphics cards available, the
study was limited to a multi-disk element geometry problem using two disks in
incompressible potential flow,

_A(Pl,Z =0 in 01,2
P12 Voo ON I
% = 0 on Ipp (38)
1 = ¢2 on Iy
g2 = @1 on Iy

where k is the index of subdomain, j the right-hand side and ¢ the left-hand side
neighbor. The free-flow velocity veo = (cosa, sina) and the angle of attack « =
0°.

In order to minimize the effect of overhead and the difference between im-
plementations, both the CPU and GPU use the same CUSP solver giving some-
what unrealistic results for the CPU. However, this is justified since this test only
considers the effect of GPUs on algorithmic convergence. The different configu-
rations tested are listed in Table 14. All computations were done on two remote
computers consisting of AMD Athlon II X4 645 quad-core processors clocked at
3.1 GHz. The first computer has a GeForce GTX 580 graphic card and the second
one a slightly less efficient GeForce GTX 480 card. Since only the initial conver-
gence was of interest, the algorithms were terminated when they reached the
threshold objective function value of f,;, = 10~%. The elements of the meshes
were divided once in order to increase the computational cost and to make the
performance difference between GPU and CPU more apparent.

The results for the different configurations are listed in Table 15. The con-
vergence curves are shown in Figure 31. Based on the results, it is evident that
the convergence of the algorithm is defined by the efficiency of the flow play-
ers, confirming the results obtained in Paper II. This is dramatically illustrated in

71

TABLE 14 Tested CPU/GPU configurations. The number of processors used by each of
the algorithms.

case TMngp nsp
1 2 2
2 2 4
3 2 6
4 2 2 (GPU)
5 2(GPU) 2
6 2(GPU) 4
7 2(GPU) 6

TABLE 15 Comparison of hybrid CPU/GPU implementations for the global Nash ap-
proach where t is the wall-clock time and n;; is the combined number of
objective function evaluations by both players.

case t Nt
1 5.0088E+03s 642
2 4.1798E+03s 1063
3 3.7532E+03s 1419
4 4.7862E+03s 1462
5 4.4846E+03s 541
6 1.5670E+03s 391
7 1.2577E+03s 461

case (4) where the shape players are operated on GPUs. Even though the actual
GPU performance is ~ 2.5x that of the CPU, the algorithm was not better than
the CPU-only case. This can be explained by the fact that the shape players can-
not converge if the flow players do not feed them with fast enough updated flow
information.

On the other hand, when the flow players use GPUs, the performance is
rapidly increased. Although no apparent improvement in the wall-clock time
was made in the case of two slaves, the wall-clock time was more than halved
when the number of slaves was doubled. Because the speed-up provided by
GPUs was limited, further increase of slave processes did not bring more speed-
ups.

72

TABLE 16 The average solution time and the average time needed to perform a single
objective function evaluation.

CPU GPU speed-up

solver 13.7782s 1.3542s 10.1744 x
total 17.7068s 7.2038s 2.4580 x

GNGCA on a hybrid CPU/GPU platform
1
10 T T T T T

'FP: 2xCPU, SP: 2xCPU ——
FP: 2xCPU, SP: 4xCPU --------
FP; 2xCPU, SP: 6xCPU -
0 FP: 2xCPU, SP: 2xGPU ——— |
10 FP: 2xGPU, SP: 2xCPU ——
El FP: 2xGPU, SP: 4xCPU -------
g FP: 2xGPU, SP: 6xCPU -
g
g 10} _
3
g
2
QEJ 102 }]
3
2
o)
o
10° f]
107 L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Elapsed wall-clock time [s]
GNGCA on a hybrid CPU/GPU platform
1
"))) " FP: 2xCPU, SP: 2xCPU ——
FP: 2xCPU, SP: 4xCPU --------
FP; 2xCPU, SP: 6XxCPU -+
0 FP: 2xCPU, SP: 2xGPU ——— |
10 FP: 2xGPU, SP: 2xCPU ——
E FP: 2xGPU, SP: 4XCPU --------
g FP: 2xGPU, SP: 6xCPU -
>
g0}]
3
2
3
QEJ 102 }]
3
2
o)
o
10° b]
10 - T
0 200 400 600 800 1000 1200 1400 1600

Number of objective function evaluations

FIGURE 31 Convergence of GNGCA in different hybrid environments. Convergence
is compared using wall-clock time (left) and number of required iterations
(right).

7 CONCLUSIONS AND FUTURE WORK

In this research, multi-objective optimization algorithms coupled with Nash strate-
gies have been studied, leading to the innovative concept of distributed optimiza-
tion.

A competitive game approach well-suited to parallelization was implemented
to provide significant algorithmic speed-ups. A novel “distributed one-shot”
method that couples Nash games with domain and geometry decomposition was
introduced. The approach was tested on various test cases with different number
of processors. It was also tested on a hybrid CPU/GPU environment.

The numerical results on various optimization test cases complete previous
studies in showing that by decomposing a design geometry into a distributed sys-
tem with virtual game strategies the required amount of function evaluations can
be efficiently reduced. The introduced method, the global Nash game coalition
algorithm (GNGCA), was found to be superior compared to other methods in
many cases due to reduction of geometrical complexity and local computational
domain size. The method is inherently parallel, which makes its implementation
on large computing clusters straightforward.

The results obtained also indicate the importance of geometry and domain
decomposition. Poor choice of geometry splitting can result in degraded perfor-
mance or failure of convergence. Also, the performance of GNGCA depends on
the efficiency of flow players. In the cases where shape players operated faster
than flow players could repair the flow, the algorithm did not bring massive in-
creases in efficiency. However, the results obtained suggest that in cases where
there are a large number of subdomains, the speed-ups could become impres-
sive. Alternatively, if the flow reconstruction can be done much faster on graphic
processing units, the overall algorithm efficiency can be greatly increased.

The utilization of GPUs on PDE-based analyzers had two main issues to
be considered in regard to the speed-up of evaluation. When sufficiently large
mesh sizes are used, the improvements in efficiency are impressive. On the other
hand, the effort of implementing efficient GPU code for efficiency improvements
remains very time consuming and problem-specific.

The performance of the new “distributed optimization” approach was vali-

74

dated only on simple flow problems with a small number of subdomains. Further
studies using large-scale problems and advanced domain and geometry decom-
position methods are needed.

The next step is to extend these new efficient distributed shape design op-
timization methods to industrial design collaborative platforms on which a large
spectrum of optimization software abounds. This advanced technology trans-
fer goal requires distributed optimization of simple 3D configurations with more
complex nonlinear PDEs. These more challenging problems can be computed
using intelligent domain and geometry decomposition techniques coupled with
game strategies. One step further in complexity is to take into account more real-
istic physics modeling via robust design with uncertainties.

Resulting from the outcomes of the TEKES Design project, the scientific
computing laboratory of the University of Jyvaskylad is now well-equipped with
its collaborative platform and the Finnish Design Test Case Database. A set of
generic geometries for complex physics optimization problems can now be de-
fined in order to evaluate performances of distributed optimization algorithms
in situations much closer to the industry. The results can be published and com-
pared in International Open Database Workshop events.

The results obtained combining distributed evolutionary optimization and
GPU techniques illustrate that the new method is potentially highly paralleliz-
able. This research is the first step on an innovative roadmap to design optimiza-
tion with complex mathematical modeling and geometries. It is expected from
the results of this study that efficiency obtained on simple optimization model
test cases will be significantly increased on large size optimization problems in
industrial design environments.

YHTEENVETO (FINNISH SUMMARY)

Muodon optimointi on tarked alue teollisessa suunnittelussa, koska varsin usein
kehitettdavan tuotteen tehokkuus ja toiminta riippuu sen muodosta. Perinteisesti
optimointi on toteutettu rakentamalla fyysisid malleja, mikd on hidasta ja kallis-
ta. Tietokoneiden tehostuminen on mahdollistanut uusien laskennallisten mene-
telmien kehittdmisen, jolloin tuotteen muoto voidaan optimoida tehokkaammin.
Valitettavasti realististen mallien optimoiminen on hyvin haastavaa suuren las-
kentamaaran vuoksi, joten kehittyneempien menetelmien kehittdmiselle on tar-
vetta.

Viitoskirjassa “Hajautetut evoluutioalgoritmeja ja peliteoriaa hyodyntavat
monitavoiteoptimointimenetelméit muodon optimoinnille” tutkitaan menetelmia,
joilla muodon optimointia pystytddn tehostamaan. Ensimmainen tutkituista me-
netelmistd perustuu peliteoriaan. Muuttamalla yksitavoitteinen ongelma moni-
tavoitteiseksi ja ratkaisemalla se non-kooperatiivisena Nash-pelind, voidaan var-
sinkin evoluutioon perustuvien optimointialgoritmien tehokkuutta parantaa. Tas-
td on hyotyd muodon optimoinnissa, silld usein esiintyy tilanteita, joissa moni-
mutkainen geometria voidaan jakaa osiin. Menetelméaéa on tutkittu ensimmaises-
sa vaitoskirjaan sisdllytetyssa artikkelissa.

Aluehajoitusmenetelmid (DDM) on kdytetty menestyksekkadsti raskaassa
laskennassa. Laskettava alue rajataan osiin, jolloin laskenta kyetddn jakamaan
usean eri tietokoneen tai prosessorin kesken. Toinen véitoskirjassa esitettdva me-
netelméd perustuu osin tdhdn. Yhdistamalld geometria- ja aluehajoitusmenetel-
mit ja ratkaisemalla ne yhtend globaalina Nash-pelind, voidaan laskentaa tehos-
taa huomattavasti (GNGCA-algoritmi). Menetelm& on julkaistu toisessa véitos-
kirjaan sisdllytetyssa artikkelissa, ja sitd vertaillaan muihin rinnakkaistettuihin
evoluutioalgoritmeihin neljannessa artikkelissa.

Tietokonegrafiikan laskennassa kaytettavien grafiikkaprosessorien (GPU) ke-
hitys on ollut hyvin nopeaa viime vuosina. Vaikka ne onkin suunniteltu ldhin-
né pelikdyttoon, on niiden mahdollistama huomattava laskentapotentiaali otettu
kayttoon myos tieteellisessd laskennassa. Vaitoskirjan kolmannessa artikkelissa
tutkitaan, kuinka Nash-algoritmien toimintaa voidaan tehostaa grafiikkaproses-
soreiden avulla. Johdanto-osiossa esitelldan lisdksi tuloksia GNGCA-algoritmin
tehostamisesta GPU-laskennan avulla.

Viidennessd ja viimeisessd artikkelissa tutkitaan hierarkkisten evoluutioal-
goritmien kdyttod verkollisten ja verkottomien menetelmien avulla.

Viitoskirjassa kaytetyt testitapaukset ovat yksinkertaisia muodon ja geo-
metrian rekonstruktiotehtdvid 1dhinnd potentiaalivirtauksen tapauksessa. Tule-
vaisuudessa vaitoskirjassa esiteltyja menetelmid voidaan soveltaa haastavampiin
ongelmiin, joissa tutkitaan monimutkaisia geometrioita seké realistisempia epéli-
neaarisia virtausmalleja. Lisdksi GPU-laskenta voidaan integroida entista tiiviim-
min optimointiprosessiin. Padmadarand on kehittdd menetelmd, josta on kaytan-
non hyotya teollisessa optimoinnissa.

REFERENCES

[1] M. Aaftab. OpenCL specification version 1.0. URL: <http://www.khronos.
org/registry/cl/>, 2011.

[2] A. G. Anderson, W. A. Goddard III, and P. Schréderb. Quantum Monte
Carlo on graphical processing units. Computer Physics Communications,
177(3):298-306, August 2007.

[3] J. Andersson. A survey of multiobjective optimization in engineering de-
sign. Technical report, Department of Mechanical Engineering, Linkoping
University, Linkoping, Sweden, 2000.

[4] H. Anzt, T. Hahn, V. Heuveline, and B. Rocker. GPU accelerated scien-
tific computing: Evaluation of the NVIDIA Fermi architecture; elementary
kernels and linear solvers. Technical Report 2010-4, Karlsruhe Institute of
Technology, 2010.

[5] E. Arian and S. Ta’asan. Shape optimization in one shot. Progress in Systems
and Control Theory, 19, 1995.

[6] P. K. Banerjee and R. Butterfield. Boundary element methods in engineering
science. McGraw-Hill Book Co., UK, 1981.

[7] G. Bell and J. Gray. What’s next in high-performance computing? Commu-
nications of the ACM, 45(2):91-95, February 2002.

[8] N. Bell and M. Garland. Cusp: Generic parallel algorithms for sparse
matrix and graph computations. URL: <http://cusp-library.googlecode.
com>, 2010. Version 0.1.0.

[9] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Mesh-
less methods: An overview and recent developments. Computer Methods in
Applied Mechanics and Engineering, 139(1-4):3-47, December 1996.

[10] M. Bernaschi, M. Fatica, S. Melchionna, S. Succi, and E. Kaxiras. A flexible
high-performance Lattice Boltzmann GPU code for the simulations of fluid
flows in complex geometries. Concurrency and Computation: Practice and
Experience, 22:1-14, 2010.

[11] J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors. Multiobjective Op-
timization: Interactive and Evolutionary Approaches. Springer—Verlag, Berlin
Heidelberg, 2008.

[12] J. Brest, S. Greiner, B. Boskovi¢, M. Mernik, and V. Zumer. Self-adapting
control parameters in differential evolution: A comparative study on nu-
merical benchmark problems. IEEE Transactions on Evolutionary Computa-
tion, 10(6):646-657, December 2006.

77

[13] E. Cantt-Paz and D. E. Goldberg. Efficient parallel genetic algorithms: the-
ory and practice. Computer Methods in Applied Mechanics and Engineering,
186(2—4):221-238, June 2000.

[14] H. Q. Chen, R. Glowinski, and J. Périaux. A domain decomposition/Nash
equilibrium methodology for the solution of direct and inverse problems in
fluid dynamics with evolutionary algorithms. In U. Langer, M. Discacciati,
D.E. Keyes, O.B. Widlund, and W. Zulehner, editors, Domain Decomposition
Methods in Science and Engineering XVIII, volume 60 of Lecture Notes in Com-
putational Science and Engineering, Heidelberg, 2006. Springer. Proceedings
of the 17th International Conference on Domain Decomposition Methods
held at St. Wolfgang / Strobl, Austria, July 3-7, 2006.

[15] T. J. Chung. Computational Fluid Dynamics. Cambridge University Press,
Cambridge, 2002.

[16] C. A. Coello Coello. Evolutionary multi-objective optimization: A histor-
ical view of the field. IEEE Computational Intelligence Magazine, 1(1):28-36,
February 2006.

[17] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publish-
ers, New York, 2002.

[18] T. A. Davis. Algorithm 832: UMFPACK v4.3-an unsymmetric-pattern mul-
tifrontal method. ACM Transactions on Mathematical Software, 30(2):196-199,
2004.

[19] R. Dawkins. The Selfish Gene. Oxford University Press, Oxford, 1976.

[20] K. A. De Jong. Analysis of the Behavior of a Class of Genetic Adaptive Systems.
PhD thesis, University of Michigan, Ann Arbor, Michigan, 1975.

[21] K. Deb. Multi-objective optimization using evolutionary algorithms. John Wiley
& Sons, Chichester, UK, 2001.

[22] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiob-
jective genetic algorithm: NSGA-IL. Evolutionary Computation, IEEE Trans-
actions on, 6(2):182-197, April 2002.

[23] A. Dervieux, B. Van Leer, J. Périaux, and A. Rizzi, editors. Numerical Sim-
ulation of Compressible Euler Flows. Braunschweig/Wiesbaden, Germany,
1989.

[24] J.-A. Désidéri and A. Janka. Multilevel shape parameterization for aero-
dynamic optimization — application to drag and noise reduction of tran-
sonic/supersonic business jet. In European Congress on Computational Meth-
ods in Applied Sciences and Engineering, ECCOMAS, Jyvéskyld, Finland, 24-
28 July, 2004, 2004.

78

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

J.-A. Désidéri, J. Périaux, and Z. L. Tang. Multi-objective design strategies
using deterministic optimization with different parametrizations in aero-
dynamics. In P. Neittaanmaki, T. Rossi, S. Korotov, E. Ofiate, J. Périaux, and
D. Knorzer, editors, European Congress on Computational Methods in Applied
Sciences and Engineering ECCOMAS 2004, 2004.

M. Dorigo, A. Colorni, and V. Maniezzo. The ant system: Optimization
by a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics Part B: Cybernetics, 26(1):29-41, 1996.

L. Dumas. CFD-based optimization for automotive aerodynamics. In
D. Thévenin and G. Janiga, editors, Optimization and Computational Fluid
Dynamics, pages 191-216. Springer—Verlag, Berlin Heidelberg, 2008.

E. Elsen, P. LeGresley, and E. Darve. Large calculation of the flow
over a hypersonic vehicle using a GPU. Journal of Computational Physics,
227(24):10148-10161, 2008.

B. Epstein, A. Jameson, S. Peigin, D. Roman, N. Harrison, and J. Vassberg.
Comparative study of three-dimensional wing drag minimization by differ-
ent optimization techniques. Journal of Aircraft, 46(2):526-541, March—April
2009.

LJ. Eshelman and J.D. Schaffer. Real-coded genetic algorithms and
interval-schemata. In L.D. Whitley, editor, Foundations of Genetic Algorithms
2, pages 187-202. Morgan Kaufmann, San Mateo, 1993.

C. Farhat and F.-X. Roux. A method of finite element tearing and intercon-
necting and its parallel solution algorithm. International Journal for Numeri-
cal Methods in Engineering, 32(6):1205-1227, 1991.

M. Fatica. Accelerating Linpack with CUDA on heterogeneous clusters.
In GPGPU-2 Proceedings of 2nd Workshop on General Purpose Processing on
Graphics Processing Units, 2009.

L.]J. Fogel, A.]. Owens, and M. J. Walsh. Artificial Intelligence through Simu-
lated Evolution. John Wiley, New York, 1966.

C. M. Fonseca and P. J. Fleming. Genetic algorithms for multiobjective opti-
mization: Formulation, discussion and generalization. In S. Forrest, editor,
In Genetic Algorithms: Proceedings of the Fifth International Conference, pages
416-423, San Mateo, CA, 1993. Morgan Kauffman.

C. M. Fonseca and P. J. Fleming. An overview of evolutionary algorithms
in multiobjective optimization. Evolutionary Computation, 3:1-16, 1995.

A. Gainaru, E. Slusanschi, and S. Trausan-Matu. Mapping data mining al-
gorithms on a GPU architecture: A study. In M. Kryszkiewicz, H. Rybinski,
A. Skowron, and Z. Ras, editors, Foundations of Intelligent Systems, volume

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

79

6804 of Lecture Notes in Computer Science, pages 102-112. Springer—Verlag,
Berlin Heidelberg, 2011. 10.1007/978-3-642-21916-0_12.

M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton,
E. Phillips, Y. Zhang, and V. Volkov. Parallel computing experiences with
CUDA. IEEE Micro, 28(4):13-27, 2008.

C. A. Georgopoulou and K. C. Giannakoglou. Multiobjective metamodel-
assisted memetic algorithms. In C.-K. Goh, Y.-S. Ong, and K. C. Tan, editors,
Multi-Objective Memetic Algorithms, pages 153-181. Springer—Verlag, Berlin
Heidelberg, 2009.

K. C. Giannakoglou. Design of optimal aerodynamic shapes using stochas-
tic optimization methods and computational intelligence. Progress in
Aerospace Sciences, 38(1):43-76, 2001.

F. W. Glover and M. Laguna. Tabu Search. Springer, June 1998.

D. Goddeke, S.H.M. Buijssen, H. Wobker, and S. Turek. GPU acceleration
of an unmodified parallel finite element Navier-Stokes solver. In W. Smari
and J. P. McIntire, editors, High Performance Computing & Simulation 2009,
pages 12-21, June 2009.

D. Goddeke and R. Strzodka. Cyclic reduction tridiagonal solvers on GPUs
applied to mixed precision multigrid. IEEE Transactions on Parallel and Dis-
tributed Systems, 22:22-32, January 2011.

D. Goddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S.H.M. Buijssen,
M. Grajewski, and S. Turek. Exploring weak scalability for FEM calcula-
tions on a GPU-enhanced cluster. Parallel Computing, 33(10-11):685-699,
September 2007.

D. Goddeke, R. Strzodka, and S. Turek. Performance and accuracy of
hardware-oriented native-, emulated- and mixed-precision solvers in FEM
simulations. International Journal of Parallel, Emergent and Distributed Sys-
tems, 22(4):221-256, January 2007.

C.-K. Goh, Y.-S. Ong, and K. C. Tan, editors. Multi-Objective Memetic Algo-
rithms. Springer—Verlag, Berlin Heidelberg, 2009.

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading, Massachusetts, January 1989.

A.O. Griewank. Generalized descent for global optimization. Journal of
Optimization Theory and Applications, 34(1):11-39, 1981.

R. T. Haftka, Z. Giirdal, and M. P. Kamat. Elements of structural optimization.
Kluwer Academic Publishers, 1990.

80

[49] J. P. Hamaéldinen, K. Miettinen, P. Tarvainen, and J. Toivanen. Interac-
tive solution approach to a multiobjective optimization problem in a paper
machine headbox design. Journal of Optimization Theory and Applications,
112(2):265-281, 2003.

[50] M. Harris. Fast fluid dynamics simulation on the GPU. In GPU Gems, pages
637-665. NVIDIA, 2004.

[51] W. E. Hart, N. Krasnogor, and J. E. Smith. Memetic evolutionary algo-
rithms. In W. E. Hart, N. Krasnogor, and J. E. Smith, editors, Recent Advances
in Memetic Algorithms, pages 3-27. Springer Verlag, 2004.

[52] J. Haslinger and R. A. E. Miakinen. Introduction to shape optimization: theory,
approximation, and computation. SIAM, Philadelphia, Pennsylvania, 2003.

[53] S. B. Hazra, V. Schulz, J. Brezillon, and N. R. Gauger. Aerodynamic shape
optimization using simultaneous pseudo-timestepping. Journal of Compu-
tational Physics, 204(1):46—64, March 2005.

[54] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving
linear systems. Journal of Research of the National Bureau of Standards, 49(6),
December 1952.

[55] C. Hirsch. Numerical Computation of Internal and External Flows, volume 1-2.
J. Wiley & Sons, New York, 1988.

[56]]. H. Holland. Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, 1975.

[57] D. A. Jacobsen, J. C. Thibault, and I. Senocak. An MPI-CUDA implemen-
tation for massively parallel incompressible flow computations on multi-
GPU clusters. In 48th AIAA Aerospace Sciences Meeting and Exhibit, January
2010.

[58] A. Jameson. Iterative solution of transonic flows over airfoils and wings,
including flows at Mach 1. Communications on Pure and Applied Mathematics,
27:283-309, 1974.

[59] A.Jameson and M. Fatica. Using computational fluid dynamics for aero-
dynamics. Technical report, Stanford University, Stanford, California, 2006.

[60] M. T. Jensen. Guiding single-objective optimization using multi-objective
methods. In S. Cagnoni, C. Johnson, J. Cardalda, E. Marchiori, D. Corne,
J.-A. Meyer,]. Gottlieb, M. Middendorf, A. Guillot, G. Raidl, and E. Hart,
editors, Applications of Evolutionary Computing, volume 2611 of Lecture Notes
in Computer Science, pages 91-98. Springer, Berlin Heidelberg, 2003.

[61] J. M. Johnson and Y. Rahmat-Samii. Genetic algorithms in engineering elec-
tromagnetics. IEEE Antennas and Propagation Magazine, 39(4):7-21, August
1997.

81

[62] I. C. Kampolis and K. C. Giannakoglou. A multilevel approach to single-
and multiobjective aerodynamic optimization. Computer Methods in Applied
Mechanics and Engineering, 197(33-40):2963-2975, June 2008.

[63] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of
the IEEE International Conference on Neural Networks 1995, volume 4, pages
1942-1948, Perth, WA, Australia, August 1995. IEEE Micro Service, Piscat-
away, NJ.

[64] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671-680, 1983.

[65]]J. Knowles, R. Watson, and D. Corne. Reducing local optima in single-
objective problems by multi-objectivization. In E. Zitzler, L. Thiele, K. Deb,
C. Coello Coello, and D. Corne, editors, Evolutionary Multi-Criterion Opti-
mization, pages 269-283. Springer, Berlin Heidelberg, 2001.

[66] J. D. Knowles and D. W. Corne. Approximating the nondominated front
using the Pareto archived evolution strategy. Evolutionary Computation,
8(2):149-172, 2000.

[67] N. Kroll, N. R. Gauger, J. Brezillon, R. Dwight, A. Fazzolari, D. Vollmer,
K. Becker, H. Barnewitz, V. Schulz, and S. Hazra. Flow simulation and
shape optimization for aircraft design. Journal of Computational and Applied
Mathematics, 203:397-411, 2007.

[68] I. Kroo. Aeronautical applications of evolutionary design. VKI Lecture Se-
ries on Optimization Methods & Tools for Multicriteria/Multidisciplinary
Design, November 2004.

[69] G.Kuruvila, S. Ta’asan, and M.D. Salas. Airfoil design and optimization by
the one-shot method. Technical Report 95-0478, AIAA, January 1995.

[70] D.S. Lee, L. F. Gonzalez, J. Périaux, and G. Bugeda. Design optimization
using advanced artificial intelligent system coupled to hybrid-game strate-
gies. In M. Negnevitsky, editor, Proceedings of the 3rd International Workshop
on Artificial Intelligence in Science and Technology (AISAT 2009), Hobart, Tas-
mania, Australia, November 23-24, 2009. University of Tasmania, 2009.

[71] D.S. Lee, L.E. Gonzalez,]J. Périaux, and K. Srinivas. Efficient hybrid-game
strategies coupled to evolutionary algorithms for robust multidisciplinary
design optimization in aerospace engineering. IEEE Transactions on Evolu-
tionary Computation, 15(2):133-150, 2011.

[72] D.S. Lee, L.F. Gonzalez, K. Srinivas, and J. Périaux. Robust evolutionary al-
gorithms for UAV /UCAYV aerodynamic and RCS design optimisation. Com-
puters & Fluids, 37(5):547-564, 2008.

82

[73] D.S. Lee, J. Périaux, K. Srinivas, L.F. Gonzalez, N. Qin, and E. Onate. Shock
control bump optimization on natural laminar aerofoil. In Computational
Fluid Dynamics 2010, pages 253-260, Berlin Heidelberg, 2011. Springer—
Verlag.

[74] V. W. Lee, C. Kim,]. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal,
and P. Dubey. Debunking the 100x GPU vs. CPU myth: an evaluation of
throughput computing on CPU and GPU. SIGARCH Comput. Archit. News,
38(3):451-460, June 2010.

[75]]J. Leskinen and]. Périaux. A new distributed optimization approach for
solving CFD design problems using Nash games coalition and evolution-
ary algorithms. In Randolph Bank, Michael Holst, Olof Wildund, and Jin-
chao Xu, editors, Domain Decomposition Methods in Science and Engineering
XX, Lecture Notes in Computational Science and Engineering, to appear.
Proceedings of the 20th International Conference on Domain Decomposi-
tion Methods held at La Jolla / San Diego, California, February 7-11, 2011.

[76] J. Leskinen, H. Wang, and]. Périaux. Increasing parallelism of evolutionary
algorithms by Nash games in design inverse flow problems. Engineering
Computations, to appear.

[77] P. Loridan and J. Morgan. A theoretical approximation scheme for Stackel-
berg problems. Journal of Optimization Theory and Applications, 61(1):95-110,
1989.

[78] R. A. E. Mékinen, P. Neittaanmaki, J. Périaux, M. Sefrioui, and J. Toivanen.
Parallel genetic solution for multiobjective MDO. In P. Schiano, A. Ecer,
J. Périaux, and N. Satofuka, editors, Parallel Computational Fluid Dynamics:
Algorithms and Results Using Advanced Computers, pages 352-359. Elsevier
Science, 1997.

[79] J. Mandel. Balancing domain decomposition. Communications in Numerical
Methods in Engineering, 9(3):233, 1993.

[80] E. Mezura-Montes,]. Veldzquez-Reyes, and C. A. Coello Coello. A com-
parative study of differential evolution variants for global optimization. In
GECCO '06: Proceedings of the 8th annual conference on Genetic and evolution-
ary computation, pages 485-492, New York, NY, USA, 2006. ACM Press.

[81] K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Pub-
lishers, Boston, 1999.

[82] B. Mohammadi. Fluid dynamics computation with NSC2KE. An user-
yn p
guide release 1.0. Technical Report 0164, INRIA, May 1994.

[83] P. Moscato. On evolution, search, optimization, genetic algorithms and
martial arts: Towards memetic algorithms. Technical Report Caltech

83

Concurrent Computation Program 826, California Institute of Technology,
Pasadena, California, 1989.

[84] H. Miihlenbein. Evolution in time and space — the parallel genetic algo-
rithm. In G. J. E. Rawlins, editor, Foundations of Genetic Algorithms, pages
316-337, San Francisco, CA, 1991. Morgan Kaufmann.

[85] H. Miihlenbein, M. Schomisch, and J. Born. The parallel genetic algorithm
as function optimizer. In Proceedings of the 4th International Conference on
Genetic Algorithms, page 271, 1991.

[86] J. Nash. Non-cooperative games. The Annals of Mathematics, 2(54):286-295,
1951.

[87] E. Neri. Fitness diversity adaptation in memetic algorithms. PhD thesis, Uni-
versity of Jyvaskyld, Finland, 2007.

[88] F. Neri and V. Tirronen. Recent advances in differential evolution: a sur-
vey and experimental analysis. Artificial Intelligence Review, 33(1-2):61-106,
2010.

[89] J. Nickolls and W.J. Dally. The GPU computing era. IEEE Micro, 30(2):56-69,
March-April 2010.

[90] M. Nowostawski and R. Poli. Parallel genetic algorithm taxonomy. In
L. Jain, editor, International Conference on Knowledge-Based Intelligent Elec-
tronic Systems, pages 88-92. IEEE Press, 1999.

[91] NVIDIA Corporation. CUDA. URL: <http://www.nvidia.com/cuda>.
[92] NVIDIA Corporation. Tuning CUDA applications for Fermi, 2010.

[93] NVIDIA Corporation. NVIDIA CUDA C programming guide version 4.1,
2011.

[94] V. Pareto. Cours D’Economie Politique, volume I-II. E. Rouge, Lausanne,
1896.

[95] J. Périaux, H. Q. Chen, B. Mantel, M. Sefrioui, and H. T. Sui. Combining
game theory and genetic algorithms with application to DDM-nozzle op-
timization problems. Finite Elements in Analysis and Design, 37(5):417-429,
May 2001.

[96] O.Pironneau. Finite Element Methods for Fluids. J. Wiley & Sons, Chichester,
1989.

[97] D. Quagliarella and A. Vicini. Viscous angle and multicomponent air-
foil design with genetic algorithms. Finite Elements in Analysis and Design,
37:365-380, 2001.

84

[98] A. Quarteroni and G. Rozza. Optimal control and shape optimization of
aorto-coronaric bypass anastomoses. Mathematical Models and Methods in
Applied Sciences, 13(12):1801-1824, 2003.

[99] A.Rapoport and A. M. Chammabh. Prisoner’s Dilemma. University of Michi-
pop y
gan Press, 1965.

[100] I. Rechenberg. Evolutionsstrategie: ~ Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag,
Stuttgart, 1973.

[101] J. Robinson and Y. Rahmat-Samii. Particle swarm optimization in electro-
magnetics. [EEE Transactions on Antennas and Propagation, 52(2):397-407,
February 2004.

[102] S. Rostrup and H. De Sterck. Parallel hyperbolic PDE simulation on clus-
ters: Cell versus GPU. Computer Physics Communications, 181:2164-2179,
2010.

[103] J. D. Schaffer. Some experiments in machine learning using vector evaluated
genetic algorithms. PhD thesis, Vanderbilt University, Nashville, TN (USA),
1985.

[104] H. A. Schwarz. Uber einen grenziibergang durch alternierendes ver-
fahren. Vierteljahrsschrift der Naturforschenden Gesellschaft in Ziirich, 15:272—
286, 1870.

[105] H.-P. Schwefel. = Numerische Optimierung von Computer-Modellen mittles
der Evolutionsstrategie, volume 26 of Interdiscplinary Systems Research.
Birkh&iuser, Basel, 1977.

[106] M. Sefrioui and J. Périaux. A hierarchical genetic algorithm using multiple
models for optimization. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao,
E. Lutton, J. . Merelo, and H.-P. Schwefel, editors, Parallel Problem Solving
from Nature PPSN VI, number 1917 in Lecture Notes in Computer Science,
pages 879-888. Springer, 2000.

[107] M. Sefrioui and J. Périaux. Nash genetic algorithms: Examples and applica-
tions. In Proceedings of the 2000 Congress on Evolutionary Computation: CEC00
(June-September 2000), pages 509-516, La Jolla Marriott Hotel, La Jolla, Cal-
ifornia, USA, 2000. IEEE.

[108] K. Sindhya. Huybrid evolutionary multi-objective optimization with enhanced
convergence and diversity. PhD thesis, University of Jyvaskyld, Finland, 2011.

[109] B. Smith, P. Bjerstad, and W. Gropp. Domain Decomposition: Parallel Multi-
level Methods for Elliptic Partial Differential Equations. Cambridge University
Press, June 1996.

85

[110] N. Srinivas and K. Deb. Multiobjective optimization using nondominated
sorting in genetic algorithms. Evolutionary Computation, 2(3):221-248, Fall
1994.

[111] H. Von Stackelberg. The Theory of the Market Economy. Oxford University
Press, Oxford, England, 1952.

[112] R. Steuer. Multiple criteria optimization: Theory, computation and application.
John Wiley & Sons, Inc., New York, 1986.

[113] J. E. Stone, D. J. Hardy, L. S. Ufimtsev, and K. Schulten. GPU-accelerated
molecular modeling coming of age. Journal of Molecular Graphics and Mod-
elling, 29(2):116-125, September 2010.

[114] S.S. Stone, J.P. Haldar, S.C. Tsao, W. m.W. Hwu, B.P. Sutton, and Z.-P. Liang,.
Accelerating advanced MRI reconstructions on GPUs. Journal of Parallel and
Distributed Computing, 68(10):1307-1318, 2008.

[115] R. Storn and K. Price. Differential Evolution — a simple and efficient adap-
tive scheme for global optimization over continuous spaces. Technical Re-
port TR-95-012, International Computer Science Institute, Berkeley, CA,
1995.

[116] R. Storn and K. Price. Differential evolution — a simple and efficient heuris-
tic for global optimization over continuous spaces. Journal of Global Opti-
mization, 11(4):341-359, December 1997.

[117] J. L. Toivanen, R. A. E. Mékinen, J. Rahola, S. Jarvenpad, and P. Yld-Oijala.
Gradient-based shape optimisation of ultra-wideband antennas parame-
terised using splines. IET Microwaves, Antennas and Propagation, 4:1406—
1414, 2010.

[118] TOP500.0rg. TOP500 supercomputer sites. URL: <http://www.top500.
org>.

[119] A. Vicini and D. Quagliarella. Airfoil and wing design through hybrid op-
timization strategies. AIAA Journal, 37(5):634-645, 1999.

[120] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune dense linear
algebra. In SC "08: Proceedings of the 2008 ACM/IEEE Conference on Super-
computing, pages 1-11, Piscataway, NJ, USA, November 2008. IEEE Press.

[121] W. A. Wall, M. A. Frenzel, and C. Cyron. Isogeometric structural shape op-
timization. Computer Methods in Applied Mechanics and Engineering, 197 (33—
40):2976-2988, June 2008.

[122] G. G. Wang and S. Shan. Review of metamodeling techniques in support of
engineering design optimization. Journal of Mechanical Design, 129(4):370—
380, 2007.

86

[123] H. Wang, H.Q. Chen, and]. Périaux. A study of gridless method with
dynamic clouds of points for solving unsteady CFD problems in aerody-
namics. International Journal for Numerical Methods in Fluids, 64(1):98-118,
2010.

[124] M. Y. Wang, X. M. Wang, and D. M. Guo. A level set method for structural
topology optimization. Computer Methods in Applied Mechanics and Engi-
neering, 192(1-2):227-246, January 2003.

[125] D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization.
Evolutionary Computation, IEEE Transactions on, 1(1):67-82, April 1997.

[126] E. Zitler and L. Thiele. Multiobjective evolutionary algorithms: A compar-
ative case study and the strength Pareto approach. IEEE Transactions on
Evolutionary Computation, 3(4):257-271, 1999.

10

11

12

13

14

15

16

17

18

JYVASKYLA

ROPPONEN, JANNE, Software risk management -
foundations, principles and empirical
findings. 273 p. Yhteenveto 1 p. 1999.
KuzmiN, Dmitry, Numerical simulation of
reactive bubbly flows. 110 p. Yhteenveto 1 p.
1999.

KarsTeN, HELENA, Weaving tapestry:
collaborative information technology and
organisational change. 266 p. Yhteenveto

3 p. 2000.

KosKINEN, Jussl, Automated transient
hypertext support for software maintenance.
98 p. (250 p.) Yhteenveto 1 p. 2000.
Ristanieml, Tapani, Synchronization and blind
signal processing in CDMA systems. -
Synkronointi ja sokea signaalinkésittely
CDMA jérjestelmassa. 112 p. Yhteenveto 1 p.
2000.

LAITINEN, Mika, Mathematical modelling of
conductive-radiative heat transfer. 20 p.

(108 p.) Yhteenveto 1 p. 2000.

KosKINEN, MINNA, Process metamodelling.
Conceptual foundations and application. 213
p- Yhteenveto 1 p. 2000.

SmoLIANsKI, ANTON, Numerical modeling of
two-fluid interfacial flows. 109 p. Yhteenveto
1 p. 2001.

NAHAR, NAzZMUN, Information technology
supported technology transfer process. A
multi-site case study of high-tech enterprises.
377 p. Yhteenveto 3 p. 2001.

FomiN, ViapisLav V., The process of standard

making. The case of cellular mobile telephony.

- Standardin kehittimisen prosessi. Tapaus-
tutkimus solukkoverkkoon perustuvasta
matkapuhelintekniikasta. 107 p. (208 p.)
Yhteenveto 1 p. 2001.

PAIVARINTA, TERO, A genre-based approach

to developing electronic document
management in the organization. 190 p.
Yhteenveto 1 p. 2001.

HAKKINEN, Erkki, Design, implementation and
evaluation of neural data analysis
environment. 229 p. Yhteenveto 1 p. 2001.
HirvoNeN, KuLLervo, Towards better
employment using adaptive control of labour
costs of an enterprise. 118 p. Yhteenveto 4 p.
2001.

Majava, Kirsi, Optimization-based techniques
for image restoration. 27 p. (142 p.)
Yhteenveto 1 p. 2001.

SAARINEN, Kar1, Near infra-red measurement
based control system for thermo-mechanical
refiners. 84 p. (186 p.) Yhteenveto 1 p. 2001.
ForseLL, MARKO, Improving component reuse
in software development. 169 p. Yhteenveto
1 p. 2002.

VIRTANEN, PauLl, Neuro-fuzzy expert systems
in financial and control engineering.

245 p. Yhteenveto 1 p. 2002.

KovaLaINEN, Mikko, Computer mediated
organizational memory for process control.

STUDIES

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

IN COMPUTING

Moving CSCW research from anidea to a
product. 57 p. (146 p.) Yhteenveto 4 p. 2002.
HAMALAINEN, Timo, Broadband network
quality of service and pricing. 140 p.
Yhteenveto 1 p. 2002.

MARTIKAINEN, JANNE, Efficient solvers for
discretized elliptic vector-valued problems.
25 p. (109 p.) Yhteenveto 1 p. 2002.

Mursu, ANja, Information systems
development in developing countries. Risk
management and sustainability analysis in
Nigerian software companies. 296 p. Yhteen-
veto 3 p. 2002.

SELEZNYOV, ALEXANDR, An anomaly intrusion
detection system based on intelligent user
recognition. 186 p. Yhteenveto 3 p. 2002.
Lensu, Anssi, Computationally intelligent
methods for qualitative data analysis. 57 p.
(180 p.) Yhteenveto 1 p. 2002.

Ryasov, VLADIMIR, Handling imperfect
temporal relations. 75 p. (145 p.) Yhteenveto
2 p. 2002.

TsymBAL, ALEXEY, Dynamic integration of data
mining methods in knowledge discovery
systems. 69 p. (170 p.) Yhteenveto 2 p. 2002.
Aximov, VLADIMIR, Domain decomposition
methods for the problems with boundary
layers. 30 p. (84 p.). Yhteenveto 1 p. 2002.
SEYUKOVA-RIVKIND, LubmiLA, Mathematical and
numerical analysis of boundary value
problems for fluid flow. 30 p. (126 p.) Yhteen-
veto 1 p. 2002.

HAMALAINEN, SEpPO, WCDMA Radio network
performance. 235 p. Yhteenveto 2 p. 2003.
PEKKOLA, SamuLL, Multiple media in group
work. Emphasising individual users in
distributed and real-time CSCW systems.

210 p. Yhteenveto 2 p. 2003.

MARKKULA, Jount, Geographic personal data,
its privacy protection and prospects in a
location-based service environment. 109 p.
Yhteenveto 2 p. 2003.

HoNKARANTA, ANNE, From genres to content
analysis. Experiences from four case
organizations. 90 p. (154 p.) Yhteenveto 1 p.
2003.

RarraMAki, Jount, An approach to linguistic
pattern recognition using fuzzy systems.

169 p. Yhteenveto 1 p. 2003.

SaaLasti, Saml, Neural networks for heart rate
time series analysis. 192 p. Yhteenveto 5 p.
2003.

NIEMELA, MARKETTA, Visual search in
graphical interfaces: a user psychological
approach. 61 p. (148 p.) Yhteenveto 1 p. 2003.
You, Yu, Situation Awareness on the world
wide web. 171 p. Yhteenveto 2 p. 2004.
TaATILA, VESA, The concept of organizational
competence - A foundational analysis.

- Perusteanalyysi organisaation
kompetenssin késitteestd. 111 p. Yhteenveto 2
p. 2004.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

JYVASKYLA

LyyTikAINEN, VIRpl, Contextual and structural
metadata in enterprise document
management. - Konteksti- ja rakennemetatieto
organisaation dokumenttien hallinnassa.

73 p. (143 p.) Yhteenveto 1 p. 2004.

Kaario, Kimmo, Resource allocation and load
balancing mechanisms for providing quality
of service in the Internet. 171 p. Yhteenveto
1 p. 2004.

ZHANG, ZHEYING, Model component reuse.
Conceptual foundations and application in
the metamodeling-based systems analysis
and design environment. 76 p. (214 p.) Yh-
teenveto 1 p. 2004.

HaaraLA, MARJO, Large-scale nonsmooth
optimization variable metric bundle method
with limited memory. 107 p. Yhteenveto 1 p.
2004.

KALVINE, VIKTOR, Scattering and point spectra
for elliptic systems in domains with
cylindrical ends. 82 p. 2004.

DEMENTIEVA, MARIA, Regularization in
multistage cooperative games. 78 p. 2004.
MAaARANEN, HEikkl, On heuristic hybrid
methods and structured point sets in global
continuous optimization. 42 p. (168 p.)
Yhteenveto 1 p. 2004.

Frorov, Maxm, Reliable control over
approximation errors by functional type a
posteriori estimates. 39 p. (112 p.) 2004.
ZHANG, J1AN, Qos- and revenue-aware resource
allocation mechanisms in multiclass IP
networks. 85 p. (224 p.) 2004.

KujaLa, JANNE, On computation in statistical
models with a psychophysical application. 40
p- (104 p.) 2004.,

SoLBAKOV, VIATCHESLAV, Application of
mathematical modeling for water
environment problems. 66 p. (118 p.) 2004.
HirvoNEN, ARt P., Enterprise architecture
planning in practice. The Perspectives of
information and communication technology
service provider and end-user. 44 p. (135 p.)
Yhteenveto 2 p. 2005.

VARTIAINEN, TERO, Moral conflicts in a project

course in information systems education.

320 p. Yhteenveto 1p. 2005.

Huoragr, Jouns, Integrating graphical
information system models with visualization
techniques. - Graafisten tietojarjestelméku-
vausten integrointi visualisointitekniikoilla.
56 p. (157 p.) Yhteenveto 1p. 2005.
WaLLENIUS, EErO R., Control and management
of multi-access wireless networks. 91 p.

(192 p.) Yhteenveto 3 p. 2005.

LEPPANEN, MAURI, An ontological framework
and a methodical skeleton for method
engineering - A contextual approach. 702 p.
Yhteenveto 2 p. 2005.

MATYUKEVICH, SERGEY, The nonstationary
Maxwell system in domains with edges and
conical points. 131 p. Yhteenveto 1 p. 2005.

STUDIES

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

IN COMPUTING

SAYENKO, ALEXANDER, Adaptive scheduling for
the QoS supported networks. 120 p. (217 p.)
2005.

KURJENNIEMI, JANNE, A study of TD-CDMA and
WCDMA radio network enhancements. 144 p.
(230 p.) Yhteenveto 1 p. 2005.

PecHeNizky, MYkOLA, Feature extraction for
supervised learning in knowledge discovery
systems. 86 p. (174 p.) Yhteenveto 2 p. 2005.
IxoNEN, SamuLi, Efficient numerical methods
for pricing American options. 43 p. (155 p.)
Yhteenveto 1 p. 2005.

KARKKAINEN, KARI, Shape sensitivity analysis
for numerical solution of free boundary
problems. 83 p. (119 p.) Yhteenveto 1 p. 2005.
HELFENSTEIN, SACHA, Transfer. Review,
reconstruction, and resolution. 114 p. (206 p.)
Yhteenveto 2 p. 2005.

NEvaLa, KaLevy, Content-based design
engineering thinking. In the search for
approach. 64 p. (126 p.) Yhteenveto 1 p. 2005.
Karasonov, ArTeM, Dependability aspects in
the development and provision of location-
based services. 157 p. Yhteenveto 1 p. 2006.
SARKKINEN, JARMO, Design as discourse:
Representation, representational practice, and
social practice. 86 p. (189 p.) Yhteenveto 1 p.
2006.

AvYramO, Sami, Knowledge mining using
robust clustering. 296 p. Yhteenveto 1 p. 2006.
IriNEDO, PRINCELY EMILI, Enterprise resource
planning systems success assessment: An
integrative framework. 133 p. (366 p.) Yhteen-
veto 3 p. 2006.

VINIKAINEN, ARl Quality of service and
pricingin future multiple service class
networks. 61 p. (196 p.) Yhteenveto 1 p. 2006.
Wu, Rul, Methods for space-time parameter
estimation in DS-CDMA arrays. 73 p. (121 p.)
2006.

ParkkoLa, HANNA, Designing ICT for mothers.
User psychological approach. - Tieto- ja
viestintdtekniikoiden suunnittelu dideille.
Kéyttdjapsykologinen ndkokulma. 77 p.

(173 p.) Yhteenveto 3 p. 2006.

HAKANEN, Jusst, On potential of interactive
multiobjective optimization in chemical
process design. 75 p. (160 p.) Yhteenveto 2 p.
2006.

PutTONEN, JANI, Mobility management in
wireless networks. 112 p. (215 p.)

Yhteenveto 1 p. 2006.

LuosTARINEN, KARI, Resource , management
methods for QoS supported networks. 60 p.
(131 p.) 2006.

TurcHYN, Pavio, Adaptive meshes in computer
graphics and model-based simulation. 27 p.
(79 p.) Yhteenveto 1 p.

ZHOVTOBRYUKH, DMYTRO, Context-aware web
service composition. 290 p. Yhteenveto 2 p.
2006.

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

JYVASKYLA

Konvakko, NaTaLiya, Context modeling and
utilization in heterogeneous networks.

154 p. Yhteenveto 1 p. 2006.

Mazngeuis, OLEksIY, Masquerader detection in
mobile context based on behaviour and
environment monitoring. 74 p. (179 p). Yh-
teenveto 1 p. 2007.

SILTANEN, JARMO, Quality of service and
dynamic scheduling for traffic engineering in
next generation networks. 88 p. (155 p.) 2007.
Kuuva, Sary, Content-based approach to
experiencing visual art. - Siséltoperustainen
lahestymistapa visuaalisen taiteen kokemi-
seen. 203 p. Yhteenveto 3 p. 2007.

RuoHONEN, Toni, Improving the operation of an
emergency department by using a simulation
model. 164 p. 2007.

NAUMENKO, ANTON, Semantics-based access
control in business networks. 72 p. (215 p.)
Yhteenveto 1 p. 2007.

WaHLSTEDT, ARI, Stakeholders” conceptions of
learning in learning management systems
development. - Osallistujien kasitykset
oppimisesta oppimisympaéristéjen kehittami-
sessd. 83 p. (130 p.) Yhteenveto 1 p. 2007.
ALANEN, OLLI, Quality of service for triple play
services in heterogeneous networks. 88 p.
(180 p.) Yhteenveto 1 p. 2007.

NERr1, FERRANTE, Fitness diversity adaptation in
memetic algorithms. 80 p. (185 p.) Yhteenveto
1 p. 2007.

KURHINEN, JANI, Information delivery in mobile
peer-to-peer networks. 46 p. (106 p.) Yhteenve-
to 1 p. 2007.

KiLpeLAINEN, Turo, Genre and ontology based
business information architecture framework
(GOBIAF). 74 p. (153 p.) Yhteenveto 1 p. 2007.
YEVSEYEVA, IRYNA, Solving classification
problems with multicriteria decision aiding
approaches. 182 p. Yhteenveto 1 p. 2007.
Kannisto, Isto, Optimized pricing, QoS and
segmentation of managed ICT services. 45 p.
(111 p.) Yhteenveto 1 p. 2007.

GorsHKOVA, ELENA, A posteriori error estimates
and adaptive methods for incompressible
viscous flow problems. 72 p. (129 p.) Yhteen-
veto 1 p. 2007.

LEGRAND, STEVE, Use of background real-world
knowledge in ontologies for word sense
disambiguation in the semantic web. 73 p.
(144 p.) Yhteenveto 1 p. 2008.

HAMALAINEN, N1INA, Evaluation and
measurement in enterprise and software
architecture management. - Arviointija
mittaaminen kokonais- ja ohjelmistoarkki-
tehtuurien hallinnassa. 91 p. (175 p.) Yhteen-
veto 1 p. 2008.

OjALA, ARTO, Internationalization of software
firms: Finnish small and medium-sized
software firms in Japan. 57 p. (180 p.) Yhteen-
veto 2 p. 2008.

STUDIES

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

IN COMPUTING

LartiLa, Erkkl, Symbolic Analysis and
Atomistic Model as a Basis for a Program
Comprehension Methodology. 321 p.
Yhteenveto 3 p. 2008.

NmTILA, TiMO, Performance of Advanced
Transmission and Reception Algorithms for
High Speed Downlink Packet Access. 93 p.
(186 p.) Yhteenveto 1 p. 2008.
SETAMAA-KARKKAINEN, ANNE, Network
connection selection-solving a new
multiobjective optimization problem. 52 p.
(111p.) Yhteenveto 1 p. 2008.

PULKKINEN, MIRrjA, Enterprise architecture as

a collaboration tool. Discursive process for
enterprise architecture management,
planning and development. 130 p. (215 p.)
Yhteenveto 2 p. 2008.

PavLova, YuLia, Multistage coalition
formation game of a self-enforcing
international environmental agreement.

127 p. Yhteenveto 1 p. 2008.

NousiaNEN, TuuLa, Children’s involvement in
the design of game-based learning
environments. 297 p. Yhteenveto 2 p. 2008.
Kuznersov, NikoLay V., Stability and
oscillations of dynamical systems. Theory
and applications. 116 p. Yhteenveto 1 p. 2008.
KHRIYENKO, OLEKSIY, Adaptive semantic Web
based environment for web resources. 193 p.
Yhteenveto 1 p. 2008.

TIRRONEN, VILLE, Global optimization using
memetic differential evolution with
applications to low level machine vision.

98 p. (248 p.) Yhteenveto 1 p. 2008.
VALKONEN, Tuomo, Diff-convex combinations
of Euclidean distances: A search for optima.
148 p. Yhteenveto 1 p. 2008.

SarAFANOV, OLEG, Asymptotic theory of
resonant tunneling in quantum waveguides
of variable cross-section. 69 p. Yhteenveto 1 p.
2008.

PozHarsk1y, ALEXEY, On the electron and
phonon transport in locally periodical
waveguides. 81 p. Yhteenveto 1 p. 2008.
Arrrokoskl, TiMo, On challenges of simulation-
based globaland multiobjective optimization.
80 p. (204 p.) Yhteenveto 1 p. 2009.

YALAHO, ANICET, Managing offshore
outsourcing of software development using
the ICT-supported unified process model: A
cross-case analysis. 91 p. (307 p.)
Yhteenveto 4 p. 2009.

Korranus, Sami, Tarkastuskaytanteiden
kehittdiminen ohjelmistoja tuottavissa organi-
saatioissa. - Improvement of inspection
practices in software organizations. 179 p.
Summary 4 p. 2009.

LEIkas, JaANa, Life-Based Design. ‘Form of life’
as a foundation for ICT design for older
adults. - Elamaéldhtoinen suunnittelu. Ela-
manmuoto ikddntyville tarkoitettujen ICT
tuotteiden ja palvelujen suunnittelun lihto-
kohtana. 218 p. (318 p.) Yhteenveto 4 p. 2009.

106

107

108

109

110

111

112

113

114

115

116

117

118

JYVASKYLA

VasILYEVA, EKATERINA, Tailoring of feedback in
web-based learning systems: Certitude-based
assessment with online multiple choice
questions. 124 p. (184 p.) Yhteenveto 2 p.
2009.

Kubpryastova, ELENAV., Cycles in continuous
and discrete dynamical systems.
Computations, computer assisted proofs, and
computer experiments. 79 p. (152 p.) Yhteen-
veto 1 p. 2009.

BLACKLEDGE, JONATHAN, Electromagnetic
scattering and inverse scattering solutions for
the analysis and processing of digital signals
and images. 297 p. Yhteenveto 1 p. 2009.
Ivannikov, ANDRY, Extraction of event-related
potentials from electroencephalography data.
- Herdtepotentiaalien laskennallinen eristami-
nen EEG-havaintoaineistosta. 108 p. (150 p.)
Yhteenveto 1 p. 2009.

KALYAKIN, IGor, Extraction of mismatch
negativity from electroencephalography data.
- Poikkeavuusnegatiivisuuden erottaminen
EEG-signaalista. 47 p. (156 p.) Yhteenveto 1 p.
2010.

HEikkiLA, Marikka, Coordination of complex
operations over organisational boundaries.
265 p. Yhteenveto 3 p. 2010.

FexeTE, GABOR, Network interface
management in mobile and multihomed
nodes. 94 p. (175 p.) Yhteenveto 1 p. 2010.
KujaLa, Tuomo, Capacity, workload and
mental contents - Exploring the foundations
of driver distraction. 146 p. (253 p.) Yhteenve-
to 2 p. 2010.

Lucano, Gruserpg, Digital community design -
Exploring the role of mobile social software in
the process of digital convergence. 253 p.

(316 p.) Yhteenveto 4 p. 2010.

KawmryLis, PANaGIOTIS, Fostering creative
thinking. The role of primary teachers. -
Luovaa ajattelua kehittdimassa. Alakoulun
opettajien rooli. 136 p. (268 p.) Yhteenveto 2 p.
2010.

ToIvANEN, Jukka, Shape optimization utilizing
consistent sensitivities. - Muodon optimointi
kadyttden konsistentteja herkkyyksia. 55 p.
(130p.) Yhteenveto 1 p. 2010.

MartriLa, Kego, Implementation techniques for
the lattice Boltzmann method. -
Virtausdynamiikan tietokonesimulaatioita
Hila-Boltzmann -menetelmalla:
implementointi ja reunaehdot. 177 p. (233 p.)
Yhteenveto 1 p. 2010.

Cong, FEnGYu, Evaluation and extraction of
mismatch negativity through exploiting
temporal, spectral, time-frequency, and
spatial features. - Poikkeavuusnegatiivisuu-
den (MMN) erottaminen aivosdhkonauhoi-
tuksista kdyttden ajallisia, spektraalisia, aika-
taajuus - ja tilapiirteita. 57 p. (173 p.) Yhteen-
veto 1 p. 2010.

STUDIES

119

120

121

122

123

124

125

126

127

128

129

130

131

IN COMPUTING

Liu, SHENGHUA, Interacting with intelligent
agents. Key issues in agent-based decision
support system design. 90 p. (143 p.) Yhteen-
veto 2 p. 2010.

AIRAKSINEN, Tuomas, Numerical methods for
acoustics and noise control. - Laskennallisia
menetelmid akustisiin ongelmiin ja
melunvaimennukseen. 58 p. (133 p.) Yhteen-
veto 2 p. 2010.

WEBER, MATTHIEU, Parallel global optimization
Structuring populations in differential
evolution. - Rinnakkainen globaalioptimointi.
Populaation rakenteen méarittiminen
differentiaalievoluutiossa. 70 p. (185 p.)
Yhteenveto 2 p. 2010.

VAARAMAKI, TAPIO, Next generation networks,
mobility management and appliances in
intelligent transport systems. - Seuraavan
sukupolven tietoverkot, liikkuvuuden hallinta
ja sovellutukset dlykkaéssa liikenteessa. 50 p.
(111 p.) Yhteenveto 1 p. 2010.

Viukari, LEENA, Tieto-ja viestintdtekniikka-
vilitteisen palvelun kehittimisen kolme
diskurssia. - Three discourses for an ICT-
service development . 304 p. Summary 5 p.
2010.

PuuRTINEN, TuOMAS, Numerical simulation of
low temperature thermal conductance of
corrugated nanofibers. - Poimutettujen
nanokuitujen lammonjohtavuuden numeeri-
nen simulointi matalissa lampétiloissa .

114 p. Yhteenveto 1 p. 2010.

HituneN, LEENa, Enhancing web course
design using action research . - Verkko-
opetuksen suunnittelun kehittdminen
toimintatutkimuksen keinoin .

192 p. Yhteenveto 2 p. 2010.

Ano, Kari, Enhancing system level
performance of third generation cellular
networks through VoIP and MBMS services.
121 p. (221 p.). Yhteenveto 2 p. 2010.
HAKKINEN, MARKKU, Why alarms fail. A
cognitive explanatory model.

102 p. (210 p.). Yhteenveto 1 p. 2010.

PENNANEN, ANssl, A graph-based multigrid
with applications. - Graafipohjainen
monihilamenetelma sovelluksineen.

52 p. (128 p.). Yhteenveto 2 p. 2010.

AHLGREN, RiKKA, Software patterns,
organizational learning and software process
improvement. 70 p. (137 p.). Yhteenveto 1 p.
2011.

NIKITIN, SERGIY, Dynamic aspects of industrial
middleware architectures 52 p. (114 p.).
Yhteenveto 1 p. 2011.

SINDHYA, KarTHIK, Hybrid Evolutionary Multi-
Objective Optimization with Enhanced
Convergence and Diversity. 64 p. (160 p.).
Yhteenveto 1 p. 2011.

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

JYVASKYLA STUDIES

Mati, Oty Analysis of errors caused by
incomplete knowledge of material data in
mathematical models of elastic media. 111 p.
Yhteenveto 2 p. 2011.

MONKOLA, SANNA, Numerical Simulation of
Fluid-Structure Interaction Between Acoustic
and Elastic Waves. 136 p. Yhteenveto 2 p.
2011.

PUraNEN, Tuukka, Metaheuristics Meet Meta-
models. A Modeling Language and a Product
Line Architecture for Route Optimization
Systems. 270 p. Yhteenveto 1 p. 2011.
MAKELA, JuKka, Mobility Management in
Heterogeneous IP-networks. 86 p. (145 p.)
Yhteenveto 1 p. 2011.

SavoLAINEN, PauLa, Why do software de-
velopment projects fail? Emphasising the
supplier’s perspective and the project start-
up. 81 p. (167 p.) Yhteenveto 2 p. 2011.
Kuznersova, OLGa, Lyapunov quantities

and limit cycles in two-dimensional dyna-
mical systems: analytical methods, symbolic
computation and visualization. 80 p. (121 p.)
Yhteenveto 1 p. 2011.

Kozrov, Denis, The quality of open source
software and its relation to the maintenance
process. 125 p. (202 p.) Yhteenveto 1 p. 2011.
Iacca, Giovanni, Memory-saving optimizati-
on algorithms for systems with limited hard-
ware. 100 p. (236 p.) Yhteenveto 1 p. 2011.
IsoMOTTONEN, VILLE, Theorizing a one-semes-
ter real customer student software project
course. 189 p. Yhteenveto 1 p. 2011.
HARTIKAINEN, MARKUS, Approximation
through interpolation in nonconvex multiob-
jective optimization. 74 p. (164 p.) Yhteenveto
1p. 2011.

MiNINNO, ErNEsTO, Advanced optimization
algorithms for applications in control engin-
eering. 72 p. (149 p.) Yhteenveto 1 p. 2011.
TykHOMYROV, VITALIY, Mitigating the amount
of overhead arising from the control signa-
ling of the IEEE 802.16 OFDMa System. 52 p.
(138 p.) Yhteenveto 1 p. 2011.

MAKSIMAINEN, JOHANNA, Aspects of values in
human-technology interaction design—a
content-based view to values. - IThmisen ja
teknologian vuorovaikutussuunnittelun ar-
voulottuvuudet —ssiséltoperustainen ldhesty-
mistapa arvoihin. 111 p. (197 p.) Yhteenveto 2
p. 2011.

JUUTINEN, SANNA, Emotional obstacles of e-
learning. 97 p. (181 p.) Yhteenveto 3 p. 2011.
TuoviNeN, TEro, Analysis of stability of axially
moving orthotropic membranes and plates
with a linear non-homogeneous tension pro-
file. 104 p. Yhteenveto 1 p. 2011.

147

148

149

150

151

152

153

154

155

IN COMPUTING

HiLGARTH, BErND, The systemic cognition of e-
Learning success in internationally operating
organizations. - Kokonaisvaltainen kisitys
e-oppimisen menestyksestéd kansainvilisissd
organisaatioisssa. 100 p. (181 p.) Yhteenveto
1 p. 2011.

JERONEN, Juna, On the mechanical stability
and out-of-plane dynamics of a travelling
panel sub-merged in axially flowing ideal
fluid. A study into paper production in
mathematical terms. - Ideaali virtaukseen
upotetun, aksiaalisesti liikkuvan paneelin
mekaani-sesta stabiilisuudesta ja dynamiikas-
ta. Tutkimus paperintuotannosta matemaatti-
sin késittein. 243 p. Yhteenveto 3 p. 2011.
FINNE, Auvo, Tanzanit - Towards a compre-
hensive quality meta-model for information
systems: Case studies of information system
quality modelling in East Africa. 209 p. Yh-
teenveto 2 p. 2011.

KANKAANPAA, IrjA, IT Artefact Renewal:
Triggers, Timing and Benefits. 79 p. (164 p.)
Yhteenveto 1 p. 2011.

KoriLaNEN, Niko, Methods and Applications
for Peer-to-Peer Networking. 46 p. (133 p.)
Yhteenveto 1 p. 2011.

SKRYPNYK, IRYNA, Unstable feature relevance
in classification tasks. - Epdvakaiden ominai-
suuksien merkitys luokittelutehtévissa. 232 p.
Yhteenveto 1 p. 2011.

ZAIDENBERG, NEZER Jacos, Applications of vir-
tualization in systems design. 297 p. Yhteen-
veto 1 p. 2012.

MARTIKAINEN, HENRIK, PHY and MAC Layer
Performance Optimization of the IEEE 802.16
System. 80 p. (150 p.) Yhteenveto 1 p. 2012.
LeskINEN, Jyri, Distributed multi-objective
optimization methods for shape design using
evolutionary algorithms and game strategies.
86 p. (151 p.) Yhteenveto 1 p. 2012.

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	1.1 Objectives of the research
	1.2 Organization of the thesis
	1.3 Author’s contributions in included papers

	2 SHAPE DESIGN OPTIMIZATION
	2.1 Mathematical optimization
	2.2 Design process
	2.3 Overview of optimization algorithms
	2.4 Solving state equations
	2.5 Domain decomposition methods

	3 GAME THEORY FOR MULTI-OBJECTIVE DESIGN OPTIMIZATION
	3.1 Overview of game strategies
	3.2 Nash genetic algorithms
	3.3 Virtual Nash algorithms

	4 MODEL PROBLEMS
	4.1 Inverse or optimization problems for multiple (ellipse) ellip soidconfigurations
	4.2 Reconstruction of BINACA0012 geometry using discrete and continuous optimization
	4.3 Multi-disk element geometry

	5 NASH GAMES COALITIONS
	5.1 Domain decomposition using virtual Nash approach
	5.2 Nash games and geometry decomposition
	5.3 Global Nash Game Coalition Algorithm

	6 INCREASE OF PERFORMANCE WITH GPUS FOR SOLVING OPTIMIZATION PROBLEMS
	6.1 GPU architecture
	6.2 Efficiency of GPUs
	6.3 Implementation of GPUs for global Nash games

	7 CONCLUSIONS AND FUTURE WORK
	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

