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Representation and Retrieval of
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in Museum Databases
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University of Jyväskylä, Finland

Abstract An implementation-oriented model to represent uncertain temporal in-
formation in databases is proposed. Temporal information is presented to the user
as anchored time intervals with optional beginning and end dates. The model ac-
counts for both instants and intervals, and can be applied to uncertain dates by
leaving days and months optional, or by using symbolic constraints that present
additional time granularities. The model is defined using conventional relational
database structures to support ease of deployment and integration to legacy systems
with efficient query capabilities. The model is based on experiences with an exist-
ing museum database and highlights challenges related to temporal representation
of cultural-historical data in practice. The model is compared with temporal repre-
sentations used in other museum information systems and collections management
standards. Possible opportunities to extend the model in the future research include
defining a formal algebraic presentation or utilizing an explicit time ontology.

Keywords. Relational databases, Temporal information, Uncertain information,
Cultural-historical information, Information retrieval, Museum information systems

Introduction

Museum information systems (MIS) form a diverse class of collection management and
cataloging applications. The content in MIS can document a multitude of domains, in-
cluding cultural heritage, fine arts, archaeology, science, technology, natural history, sites
and monuments, and others [8]. The typical functionality in MIS extends to collections,
exhibition and borrowings (loans) management, ad hoc retrieval and reporting, image
management, web publishing and integration to other systems, compliance to standard
vocabularies and ontologies, user interfaces for staff, public and researchers – even per-
sonnel administration [7], depending on the museum domain and extent. Museum col-
lections are characterized by heterogeneity not only regarding their collections, but also
due to the different services they provide [20].

In this paper, we introduce a temporal model suitable for a MIS and relate it to
temporal theories proposed in other domains and existing museum databases. Perhaps
surprisingly, despite the fact that temporal data is an important aspect of museum meta-
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data, sophisticated temporal models developed in AI [47] and other disciplines have had
relatively little impact on current museum database implementations. Even though the
inference mechanisms of a typical MIS is are fairly conventional – often determined by
the underlying database – the retrieval and reporting requirements call for versatile data
handling capabilities not found in typical business applications. For example, because
the number of tables and metadata fields on a MIS can be rather large for a cataloging
application (say, tens of tables each containing multiple fields and relationships), and re-
searchers may have unanticipated information needs, adaptible reports and ad hoc query
-like capabilities resembling business intelligence systems are often needed.

Cultural-historical information has multiple temporal dimensions (e.g. an object in
a collection management system may have descriptive metadata, such as manufacturing
date or usage period, as well as contextual metadata [31] related to the cataloging pro-
cess, such as registration date or cataloging date). Some of this temporal information
is typically precise, but uncertain or unknown information exists as well. Even though
elaborate temporal databases, query languages, logics and other inference mechanisms
exist [47], they do not typically work well with uncertain temporal information (see Sec-
tion 2.2 on temporal databases), or do not focus on the problems relevant to information
retrieval – especially if precise and uncertain information were to be used with the same
interface (e.g. constraint propagation, see Section 2.1). On the other hand, while a num-
ber of techniques to handle imperfect information have been devised both for databases
and AI applications [37], their practical applicability to temporal information is cumber-
some from the end user’s point of view (e.g. what is the ”correct” probability for un-
certain endpoints in the temporal interval). Approaches based on temporal granularities
(algebraic characterization of enumerable mappings to the time domain [6]) seem most
promising from the MIS point of view, but even that seems too expressive to be easily
implemented in a conventional, SQL-based database. Therefore, more focused temporal
model to represent uncertain information – easily applicable with a relational database
and intuitive to end users for retrieval – is needed.

We focus on anchored time intervals (i.e. periods [29], intervals with fixed start and
end dates [22]) to represent temporal information. We do not consider unanchored data
(i.e. durations) so for the rest of the paper the short term interval is used. Uncertain time
is presented to the end user such that certain attributes of the data may be left blank (i.e.
the temporal primitive is presented at coarser granularity [4]). For example, we might
know the year an old photo was taken, but the exact photographing date is unknown.
Similarly, the usage period for a piece of furniture might be known by a decade, but
exact years are not known. The intervals are used as a base for a data model that allows
retrieving temporal data in an efficient way. The data model is based on the development
of the collection management systems in Jyväskylä University Museum (JYU Museum),
but could be easily implemented in any relational database application. Based on the
requirements gathered from the end users, the model (represented as a UML class dia-
gram and supporting documentation) is evaluated with other prominent collection man-
agement software used in Finland, as well as existing museum standards. This paper is
structured as follows: Sections 1 and 2 review related research on MIS and temporal in-
formation, respectively. Section 3 presents our research case at JYU Museum with the
solution outlined in Section 4. Section 5 concludes the paper.



1. Museum Information Systems

From a software engineering perspective, museum information systems contain a rich
set of metadata that is comparable in complexity to data structures in ERP (Enterprise
Resource Planning) and other business systems. However, considerably less research has
been conducted in technical and computational side of museum databases compared to
more ”traditional” information systems such as various transaction processing and man-
agement information systems (not to be confused with MIS acronym used in this pa-
per), content management systems and other digital repositories. These are considerably
more easy to productize and market than MIS because of the sheer number of potential
users and relatively streamlined, transaction-like functionality. The situation with muse-
ums is also more complex compared to other memory organizations with partially simi-
lar tasks but essentially more contained and well-known domains: libraries and archives.
Baron [5] points out that developing museum information systems is in a way even more
demanding compared to business systems: whereas business systems are usually built
around the ability to answer discrete sets of questions, users of databases built to record
data for the humanities can never authoritatively predetermine the uses to which the in-
formation will be put. This often results to an ad hoc query mechanism, not unlike the
functionality used in business intelligence (BI) systems or even expert systems (although
the underlying logic and inference mechanism might be less specified compared to ac-
tual knowledge-based systems). From usability perspective, most MIS users are non-
technical [21]. Therefore, succesful adoption of a collection management system must
combine expressive queries and complex data model with a simple and intuitive user
interface.

To illustrate the complexity of museum databases, museums of different domains
(e.g. cultural history, natural sciences, or art) have widely varying requirements regard-
ing the information stored in the database. In addition, different museums use differing
conventions in catalog organization, id numbering, and metadata vocabularies – even the
museums of the same general domain. As a result, museum databases are often highly
customized, difficult to integrate, and consequently, expensive to develop. The museum
databases are in constant transformation themselves. Recently, there has been general
trend of shifting from item-centric cataloging (physical objects with fixed fields as the
primary entities to be cataloged) to event-centric documentation, concentrating on the
events (e.g. manufacturing, ownership, documentation, publication) related to the ob-
jects. Events provide semantically meaningful way of describing links between physical
things and actions of human beings, and allow a flexible structure for individual records,
splitting the documentation into smaller units that can be added as needed [27]. With
little exaggeration it can be argued that every museum database is one of a kind when
both database schemas and data entry conventions are taken into account. This makes
them both interesting and challenging to analyze.

While the best known museums are large with relatively stable financial base, a ma-
jority – and the focus group in this paper – of all existing museums are small institutions
[23], possibly grown out of a personal collection and run as a voluntary effort. Since
small museums have often limited financial resources (e.g. annual operational budget
of less than e 100000) [21], commercial, widely used collection management solutions
may have too high a startup cost (but not necessary total cost) compared to a database
application developed in-house with minimal features. Even though a few open source



collection systems (e.g. CollectiveAccess2 and CollectionSpace3) have recently become
available, the typical problems of data conversion (especially when switching from a
proprietary database), system configuration, deployment, training, and support remain
regardless of the system license type.

There are multiple standardization efforts for museum databases. Among the most
prominent are SPECTRUM [44] maintained by the Collections Trust, CHIN Data Dic-
tionaries [12], and CIDOC CRM (Conceptual Reference Model) created by International
Council of Museums (ICOM) [14]. UK-based SPECTRUM is recognized as an indus-
try standard for documentation practice, describing not only data fields but also recom-
mended practices for common museum processes (e.g. object entry, acquisition, cata-
loging, conservation, etc.) as well. The CHIN Data Dictionaries consist of detailed meta-
data field definitions, that can be used as the basis for a data structure in a collections
management system. Data Dictionaries are defined for various domains, including hu-
manities, natural sciences, and archaeological sites. SPECTRUM and Data Dictionaries
are based on traditional, item-centric view of the museum collections, whereas the CRM
is an ontology featuring a complex conceptual hierarchy, focusing on explicit modeling
of relationships [18]. Note that despite the standards and reference models, actual sys-
tems in use do not necessary conform to them, as it would stress the costly development
effort even further [30] or conflict with existing cataloging procedures. As a result, most
MIS adopt the standards partially, like the ArchTerra project [46], or Ida [27]). As an ex-
ample of the slowly shifting processes, consider that even recently printed storage forms
have been used for cataloging [20], and may still be used as a backup method – even in
museums that have a collection database.

Integration of multiple databases and publishing the data on the web is a crucial
challenge for museum databases and problematic to implement despite the existing stan-
dards. Even though CIDOC CRM was developed for data interchange [18], not all sys-
tems support it directly, particularly legacy systems that concentrate on item-centric doc-
umentation. MuseumFinland4 is another approach for data integration based on seman-
tic web technologies. the idea is to convert the conventional database data to ontolog-
ical representation such that the ontology vocabulary is used as field values [28]. The
Finnish National Digital Library5 is an abitious integration effort that attempts to inte-
grate museums, libraries and archives under one search interface. Obviously, no single
data format can support all these at once, but NDL offers interfaces for multiple exist-
ing formats (e.g. Dublin Core, CRM, SPECTRUM) that are used for harvesting data
from the original databases. In practice, the integration may require running two separate
databases [46] which can be complicated, especially if data updates from either database
were allowed, requiring synchronization. 1-directional transformation [16] from internal
representation to chosen standard format is the most feasible approach. Regardless of
the integration technology used, data cleaning [11] and preparation for integration is a
specific challenge. It has been observed that even 5% or more of the information present
in manually created databases is erroneous [9]. While it is tedious to detect and fix in the
original database, the situation becomes more complicated if the erroneous data has been
published online or integrated to multiple databases.

2http://www.collectiveaccess.org/
3http://www.collectionspace.org/
4http://www.museosuomi.fi/
5http://www.kdk2011.fi/



2. Time-Aware Applications for Uncertain data

There are a multitude of ways to represent and reason about time. Absolute dates and
intervals, temporal relations, temporal logics, temporal databases, or time ontologies can
be used to highlight a specific aspect of time with different expressiveness, performance,
and inference qualities. Dealing with imperfect (i.e. incomplete, imprecise or uncertain
[37]) temporal information adds another layer of complexity to temporal processing. Vila
[47] and others [2] have concluded that one temporal model to be used in all domains
and applications is a sheer impossibility. One should know the implications of the dif-
ferent models to make informed decisions based on the general domain and application
requirements.

There has been remarkably little research on information retrieval with incomplete
dates with the data model readily usable with typical museum infomation systems. Only
recently, the value of temporal information has been seriously taken into account in con-
ventional information retrieval [3]. Since temporal information provides context for doc-
ument collections, time can be used to organize the search results regardless of the tem-
poral fields used in the query. Google News Timeline6 is an example of an IR system
with innovative utilization of temporal dimension. In this section, we briefly review some
typical temporal applications, considering their applicability in MIS domain.

2.1. Temporal Representation and Reasoning

A classical perspective to reason about time is rooted to logic programming and AI. There
are numerous models that the can be used as a basis for implementation. Temporal logics
[33] can be used as a foundation for temporal reasoning. The world is modeled as facts
and events. The collection of the facts in a given time is defined as state. An important
problem related to temporal information in AI is reasoning about actions and change
(situation calculus, event calculus) [13], but these are not relevant in MIS context. The
general theories to handle imperfect information include probability theory, possibility
theory (based on fuzzy logic), and Dempster-Shafer evidence theory [41].

Another popular approach to reason about time is to use an algebraic representation
for temporal relations (e.g before, meets, overlaps). Points (instants) [48] or intervals
(time spans) [1] can be used as a basis for modeling relations. Models combining both
points and intervals have been proposed as well, but these may lead to semantic prob-
lems like the divided instant problem [47]. A common theme for these models is to use
a graph model where nodes denoting time units are linked with edges labeled with the
possible temporal relationships. When new information is added to this representation, it
may constrain existing information. In particular, if e1 happens before e2 and e2 happens
before e3, then e1 must be before e3. These constraints, based on transitivity, can be used
to incrementally update the graph [2]. The technique is called constraint propagation and
it has been widely used in AI applications. Generalizations to handle uncertain infor-
mation have been proposed as well, such as semi-intervals [19], or uncertain temporal
relations based on probability theory [41], or fuzzy sets [35].

Temporal Information Processing (TIPS) is associated with natural language pro-
cessing (NLP) technology to process information expressed originally in natural lan-
guage, turning it into a ”temporally aware” structured form that can then be reasoned

6http://newstimeline.googlelabs.com/



with to solve application-related problems [32]. TimeML7 is a proposed specification for
annotation of events and their temporal anchoring in documents. To enable reasoning in
semantic web context, RDF8 (Resource Description Framework) and ontologies are used
for knowledge representation. OWL9 (Web Ontology Language) is the recommended
format for encoding general-purpose ontologies for the web, and OWL-TIME is an OWL
extension designed to describe the temporal properties of web pages and web services
[36]. Linguistic annotation (without specific temporal focus) has been applied to cultural
heritage data as well [28]. Ontologies developed for museum and library domains (e.g.
CIDOC CRM [14], see Section 4.3) also include a temporal component.

2.2. Temporal Databases

In relational databases using standard SQL (Structured Query Language), temporal in-
formation can be represented basically as dates or timestamps with some variation on
precision depending on the system. INTERVAL data type was added to SQL-92 standard
to specify durations, but its adoption to actual database management systems has been
slow [43]. Manually generated calendar tables can be used to partially compensate for
the lack of some temporal functions in SQL (e.g. date arithmetic) [10]. Extensions such
as TSQL2 [42] and other temporal Entity-Relationship models [24] have been proposed,
but they have not been incorporated to standard SQL. Implementing a temporal database
with standard SQL is possible [43], but the queries needed are rather complex.

Characteristic of temporal databases is the usage of date-valued columns as primary
keys. This allows one to store the state changes in a given time, preserving the history.
The central concepts of temporal databases are valid time (the interval during which a
fact is true), transaction time (the interval during which a fact is stored in the database),
and bitemporal data for tables that preserve both valid and transaction time [43]. User-
defined time is supported when time-valued domains for attributes are available in the
data model. These are then employed for giving temporal semantics only externally, in
the application code and by the database designer [29]. In temporal databases it is as-
sumed that all dates are known, whereas both point- and interval-based temporal models
and even models that focus on imprecise temporal information are more concerned with
relations between events with little information about concrete dates at all. Even though
museum databases hold a great deal of temporal information, most of it is uncertain, and
in most systems, no complete history about the data entry updates is preserved. There-
fore, museum information systems are, in general, not temporal databases – the temporal
data is handled as user-defined time, and the main focus for the MIS is to model mostly
unchanging historical information rather than time-varying transactions.

Temporal granularity is important concept that eases the handling of uncertain infor-
mation in temporal databases. A granularity is an algebraic (operational) or logical (de-
scriptive) [15] characterization of years, months, days, and other enumerable mappings
to the time domain [6] that can support both uncertain information and temporal reason-
ing. Granularities allow one to specify temporal information explicitly at different levels
of detail. Relatively user-friendly symbolic notation for customized granularities (e.g.
business weeks, spring, beginning of century, or a specific decade) can be defined using

7http://timeml.org/site/
8http://www.w3.org/RDF/
9http://www.w3.org/TR/owl2-overview/



granularities as well. Goralwalla et al. [22] present a highly expressive granularity model
that supports both anchored (has specific location on the time axis – practically all data
in MIS in anchored) and unanchored (relative timespans, durations) temporal primitives.
Uncertain time can be represented as indeterminate instants for anchored primitives, or
indeterminate time spans for unanchored primitives. A common problem is converting
temporal data expressed in different granularities such that minimal information is lost in
conversion. Numerous models have been proposed for the conversion; a simple approach
[4] is to truncate anchored operands in mixed granularities to the coarser granularity to
avoid indeterminacy.

From the application designer’s perspective, the problem with granularities is par-
tially the same as with other elaborate temporal representations: the more expressive the
model becomes, the more difficult it is to represent it with standard SQL constructs.
However, the approach seems to be most promising to be used with museum databases
since the algebraical way to specify temporal constraints seems to be intuitive to end
users. The data model presented in Section 3.2 and revised in Section 4 can be seen as
a limited way to present user-defined symbolic time granularities for anchored temporal
primitives supporting indeterminacy and conversions between granularities.

3. Collection Management Systems in JYU Museum

In this section, we review the collection management systems used in the Jyväskylä
University Museum, focusing on representation and retrieval of temporal information.

3.1. Collection Databases

JYU Museum uses the following applications related to collection management:

• Duo includes metadata about photographs, recordings, books and other objects
contained in a relatively complex, highly normalized database of ca. 50 tables
with 100 fields. Duo has been in production use since 2003, and includes ca.
37000 collection objects (as of January 2011).

• Arte includes information about works of art. It has basic functionality similar
to Duo, but it is somewhat less complex with ca. 40 tables. Arte has been in use
since 2006, and includes ca. 1000 items.

• Ida is a next-generation system utilizing event-centric documentation, multiper-
spective data views, and used-definable schema. Ida is under development. [27]

• Other third-party applications related to collection management (e.g. image pro-
cessing, web publishing) are also used.

Duo and Arte are implemented as traditional two-tier, database-based client/server
applications. They use separate databases, but share most of the code in reusable com-
ponents (database management, GUI components, search engine) and even parts of the
database schema (e.g. contact information and most of the other personal information,
temporal data, exhibitions, and image management) [34]. For the rest of this paper, we
focus on the Duo database, but the presented temporal model applies to Arte as well.

Duo has the typical functionalities for a museum information system, including
three-level grouping for collections (donations, collection records, and collection ob-



jects), exhibition and borrowings management, object placement information, keywords,
and a multitude of descriptive metadata depending on collection object type (physical
object, photograph, recording, book, or newspaper article). Linking to other collection
objects, external files, or web URLs is also supported. Personal data about staff, pro-
ducers, donors, and other people related to object documentation is stored as well. Duo
supports ad hoc querying and reporting of most of the fields and tables in the database,
including a ”reference search” of any data that points to a specific record (i.e. backlinks).
Reports can be generated in HTML format. Duo has also a rudimentary image manage-
ment facility: preview thumbnails and links to images are stored directly in the database,
the original files are stored in a network drive. Automatic import of images is also sup-
ported. Support for indirect web publishing via DSpace10-based Jyväskylä University
Digital Archive (JYX) is currently under development. Integration with the future Ida
system is planned.

What sets Duo apart from other museum databases is the high level of normalization
in the database schema to keep the vocabulary as controlled as possible using lookup lists
extensively – hence the high number of tables. All even vaguely related concepts are col-
lected together to ease searchability. For example, generic names field for all collection
objects is stored in a separate table instead of a string field directly in CollectionObject
(see Figure 1) table – even though generic names vary greatly, especially between ob-
ject types (e.g. names for physical objects or books are based on the domain, whereas or
names for photos and recordings are based on media types). Still, it is useful to provide
the user a list of the other values used in current context to reduce spelling and classi-
fication errors. Another uncommon aspect of the schema is the decision to use a dedi-
cated table to handle temporal information, resulting to somewhat idiosyncratic retrieval
model described in the following section.

3.2. Representing and Querying Temporal Information in DUO

Figure 1 provides a view of the Duo schema focused on tables and fields containing
temporal information expressed as a UML class diagram. 1-sided association (open ar-
rows) is used to express one-to-many relationship. For example, CollectionObject table
contains a referential key manufacturingDate that references a record in DateInterval
table containing the actual date. Date attributes (registrationDate, dateCreated, etc.) are
standard SQL DATE data types. The most essential tables in the diagram are as follows:

• CollectionRecord is used to organize a collection of objects of the same type
(e.g. photographs) that belong to the same donation or other acquisition.

• CollectionObject is an abstract supertype for all the objects stored in the mu-
seum collection with common metadata fields. For example, every object has a
manufacturing date, and potentially many producers (e.g. author, photographer,
or manufacturer, depending on the object type). The subclasses for each object
types add their distinctive metadata fields and other relations.

• UpdateInfo is used throughout the essential database tables to track the cre-
ation and latest modification dates along with staff members responsible for the
changes. The complete modification history or details about changes are not
preserved, i.e. Duo does not support transaction time in the sense of temporal
databases.

10http://www.dspace.org/



• DateInterval represents an uncertain temporal interval. For most interval-based
metadata fields in the database (e.g. usage date), user can see only years and in-
terval marks in the user interface. For more specific fields (e.g. lifespan), days
and months can be edited as well. Any field can be left empty, denoting an un-
known day, month, or year. NULL values are deliberately not used because the
SQL treatment of NULLs would complicate the queries. Instead, as Celko [10]
suggests, an additional value – zero – is used to represent the unknown value
internally.

• PunctuationMark introduces a number of informal conventions that can not be
easily be reflected in searches (i.e. ”-”:normal interval, ”ca.” for uncertain year,
and additional symbols for other characterizations such as decades or seasons). If
the mark is left empty, only the beginning date should count (i.e. using DateIn-
terval to represent exact date). However, the punctuation mark is currently only
descriptive, and does not affect queries.

Figure 1. Part of DUO database schema expressed in UML. Intervals and exact dates are decipted as separate
entities.

While some of the data related to collection items is relatively certain (especially
organization-related events, such as cataloging and modification dates, exhibition dates,
and check out dates), allowing to use the standard DATE data type, this is not an option
for most of the metadata fields. Much of the historical information is uncertain in the
first place, and in many cases the researcher is not interested in exact dates, but the more
general temporal periods (e.g. 50s, beginning of the century, post-war era) related to the
objects. To support this uncertainty with searchable structure, DateInterval and Punctu-
ationMark tables are used to store most of the collection metadata-related information.
The user interface for entering dates is depicted in Figure 2.

Fields with DATE data types can be queried in Duo similarly to simple numerical
fields: by exact match, or by a given upper/lower bound. For intervals with potentially im-



Figure 2. Screen Shot from Duo UI (texts translated from Finnish): entering interval data with all fields visible.

precise information, three search options – each with more relaxed matching constraint
– are provided:

• Contained interval (di): matches if both ends of the interval are contained within
the query. The most restrictive search option.

• Overlapping interval (od): in addition to contained records, matches intervals that
either overlap (or meet) with the query, or contain the query.

• Contemporary interval (ct): in addition to both options above, includes intervals
with potentially matching 0-years, such that it is possible that part of the result in-
terval operlaps with the query. This way, many search results are matched, among
them all records that contain the completely unknown 0-0 interval.

The terminology and abbreviations are adopted from Allen (during-inverse, over-
lapping/during) [1] and Freksa (contemporary) [19]. Despite the resemblance the rela-
tions are not quite identical, because the original models do not consider handling un-
known values, which is permitted in Duo both for queries and results. In the result list,
start date, interval mark, and end date are compressed to one field. Unspecified years are
interpreted as zeros but hidden from the user.

As a detailed example of different interval search options (see Table 1), consider
the query [1990, 2000], that matches only i1 if contained interval search is used. For
overlapping interval search, intervals i2 to i4 are matched as well, because they overlap
or meet the query interval. i5 does not explicitly overlap the interval because of the
unknown start date, and thus does not match the overlapping search. However, i5 and i6
are both matched with contemporary interval search, because with unknown values there
is a possibility that they are matched.

Table 1. Timespan search example. ct, od, and di indicate different types of matches (contemporary, overlap-
ping, contained) for specific rows with the query specified in the first row.

Interval Match

query [---------] 1990-2000
i1 [--] 1995-1998 ct od di

i2 [------] 1995-2002 ct od

i3 [-------- 1995-0 ct od

i4 [-] 1988-1990 ct od

i5 ---------------] 0-2002 ct

i6 ----------------- 0-0 ct

Note that the timespan query may contain unknown values as well (query [0, 0]
matches all records regardless of the match type). For example, if we choose to search



all intervals after 1990, the query would be written as [1990, 0] and matches i1..3 as
contained intervals, i1..5 as overlapping, and finally, i1..6 as contemporary intervals.

3.3. Problems in Current Approach

While the current approach supports the basic requirements for querying imprecise tem-
poral data, it has several problems listed in this section. The problems are related to the
data model, implementation details (i.e. user interface), and the data stored as punctua-
tion marks.

1. First, there are problems with the data model itself. Both the SQL queries and
user interface components to represent precise (DATE) and imprecise (DateInter-
val) temporal data are quite different and cannot be switched in a dynamic way
(i.e. a field defined as a precise DATE field cannot be incorporated to imprecise
queries). Although the DateInterval table is a general-purpose way to represent
imprecise time, the connections from time fields in collection data to DateInterval
table are constrained by a rigid, item-centric database schema. New connections
can be added to the schema (with code changes required in the client application
as well), but the general model is not easy to adapt to event-centric approach:
every object is ”hard-wired” to manufacturing date and usage date, but new dates
or alternate entries for a specific fields cannot be added dynamically.

2. There are also problems related to the user interface. No standard convention is
enforced by the system to present single instants in time when DateInterval table
is used. By convention, a start date with no interval mark should be interpreted as
a point. However, this has not been used consistently and is not directly supported
in the query interface (the ”point” would be interpreted as a semi-interval with
a fixed start date). Besides, the current UI components to represent and search
imprecise data are not considered to be intuitive by end users.

3. Finally, the punctuation marks added by staff members are not controlled sys-
tematically, apart from showing the list of existing marks. While this allows flex-
ibility in temporal definitions, the lack of control has resulted to many forms of
the same interval mark, rarely used marks, and even some erroneous marks. Data
quality problems like these are typical in all cultural heritage databases [9], not
just with temporal data. After a few manual clean-ups with backtracking refer-
ences, the number of dubious interval marks has decreased, but as long as the
semantics is not precisely defined, applied in the cataloging guidelines, and en-
forced in the user interface, problems will occur. As an example, here is a sample
of the interval marks used before the last clean-up ca. 2008.

- -- - - - ?? - ??- - 1960 - d - ca.- - c. / /april /spring ? -? -> 0
1937 -1998 2001 2002 7 beg -beginning -beg august before february april
-after december summer -d ? spring beginning -d -d ca ? -d -d.beg d.end
-d? -end - decade -decade- -decade? decades -from decade - from decade?
-end of decade november ca- until ca? circa -circa circa-?

Bosch et al. [9] classified typical errors in cultural heritage data to content errors,
which are genuinely incorrect values; spelling errors, which are orthographically cor-
rupted forms of otherwise correct values; and wrong-column errors, which are database
values that provide correct information but do not fit the database column in which they
occur. All of these are present within the loosely controlled punctuation mark.



• Some values such as beginning, -end, until are completely redundant and can be
dismissed as content errors (or insufficent guidelines to end users).

• Numbered values (e.g. 1960) are wrong-column errors and can easily be verified
by manual checking: the user has inadvertently entered the beginning or end year
of the interval to punctuation field. Curiously, the Duo UI would warn the user
that a new record would be added to punctuation marks, but values have been
added anyway.

• Another common class of punctuation marks are ortographic variations of the
”standard” marks defined in original guidelines: - for common intervals, ca. for
imprecise intervals and ? for unknown or uncertain values. Most of these are
spelling errors, but some combinations of the basic symbols (-?, ca-, and com-
binations such as decade?) indicate that the (hypothetical) semantics underlining
the punctuation marks need to be extended. / is proposed by the museum staff
to indicate alternate dates (e.g. interpretation of the interval 1990/2000 as either
1990 or 2000), which is not possible with current search engine.

• The most interesting class of ”punctuation marks” are those that indicate a sym-
bolic representation of a specific custom time granularity: decade, summer, april,
d.end (end of decade). As with other values, different and erroneous spellings are
present, but the marks indicate a need to include symbolic, somewhat ”fuzzy” in-
formation to intervals. However, with the current implementation they are of little
use to searching since the punctuation marks are ignored in the interval search.

4. Improved Temporal Model

In this section, an improved temporal model for museum databases is outlined. The
model is based on feedback and discussions with end users, review of other museum
information systems, and analysis of the data model in Duo. Proposed model should not
only bring added value to end users, but also be straightforward to implement without
extensive changes to existing database schema or other required components.

4.1. Requirements

The requirements for the improved temporal model can be summarized as follows:

• Performance issues should be addressed. Temporal information is used in almost
all end user -specified queries and reports, slowing the application down with
complex joins. In addition, the returned datasets can be large.

• The temporal representation should be generalized such that both precise and im-
precise information including points and intervals can be marked up and retrieved
in a uniform way.

• The number of available punctuation marks should be minimized to keep the
model understandable and easy to apply.

• Symbolic information in punctuation marks should affect the interval search and,
in some cases, used in place of numerical instants.

• Basic punctuation marks related to uncertainty should be allowed to be combined
with other symbolic information.

• Named temporal periods should be allowed to be used as search terms.



• The data model should be brought closer to event-centric documentation to ease
integration with CIDOC CRM and other existing applications and ontologies.

• For maintainability, the implemented changes should affect the existing database
and code as little as possible to enable smooth transition between versions.

• third-party component usage should be minimized to keep the application as self-
contained and easy to deploy as possible.

4.2. Model Definition

Figure 3 presents the proposed schema for the new temporal model as a UML class
diagram (cf. Figure 1). The features of the new model are as follows:

Figure 3. Proposed new schema for temporal entities. ObjectEvent table enables customizable lifecycle-based
descriptions for collection objects.

• DateInterval table has been revised such that the values entered by the user (pri-
maryText, secondaryText) are separated from the DATE values that are used in
query evaluation.

• PunctuationMark table has been divided into two separate tables to represent sym-
bolic constraints. PrecisionMark contains the standard symbols to present un-
certainty and imprecision (?, ca., optionally with distinct values for each end of
the interval), and ConstraintMark provides other symbols consisting of custom
granularities and other supplemental descriptions as an alternative to be explicitly
marked in DateInterval values. The field rule is of special importance as it states
how the constraint mark affects the actual evaluated field values.



• New tables ObjectEvent and EventType have been added to support event-
centric documentation. Individual DATE or DateInterval-based fields have been
omitted from tables with collection metadata and consolidated to ObjectEvent ta-
ble. This allows adding new events or event types dynamically without changes
to schema. TargetType field in EventType provides guidelines to the user interface
to present a given event type. For example, manufacturing date is applicable to all
collection objects, but usage date is by default shown only with physical objects.

• Most of the DATE fields in the rest of the tables have been converted to DateIn-
terval presentation as well to allow uniform search from the temporal fields. The
original fields in UpdateInfo are preserved, because the field data is of technical
nature, related to database usage rather than collection documentation.

• TemporalPeriod table can be used to specify named time periods (e.g. historical
eras) in a hierarchical structure. Periods could be used as ”search terms” to quicky
retrieve a period of interest during data entry or retrieval, but it is generally not
desirable to use them to mark up explicitly a given event. If this was the case, it
would be possible to inadvertently change the dates for multiple objects if the pe-
riod definition changes, which would be error-prone. In addition, the period def-
initions are not entirely stable (i.e. there is no consensus on precise start and end
years of middle ages or renaissance), and the conceptions of time and appropriate
historical periods differ in different cultures [26].

The actual evaluation of the user inputs (and possible application of the constraint
rules) is left to the application since it would be very problematic to implement them
using pure SQL in a portable way. The rule language could be based on regular expres-
sions and simplified date arithmetic, but its detailed definition is left to later development
stage. In principle, most of the punctuation marks used in the old model can be used and
enhanced with rules. For example, the constraint decade would pick all but last number
from the beginning year entered by the user, and expand it to evaluated dates such that
the whole decade is covered: the user input 1962 decade would be evaluated to interval
[1960-01-01,1969-12-31]. Also unknown days or months affect the evaluated dates: since
explicit DATE data type is used in DateInterval table, it would unnecessarily complicate
the queries if 0 was still used to represent unknown. Instead, minimum and maximum
dates in the given context (e.g. 1000-01-01 and 9999-12-01 in MySql for completely un-
known dates) are used. For example, user input 2011-02 would be evaluated to interval
[2011-02-01,2011-02-28].

Alternate dates (OR relationship) are not modeled as a separate constraint mark, but
by modifying the schema such that an indeterminate number of named object events can
be attached to a given collection object. If multiple object events to the same collection
object share the same event type, they are regarded as alternatives. This is in line with
conventions used in CIDOC CRM (”violation of cardinality constraints is interpreted as
an aggregation of alternatives” [18]), and semantic web applications in general.

Although not documented in this paper in detail, a similar approach to event types
has already been used in Duo database with manufacturer roles (i.e. a person manufac-
turing an ”item” can be photographer, artist, director, writer, etc.). With different roles it
is possible to model all persons related to the production process, and with the new Ob-
jectEvent table it is more feasible to explicitly document the persons present in a given
event in addition to just mark up the date when the event occurred. This also brings the
database conceptually closer to CRM.



4.3. Evaluation

From the general schema design perspective the database is still highly normalized. Be-
cause of the new tables related to time intervals, and the new ObjectEvent table, it is
expected that the query performance will be somewhat slower than before. However, this
can be alleviated by creating new indexes and limiting the size of the visible retrieval
results. The decision to store both DATE attributes and uncertain periods in a separate
table with idiosyncratic rules and external code used in evaluation can be regarded as a
disadvantage from the portability standpoint. However, the old model was actually even
less portable regarding uncertain intervals, even though it contained fewer tables: the old
DateInterval contained the date information with separate INTEGER-valued fields for
each date component, whereas in the new model, the evaluated interval dates are stored
as standard DATE fields. In addition, the evaluated dates already contain the informa-
tion expressed with constraint marks or uncertain date components. It is yet uncertain
whether a regular expression -based language is sufficient, or is a more expressive rule
language needed. In the latter case, it would complicate the implementation but would
not affect the database schema or evaluated dates.

The most critical limitation of the data model is the lack of semantics within the
precision marks. Ideally, a ranked fuzzy or probabilistic search should be applied such
that precise dates would get higher ranking than imprecise (ca.) or probable intervals (?).
Close matches should be allowed as well (for example, a contained query with endpoint
in 1950 might match an imprecise interval ending in 1951). Models for relations between
fuzzy time intervals have been proposed [35], but there are multiple practical issues: first,
ranked searches can not be naturally implemented within a relational database so a sepa-
rate search engine would be needed. Second, it is not clear what would be the appropriate
”fuzziness” (level of uncertainty) and shape (deviation for close matches – for example,
The Canadian Council of Archives [40] specifies that uncertain intervals should be used
only for dates fewer than 20 years apart) of the fuzzy set used to describe the interval. At
least it should depend on the original granularities – if both endpoints are described using
days, the deviation should be smaller compared to endpoints specified with years only.
In addition to the complex implementation, the specification of the intervals would be
demanding to the end user. The easiest workaround would be to just set the original tem-
poral query parameters more loosely than originally intended to retrieve more matches
and assess the results manually. Precision marks still contain descriptive information for
the researcher, even though they are not directly used in the search. Different search op-
tions (ci, od, ct) provide a functionality comparable to ranking with varying number of
query results depending on the match type.

The new data model implements most of the requirements specified in common
library and museum standards regarding the presentation of temporal information, al-
though some of the mechanisms are used or named differently.

• Dublin Core11, a widely used specification of general-purpose core metadata
fields is not directly relevant to museum metadata. The fifteen fields specified by
the Dublin Core Metadata Element Set are too limited to be used as a primary
format for museum documentation – as a publication format, fields in MIS can
be mapped to DC. However, the model for representing periods in DCMI Period

11http://dublincore.org/specifications/



Encoding Scheme [17] includes a specification for encoding temporal periods in
a CSV-like string. The model allows attaching names to periods, and specifying
an encoding scheme for the start and end instants. This allows different granular-
ities, calendars and even symbolic names to be used for specifying intervals, and
would be a useful extension to the Duo data model.

• SPECTRUM [44] contains versatile definitions about temporal intervals. Dates
and intervals can be represented with partial information similarly to Duo, and
alternate dates are directly supported. A field for textual expression of the date
(Date text) is also defined. For simple expressions, such as the examples used
in the specification (Late 19th century or early 20th century), constraint marks
can be used to similar effect with the added benefit of making the expressions
searchable. However, the notion of qualifiers to explicitly mark up the probable
deviation for start and end instants (e.g. uncertain start date, ±10 years) is not
supported in the Duo data model to keep marking up dates simple. Informally, the
notion of uncertainty can be expressed with PrecisionMarks; new marks could be
created to explicitly denote the uncertainty in either end of the interval.

• CIDOC CRM [14] contains a conceptual hierarchy related to different kinds of
events (e.g. birth, creation, transformation) that can partially (but not always for
events that are not directly related to collection objects – the most notable excep-
tion are persons) be presented with EventType table in Duo. CRM class E4 Period
resembles TemporalPeriod table, with period hierarchy interpreted specifically
such that containing period consists of subperiods. Class E52 Time-Span is ana-
logical to DateInterval in Duo (with E61 Time Primitive as the actual, parseable
value for the date ranges), with the addition of qualifiers as in SPECTRUM, and
allowing additional temporal relations to be defined between the intervals and
other classes (e.g. P81 ongoing throughout, P83 had at least duration, P86 falls
within). Without question, the temporal model defined in CIDOC is highly ex-
pressive, but very involved to implement or mark up the data if adopted in its en-
tirety. Doerr et al. [18] states that normalization of knowledge to physical reality,
such as absolute time does not work, because empirical information is discrete
and incomplete, in whatever domain. While the latter is true, we disagree with
the conclusion since any numeric search, or integration with applications that do
not share the same terminology necessitates a standardized representation format.
Duo attempts to solve the problem by preserving both the original user input (with
symbolic data in constraint marks), and the normalized representation that can be
used for retrieval and calculations in application- and ontology-neutral way.

• The conventions for uncertain dates as defined in CCA’s Rules for Archival De-
scription [40] are semantically close to the Duo data model with some differences
in notation. The authors consider it a good compromise between expressivity and
easy markup. ca. and ? denote approximation and probability respectively, dates
and intervals are supported, specific years or decades can be left blank with -,
OR relation is allowed, and marks can be combined, e.g. 17-? denotes probable
century. In Duo, a similar effect can be accomplished using constraint marks.

Finally, we compare the temporal aspects of the Duo data model to other popular
museum software used in Finland. Musketti12, developed by the Finnish National Board

12http://www.nba.fi/fi/muskettieesittely



of Antiquities, contains no less than four separate mechanisms for marking up intervals:
explicit date interval, explicit year interval, custom time (centuries, decades and other
approximate dates), and temporal periods (e.g. middle ages). Even if the exact date in-
terval is known, the equivalent data must be marked to year interval as well [45]. The
literal fields for periods and custom time are stored as strings and thus cannot be used for
temporal searching without additional parsing – apparently, the numeric dates must be
marked up manually. Polydoc13 is another collection management system developed by
Redorom InfoSystems. Polydoc contains a simple interval-based mechanism for mark-
ing up temporal data, along with optional textual information in a separate field [38].
Web-based, free collection management systems CollectiveAccess and CollectionSpace
both claim to support both SPECTRUM and custom schemas, but it is unclear whether a
customized rule-like mechanism could be applied for temporal intevals.

The proposed data model is clearly more expressive compared to both Musketti and
Polydoc. In addition, constraint marks and a single mechanism for temporal information
provides productivity and usability benefits compared to traditional systems. However,
the open source alternatives need more thorough investigation regarding both expressiv-
ity and customizability.

4.4. Alternative approaches

In this section, we review alternative approaches to enhance the temporal model used in
Duo database, reflecting on the techniques and models presented in Section 2. Algebraic
representations described in Section 2.1 are relevant in providing standard terminology
for temporal relations, but the constraint propagation technique itself is generally not
used in museum databases. For each collection object, it is assumed that a numerical –
albeit possibly uncertain – dates or intervals are known for documentation. It is clear
that museums would benefit from explicit temporal relations between object events. For
example, regardless of the actual dates known, object usage date should always be earlier
than registration date (when the object is registered to museum collection). However, for
other, implicit relations that should be marked up manually, there is a practical produc-
tivity problem: when marking up the temporal relations, the number of possible relations
is quadratic with the number of events, marking them explicitly takes time, and there are
already tens of metadata fields related to a given object. In a case of text annotation with
TimeML, Pustejovsky et al. [39] found that due to fatigue humans annotate only a small
number of possible links.

Treating the MIS as an temporal database (see Section 2.2) is an attractive prospect.
As Snodgrass [43] points out, many applications initially have no temporal component.
The need for retaining the history then arises. The first step is to make one or more of
the tables temporal, generally by adding an interval timestamp. For example, in the data
model used in Duo, tables handling exhibitions and borrowings already contain an in-
terval timestamp to denote the time a given object is in specific state. It is then possible
to query the exhibition history for a given object, and this could be interpreted as valid
time information. Similarly, a timestamp presenting the latest change in a given record is
often used since this allows querying for latest changes in the database. If the database
contains a significant amount of errors, it might be desirable to track all changes entered
by the user. When the user adds corrections to the database while retaining the original

13http://www.redorom.com/polydoc/



data in separate fields, there is always the chance of going back to the original informa-
tion. The audit trail enables explicit documentation about data cleaning operations (new
errors may occur even during the cleaning) [11]. Event-based documentation can also be
regarded as an application of transaction time: for example, if a lifecycle (created, sold,
damaged, restored, etc.) of a painting is considered [27], these processes are modelled as
individual events that affect the state of the painting.

Utilization of general-purpose ontologies (OWL Time, ontologies of MuseumFin-
land, CIDOC CRM, etc.) for primary data representation would require integrating new
software components to the application (e.g. RDF database frontend, inference engine,
transformation of existing data). This is a highly sophisticated approach and would be
ideal for research purposes, enabling powerful faceted semantic search [28] and expres-
sive inferences on temporal data. However, the approach is laborious to implement, de-
pending on the extent of the ontologies utilized. Utilization of CRM would require map-
ping of all database tables and part of the individual values (e.g. event types) to CRM
classes, and partly the definition of a new ontology to accommodate the specific tables
and fields not directly represented in CRM. If more specific ontologies like the ones used
in MuseumFinland were adopted, the process is even more complex than CRM-based
approach since all values used in the original museum database would be mapped to an
ontology. Some automation tools exist, but the prosess is not straightforward. Value-level
ontologies require considerably more maintenance compared to simpler ontologies based
on concepts and relationships alone [25]. As for time ontologies, much of the expressiv-
ity provided by them might not be needed in this particular application since the basic
interval search with absolute dates has been considered sufficient (although sometimes
unintuitive) by the end users. Technically, RDF databases and query languages are not
yet mature and stable compared to SQL and relational database technology. In general,
we regard ontologies as an important and useful tool for data integration (with primary
data still in conventional database and utilizing a 1-way transformation [16]), but even
considering the benefits, the development and maintainance cost for a new knowledge
base with custom ontological representation is just not realistic.

5. Conclusion

This paper reviewed existing temporal models from the museum information systems
perspective. Collection managemenent systems in JYU Museum were introduced and
problems with representing and retrieving temporal information were identified. A
new temporal model accounting different representations, uncertainty, and customizable
events for collection objects was roughly sketched and evaluated with alternative ap-
proaches. The model is feasible for implementation, facilitating data entry and uncertain
query handling.

Even though it was decided that the representation should be physically in relational
database, the system could still utilize ideas from time ontologies (e.g. new query opera-
tors). Another important issue that was not possible to be taken into account in this paper
involves the implementation of the user interface – even though the data model was cre-
ated based on discussions with the museum staff, further feedback on the new model and
usability testing is still required. As usual, the user interface must be developed in coop-
eration with the end users. What kind of visual component would be the most intuitive
and flexible to be used for temporal queries and data entry?



Future research involves the implementation of the model in a relational database.
Current data with old temporal model in the production database must be transformed
to the new representation. Careful planning concerning the current punctuation marks is
required – while some obvious errors can be corrected with simple replacement opera-
tions, a few ambiguous marks still remain that should be corrected before updating the
database to keep it as uncluttered as possible from the start. The software should assist
the user with the punctuation marks so that new, unnecessary marks are not added. Map-
ping rules and temporal periods for culture-sensitive (uncertain) temporal information
and generalizing the model to different calendars would also be an interesting prospect.
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