JYVASKYLA STUDIES IN COMPUTING
139

Giovanni lacca

Memory-Saving Optimization
Algorithms for Systems
with Limited Hardware

¢
I

JYVASKYLAN YLIOPISTO

JYVASKYLA STUDIES IN COMPUTING 139

Giovanni lacca

Memory-Saving Optimization
Algorithms for Systems
with Limited Hardware

Esitetddn Jyvaskyldan yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen auditoriossa 2
joulukuun 5. paivana 2011 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyvaskyld,
in the building Agora, auditorium 2, on December 5, 2011 at 12 o'clock noon.

o

UNIVERSITY OF H JYVASKYLA

JYVASKYLA 2011

Memory-Saving Optimization
Algorithms for Systems
with Limited Hardware

JYVASKYLA STUDIES IN COMPUTING 139

Giovanni Iacca

Memory-5Saving Optimization
Algorithms for Systems
with Limited Hardware

)

UNIVERSITY OF H JYVASKYLA

JYVASKYLA 2011

Editors

Timo Mannikko

Department of Mathematical Information Technology, University of Jyvaskyld
Pekka Olsbo, Ville Korkiakangas

Publishing Unit, University Library of Jyvaskyla

URN:ISBN:978-951-39-4538-1
ISBN 978-951-39-4538-1 (PDF)

ISBN 978-951-39-4537-4 (nid.)
ISSN 1456-5390

Copyright © 2011, by University of Jyvaskylad

Jyvaskyld University Printing House, Jyvaskyla 2011

ABSTRACT

Tacca, Giovanni

Memory-Saving Optimization Algorithms for Systems with Limited Hardware
Jyvéaskyla: University of Jyvaskyld, 2011, 100 p.(+included articles)

(Jyvdskyla Studies in Computing

ISSN 1456-5390; 139)

ISBN 978-951-39-4537-4 (nid.)

ISBN 978-951-39-4538-1 (PDF)

Finnish summary

Diss.

During the past ten years, there has been a dramatic increase of industrial ap-
plications in which some sort of “intelligence” is plugged into embedded sys-
tems, such as mobile robots, remote sensors, etc., to perform specific optimization
processes (e.g. training/learning tasks) despite the limited hardware resources.
These situations can be addressed in different ways, including compact Evo-
lutionary Algorithms (cEAs) and single-solution (population-less) Optimization
Algorithms. cEAs save memory using a statistic representation of a population,
instead of storing and process an entire population and all its individuals therein,
while population-less Optimization Algorithms save memory using a single so-
lution exploring the search space according to some logic. The main drawback
of these algorithms is that, since they do not use a population, they are subject
to premature convergence, especially when the dimensionality grows. Neverthe-
less, it is still possible to design very robust and flexible memory-saving algo-
rithms, which guarantee good results despite a low memory footprint. Among
cEAs, compact Differential Evolution (cDE) has proven successful for a broad set
of problems. This work presents a few novel cDE-based algorithmic structures,
aimed at improving the performance of cDE. As an alternative to cDE-based al-
gorithms, a novel promising single-solution Memetic Computing approach, de-
signed having in mind the lex parsimoniae inspired by the Ockham’s Razor, is
introduced. The main finding of this work is that, for optimization problems
plagued by limited hardware, an extremely simple algorithm, if carefully de-
signed, should be preferred to overwhelmingly complicated algorithms having
large memory requirements and a high computational overhead.

Keywords: global optimization, compact optimization, single-solution optimiza-
tion, population-less optimization, evolutionary computing, differen-
tial evolution, memetic computing, algorithmic enhancements

Author

Supervisors

Reviewers

Opponent

Giovanni lacca

Department of Mathematical Information Technology
University of Jyvaskyla

Finland

gi ovanni .iacca@jyu.fi][gmil.com

Adjunct Professor Ferrante Neri

Department of Mathematical Information Technology
University of Jyvaskyla

Finland

Doctor Ernesto Mininno

Department of Mathematical Information Technology
University of Jyvaskyla

Finland

Professor Tuomo Rossi

Department of Mathematical Information Technology
University of Jyvaskyla

Finland

Professor Raino A. E. Mikinen

Department of Mathematical Information Technology
University of Jyvaskyla

Finland

Professor Jarostaw Arabas

Faculty of Electronics and Information Technology
Warsaw University of Technology

Poland

Professor Daniela Zaharie

Faculty of Mathematics and Computer Science
West University of Timisoara

Romania

Associate Professor Carlos Cotta

Dept. de Lenguajes y Ciencias de la Computaciéon
Universidad de Malaga

Spain

mailto:giovanni.iacca@[jyu.fi][gmail.com]

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the help of many people
who, in different ways, provided an invaluable support during my Ph.D. studies.
Without them, I would have never completed my research and written this thesis.

First and foremost, I want to express my deepest gratitude to Ferrante Neri
and Ernesto Mininno, who guided me throughout my research, believed in me,
and always allowed me to work in my own way. If now I am a researcher, it
is only because of their gentle guidance, their continuous inspiration, and their
precious teachings. Most of all, I thank them for the informal atmosphere they
created and all the great time we spent together in the last two years. I could not
have wished for better or friendlier mentors for my research.

I would like to sincerely thank Prof. Tuomo Rossi and Prof. Raino Mékinen,
who gave me precious advices regarding the Finnish system and helped me in
solving many practical problems in all the time of my doctoral studies. I am also
grateful to Prof. Tommi Karkk&dinen, who always gave me encouraging words.

I want to thank the University of Jyvaskyld, in particular Rector Aino Salli-
nen, for having believed in me and generously supported my Ph.D. studies.
Without Rector’s financial support, this dissertation would have been impossi-
ble. I especially thank the Department of Mathematical and Information Technol-
ogy, for having given me incredible opportunities during my studies, and all the
people working at the department, for the kind help they gave me in many situa-
tions. I would also like to show my gratitude to all the supervisors of the courses
I attended during these years, for having greatly enriched my knowledge.

I owe my deepest gratitude to the international coauthors of some of the
papers presented in this work, not just for the precious collaboration, but also for
being so kind and friendly during my stay in Singapore. I would like to thank
all the anonymous reviewers of various journals and conferences, who helped
me a lot to improve my work and sometimes provided inspiring ideas. Special
thanks go to Fabio, who worked on his Master thesis in our group. It was nice to
supervise him and spend funny moments together. Moreover, global thanks go
to all my friends in Jyvdskyld and worldwide, for their love and support.

Last but not the least, my deepest thanks go to the most important people of
my life: my parents Maria and Francesco, my brother Aldo, and my sister Deb-
orah, for always encouraging me and letting me feel their love, and my beloved
girlfriend Silvia, for making me feel alive in a way nobody else can. My family is
my beacon, which, despite the distance, always sheds its brilliant light on my life
and reminds me of my origins. My girlfriend is the beauty of the vast world, she
is the place where I belong and all the places I will ever want to see.

"For small creatures such as we the vastness is bearable only through love.”
Carl Sagan

LIST OF FIGURES

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10
FIGURE 11
FIGURE 12
FIGURE 13
FIGURE 14
FIGURE 15
FIGURE 16
FIGURE 17
FIGURE 18
FIGURE 19
FIGURE 20
FIGURE 21
FIGURE 22
FIGURE 23
FIGURE 24
FIGURE 25
FIGURE 26
FIGURE 27
FIGURE 28
FIGURE 29
FIGURE 30

Newton’s method pseudo-code................ccooooi 14
EA pseudo-codeccooiiiiiiiiiiiii 19
SI Algorithm pseudo-code ... 22
PSO pseudo-code.........c.ooiiiiiiiiiiiiiiiiiiii 23
DE/rand/1/bin pseudo-codecccoooiiiiiiiiiiiin 28
Exponential crossover pseudo-code..............c.cccoeeeiiiiiinn 29
SPX pseudo-codeccooiiiiiiiiiiiiiiiiiii 32
Fitness function f (F)oeeeoiieeeeiiiiiiiiiiiiiiee e 34
EDA pseudo-code...........coeiiiiiiiiiiiiiiiiiiiii 40
cGA pseudo-code...........oooiiiiiiiiiiiii 43
pe-cGA pseudo-code............ooiiiiiiiiiii 44
ne-cGA pseudo-code.........coouviiiiiiiiiiiiiniiiii 45
Sampling mechanismcccooeiiiiiiiii 46
pe-1cGA pseudo-code.........o.viiiiiiiiiiiiiiiiiiii 47
pe-cDE /rand /1/bin pseudo-codecccooooiiiiiini 48
ne-cDE/rand/1/bin pseudo-codeocooiiiiiii 49
DECDE pseudo-codecoooiiiiiiiiiiiiiiiiiiii 53
SFcDE-PSR pseudo-code...........ccouiviiiiiiiiiiiiiiiiiiiiis 55
Graphical representation of CcDE..................coooii 56
CcDE pseudo-code..........coooiiiiiiiiiiiiiiiiiii 57
ENCDE pseudo-codecooiiiiiiiiiiiiiii 58
Graphical representation of SCDEccooiii 59
ScDE pseudo-codecooiiiiiiiiiiiiiiiiii 60
CODE pseudo-codecooouuiiiiiiiiiiiiiiiiiiiiiii 62
Noise Analysis survivor selection pseudo-code........................ 64
Long distance exploration.................ccooeiiiiiiii 66
Middle distance exploration..............cccceeeiiiiiiiiii 66
Short distance explorationcccoeeiiiiiiiiii 67
Coordination of the exploration stages...................ccccceeeiiii 67
Graphical representation of the null-hypothesis....................... 82

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES
CONTENTS
LIST OF INCLUDED ARTICLES
1 INTRODUCTION ..tititiiuieieeeneneeeeneueneseeneecsesesssscscsssssnsscsesssnsscsesnsnns 11
1.1 Local Continuous Optimizationcccocoiiiiiiii 13
1.1.1 Derivative-based Local Searchccccooiviiiiiiiininni. 13
1.1.2 Derivative-free Local Searchccooiiiiiiiiiiiiinnn.. 14
1.2 Global Continuous Optimizationcccceeeiiiiiiiiin 16
1.2.1 Brute-force Method..........coooviiiiiiiiii 17
1.2.2 Stochastic Global Searchcoovviiiiiiii 17
2 META-HEURISTICS ..c.tuitiiiiiieieeeeneteeeeeeeeeeenesereesncsessseessesncsssnssnsens 18
2.1 Evolutionary Algorithms..............ccoooooi 18
2.1.1 Genetic Algorithms............cooooiiii 19
2.1.2 Evolutionary Programmingccccceeeiiiiiiiiiinnn, 20
2.1.3 Evolution Strategies...............cccoeeiiiiiiiiiiii 20
2.2 Swarm Intelligence ... 21
221 Particle Swarm Optimization...............cccooeviiiinin. 22
2.2.2 Bacterial Foraging Optimization..................ccooooon, 23
2.3 Memetic Algorithms and Memetic Computing............................ 24
3 DIFFERENTIAL EVOLUTION ..tittitititieieneteeeeeeeneeeenencecscsnsncscsesnsnns 26
3.1 Standard Differential Evolutionccoooiiiiiiiiiiiiiiiiiiiiiiinn, 27
3.2 Algorithmic Issues in Differential Evolution................................ 29
3.3 Additional Components in Differential Evolution........................ 31
3.3.1 DE with Trigonometric Mutation..................ccoooon. 31
3.3.2 DE with Adaptive Hill Climbing Simplex Crossover......... 32
3.3.3 DE with Population Size Reduction.....................cooeee. 33
3.3.4 DE with Scale Factor Local Searchccooovvviiiinnin.n. 33
3.4 Modified Structures of Differential Evolution.............................. 34
3.41 Self-Adapting Parameter Setting in DE 34
3.4.2 Opposition Based DEccooooiiiiii . 35
3.4.3 DE with Global and Local Neighborhoods 36
344 Self-Adaptive DE.........ccooiiiiiiiiiiii 37
4 COMPACT ALGORITHMS ...t ttitiiiiietetieieeteeeeneneneeeenencncsesnsncncnesnsnns 39
4.1 Estimation of Distribution Algorithms....................... 40
4.2 Binary Compact Genetic Algorithm..................... 42
4.3 Elitism in Compact Algorithms..................oo 43

4.4 Real Compact Genetic Algorithm..................oooo. 45

4.5 Compact Differential Evolutionc....ocooiin. 48

5 CONTRIBUTION OF THIS WORKcccoeiiiimmiiiiiiiiiiiiiinieeriiiiceeeennn, 51
51 Memetic Implementations of compact Differential Evolution........ 51

5.1.1 Disturbed Exploitation compact Differential Evolution 52

5.1.2 Super-Fit compact Differential Evolution with PSR 54

5.2 Structured Population in Compact Algorithms............................ 54

521 Composed compact Differential Evolution....................... 55

522 Ensemble compact Differential Evolution......................... 57

523 Supervised compact Differential Evolution 59

5.3 Additional Components in compact Differential Evolution........... 61

5.3.1 Opposition-based compact Differential Evolution............. 61

5.3.2 Noise Analysis compact Differential Evolution................. 63

5.4 A Different Memory-Saving Approach: Single-Solution MC 65

5.5 Comparative Analysis of the Proposed Algorithms...................... 68

6 CONCLUSION ...citttiiiiiiiiiiiiiiieeiiii et s eeerase e e e snaaeeeeens 70
YHTEENVETO (FINNISH SUMMARY) ...covvtiiiiiiiiiiiiiiiiiiiiiincieiniiceeeennn, 72
APPENDIX1 BENCHMARK FUNCTIONS.....cccttviiiiiieiiiiinirrnnniiniiiene. 73
1.1 Benchmark Functions - CEC 2005...............cocoiiiiiiiiiin 73

1.2 Benchmark Functions - CEC 2008...............ccooiiiiiiiiii. 77

1.3 Benchmark Functions - Extrac..ooooiiii. 79

APPENDIX 2 STATISTIC METHODS FOR COMPARING ALGORITHMS.. 82

2.1 Wilcoxon Rank-Sumi TeSt.....o.ouuenini e, 83
2.2 HOIM PIOCEAULE ... oo, 84
ACRONYMS ceititiiiiiiititittteettenttteetasstsssssssessssssasssssssssssssssssssnssssesnsnse 86
RE R E REINCES. . titititiititteitieeeeeteesasesessessssssessssssesssssssssssessssssosssssssssssosssses 88

INCLUDED ARTICLES

LIST OF INCLUDED ARTICLES

PI

PII

PIII

PIV

PV

PVI

PVII

PVIII

Ferrante Neri, Giovanni Iacca and Ernesto Mininno. Disturbed Exploita-
tion compact Differential Evolution for Limited Memory Optimization
Problems. In Information Sciences, volume 181 (2011), issue 12, pages 2469-
2487,2011.

Giovanni lacca, Ernesto Mininno and Ferrante Neri. Composed compact
differential evolution. In Evolutionary Intelligence, volume 4, number 1,
pages 17-29, 2011.

Giovanni lacca, Ferrante Neri and Ernesto Mininno. Noise Analysis Com-
pact Differential Evolution. In International Journal of Systems Science, to
appear, 2011.

Giovanni Iacca, Rammohan Mallipeddi, Ernesto Mininno, Ferrante Neri
and Ponnuthurai Nagaratnam Suganthan. Global Supervision for Com-
pact Differential Evolution. In 2011 IEEE Symposium on Differential Evolu-
tion Proceedings, pages 1-8, 2011.

Giovanni Iacca, Rammohan Mallipeddi, Ernesto Mininno, Ferrante Neri
and Ponnuthurai Nagaratnam Suganthan. Super-fit and Population Size
Reduction in Compact Differential Evolution. In 2011 IEEE Workshop on
Memetic Computing Proceedings, pages 1-8, 2011.

Giovanni Iacca, Ferrante Neri and Ernesto Mininno. Opposition-Based
Learning in Compact Differential Evolution. In Application of Evolutionary
Computation, volume 6624/2011 of Lecture Notes in Computer Science,
pages 264-273, 2011.

Rammohan Mallipeddi, Giovanni lacca, Ponnuthurai Nagaratnam Sugan-
than, Ferrante Neri and Ernesto Mininno. Ensemble Strategies in Compact
Differential Evolution. In 2011 IEEE Congress on Evolutionary Computation
Proceedings, pages 1972 - 1977, 2011.

Giovanni lacca, Ferrante Neri, Ernesto Mininno, Yew-Soon Ong and
Meng-Hiot Lim. Ockham’s Razor in Memetic Computing: Three Stage
Optimal Memetic Exploration. In Information Sciences, accepted, 2011.

The author’s contribution in the articles listed above was as follows.

The paper which introduced the author to global optimization, and more
particularly compact Differential Evolution, was article PI, where an unconven-
tional cDE-based Memetic Algorithm, namely Disturbed Exploitation compact
Differential Evolution (DEcDE), is presented. The author contributed to the de-
sign and the implementation of DEcDE and implemented most of the optimiza-
tion algorithms used for comparisons. He also executed part of the numerical ex-
periments, and compiled the relative results in figures and tables. Furthermore,

he independently performed the literature review relative to the space robot ap-
plication, and contributed to the design of the Simulink model of the robot. Fi-
nally, he took part in the writing of the Numerical Results chapter in the article.

Articles PII and PIV form together a study of parallel/distributed variants
of cDE, where multiple DEcDE units are used as local searchers to explore the
search space from different perspectives. In both the articles, the author wrote
the Numerical Results chapters and contributed to the design and the imple-
mentation of the proposed algorithms, as well as the benchmark functions and
algorithms used for comparisons.

A similar idea is presented in article PVII, where a pool of ¢cDE units em-
ploying different mutation and crossover strategies with different parameters is
introduced. This article was for the author the first opportunity to work with
international collaborators, namely R. Mallipeddi Prof. P.N. Suganthan; together
with them, he designed and implemented the proposed algorithm and the algo-
rithm used for comparisons, and carried out most of the numerical experiments.

Article PIII introduces a Noise Analysis scheme for compact Differential
Evolution. In this case the standard cDE is used, instead of DEcDE, to address
problems plagued by noise on fitness function. This choice was made to per-
form a fair comparison between cDE and NAcDE. For this article, the author
contributed to the implementation of the proposed algorithm, as well as some of
the algorithms used for tests, and to the writing of the Numerical Results chapter.

Articles PV and PVI investigate the application of some of the most promis-
ing ideas recently proposed to improve Differential Evolution, i.e. Super-Fit, Pop-
ulation Size Reduction, and Opposition Based Learning, to the compact Differen-
tial Evolution framework. Both articles focus on the standard cDE, and try to
improve its performance adding components successfully used in DE, analyzing
the contribution of each of these components for a broad set of test functions. In
these two articles the author independently designed and implemented both the
algorithms proposed, namely SEcDE-PSR and cODE, designed and carried out
all the numerical experiments, and wrote most of the contents.

Finally, article PVIII represents a relative drift of the author’s interest, since
it is the first paper in which the compact Differential Evolution is not used. This
paper proposes indeed an alternative to cDE-based algorithms, namely a novel
single-solution Memetic Computing approach, designed having in mind the Ock-
ham’s Razor lex parsimoniae. For this article, the author independently carried out
the whole algorithmic design, as well as the implementation of the whole set of
algorithms and test functions, the relative experiments, and the compilation of
results. He also designed, developed and tested the digital filter application. The
writing of the article was instead carried out jointly with the coauthors.

1 INTRODUCTION

In our every day life, we always have to make choices. For example, we may need
to choose a flight schedule, the shortest path to go back home from work, which
car to buy, etc. Regardless the context, all these decisions share a common idea:
they are made according to some "optimality" criteria, or, in other words, they are
related to some goal we want to reach or necessity we want to satisfy. As a mat-
ter of fact, optimization plays a crucial role in basically every aspect of our life,
in all the fields of technology and applied sciences, e.g. in engineering, finance,
industrial design, bio-informatics, etc. Biological evolution itself can be consid-
ered a huge, everlasting optimization process aiming at improving the fitness of
living beings, and this is one of the reasons for being so many optimization algo-
rithms inspired by nature, as we will see in the next chapter. Broadly speaking,
optimization algorithms are methods that aim at detecting the optimal solution
of a given problem within a (continuous or discrete!) set of possible candidate
solutions. More formally, given a fitness (objective, or cost) function in the form:

f:DeR" >R (1)
a (minimization) optimization problem can be defined as follows:
find x* : f(x*) =min{f(x)}. (2)
xeD

where D is called decision (design, or search) space, x € D is a solution (also called
individual or point), whose i-th component, i = 1,...,n (where n is the problem
dimension) is called decision variable, and x* denotes the (global) optimum. It must

1 Intuitively, a set is considered to be discrete if it is composed of isolated elements, whereas it

is considered to be continuous (dense) if it is composed of infinite and contiguous elements
without “holes”. More formally, a set S C R is said to be dense if:

Vxq,xp € S: Jxz: x1 < x3 < xo.

If the property above is not satisfied for all the points, the set is said to be discrete. It must be
remarked that, although on a computer all the sets are in principle discrete, if the distance
between each pair of consecutive points in a set is not bigger than the machine precision €,
the set can still be considered dense, see Neri et al. (2011).

12

be remarked that, in the most general formulation, an optimization problem may
have a more complicated decision space (i.e. bounded by non-linear constraints)
and multiple conflicting objectives. In the remainder of this thesis, only single-
objective unconstrained continuous optimization problems will be considered.

This work focuses on a specific class of optimization applications, that is
applications plagued by limited hardware. The main reason to investigate this
problem, is that, despite the every day increasing availability of powerful compu-
tational devices, nowadays there are still several applications which make use of
"intelligent" systems characterized by severely limited hardware. These systems
are often required to perform some specific optimization operations, such as an
online training procedure, or the solution of a more general optimization prob-
lem. In the first case, the system is required to "learn" what is the best "behaviour"
to improve some performance metrics; in the latter, the system is supposed to find
the optimal solution within a set of candidate solutions of a given problem, e.g.
find the shortest path among different possible options. In a nutshell, the main
research problem which this work tries to address could be summarized by the
following question:

is it possible to perform an optimization process on board of a system with limited
hardware?

Typical examples of limited-hardware applications are: 1) home automation sys-
tems (such as cleaning devices, cooking robots, lawnmowers etc.), which must
perform in an "intelligent" way some relatively simple task, still being affordable
for low budget consumers; and 2) real-time control systems, where the optimiza-
tion must be carried out on a micro-controller as quickly as possible, in order to
leave a larger time slot for real-time communication with sensors and actuators.

In all these cases, costs and physical space requirements impose the employ-
ment of embedded systems characterized by very simple hardware structures.
In order to perform optimization tasks on such a hardware, specific algorithms
must be designed. Due to the hardware limitations, traditional population-based
optimization methods, i.e. algorithms relying on the concurrent evaluation of
multiple solutions, as well as algorithms employing complex learning structures,
would be indeed unacceptable. On the contrary, a "memory-saving" approach
must be applied, i.e. a method requiring a very limited amount of run-time mem-
ory and computational resources.

This thesis is organized as follows. The present chapter introduces some
classical methods used for local and global continuous optimization. Chapter 2
describes the most popular population-based meta-heuristics used in global con-
tinuous optimization. Chapter 3 focuses more deeply on a specific meta-heuristic,
namely the Differential Evolution. Chapter 4 introduces the class of compact al-
gorithms, which simulate the behaviour of population-based algorithms by em-
ploying, instead of a population of solutions, its probabilistic representation. The
two major algorithms belonging to this class, namely compact Genetic Algorithm
(cGA) and compact Differential Evolution (cDE) are also described. Finally, chap-
ter 5 presents the main contributions of this work. A few novel cDE-based struc-

13

tures are introduced, aimed at improving the performance of the standard cDE.
As an alternative to cDE-based algorithms, a novel single-solution Memetic Com-
puting approach, designed having in mind the lex parsimoniae inspired by the
Ockham’s Razor, is also presented. As we will see, the main finding of this work
is that, for optimization problems plagued by limited hardware, an extremely
simple algorithm, if carefully designed, is to be preferred to overwhelmingly
complicated algorithms characterized by a large memory footprint and a high
computational overhead.

1.1 Local Continuous Optimization

If the fitness function is Cauchy-continuous, for any given point, its closest points
are expected to have a similar performance with respect to that point. Equiva-
lently, all the points in the neighborhood of a given point, i.e. those points charac-
terized by distance € from it, have a similar fitness value. This concept is funda-
mental in continuous optimization because, unlike the discrete optimization case,
it allows us to introduce the idea of “small” search movements and search direc-
tions. In other words, it implies the concept of local search. Local search methods
can be classified as “derivative-based” (see section 1.1.1) and “derivative-free”
(see section 1.1.2). According to the order of the derivatives used for exploring the
search space, derivative-based methods can be classified as follows: (1) first-order
methods, which rely on the objective function and to its (approximated) gradient;
and (2) second-order methods, which use the objective function, its (approximated)
gradient, and its (approximated) Hessian. On the other hand, derivative-free (or
zeroth-order) methods base their search solely on ordinal relations between objec-
tive function values, without any model of higher order derivatives of the ob-
jective function. For the sake of completeness, it should be remarked that some
authors, see e.g. Neri et al. (2011), call a method “derivative-free” if it uses the
zeroth-order information to approximate higher order derivatives of the objective
function. For example, the approximation of the partial derivative of the fitness
function f within the neighborhood of radius € of a given point, with respect to
the decision variable x[i], can be defined as follows:

of _ f(xlil+e)— £ (x[i)
ox|i] € '

Whether approximated or not, the information derived from the gradient (or
higher derivatives) can be obviously exploited, within an optimizer, to select the
most promising neighbor of a given starting point, and thus to identify a promis-
ing search direction, as we will see in the next section.

3)

1.1.1 Derivative-based Local Search

If the objective function f has an analytical expression, and it is unimodal, contin-
uous and twice-differentiable, it is possible to find its minimum using an analytic

14

method, based on the second order Taylor expansion of f around a given point
xo. More specifically, we can write:

f(x) = h(x) = fx0) + Vf(x0) - (x = x0) + %(x —x0)" - H(f)(x0) - (x — x0)

where Vf(x) and H(f)(x) are, respectively, the gradient and the Hessian of f.
Since the minimum x* of f is a stationary point where Vh(x) = 0, it follows that:

x* = d(XQ) -+ Xp (4)

where d(xg) = —H'(f)(x0)V f(xo) is called Newton direction, or Newton step
at x = xo. Equation (4) provides a second-order iterative method, called New-
ton’s method, to find the minimum of a function, given an initial guess xp. The
pseudo-code of the Newton’s method is shown in Fig. 1, where « is a step size
control parameter whose choice heavily depends on the objective function. It is
worthwhile to notice that if the inverse of the Hessian is replaced with the iden-
tity matrix, the search direction can be calculated as d(xg) = —V f(xp). Due to
the use of a first-order approximation, however, this latter method, called steepest
descent (or gradient descent), converges more slowly than the Newton’s method.

Although extremely intuitive, the Newton’s method has some serious draw-
backs, mostly related to its high computational cost and to numerical instability
(because of the inversion of the Hessian). Alternative Newton methods have been
proposed to overcome these issues, which for example scale the Hessian or use
iterative methods (based on factorization) to compute its inverse. Quasi-Newton
and conjugate gradient methods have also been proposed: the first methods rely
on an approximation of the Hessian (or its inverse), dynamically build up from
changes in the gradient; the latter perform a line search along conjugate direc-
tions. But even if these methods have good convergence properties on quadratic,
twice-differentiable, unimodal functions, they are not sufficiently robust to han-
dle more complex functions (e.g. highly multivariate or multi-modal).

counterk =0

generate an initial guess x

while stop condition do
X1 = —a- (HH(f) () VF(xe)) + xx
k=k+1

end

FIGURE1 Newton’s method pseudo-code

1.1.2 Derivative-free Local Search

In practical applications, the operation of derivation is not always possible be-
cause, for example, the objective function is not differentiable within the entire
decision space, is affected by noise, or is not even available in an explicit an-
alytical form (being, for instance, an experiment measurement). In situations
where the objective function is the output of a simulation or the execution of a

15

program whose code is available, Automatic Differentiation (AD), see Griewank
and Walther (2008), can still be applied to compute accurate derivatives. AD has
been successfully applied in many engineering applications, see e.g. Toivanen
et al. (2009) and Toivanen and Mikinen (2011). In more general cases, where
derivatives are not available at all, derivative-free optimization methods must be
used. Also known as direct search methods, they consist in generating, accord-
ing to some logic, a solution x and then testing its fitness by computing f(x).
This process is then repeated until a satisfactory solution is found, or until a pre-
defined budget of fitness evaluations is exhausted. It is worth noting that even
though these algorithms do not require any knowledge about the fitness func-
tion and its derivative, they still make use of some form of gradient given by the
difference of the fitness between two neighbor points, similarly to eq. (3). If the
direction suggested by this "gradient" leads to an improvement, these algorithms
make optimistic attempts to follow it in the hope to find yet a better point. Except
the Rosenbrock Algorithm, the methods here described are considered heuristics,
since they can converge to non-stationary points on some specific problems. In
addition, it must be remarked that these methods are deterministic, in the sense
that, starting from a given point, their logic employs a predictable sequence of
search moves, without applying any kind of stochastic perturbation or any form
of randomization. To some extent, stochastic algorithms can be considered instead
inherently global optimizers, due to their implicit ability to escape local minima
(see the next section for further details). Nevertheless, there exist stochastic algo-
rithms that can be used both as local or global optimizers, see e.g. the Simulated
Annealing, Kirkpatrick et al. (1983), or the Tabu Search, Glover (1989a,b).

Hooke-Jeeves Method

The main idea of the Hooke-Jeeves algorithm, also called Pattern Search, see
Hooke and Jeeves (1961), is to explore, along each of the axes of the search space,
a neighborhood of radius & of a given initial solution xy, trying to find whether a
step of size h towards the positive or the negative direction is leading to a better
fitness (if no improvement is found after exploring both directions, the original
position of xp on that axis is retained). Once every axis has been probed, a new
point x1, obtained applying to xp an offset of £/ along the relevant axes, is eval-
uated. If f(x1) > f(xo), the step size is decreased (e.g. /1/2), and the new neigh-
borhood of xj is explored. Otherwise, a new base point x; is chosen by taking one
step further from x; in the direction defined by x¢ and x1, i.e. xo = x1 + (x1 — xo),
optimistically assuming that the direction is leading towards a better fitness. The
algorithm is then applied again on x;.

Nelder-Mead Method

While the Hooke-Jeeves algorithm relies on a single point and the systematic ex-
ploration of its neighborhood, the Nelder-Mead algorithm, or downhill simplex,
see Nelder and Mead (1965), makes use of a set of n + 1 points, xg, x1,..., Xy,

16

forming an n-dimensional polytope, or simplex, in D. At each iteration of the
algorithm, these points are sorted according to their fitness, so that xo has the
best fitness and x, presents the worst fitness. The procedure then consists in con-
structing a candidate replacement point x, for x, by reflection of x, in respect
with the barycenter x,, of the other xy, x1, ..., x,_1 points. Depending on the per-
formance of x, compared to xp and x,,_1, an extension point may be created in an
optimistic attempt to explore further in the same direction, or on the contrary a
contraction point may be computed closer to x,,. If none of the above attempts
lead to a better solution, the simplex is contracted around its best point in order
to reduce the exploration range in the next iteration of the algorithm.

Rosenbrock Method

The Rosenbrock Algorithm, see Rosenbrock (1960), is a classic deterministic local
search which, under specific conditions, has been proved to always converge to
a local optima (see Bazaraa et al. (2006)). Like the Hooke-Jeeves method, at the
beginning this method probes each of the n base directions, with a step size h. In
case of success, the step size is increased, otherwise it is decreased and the oppo-
site direction is tried. Once a success has been found and exploited in each base
direction, the coordinate system is rotated towards the approximated gradient,
the step size is reinitialized and the procedure is repeated, until a stop criterion is
met, using the rotated coordinate system. The main flaw of this algorithm is re-
lated to the creation of the new rotated coordinate system: this operation, which
is usually performed by means of orthogonalization procedures, is indeed com-
putational expensive, and in some cases may even become numerically instable.

1.2 Global Continuous Optimization

The problem of the methods described so far is that, if the objective function is
multi-modal, i.e. contains multiple local minima, they tend to detect the local min-
imum closest to the starting point. However, the goal in optimization is to detect
the global optimum, that is the solution exhibiting the lowest function value over
the entire search space. In principle, in order to detect it, we should find all the
null gradient points and then select the global optimum. On the other hand, as we
have seen before, this operation is often impractical, if not impossible. In order to
guarantee an extensive search, and in many cases avoid that the search gets stuck
within local optima, an efficient global optimizer should not be based, therefore,
only on gradient information, but also on direct fithess comparisons among so-
lutions, regardless their position within the decision space. Here we describe the
two simplest, but rather inefficient, global search methods, one purely determin-
istic and one completely stochastic. In the next chapter we will see how global
optimization can be performed in a more efficient way, using meta-heuristics.

17

1.2.1 Brute-force Method

The simplest deterministic global optimization algorithm one may think of is the
brute-force method, also known as enumeration. It simply consists in generating a
finite number of points in the search space and evaluating all of them, keeping the
best one as the solution to the problem. One way to generate these points is, for
example, to construct a grid of k" points covering the whole search space, sam-
pling k equally spaced points in each interval D; = [xF,xH],i = 1,2,...,n. The
main flaw in the brute-force search is that most of the tested points are far away
from the optimum; moreover, this method highly depends on the sampling step-
size chosen, as it affects the trade-off between complexity (number of solutions to
evaluate) and performance (the probability of finding the global optimum).

1.2.2 Stochastic Global Search

The simplest stochastic way to perform the global optimal search of a generic
function is the progressive perturbation of one or more solutions in order to im-
prove upon their performance. The search can be performed by various search
rules, for example randomly generating a new solution within the decision space
or adding a randomized perturbation vector to a trial solution, see e.g. the Ran-
dom Walk proposed in Gross and Harris (1985). These algorithms, called Stochas-
tic Global Search or simply Stochastic Search methods, Spall (2003), can be con-
sidered the ancestors of all the modern computational intelligence optimization
algorithms. As we will see in the next chapter, basically all the modern nature-
inspired global optimization algorithms can be considered in the end stochastic
search algorithms which differ one from another on the mechanism used for gen-
erating the trial solutions and/or the strategy for selecting them.

2 META-HEURISTICS

When hypotheses on the optimization problem cannot be made, a general pur-
pose global optimization algorithm must be implemented for solving it, or at
least detecting some sufficiently good solutions. Algorithms of this kind are usu-
ally referred as meta-heuristics, from the ancient Greek words peto and cuploxw,
i.e. "I search beyond” or "beyond the search”, as they apply a heuristic method in a
controlled way to guide the search into obtaining a (sub) optimal solution.

A huge variety of meta-heuristics has been developed during the last years,
many of which taking inspiration from nature, e.g. evolutionary principles, phys-
ical phenomena, animal behaviour, diffusion of ideas etc. These nature-inspired
methods, also known as Computational Intelligence Optimization methods, can
be classified in many different ways, according to their properties and their func-
tioning principles. Although an exhaustive survey of all the CI optimization
methods is out of the scope of this work, in this chapter we briefly review three
major classes of population-based meta-heuristics, namely Evolutionary Algo-
rithms (EAs), Swarm Intelligence (SI) and Memetic Computing (MC). As it will
be more clear in the next chapters, most of the concepts described here can be
applied, with limited changes, in memory-saving optimization algorithms.

2.1 Evolutionary Algorithms

In population-based algorithms, the search is carried out exploring multiple solu-
tions concurrently. As a metaphor, Evolutionary Algorithms (EAs) consider these
solutions as a population of individuals which breed with each other in order to
improve their adaptation (or, in other words, their fitness) to environment. Using
the same mechanisms that subtend biological evolution, EAs are characterized by
four phases, namely: 1) parent selection, 2) crossover, 3) mutation, 4) survivor se-
lection. The pseudo-code of a generic EA is given in Fig. 2, where N is the number
of individuals in the population and pop, is the population at the t-th generation.
Here we describe the basic definitions of some of the most popular optimization

19

EAs in use nowadays, i.e. Genetic Algorithms, Evolutionary Programming and
Evolution Strategies.

counter f = 0
Il == initial population pop, **
generate and evaluate N random individuals to create pop,,
while budget condition do
Il *% reconbination and nutation xx
select parents for recombination
recombine parents to create offsprings
mutate and evaluate offsprings
/'l *+ update popul ation pop, ; **
replace some individuals of pop, with the offsprings to create pop,_ ;
t=t+1
end

FIGURE 2 EA pseudo-code

2.1.1 Genetic Algorithms

The very first version of Genetic Algorithms (GAs), see Holland (1975) and Gold-
berg (1989), was initially developed for solving combinatorial problems. Never-
theless, the original framework has been successfully extended to mixed and con-
tinuous optimization and nowadays, due to a plethora of algorithmic enhance-
ments and applications in many heterogeneous fields, GAs are undoubtedly the
most popular Evolutionary Algorithms. The inspiring principles of GAs are to be
found in the biological mechanisms behind sexual reproduction, where two par-
ent individuals recombine their genomes in order to produce offsprings. In the
original implementation of the GA, the genome of an individual is represented by
a string of bits, i.e. 0-1 values, thus requiring a binary encoding of real-valued pa-
rameters (e.g. by means of Gray codes). In most of the modern implementations
instead, GAs use a more natural real-valued (or in some cases integer) represen-
tation of individuals. In other words, each individual is considered a vector in
R", where n is the problem dimension:

x = (x[1],...,x[n]).

Parent selection can be performed according to different logics. Two examples
of selection methods are (1) the proportionate selection, where each parent is as-
signed a selection probability proportional to its fitness (so that the best individu-
als have higher chance to be selected); (2) the k-tournament selection, where each
parent is the best solution out of a sample of k randomly selected individuals.

Recombination usually takes place applying on the two parents a crossover
function, which concatenates sequences of genes (i.e. decision variables) from one
parent with other sequences from the other parent. There exist many different
crossover schemes, among which the most used are the single-point and multi-
point crossovers. More complex crossover schemes are also possible, such as
mask crossover or partially mapped crossover, see Eiben and Smith (2003).

20

After recombination, the offsprings undergo a mutation process, which con-
sists in perturbing, with a very low probability, one or more of their components.
It is important to observe that in GAs the mutation operator has actually an ex-
ploratory function: if offsprings were created only by means of crossover, the
“reachable” search space would be limited only to those solutions that can be gen-
erated recombining the initial population. In other words, there would be parts
of the search space totally unreachable for the algorithm. On the other hand, the
introduction of random mutations provide instead a larger exploration ability,
allowing the creation of points outside this limited region of the search space.

Once the mutation has been performed, finally survival selection occurs: in
GAs, survival is usually performed according to the generational strategy, i.e. the
parents are completely replaced by their offsprings.

2.1.2 Evolutionary Programming

In Evolutionary Programming (EP), see Fogel et al. (1966), each individual is a
real-valued vector composed of its candidate solution representation x and a set
of self-adaptive parameters o

(x,0) = (x[1],...,x[n],0o[1],...,0n]).

Trying to emulate the way new features appear in living beings through mutation
of their genome, EP does not employ a recombination scheme, but relies solely on
mutation. More specifically, at each iteration of the algorithm, for each individual
(x,0), an offspring is generated according to the following formulas:

{ oli] = o[i](1+a-N(0,1))
x[i] = x[i] + o[i] - N(0,1)

where the index i refers to the index of the variable, i = 1,...,n (n being the
dimension of the problem), A/(0,1) is a Gaussian random variable with mean 0
and standard deviation 1, and « is a control parameter used to scale the perturba-
tion. After mutation, the offsprings are evaluated, and merged with the parents.
Finally, survivor selection is performed in such a way that each individual is com-
pared against a set of randomly selected individuals, and the individuals which
have won the highest number of comparisons survive.

2.1.3 Evolution Strategies

Evolution Strategy (ES), see Schwefel (1965) and Rechenberg (1971), employs a
self-adapting scheme similar to EP. Like in EP, each individual is a real-valued
vector composed of its candidate solution representation x and a set of param-
eters o, and the evolution is essentially driven by mutation; on the other hand,
recombination is not simply dismissed as in EDP, but still plays a minor role. For
the generic i-th variable, the general mutation rule is defined by:

o [1] eN(O,T’)+M(O,T)

{ oli]
x[i] = N (x[i, o[i])

21

where NV (0, 7') and V;(0, T) are two different normally distributed random num-
bers with mean 0 and standard deviation 7/ and 7, respectively. The notation
N;(0,T) denotes a different random number for each variable, whereas A/ (0, /)
is a common —solution-wise— random number. T and 7’ are called local and global
learning rate, respectively. It must be remarked that several alternative rules have
been proposed in literature for the update of ¢, see e.g. the schemes proposed in
Rechenberg (1971) and Eiben and Smith (2003).

In general, recombination occurs between two randomly chosen individu-
als, and it can be either discrete or intermediate. In the first case, the offspring
takes some of the genes from each of the two parents, in the latter it is gener-
ated for example calculating a randomly weighted average of the corresponding
genes of the two parents. A multitude of alternative recombination strategies
among pairs or small groups of solutions have also been proposed in literature,
see e.g. the BLX—a crossover described in Eshelman (1990) and Herrera et al.
(2003) or its variant introduced in Lozano et al. (2004). The advantages of one
strategy with respect to another depend, in general, on the specific problem.

Finally, survivor selection can be performed either in the genetic algorithm
fashion by replacing the whole parent population with the best members of the
offspring population ((y, A) or “comma” strategy) or by merging parent and off-
spring populations and selecting the wanted number of individuals on the basis
of their fitness values ((4 + A) or “plus” strategy).

A powerful Evolution Strategy approach that deserves being mentioned is
the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) Hansen and Os-
termeier (2001). In CMA-ES, solutions are generated via a multivariate normal
distribution whose mean and covariance matrix are adaptively updated from a
subset of promising solutions. CMA-ES has a solid theoretical background and
several desirable properties such as invariance to several transformation of the
objective function and a relatively low number of parameters.

2.2 Swarm Intelligence

Unlike EAs, Swarm Intelligence (SI) algorithms consider the solutions of as mem-
bers of a group of particles or animals (e.g. a flock or a swarm), where each indi-
vidual has a “limited” intelligence which contributes to create a form of collective,
or social, intelligence (e.g. by means of simple behavioral rules, an individual
may tend to follow its neighbors or a swarm leader). A peculiar characteristic of
SI algorithms is the so called "one-to-one" spawning (or replacement) logic, that
is each individual in the swarm generates a new individual, according to some
perturbation mechanism, and a replacement occurs only if the new individual
outperforms the old one. The pseudo-code of a generic SI algorithm is shown
in Fig. 3, where pop, is the swarm at the t-th iteration and N is the number of
individuals in it. Here we briefly introduce two well-known Swarm Intelligence
algorithms, namely Particle Swarm and Bacterial Foraging Optimization.

22

counter t =0
Il =+ initial population pop, **
generate and evaluate N random individuals to create pop,,
while budget condition do
fori=1,...,Ndo
/'l *+* one-to-one spawni ng **
perturb individual pop,[i] and evaluate it
compare the fitnesses of pop,|[i| and the perturbed individual
/'l =+ update popul ation pop, ; **
select the winning individual and copy it into pop,_, , [i]
end
t=t+1
end

FIGURE 3 SI Algorithm pseudo-code
2.2.1 Particle Swarm Optimization

The metaphor employed in Particle Swarm Optimization (PSO), see Kennedy and
Eberhart (1995), is that particles in a swarm make use of their “personal” and ”so-
cial” experience in order to explore a decision space and detect solutions with a
high performance. More specifically, a swarm of candidate solutions is randomly
sampled within the decision space. Subsequently, the fitness value of each can-
didate solution is computed and the solutions are ranked on the basis of their
performance. The solution associated to the best fitness value overall detected is
named global best x8P. At the first iteration, for each solution x; a correspond-
ing local best solution x!” is initialized with its position in the search space. In
the next iterations, for each solution x;, xfb is updated with the most successful
position found so far by that solution. Each particle x; explores the search space
according to the following rule:

v, = wv; + ocl(xll-b —x;) + ocz(xgb —x;)
X;i = X; +0;

where v; represents a velocity (perturbation) vector, w is the so-called inertia pa-
rameter (the higher this parameter, the longer it takes the particle to change direc-
tion), and a1, ay are two parameters that control the attraction of each particle to-
wards the best-known local/global solutions. For each particle, and at each step,
the values of these two parameters are randomly generated (typically they are ex-
tracted from a uniform distribution ¢/ (0, 1), with 0 excluded and 1 included). The
metaphoric meaning of these formulas is that each particle performs a move in
the search space combining its “personal” experience (i.e. its local best x/*) with a
form of “social” knowledge given by a partial imitation of the most promising in-
dividual in the swarm. These two contributions are randomly weighted in order
to keep a high level of diversity and prevent premature convergence.

The fitness value of the newly generated x; is calculated and a replacement
of local and/or global best occurs if needed. At the end of the optimization pro-
cess, the final global best detected is the estimate of the global optimum returned

23

by the particle swarm algorithm. A pseudo-code showing the main features of
the basic PSO is given in Fig. 4. It is worth to note that many versions and vari-
ants of PSO have been proposed in literature in order to improve its performance,
see e.g. the linearly variable weight factor proposed in Shi and Eberhart (1998)
and the constriction factor introduced in Clerc and Kennedy (2002).

generate N, particles and N, velocities pseudo-randomly
copy the particle swarm into the set of local bests: Vi, x;_j, = x;
while budget condition do
fori=1: N, do
compute f (x;)
end
fori=1: N, do
/1l =+ Velocity Update ==
generate a vector of random numbers U(0,1)
v; = wo; +U(0,1) (xlt — x;) + U(0,1) (x8% — x;)
/1l *=+ Position Update ==
Xi = Xj + 0;
/'l *% Survivor Selection *x*

iff(lifz‘) < f (xi_pp) then

X = Xi
if f (x;) < f (x8%) then
X80 = x;
end
end
end
end

FIGURE 4 PSO pseudo-code

2.2.2 Bacterial Foraging Optimization

Bacterial Foraging Optimization (BFO), see Passino (2002) and Das et al. (2009b),
is inspired by the foraging behavior of the E. coli bacteria within some environ-
ment with a non-uniform distribution of nutrients. The basic idea is to explore
the search space performing tentative moves similar to the swim foraging pattern
(called "chemotaxis") observed in motile bacteria. Basically, bacterial chemotaxis
is a complex combination of two types of moves, namely tumbling (i.e. changes
of direction) and swimming (i.e. moves along a successful direction), which re-
spectively enable the bacteria to search for nutrients in random directions and
rapidly approach higher concentrations of nutrients. In other words, the alterna-
tion between "swims" and "tumbles" guarantees a balance between exploitation
and exploration of the search space. The classical BFO consists of three phases,
namely: 1) chemotaxis, 2) reproduction, and 3) dispersal. During chemotaxis, the

24

movement of the i-th bacterium is modeled as:

A.
X;i = Xx; + Ciil

where A; is the direction vector of the chemotactic step, and C; is a parameter
which controls the step size. In tumbles, A; is a random vector whose elements
are uniformly distributed in [—1, 1]; in swims instead, A; is the same as the last
chemotactic step, thus allowing the bacterium to exploit a promising direction.

To mimic the asexual reproduction of E. coli, at each iteration BFO sorts all
the bacteria according to their fitness and selects the best half of the swarm. Each
survivor is then splitted into two replicas, thus keeping the swarm size constant.
Finally, in order to prevent premature convergence and keep a high diversity rate,
after a fixed number of chemotaxis/reproduction steps a few bacteria are chosen,
with some probability, for being replaced with new random individuals.

Like other SI algorithms, BFO has been successfully applied to many prac-
tical problems. However, it must be remarked that compared to other meta-
heuristics BFO possesses a poor convergence behavior, especially over high di-
mensional complex optimization problems. To overcome these issues, some adap-
tive and self-adaptive variants of the original BFO have been proposed, see e.g
Chen et al. (2008, 2011) and Dasgupta et al. (2009, 2010).

2.3 Memetic Algorithms and Memetic Computing

Following the definition given in Hart et al. (2004), a Memetic Algorithm (MA)
is a hybrid meta-heuristic composed of an evolutionary framework, which acts
as global searcher, and one or more local search components activated within its
generation cycle (see, for example, the local search methods described in chap-
ter 1). In a broader sense, MAs can be seen as the founding subset of Memetic
Computing (MC), a broad group of techniques that use the notion of memes as
"units of information encoded in computational representations for the purpose of prob-
lem solving”, Ong et al. (2010). Generally speaking, MC methods are dynamic
computational structures composed of multiple interacting memes coordinated
according to some logic. Due to their robustness and versatility, these methods
have proven successful in many applications and nowadays MC is one of the
most active area of research in Computational Intelligence.

A crucial issue in MAs (and MC in general) is the coordination among
memes, that is the way (when and how) each meme is activated. For example, a
rather simple strategy to control the activation of local search in MAs, called "par-
tial Lamarckianism", see Houck et al. (1997), consists in randomly applying the
local search with some probability. Another problem is the "intensity" of the local
search, i.e. the exploitation pressure applied on a given solution to be locally im-
proved. A possible scheme, proposed in Molina (2005), consists in classifying the
solutions according to their fitness and associate a different set of local-search pa-

25

rameters to each of set of solutions. Related to these two issues, the most critical
point in MAs is however the balance between exploitation and exploration, see
Lozano and Garcia-Martinez (2010). Many strategies have been proposed to keep
a proper balance between these two conflicting pressures, for example using mul-
tiple subpopulations, Miihlenbein et al. (1991), clustering solutions, Seront and
Bersini (2000) (to detect clusters of neighbor solutions upon which it may not be
fruitful to apply local search), or even “interweaving” the local search within the
population-based engine, see e.g. the so-called hill climbing crossover described
in Jones (1995) and applied in MAs in Lozano et al. (2004).

3 DIFFERENTIAL EVOLUTION

Amongst meta-heuristics, Differential Evolution (DE), see Storn and Price (1995),
deserves a separate mention, since it shares some properties of Evolutionary Al-
gorithms (EAs) and some others of Swarm Intelligence (SI) Algorithms. Like
most popular EAs, DE is a population-based algorithm, but unlike other EAs,
it generates offspring by perturbing each solution in the population with a scaled
difference of two randomly selected individuals, instead of simply recombining
two parents. Still, DE applies a form of crossover similar to some recombination
schemes used in EAs. In addition, DE employs the one-to-one logic spawning
typical of SI, which allows replacement of an individual only if the offspring out-
performs its corresponding parent.

Thanks to, on one hand, its simplicity and ease of implementation, and on
the other hand, reliability and high performance, DE has proven to be a robust
and versatile function optimizer, thus becoming very popular among computer
scientists and engineers. A broad review of applications of DE is presented in
Price et al. (2005) and Plagianakos et al. (2008). However, even if standard DE has
a great potential, many modifications of the original framework have been pro-
posed in literature in order to improve its performance. Following the taxonomy
introduced in Neri and Tirronen (2010), we can subdivide the modified versions
of DE into two classes:

1. DE integrating extra components. This class includes those algorithms com-
posed of a DE framework and one or more additional algorithmic compo-
nents, e.g. local search methods, an alternative mutation scheme, etc.

2. Modified structures of DE. This class includes those algorithms which make
substantial modifications within the DE structure, i.e. in the search logic, the
selection mechanism, etc.

In this chapter we will briefly review the basic DE framework, and some of the
most recent DE-based algorithmic structures belonging to these two classes. Most
of the contributions of this work are related to the application of some of the ideas
behind these DE structures, within the context of a compact Differential Evolution
(cDE) framework (see chapters 4 and 5).

27

3.1 Standard Differential Evolution

According to the original definition given in Storn and Price (1995), DE consists of
the following steps, see Fig. 5. An initial sampling of Nj, individuals is performed
pseudo-randomly with a uniform distribution function within the decision space
D. At each generation, for each individual x;, three mutually distinct individ-
uals x;, xs and x; are pseudo-randomly extracted from the population. Then, a
provisional offspring x/ s is generated by mutation as:

ngf = x¢ + F(x; — x) (5)

where F € [0,1+] is a scale factor which controls the length of the exploration
vector (x, — xs) and thus determines how far from point x; the offspring should
be generated. With F € [0, 1+], it is meant here that the scale factor should be a
positive value which cannot be much greater than 1, see Price et al. (2005). While
there is no theoretical upper limit for F, effective values are rarely greater than
1.0. The mutation scheme shown in eq. (5) is also known as DE/rand /1. Other
variants of the mutation rule have been subsequently proposed in literature, see
Qin and Suganthan (2005):

e DE/best/1: x(’)ff = Xpest + F (x5 — x¢)

DE/ cur-to-best/1: ngf = x; + F (Xpest — X;) + F (x5 — x¢)

DE/best/2: x(’)ff = Xpest + F (xs — x¢) + F (xy — xp)

DE/rand/2: x] F=Xr F (x5 —x¢t) + F (x4 — xp)

DE/rand-to-best/2: x(’)ff = Xy + F (Xpest — X;) +F (xr — x5) + F (x, — xp)

where xp,; is the solution with the best performance among individuals of the
population, x, and x, are two additional pseudo-randomly selected individuals.
It is worthwhile to mention the rotation invariant mutation shown in Price (1999):

e DE/current-to-rand/1 x,5r = x; + K (x¢ — x;) + F' (xr — xs)

where K is is the combination coefficient, which as suggested in Price (1999)

should be chosen with a uniform random distribution from [0,1] and F/ = K - F.

For this special mutation the mutated solution does not undergo the crossover
operation (since it already contains the crossover), described below.

Recently, in Price et al. (2005), a new mutation strategy has been defined.

This strategy, namely DE/rand/1/either-or, consists of the following:

oo { xt+ F (xp — x5) if rand (0,1) < pr ©)

off T xp+ K (% + x5 — 2x¢) otherwise

where for a given value of F, the parameter K is set equal to 0.5 (F +1). When

28

generate N, individuals of the initial population pseudo-randomly
while budget condition do
fork=1:N, do
compute f (xi)
end
fork=1:N, do
[l *+ Mutation ==
select three individuals x;, x5, and x;
compute x;ﬁ(= x; + F(x, — x5)
/| ** Crossover *x
Xoff = xgﬁ(
fori=1:ndo
if rand(0,1) < Cr then
xoﬁc [l] = Xj [Z]
end
end
/'l *x Survivor Selection ==
if f (xo) < f (xk) then
save index for replacement x; = x5
end
end
perform replacements
end

FIGURES5 DE/rand/1/bin pseudo-code

the provisional offspring has been generated by mutation, each gene of the in-
dividual x] f 18 exchanged with the corresponding gene of x; with a uniform
probability and the final offspring x, ¢ is generated:

%ol = x;[f] if rand (0,1) < CR
of I x, £l otherwise

()

where rand (0, 1) is a random number between 0 and 1; j is the index of the gene
under examination. This crossover strategy is well-known as binomial crossover
and indicated as “bin”. For the sake of completeness, we must mention that there
exist a few other crossover strategies, for example the “exponential” strategy, see
Price et al. (2005). In this case, a design variable of the provisional offspring xéﬁ[i]
is randomly selected and copied into the i-th design variable of a copy of the
parent x. This guarantees that parent and offspring have different genotypes.
Subsequently, a set of random numbers between 0 and 1 are generated. As long
as rand (0,1) < Cr, where the crossover rate Cr is a predetermined parameter,
the design variables from the provisional offspring (mutant) are copied into the
corresponding positions of the final offspring. The first time that rand (0,1) > Cr,
the copy process is interrupted. Thus, all the remaining design variables of the
offspring are copied from the parent. For the sake of clarity, the pseudo-code of
the exponential crossover is shown in Algorithm 6. The resulting offspring x,¢¢

29

xoﬁc =X

generate i = round (n - rand (0,1))
xoplil =]

while rand (0,1) < Cr do

i=i+1
if i == n then
i=1
end
il = 335]
end

FIGURE 6 Exponential crossover pseudo-code

is evaluated and, according to a one-to-one spawning strategy, it replaces x; if
and only if f(x,rf) < f(x;); otherwise no replacement occurs.

3.2 Algorithmic Issues in Differential Evolution

As shown in Subsection 3.1, DE is based on a very simple idea, i.e. a search by
means of adding vectors and a one-to-one spawning for the survivor selection.
Thus, DE can be very easily implemented and contains a limited amount of pa-
rameters to be tuned (only Ny, F, and CR).

From an algorithmic viewpoint, the success of DE is due to an implicit self-
adaptation contained within the algorithmic structure, as shown in Feoktistov
(2006). More specifically, since, for each candidate solution, the search rule de-
pends on other solutions belonging to the population (e.g. x:, x;, and xs), the
capability of detecting new promising offspring solutions depends on the current
distribution of solutions within the decision space. During the early stages of
the optimization process, the solutions tend to be spread out within the decision
space: this implies that, for a given scale factor value, mutation appears to gener-
ate new solutions by exploring the space by means of a large step size (if x, and
x; are distant solutions, F (x, — x;) is a vector characterized by a large modulus).
In later stages, the solutions tend to concentrate in specific parts of the decision
space. Therefore, the step size in the mutation is progressively reduced and the
search is performed in the neighborhood of the solutions. In other words, due to
its structure, a DE scheme is highly explorative at the beginning of the evolution
and subsequently becomes more and more exploitative during the optimization.

Although this mechanism seems, at first glance very efficient, it hides a
limitation. If for some reason the algorithm does not succeed at generating off-
spring solutions which outperform the corresponding parent, the search is re-
peated again with similar step size values and will likely fail by falling into an
undesired stagnation condition (see Lampinen and Zelinka (2000)). Stagnation
is that undesired effect which occurs when a population-based algorithm does
not converge to a solution (even suboptimal) and the population diversity is still

30

high. In the case of DE, stagnation occurs when the algorithm, due to the limited
amount of exploratory moves, does not manage to improve upon any solution of
its population for a prolonged amount of generations.

It is clear that successful functioning of a DE depends on the parameter
setting of the three control parameters mentioned above. The population size
N, is related to the amount of possible moving vectors. Over all the possible
moves given by a population, some moves are beneficial in the search for the
optimum while some others are ineffective and result in a waste of computational
effort. Therefore, too small a population size can contain too limited an amount of
moves, while too large a population size may contain a high number of ineffective
moves which can likely mislead the search. A guideline for sizing population in
DE is given in Storn and Price (1997), where a setting of N}, equal to ten times the
dimensionality of the problem is proposed. However, a recent study in Neri and
Tirronen (2008) shows that a population size lower than the dimensionality of the
problem can be optimal in many cases.

Regarding the scale factor F and the crossover rate CR, their setting is nei-
ther an intuitive nor a straightforward task but is unfortunately crucial for guar-
anteeing the algorithmic functioning. Several studies have thus been proposed in
literature: for example, in Storn and Price (1997) and Liu and Lampinen (2002b)
the settings F € [0.5,1] and CR € [0.8, 1] are recommended; in Liu and Lampinen
(2002a) and Ronkkonen et al. (2005) the setting F = CR = 0.9 is chosen on the
basis of discussion in Price and Storn (1997); finally the empirical analysis re-
ported in Zielinski et al. (2006) shows that in many cases the setting of F > 0.6
and CR > 0.6 leads to results having better performance. On the other hand, dif-
ferent studies, e.g. Gamperle et al. (2002) and Mallipeddi and Suganthan (2008),
highlight that an efficient parameter setting is very dependent on problems. This
result can be seen as a confirmation of the validity of the No Free Lunch Theorem
defined by Wolpert and Macready (1997), with reference to the DE framework.

The problem of the parameter setting is emphasized when DE is employed
for handling difficulties complex optimization problems, e.g. characterized by
a high dimensional or noisy landscape. For example, a large decision space re-
quires a wide range of possible moves to enhance its capability of detecting new
promising solutions. However, since, as mentioned before, an enlargement in
population size causes an increase in the set of potential ineffective moves, a
proper choice of F and CR becomes a crucial aspect in the success of DE in large
scale applications. High dimensionality is not the only curse of DE. As high-
lighted in Krink et al. (2004), DE seems to be inefficient for noisy optimization
problems as well. This study experimentally shows that the reason for that is re-
lated to an ineffective parameter setting, since a deterministic choice of the scale
factor can be inadequate in fitness landscape plagued by noise. Thus, some spe-
cific countermeasures must be applied. A simple modification to handle noisy
problems has been proposed in Das and Konar (2005) and Das et al. (2005a). A
randomized scale factor according to the following formula has been used:

F=05(14rand(0,1)) (8)

31

where rand (0,1) is a uniformly distributed random number between 0 and 1.
As shown in Das et al. (2005b), the employment of the scale factor randomization
turns out to be beneficial not only for noisy problems but also for stationary prob-
lems. Although this topic is not yet clear to computer scientists, a randomiza-
tion in the scale factor seems to compensate the excessively deterministic search
structure of a standard DE and offers new potential search moves. However,
while many studies (e.g. Zhenyu et al. (2006), Ali and Fatti (2006) and Nearchou
and Omirou (2006)) confirm that the introduction of some ”stochasticity” into the
DE framework appears to be promising and propose similar approaches, other
studies (e.g. Qing (2008), Ali and Torn (2004)) suggest that the employment of
excessive randomization in DE is not always considered to be beneficial.

Regarding the population size, some adaptive schemes have been proposed
e.g .in Teo (2005, 2006), Teng et al. (2009) and Sing et al. (2007). In Tirronen and
Neri (2009) a fitness diversity adaptation for the population size and the other
parameters has been proposed (for the fitness diversity adaptation see Caponio
et al. (2007) and Neri et al. (2007a,b,c)). In Caponio et al. (2009) the concept of
super-fit adaptation is introduced, which consists in controlling the performance
of the best individual with respect to the average performance of other individu-
als of the population. In Zaharie (2003), a multi-population DE approach with a
parameter adaptation strategy and population diversity control has instead been
proposed. A comparative analysis of some adaptive schemes employed in DE is
presented in Zielinski et al. (2008).

Finally, some papers made some attempts in hybridizing DE with other al-
gorithmic structures, like PSO (Hendtlass (2001) and Xu et al. (2008)) and SA (Das
et al. (2007) and Hu et al. (2008)). A DE-based Memetic Algorithm employing
three local search algorithms coordinated by means of fitness diversity adapta-
tion and a probabilistic scheme is instead proposed in Tirronen et al. (2008).

3.3 Additional Components in Differential Evolution

This section gives a description of four additional components recently intro-
duced in literature, and attempts to justify the algorithmic philosophy which
suggests these additions to a standard DE framework. Although these compo-
nents are very diverse, the common idea is that they allow extra moves that can
enrich the original set of DE moves, tending to increase the exploitative pressure
within the explorative DE structure.

3.3.1 DE with Trigonometric Mutation

In Trigonometric Differential Evolution (TDE) the mutation operation in eq. (5)
is replaced, with a prefixed probability M;, by an alternative expression, namely
trigonometric mutation. This mutation scheme is a greedy operator that, for three
given points, generates an offspring by exploiting the most promising search di-

32

rection. More specifically, following the definition given in Fan and Lampinen
(2003), it is formulated as:

x(/)ff = (XVL?’S"_’Q)—F(}?S—T?;') (xr—xs)-I—(pt—ps) (xs—xt)+ (9)

(pr —pt) (xt — x)

where for k = r,s,t,

B £ ()]
P = T Gl I (o) 17 Gl (10)

Since this mutation promotes the generation of the offspring along (locally) op-
timal directions, the employment of this operator within TDE is supposed to in-
crease the exploitative pressure and balance the standard exploration rule of DE.
In this sense, it can be seen as a single step local search (see Hart et al. (2004)).

3.3.2 DE with Adaptive Hill Climbing Simplex Crossover

In order to enhance performance of DE, in Noman and Iba (2008) a memetic
approach, called Differential Evolution with Adaptive Hill Climbing Simplex
Crossover (DEahcSPX), has been proposed. The main idea is that a proper bal-
ance of the exploration abilities of DE and the exploitation abilities of a local
search can lead to an algorithm with higher performance. The proposed algo-

while budget condition or f(C) > f(x;) do
select pseudo-randomly 7, — 1 individuals from the DE population

p
compute the center of mass (including x;): O = n%, 21 X;
1=

fori=1:n,—-1do
ri = mnd(O,l)i%l

end

fori=1:n,—-1do
yi=0+¢€(x;—0)

end

Ci=0

fori=2:n,—-1do
Ci=ri—1 (Yi-1 —yi +Ci—1)

end

C=Cu,+Yn,

end

FIGURE 7 SPX pseudo-code

rithm uses the DE/rand /1/bin described in section 3.1 as an evolutionary frame-
work within which a local search method, namely the Simplex Crossover (SPX)
Tsutsui et al. (1999), is deterministically applied to the best individual of the pop-
ulation. More specifically, at each generation, the individual having the best fit-
ness value, indicated here with x;, is extracted and the LS described in Fig. 7

33

is applied (e is a control parameter of the SPX which has been set equal to 1 in
Noman and Iba (2008)). If the SPX succeeds in improving upon the starting solu-
tion, a replacement occurs according to a meta-Lamarckian logic (Ong and Keane
(2004)).

3.3.3 DE with Population Size Reduction

The Differential Evolution with Population Size Reduction (DEPSR) employs,
within a DE framework, a variable population size which is progressively re-
duced during the optimization process, see Brest and Maucec (2008). This popu-
lation size reduction requires that initial population size N;, total budget T;, (i.e.
total number of fitness evaluations) and number of stages N; (i.e. the number of
population sizes employed during the algorithm’s run) are prearranged.

The total budget of the algorithm is divided into N; periods, each period
being characterized by a population size value N]; (N; is the initial population
size). The population reduction is simply carried out by halving the popula-
tion size at the beginning of the new stage. In other words, N];H = N{;/ 2, for

k =1,2,...,Ns — 1. At the end of each stage, i.e. at each N;f generation for
k = 2,3,...,N;, the population is divided, on the basis of the position index
i of the individuals, into two unsorted equally-sized sub-populations. Then, a
one-to-one selection occurs, so that the corresponding i-th individuals of the two
sub-populations are pairwise compared, and the one having the most promising
fitness values is retained for the subsequent generation.

The main idea behind this strategy is to focus the search in progressively
smaller search spaces in order to prevent a possible stagnation, especially in high-
dimensional landscapes. At the beginning of the optimization process, the search
requires a highly explorative search rule, i.e. a large population size, in order to
explore a large portion of the decision space. During the next stages, the search
space is instead progressively narrowed by decreasing the population size, thus
exploiting the most promising search directions previously detected.

3.3.4 DE with Scale Factor Local Search

Differential Evolution with Scale Factor Local Search (DESFLS) has been intro-
duced in Tirronen et al. (2009) and extended in Neri et al. (2009) for self-adaptive
DE schemes. An improved version that we are referring to here, has been pro-
posed in Neri and Tirronen (2009). The main idea in these algorithms is that a
local search is applied, with a certain probability, to the scale factor during the
generation of an offspring individual. As shown in Tirronen et al. (2009), local
search in the scale factor space can be seen as the minimization over the vari-
able F of fitness function f in the direction given by x, and x; and modified by
the crossover. More specifically, at first the scale factor local search determines
those genes which are undergoing binomial crossover by means of the standard
criterion explained in eq. (7), then it attempts to find the scale factor value which
guarantees an offspring with the best performance. Thus, for given values of x;,

34

Xr, X5, and the set of design variables to be swapped during the crossover oper-
ation, the scale factor local search attempts to solve the following minimization
problem:

mFinf (F) in [-1.2,1.2]. (11)

For sake of clarity, the procedure describing the fitness function f (F) is shown

Il ** Fitness function fr=f(F) **
x) f:xt—f—F(xr—xs)
perform crossover and generate X,y

fr = f (%oy)

return fr

FIGURE 8 Fitness function f (F)

in Fig. 8. As described Neri and Tirronen (2009), the meaning of negative val-
ues for the scale factor is the inversion of the search direction. In order to per-
form this minimization, two local search algorithms have been considered and
compared in Tirronen et al. (2009) and Neri et al. (2009), namely Golden Sec-
tion Search (Kiefer (1953)) and Hill-Climb Local Search (see Russell and Norvig
(2003)). Experimental results in Neri and Tirronen (2009) showed that coopera-
tive employment of both the algorithms leads to the best performance.

3.4 Modified Structures of Differential Evolution

This section describes DE-based algorithms which modify the standard DE struc-
ture, not just introducing additional components. Like the algorithms described
in the previous section, all these modifications allow extra moves, thus enriching
the search capabilities of the original DE framework.

3.4.1 Self-Adapting Parameter Setting in DE

In order to avoid the manual parameter setting of F and CR, a simple and effec-
tive self-adapting strategy has been proposed in Brest et al. (2006), and further ex-
tended to large-scale problems in Zamuda et al. (2008), constrained optimization
in Brest et al. (2006) and multi-objective problems in Zamuda et al. (2007). This
strategy, called Self-Adapting Control Parameters in Differential Evolution, is ex-
tensively discussed also in Brest et al. (2007) and Brest et al. (2008). The DE algo-
rithm employing this strategy, namely jDE, consist in a standard DE/rand /1/bin
framework (see section 3.1), with the following modifications. With reference to
Fig. 5, when the initial population is generated, two extra values between 0 and
1 are also generated per each individual. These values represent F and CR re-
lated to the individual under analysis. Each i-th individual is thus composed (in
a self-adaptive logic) of its genotype and its control parameters:

xi = (xi[1], xi[2], ..., xi[n], F;, CR;) .

35

When, at each generation, the i-th individual x; is taken into account and three
other individuals are extracted pseudo-randomly, its parameters F; and CR; are
updated according to the following scheme:

| B+ Frandy, if rand; <7
k= { E otherwise (12)
[rands, if randy < T
CR; = { CR;, otherwise (13)

where rand] E {1,2,3,4}, are uniform pseudo-random values between 0 and 1;
71 and 1, are the probabilities that parameters are updated, and F; and F, repre-
sent the minimum and the maximum scale factor values, respectively. The newly
calculated values of F; and CR; are then used for generating the offspring, accord-
ing to a rand/1/bin strategy.

3.4.2 Opposition Based DE

The Opposition Based Differential Evolution (OBDE), proposed in Rahnamayan
et al. (2006b) and Rahnamayan et al. (2008), employs the opposition points logic
in order to enhance the search properties of DE and explore a wider portion of
the decision space. OBDE has proven successful for solving some of the most
difficult problems, e.g. noisy and large scale problems, see Rahnamayan et al.
(2006a) and Rahnamayan and Wang (2008). This logic consists in the following.
For a given point x; = (x;[1],x;[2],...,x;[n]) belonging to a set D = [aq,b1] X
lag, by] % ..., x[ay,by],i =1,...,N,, its opposition point is defined as:

%= (a1 +by —xi[1], a0+ by — x;[2], ..., an + by — x;[n]) . (14)

The OBDE algorithm consists of a DE framework and two opposition based com-
ponents: the first after the initial sampling and the second after the survivor se-
lection scheme. After the creation of the initial population, for each point x; its
opposition point %; is calculated according to the formula (14). The fitness val-
ues of both groups of points (original and opposition) are then calculated, and
the best N, individuals are selected for the first generation. At each subsequent
generation, with a probability j, (jump rate), the opposition based component is
activated again. In this case, instead of using the predefined boundaries [a;, b;],
for each point x; its opposition point is calculated as:

X = (minxi[l] + max x;[1] — x;[1], ..., minx;[n] + max x;[n] — xi[n]) (15)

where min x;[j| and max x;[j] are respectively the minimum and maximum val-
1 1

ues, over the coordinate j, taken by individuals of the population at the present
generation. In other words, at each generation, the range of variability of the indi-
viduals is taken as a “bounding box” for the calculation of the opposition points.
The two sets of points (original and opposition) are then merged and those N,
points having the best performance are selected for the next generation.

36

3.4.3 DE with Global and Local Neighborhoods

The Differential Evolution with Global and Local Neighborhoods (DEGL), see
Chakraborty et al. (2006) and Das et al. (2009a), modifies the mutation opera-
tion in DE, explained in Subsection 3.1, by defining a neighborhood as a portion
of the population identified by a radius k. More specifically, individuals of the
population are pseudo-randomly sorted and each individual is characterized by
a position index i. The neighborhood of the i-th individual x; is given by those
individuals XikrewerXigeoor Xitk

The concept of neighborhood is used during the mutation operation since
the provisional offspring x/ fr i generated through a combination of two contri-
butions, with the first one given by the neighborhood individuals and the second
by the entire population. Thus, in order to perform the mutation, for an individ-
ual x;, the local contribution is calculated as:

Li=xi+ua (xn—best - xi) + :B (xP - xﬂ) (16)

where x,,_p,g is the individual having best performance in the neighborhood; x,,
and x, are two individuals pseudo-randomly selected from the neighborhood.
Values « and B are two constants which have a similar role to that of the scale
factor F, see eq. (5). Similarly, the global contribution is given by:

G =xi+u«u (xp_best — xi) + B (%, — x5) (17)

where x;, s is that individual having the best performance out of the entire
population, x, and xs are two individuals pseudo-randomly selected from the
population. The two contributions are then combined by means of:

where w is a weight factor to be set between 0 and 1.

Regarding the parameter setting, Chakraborty et al. (2006) suggest to set
« = P equal to a constant value. Also the neighborhood radius k is constant
through the iterations. On the contrary, the weight factor w varies during the
optimization process. According to the original definition of DEGL, the weight
factor varies in the following way:

W = Wmin + (wmax - wmin) & (19)
Imax

where Wpin and wmax are the lower and upper bounds of the weight factor, re-
spectively. The indexes ¢ and gmax denote the current generation index and the
maximum amount of generations, respectively. In Das et al. (2009a), four alterna-
tive weight factor update schemes have been presented and compared, including
a self-adaptive scheme that proved to be the most efficient.

37

3.4.4 Self-Adaptive DE

The first version of Self-Adaptive Differential Evolution (SADE) has been pro-
posed in Qin and Suganthan (2005), while a more sophisticated implementation,
here described, has been proposed in Qin et al. (2009). The main feature of these
algorithms is the employment of multiple mutation strategies. More specifically,
within the genotype of each individual, some probabilities related to the muta-
tion strategy for the subsequent generation are encoded. In other words, for a
given candidate solution x;, the individual is defined as:

xX; = (xi[l], xi[2], ..., %], ..., xi[n], F, CR}, CR?, CR?, p}, p?, pf, p?>

where pi.‘ for k = 1,2,3,4 is the probability that the mutation strategy 1, 2, 3,
or 4, respectively, is employed on the individual x; (Y}_, pf = 1). The four
mutation strategies considered in Qin et al. (2009) are: DE/rand/1, DE/rand-to-
best/2, DE/rand /2, and DE/current-to-rand /1, see Section 3.1, and the binomial
crossover is applied in all the cases except the DE/current-to-rand /1.

When the initial sampling is performed for each solution, each probability is
set equal to 0.25. During the subsequent LP generations (LP stands for Learning
Period), for each individual the number of successful generations n* related to
a certain mutation strategy, i.e. the number of offsprings generated by the k"
strategy outperforming the generating parent, is saved. In an analogous way, the
number of failures n* is also saved.

At the end of the learning period (after LP generations), for each individual
x;, at each generation G, the probabilities pi.‘ are updated according to the formula:

Sk
ph= 4 (20)
Y, Sk
k=1
where
G-1
nt
k o g:G—LP
Si = o] CE. + ¢ (21)
Y k4 g
g=G-LP g=G-LP

where ¢ is the generation index and ¢ is a small constant value equal to 0.01 whose
role is simply to ensure a numerical stability of the algorithm if S¥ = 0 for all the
strategies. Thus, S¥ represents the success rate of the offspring solutions gener-
ated by means of the k™ strategy. At the end the self-adaptive strategy, given the
four probabilities, the mutation strategy is then chosen by means of Stochastic
Universal Sampling, see Baker (1987).

As shown above, within each candidate solution, F; and CR; are also en-
coded. The scale factor F; is generated, for each individual, by sampling a value
from a normal distribution having mean value 0.5 and standard deviation 0.3.
Regarding the K factor in DE/current-to-rand /1, a randomization is performed
by sampling this value from a uniform distribution between 0 and 1.

38

The setting of CR; is also self-adaptively performed. When the initial sam-
pling is executed, CR¥ is set equal to 0.5 for all the individuals and all the strate-
gies (except DE/current-to-rand/1). During the first LP generations, each CRF is
updated by sampling a value from a normal distribution having its center in CR¥
and standard deviation equal to 0.1. During the learning period, for each muta-
tion strategy (except DE/current-to-rand/1), the set of crossover rates which led
to a successful offspring generation CRY are saved. After the learning period, CR¥
is updated by the median of CRY and the new CR! is calculated by sampling a
value from a normal distribution having its center in CR¥ and standard deviation
equal to 0.1.

4 COMPACT ALGORITHMS

Despite the rapid development of high performance computational devices, some
modern applications still require complex optimization processes to be performed
in very limited hardware conditions. This situation is typical, for example, in
robotics and control engineering, where costs and volume limitations impose the
use of cheap and compact hardware, e.g. a micro-controller or an embedded sys-
tem, but very complex tasks, such as online training or self-adaptation of some
device parameters, must be carried out on board of it.

In these cases, it is crucial to design an efficient optimization algorithm
which requires a minimal amount of memory. In the following, we use the term
"memory-saving" to indicate those optimization methods requiring a very lim-
ited amount of run-time memory and computational resources. Among memory-
saving methods, compact algorithms are an efficient alternative to tackle global
optimization problems, as they behave like global meta-heuristics while they
do not actually process an actual population of candidate solutions. The name
"compact algorithms" refers to those algorithms employing the search logic of
population-based algorithms without processing and storing an entire popula-
tion of solutions, but on the contrary using a probabilistic representation of it.
This probabilistic representation simulates the population behavior in the sense
that it extensively explores the decision space at the beginning of the optimiza-
tion process, and then progressively focuses the search on the most promising
individuals. Most importantly, the probabilistic model allows a much lower al-
gorithmic memory footprint.

Compact algorithms can be considered a subset of a much broader class of
modern algorithms called Estimation of Distribution Algorithms (EDAs), which
use a probabilistic model but not necessarily replace a population with it. This
chapter presents a brief introduction of EDAs, focusing in particular on compact
algorithms. The main compact algorithms structures introduced in literature are
described in details, namely compact Genetic Algorithm (cGA), the very first im-
plementation of compact algorithms, and compact Differential Evolution (cDE).
The next chapter will describe the contribution of this work, which mostly aims
at proposing possible algorithmic enhancements in cDE frameworks.

40

4.1 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs), see Larrafiaga and Lozano (2001)
and Lozano et al. (2006), also called Probabilistic Model Building Genetic Algo-
rithms (PMBGAs), see Pelikan et al. (2002), are a class of evolutionary algorithms
which, instead of using classic operators such as crossover and mutation to gen-
erate new individuals, rather perform a sampling from a probabilistic model de-
scribing the population. The main idea is that the use of a probabilistic model,
which could possibly grasp some specific information about the problem struc-
ture, guarantees a strong exploitation of the most promising solutions found at
each generation. Once the model has been generated, e.g. fitting an existing ini-
tial population, it can be dynamically updated, or completely regenerated, using
the new solutions sampled during the evolution. The probabilistic model can also
substitute entirely the population, thus becoming the representation of a "virtual"
population. The pseudo-code of the basic EDA scheme is given in Fig. 9, where
N is the number of individuals in the population, m is the number of individuals
selected for estimating the distribution, pop, is the population at the t-th gen-
eration, p;(x) is the probabilistic model describing the probability of finding a
generic individual x over the search space D at the t-th generation, and s; is the
set of individuals which are sampled from p;(x) at the t-th generation.

counter t = 0
generate and evaluate N random individuals to create pop,,
while budget condition do
select m < N (promising) individuals according to a selection method
use the m individuals to estimate the distribution model p;(x)
sample and evaluate a set s; of new individuals from p;(x)
replace some individuals of pop, with s; to create pop,
t=t+1
end

FIGURE 9 EDA pseudo-code

Estimating the distribution is not trivial at all, since there is a trade-off be-
tween the accuracy of the model and its computational cost. EDAs are typically
classified according to their complexity, i.e. the level of interaction among vari-
ables that their probabilistic model includes, see Pelikan et al. (2002). Following
this classification, three categories of models have been used in modern EDAs:

¢ Univariate: this is the easiest way to estimate the probability distribution,
i.e. considering all the decision variables independent from each other. Un-
der this assumption, the joint probability distribution becomes the product
of the marginal probabilities of the n variables:

pe(x) = [I pe(xa). @)
i=1

41

In other words, instead of using a covariance matrix, which takes into ac-
count the correlation among variables, 1 separate independent distribution
models are used. This is the basic principle of Univariate Marginal Distri-
bution Algorithm (UMDA), see Miihlenbein and Paass (1996) Miihlenbein
et al. (1996) and Population Based Incremental Learning (PBIL), see Baluja
(1994). Compact GA, see Harik et al. (1999) and Mininno et al. (2008), and
compact DE, see Mininno et al. (2011), which are described in detail in the
following sections, also belong to this class.

* Bivariate: these models cover pairwise dependencies among variables, see
e.g. Bivariate Marginal Distribution Algorithm (BMDA), Pelikan and Miih-
lenbein (1999), and MIMIC, De Bonet et al. (1997).

* Multivariate: multivariate models take into account correlations among
multiple variables. For example, Larrafiaga and Lozano (2001) introduce
Estimation of Gaussian Networks Algorithm (EGNA) and Estimation of
Multivariate Normal Algorithm (EMNA), which make use respectively of
a Gaussian network and a multivariate normal density function. A multi-
variate Gaussian model is also used in Paul and Iba (2003) and Yuan and
Gallagher (2005). Pelikan et al. (2000) present instead an EDA in which the
probabilistic model is a Bayesian network, called Bayesian Optimization Al-
gorithm (BOA). In Pelikan (2005), BOA is further enhanced in a hierarchical
structure (hBOA).

Hybrid and more complex EDA schemes have also been presented. For example,
Zhang et al. (2004) introduce an EDA combined with two local search, namely
the incomplete simplex method and the unconstrained optimization by diago-
nal quadratic approximation. Platel et al. (2009) establish instead a connection
between EDAs and Quantum-inspired Evolutionary Algorithms (QEAs), which
evolve a population of mutually interacting probabilistic models.

As enlightened before, the major advantage of EDAs is that they are inher-
ently able to learn possible dependencies among variables of the problem and
use this structural information to efficiently generate new individuals. Moreover,
due to the stochasticity of the random sampling, they are less subject to premature
convergence. Eventually, they allow a more compact (memory-saving) represen-
tation of the population, which is the main interest of this work.

The main drawbacks of EDAs are related to the model complexity. Clearly,
more complex models guarantee a better description of complex problem land-
scapes (for example with highly correlated decision variables), but they introduce
a high computational overhead. On the other hand, algorithms employing sim-
ple models such as a Gaussian distribution have a fairly reasonable overhead, but
in general they cannot handle efficiently multi-modal problems, unless the land-
scape has a strong basin of attraction. Moreover, this kind of algorithms may even
get stuck on unimodal problems, especially in high dimensional spaces: this situ-
ation happens when the mean vector of the Gaussian model is far from the global
optimum, but the selected individuals used for updating the model are closely

42

distributed in a small area. In this case, several generations may be needed for
the Gaussian to move close to the global optimum (similarly to a hill-climbing
logic), but still it is possible that the Gaussian distribution shrinks again before
making any significant progress. As suggested in Yuan and Gallagher (2005), this
problem is related to the inherent lack of population diversity due to the nor-
mal distribution used, which is unimodal (or, in other words, its kurtosis is zero).
However, it should be remarked that keeping the diversity high is not always a
good solution, because if the Gaussian is very close to the global optimum a diver-
sity increase may even reduce the convergence speed. Yuan and Gallagher (2005)
introduce a simple heuristic that, based on a "proximity" threshold between the
best individual and the mean vector, "amplifies" the eigenvalues of the covariance
matrix so that the distance between the best and the mean, along the correspond-
ing dimensions, is kept at a certain threshold.

Having in mind these issues, it is still possible to design EDAs which show a
good compromise between algorithmic complexity and performance. In the next
sections we will describe more deeply two major algorithmic structures using an
univariate probabilistic model, namely compact Genetic Algorithm (cGA) and
compact Differential Evolution (cDE), which despite their simplicity and “com-
pactness” have proven successful for a broad set of complex problems.

4.2 Binary Compact Genetic Algorithm

The very first implementation of compact algorithms has been the compact Ge-
netic Algorithm (cGA), defined in Harik et al. (1999), which simulates the be-
haviour of a standard binary encoded Genetic Algorithm (GA). The cGA consists
of the following. A binary vector of length n is randomly generated by assigning
a 0.5 probability to each gene to take either the value O or the value 1. This de-
scription of the probabilities, initialized with n values all equal to 0.5, is named
as Probability Vector (PV). By means of the PV two individuals are sampled and
their fitness values are calculated. The winner solution, i.e. the solution character-
ized by a higher performance, biases the PV on the basis of a parameter N, called
virtual population. More specifically, if the winner solution in correspondence to
its i-th gene displays a 1 while the loser solution displays a 0 the probability value
in position i-th of the PV is augmented by a quantity Nlp On the contrary, if the
winner solution in correspondence to its i-th gene displays a 0 while the loser so-
lution displays a 1 the probability value in position i-th of the PV is reduced by a
quantity N%, If the genes in position i-th display the same value for both the win-
ner and loser solutions, the i-th probability of PV is not modified. For the sake of
clarity, the pseudo-code describing the working principles of cGA is displayed in
Fig. 10. With the function compete we simply mean the fitness-based comparison.

A convergence analysis of cGA is performed in Rastegar and Hariri (2006)
by using Markov chains. Paper Ahn and Ramakrishna (2003) analyzes analogies
and differences between cGA and (1 + 1)-ES and extends a mathematical model

43

of ES, Rudolph (2001), to cGA obtaining useful information on the performance.
cGA is further extended in Harik (1999) and Harik et al. (2006): the resulting
algorithm, called extended compact Genetic Algorithm (ecGA), is based on the
idea that the choice of a good probability distribution is equivalent to linkage
learning. The measure of a good distribution is based on Minimum Description
Length (MDL) models: simpler distributions are better than the complex ones.
The probability distribution used in ecGA is a class of probability models known
as Marginal Product Models (MPMs). A theoretical analysis of the ecGA behavior
is presented in Sastry and Goldberg (2000). A hybrid version of ecGA integrat-
ing the Nelder-Mead algorithm is proposed in Sastry and Xiao (2001). A study
on the scalability of ecGA is given in Sastry et al. (2007). In Baraglia et al. (2001)
a memetic variant of cGA is proposed in order to enhance the convergence per-
formance of the algorithm in the presence of a relatively high number of dimen-
sions. Some applications of cGA are described in Aporntewan and Chongstit-
vatana (2001), Gallagher et al. (2004) and Jewajinda and Chongstitvatana (2008).

counter f = 0
Il == PV initialization =
fori=1:ndo
initialize PV [i] = 0.5
end
while budget condition do
generate 2 individuals a2 and b by means of PV
[winner, loser] = compete (a,b)
[l *+ PV Update =*=*
fori=1:ndo
if winner [i] # looser [i] then

if winner [i] == 1 then
compute PV [i] = PV [i] +1/N,
else
compute PV [i] = PV [i] —1/N,
end
end
end
t=t+1
end

FIGURE 10 cGA pseudo-code

4.3 Elitism in Compact Algorithms

Two novel versions of cGA have been proposed in Ahn and Ramakrishna (2003).
Both of these algorithms still share the same ideas proposed in Harik et al. (1999)
but proved to have a significantly better performance compared to their corre-

44

sponding earlier versions. These two algorithms, namely persistent elitist com-
pact Genetic Algorithm (pe-cGA) and non-persistent elitist compact Genetic Al-
gorithm (ne-cGA), modify the original cGA in the following way. During the
initialization, one candidate solution besides the PV, namely elite, is also ran-
domly generated. Subsequently, only one (and not two as in cGA) new candidate
solution is generated. This solution is compared with the elite. If the elite is the
winner solution, the elite biases the PV as shown for the cGA and the elite is con-
firmed for the following solution generation and consequent comparison. On the
contrary, if the newly generated candidate solution outperforms the elite, the PV
is updated as shown for the cGA where the new solution is the winner and the
elite is the looser. Under these conditions, the elite is replaced by the new solution
which becomes the new elite. In the scheme of pe-cGA this replacement occurs
only when the elite is outperformed. In the ne-cGA scheme, if an elite is still not
replaced after 7 comparisons, the elite is replaced by a newly generated solution
regardless of its fitness value. It must be remarked that whether the persistent
or non-persistent scheme is preferable seems to be a problem dependent issue,
see Ahn and Ramakrishna (2003). The pseudo-codes highlighting the working
principles of pe-cGA and ne-cGA are given in Fig. 11 and Fig. 12, respectively.

counter t =0
Il *x PV initialization *x*
fori=1:ndo
initialize PV [i] = 0.5
end
generate elite by means of PV
while budget condition do
generate 1 individual 2 by means of PV
Il »x Elite Sel ection *x
[winner, loser] = compete (a, elite)
if 1 == winner then
elite =a
end
[l *+ PV Update ==
fori=1:ndo
if winner [i] # looser [i] then
if winner [i] = 1 then
PV il = PV[i]+1/N,
else
PV [i] = PV [i] —1/N,
end
end
end
t=t+1
end

FIGURE 11 pe-cGA pseudo-code

45

counter f = 0and 6 =0
[l *=+ PV initialization *x
fori=1:ndo
initialize PV [i] = 0.5
end
generate elite by means of PV
while budget condition do
generate 1 individual 2 by means of PV
Il =+ Elite Selection *x
[winner, loser] = compete (a, elite)
f=60+1
if 1 == winner or 6 > n then
elite =a
=0
end
[l *+= PV Update *x*
fori=1:ndo
if winner [i] # looser [i] then

if winner [i] == 1 then
PV [i] = PV [i] +1/N,
else
PV il = PV[i] —=1/N,
end
end
end
t=t+1
end

FIGURE 12 ne-cGA pseudo-code

4.4 Real Compact Genetic Algorithm

The real-valued cGA (rcGA) has been introduced in Mininno et al. (2008), and
further investigated in Neri et al. (2010). The rcGA is a compact algorithm in-
spired by the cGA which exports the compact logic to a real-valued domain thus
obtaining an optimization algorithm with a high performance despite the limited
amount of employed memory resources. In the following, without loss of gener-
ality we assume that each design variable is normalized in the interval [—1, 1]. In
rcGA the PV is not a vector but a n x 2 matrix:

PV = [i!, o] (23)

where u and o are, respectively, vectors containing, for each design variable,
mean and standard deviation values of a Gaussian Probability Distribution Func-
tion (PDF) truncated within the interval [—1, 1]. The height of the PDF is normal-
ized in order to keep its area equal to 1. The apex t indicates the generation (num-
ber of performed comparison). At the beginning of the optimization process, for

46

each design variable i, ! [i] = 0 and ¢'[i] = A, where A is a large positive con-
stant (A = 10). This initialization of ¢[i] values is done in order to simulate a
uniform distribution.

Subsequently, one individual is sampled as elite exactly like in the case of
pe-cGA or ne-cGA. A new individual is generated and compared with the elite.
More specifically, the sampling mechanism of a design variable x [i] associated to
a generic candidate solution x from PV consists of the following steps. As men-
tioned above, for each design variable indexed by i, a truncated Gaussian PDF
characterized by a mean value y [i] and a standard deviation ¢ [i] is associated.
The formula of the PDF is:

Sl
e 20li] £

o i (erf (P\l/%];[ll]) ot (P\l/[%}g[i))
where erf is the error function, see Gautschi (1972). From the PDF, the corre-
sponding Cumulative Distribution Function (CDF) is constructed by means of
Chebyshev polynomials according to the procedure described in Cody (1969). It
must be observed that the co-domain of CDF is [0,1]. In order to sample the
design variable x[i] from PV a random number rand(0, 1) is sampled from a uni-
form distribution. The inverse function of CDF, in correspondence of rand(0,1),
is then calculated. This latter value is the normalized variable x[i]. A graphical
representation of the sampling mechanism is given in Fig. 13.

PDF (truncNorm (x)) = (24)

PDF

rand(0,1)

CDF

FIGURE 13 Sampling mechanism

47

counter f = 0
Il % PV initialization *x
fori=1:ndo
initialize p [i] = 0
initialize o [i] = A =10
end
generate elite by means of PV
while budget condition do
/'l *+ Candi date Solution Sanpling *x
generate 1 individual x by means of PV
fori=1:ndo
generate rand(0,1)
if rand(0,1) > Cr then
x [i] = elite [i]
end
end
Il = Elite Selection *x
[winner, loser] = compete (x, elite)

if x == winner then
elite = x
end

[l *=x PV Update ==
fori=1:ndo
i) = ptli] + N%, (winner[i] — loser]i)
ot i) = \/(Ut [i)* + (! [i)* = (u1[i])* + i (winner? (i) — loser?(i])
end
t=t+1
end

FIGURE 14 pe-rcGA pseudo-code

As for the cGA, in rcGA the winner solution biases the PV. The update rule for
each element of u values is given by:

ut i) = ut [i] + 1 (winner [i] — loser [i]), (25)
Np

where N, is virtual population size. The update rule for ¢ values is given by:

2 2
(UtH [1]) = (o [i])2 + (u! [i])z — (pttH [1]) + Nip (winner [i]* — loser [i]2> :

(26)

Details for constructing formulas (25) and (26) are given in Mininno et al. (2008).

In the same article both persistent and non-persistent structures of rcGA have

been tested and it is shown that also in this case the best choice on the elitism

seems to be problem dependent. Figure 14 displays the working principle of

rcGA with persistent elitism (pe-rcGA).

48

4.5 Compact Differential Evolution

The compact Differential Evolution (cDE) algorithm, defined in Mininno et al.
(2011), modifies the rcGA by sampling from the PDEF, not only one solution x, but
many solutions according to the mutation rules of Differential Evolution. For

counter t = 0
[l *+ PV initialization **
fori=1:ndo
initialize p [i] = 0
initialize o [i] = A =10
end
generate elite by means of PV
while budget condition do
[l *+ Mutation =x*
generate 3 individuals x;, x5, and x; by means of PV
compute x(’)ﬁ(= xt + F(x, — x5)
[l *=* Crossover =*x
Xoff = x(’)ﬁ(
fori=1:ndo
generate rand(0,1)
if rand(0,1) < Cr then
Xo [1] = elite [i]
end
end
/[l =+ Elite Selection ==
[winner, loser] = compete (xo, elite)

if xo == winner then
elite = xp
end

[l *=x PV Update ==
fori=1:ndo
i) = ptli] + NL,, (winner[i] — loser]i)
o] = \/(Ut (i) + (uili])* = (i) + 5= (winner2[i] — loser?|i])
end
t=t+1
end

FIGURE 15 pe-cDE/rand/1/bin pseudo-code

example, considering the standard DE/rand/bin, three solutions x;, x5, and x¢,
are sampled from PV. A provisional offspring x(’)ﬁ is then generated according
to the mutation rule of DE/rand/bin (see section 3.1). When the provisional off-
spring has been generated by mutation, it undergoes binomial crossover with the
elite, so that the final offspring x,¢ is generated; its fitness value is then computed
and is compared with that of the elite solution.

49

counter t = 0
[l == PV initialization »x*
fori=1:ndo
initialize p [i] = 0
initialize o [i] = A =10
end
generate elite by means of PV
=0
while budget condition do
[l =+ NMiutation xx
generate 3 individuals x,, x;, and x; by means of PV
compute Xy = x¢ + F(xr — xs)
[l xx Crossover xx
Xoff = xgﬁ(
fori=1:ndo
generate rand(0,1)
if rand(0,1) < Cr then
Xoff [i] = elite [i]
end
end
Il =~ Elite Selection *x*
[winner, loser] = compete (x4, elite)
0=0+1
if x, == winner or 6 > 7 then
elite = x,f
=0
end
[l *=x PV Update ==
fori=1:ndo
i) = ptli] + NL,, (winner[i] — loser]i)
o] = \/(Uf (i) + (u[i))* = (ui+1 (1)) + R, (winner? i) — loser?|i])
end
t=t+1
end

FIGURE 16 ne-cDE/rand/1/bin pseudo-code

In the same way explained for the rcGA, winner and loser solutions are de-
tected and the PV is updated according to formulas (25) and (26). Figure 15 and
16 show, respectively, the pseudo-code of cDE/rand/1/bin with persistent and
non-persistent scheme.

The compact Differential Evolution has proven extremely successful for a
broad set of problems, especially compared to its population-based DE counter-
part. The reasons of the success of cDE are enlightened Mininno et al. (2011).
Similarly to some of the approaches described in 3, cDE relies on a “randomized”
(due to the sampling mechanism) DE structure: the main difference with those

50

methods is that instead of imposing a randomization on the control parameters
(like jDE and SADE do, see section 3.4), cDE imposes a randomization on the
solutions which contribute to the offspring generation. In other words, cDE can
be seen as a DE which introduces a randomization within the solution generation
and therefore introduces extra search moves which assist the DE structure and at-
tempt to improve upon its performance. Moreover, with respect of other compact
algorithms (e.g. cGA), cDE has the advantage of being a straightforward imple-
mentation of its population-based equivalent, thus keeping all the basic princi-
ples of DE. However good cDE is, it can be further improved in many different
ways, e.g. integrating into its basic structure some extra components, as we will
see in the next chapter.

5 CONTRIBUTION OF THIS WORK

This chapter briefly describes the contributions of each article presented in this
work. Except article PVIII, this work focuses on compact algorithms, and mainly
on the cDE framework described in the previous chapter, introducing several
algorithmic enhancements aimed at improving its performance. Article PVIII
instead addresses the memory-saving optimization from a different perspective,
introducing an extremely simple novel Memetic Computing algorithm specifi-
cally designed for applications with limited hardware.

Except the algorithm presented in PIII, each cDE-based algorithm described
in this work employs persistent elitism. It must be also remarked that, while the
original implementation of cDE uses binomial crossover, some of the algorithms
presented in this work use exponential crossover, because it turned out to im-
prove the original performance of standard cDE. For further details about dif-
ferent crossover schemes, please refer to chapter 3. Finally, it is worth noticing
that all the algorithms use the typical toroidal transformation of DE for bounded
problems (see Price et al. (2005)). More specifically, whenever a new point x is
generated, if the generic component x[i] falls outside the corresponding interval
[d1,dy] of the decision space D, it is reassigned within the interval according to
the following formula:

{ x[i] = dy + x[i] —do if x[i] > d> (27)

x[i] =dy — x[i] +dy if x[i] <dy

so that the every new individual is guaranteed to belong to the search space D.

5.1 Memetic Implementations of compact Differential Evolution

Strictly speaking, since cDE (and in general every compact algorithm) does not
process a population of solutions but only its probabilistic representation, it can-
not be considered as the evolutionary framework of a Memetic Algorithm, such
as it has been defined in chapter 2. Nonetheless, a MC approach which includes

52

a compact optimization as a module of a more complex structure is obviously
possible. This section describes two novel MC approaches based on cDE.

5.1.1 Disturbed Exploitation compact Differential Evolution

Article PI introduces an unconventional memory-saving MC approach, namely
the Disturbed Exploitation ¢cDE (DEcDE). The DEcDE algorithm is composed of
a cDE/rand/1/exp framework which, with a prearranged probability M;, gen-
erates the offspring individual by means of the trigonometric mutation proposed
described in the chapter 3 (see expressions (9) and (10)), instead of applying
DE/rand/1 mutation and exponential crossover. Thus, the trigonometric mu-
tation is a greedy operator that for three given points generates an offspring by
exploiting the most promising search directions. The employment of this opera-
tor within DEcDE is supposed to offer an exploitative alternative to the standard
exploration rule of DE. The trigonometric mutation thus has the role of promot-
ing the generation of the offspring along (locally) optimal directions.

In addition, DEcDE is based on the consideration that the shrinking of the
virtual population makes a compact algorithm an exploitative component, more
similar to a stochastic local search than to an evolutionary framework. For this
reason, a standard combination of a compact algorithm and a local search algo-
rithm can result not an efficient solution for balancing global and local search,
see Ishibuchi et al. (2003), Ishibuchi et al. (2007), and Tan et al. (2009), since the
resulting algorithm would fail at exploring the decision space from complemen-
tary perspectives (Krasnogor (2004)). Thus, the balance between global and local
search in the proposed DEcDE algorithm is obtained on the basis of a different
idea. The search logic is based on a fairly explorative DE based mutation struc-
ture, DE/rand /1. Due to the structure of the exponential crossover, the offspring
generation is equivalent to a search in the neighborhood of the parent solution,
as only a few design variables are on average involved in the crossover opera-
tion. In this sense the variation operators can be considered fairly exploitative. In
addition, the trigonometric mutation can be seen as a shallow depth local search
algorithm which makes a gradient estimation and attempts to detect a promising
solution by following the gradient direction. The trigonometric mutation can also
be considered as an exploitative operator. This multiple shallow local search is
counterbalanced by an unconventional global search. This global search is per-
formed indirectly by perturbing the PV. More specifically, with a probability M,
the PV is perturbed. Each component y [i] of the mean value vector y is perturbed
according to the following formula:

i) = w1 i) + 27 - rand (0,1) — T (28)

where T is a weight representing the maximum amplitude of perturbation. Sim-
ilar to typical DE schemes, a toroidal mechanism ensures that u is bounded by 0
and 1 (for example 1 + 0.1 = 0.1). The perturbation rule for the ¢ is given by:

((rt“[i])z = ((7”1[1'])2 +1-rand (0,1). (29)

53

In other words, DEcDE does not contain an explicit global search operator, but
it rather employs a local search which is periodically “disturbed”. The moving

counter t =0
[l *x PV initialization ==
fori=1:ndo
initialize p [i] = 0
initialize o [i] = A
end
generate elite by means of PV
while budget condition do
if rand (0,1) < M; then
/1l =+ Trigonometric Mutation =
generate 3 individuals x;, x;, and x; by means of PV

7(xr+3;s+xt) + (Ps - pr) (Xr - xs) + (Pt - pS) (XS - xt) +
(pr = pt) (xt — xy)

Yoff =

else
[l =+ Mutation ==
generate 3 individuals x;, x;, and x; by means of PV
x;ﬁ(= x¢ + F(x, — x5)
[l xx Crossover *x
apply exponential crossover and generate x5
end
Il »x Elite Sel ection *x*
[winner, loser] = compete (xo, elite)

if xo == winner then
elite = x,f
end

[l *=x PV Update ==
fori=1:ndo
i) = i) + N%, (winner[i] — loser]i)
ot i) = \/(Ut [i)* + (! [i)* = (u1[i])* + i (winner? (i) — loser?(i])
end
/'l *+ PV Perturbation xx
if rand (0,1) < M, then
fori=1:ndo
pt i) = p! i) + 27 - rand (0,1) — T
o 1] = \/ (¢ 1[i])% + 7 - rand (0,1)
end

end
t=t+1
end

FIGURE 17 DEcDE pseudo-code

operators of mutations and crossover are supposed to detect promising search

54

directions and quickly exploit them. This fact corresponds to the convergence of
the virtual population towards the elite.

This convergence is likely to be premature. The perturbation mechanism
then inhibits the algorithmic convergence and forces the algorithm to search else-
where in the decision space, possibly detecting new promising solutions. In other
words, DEcDE can be seen as a multi-start local search algorithm which per-
forms a highly exploitative mini-search between each pair of PV perturbations.
A pseudo-code displaying the working principles of DEcDE is given in Fig. 17.

5.1.2 Super-Fit compact Differential Evolution with PSR

Article PV proposes a different cDE-based MC approach, namely the Super-Fit
cDE with Population Size Reduction (SFcDE-PSR). This algorithm employs a
super-fit scheme, which has proven successful in population-based EAs (see e.g.
Caponio et al. (2009)), and the Population Size Reduction (PSR) mechanism de-
scribed in chapter 3. The super-fit mechanism consists in the injection of an elite
individual ("super-fit"), generated by means of an exploitative algorithm at the
beginning of the optimization process, into the initial virtual population. The
algorithm used for finding the super-fit individual is the Rosenbrock Algorithm
(see section 1.1.2). It must be remarked that, since the Rosenbrock Algorithm
makes use of an 1 x n rotation matrix, it cannot be considered memory-saving per
se. Anyway, since it can be applied as a pre-processing step to feed the super-fit
individual to the cDE framework, SFcDE-PSR can still be considered memory-
saving. The exploitative pressure given by the super-fit mechanism is partially
counterbalanced by the employment of a PSR scheme, with a large population
size at the first stages of the optimization process performed by cDE (thus al-
lowing a broader exploration), which is halved progressively as the optimization
goes on. For the sake of clarity, the pseudo-code of SEcDE-PSR is given in Fig. 18.

5.2 Structured Population in Compact Algorithms

Analogous to structured population algorithms, in which individuals are dis-
tributed over several sub-populations, compact algorithms can be arranged in
multiple virtual populations. To give a graphical idea of this concept, each com-
pact unit performs the search of a different region of decision space while pieces
of information regarding the achieved improvements are somehow exchanged
amongst compact units and used for finding the global optimum. This section
describes some possible structures employing multiple cDE units. It is impor-
tant to notice that these structures cannot be considered strictly memory-saving.
Considering that each cDE unit, with an implementation performing in-place op-
erations, needs four n-dimensional vectors (where # is the problem dimension),
an algorithm employing N cDE units requires of course 4N vectors. Therefore,
the total algorithmic memory footprint is obviously larger than a single cDE, but

55

it is still lower than population-based algorithms employing tens of individuals.
Nevertheless, due to their robustness and versatility, the proposed algorithms can
be considered powerful general-purpose global optimization tools.

counter t =0
Il *x PV initialization **
fori=1:ndo
initialize p [i] = 0
initialize o [i] = A
end
generate elite by means of PV
[l =+ Super-fit generation *x
while budget condition or tolerance condition do
apply Rosenbrock Algorithm to elite
end
replace the original elite with the super-fit individual
calculate remaining budget and Population Size Reduction conditions
while budget condition do
[l % Mutation ==
generate 3 individuals x,, x;, and x; by means of PV
x;ff = xt + F(x, — x5)
[l *+ Crossover =**
apply binomial crossover and generate X
Il =+ Elite Selection *x*
[winner, loser] = compete (xo, elite)

if x, == winner then
elite = x,f
end

[l *=x PV Update =
fori=1:ndo
i) = ptli] + NL,, (winner[i] — loser]i])

o] = \/ (o4[i])* + (i) = (ui1[i])* + R (winner?[i] — loser?[i])
end
t=t+1
[l *=*x Virtual Population Size Reduction *x
if t == Population Size Reduction condition then

N, = M

P= 2

end

end

FIGURE 18 SFcDE-PSR pseudo-code

5.2.1 Composed compact Differential Evolution

Article PII proposes a possible coordination scheme for multiple ¢cDE units. The
resulting algorithm, called Composed cDE (CcDE), employs (N,) distributed cDE

56

units, each one applying a rand/1/exp scheme and the perturbation logic shown
in formulas (28) and (29).

While the N, compact units evolve independently, two mechanisms pro-
mote the communication amongst the units. In order to understand both these
mechanisms let us consider the compact units to be arranged according to a ring
topology. In other words, each m'" unit has two neighbor units: unit (m — 1)
and unit (m + 1), For the sake of clarity, we remark that the neighbors of the N"
unit are (N, — 1) and 1% units, respectively. The first mechanism is the unidirec-
tional migration (see Tasoulis et al. (2004)) of the elite individual. More specifi-
cally, at each step (comparison between offspring and elite) of each compact unit,
with a probability M., the elite solution elite™ is duplicated and replaces the so-
lution in elite™*1 if the sender outperforms the receiver. In other words, elite™ is
overwritten in elite™ 1 if f (elite™) < f (elite™!) (minimization problem).

The second mechanism is the scale factor inheritance proposed in Weber et
al. (2010). The scale factor inheritance mechanism occurs contextually with the
elite migration. More specifically, when the migration occurs the (m + 1)th unit
inherits the scale factor F""* after a perturbation. More specifically, the scale factor
F"+1 related to the (m + 1)”1 unit is updated according to the following formula:

F™ = F" 4 a N (0,1) (30)

where A (0,1) is a pseudo-random value sampled from a normal distribution
characterized by a zero mean and variance equal to 1. The constant value « has
the role of controlling the range of perturbation values a N (0,1). It must be ob-

FIGURE 19 Graphical representation of CcDE

served that there are no bounds for the variation of F. On the contrary, an un-
bounded variation of the control parameter has been allowed by relying on the
self-adaptation mechanism. A graphical representation of the proposed CcDE is
given in Fig. 19. Each compact unit is schematically represented as truncated

57

Gaussian distribution function. The arrows indicate elite migration and scale fac-
tor inheritance mechanism. For the sake of clarity, the pseudo-code of CcDE is
also given in Fig. 20.

form=1:N.do
Il *=+ PV initialization *x
fori=1:ndo
initialize p [i] = 0
initialize o [i] = A
end
end
generate N, elite solutions x, by means of the corresponding PV
while budget condition do
form=1:N.do
[/l *+ cDE/ rand/ 1/ exp *=*
generate individuals for rand /1 mutation
apply exponential crossover and generate offspring
compare offspring and elite
update PV
[l *+ PV perturbation *x
if rand(0,1) < M, then
apply perturbation of the PV
end
if rand(0,1) < M, then
if f (elite™) < f (elitem”d(m“'Nc)) then
Il = elite mgration =
send a copy of the elite individual to the neighbor unit
replace the elite individual: elitemod(m+1LNe) — pfjter
Il *=+ scale factor inheritance **
replace the scale factor: Fod(m+1Ne) — Fm 4 gy A (0,1)
end
end
end
end

FIGURE 20 CcDE pseudo-code

5.2.2 Ensemble compact Differential Evolution

In article PVII the idea of ensemble of parameters and strategies, which has
proven successful in DE, see Mallipeddi et al. (2011), is introduced into the cDE
framework to improve its performance. Following the same approach as CcDE,
the resulting algorithm, called ENcDE, employs a set of (N¢) cDE units arranged
according to a ring topology (see Fig. 19), each one having its own probability
vector PV and evolving independently. In order to promote the communication
amongst the units, the migration scheme used in CcDE is employed. In this case

58

only the elite undergoes migration, while each cDE unit uses its own parameters.

form=1:N.do
[l *x PV initialization ==
fori=1:ndo
initialize p [i] = 0
initialize o [i] = A
end
/[l == initialize strategi es and paraneters *=
initialize mutation strategy
initialize crossover strategy
initialize N, Cr, F (and F)
end
generate N, elite solutions x, by means of the corresponding PV
while budget condition do
form =1:N.do
/] **x CcDE *=*
generate individuals for mutation
apply crossover and generate offspring
compare offspring and elite
update PV
end
if rand(0,1) < M, then
if f (elite™) < f (elitem"d(’”“'Nc)) then
[l =+ elite mgration =
send a copy of the elite individual to the neighbor unit
replace the elite individual: elite™d(m+1Ne) — eljte™
end
end
end

FIGURE 21 ENCcDE pseudo-code

The novelty of ENcDE consists in the introduction of a pool of mutation
strategies, crossover strategies, Ny, F and CR values. More specifically, the pool
consists of the following strategies and parameters:

* mutation strategies: DE/rand /1 and DE/current-to-rand /1

* crossover strategies: binomial and exponential

N, € {10,100}

F,K € {0.5,0.7,0.9}

Cr € {0.1,0.5,0.9}

59

At the beginning of the optimization process, each of the (N.) cDE units ran-
domly picks from the pool a virtual population size, a mutation and crossover
strategy, as well as the associated parameters. Each unit then undergoes muta-
tion, crossover and selection, as described in 4.5. After selection, each PV vector is
updated accordingly to formulas (28) and (29), and elite migration is performed,
based on a predetermined migration probability M,. Elite replacement is carried
out in the same way as CcDE (see 5.2.1). For the sake of clarity the pseudo-code
of ENcDE is given in Fig. 21.

5.2.3 Supervised compact Differential Evolution

An alternative way of performing the coordination is the supervised system in-
troduced in article PIV, where the Supervised cDE (ScDE) has been proposed. In
ScDE the coordination is performed by a central unit which attempts to enhance
all the elite solutions and returns them to each compact unit. More specifically,
ScDE is composed of cDE/rand/1/exp units employing the perturbation rules
shown in formulas (28) and (29) as well as a supervision component, namely the
jDE algorithm (see section 3.4). Obviously, other schemes can be used as a su-
pervisor components but jDE was selected after an empirical testing of various
algorithms.

jDE

FIGURE 22 Graphical representation of ScDE

Each unit performs one offspring generation and possible elite replacement.
When all the compact units performed one step, all the elite solutions are inserted
into an auxiliary population. Within this auxiliary population, the candidate so-

60

lutions (the elites) are processed by means of one generation of global optimizer.
After one generation, a new population of elite solutions is produced.

counter t = 0
form=1:N.do
[l *+« PV initialization *x
fori=1:ndo
initialize p [i] = 0
initialize o [i] = A
end
end
generate N, elite solutions x, by means of the corresponding PV
while budget condition do
[l *x cDE units =*x
form=1:N.do
/1l *+ cDE rand/ 1/ exp **
generate individuals for mutation
apply exponential crossover and generate offspring
compare offspring and elite
update PV
[l *=+ PV perturbation *x
if rand(0,1) < M, then
apply perturbation of the PV
end
inject elite into the supervision unit
end
/'l *x supervision unit (jDE) =*=*
form=1:N.do
/[l *+ F, update ==
generate rand; and rand,
E, — { F, + Fyrandy, if rand, <7
F, otherwise
[l *=x mutation ==
perform standard DE/rand /1 mutation
[l ** Cry, update *x*
generate randz and rand,
CR. — { rands, if randy <
" CR,, otherwise
[l *=x crossover =*x
perform standard binomial crossover with the Cr,, calculated
/[l *+ selection =
perform the standard DE one-to-one spawning selection
end
/[l *+ update elites =
inject each elite into its corresponding cDE unit
end

FIGURE 23 ScDE pseudo-code

61

The elite solutions are then injected into the corresponding compact units
and replace the old elite solutions. It is obvious that a global optimizer employing
a non-sorting selection mechanism (e.g. DE based algorithms) is preferable as it
allows a natural reinsertion of the solutions into the corresponding units. The
supervision unit has the role of recombining the local achievements carried out by
each compact unit and promote their exploitation in order to perform an efficient
global search. The newly improved elite solutions after the application of the
supervision unit should locally promote the search of unexplored areas of the
decision space by affecting the values characterizing the virtual populations. A
graphical representation of the supervised model is given in Fig. 22. The double
arrows indicate the migration of the elite, the compact units are indicated with a
circle and the probabilistic representation of the population, while the rectangular
in the middle represents the supervisor unit. For the sake of clarity, the pseudo-
code of ScDE is given in Fig. 23.

5.3 Additional Components in compact Differential Evolution

In this section the integration of two components which have proven successful
for DE, namely Opposition Based Learning and Noise Analysis, into the cDE
framework is described. The first one provides extra moves to the standard DE
search logic (see section 3.4), allowing the algorithm to explore different regions
of the landscape. The latter is a simple yet powerful way to tackle problems
characterized by noise on fitness, since it introduces an intelligent re-sampling
procedure in the fitness evaluation process.

5.3.1 Opposition-based compact Differential Evolution

Opposition Based Learning (OBL) is a technique which has been applied, in sev-
eral circumstances, to enhance the performance of Differential Evolution, see e.g.
the OBDE algorithm described in section 3.4. OBL consists of the generation of
additional points generated by making use of a central symmetry within a hyper-
rectangle in the search space. The OBL scheme has been further improved in the
Generalized Opposition-based DE (GODE), see Wang et al. (2011), by integrat-
ing some randomness and a progressive narrowing of the search. Combining
randomization and opposition learning, GODE provides an alternative logic (or
equivalently, an alternative move) that allows to check, under certain probabil-
ity conditions, unexplored areas of the decision space by means of a projection
with respect to a focus (opposition points). On the other hand, dynamically up-
dating the interval boundaries for the generation of opposition points, GODE
progressively narrows the search and exploits the available genotype and detects
high quality solutions, thus counterbalancing the natural explorative tendency of
the DE logic. This dynamic update depends on the population’s spread. Since
the population is supposed to focus on the most promising areas of the decision

62

space, this update, corresponds, de facto, to a progressive narrowing of the hyper-
rectangle of the opposition points generation.

counter t =0
Il % PV initialization ==
fori=1:ndo
initialize p [i] = 0
initialize o [i] = A
end
generate elite by means of PV
while budget condition do
/1 *=+ Mitation *x*
generate 3 individuals x,, x5, and x; by means of PV
xéff = xt + F(x, — xs)
/'l »x Crossover =*x
apply exponential/binomial crossover and generate x,g
/'l *+ Generalized Opposition-Based Learning **
if rand(0,1) < j, then
k =rand(0,1)
foff = Zky — xoff
i (%,7) < f (xo7) then
xoﬁr = foff
end
end
Il »x Elite Sel ection *x
[winner, loser] = compete (x4, elite)

if x, == winner then
elite = x,f
end

[l *+x PV Update =*=*
fori=1:ndo
pt i) = wtli) + N%, (winner[i] — loser[i])
o] = \/(Ut [i)? + (i [i)* = (U1 [i])* + i (winner? i) — loser?(i])
end
t=t+1
end

FIGURE 24 cODE pseudo-code

Article PVI proposes the integration of the generalized opposition based
learning into the compact Differential Evolution framework and tests its impact
on the algorithmic performance. The proposed algorithm, called cODE, consists
of a standard pe-cDE/rand/1 scheme (either employing binomial or exponential
crossover), in which when the offspring is generated, its opposition point is cal-
culated with a probability j,, called jump rate. More specifically, the opposition
point X,¢r of the offspring x,¢s is computed according to the following expres-

63

sion:
-foﬁ = k(a + b) — Xoff (31)

where k is a random number uniformly sampled between 0 and 1, and a and
b are the vectors representing the bounds of the hyper-rectangle containing the
population. It must be observed that for k = 1, the generalized scheme coincides
with the OBDE scheme described in chapter 3.4. Since in compact optimization
a population of solutions is not available, the bounds of the population hyper-
rectangle are identified by a = y —a -é and b = p 4« - §, where « is an arbitrary
constant. By substituting the values of compact bounds within equation (31), the
following formula is obtained:

foﬁ = 2k;4 — xoff. (32)

It must be observed that the value of ¢ does not appear in the formula since
the population is assumed to be symmetrical with respect to the mean value p.
If the opposition point is generated, its fitness is calculated and compared with
the fitness value of the original offspring. The most promising solution is then
retained and its fitness value is compared with that of the elite individual x,.
Following that, the usual PV update of cDE is performed. For the sake of clarity,
the pseudo-code of cODE is given in Fig. 24.

5.3.2 Noise Analysis compact Differential Evolution

Article PIII focuses on the class of optimization problems with a noisy fitness
function. This situation is typical, for instance, of problems where the fitness is
computed by means of measurement devices. For a complete classification of
uncertainties in optimization, see Jin and Branke (2005). As summarized in Di
Pietro et al. (2004), the noise in the objective function causes two types of unde-
sirable behavior: 1) a candidate solution may be underestimated and thus elim-
inated, 2) a candidate solution may be overestimated, thus saved and allowed
to lead towards incorrect search directions. In other words, a noise fitness land-
scape can be seen as characterized by false optima which consequently mislead
the algorithm search, see Neri and Mékinen (2007). Under these conditions, opti-
mization algorithms can be easily misled by noise and thus detect unsatisfactory
solutions. Although Evolutionary Algorithms, thanks to their stochastic nature,
appear to behave robustly in noisy environments, see Beyer and Sendhoff (2006),
and Arnold and Beyer (2006), they still can perform poorly when the fitness land-
scape is affected by noise. As highlighted in Branke and Schmidt (2003), the most
critical operation is the selection since it requires a fitness-based comparison that
in the presence of noise can jeopardize the entire selection and search process.

To tackle these issues from the perspective of memory-saving optimization,
article PIII proposes a novel cDE-based scheme, namely Noise Analysis cDE
(NAcDE). NACDE consists of a ne-cDE/rand/1 bin framework, see section 4.5,
employing a noise analysis survivor selection scheme. The choice of a non persis-
tent elitism scheme is crucial in noisy environments, in order to avoid that over-
estimated solutions mislead the search, see Mininno et al. (2011): indeed, since a

64

compact algorithm stores in memory only one solution, the elite, if the elite se-
lection has been performed over-estimating the quality of the solution, the entire
search can be jeopardized if a persistent elitism is used. If on one hand the non-
persistent elitism guarantees a periodic refreshment of the genotypes leading the
search, on the other the noise analysis survivor selection performs a fine-tuning
in the noise filtering.

/'l +x Conpete function with Noi se Anal ysis =
Il *% [winner,loser] = compete(x,ff, Xe) **
winner = x,
loser = x,¢
if |f(x.) — f(xoff)| > 20 then
if f(x,fr) < f(x.) then
winner = Xoff
loser = x,
end
else
w = min {f(xe), f(xo5f)}
p = max {f(x.), f(xOff)}

_ a+20—(B—20)
V= B+20—(a—20)

2
o= min ([(45)"] o

perform re-sampling
update f(x.) and f(x,ff)
update fitness counter
if f(x,f¢) < f(x.) then
winner = X,ff
loser = x,
end
end

FIGURE 25 Noise Analysis survivor selection pseudo-code

More specifically, the noise analysis component performs an analysis of the
noise and automatically re-samples a proper number 75 of solutions in order to
ensure both reliable pairwise comparisons and a minimal cost in terms of fit-
ness evaluations. In other words, ns represents the minimum amount of samples
which ensure a reliable characterization of the noise distribution, i.e. the amount
of samples which allows that the average fitness value can be considered as the
mean value of a distribution. In order to avoid infinite sampling, n; is saturated
to an upper limit 7,4, which is the only extra parameter to be set with respect
to the standard cDE. The setting of this parameter can be intuitively carried out
e.g. on the basis of the global computational budget available and the precision
requirement in the specific application. When additional samples are performed,
the average fitness values f are updated and the solution characterized by the
most promising average fitness is selected for subsequent generation. It must be
highlighted that the noise analysis assumes that the noise is Gaussian and that the

65

standard deviation of the noise can be estimated. This situation obviously does
not cover all the optimization problems in noisy environments, but it is anyway
typical of most industrial applications. The pseudo-code of NAcDE is the same
as standard ne-cDE/rand/1/bin, see Fig. 16. The function compete() used for
comparing the offspring and the elite is modified as depicted in Fig. 25.

5.4 A Different Memory-Saving Approach: Single-Solution MC

Article PVIII addresses the problem of memory-saving optimization following a
different approach. More specifically, it introduces an extremely simple single-
solution Memetic Computing method, called Three Stage Optimal Memetic Ex-
ploration (3SOME). This algorithm is composed of three memes: the first two
are stochastic, respectively with a “long” and a “moderate” search radius, while
the third one is deterministic and with a short search radius. The bottom-up
combination of the three operators is coordinated by means of a natural, simple
sequential trial and error logic. In addition to the extreme compactness of the
resulting algorithm, the design choices behind it lead to the conclusion that com-
plexity in algorithmic structures can be unnecessary, if not detrimental, and that
simple bottom-up approaches can be competitive as well.

A philosophical interpretation of this conclusion can be given invoking the
Ockham’s Razor, which can be expressed in the following way: entia non sunt mul-
tiplicanda praeter necessitatem (entities must not be multiplied beyond necessity).
In Memetic Computing, entities are memes, in the sense of search operators, and
their quantity refers to their multiple coordination to construct complex algo-
rithmic structures. In other words, in order to obtain an algorithm with a good
performance, as well as limited memory footprint and computational overhead,
a correct algorithmic design approach should be to start from a tabula rasa (blank
slate, white paper) and build up the algorithm with a few simple memes, rather
than starting from fully working algorithms and complicate them further. In any
case, the complexity of the algorithm should never be excessive with respect to
the problem(s) to be solved.

Looking at the logic of 3SOME in detail, during the long distance explo-
ration, similar to a stochastic global search, a new solution is sampled within the
entire decision space by using a crossover (see Fig. 26). In other words, this explo-
ration stage performs a global stochastic search, attempting to detect unexplored
promising basins of attraction. On the other hand, while this search mechanism
extensively explores the decision space, it also promotes retention of a small sec-
tion of the elite within the trial solution, which appears to be extremely beneficial
in terms of performance with respect to a stochastic blind search (which would
generate a completely new solution). This mechanism is repeated until it does not
detect a solution that outperforms the original elite. When a new promising so-
lution is detected, and thus the elite is updated, the middle distance exploration
is activated, in order to allow a more focused search around the new solution.

66

generate a random solution x; within D
generate i = round (n - rand (0,1))

x¢[i] = x.li]

while rand (0,1) < Cr do
xe[i] = xe[i]
i=i+1
if i == n then

i=1

end

end

if f (x¢) < f(x,) then
Xe = Xt

end

FIGURE 26 Long distance exploration

construct a hypercube with side width é centered in x,
forj=1:kxndo
generate a random solution x; within the hypercube
generate i = round (n - rand (0,1))

xe[i] = x[i]

while rand (0,1) < Cr’ do
x¢[i] = x[i]
i=i+1
if i == n then

i=1

end

end

if f (x:) < f (x.) then
Xe = Xt

end

end

FIGURE 27 Middle distance exploration

During the middle distance exploration, a hyper-cube is generated around
the candidate solution and some points are stochastically generated within it, in
order to explore a limited bounded region of the decision space (see Fig. 27). In
other words, this stage attempts to focus the search around promising solutions
in order to determine whether the current elite deserves further computational
budget or other unexplored areas of the decision space must be explored. More
specifically, a hyper-cube whose edge has side width equal to ¢ is constructed
around the elite solution x,. Within this region, a fixed number of trial points
is generated by random perturbing the elite along a limited number of dimen-
sions, thus making a randomized exploitation of the current elite solution. At the
end of this stage, if the elite has been updated a new hypercube is constructed
around the new elite and the search is repeated. On the contrary, if the middle

67

distance exploration does not lead to an improvement, an alternative search logic
is applied, that is the deterministic logic of the short distance exploration.

while local budget condition do
Xt = Xe
Xs = Xe
fori=1:ndo
xs[i] = xeli] —p
if f (xs5) < f(x;) then
Xt = Xs
else
xsli] = xei] +§
if f (x5) < f (x;) then

Xt = Xs
end

end
end
if f (x¢) < f (x.) then

Xe = Xt
else

p=4
end

end

FIGURE 28 Short distance exploration

generate the solution x,
while global budget condition do
while x. is not updated do
apply to x, the long distance exploration as in Fig. 26
end
while x. is updated do
apply to x, the middle distance exploration as in Fig. 27
end
apply to x, the short distance exploration as in Fig. 28
if x, has been updated then
apply middle distance exploration as in Fig. 27
else
apply long distance exploration as in Fig. 26
end
end

FIGURE 29 Coordination of the exploration stages

During the short distance exploration, a simple deterministic local search is
applied to the solution, in order to quickly exploit the most promising search di-
rections and refine the search, see Fig. 28. The meaning of this exploration stage

68

is to perform the descent of promising basins of attraction and possibly finalize
the search if the basin of attraction is globally optimal. De facto, the short distance
exploration is a simple steepest descent deterministic local search algorithm, with
an exploratory logic similar to that of Hooke-Jeeves algorithm, see section 1.1.2.
This exploration is repeated until a prefixed budget is exceeded. After that, if
there is an improvement in the quality of the solution, the focused search of mid-
dle distance exploration is repeated subsequently. Otherwise, if no improvement
in solution quality is found, the long distance search is activated again to attempt
to find new basins of attractions. For the sake of clarity, the pseudo-code display-
ing the working principle of 35SOME and highlighting the coordination amongst
the three levels of exploration is given in Fig. 29.

5.5 Comparative Analysis of the Proposed Algorithms

In order to compare the complexity of all the algorithms presented in this chapter,
their algorithmic components and memory footprint are reported in Table 1. The
memory footprint is expressed in terms of minimum amount of memory slots
required by the algorithm, where a memory slot is the memory space occupied
by a vector having n components, n being the dimensionality of the problem. For
the sake of simplicity, the memory requirement for scalar variables (e.g. fitness
values, temporary variables, etc.) has been neglected for all the algorithms.

As shown in Table 1, all the algorithms employing a single cDE-based unit
require four memory slots. This fact can be explained as follows. One slot is
needed to store the elite. It must be remarked that the elite is kept in memory
in all the cases, also in non persistent structures, see for example NAcDE. Two
other slots are needed to store the PV, respectively one for p and one for ¢. The
fourth slot is needed to store the trial solution, i.e. the offspring. It is worthwhile
noticing that, in order to use only one slot for offspring generation, an in-place
implementation is needed. Considering for example rand /1 mutation, an extra
scalar variable is used to store the i-th component of x;, x; and x;, while the i-
th component of x] £ 18 used as accumulator to perform in-place the mutation

operation x(’) ff= Xr + F(xs — x¢). Similarly, when crossover (either binary or
exponential) is applied, the two solutions undergoing it, namely the elite and
x) f are already stored in memory. Thus x,¢s can be generated simply replacing

some components of x/ £

Using a similar implementation, all the algorithms employing multiple cDE
units, namely CcDE, ENcDE and ScDE, obviously require a number of slots mul-
tiple of four, according to the number of cDE units. In other words, these algo-
rithms are memory-wise more expensive (at least compared to single cDE-based
structures), but still they can be used as general purpose optimizers. Analogously,
the structure employing the Rosenbrock Algorithm as super-fit, namely SFcDE-
PSR, is affected by an additional memory overhead due to the use of a n x n
rotation matrix, equivalent to the employment of n additional memory slots.

69

TABLE1 Algorithmic complexity of the proposed algorithms

Algorithm Components Memory slots
DEcDE cDE based structure 4
trigonometric or rand /1 mutation
exponential crossover
PV perturbation
SFcDE-PSR cDE based structure 4+n
rand/1/bin strategy
Super-Fit (Rosenbrock algorithm)
Population Size Reduction

CcDE N, cDE units 4N,
rand/1/exp strategy
PV perturbation
elite migration & scale factor inheritance
ENcDE N; cDE units 4N,

multiple mutation/crossover strategies
elite migration

ScDE N¢ cDE units 4N,
rand/1/exp strategy
PV perturbation
supervision unit (jDE)
cODE cDE based structure 4

rand /1 mutation, bin/exp crossover
Opposition Based Learning

NACcDE cDE based structure (non persistent) 4
rand/1/bin strategy
Noise Analysis
3SOME single-solution structure 3

3 sequential operators
trial and error coordination

On the other hand, the 3SOME framework is characterized by a slightly
lower memory footprint (only three slots), compared to the single cDE-based
structures. In this case, one slot is needed for the elite, one for the trial solu-
tion (in both long and middle distance operators), and one to store the initial elite
which is used for replacements in the short distance operator.

As for the computational overhead, i.e. the computing time spent to per-
form the algorithmic operations (excluding the computing time of fitness evalua-
tions), an in-depth analysis is reported in paper PVIIIL. To summarize this analy-
sis, on a predetermined landscape the overhead of 3SOME is almost seven times
lower than the overhead of DEcDE (considering a Matlab R2009b implementa-
tion executed on a PC Intel Core 2 Duo 2.4 GHz with 4 GB RAM employing
GNU/Linux Ubuntu 10.04). Intuitively, this ratio is valid also with respect to
the other cDE-based algorithms, including those employing multiple cDE units,
which are anyway executed sequentially. The additional overhead of cDE-based
structures is related to the sampling operation, which involves the computation
of the CDF and its inverse. In this regard, the 3SOME framework appears more
appropriate when the application is plagued by hard real-time constraints.

6 CONCLUSION

Despite the rapid development of high performance computational devices, some
applications impose the solution of complex optimization problems in very lim-
ited hardware conditions. This situation is typical for example in robotics and
control engineering where, in order to have modest cost and volume of the de-
vice, normally a general-purpose computer with large computational resources
and memory capacity cannot be used and the optimization must be instead per-
formed within a micro-controller or an embedded system, which is often en-
dowed with minimal hardware features.

In these cases, it is crucial to design an efficient optimization algorithm
which requires a minimal amount of memory. Among memory-saving meth-
ods, compact algorithms are an efficient alternative to tackle global optimization
problems, as they behave like global meta-heuristics while they do not actually
process an actual population of candidate solutions. With the exception of the
last article presented in this thesis, which introduces a single-solution Memetic
Computing approach, this work focuses on a specific compact algorithm, namely
the compact Differential Evolution (cDE). Some possible algorithmic enhance-
ments have been proposed, for example introducing additional components to
the original framework (i.e. Population Size Reduction, Trigonometric Mutation
and Perturbation Exploitation, Opposition Based Learning and Noise Analysis)
which greatly improve the performance of standard cDE, still making a limited
use of memory. On the other hand, structures employing multiple cDE units have
also been investigated: although having a slightly higher memory footprint, the
resulting algorithms introduce an interesting concept, that is using multiple com-
pact algorithms as distributed local search methods. In these structures, each
cDE unit explores the search space from a different perspective and shares, in a
memetic fashion, part of its knowledge with other memes.

Related to that, a possible alternative to compact algorithms is finally intro-
duced in the last article included. A promising single-solution Memetic Comput-
ing method is presented, consisting in three embarrassingly simple memes coor-
dinated by means of a natural trial-and-error logic. While the first two memes
explore the search space using very simple stochastic rules, the last one refines

71

the search with a classic deterministic exploitation.

The main finding of this work is that extremely simple algorithms, if care-
fully designed, may have the same performance as most of the modern state-of-
the-art sophisticated optimization methods. In other words, keeping the algorith-
mic design simple, and having clearly in mind the contribution of each algorith-
mic component, it is still possible to obtain good results on complex problems.

Future work in the field of memory-saving optimization will go towards
multiple directions. Related to compact algorithms, possible directions are the
investigation of different probabilistic models of the population (e.g. composed
multi-modal distribution functions), and the extension of the compact logic to
other computational paradigms (e.g. Particle Swarm and Bacterial Foraging Opti-
mization). As to what memory-saving MC regards, the most interesting research
area appears to be the implementation of some sort of "self-organizing" memetic
structure, that is an intelligent system which can automatically design a memetic
framework, and adapt it to the specific problem. Just like we humans do, such
systems may analyze the problem and solve it, in a very efficient way, resorting
to an "algorithmic knowledge database", i.e. a collection of memes with different
properties and solving abilities. Keeping those memes simple is, in the view of
the author, the very first step towards this exciting idea.

72
YHTEENVETO (FINNISH SUMMARY)

Viimeisen kymmenen vuoden aikana "laskennallinen dlykkyys" on lisddntynyt
merkittavasti teollisuuden ja kulutuselektroniikan sulautetuissa jarjestelmissa.
Téllaisia sulautettuja jarjestelmid 16ytyy esimerkiksi kaukoantureista ja robottiruo-
honleikkureista. Laskennallinen &lykkyys voi perustua siihen ettd jarjestelma
ratkaisee numeerisesti tietyn optimointiongelman, toisin sanoen laite "oppii" lisda
kdayton aikana. Optimointiongelman numeeriseen ratkaisemiseen tuo lisdhaas-
teen se, ettd sulautetussa jarjestelméssa on yleensd hyvin rajalliset laskenta- ja
muistiresurssit.

Tama tyo, jonka suomenkielinen otsikko on "Muistia sdédstdavid optimoin-
timenetelmid rajallisilla laskentaresursseilla varustetuille jarjestelmille”, esittelee
niin sanottuja kompakteja evoluutioalgoritmeja edelld mainittujen optimointite-
htavien tehokkaaseen ratkaisemiseen.

Evoluutioalgoritmit ovat matemaattisia optimointialgoritmeja, jotka matki-
vat luonnossa havaittavaa evoluutiota (sopeutuminen ja vahvimman selviytymi-
nen). Ratkaisukandidaatit muodostavat populaation jonka sisdlld tapahtuu mu-
taatiota, risteytymistd ja vahvimpien yksildiden "perimédn" siirtymistd seuraav-
ille sukupolville. Memeettiset algoritmit ovat evoluutioalgoritmien luokka, jossa
perinteisid evoluutiopohjaisia algoritmeja tehostetaan paikallisilla hakuheuristi-
ikoilla. Tdssd tyossd tutkitut ja edelleen kehitetyt kompaktit evoluutioalgoritmit
poikkeavat perinteisistd menetelmista siind, ettd suurta ratkaisukandidaattipop-
ulaatiota ei talleteta laskentayksikon muistiin. Sen sijaan talletetaan vain popu-
laation statistiikkaa kuvaavat parametrit. Tyossd on tarkasteltu padasiassa kom-
paktin differentiaalievoluution nimelld tunnettujen optimointialgoritmien edelle-
en kehittdmistd. Lisdksi tekijd esittelee uuden, "yhden ratkaisun memeettiseksi
algoritmiksi" nimetyn menetelman.

Taman tyon paddtulos on havainto, ettd ddrimmaisen yksinkertaisilla, mutta
huolellisesti suunnitelluilla optimointialgoritmeillakin voidaan paasta tyydyttavi-
in tuloksiin monimutkaisia optimointitehtdvia ratkaistaessa.

APPENDIX1 BENCHMARK FUNCTIONS

This appendix contains the definitions of the test function used in the included
articles. Two major benchmarks have been used, namely the 25 Benchmark Func-
tions for the Congress on Evolutionary Computation 2005 (Special Session on
Real-Parameter Optimization) and the 7 Benchmark Functions for the Congress
on Evolutionary Computation 2008 (Special Session and Competition on Large
Scale Global Optimization). In order to have a heterogeneous set of test functions,
with different features and different dimensions, and perform fair comparisons
among the proposed methods and the state-of-the-art algorithms (which, in some
cases, may be tuned on a specific benchmark), in most of the papers these two
benchmarks have been mixed together with functions defined on other sources,
see appendix 1.3. For each test function, the relative parameters (dimension, de-
cision space, etc.) and properties (modes, scalability, separability, shift, rotation,
noise, etc.) are outlined.

In the next, the following notation is used. D is the problem dimension;
x is a row vector (1 x D), whose i-th component is indicated with x;. All other
vectors and matrices and matrices are expressed using the same notation. Unless
specified differently, all other numbers in the following equations are scalars.

APPENDIX 1.1 Benchmark Functions - CEC 2005

Shifted Sphere Function: f; from Suganthan et al. (2005) with D = 30.

D
f1(%) =327 + fiias,
=1

where z = x — 0 and the shifted optimum o = [01,0p,...,0p|. Decision space
[—100, 1OO]D . Properties: unimodal, shifted, separable, scalable.

Shifted Schwefel’s Problem 1.2: f, from Suganthan et al. (2005) with D = 30.

, 2
D i
f2 (X) = Z (sz> +fbiasz
i=1 \j=1
where z = x — o and the shifted optimum o = [01,0y,...,0p]. Decision space
[—100, 100]D. Properties: unimodal, shifted, non-separable, scalable.

Shifted Rotated High Conditioned Elliptic Function: f3 from Suganthan et al.

(2005) with D = 30.
D i—1

fs(x) =) (1O6> 2 + friass

i=1
where z = x — o and the shifted optimum o = [01,0y,...,0p]. Decision space
[—100, 1OO]D. Properties: unimodal, shifted, rotated, non-separable, scalable.

74

Shifted Schwefel’s Problem 1.2 with Noise in Fitness: f4 from Suganthan et al.
(2005) with D = 30.

D [i 2
f4 (X) = Z (ZZ]) '(1+0'4|N(0/1)|)+fbia54

i=1 \j=1

where z = x — 0 and the shifted optimum o = [01,0y,...,0p|. Decision space
[—100, 1OO]D . Properties: unimodal, shifted, non-separable, scalable, noise in fit-
ness.

Schwefel’s Problem 2.6 with Global Optimum on Bounds: f5 from Suganthan
et al. (2005) with D = 30.

f5 (X) = max; (|Al-x — Bi|) + fbiu55

where Aisa D x D matrix, a;; are integer random numbers in the range [—500, 500],
det(A) # 0, A, is the i-th row of A, B; = A; X 0, 0is a D x 1 vector, with o; are
random numbers in the range [—100, 100], corresponding to the optimum. Deci-
sion space [—100, 100]D . Properties: unimodal, non-separable, scalable.

Shifted Rosenbrock’s Function: f4 from Suganthan et al. (2005) with D = 30.

D

2

o9 = X (100 (2 = 2) 21— 17) + i
i=1

where z = x — o0 and the shifted optimum o = [01,0y,...,0p|. Decision space

[—100, 1OO]D. Properties: multi-modal, shifted, non-separable, scalable, having a

very narrow valley from local optimum to global optimum.

Shifted Rotated Griewank’s Function without Bounds: f; from Suganthan et al.
(2005) with D = 30.

D 2 D 2

X) = L — N lcos|—=) +1+ fp

f7() ;4000 E (\/;) fb1a57

where z = (x—0) xM, M = M’(1+0.3|N(0,1)|), M’ a linear transforma-
tion matrix, and the shifted optimum o = [01,0y,...,0p]. Initial population in

0, 600]D . Properties: multi-modal, rotated, shifted, non-separable, scalable, no
bounds for x.

Shifted Rotated Ackley’s Function with Global Optimum on Bounds: fg from
Suganthan et al. (2005) with D = 30.

fg (x) = —20exp | —0.2

1 D
—exp <5 Y _ cos (27rzi)> + 20+ e+ friasg
i=1

75

where z = (x —0) X M, M a linear transformation matrix, and the shifted op-
timum o = [01,09,...,0p]. Decision space [—32,32]". Properties: multi-modal,
rotated, shifted, non-separable, scalable, global optimum on the bounds.

Shifted Rastrigin’s Function: f9 from Suganthan et al. (2005) with D = 30.

D

fo (%) = Y (22— 10008 271%; +10) + fiias,
i=1

where z = x — o and the shifted optimum o = [01,0y,...,0p]. Decision space

[—5, 5]D. Properties: multi-modal, shifted, separable, scalable, huge number of
local optima.

Shifted Rotated Rastrigin’s Function: f1p from Suganthan et al. (2005) with D =
30.

D

fo() =Y (z% — 10cos2mz; + 10) + Frinsyg

i=1
where z = (x —0) X M, M a linear transformation matrix, and the shifted op-
timum o = [01,0y,...,0p]. Decision space [—5,5]”. Properties: multi-modal,
shifted, rotated, non-separable, scalable, huge number of local optima.

Shifted Rotated Weierstrass Function: f1; from Suganthan et al. (2005) with D =
30.
D kmax kmax

=)) (” cos27tb* (z; +0.5)) -D) (akcosznbk : 0.5) + Friasy,

i=1 k=0 k=0

where a = 0.5, b = 0.3, kyax = 20, z = (x — 0) X M, M a linear transformation
matrix, and the shifted optimum o = [01,0,, . ..,0p]. Decision space [—0.5,0.5]".
Properties: multi-modal, shifted, rotated, non-separable, scalable, continuous but
differentiable only on a set of points.

Schwefel’s Problem 2.13: fi, from Suganthan et al. (2005) with D = 30.

f12 Z + fbm512

where A; = Zle(aijsinzxj + bjjcosa;), Bi(x) = ijl(ai]-sinxj + bjjcosx;), for i =
1,...,D, A and B are two D x D matrices, ajj and bl-j are integer random num-
bers in the range [—100, 100}, and the shifted optimum a = [&q,ay,...,ap], with
a; random numbers in the range [, 7]. Decision space [T,)P, Properties:
multi-modal, shifted, non-separable, scalable.

Shifted Expanded Griewank’s plus Rosenbrock’s Function: f;3 from Suganthan
et al. (2005) with D = 30, f> and fg defined as above.

fis(x) = fs(f2(z1,22)) + f3 (f2 (22,23)) + - ..
fs (f2(zp-1,2p)) + f3 (f2 (2D, 21)) + fiasys

76

where z = x — 0 + 1 and the shifted optimum o = [01, 0, ..., 0p]. Decision space
[—5, S]D . Properties: multi-modal, shifted, non-separable, scalable.

Shifted Rotated Expanded Scaffer’s F6 Function: fi4 from Suganthan et al. (2005)
with D = 30.
fia (x) = F(z1,22) + F(22,23) + ... + F(zp—1,2p) + F(2D,21) + fpiasy,

B sin®y/x?+y2—0.5
Fx,y) =05+ (140.001 (x2+y2))?

where z = (x — 0) X M, M a linear transformation matrix, and the shifted opti-
mum o = [01,0y,...,0p]. Decision space [—100, 100]". Properties: multi-modal,
shifted, non-separable, scalable.

Hybrid Composition Function: fi5 from Suganthan et al. (2005) with D = 30.
Decision space [—5, 5]D. Properties: multi-modal, separable near the global op-
timum (Rastrigin), scalable, a huge number of local optima, different functions
properties are mixed together, Sphere functions give two flat areas for the func-
tion.

Rotated Version of Hybrid Composition Function fi5: fi4 from Suganthan et al.
(2005) with D = 30. Decision space [—5, 5]D. Properties: multi-modal, rotated,
non-separable, scalable, a huge number of local optima, different functions prop-
erties are mixed together, Sphere functions give two flat areas for the function.

Rotated Version of Hybrid Composition Function f15 with Noise in Fitness: fi7
from Suganthan et al. (2005) with D = 30. Decision space [—5, S]D. Properties:
multi-modal, rotated, non-separable, scalable, a huge number of local optima,
different functions properties are mixed together, Sphere functions give two flat
areas for the function, with Gaussian noise in fitness.

Rotated Hybrid Composition Function: f;g from Suganthan et al. (2005) with D =
30. Decision space [—5, S]D. Properties: multi-modal, rotated, non-separable,
scalable, a huge number of local optima, different functions properties are mixed
together, Sphere functions give two flat areas for the function, a local optimum is
set on the origin.

Rotated Hybrid Composition Function with narrow basin global optimum: fig
from Suganthan et al. (2005) with D = 30. Decision space [—5, S]D. Properties:
multi-modal, rotated, non-separable, scalable, a huge number of local optima,
different functions properties are mixed together, Sphere functions give two flat
areas for the function, a local optimum is set on the origin, a narrow basin for the
global optimum.

Rotated Hybrid Composition Function with Global Optimum on the Bounds: f»
from Suganthan et al. (2005) with D = 30. Decision space [—5, S]D. Properties:

77

multi-modal, rotated, non-separable, scalable, a huge number of local optima,
different functions properties are mixed together, Sphere functions give two flat
areas for the function, a local optimum is set on the origin, a narrow basin for the
global optimum.

Rotated Hybrid Composition Function: f,; from Suganthan et al. (2005) with D =
30. Decision space [—5, 5]D . Properties: multi-modal, rotated, non-separable,
scalable, a huge number of local optima, different functions properties are mixed
together.

Rotated Hybrid Composition Function with High Condition Number Matrix: fz
from Suganthan et al. (2005) with D = 30. Decision space [—5, 5]D . Properties:
multi-modal, rotated, non-separable, scalable, a huge number of local optima, dif-
ferent functions properties are mixed together, global optimum is on the bound.

Non-Continuous Rotated Hybrid Composition Function: fp3 from Suganthan et
al. (2005) with D = 30. Decision space [—5, S]D . Properties: multi-modal, rotated,
non-separable, scalable, a huge number of local optima, different functions prop-
erties are mixed together, non-continuous, global optimum is on the bound.

Rotated Hybrid Composition Function: f4 from Suganthan et al. (2005) with D =
30. Decision space [—5, S]D. Properties: multi-modal, rotated, non-separable,
scalable, a huge number of local optima, different functions properties are mixed
together, unimodal functions give flat areas for the function.

Rotated Hybrid Composition Function without bounds: f,5 from Suganthan et
al. (2005) with D = 30. Initial population in |2, 5)°. Properties: multi-modal,
non-separable, scalable, a huge number of local optima, different functions prop-
erties are mixed together, unimodal functions give flat areas for the function, no
bounds for x.

APPENDIX 1.2 Benchmark Functions - CEC 2008

Shifted Sphere Function: f; from Tang et al. (2007) with D = 100.

D
f1(%) =27 + fiias,
=1

where z = x — o and the shifted optimum o = [01,0p,...,0p]. Decision space
[—100, 1OO]D. Properties: unimodal, shifted, separable, scalable.

Shifted Schwefel Problem 2.21: f, from Tang et al. (2007) with D = 100.

D
f2(x) = max 12i| + fvias,

78

where z = x — 0 and the shifted optimum o = [01,0y,...,0p|. Decision space
[—100, 1OO]D . Properties: unimodal, shifted, non-separable, scalable.

Shifted Rosenbrock’s Function: f; from Tang et al. (2007) with D = 100.
R 2 2 2

i=1

where z = x — 0 + 1 and the shifted optimum o = [01, 0, ...,0p]. Decision space
[—100, 1OO]D. Properties: multi-modal, shifted, non-separable, scalable.

Shifted Rastrigin’s Function: f; from Tang et al. (2007) with D = 100.
D
fu(x) = Y (22 — 10cos (272;) +10) + foias,
i=1

where z = x — o and the shifted optimum o = [01,0y,...,0p]. Decision space
[—5, 5]D. Properties: multi-modal, shifted, separable, scalable, huge number of
local optima.

Shifted Griewank’s Function: fs5 from Tang et al. (2007) with D = 100.

fs(x) = ~=—] Jcos (—) + 1+ fui
i; 4000 E Vi 1ass
where z = x — 0 and the shifted optimum o = [01,0p,...,0p|. Decision space

[—600, 6OO]D . Properties: multi-modal, shifted, non-separable, scalable.

Shifted Ackley’s Function: f4 from Tang et al. (2007) with D = 100.

_09./ D .

where z = x — 0 and the shifted optimum o = [01,0p,...,0p|. Decision space
[—32, 32]D . Properties: multi-modal, shifted, non-separable, scalable.

FastFractal DoubleDip Function: f; from Tang et al. (2007) with D = 100.

f7 (x) = i_ifractallD (xi + twist (x(imodD)H))

twist (y) = 4 <y4 -2y + y2>

2k=1 ran2(o)

' 1
fractallD (x) ~ k—21 1 ; doubledip (x, ranl (o), 2T (2~ rant (O)))

79

doubledip (x,c,s) =
(—6144 (x —¢)® — 3088 (x —c)* —392 (x — c)* + 1) s —05<x<05
0 otherwise

where ranl(o) and ran2(o) are, respectively, a double and an integer, pseudo-
randomly chosen, with seed o, with equal probability from the interval [0, 1] and
the set {0,1,2}. Decision space [—1,1]°. Properties: multi-modal, non-separable,
scalable.

APPENDIX 1.3 Benchmark Functions - Extra

Shifted non-continuous Rastrigin’s Function: f; from Qin et al. (2009) with vari-
able D.

D
f(x)=10+D)_ (ylz —10cos 27ryi>
i=1

)z if |Zi|<1/2
Yi= round(2z;)/2 if |z;| > 1/2

where z = x — o and the shifted optimum o = [04,0,...,0p]. Decision space
[—500, SOO]D . Properties: multi-modal, shifted, rotated, separable, scalable, huge
number of local optima.

Schwefel’s Function: f, from Qin et al. (2009) with variable D.

F(x) = 418.9829D + i <—xi sin M) .

i=1

Decision space [—500, SOO]D. Properties: multi-modal, separable, scalable.

Schwefel Problem 2.22: f, from Vesterstrom and Thomsen (2004) with variable

D.
D D
fO) =) Il +] Tl
i=1 i=1
Decision space [—10, 10]D . Properties: unimodal, separable, scalable.

Generalized penalized Function 1: f, from Vesterstrem and Thomsen (2004) with
variable D.

5 {10sin? 71 + 22 (i — 1) (14 10sin? 7)) + (yp — 1) }
+ ¥ P u(x;,10,100,4)

1
1/i=1+1(xi+1)

80

and
k(x; —a)™ ifx; >a
u(x,a,k,m) =< 0 if [x;| <a
k(—x; —a)™ ifx; < —a

Decision space [—50, SO]D . Properties: multi-modal, separable, scalable.

Generalized penalized Function 2: f3 from Vesterstrom and Thomsen (2004) with
variable D.

f(x) = & 3sin?3mx; + X271 (v — 1)% (1 + sin? 37tx;41)) } +
Li(xp—1)(1+ sin2nxn)2} + Y2 u(x;,5,100,4)

—_

10

where u(x,a,k,m) is defined as above. Decision space [—50,50]". Properties:
multi-modal, separable, scalable.

Michalewicz’s Function: from Michalewicz (1996) with variable D.

o, ()]
f(x)= —i_zlsm (x;) lsm <?>]

where m = 10. Decision space [0, H]D. Properties: multi-modal, separable, scal-
able.

Kowalik’s Function: fi5 from Yao et al. (1999) with D = 4.

2
11 0 X1 (blz + bﬁCz)
! blz —+ bix3 + X4

where a; and b;,i = 1,...,11 are fixed coefficients (see Yao et al. (1999)). Decision
space [—5, 5]D . Properties: multi-modal, non-separable.

Six-hump camel-back Function: fyg from Qin et al. (2009) with D = 2.
1
f(x) =4x? —2.1x] + gx? + X120 — 4x3 + 45

Decision space [—5, S]D . Properties: multi-modal (2 global optima and 4 local op-
tima), non-separable.

Branin Function: fi7 from Vesterstrom and Thomsen (2004) with D = 2.

(x) = x - S I 2+10 P x1 +10
fx_247r?-1 7l g) M

Decision space [—5,10] x [0, 15]. Properties: multi-modal (3 global optima), non-
separable.

81

Hartman’s Family: fij9 and foo from Vesterstrom and Thomsen (2004), respec-
tively with D =3 and D = 6.

4
_Z‘iciexp[Zal} pl]]

where a;;, ¢; and p;; are fixed coefficients (see Vesterstrom and Thomsen (2004)).

Decision space |0, 1]D. Properties: multi-modal (one global optimum and 4 and 6
local optima, respectively), separable.

Shekel’s Family: fo; — f23 from Vesterstrom and Thomsen (2004), with D = 4.

U -1

fo ==Y [x=a) (x=A) +¢]

i=1

where m = 5,7,10 for f1, f2o, and fa3, respectively, A is a m x D matrix with
fixed coefficients, A; is the i-th row of A, and c; are fixed coefficients (see Vester-
strom and Thomsen (2004)). Decision space [0, 10]D . Properties: multi-modal
(tive, seven and ten local optima, respectively), non-separable.

APPENDIX 2 STATISTIC METHODS FOR COMPARING
ALGORITHMS

In this work two non-parametric statistic tests have been used to perform an a pos-
teriori analysis of the performance of the various algorithms considered, namely
the Wilcoxon Rank-Sum Test, which performs a single hypothesis test, and the
Holm-Bonferroni procedure, which performs multiple hypotheses tests simul-
taneously. In this appendix these two methods are briefly described and their
application to the analysis of the algorithm results is explained.

To clarify the concept of null-hypothesis, suppose that we have two differ-
ent independent samples A and B composed, respectively, of n4 and np observa-
tions. If the data in the two sets A and B can be considered independent samples
from identical continuous distributions with equal means, the null-hypothesis is
accepted (Hp : A = B). Otherwise, the null-hypothesis is rejected and either
Hy : A < Bor Hy : A > B (alternative hypothesis), meaning that the two dis-
tributions are clearly separated and it is possible to determine which one has the
lowest mean. A graphical representation of the null-hypothesis accepted or re-
jected is shown in Fig. 30.

A B H,/A=B
25 - 20 20
20 I 15 ’: 15 |
15 |
10 I 10
10 \
5 5 R 5
0 0 2 > 0
-5 0 5 -5 0 5 -5 0 5
A B H,:A>B
25 _ 20 20
»~
20 ¢ 15 N 15 r
15 | 1
10 I 10 1
10 \ I
1\
5 5 5 1 |
1
0 O P4 o 0 P4
0 5 10 -5 0 5 -5 0 5 10

FIGURE 30 Graphical representation of the null-hypothesis accepted (top) or rejected
(bottom)

In case of algorithmic performance, the two samples represent the sets of the
final values (i.e. the best fitness values found at the end of the allotted budget)
obtained by multiple runs of two algorithms under tests, over a fixed problem.

83

In order to test if one of the two algorithms statistically outperforms the other, or
rather they have the same performance, we need to perform a statistic analysis of
the final results distribution, i.e. check if the null-hypothesis is accepted or not.

APPENDIX 2.1 Wilcoxon Rank-Sum Test

The Wilcoxon Rank-Sum test, also called Mann-Whitney U test, see Wilcoxon
(1945) and Mann and Whitney (1947), is a non-parametric (distribution-free) al-
ternative to the two-sample unpaired t-test, used to check the null-hypothesis
on two samples under analysis. Here non-parametric means that no assumption
about the distribution of the data is needed, unlike the t-test which assumes that
the data are normally distributed. The two samples can be of different length,
since only the order of the observations is taken into account. The Rank-Sum
test belongs indeed to the family of statistic ranking methods, that is methods
in which scores (ranks) are used instead of the actual numerical data in order to
perform the analysis of their distribution.

The (one-sided) Wilcoxon Rank-Sum test can be used to check the null-
hypothesis Hy : A = B or the alternative hypothesis H; : A < B. the Wilcoxon
Rank-Sum test can also be used as a two-sided test, resulting in one of the two
conditions Hy : A = B (null-hypothesis) or H; : A # B (alternative hypothesis),
i.e. it is not clear which sample has the lowest mean. It is important to notice that
although the original definition by Wilcoxon (1945) uses means as a measure of
location of the two distributions, any measure of ”central tendency” of the two
groups can be used. For example, Mann and Whitney (1947) use the medians.

The Wilcoxon Rank-Sum test consists of the following. The n4 + np ob-
servations are combined and ranked, so that rank 1 is assigned to the smallest
observation, rank 2 to the 2nd smallest, and so on. In case of two or more obser-
vations having the same value (ties), they are assigned the corresponding mean
rank value (e.g. if three observations have ordinal ranks 5, 6, 7 but they have equal
values, they are assigned the same rank (5 + 6 +7)/3 = 6). For each sample, the
rank-sum 7, is then calculated, and the p-value is calculated as the probability
that the total rank-sum of a distribution of the same size is lower than rs,,;. For
small samples size (up to 20), this probability distribution is tabulated, otherwise
it can be approximated using the normal distribution. Small values of the p-value
cast doubt on the validity of the null-hypothesis, i.e. suggest, under a certain sig-
nificance level (usually set to 0.05), that the two distributions are separated and
the null-hypothesis should be rejected.

For the sake of completeness, we must mention that, analogous to Wilcoxon
Rank-Sum test, also the Wilcoxon Signed-Rank test, see Wilcoxon (1945), has been
proposed as a statistic analysis technique for comparing performance of algo-
rithms, see Garcia et al. (2008a,b). This method is the non-parametric version of
the paired t-test. The main difference between the Wilcoxon Signed-Rank test
and the previous one is that the Wilcoxon Rank-Sum assumes the two samples

84

to be independent, while the Wilcoxon Signed-Rank test is applied to two related
samples having the same length, or two sets of repeated observations of a single
sample. As such, Wilcoxon Signed-Rank test performs a paired, two-sided signed
rank test on the null-hypothesis that data in the vector A — B come from a con-
tinuous, symmetric distribution with zero mean, against the alternative that the
distribution does not have zero mean. Since this method is paired, meaning that
it is based on the pairwise differences between the two samples A and B, in this
case the condition 1, = ny, is necessary.

It is worthwhile to note that, although both the Wilcoxon Rank-Sum and
Signed-Rank tests can be used to assess if the means of two data-sets A and B
differ, i.e if there are significant differences between them, testing the hypothesis
of zero mean for A — B is not strictly equivalent to a hypothesis of equal mean for
A and B. The choice of which one of the two methods should be used to compare
the behavior of two algorithms heavily relies on the assumption of independence
between the two sets of final values. It the two data-sets can be considered rea-
sonably independent, the Wilcoxon Rank-Sum is to be preferred since it is more
reliable. On the other hand, Wilcoxon Signed-Rank is rather sensible to the preci-
sion of the differences, and it cannot be applied if the two data-sets are of different
length. As for the t-tests instead, it should be noticed that when the assumptions
of the (either paired or unpaired) t-test hold, the Wilcoxon tests are somewhat less
reliable and powerful than their equivalent t-test. However, the loss of accuracy is
in general quite small. On the other hand, when those assumptions are violated,
the Wilcoxon tests can be even more reliable than their equivalent t-test. More-
over, the Wilcoxon tests are much less sensitive to outliers than their equivalent
t-test. For these reasons, the Wilcoxon Rank-Sum test seems to be a reasonable
choice for comparing the results of two algorithms and analyzing their behavior.
All the papers presented in this work make use of the Wilcoxon Rank-Sum test,
since no assumption was made on the distributions of the final values of each run
and all the runs of each algorithm were considered independent.

APPENDIX 2.2 Holm Procedure

Unlike the Wilcoxon Rank-Sum test, the Holm-Bonferroni procedure, see Holm
(1979), is a multiple comparison procedure that can be used to draw some statisti-
cally significant conclusions regarding the ”global” performance of an algorithm
under study compared to other algorithms, as suggested in Garcia et al. (2008a,b).
In this context, “global performance” means the performance calculated over a
set of test functions, instead of the single problem-specific performance (which is
instead considered in the Wilcoxon test).

The Holm procedure consists of the following. Considering the final values
of each run of a set of algorithms over a set of test functions, the algorithms are
ranked on the basis of their average performance calculated over each problem.
More specifically, a score R; fori = 1,---, N4 (where N4 is the number of algo-

85

rithms under analysis) is assigned. The score is computed in the following way:
for each k-th problem, k = 1,---, Nrp (Where Ntp is the number of test prob-
lems in consideration), a score R;; of N is assigned to the algorithm displaying
the best performance (i.e. the lowest mean of the final values, for a minimiza-
tion problem), Ny — 1 is assigned to the second best, N4 — 2 to the third and so
on. The algorithm displaying the worst performance scores 1. For each i-th algo-
rithm, a mean score is calculated averaging the sum of the scores of each problem,
according to the following formula:
R Z;I(\]:Tf Rix

Np

On the basis of these scores the algorithms are sorted (ranked) in the following
way. Within the calculated R; values, the algorithm under study is taken as a
reference algorithm and its mean score is renamed as Ry. The ranks of the re-
maining N4 — 1 algorithms, are sorted from best to worst. Indicating with R; the
sorted ranks of the remaining algorithms, the values zj, forj=1,---,Ny—1,are
calculated as:

R

] NA(N4+1)
6N7p

By means of the z; values, the corresponding cumulative normal distribution val-
ues p; are calculated. These p; values are then compared with the corresponding
0/(Na —j) where ¢ is the significance level (usually set to 0.05) of null-hypothesis
rejection. As long as the condition p; < J/(Na — j) holds, the null-hypothesis
(that the two algorithms have indistinguishable performances) is rejected, i.e. the
reference algorithm outperforms the selected j-th algorithm. This repeated check
stops as soon as the above condition fails, meaning that the j-th null-hypothesis
is accepted, i.e. the distribution of values of the two algorithms can be consid-
ered the same (there is no clear out-performance). At this point, all the remaining
hypotheses are also accepted.

86

ACRONYMS

3SOME
BFO
BOA
BMDA
CcDE
cDE
CDF
CEC
cGA

CI
CMA-ES
cODE
DE
DEahcSPX
DEcDE
DEGL
DEPSR
DESFLS
EA
ecGA
EDA
EGNA
EMNA
ENcDE
ES

GA
GODE
hBOA
jDE

LS

MA
MC

Three Stage Optimal Memetic Exploration
Bacterial Foraging Optimization

Bayesian Optimization Algorithm

Bivariate Marginal Distribution Algorithm
Composed compact Differential Evolution
compact Differential Evolution

Cumulative Distribution Function

Congress on Evolutionary Computation

compact Genetic Algorithm

Computational Intelligence

Covariance Matrix Adaptation Evolution Strategies
compact Opposition-based Differential Evolution
Ditferential Evolution

DE with Adaptive Hill Climbing Simplex Crossover
Disturbed Exploitation compact Differential Evolution
DE with Global and Local Neighborhoods

DE with Population Size Reduction

DE with Scale Factor Local Search

Evolutionary Algorithm

extended compact Genetic Algorithm

Estimation of Distribution Algorithm

Estimation of Gaussian Networks Algorithm
Estimation of Multivariate Normal Algorithm
Ensemble compact Differential Evolution
Evolution Strategy

Genetic Algorithm

Generalized Opposition-based DE

hierarchical Bayesian Optimization Algorithm

Self Adaptive Control Parameters in Differential Evolution
Local Search

Memetic Algorithm

Memetic Computing

MDL
MPM
NAcDE
ne
OBDE
OBL
PBIL
PDF

pe
PMBGA
PSO
PSR
PV
QEA
rcGA
SADE
ScDE
SFcDE-PSR
SI

SPX
TDE
UMDA

Minimum Description Length

Marginal Product Model

Noise Analysis compact Differential Evolution
non-persistent elitism

Opposition Based Differential Evolution
Opposition Based Learning

Population Based Incremental Learning
Probability Distribution Function

persistent elitism

Probabilistic Model Building Genetic Algorithm
Particle Swarm Optimization

Population Size Reduction

Probability (or Perturbation) Vector
Quantum-inspired Evolutionary Algorithms
real-valued compact Genetic Algorithm
Self-Adaptive Differential Evolution
Supervised compact Differential Evolution
Super-Fit cDE with Population Size Reduction
Swarm Intelligence

Simplex Crossover

Trigonometric Differential Evolution

Univariate Marginal Distribution Algorithm

88
REFERENCES

Ahn, C. W. & Ramakrishna, R. S. 2003. Elitism based compact genetic algorithms.
IEEE Transactions on Evolutionary Computation 7 (4), 367-385.

Ali, M. M. & Fatti, L. P. 2006. A differential free point generation scheme in the
differential evolution algorithm. Journal of Global Optimization 35 (4), 551-572.

Ali, M. M. & Torn, A. 2004. Population set-based global optimization algorithms:
Some modifications and numerical studies. Computer Operational Research 31
(10), 1703-1725.

Aporntewan, C. & Chongstitvatana, P. 2001. A hardware implementation of the
compact genetic algorithm. In Proceedings of the IEEE Congress on Evolution-
ary Computation, Vol. 1, 624-629.

Arnold, D. V. & Beyer, H.-G. 2006. A general noise model and its effects on evolu-
tion strategy performance. IEEE Trans. Evolutionary Computation 10 (4), 380-
391.

Baker, J. E. 1987. Reducing bias and inefficiency in the selection algorithm. In
Proceedings of the International Conference on Genetic Algorithms. Lawrence
Erlbaum Associates, Inc. Mahwah, NJ, USA, 14-21.

Baluja, S. 1994. Population-Based Incremental Learning: A Method for Integrat-
ing Genetic Search Based Function Optimization and Competitive Learning.

Baraglia, R., Hidalgo, J. & Perego, R. 2001. A hybrid heuristic for the traveling
salesman problem. IEEE Transactions on Evolutionary Computation 5 (6), 613—
622.

Bazaraa, M. S., Sherali, H. D. & Shetty, C. M. 2006. Nonlinear Programming: The-
ory And Algorithms. Wiley-Interscience.

Beyer, H.-G. & Sendhoff, B. 2006. Functions with noise-induced multimodality: a
test for evolutionary robust optimization-properties and performance analysis.
IEEE Trans. Evolutionary Computation 10 (5), 507-526.

Branke, J. & Schmidt, C. 2003. Selection in the presence of noise. In GECCO, 766—
777.

Brest, J., Boskovi¢, B., Greiner, S., Zumer, V. & Maucec, M. S. 2007. Performance
comparison of self-adaptive and adaptive differential evolution algorithms.
Soft Computing 11 (7), 617-629.

Brest, J., Bogkovi¢, B., Zamuda, A. & Zumer, V. 2008. An analysis of the control pa-
rameters’adaptation in DE. In U. K. Chakraborty (Ed.) Advances in Differential
Evolution, Vol. 143. Springer. Studies in Computational Intelligence, 89-110.

89

Brest, J., Greiner, S., Boskovi¢, B., Mernik, M. & Zumer, V. 2006. Self-adapting
control parameters in differential evolution: A comparative study on numerical
benchmark problems. IEEE Transactions on Evolutionary Computation 10 (6),
646—657.

Brest, J. & Maucec, M. S. 2008. Population size reduction for the differential evo-
lution algorithm. Applied Intelligence 29 (3), 228-247.

Brest, J., Zumer, V. & Maucec, M. 2006. Self-adaptive differential evolution algo-
rithm in constrained real-parameter optimization. In Proceedings of the IEEE
Congress on Evolutionary Computation, 215-222.

Caponio, A., Cascella, G. L., Neri, E, Salvatore, N. & Sumner, M. 2007. A fast
adaptive memetic algorithm for on-line and off-line control design of PMSM
drives. IEEE Transactions on System Man and Cybernetics-part B 37 (1), 28-41.

Caponio, A., Neri, F. & Tirronen, V. 2009. Super-fit control adaptation in memetic
differential evolution frameworks. Soft Computing-A Fusion of Foundations,
Methodologies and Applications 13 (8), 811-831.

Chakraborty, U. K., Das, S. & Konar, A. 2006. Differential evolution with local
neighborhood. In Proceedings of the IEEE Congress on Evolutionary Compu-
tation, 2042-2049.

Chen, H., Zhu, Y. & Hu, K. 2008. Self-adaptation in Bacterial Foraging Optimiza-
tion algorithm. In Proc. 3rd International Conference on Intelligent System and
Knowledge Engineering ISKE 2008, Vol. 1, 1026-1031.

Chen, H., Zhu, Y. & Hu, K. 2011. Adaptive bacterial foraging optimization. Ab-
stract and Applied Analysis 2011.

Clerc, M. & Kennedy,]. 2002. The particle swarm-explosion, stability and conver-
gence in a multidimensional complex space. IEEE Transactions on Evolutionary
Computation 6 (1), 58-73.

Cody, W.]. 1969. Rational chebyshev approximations for the error function. Math-
ematics of Computation 23 (107), 631-637.

Das, S., Abraham, A., Chakraborty, U. K. & Konar, A. 2009a. Differential evolu-
tion with a neighborhood-based mutation operator. IEEE Transactions on Evo-
lutionary Computation 13, 526-553.

Das, S., Biswas, A., Dasgupta, S. & Abraham, A. 2009b. Bacterial foraging op-
timization algorithm: Theoretical foundations, analysis, and applications. In
Foundations of Computational Intelligence (3), 23-55.

Das, S., Konar, A. & Chakraborty, U. K. 2005a. Improved differential evolution al-
gorithms for handling noisy optimization problems. In Proceedings of the IEEE
Congress on Evolutionary Computation, Vol. 2, 1691-1698.

90

Das, S., Konar, A. & Chakraborty, U. K. 2005b. Two improved differential evolu-
tion schemes for faster global search. In Proceedings of the 2005 conference on
Genetic and evolutionary computation. ACM, 991-998.

Das, S., Konar, A. & Chakraborty, U. K. 2007. Annealed differential evolution. In
Proceedings of the IEEE Congress on Evolutionary Computation, 1926-1933.

Das, S. & Konar, A. 2005. An improved differential evolution scheme for noisy
optimization problems. In Pattern recognition and machine intelligence, Vol.
3776. Springer. Lecture Notes in Computer Science, 417—421.

Dasgupta, S., Das, S., Abraham, A. & Biswas, A. 2009. Adaptive computational
chemotaxis in bacterial foraging optimization: an analysis. Trans. Evol. Comp
13,919-941.

Dasgupta, S., Das, S., Biswas, A. & Abraham, A. 2010. Automatic circle detection
on digital images with an adaptive bacterial foraging algorithm. Soft Comput.
14 (11), 1151-1164.

De Bonet, J. S., Isbell, C. L. & Viola, P. 1997. Mimic: Finding optima by estimating
probability densities. In Advances in Neural Information Processing Systems,
Vol. 9.

Di Pietro, A., While, L. & Barone, L. 2004. Applying evolutionary algorithms to
problems with noisy, time-consuming fitness functions. In Proceedings of the
2004 IEEE Congress on Evolutionary Computation. IEEE Press, 1254-1261.

Eiben, A. E. & Smith, J. E. 2003. Introduction to Evolutionary Computation.
Berlin: Springer Verlag, 175-188.

Eshelman, L.J. 1990. The chc adaptive search algorithm: How to have safe search
when engaging in nontraditional genetic recombination. In G. J. E. Rawlins
(Ed.) Foundations of Genetic Algorithms I. San Mateo CA: Morgan Kaufmann,
265-283.

Fan, H.-Y. & Lampinen, J. 2003. A trigonometric mutation operation to differential
evolution. Journal of Global Optimization 27 (1), 105-129.

Feoktistov, V. 2006. Differential Evolution in Search of Solutions. Springer.

Fogel, L. J., Owens, A.]. & Walsh, M. J. 1966. Artificial Intelligence through Sim-
ulated Evolution. New York, USA: John Wiley.

Gallagher, J. C., Vigraham, S. & Kramer, G. 2004. A family of compact genetic
algorithms for intrinsic evolvable hardware. IEEE Transactions Evolutionary
Computation 8 (2), 111-126.

Garcia, S., Fernandez, A., Luengo, J. & Herrera, F. 2008a. A study of statistical
techniques and performance measures for genetics-based machine learning: ac-
curacy and interpretability. Soft Computing 13 (10), 959-977.

91

Garcia, S., Molina, D., Lozano, M. & Herrera, F. 2008b. A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’” behaviour: a case

study on the cec’2005 special session on real parameter optimization. Journal of
Heuristics 15 (6), 617-644.

Gautschi, W. 1972. Error function and fresnel integrals. In M. Abramowitz & I. A.
Stegun (Eds.) Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables, 297-309.

Glover, F. 1989a. Tabu search - part II. ORSA Journal on Computing 2, 4-32.
Glover, F. 1989b. Tabu search - part I. ORSA Journal on Computing 1, 190-206.

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, MA, USA: Addison-Wesley Publishing Co.

Griewank, A. & Walther, A. 2008. Evaluating Derivatives: Principles and Tech-
niques of Algorithmic Differentiation (2nd edition). Philadelphia: STAM.

Gross, D. & Harris, C. M. 1985. Fundamentals of Queueing Theory. Wiley, NY.

Gamperle, R., Miiller, S. D. & Koumoutsakos, P. 2002. A parameter study for dif-
ferential evolution. In Proceedings of the Conference in Neural Networks and
Applications (NNA), Fuzzy Sets and Fuzzy Systems (FSFS) and Evolutionary
Computation (EC). WSEAS, 293-298.

Hansen, N. & Ostermeier, A. 2001. Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation 9 (2), 159-195.

Harik, G. 1999. Linkage Learning via Probabilistic Modeling in the ECGA.

Harik, G. R., Lobo, E. G. & Goldberg, D. E. 1999. The compact genetic algorithm.
IEEE Transactions on Evolutionary Computation 3 (4), 287-297.

Harik, G. R., Lobo, F. G. & Sastry, K. 2006. Linkage learning via probabilistic mod-
eling in the extended compact genetic algorithm (ECGA). In M. Pelikan, K. Sas-
try & E. Cantti-Paz (Eds.) Scalable Optimization via Probabilistic Modeling, Vol.
33. Springer. Studies in Computational intelligence, 39-61.

Hart, W. E., Krasnogor, N. & Smith, J. E. 2004. Memetic evolutionary algorithms.
In W. E. Hart, N. Krasnogor & J. E. Smith (Eds.) Recent Advances in Memetic
Algorithms. Berlin, Germany: Springer, 3-27.

Hendtlass, T. 2001. A combined swarm differential evolution algorithm for op-
timization problems. In Lecture Notes in Computer Science, Springer-Verlag,
Vol. 2070, 11-18.

Herrera, F.,, Lozano, M. & Sanchez, A. M. 2003. A taxonomy for the crossover op-
erator for real-coded genetic algorithms: An experimental study. International
Journal of Intelligent Systems 18, 309-338.

92

Holland, J. 1975. Adaptation in Natural and Artificial Systems. University of
Michigan Press.

Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scandina-
vian Journal of Statistics 6 (2), 65-70.

Hooke, R. & Jeeves, T. A. 1961. Direct search solution of numerical and statistical
problems. Journal of the ACM 8§, 212-229.

Houck, C., Joines, J., Kay, M. & Wilson, J. 1997. Empirical investigation of the
benefits of partial lamarckianism. Evolutionary Computation 5 (1), 31-60.

Hu, Z.-B., Su, Q.-H., Xiong, S.-W. & Hu, F.-G. 2008. Self-adaptive hybrid differen-
tial evolution with simulated annealing algorithm for numerical optimization.
In Proceedings of the IEEE Congress on Evolutionary Computation, 1189-1194.

Ishibuchi, H., Hitotsuyanagi, Y. & Nojima, Y. 2007. An empirical study on
the specification of the local search application probability in multiobjective
memetic algorithms. In Proc. of the IEEE Congress on Evolutionary Compu-
tation, 2788-2795.

Ishibuchi, H., Yoshida, T. & Murata, T. 2003. Balance between genetic search and
local search in memetic algorithms for multiobjective permutation flow shop
scheduling. IEEE Transactions on Evolutionary Computation 7, 204-223.

Jewajinda, Y. & Chongstitvatana, P. 2008. Cellular compact genetic algorithm for
evolvable hardware. In Proceedings of the International Conference on Electri-

cal Engineering/Electronics, Computer, Telecommunications and Information
Technology, Vol. 1, 1-4.

Jin, Y. & Branke, J. 2005. Evolutionary optimization in uncertain environments-a
survey. Evolutionary Computation, IEEE Transactions on 9 (3), 303-317.

Jones, T. 1995. Crossover, macromutation, and population-based search. In L. Es-
helman (Ed.) Sixth International Conference on Genetic Algorithms. San Mateo
CA: Morgan Kaufmann, 73-80.

Kennedy, J. & Eberhart, R. 1995. Particle swarm optimization. In Proceedings of
IEEE International Conference on Neural Networks, 1942-1948.

Kiefer, J. 1953. Sequential minimax search for a maximum. Proceedings of the
American Mathematical Society 4, 502-506.

Kirkpatrick, S., Gelatt, C. D. J. & Vecchi, M. P. 1983. Optimization by simulated
annealing. Science 220, 671-680.

Krasnogor, N. 2004. Toward robust memetic algorithms. In W. E. Hart, N. Krasno-
gor & J. E. Smith (Eds.) Recent Advances in Memetic Algorithms. Berlin, Ger-
many: Springer. Studies in Fuzzines and Soft Computing, 185-207.

93

Krink, T., Filipi¢, B. & Fogel, G. B. 2004. Noisy optimization problems - a partic-
ular challenge for differential evolution? In Proceedings of the IEEE Congress
on Evolutionary Computation, 332-339.

Lampinen, J. & Zelinka, I. 2000. On stagnation of the differential evolution algo-
rithm. In P. OSmera (Ed.) Proceedings of 6th International Mendel Conference
on Soft Computing, 76-83.

Larrafiaga, P. & Lozano, J. A. 2001. Estimation of Distribution Algorithms: A New
Tool for Evolutionary Computation. Kluwer.

Liu, J. & Lampinen, J. 2002a. A fuzzy adaptive differential evolution algorithm. In
Proceedings of the 17th IEEE region 10 international conference on computer,
communications, control and power engineering, Vol. I, 606-611.

Liu, J. & Lampinen, J. 2002b. On setting the control parameter of the differential
evolution algorithm. In Proceedings of the 8th international Mendel conference
on soft computing, 11-18.

Lozano, J. A., Larrafiaga, P., Inza, I. & Bengoetxea, E. 2006. Towards a New Evolu-
tionary Computation. Advances on Estimation of Distribution Algorithms, Vol.
192. Springer-Verlag. Studies in Fuzziness and Soft Computing.

Lozano, M. & Garcia-Martinez, C. 2010. Hybrid metaheuristics with evolution-
ary algorithms specializing in intensification and diversification: Overview and
progress report. Computers & Operations Research 37 (3), 481-497.

Lozano, M., Herrera, F., Krasnogor, N. & Molina, D. 2004. Real-coded memetic
algorithms with crossover hill-climbing. Evolutionary Computation, Special Is-
sue on Memetic Algorithms 12 (3), 273-302.

Mallipeddi, R., Suganthan, P., Pan, Q. & Tasgetiren, M. 2011. Differential evo-
lution algorithm with ensemble of parameters and mutation strategies. Ap-
plied Soft Computing 11 (2), 1679-1696. The Impact of Soft Computing for the
Progress of Artificial Intelligence.

Mallipeddi, R. & Suganthan, P. 2008. Empirical study on the effect of population
size on differential evolution algorithm. In Proceedings of the IEEE Congress
on Evolutionary Computation, 3663-3670.

Mann, H. B. & Whitney, D. R. 1947. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. The Annals of Mathematical
Statistics 18 (1), 50-60.

Michalewicz, Z. 1996. Genetic algorithms + data structures = evolution programs
(3rd ed.). London, UK: Springer-Verlag.

Mininno, E., Cupertino, F. & Naso, D. 2008. Real-valued compact genetic algo-
rithms for embedded microcontroller optimization. IEEE Transactions on Evo-
lutionary Computation 12 (2), 203-219.

94

Mininno, E., Neri, E, Cupertino, F. & Naso, D. 2011. Compact differential evolu-
tion. IEEE Transactions on Evolutionary Computation 15 (1), 32-54.

Molina, D. 2005. Adaptive local search parameters for real-coded memetic al-
gorithm. In Proceedings of the IEEE Congress on Evolutionary Computation,
888-895.

Miihlenbein, H., Schomisch, M. & Born, J. 1991. The parallel genetic algorithm as
function optimizer. Parallel Computing 17 (6-7), 619-632.

Miihlenbein, H., Bendisch, J. & Voigt, H.-M. 1996. From recombination of genes
to the estimation of distributions ii. continuous parameters. In PPSN, 188-197.

Miihlenbein, H. & Paass, G. 1996. From recombination of genes to the estimation
of distributions i. binary parameters. In PPSN, 178-187.

Nearchou, A. C. & Omirou, S. L. 2006. Differential evolution for sequencing and
scheduling optimization. Journal of Heuristics 12 (6), 395-411.

Nelder, A. & Mead, R. 1965. A simplex method for function optimization. Com-
putation Journal Vol 7, 308-313.

Neri, E,, Cotta, C. & Moscato, P. 2011. Handbook of Memetic Algorithms, Vol. 379.
Springer. Studies in Computational Intelligence.

Neri, E,, Mininno, E. & Kérkkdinen, T. 2010. Noise analysis compact genetic algo-
rithm. In Applications of Evolutionary Computation, Vol. 6024. Springer. Lec-
ture Notes in Computer Science, 602-611.

Neri, F. & Makinen, R. A. E. 2007. Hierarchical evolutionary algorithms and noise
compensation via adaptation. In S. Yang, Y. S. Ong & Y. Jin (Eds.) Evolution-
ary Computation in Dynamic and Uncertain Environments. Springer. Studies
in Computational Intelligence, 345-369.

Neri, F. & Tirronen, V. 2008. On memetic differential evolution frameworks: a
study of advantages and limitations in hybridization. In Proceedings of the
IEEE World Congress on Computational Intelligence, 2135-2142.

Neri, E. & Tirronen, V. 2009. Scale factor local search in differential evolution.
Memetic Computing 1 (2), 153-171.

Neri, F. & Tirronen, V. 2010. Recent advances in differential evolution: A review
and experimental analysis. Artificial Intelligence Review 33 (1-2), 61-106.

Neri, F,, Toivanen, J.I., Cascella, G. L. & Ong, Y. S. 2007a. An adaptive multimeme
algorithm for designing HIV multidrug therapies. IEEE/ACM Transactions on
Computational Biology and Bioinformatics 4 (2), 264-278.

Neri, F, Toivanen, J. I. & Mékinen, R. A. E. 2007b. An adaptive evolutionary al-
gorithm with intelligent mutation local searchers for designing multidrug ther-
apies for HIV. Applied Intelligence 27 (3), 219-235.

95

Neri, E, Tirronen, V., Karkkdinen, T. & Rossi, T. 2007c. Fitness diversity based
adaptation in multimeme algorithms: A comparative study. In Proceedings of
the IEEE Congress on Evolutionary Computation, 2374-2381.

Neri, F, Tirronen, V. & Kéarkkdinen, T. 2009. Enhancing differential evolution
frameworks by scale factor local search - part II. In Proceedings of the IEEE
Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE Press.
CEC’09, 118-125.

Noman, N. & Iba, H. 2008. Accelerating differential evolution using an adaptive
local search. IEEE Transactions on Evolutionary Computation 12 (1), 107-125.

Ong, Y. S. & Keane, A. J. 2004. Meta-lamarkian learning in memetic algorithms.
IEEE Transactions on Evolutionary Computation 8 (2), 99-110.

Ong, Y.-S., Lim, M.-H. & Chen, X. 2010. Memetic computation-past, present and
future. IEEE Computational Intelligence Magazine 5 (2), 24-31.

Passino, K. M. 2002. Biomimicry of bacterial foraging for distributed optimization
and control. IEEE Control Systems Magazine 22 (3), 52-67.

Paul, T. K. & Iba, H. 2003. Real-coded estimation of distribution algorithm. In Pro-
ceedings of the Fifth Metaheuristics International Conference (MIC2003), 60-1-
60-6.

Pelikan, M. & Miihlenbein, H. 1999. The bivariate marginal distribution algo-
rithm. In R. Roy, T. Furuhashi & P. K. Chawdhry (Eds.) Advances in Soft Com-

puting - Engineering Design and Manufacturing. London: Springer-Verlag,
521-535.

Pelikan, M., Goldberg, D. E. & Cantt-Paz, E. 2000. Linkage problem, distribution
estimation, and bayesian networks. Evol. Comput. 8, 311-340.

Pelikan, M., Goldberg, D. E. & Lobo, F. G. 2002. A survey of optimization by
building and using probabilistic models. Comput. Optim. Appl. 21, 5-20.

Pelikan, M. 2005. Hierarchical Bayesian Optimization Algorithm: Toward a New
Generation of Evolutionary Algorithms (1st edition). Springer. Studies in Fuzzi-
ness and Soft Computing.

Plagianakos, V. P., Tasoulis, D. K. & Vrahatis, M. N. 2008. A review of major ap-
plication areas of differential evolution. In U. K. Chakraborty (Ed.) Advances
in Differential Evolution, Vol. 143. Springer. Studies in Computational Intelli-
gence, 197-238.

Platel, M. D., Schliebs, S. & Kasabov, N. 2009. Quantum-inspired evolutionary
algorithm: a multimodel eda. Trans. Evol. Comp 13, 1218-1232.

Price, K. & Storn, R. 1997. Differential evolution: A simple evolution strategy for
tast optimization. Dr. Dobb’s J. Software Tools 22 (4), 18-24.

96

Price, K. V. 1999. Mechanical engineering design optimization by differential evo-
lution. In D. Corne, M. Dorigo & F. Glover (Eds.) New Ideas in Optimization.
McGraw-Hill, 293-298.

Price, K. V., Storn, R. & Lampinen, J. 2005. Differential Evolution: A Practical
Approach to Global Optimization. Springer.

Qin, A. K,, Huang, V. L. & Suganthan, P. 2009. Differential evolution algorithm
with strategy adaptation for global numerical optimization. IEEE Transactions
on Evolutionary Computation 13, 398—417.

Qin, A. K. & Suganthan, P. 2005. Self-adaptive differential evolution algorithm for
numerical optimization. In Proceedings of the IEEE Congress on Evolutionary
Computation, Vol. 2, 1785-1791.

Qing, A. 2008. A study on base vector for differential evolution. In Proceedings
of the IEEE Congress on Evolutionary Computation, 550-556.

Rahnamayan, S., Tizhoosh, H. & Salama, M. M. A. 2006a. Opposition-based dif-
ferential evolution for optimization of noisy problems. In Proceedings of the
IEEE Congress on Evolutionary Computation, 1865-1872.

Rahnamayan, S., Tizhoosh, H. R. & Salama, M. M. 2006b. Opposition-based dif-
ferential evolution algorithms. In Proceedings of the IEEE Congress on Evolu-
tionary Computation, 2010-2017.

Rahnamayan, S., Tizhoosh, H. R. & Salama, M. M. 2008. Opposition-based differ-
ential evolution. IEEE Transactions on Evolutionary Computation 12 (1), 64-79.

Rahnamayan, S. & Wang, G. G. 2008. Solving large scale optimization problems
by opposition-based differential evolution (ode). WSEAS Transactions on Com-
puters 7 (10), 1792-1804.

Rastegar, R. & Hariri, A. 2006. A step forward in studying the compact genetic
algorithm. Evolutionary Computation 14 (3), 277-289.

Rechenberg, 1. 1971. Evolutionsstrategie — Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Technical University of Berlin.
Ph. D. Thesis.

Rosenbrock, H. H. 1960. An automatic method for finding the greatest or least
value of a function. The Computer Journal 3 (3), 175-184.

Rudolph, G. 2001. Self-adaptive mutations may lead to premature convergence.
IEEE Transactions on Evolutionary Computation 5 (4), 410-414.

Russell, S. J. & Norvig, P. 2003. Artificial Intelligence: A Modern Approach (2nd
ed.). Prentice Hall.

97

Ronkkonen, J., Kukkonen, S. & Price, K. V. 2005. Real-parameter optimization
with differential evolution. In Proceedings of IEEE International Conference on
Evolutionary Computation, Vol. 1, 506-513.

Sastry, K. & Xiao, G. 2001. Cluster optimization using extended compact genetic
algorithm.

Sastry, K., Goldberg, D. E. & Johnson, D. D. 2007. Scalability of a hybrid extended
compact genetic algorithm for ground state optimization of clusters. Materials
and Manufacturing Processes 22 (5), 570-576.

Sastry, K. & Goldberg, D. E. 2000. On Extended Compact Gentic Algorithm.

Schwefel, H.-P. 1965. Kybernetische Evolution als Strategie der experimentellen
Forschung in der Stromungstechnik. Technical University of Berlin, Hermann
Fottinger-Institute for Fluid Dynamics. Ph. D. Thesis.

Seront, G. & Bersini, H. 2000. A new ga-local search hybrid for continuous opti-
mization based on multi-level single linkage clustering. In GECCO, 90-95.

Shi, Y. & Eberhart, R. 1998. A modified particle swarm optimizer. In IEEE World
Congress on Computational Intelligence, 69-73.

Sing, T. N., Teo, J. & Hijazi, M. H. A. 2007. Empirical testing on 3-parents differen-
tial evolution (3PDE) for unconstrained function optimization. In Proceedings
of the IEEE Congress on Evolutionary Computation, 2259-2266.

Spall, J. C. 2003. Introduction to Stochastic Search and Optimization (1st edition).
New York, NY, USA: John Wiley & Sons, Inc.

Storn, R. & Price, K. 1997. Differential evolution — a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization
11, 341-359.

Storn, R. & Price, K. 1995. Differential Evolution - a Simple and Efficient Adaptive
Scheme for Global Optimization over Continuous Spaces. ICSI.

Suganthan, P., Hansen, N., Liang,]J. J., Deb, K., Chen, Y.-P., Auger, A. & Tiwari, S.
2005. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Ses-
sion on Real-Parameter Optimization. Nanyang Technological University and
KanGAL.

Tan, K., Chiam, S., Mamun, A. & Goh, C. 2009. Balancing exploration and ex-
ploitation with adaptive variation for evolutionary multi-objective optimiza-
tion. European Journal of Operational Research 197, 701-713.

Tang, K., Yao, X., Suganthan, P.,, MacNish, C., Chen, Y. P, Chen, C. M. & Yang,
Z. 2007. Benchmark Functions for the CEC 2008 Special Session and Compe-
tition on Large Scale Global Optimization. Nature Inspired Computation and
Applications Laboratory, USTC, China.

98

Tasoulis, D. K., Pavlidis, N. G., Plagianakos, V. P. & Vrahatis, M. N. 2004. Parallel
differential evolution. In Proceedings of the IEEE Congress on Evolutionary
Computation, 2023-2029.

Teng, N. S., Teo, J. & Hijazi, M. H. A. 2009. Self-adaptive population sizing for
a tune-free differential evolution. Soft Computing — A Fusion of Foundations,
Methodologies and Applications 13 (7), 709-724.

Teo, J. 2006. Exploring dynamic self-adaptive populations in differential evolu-
tion. Soft Computing — A Fusion of Foundations, Methodologies and Applica-
tions 10 (8), 673-686.

Teo, J. 2005. Differential evolution with self-adaptive populations. In Knowledge-
Based Intelligent Information and Engineering Systems, Vol. 3681. Springer.
Lecture Notes in Computer Science, 1284-1290.

Tirronen, V., Neri, E, Karkkdinen, T., Majava, K. & Rossi, T. 2008. An enhanced
memetic differential evolution in filter design for defect detection in paper pro-
duction. Evolutionary Computation 16, 529-555.

Tirronen, V. & Neri, F. 2009. Differential evolution with fitness diversity self-
adaptation. In R. Chiong (Ed.) Nature-Inspired Algorithms for Optimisation,
Vol. 193. Springer. Studies in Computational Intelligence, 199-234.

Tirronen, V., Neri, F. & Rossi, T. 2009. Enhancing differential evolution frame-
works by scale factor local search - part I. In IEEE Congress on Evolutionary
Computation, 94-101.

Toivanen, J. I., Mdkinen, R. A. E,, Jarvenpdd, S., Yld-Oijala, P. & Rahola, J. 2009.
Electromagnetic sensitivity analysis and shape optimization using method of
moments and automatic differentiation. IEEE Transactions on Antennas &
Propagation 57 (1), 168-175.

Toivanen, J. I. & Mékinen, R. A. E. 2011. Implementation of sparse forward mode
automatic differentiation with application to electromagnetic shape optimiza-
tion. Optimization Methods and Software 26 (4-5), 601-616.

Tsutsui, S., Yamamura, M. & Higuchi, T. 1999. Multi-parent recombination with
simplex crossover in real coded genetic algorithms. In Proceedings of the Ge-
netic Evol. Comput. Conf. (GECCO), 657-664.

Vesterstrom, J. & Thomsen, R. 2004. A comparative study of differential evolution
particle swarm optimization and evolutionary algorithms on numerical bench-
mark problems. In Proceedings of the IEEE Congress on Evolutionary Compu-
tation, Vol. 3, 1980-1987.

Wang, H., Wu, Z. & Rahnamayan, S. 2011. Enhanced opposition-based differ-
ential evolution for solving high-dimensional continuous optimization prob-
lems. Soft Computing-A Fusion of Foundations, Methodologies and Applica-

tions N/A (N/A). to appear.

99

Weber, M., Tirronen, V. & Neri, F. 2010. Scale factor inheritance mechanism in
distributed differential evolution. Soft Computing - A Fusion of Foundations,
Methodologies and Applications 14 (11), 1187-1207.

Wilcoxon, E. 1945. Individual comparisons by ranking methods. Biometrics Bul-
letin 1 (6), 80-83.

Wolpert, D. & Macready, W. 1997. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1 (1), 67-82.

Xu, X, Li, Y, Fang, S., Wu, Y. & Wang, F. 2008. A novel differential evolution
scheme combined with particle swarm intelligence. In Proceedings of the IEEE
Congress on Evolutionary Computation, 1057-1062.

Yao, X., Liu, Y. & Lin, G. 1999. Evolutionary programming made faster. IEEE
Transactions on Evolutionary Computation 3, 82-102.

Yuan, B. & Gallagher, M. 2005. Experimental results for the special session on
real-parameter optimization at CEC 2005: A simple, continuous EDA. In Pro-
ceedings of the IEEE Conference of Evolutionary Computation, 1792-1799.

Zaharie, D. 2003. Control of population diversity and adaptation in differen-
tial evolution algorithms. In D.Matousek & P. Osmera (Eds.) Proceedings of
MENDEL International Conference on Soft Computing, 41-46.

Zamuda, A., Brest, J., Boskovi¢, B. & Zumer, V. 2007. Differential evolution for
multiobjective optimization with self adaptation. In Proceedings of the IEEE
Congress on Evolutionary Computation, 3617-3624.

Zamuda, A., Brest, J., Boskovi¢, B. & Zumer, V. 2008. High-dimensional real-
parameter optimization using self-adaptive differential evolution algorithm
with population size reduction. In Proceedings of the IEEE World Congress on
Computational Intelligence, 2032-2039.

Zhang, Q., Sun, J., Tsang, E., Ford, J. & others 2004. Hybrid estimation of dis-
tribution algorithm for global optimization. Engineering Computations 21 (1),
91-107.

Zhenyu, G., Bo, C., Min, Y. & Binggang, C. 2006. Self-adaptive chaos differential
evolution. In Advances in Natural Computation, Vol. 4221. Springer. Lecture
Notes in Computer Science, 972-975.

Zielinski, K., Wang, X. & Laur, R. 2008. Comparison of adaptive approaches for
differential evolution. In Proceedings of the 10th international conference on
Parallel Problem Solving from Nature: PPSN X. Berlin, Heidelberg: Springer-
Verlag, 641-650.

100

Zielinski, K., Weitkemper, P., Laur, R. & Kammeyer, K.-D. 2006. Parameter study
for differential evolution using a power allocation problem including interfer-
ence cancellation. In Proceedings of the IEEE Congress on Evolutionary Com-
putation, 1857-1864.

ORIGINAL PAPERS

P1

DISTURBED EXPLOITATION COMPACT DIFFERENTIAL
EVOLUTION FOR LIMITED MEMORY OPTIMIZATION
PROBLEMS

by

Ferrante Neri, Giovanni Iacca and Ernesto Mininno 2011

In Information Sciences, volume 181 (2011), issue 12, pages 2469-2487

Reproduced with kind permission of Elsevier Inc.

PII

COMPOSED COMPACT DIFFERENTIAL EVOLUTION

by

Giovanni lacca, Ernesto Mininno and Ferrante Neri 2011

In Evolutionary Intelligence, volume 4, number 1, pages 17-29

Reproduced with kind permission of Springer-Verlag.

PIII

NOISE ANALYSIS COMPACT DIFFERENTIAL EVOLUTION

by

Giovanni lacca, Ferrante Neri and Ernesto Mininno 2011

In International Journal of Systems Science, to appear

Reproduced with kind permission of Taylor & Francis.

PIV

GLOBAL SUPERVISION FOR COMPACT DIFFERENTIAL

EVOLUTION

by

Giovanni Iacca, Rammohan Mallipeddi, Ernesto Mininno, Ferrante Neri and

Ponnuthurai Nagaratnam Suganthan 2011

In 2011 IEEE Symposium on Differential Evolution Proceedings, pages 1-8

Reproduced with kind permission of IEEE.

PV

SUPER-FIT AND POPULATION SIZE REDUCTION IN

COMPACT DIFFERENTIAL EVOLUTION

by

Giovanni Iacca, Rammohan Mallipeddi, Ernesto Mininno, Ferrante Neri and

Ponnuthurai Nagaratnam Suganthan 2011

In 2011 IEEE Workshop on Memetic Computing Proceedings, pages 1-8

Reproduced with kind permission of IEEE.

PVI

OPPOSITION-BASED LEARNING IN COMPACT

DIFFERENTIAL EVOLUTION

by

Giovanni Iacca, Ferrante Neri and Ernesto Mininno 2011

In Application of Evolutionary Computation, volume 6624 /2011 of Lecture
Notes in Computer Science, pages 264-273

Reproduced with kind permission of Springer-Verlag Berlin/Heidelberg.

PVII

ENSEMBLE STRATEGIES IN COMPACT DIFFERENTIAL
EVOLUTION

by

Rammohan Mallipeddi, Giovanni lacca, Ponnuthurai Nagaratnam Suganthan,
Ferrante Neri and Ernesto Mininno 2011

In 2011 IEEE Congress on Evolutionary Computation Proceedings, pages 1972 -
1977

Reproduced with kind permission of IEEE.

PVIII

OCKHAM’S RAZOR IN MEMETIC COMPUTING: THREE

STAGE OPTIMAL MEMETIC EXPLORATION

by

Giovanni lacca, Ferrante Neri, Ernesto Mininno, Yew-Soon Ong and Meng-Hiot

Lim 2011

In Information Sciences, accepted

Reproduced with kind permission of Elsevier Inc.

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 INTRODUCTION
	1.1 Local Continuous Optimization
	1.2 Global Continuous Optimization

	2 META-HEURISTICS
	2.1 Evolutionary Algorithms
	2.2 Swarm Intelligence
	2.3 Memetic Algorithms andMemetic Computing

	3 DIFFERENTIAL EVOLUTION
	3.1 Standard Differential Evolution
	3.2 Algorithmic Issues in Differential Evolution
	3.3 Additional Components in Differential Evolution
	3.4 Modified Structures of Differential Evolution

	4 COMPACT ALGORITHMS
	4.1 Estimation of Distribution Algorithms
	4.2 Binary Compact Genetic Algorithm
	4.3 Elitism in Compact Algorithms
	4.4 Real Compact Genetic Algorithm
	4.5 Compact Differential Evolution

	5 CONTRIBUTION OF THISWORK
	5.1 Memetic Implementations of compact Differential Evolution
	5.2 Structured Population in Compact Algorithms
	5.3 Additional Components in compact Differential Evolution
	5.4 A Different Memory-Saving Approach: Single-SolutionMC
	5.5 Comparative Analysis of the Proposed Algorithms

	6 CONCLUSION
	YHTEENVETO (FINNISH SUMMARY)
	APPENDICES
	ACRONYMS
	REFERENCES
	ORIGINAL PAPERS
	DISTURBED EXPLOITATION COMPACT DIFFERENTIAL EVOLUTION FOR LIMITED MEMORY OPTIMIZATION PROBLEMS
	COMPOSED COMPACT DIFFERENTIAL EVOLUTION
	NOISE ANALYSIS COMPACT DIFFERENTIAL EVOLUTION
	GLOBAL SUPERVISION FOR COMPACT DIFFERENTIAL EVOLUTION
	SUPER-FIT AND POPULATION SIZE REDUCTION IN COMPACT DIFFERENTIAL EVOLUTION
	OPPOSITION-BASED LEARNING IN COMPACT DIFFERENTIAL EVOLUTION
	ENSEMBLE STRATEGIES IN COMPACT DIFFERENTIAL EVOLUTION
	OCKHAM’S RAZOR IN MEMETIC COMPUTING: THREE STAGE OPTIMAL MEMETIC EXPLORATION

