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ABSTRACT

Hartikainen, Markus
Approximation through Interpolation in Nonconvex Multiobjective Optimiza-
tion
Jyväskylä: University of Jyväskylä, 2011, 74 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 141)
ISBN ISBN 978-951-39-4535-0 (nid.)
ISBN 978-951-39-4536-7 (PDF)
Finnish summary
Diss.

In this thesis, we develop a PAINT method that constructs a Pareto front ap-
proximation by interpolating between a given set of Pareto optimal solutions to
a (possibly nonconvex) multiobjective optimization problem. The Pareto front
approximation produced by the PAINT method implies a computationally inex-
pensive mixed integer linear surrogate problem for the original multiobjective
optimization problem. The PAINT method is especially useful in alleviating the
computational burden of solving computationally expensive multiobjective opti-
mization problems with interactive multiobjective optimization methods.

The theory behind the PAINT method is based on the concept of inherent
nondominance, which is also introduced in this thesis. We show that inherent
nondominance is a desired property for a Pareto front approximation. In addi-
tion, the PAINT method utilizes concepts from computational geometry by using
the Delaunay triangulation as the basis for the approximation.

We illustrate the usefulness of the PAINT method by solving two multiob-
jective optimization problems with the PAINT method and the interactive NIM-
BUS method. The first problem is a three-objective heat exchanger network syn-
thesis problem and the second one is a five-objective problem of designing and
operating a wastewater treatment plant. In both problems, the PAINT method
proved to be a very useful tool.

In addition, we introduce a new IND-NIMBUS® PAINT module. With this
new module, one can use the PAINT method together with the interactive NIM-
BUS method within a single graphical user interface. The PAINT module is used
in the wastewater treatment plant problem mentioned above.

Keywords: Multiobjective optimization, interactive decision making, computa-
tional cost, Pareto front approximation, surrogate problem, Pareto op-
timality, PAINT
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1 INTRODUCTION

Optimization is the science of finding the best alternative from a set of possible
alternatives. Optimization problems can be found in a variety of areas of life.
Real life optimization problems include (among many others) finding the optimal
use of time e.g., in writing a PhD. thesis and the optimal design of a wastewater
treatment plant.

Often for optimization, one needs to model the quantities to be optimized
and the matters constraining the problem. Mathematical modeling is usually
used for this purpose. It is an art itself to model the phenomena mathematically
accurately enough to be able to use the models in optimization, but not to model
anything redundant in order not to distract oneself from the optimization task.
This thesis recognizes the difficulties in mathematical modeling, but in general,
we assume that we are given models that are accurate enough for optimization.

Many real-life phenomena do not have mathematical models that define
them in a closed form, i.e., as a mathematical function. This issue has been partly
solved by using computer simulations. Many phenomena can be simulated with
computers but cannot be modeled in a closed form. This has led to a vast increase
in the so-called simulation-based optimization, where optimization methods are
combined with simulators (see e.g., [3, 28, 29]). More on simulation-based opti-
mization can be found in Section 3.1.

In practice, many optimization problems tend to have multiple conflicting
objectives that need to be considered simultaneously. For example, when buying
a car, one needs to consider e.g., performance, fuel consumption, price and ap-
pearance. One would naturally want a car with all the best features, but in real
life this kind of cars do not exist. This leads to making compromises between the
features. Multiobjective optimization is a systematic approach to finding good
compromise solutions to problems with multiple conflicting objectives.

An optimization problem with multiple objectives appears different depend-
ing on one’s role in the decision making process. A decision maker is an expert in
the application area, whose aspiration is to find the best possible solution accord-
ing to his/her preferences as easily as possible. The decision maker may have
some preferences on ways of finding the solution, but usually he/she is merely
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expected to be able to articulate preferences on different solutions to the problem.
The analyst (or the facilitator) is responsible for helping the decision maker find
the best solution according to his/her preferences. How the decision maker and
the analyst interact in solving the problem depends on the choice of the multiob-
jective optimization method.

There are different philosophies about the involvement of the decision maker
in solving a multiobjective optimization problem. This leads to a categorization of
multiobjective optimization methods into no-preference methods, a priori meth-
ods, a posteriori methods and interactive methods, as categorized e.g., in [38, 55].
In no-preference methods, the decision maker is not asked any questions but the
analyst merely finds a compromise solution according to some preset criteria.
No-preference methods are only applicable to a very limited class of problems
because the decision maker cannot affect the solution found. In a priori methods,
the decision maker is asked for preference information and then the best solution
according to this is found. The drawback with a priori methods is that the deci-
sion maker may find it hard to define preferences without ever seeing attainable
solutions or seeing how the preferences affect the solutions found. In a posteriori
methods, a representative set of solutions is found and the decision maker is ex-
pected to choose a preferred one. The difficulty with a posteriori methods is that
generating a representative solution set may be time-consuming and choosing a
preferred solution from a large set of solutions may be hard. In interactive meth-
ods, it is understood that any preference information given by the decision maker
is only partial and may even be flawed. Thus, the decision maker is allowed to
explore different solutions and guide the interactive method to find better solu-
tions. For examples of different multiobjective optimization methods and further
explanation, see e.g., [55]. Further aspects of a posteriori and interactive methods
are discussed also in Sections 2.3 and 2.4 of this thesis, respectively.

The potential of the philosophy behind interactive methods in finding pre-
ferred solutions has been noted e.g., in [61]. The iterative nature of interactive
methods allows the decision maker to learn about the problem and his/her pref-
erences [61]. In addition, the decision maker can find a preferred solution without
examining too many solutions, which is seen as a drawback for a posteriori meth-
ods e.g., in [46]. Furthermore, the cognitive load does not grow too high, because
only easily understandable questions (e.g., classification of objectives, which has
been found cognitively valid in [46]) are asked at a time (see also [61]). For more
information about interactive methods, see e.g., [55, 61] or Section 2.4 in this the-
sis.

However, a class of problems challenges interactive methods: computation-
ally expensive problems i.e., problems where function evaluations take a long
time. In interactive methods, the idea is that the decision maker is present while
solutions corresponding to his/her current preferences are computed and this is
done on each iteration. For computationally expensive problems, this time may
be even days (e.g., for problems like the one studied in [37]). This may lead to the
decision maker getting impatient and may even cause him to lose his/her trust
in the method, as argued in [45]. Chapter 3 includes further discussion about
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computational cost.
In this thesis, we develop an approach to solving (possibly nonconvex)

computationally expensive multiobjective optimization problems with interac-
tive methods so that the time that the decision maker has to wait between iter-
ations gets shorter. Our approach to solving these problems is roughly the fol-
lowing: (1) generate a set of solutions to the problem, (2) approximate the pos-
sible objective values of the intermediate solutions between the generated ones,
(3) find a preferred one from the approximate objective values according to the
decision maker’s preferences with an interactive method (4) find the solution to
the original problem that gives objective values closest to the approximate ones.
In practice, Step (1) can be done with any a posteriori multiobjective optimiza-
tion method. Step (2) is done with a novel PAreto front INTerpolation (PAINT)
method, which is developed in this thesis. Step (3) is done by solving with an in-
teractive method the computationally inexpensive multiobjective mixed integer
linear problem that represents the approximate objective function values con-
structed with the PAINT method. This computationally inexpensive problem
is also explained in this thesis and can be seen as a surrogate for the original
problem in decision making. The objectives of the surrogate problem have the
same meaning as the objectives of the original problem and, thus, the decision
maker should be able to dictate his/her preferences on them. In Step (4), a vector
containing the approximate objective values that are preferred in the Step (3) is
taken as the preference of the decision maker for a reference point based a priori
method. More specifically, we suggest using an achievement scalarizing problem
from [86]. With our approach, the iterations of the interactive method are fast,
because the mixed integer surrogate problem is computationally inexpensive.

This thesis is a collection of following papers with the author of this thesis as
the main author: Paper [PI] introduces the notion of inherent nondominance for
approximating the intermediate solutions of a multiobjective optimization prob-
lem and introduces a general form for the surrogate problem that is implied by
the Pareto front approximation. Paper [PII] investigates the mathematical basis
of using ideas from computational geometry in interpolating between a given set
of solutions of a multiobjective optimization problem. Paper [PIII] applies the
ideas from the previous paper to solve a multiobjective heat exchanger network
synthesis problem. Paper [PIV] introduces the PAINT method that produces the
approximation introduced in [PII] and gives a mixed integer linear formulation
for the surrogate problem. As shown in Paper [PIV], this new formulation of the
surrogate problem can be solved without computational cost with appropriate
methods. Finally, Paper [PV] shows how the PAINT method can be used with
the interactive NIMBUS method to solve a computationally expensive multiob-
jective optimization problem of designing and operating a wastewater treatment
plant. Paper [PV] also includes a description of a new IND-NIMBUS® PAINT
module that enables the use of the PAINT method with the interactive NIMBUS
method.

This rest of this introduction has been divided into two parts. The first part
of the introduction consists of Chapters 2, 3 and 4, and the supporting theme in
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it is giving background for our research and motivating it. More specifically, in
Chapter 2, basic definitions and methods of multiobjective optimization relevant
for this thesis are given. In Chapter 3, the notion of computationally expensive
multiobjective optimization problems is defined, some reasons for computational
cost of optimization problems are discussed and approaches to solving compu-
tationally expensive multiobjective optimization problems are summarized. In
Chapter 4, the PAINT method is motivated with an example problem and our
research objectives are given. The second part of this introduction consists of
Chapters 5, 6, 7 and 8, and it describes our research and our contribution. In
Chapter 5, the PAINT method is introduced and its use in solving computation-
ally expensive multiobjective optimization problems is discussed. Chapter 6 in-
cludes two applications. Finally, in Chapter 7, author’s contribution in this thesis
is described, and Chapter 8 concludes with some ideas for further research.



2 MULTIOBJECTIVE OPTIMIZATION

2.1 Multiobjective optimization problem

Figure 1 illustrates graphically the basic concepts of multiobjective optimization.
Mathematically, a multiobjective optimization problem can be defined as

min ( f1(x), . . . , fk(x))
subject to x ∈ S,

(MOP)

where fi : S → R are the objective functions, k is the number of objectives and
S ⊂ Rn is the feasible set. A vector x ∈ S is called a (feasible) solution. Often a
vector valued objective function f is defined as

f : S → Rk : x �→ ( f1(x), . . . , fk(x)).

With the function f one can define the outcomes z = f (x), where x ∈ S, and the
outcome (or feasible objective) set f (S) ⊂ Rk. The set Rk is called the outcome (or
objective) space. Often, the feasible set is defined by constraint functions gi, i =
1, . . . , a, i.e., the feasible set can be written as S = {x ∈ Rn : gi(x) ≤ 0 for all i =
1, . . . , a}. In this thesis, we consider that we want to choose a single solution
to problem (MOP) for implementation. In this thesis, this process of choosing a
single solution for implementation is called solving the problem.

Without preference information, feasible solutions of a multiobjective op-
timization problem cannot be completely ordered like the solutions of a single
objective optimization problem. There is, however, a natural partial ordering of
the feasible set given by the so-called (Pareto) dominance. We say that a vec-
tor z1 in the outcome space (Pareto) dominates another vector z2 in the outcome
space and denote z1 ≤ z2, if z1

i ≤ z2
i for all i ∈ {1, . . . , k} and z1

j < z2
j for some

j ∈ {1, . . . , k}. In addition, we say that a solution x1 ∈ S (Pareto) dominates
another solution x2 ∈ S if the outcome f (x1) dominates outcome f (x2). Further-
more, a feasible solution x′ ∈ S is called Pareto optimal, if there does not exist a
feasible solution that dominates it, and an outcome z′ is said to be Pareto optimal,
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FIGURE 1 The basic concepts of multiobjective optimization with n = 2 and k = 2. The
solution x′ and the outcome f (x′) are Pareto optimal. The vectors znad, zideal

and zutopia are respectively the nadir vector, the ideal vector and a utopia
vector.

if it is given by a Pareto optimal solution. The set of Pareto optimal outcomes is
called the Pareto front and denoted by PF. Finally, a solution x′ ∈ S is called
weakly Pareto optimal, if there does not exist another solution x′′ ∈ S so that
fi(x′′) < fi(x′) for all i = 1, . . . , k. In this thesis, we also need a definition of
ε-proper Pareto optimality. A solution x∗ ∈ S is ε-properly Pareto optimal (in the
sense of Wierzbicki, see [86]), if there does not exist another solution x∗∗ ∈ S so
that dist( f (x∗) − f (x∗∗), Rk−) ≤ ε‖x∗ − x∗∗‖, where dist() is the Euclidean dis-
tance and ‖ · ‖ is the Euclidean norm. If a solution is ε-properly Pareto optimal
for some ε > 0, but ε is either unknown or not important, then it is said that the
solution is properly Pareto optimal. A locally Pareto optimal solution is a Pareto
optimal solution to multiobjective optimization problem, where only a small ball
in the feasible set is regarded.

In this thesis, we need to consider nondominated vectors in sets in the ob-
jective space and for that we need a couple of definitions. For a set A ⊂ Rk, the
set PF(A) is the set of vectors in A that are not dominated by any vector in A. The
Edgeworth Pareto hull of problem (MOP) is the set EPH = {z + y : z ∈ f (S), y ∈
Rk

+}, which is the largest set in the objective space with PF(EPH) = PF.
Some important vectors in the objective space are the nadir vector, the ideal

vector and a utopia vector. A vector znad ∈ Rk is called a nadir vector of a multi-
objective optimization problem (MOP), if

znad
i = max{zi : z ∈ PF}

for all i = 1, . . . , k. A vector zideal ∈ Rk is called the ideal vector of problem
(MOP), if

zideal
i = min{zi : z ∈ f (S)}

for all i = 1, . . . , k. Finally, a vector zutopia ∈ Rk with zutopia
i = zideal

i − δ for all
i = 1, . . . , k and for some small δ > 0 is called a utopia vector of problem (MOP).

Since this thesis is about Pareto front approximations and their use in solv-
ing computationally expensive multiobjective optimization problems, we need
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FIGURE 2 The real Pareto front (black curve), a Pareto front representation (black
dots) and a Pareto front approximation constructed with the PAINT method
(green line segments)

to set our terminology here (that is not completely consistent throughout the lit-
erature). First, we adopt the terminology of [75], and define that a Pareto front
approximation is a set of points in the outcome space considered a surrogate of
(a part of) the Pareto front usually of a simpler structure than the approximated
set. Note that we distinguish between terms approximated (the object of approx-
imation) and approximate (something that approximates). With this definition,
a vector in a Pareto front approximation is called an approximate Pareto optimal
outcome signifying that it approximates Pareto optimal outcomes. In addition,
we call a discrete set of Pareto optimal outcomes on the Pareto front a Pareto front
representation. In this way, we reserve the word Pareto front approximation for
something that is more than a discrete set of computed outcomes. Figure 2 clears
these definitions by showing a possible Pareto front, a Pareto front representa-
tion and a Pareto front approximation constructed with the PAINT method (de-
veloped in this thesis) for a two-objective optimization problem. We also classify
different Pareto front approximations (following [75]) to inner approximations,
outer approximations, sandwich approximations and others. An inner (outer)
approximation contains points a in the outcome space so that, if ai = zi, where
the vector z ∈ Rk is a Pareto optimal outcome and the index i ∈ {1, . . . , k}, then
aj ≥ zj (aj ≤ zj) for all j ∈ {1, . . . , k} \ {i}. A sandwich approximation contains
both an inner approximation and an outer approximation.

Next, in Section 2.2, we will describe different scalarizing functions used in
multiobjective optimization. Scalarizing functions are essential to multiobjective
optimization as they transform multiobjective optimization problems into single
objective ones. Often, they include a way of taking into account the decision
maker’s preferences while constructing the problem.
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2.2 Scalarizing Multiobjective Optimization Problems

The purpose of scalarization is to turn multiobjective optimization problems (MOP)
into single objective optimization problems. Usually, these scalarizations include
a way of taking into account the decision maker’s preferences. Those preferences
can be elicited as e.g., trade-off information, desirable objective function values
or marginal rates of substitution and they are incorporated into the scalarization
as parameters. Through scalarization, it is possible to take advantage of the well-
developed methods of single objective optimization.

Technically, the scalarization is accomplished by introducing a new objec-
tive function, which somehow depends on the objective function values of the
multiobjective optimization problem and possibly by introducing additional con-
straints. All the scalarizations discussed in this thesis are of the form

min sp( f (x))
subject to x ∈ Sp,

(SCAL)

where the p is a parameter describing the preferences of the decision maker in
a set of possible (scalarization dependent) parameters P, sp : f (S) → R is a
scalarizing function depending on the parameter p and Sp ⊂ Rn is a subset of the
feasible set S also depending on the parameter p.

Desirable properties of scalarizations are discussed e.g., in [79, 83, 85, 86].
With the notation of scalarization (SCAL) the most important properties of scalar-
ization functions can be stated as

1. for any p ∈ P, each optimal solution to problem (SCAL) is (perhaps weakly
or properly) Pareto optimal, and

2. each (perhaps weakly or properly) Pareto optimal solution is an optimal
solution to problem (SCAL) for some p ∈ P.

In addition, it is evident from a practical point of view that there should be some
understandable way of eliciting the parameters of the scalarization and it should
also be easy to understand how the solutions obtained as optimal values of the
scalarization correspond to the given parameters. For further desirable proper-
ties, see the references mentioned above.

Different scalarizations are compared e.g., in [59, 85, 86]. In the follow-
ing subsections, examples of different scalarizations are given. These are chosen
based on author’s preferences, their popularity or because they are used in the
interactive synchronous NIMBUS method. The interactive NIMBUS method is
later described in Section 2.4.1.

2.2.1 The Linear Scalarization

Linear scalarization (also called the weighted sum or the weighting problem), see
e.g., [55], is perhaps the simplest scalarization available. The linear scalarization
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of (MOP) is optimization problem

min ∑k
i=1 λi fi(x)

subject to x ∈ S
(1)

with weights of the objectives in a vector λ ∈ {λ ∈ [0, 1]k : ∑k
i=1 λi = 1} describ-

ing relative importance of the objectives.
Each optimal solution to problem (1) is at least weakly Pareto optimal and

Pareto optimal, if λi > 0 for all i = 1, . . . , k and, thus, the first desirable property
is satisfied. It is, however, a well-known drawback that, if a multiobjective opti-
mization problem is nonconvex, then there exist so-called unsupported solutions
that do not optimize problem (1) for any λ ∈ {λ ∈ [0, 1]k : ∑k

i=1 λi = 1}. For
details, see e.g., [55].

Furthermore, weights have been criticized for being hard to understand,
see e.g., [55]. As argued e.g., in [86], the typical interpretation of weights through
corresponding marginal substitution rates (mij = wj/wi) does not help, because
the concept of marginal substitution itself is the dual of preference. Finally, as
illustrated in an example in [82], weights that appear good may produce bad so-
lutions and weights that appear bad may produce good solutions. This behavior
of the weights further emphasizes their bad interpretability.

Even though there are many methods for eliciting weights (e.g., swing weigh-
ing, see [27]), we find the previous arguments so compelling that we do not use
weights in this thesis as sole means of representing decision maker’s preferences.
In addition, we find the notion of a global linear preference model too restrictive.
In the following sections, we discuss less restrictive ways of modeling prefer-
ences.

2.2.2 The Epsilon Constraint Problem

The epsilon constraint problem [34] is often the second scalarization that people
come to think of. The epsilon constraint problem related to multiobjective opti-
mization problem (MOP) is

min fj(x)
subject to x ∈ S

fi(x) ≤ εi for all i �= j
(2)

for some j ∈ {1, . . . , k} with epsilon constraints in vector ε ∈ Rk.
Each optimal solution to problem (2) is a weakly Pareto optimal solution to

problem (MOP). Furthermore, if a solution x∗ is an optimal solution to problem
(2) for all j = 1, . . . , k with εi = fi(x∗) for all i = 1, . . . , k, then the solution x∗ is a
Pareto optimal solution to problem (MOP). Finally, each Pareto optimal solution
to problem (MOP) is an optimal solution to problem (2) with epsilon constraints
εi = fi(x∗) for all i = 1, . . . , k. Thus, the epsilon constraint problem satisfies the
two desirable properties for scalarizations. For details, see e.g., [55].

In addition, the epsilon constraints are easy to understand and it is fairly
easy to interpret how the change in the constraints would change the optimal
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solution. The epsilon constraint, however, has some drawbacks, also. If the ep-
silon constraints are too optimistic, problem (2) might not have any solutions. In
addition, if the constraints are too pessimistic, the entire possible minimization
is done on the jth objective, which may not be preferable by the decision maker.
Thus, the decision maker must have a good understanding about the problem in
order to use the epsilon constraint problem efficiently. This notion was reflected
in [84], where it was argued that the preferable objective function values given
by the decision maker should be treated as aspirations levels, not as constraints.
This idea is pursued in the so-called achievement scalarizing functions [84, 86],
which are discussed in the following subsection.

2.2.3 Achievement Scalarizing Functions

The study of using aspiration levels in multiobjective optimization led to achieve-
ment scalarizing functions (see [83, 84, 86]). Aspiration levels are values of objec-
tives that should desirably be achieved, and they can be represented as a reference
point z̄ ∈ Rk.

Achievement scalarizing functions (here denoted by functions sach : f (S)×
R → R, where the set R is a function dependent set of possible reference points)
are desirably order-consistent, which they further partition into either order-repre-
senting or order-approximating with a precision parameter ε > 0 (see [86] for for-
mal definitions) achievement scalarizing functions. The achievement scalarizing
problem implied by multiobjective optimization problem (MOP) is

min sach( f (x), z̄)
subject to x ∈ S,

(3)

where the reference point is z̄ ∈ R and the function sach is an achievement scalar-
izing function. Assuming that a vector x∗ is an optimal solution to problem (3)
for some z̄ ∈ R, then, according to [86], x∗ is weakly Pareto optimal to problem
(MOP), if the achievement scalarizing function is order-representing, and prop-
erly Pareto optimal to problem (MOP), if the achievement scalarizing function is
order-approximating. On the other hand, if a solution x∗ is weakly Pareto op-
timal and the achievement scalarizing function is order-representing, then x∗ is
an optimal solution to problem (3) with z̄ = f (x∗) and, finally, if a solution x∗
is ε′-properly Pareto optimal, and the achievement scalarizing function is order-
approximating with adequately small precision parameter ε′, then x∗ is an opti-
mal solution to problem (3) with z̄ = f (x∗).

In [86], there exist many order-consistent achievement scalarizing functions
and, in addition, some more recent ones have been introduced e.g., in [69]. In this
thesis, we use only the order-approximating achievement scalarizing problem
mentioned also in [86], which is

min maxi=1,...,k

[
fi(x)−z̄i

znad
i −zutopia

i

]
+ ρ ∑k

i=1
fi(x)

znad
i −zutopia

i

subject to x ∈ S,
(4)
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where the term ρ ∑k
i=1

fi(x)
znad

i −zutopia
i

is called the augmentation term, ρ > 0 is a small

constant, and znad and zutopia are the nadir vector and a utopia vector, respec-
tively. This problem is also used as one of the subproblems in the interactive
synchronous NIMBUS method.

In the next subsection, we introduce the scalarization that is used in the in-
teractive satisficing trade-off method. This scalarization is closely related to the
achievement scalarization function. It was introduced more or less at the same
time with the achievement scalarizing problem (4). The basic question when com-
paring these two scalarizations is how to interpret the objective function values
in a reference point and they have taken slightly different approaches.

2.2.4 The STOM Scalarization

The satisficing trade-off method (commonly known as STOM) is an interactive
multiobjective optimization method, introduced in [67]. The scalarization used
in the STOM method is based on a reference point and, in this thesis, this scalar-
ization is called the STOM scalarization. We will not further discuss the STOM
method in this thesis, but refer to [55, 67] for details. The STOM scalarization is
important for this thesis, because it is used in the interactive synchronous NIM-
BUS method.

The basic formulation of STOM scalarization guarantees only weakly Pareto
optimal solutions. The augmented version of STOM scalarization

min maxi=1,...,k

[
fi(x)−zutopia

i

z̄i−zutopia
i

]
+ ρ ∑k

i=1
fi(x)

z̄i−zutopia
i

subject to x ∈ S,
(5)

however, guarantees (proper) Pareto optimality of the optimal solutions. Here the
constant ρ is again a small positive constant. There are two differences between
the augmented STOM scalarizing function above and the augmented achieve-
ment scalarizing function. First, the term under the maximal operator has changed

from fi(x)−z̄i

znad
i −zutopia

i

to fi(x)−zutopia
i

z̄i−zutopia
i

. The term in the achievement scalarizing func-

tion leads to minimizing the weighted Chebyshef distance from the reference
point, when the STOM scalarizing function leads to minimizing the weighted
Chebyshef distance from a utopia point and the reference point sets weights for
different objectives.

The reason for the augmentation terms in the achievement scalarizing func-
tion and the STOM scalarizing function is the same – to remove weakly Pareto
optimal solutions from their optimal solutions. Note that the STOM scalarizing
function has a slight advantage, since it does not require the computation of the
nadir point, which is not easy, as discussed e.g., in [20]. The decision maker must,
however, be shown the ideal point, so that he/she does not give reference point
values better than that.

As with the achievement scalarizing problem, all the ε-properly Pareto opti-
mal solutions can be attained as optimal solutions to problem (5). The ε depends
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here on the constant ρ. With what was discussed above, this means that the STOM
scalarization (5) satisfies the first desirable property with normal Pareto optimal-
ity and the second one with ε-proper Pareto optimality.

In the next subsection, we expand the possibilities in ways how the de-
cision maker’s preferences can by modeled by introducing two scalarizations
used in the interactive synchronous NIMBUS method. The Synchronous NIM-
BUS method uses four different scalarizations that are the achievement scalariz-
ing function (4), the STOM scalarization (5) and two other scalarizations that are
introduced in the next subsection.

2.2.5 The Specific Scalarizations in the Synchronous NIMBUS

In this section, we give the two remaining scalarizations of the interactive syn-
chronous NIMBUS method. These classifications also allow the decision maker
to classify the objectives into classes depending on preferred changes in their val-
ues. In this section, we will only describe the scalarizations and their use in the
synchronous NIMBUS method is discussed in Section 2.4.1. These scalarizations
are not used in this form in any other method than the synchronous NIMBUS
method.

The first one of the remaining scalarizations in the synchronous NIMBUS is

min maxi/∈I<>

[
fi(x)−znad

i
znad

i −z̄i

]
+ ρ ∑k

i=1
fi(x)

znad
i −z̄i

subject to x ∈ S,
(6)

where I<> is the (possibly empty) set of indices of objectives classified by the
decision maker as ones that can change freely and z̄ is a reference point. This
scalarization is based on the scalarization used in the GUESS method [12].

The NIMBUS scalarization of the synchronous NIMBUS is

min maxi∈I<,j∈I≤

[
fi(x)−z∗i

znad
i −zutopia

i

,
f j(x)−zj

znad
j −zutopia

j

]
+ ρ ∑k

i=1
fi(x)

znad
i −zutopia

i

subject to fi(x) ≤ fi(xc) for all i ∈ I< ∪ I≤ ∪ I=

fi(x) ≤ εi for all i ∈ I≥
x ∈ S.

(7)

In the above problem, the sets I<, I≤, I= and I≥ contain indices of objective func-
tions that the decision maker has classified as those that he/she wants to improve
as much as possible, wants to improve to aspiration levels denoted by zi, wants
to remain unchanged and allows to get worse until bounds denoted by εi.

In both problems, ρ > 0 is a small constant. The augmentation terms differ
slightly, but both of them remove weakly Pareto optimal solutions from the sets
of optimal solutions to the problems.

With appropriate parameters (i.e., classification, reference point, aspiration
levels and bounds, see [60]), optimal solutions to either one of problems (5) or
(7) are always Pareto optimal to multiobjective optimization problem (MOP). On
the other hand, each ε-properly Pareto optimal solution is an optimal solution to
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either one of the problems with suitable reference point, classification, aspirations
and bounds, where ε depends on the constant ρ. Thus, desirable properties 1. and
2. are satisfied with scalarizations in problems (6) and (7).

In the next section, we will discuss a posteriori methods. When scalariza-
tions can be used to find a single Pareto optimal solution to a multiobjective op-
timization problem, a posteriori methods can be used to find a representation of
the Pareto optimal solutions to a problem (i.e., a discrete set of Pareto optimal
solutions that approximates the set of Pareto optimal solutions). Some a poste-
riori methods achieve this by solving a number of scalarizations with different
parameters and some use other methods.

2.3 A Posteriori Methods

The idea in a posteriori methods is to generate a large set of different solutions
from which the decision maker can choose. Because every non-Pareto optimal
solution is dominated by a Pareto optimal solution, one knows that one may con-
centrate on producing a large set of Pareto optimal solutions. A possible product
of an a posteriori method is illustrated in Figure 3.

In a posteriori methods, where no preference information is available, the
aim is to produce a representation that approximates the Pareto front as well as
possible. However, defining what it means for a discrete representation of Pareto
optimal outcomes to approximate the Pareto front (which is often not discrete for
continuous problems) is problematic (see e.g., [26, 90]).

A posteriori methods can be divided into two classes: deterministic (or clas-
sical) methods and evolutionary methods (see e.g., [80]). The main approach of
deterministic a posteriori methods (although others also exist) is to solve mul-
tiple scalarizations in a way that produces the whole Pareto front (if possible)
or a good representation on it (see e.g., [55]). Evolutionary multiobjective opti-
mization methods are heuristic search-based methods, where an iterative search
pattern tries to find a set that approximates the Pareto front as well as possible
and, also, is as diverse as possible (see e.g., [19]).

Surveys of deterministic a posteriori methods can be found e.g., in [55, 75,
80]. In [75], approximation methods (i.e., methods producing more than a discrete
set of Pareto optimal outcomes) are also surveyed, but the so-called 0th order
approximation methods are deterministic a posteriori methods, as defined in this
thesis. Since most deterministic a posteriori methods count on solving multiple
scalarizations, their functionality depends greatly on the ability to solve them as
single objective optimization problems. In addition, another basic question is
how to select the parameters. A good discrete approximation of the parameter
set P in scalarization (SCAL) will not necessarily produce a good representation
of the Pareto front.

Evolutionary multiobjective optimization methods are very popular nowa-
days. Surveys of evolutionary a posteriori methods can be found e.g., in [17,
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FIGURE 3 A possible product of an a posteriori method in the outcome space and in
the feasible set. The actual Pareto front is marked with a black curve.

19]. In [19], a very popular evolutionary multiobjective optimization algorithm
NSGA-II is also described. In evolutionary methods, a set of solutions is evalu-
ated at a time and operators, like selection, mutation and crossover, are applied
to make the set converge to the Pareto front. Evolutionary methods are often less
effective than deterministic methods in finding Pareto optimal solutions to dif-
ferentiable and convex multiobjective problems, but excel in problems involving
disconnectedness or multiple local, but not global, Pareto optima. For a compar-
ison of deterministic methods with evolutionary methods, see e.g., [80].

The use of (both deterministic and evolutionary) a posteriori methods has
three main difficulties: (1) It is not evident what is a good representation of the
Pareto front, see e.g., [26, 90], (2) producing a good representation of the Pareto
front may be time consuming and (3) the decision maker may have difficulties in
choosing the best alternative from a large set of Pareto optimal outcomes as ar-
gued by [46]. For this reason, we discuss interactive multiobjective optimization
methods in the following subsection. The interactive methods avoid the above
difficulties by letting the decision maker guide the search for better solutions (ac-
cording to his/her preferences) and by asking the decision maker only simple,
easily understandable questions at a time.

2.4 Interactive methods

In interactive methods, the idea is to form a solution pattern, where the decision
maker is allowed to guide the search for better solutions (according to his/her
preferences), and then repeat this pattern until a solution preferred by the deci-
sion maker is found. More specifically, the general work flow is the following:
(1) start with a single or a small set of solutions, (2) let the decision maker choose
one and specify preferences for improvement, (3) find a new solution or a small
set of solutions that match the updated preferences of the decision maker and
(4) if the decision maker is not satisfied with the solution(s) found, repeat the
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FIGURE 4 The work flow of an interactive method with a decision maker (DM)

steps (2)-(4). This is shown also in Figure 4.
Most interactive methods generate the initial and the new solutions using

scalarizations (see Section 2.2). Naturally, different methods use different scalar-
izations. In addition, interactive methods differ from each other in the way that
they elicit preferences from the decision maker. Ways to elicit preferences used in
interactive methods are e.g., classification of objectives, asking for a new reference
point and asking for (local) trade-off information. Furthermore, interactive meth-
ods use different ways to inform the decision maker about the solutions found
e.g., visualizations or trade-off information. For more details, see e.g., [51].

The potential of interactive methods is in their support for the decision
maker [61]. Because the decision maker can iteratively see the Pareto optimal
solutions that have been generated so far based on his/her preferences, the de-
cision maker can learn about the problem and his/her preferences while solving
it [9, 61]. In [61], the use of an interactive method is divided into two phases: a
learning phase and a decision phase. In the learning phase, the decision maker
learns about the problem and finds an interesting region of solutions. In the deci-
sion phase, a preferred solution is picked out from the region found in the learn-
ing phase. In [61], it is reminded that these phases may also be used iteratively if
so desired.

Another benefit of interactive methods is that the decision maker can guide
the search for better solutions. Thus, only a small set of Pareto optimal solutions
has to be usually examined and this leads to a gain in computational efficiency.
This may be crucial for computationally expensive multiobjective optimization
problems. In addition, the need to consider only a single or a small set of solutions
at a time leads to a lower cognitive load.

There are also some drawbacks to interactive methods. Most importantly,
the decision maker has to be willing to invest time in trying to understand the
problem and the tools that he/she is given. This may be a problem, because
many real-life decision makers may be rather busy. If the multiobjective optimiza-
tion problem is computationally expensive, iterations of the interactive method
may take a long time. According to [45], long iteration time may lead the deci-
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sion maker to get tired and prematurely stop the iterative process. Thus, he/she
would not get good enough an understanding about the problem in the learning
phase and would end up with a less preferred solution. In Chapter 3, we discuss
computationally expensive multiobjective optimization problems and ways of re-
solving the drawbacks of computational cost that are available in the literature.
In this thesis, we also develop a method for resolving this problem of compu-
tational cost, and this method and the theory leading to it are discussed in the
second part of this thesis.

There are numerous interactive methods (e.g., the Step method [10], the in-
teractive surrogate worth trade-off method [15, 16]) in the literature. In this the-
sis, we will only describe the synchronous NIMBUS method in a greater detail.
The NIMBUS method is necessary for this thesis, because it will be used together
with our PAINT method in the second part of this thesis. For other interactive
methods, we refer to [55] and to references therein.

2.4.1 The Synchronous NIMBUS Method

The synchronous NIMBUS method (introduced in [60]) is an extension of the
NIMBUS method, which was introduced in [57]. The word synchronous refers
to the fact that four different ways to use the same preference information are
used at the same time instead of just one way like in most of the other interactive
methods. In this thesis, we sometimes drop the word synchronous and refer to
the synchronous NIMBUS method merely as the NIMBUS method.

The NIMBUS method starts with a so-called neutral compromise solution
or with a solution given by the decision maker. The NIMBUS method uses classi-
fication of objectives as preference information. Given a Pareto optimal solution
to a multiobjective optimization problem, the decision maker can classify the ob-
jective functions of the current solution into classes I<, I≤, I=, I≥ and I<>. These
classes are defined, respectively, as classes of objective functions that the decision
maker wants to improve as much as possible, wants to improve to an aspiration
level zi, feels acceptable, allows to get worse until a bound εi and allows to change
freely for a while. If the sets I≤ or I≥ are used, then also the aspiration levels zi
and the bounds εi are asked from the decision maker. The decision maker must
be willing to sacrifice something and, thus, the set of objectives that are allowed
to get worse cannot be empty.

The preferences of the decision maker are then transferred into up to four
different single objective optimization problems i.e., scalarizations. These are the
NIMBUS scalarization (7), scalarization (5) of the satisficing trade-off method, an
achievement (scalarizing) function (4) and scalarization (6), which is based on
the scalarization in the GUESS method. The last three scalarizations are reference
point based, so there is a need to transfer the classification given by the decision
maker into a consistent reference point. In [60], such a reference point z̄ is con-
structed by setting z̄i = zideal

i for objectives in the class I<, z̄i = zi (where zi is
the aspiration level defined by the decision maker) for objectives in the class I≤,
z̄i = zcurrent

i (where zcurrent is the current Pareto optimal outcome) for objectives
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in the class I= and z̄i = εi (where εi is the bound defined by the decision maker)
for objectives in the class I≥, and by setting z̄i = znad

i for objectives in the class
I<>. Here, zideal is the ideal vector of the multiobjective optimization problem
and znad is the nadir vector.

The decision maker can choose how many new Pareto optimal solutions
(from one to four) he/she wants to be computed with each classification. The
amount of solutions chosen by the decision maker is computed with the scalar-
izations and these solutions are shown to the decision maker. Solutions selected
by the decision maker are saved for possible further inspection. The decision
maker has now a chance to compute so-called intermediate solutions between
any of the solutions (see e.g., [60] for details) that have been previously saved
and these solutions can also be saved. If a solution is found, where the decision
maker does not wish to decrease any of the objective function values, the NIM-
BUS algorithm is stopped and this solution is taken as the final solution. On the
other hand, the decision maker has the chance to take any of the saved solutions
as the starting point of a new classification and the solution pattern is repeated.

There exist two implementations of the NIMBUS method: the first one is
WWW-NIMBUS and the other one is implemented in the IND-NIMBUS® soft-
ware framework. WWW-NIMBUS (described in [58, 60]) is the first interactive
multiobjective optimization method operating via the Internet (available at http:
//nimbus.mit.jyu.fi/). WWW-NIMBUS can be used with most web browsers
and it does the calculations on a server. The current version of WWW-NIMBUS
uses the synchronous version of NIMBUS. The implementation has a set of sin-
gle objective optimization solvers that can be used to solve the scalarizations. It
also implements different styles of visualizing the Pareto optimal solutions. The
problems can be inputted into WWW-NIMBUS using standard mathematical op-
erators available in it.

ND-NIMBUS® is a multi-platform desktop software framework, currently
available for Windows and Linux operating systems, intended to provide flexible
tool-set for developing multiobjective optimization methods. The IND-NIMBUS
framework has been among others used to implement the synchronous NIMBUS
method. It should be noted, that the IND-NIMBUS® software has been devel-
oped for industrial applications, and it does not include any tools for formulating
the problem. Instead, IND-NIMBUS® has to be always connected to an external
source that models the problem. Figure 5 contains a screen shot of the graphical
user interface of the NIMBUS method in the IND-NIMBUS® software framework.

The implementation of the NIMBUS method in the IND-NIMBUS® software
framework has (among others) been successfully applied to multiobjective opti-
mization of simulated moving bed processes in [35], continuous casting of steel in
[56], brachytherapy planning in [74], heat exchanger network synthesis in [47]. In
all of these cases, IND-NIMBUS® has been connected to an external a modeling
or simulator tool that computes the objective and constraint function values.

In addition to the synchronous NIMBUS method, the IND-NIMBUS® soft-
ware framework has already been used to implement the Pareto Navigator method
(introduced in [25]). In this thesis, we develop a new IND-NIMBUS® PAINT
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FIGURE 5 A screen shot of the graphical user interface of the NIMBUS method in the
IND-NIMBUS® software framework

module that combines our Pareto front approximation method PAINT (described
in Section 5.3) and the NIMBUS method.



3 ON COMPUTATIONALLY EXPENSIVE
MULTIOBJECTIVE OPTIMIZATION PROBLEMS

In this thesis, we say that a multiobjective optimization problem is computation-
ally expensive, if the time taken by evaluating the objective functions is signifi-
cant, when solving the problem. This naturally leads to complications in solving
the multiobjective optimization problem, because the objective functions must
usually be evaluated multiple times when solving the problem. With this defi-
nition, many real-life optimization problems are computationally expensive (see
e.g., [1, 36, 37, 47, 88]).

Perhaps the most common cause of computational cost is the need to do
computationally expensive simulations to find the values of the objective func-
tions and simulation-based optimization is discussed in the following section.
On the other hand, some objective functions may have a closed form formulation,
but the elementary functions needed for it may be so complicated that evaluat-
ing them takes time. In addition, the objective functions may even need to be
measured (as e.g., in [5]) which surely is time consuming.

3.1 Simulation-Based Optimization

By a simulator, we mean in this thesis a computer program that can imitate real-
life systems or phenomena for given values of decision variables (often called
parameters of the simulation). Simulation is used when the real system or phe-
nomenon cannot be studied directly, because they may be inaccessible, or they
may be dangerous or unacceptable to engage. It might even be that the system is
being designed but has not yet been built. In this thesis, we use (as an example
and a proof of concept for our method) the GPS-X simulator that can simulate
wastewater treatment plants. Other systems that need to be simulated are e.g.,
weather (see e.g., [13]) and chemical processes within e.g., a paper making line
(see [11]). For further details on simulation, see e.g., [7, 81]

A single run of a simulator only predicts the behavior of the system or the
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FIGURE 6 The basic functionality of simulation-based optimization

phenomenon for a single value of the decision variables and, thus, simulation is
not usually enough as itself. Often, one must find the optimal values of the deci-
sion variables and a single run of a simulator does not provide any information
about how this can be done. In simulation-based optimization, an optimization
algorithm is combined with a simulator to find the optimal values of the decision
variables (see e.g., [3, 28, 29]).

Even single objective simulation-based optimization is iterative by nature.
An iterative search for an optimal solution starts with a single solution (or possi-
bly a set of solutions) depending on the optimization algorithm. Both the values
of the objective functions and the constraints (or directly the feasibility of the cur-
rent solution(s)), or just one of the above, are then extracted from the output of the
simulator. After inspecting the solutions, the optimization algorithm either stops,
if an optimal solution (or close enough) has been found, or sends new solution(s)
for the simulator. In this way, the simulator and the optimization algorithm alter-
nate until a solution close enough to optimality has been found. Note that, if the
simulator only outputs the values of the objectives (and possibly the constraints)
and no other assumptions are made on the objective functions, the actual opti-
mality of the solution cannot be known without examining each solution, which
is not possible for most problems. The basic functionality of simulation-based
optimization is captured in Figure 6. In this Figure, we assume that a single sim-
ulator outputs both the values of the objective function(s) and the constraints.

A way to alleviate the computational burden of solving computationally
expensive multiobjective optimization problems is to do approximation. In the
next section, we identify two different types of approximation that can be used
in solving computationally expensive multiobjective optimization problems. We
concentrate on approximations that can be used with either a posteriori methods
or interactive methods.
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3.2 Approximation in Computationally Expensive Multiobjective
Optimization

In this section, we identify two different types of approximation used in com-
putationally expensive multiobjective optimization in the literature. These are
approximating the objective functions or the constraints (whichever is compu-
tationally expensive) and approximating the Pareto front. We will first discuss
approximating the objective functions or the constraints and then move to Pareto
front approximations.

In [40], five levels of approximation, when using a surrogate model of the
objective functions with evolutionary algorithms, are listed. Most of these levels
are, however, applicable to approximating the objective functions (or the con-
straints) with any method. According to [40], different possible approximation
levels are no approximation at all, fully computational simulations (e.g., com-
putational fluid dynamics simulations instead of the wind tunnel experiments),
simplified computational simulations (e.g., Quasi-3D simulations instead of real
3D simulations), functional approximations (also known as meta-models) and (in
evolutionary algorithms) evolutionary approximation (e.g., fitness inheritance).
Note that simulation is one level of approximation, also. In addition, according
to [40], another matter (in addition to choosing the approximation level) in ap-
proximating the objective functions or the constraints is that the surrogate model
should be most accurate in the areas of interest (i.e., close to the Pareto front in
multiobjective optimization) and the model should be improved as much as pos-
sible with the given data.

Surrogate models of the objective functions have been used extensively with
a posteriori methods. Because the aim of a posteriori methods of multiobjective
optimization is to produce a good representation of the Pareto front, as default
they need to employ a lot of function evaluations. For this reason, different ap-
proaches to reducing the number of evaluations have been suggested. A pos-
teriori methods for computationally expensive multiobjective optimization are
important in this thesis, because our PAINT method (introduced in Paper [PIV]
and discussed in Section 5.3) can use the output of an a posteriori algorithm and
further approximate the Pareto front based on this.

The set-based structure of evolutionary multiobjective optimization meth-
ods for computationally expensive multiobjective optimization problems conve-
niently works in concert with a surrogate model, which can be validated and
updated inside the algorithm. In [43], different uses of surrogate models in evo-
lutionary multiobjective optimization are surveyed. For functional approxima-
tion, they mention different meta-models including Response Surface Method
(see e.g., [65]), Radial Basis Functions and Support Vector Machines (applied e.g.,
in [66]). A similar, but a little more recent survey is also done in [78].

In deterministic a posteriori methods, a single solution is computed at a time
(unlike in the evolutionary methods). Thus, one cannot use similar approaches
for validating and updating the surrogate models of the objective functions. De-
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terministic methods, however, compensate for this because, in general, they con-
verge to at least locally Pareto optimal solutions with fewer function evaluations
than evolutionary methods. Deterministic a posteriori methods using surrogates
of the objective functions can be found e.g., in [52, 53, 54, 64, 76, 87].

The choice of a posteriori method using surrogates of the objective or con-
straint functions for computationally expensive multiobjective optimization prob-
lem is greatly problem dependent. That is to say, different methods work better
for different problems. It is always beneficial to use some characteristics of the
problem, if possible.

Similar approximation issues to those for a posteriori methods (described
in [40]) apply also to interactive methods with computationally expensive prob-
lems. The approximation level of the objective functions can be any of the ones
mentioned above and the problem with surrogate objective functions (approxi-
mated e.g., with simulations or meta-models) can be solved with any interactive
method. Once the decision maker has found a preferred solution to the problem
with surrogate objective functions one can either take that solution as the final
solution or take the outcome given by the surrogate objective function as a refer-
ence point e.g., for the achievement scalarizing problem (4) and take the solution
to that as the final solution. This kind of approaches have been followed e.g., in
[68] (using meta-models) and [36] (using simulations).

Like the evolutionary a posteriori methods, also interactive methods could
be used with surrogate approximations of the objective functions that could then
be updated whenever necessary. This is because of the iterative nature of in-
teractive methods, where, once an interesting solution for the problem using a
surrogate approximation has been found, the solution could be evaluated using
the actual computationally expensive objective functions. If found necessary, the
surrogate approximation can be updated with this new solution after its values
for the original objective functions are known. This has, however, (at least to the
author’s knowledge) been followed only in [68] possibly because evaluating the
problem with the original computationally expensive objective functions and up-
dating the surrogate approximations of the objective functions may be very time
consuming and the decision maker has to wait through it.

Another direction is approximating the Pareto front. This approach can be
seen as following the arguments of [42] that only the values (e.g., the objectives)
should be meaningful in decision making – the decision variables should be de-
cided only after a proper outcome has been decided. Thus, it is enough to approx-
imate the outcome space in order to make an informed decision. Furthermore,
since the Pareto optimal outcomes dominate all the other outcomes, it is enough
to approximate the set of Pareto optimal outcomes i.e., the Pareto front. Once
a preferred approximate Pareto optimal outcome has been found, the values of
preferred decision variables can be found via e.g., the achievement scalarizing
problem (4).

Some Pareto front approximation methods published before the year 2003
are surveyed in [75]. Pareto front approximations not mentioned in [75] are given
in [18, 32, 41, 48, 49, 50, 73]. However, most of the approximation methods in the
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FIGURE 7 The Edgeworth Pareto hull approximation (in green) constructed in the non-
convex case by the feasible goals method for three Pareto optimal outcomes
(black dots)

literature are only applicable to convex multiobjective optimization problems.
Most of the approximation methods surveyed in [75], also, do not concen-

trate on the issue of how to make decisions about the original multiobjective opti-
mization problem with the Pareto front approximation (nor how to use either an
a posteriori or interactive method with the approximation). To our knowledge,
only few papers consider decision making with the Pareto front approximation.

One of only few papers considering decision making with Pareto front ap-
proximations is [49]. In [49], an approach that resembles using an a posteriori
method with a Pareto front approximation is proposed. In that paper, different
approximations for convex and nonconvex problems are constructed and statis-
tical methods are used to inspect the quality of the approximation. After the
approximation is constructed, a preferred point is chosen with the help of a visu-
alization technique called Interactive Decision Maps. In this thesis, we are mainly
interested in techniques that approximate nonconvex Pareto fronts and, thus, we
are going to discuss here only those. In addition, we are only going to discuss
the feasible goals method for approximating the Edgeworth Pareto hull, because
the reasonable goals method is based on the convex hull, which is also used by
other methods discussed later. Technically speaking, the idea in the feasible goals
method in nonconvex problems is to approximate the Edgeworth Pareto hull by
the set ∪y∈Y{y + z : z ∈ Rk

+}. This set is displayed in Figure 7 for three Pareto
optimal outcomes in the objective space.

In addition, methods resembling interactive methods have been developed
to be used with a Pareto front approximation. In [25], the convex hull of a given
set of Pareto optimal outcomes is constructed and a procedure that extends and
generalizes the idea of the Pareto Race method for linear problems [44] is used to
navigate on the approximation. In addition, in [62, 63], the convex hull of given
Pareto optimal outcomes is used and an approach called Pareto Navigation for
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exploring the Pareto front approximation is developed.
These multiobjective optimization methods with Pareto front approxima-

tions, however, have some drawbacks. Above, only the approximation method
of [49] is applicable to nonconvex problems. In addition, decision making with
the Pareto front approximation is done with methods that are tailor made for de-
ciding on the constructed Pareto front approximation. Our goal is that the same
methods should be used on the decision making with the Pareto front approxi-
mations, as one would prefer to apply to the original multiobjective optimization
problem. None of the Pareto front approximation methods mentioned in this sec-
tion are applicable to this with nonconvex multiobjective optimization problems.

The next chapter concludes the first part of this thesis. The purpose of the
next chapter is to motivate our research and to give background for it. In the fol-
lowing chapter, we show how none of the Pareto front approximation methods
given above apply to approximating the Pareto fronts on nonconvex multiobjec-
tive optimization problems in a way that would suit us. After this, we state our
research objectives for our Pareto front approximation method PAINT.



4 TOWARDS THE PAINT METHOD

In this chapter, we motivate the PAINT method by giving a simple example that
shows what we would want to be able to do and show how none of the methods
available in the literature accomplish what we want. After this, we state our
research objectives for the PAINT method.

4.1 Motivating the PAINT Method

In this section, we give a (simple) example that demonstrates our motivation for
the PAINT method. In practice, the given set of Pareto optimal outcomes would
be a lot larger, but the three points given in this section are enough to demonstrate
our way of thinking.

Let us assume that we want to solve a computationally expensive, multiob-
jective optimization problem with continuous variables

min ( f1(x), f2(x), f3(x))
subject to x ∈ S.

In addition, let us assume that the feasible set is S ⊂ Rn for some rather large
n, which is often the case for practical multiobjective optimization problems.
Furthermore, we assume that we have used a lot of time and effort to produce
three Pareto optimal solutions x1, x2, x3 ∈ S to the problem. The three Pareto
optimal outcomes given by these solutions are p1 = (3, 0, 0), p2 = (0, 3, 0) and
p3 = (2, 2, 10), respectively, and these are shown in Figure 8. Unfortunately, this
set of solutions does not include a preferable solution to the decision maker. Be-
cause we have already done a lot of computation to find these three solutions,
we (as analysts) want to use them to better guide the search for further solutions.
These Pareto optimal solutions are not yet enough to construct a surrogate ap-
proximation of the objective functions because n is large, and we must pursue
other means. As we can ask the preferences of the decision maker, we decide to
approximate the possible intermediate outcomes between these Pareto optimal
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FIGURE 8 The three given Pareto optimal outcomes for our example problem

outcomes and then ask the decision maker to choose a preferred one of the ap-
proximate outcomes. This preferred approximate outcome can then be used as a
reference point to guide the search for further solutions. In order to accomplish
this, two questions have to be answered:

1. How to define and compute the intermediate outcomes?

2. How to find a preferred intermediate outcome once their set is known?

Starting with the first question, we can try to use Pareto front approximation
methods surveyed in Section 3.2. We have decided to consider the convex hull
of the outcomes (used e.g., in [25, 62, 63]), the Edgeworth Pareto Hull of the out-
comes (used in the Feasible Goals method described in [49]) and the response
surface methodology (of [32]). We decided to use these approaches, because we
could not choose any of the sandwich approximations, as the problem of choos-
ing a preferred approximate outcome in the larger set of the sandwich approxi-
mations would be a lot harder problem and we do not know how to do that. In
addition, the Pareto front approximation had to be applicable to a given set of
Pareto optimal outcomes. We will now study these approximations in detail.

Figure 9 displays the convex hull of the Pareto optimal outcomes. This
approximation may seem rather feasible at first. However, one may notice at
a closer inspection of the figure that the convex hull contains e.g., the vector
z = (1.5, 1.5, 0). The vector z dominates one of the given Pareto optimal out-
comes p3 = (2, 2, 10), which implies by the definition of Pareto optimality that
the vector z cannot be an outcome of the multiobjective optimization problem.
Thus, the approximation is flawed and misleading. Having not noticed the con-
tradiction between the approximation and the given Pareto optimal outcomes,
one may have led the decision maker to believe that the outcome (1.5, 1.5, 0) is
feasible, when in fact we know that it is not. This demonstrates that a convex hull
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FIGURE 9 A convex hull of the given Pareto optimal outcomes

is not a good approximation for nonconvex problems, which is what this problem
clearly is.

Figure 10 shows the approximation of the Edgeworth Pareto Hull produced
by the Feasible Goals method implemented in (and visualized by) the Pareto
Front Visualization software [49]. This approximation does not have the same
drawback as the convex hull approximation and it has indeed been successfully
used to approximate Pareto fronts of nonconvex multiobjective optimization prob-
lems. However, our criticism to this is that the only nondominated vectors on the
approximation are the given Pareto optimal outcomes. When the decision maker
wants to choose a vector that is not in the given set of Pareto optimal outcomes,
he/she has to choose an area of the outcome space in which the outcomes are
dominated according to the approximation. We believe that this leaves too heavy
a cognitive load for the decision maker to determine that the approximation may
be flawed and to trust that there may be outcomes that are better than what the
approximation explicitly shows.

Finally, there is the response surface based methodology used in [32] where
a polynomial approximation of the function that describes one of the objectives
as a function of the others is formed and then the graph of the constructed func-
tion restricted to the convex hull of the outcomes is taken as the approxima-
tion. Unfortunately, this approach may imply the same phenomenon as the con-
vex hull approximation: Assume that we are to describe the third objective as
a function g : R2 → R of the first and the second objective. Now, by setting
g(z1, z2) = 10(z1 + z2)− 30, it holds that g(0, 3) = g(3, 0) = 0 and g(2, 2) = 10.
Thus, the polynomial g describes the third objective as a function of the two oth-
ers. By restricting the function g to the convex hull of the outcomes, the graph is
exactly the convex hull shown in Figure 9. Thus, the same conclusions as in the
convex hull case apply.
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FIGURE 10 An Edgeworth Pareto hull approximation produced by the Pareto Front
Visualization software (see [49]) using the feasible goals method

The above observations led us to consider desirable properties of a set that
could be used to approximate the Pareto front based on a given set of Pareto op-
timal outcomes. A fundamental property of the Pareto front itself is that there
are no two vectors on it so that one dominates the other. Thus, a potential Pareto
front approximation would be a set with this property that also includes the given
Pareto optimal outcomes. This led us to the definition of inherent nondominance.
In the next chapter, this concept is defined in mathematical terms and the most
important theorems given in Paper [PI] are reviewed. These theorems show that
an inherently nondominated Pareto front approximation avoids the problems of
the approximations shown above. The PAINT method (introduced in Paper [PIV]
and described in Section 5.3 of this thesis) then constructs an inherently nondom-
inated Pareto front approximation. The Pareto front approximation constructed
with the PAINT method for the above problem is shown in Figure 11. We must
emphasize that the Pareto front approximation constructed with PAINT is not
always merely a union of line segments, but could contain higher dimensional
objects, also. The fact that the Pareto front approximation in Figure 11 consists
of line segments is because of the characteristics of our example problem and the
locations of the given outcomes.

The question of choosing a preferred approximate solution has been ne-
glected e.g., in many of the papers surveyed in [75]. If the approximation is a
finite set, then one may use any method of multiattribute decision analysis e.g.,
Multi-Attribute Value Analysis (see e.g., [27]) or MACBETH (see [6]). When the
set of intermediate solutions is infinite or even innumerable, (which is a natural
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FIGURE 11 The Pareto front approximation constructed with the PAINT method (the
green line segments)

structure for such a set, if the variables of the problem are continuous), it becomes
much harder to choose a preferred approximate outcome.

Inherent nondominance can be used to derive a surrogate problem, which
is computationally less expensive than the original one. This surrogate problem
is rather simple, but because of the inherent nondominance, it has some interest-
ing features. The most important of these features is that the Pareto front of the
surrogate problem is exactly the inherently nondominated Pareto front approxi-
mation. The surrogate problem can be solved with any interactive multiobjective
optimization method e.g., NIMBUS (discussed in Section 2.4.1). For further de-
tails on the surrogate problem, see Section 5.4. This solves the problem of finding
a preferred outcome on the Pareto front approximation and, thus, we can use an
inherently nondominated Pareto front approximation (displayed in Figure 11) to
computationally inexpensively guide the search for further more preferred solu-
tions to the computationally expensive multiobjective optimization problem.

4.2 Research Objectives

In this section, we give our research objectives that were motivated by the exam-
ple in the previous section. These were the following:

1. The Pareto front approximation developed should be applicable to approx-
imating Pareto fronts of nonconvex problems based on any given (finite) set
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of Pareto optimal outcomes.

2. Motivated by the Pareto Navigator method (introduced in [25]), the Pareto
front approximation should be applicable with interactive methods to solve
computationally expensive multiobjective optimization problems.

3. The Pareto front approximation method should be easily implementable.

4. The usefulness of the Pareto front approximation in solving computation-
ally expensive multiobjective optimization problems should be established
with examples.

The applicability of the Pareto front approximation to nonconvex problems is the
main motivation behind our method, because we wanted to generalize and ex-
tend the Pareto Navigator method. In addition, the method should not have any
requirements for the given set of Pareto optimal outcomes that are the starting
point of the approximation. As the Pareto front approximation does not have
any requirements, any a posteriori method can be used to generate this set. The
PAINT method satisfies these requirements, as we demonstrate later in this the-
sis.

The use of the Pareto front approximation with an interactive method to
solve computationally expensive problems has a couple of issues that need to be
solved. First, as interactive methods can be used to solve computationally ex-
pensive multiobjective optimization problems (not find preferable approximate
outcomes in sets), the Pareto front approximation should imply a surrogate prob-
lem for the original problem. Second, the surrogate problem should be com-
putationally expensive so that it is worthwhile to solve the surrogate instead of
the original problem. The surrogate problem implied by an inherently nondom-
inated Pareto front approximation constructed with the PAINT method satisfies
these requirements.

In real-life examples, the numbers of given Pareto optimal outcomes and
objectives may be quite large. Thus, the PAINT method must be easily imple-
mentable on a computer. For that reason, we also consider numerical and algo-
rithmic issues related to the PAINT method.

Finally, the usefulness of the PAINT method should be established with
examples. In this thesis, we demonstrate how our approach applies to two ex-
amples. These examples are a three objective heat exchanger network synthesis
problem and a five objective problem of designing and operating a wastewater
treatment plant.



5 THE PAINT METHOD

This chapter starts the second part of this thesis. In this part, we present a math-
ematical consideration of the results leading to the PAINT method and a mathe-
matical introduction to the PAINT method.

Since this chapter starts a new more mathematical treatment of the topics,
we need some more definitions. These are given in the following section.

5.1 Prerequisites for the PAINT Method

In addition to the definitions given in Chapter 2.1, we need more definitions for
introducing the PAINT method. These are given in this section.

First, we need some definitions from computational geometry (see e.g., [23,
33]). An a-polytope in Rk is the convex hull of a + 1 points in Rk. An a-polytope
is said to be defined by points z1, . . . , za+1 ∈ Rk, if it is the convex hull of those
points, and then it is denoted by P(z1, . . . , za+1). A vertex of a polytope K is a
point x ∈ K for which it holds that λz + (1− λ)y = x, λ ∈ (0, 1) and z, y ∈ K
imply x = y = z. The set of vertices of a polytope K is denoted by vert(K). A
face of a polytope K is another polytope K′ so that K′ = ∅, K′ = K or there exist
vectors z1, z2 ∈ Rk so that K′ = {z1 + h : h ∈ Rk, hTz2 = 0} ∩ K. A polytope
P(z1, . . . , za+1) is called a simplex if the vectors z1, . . . , za+1 are affinely indepen-
dent. Figure 12 shows a 3-polytope, its face and its vertex.

Collections of polytopes are sets whose elements are polytopes and they are
denoted by calligraphic letters A,B,K, . . .. The body of a collection of polytopes
A is body(A) = ∪K∈AK. A (polyhedral) complex K is a special type of collection
of polytopes so that (a) if it holds that a polytope K ∈ K and another polytope
K′ is a face of K then it must hold that K′ ∈ K, and (b) if it holds that polytopes
K1, K2 ∈ K then the set K1 ∩ K2 must be a possibly empty face of both polytopes
K1 and K2. A triangulation of a finite set P ⊂ Rk is a complex T so that the
body of T is the convex hull of the set P and the set of vertices in T is P. A
polytope P(z1, . . . , zk) with z1, . . . , zk ∈ P is called Delaunay (in P) if there exists
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FIGURE 12 A 3-polytope, its face and its vertex

FIGURE 13 A Delaunay triangulation of 5 points in R2 with the circumscribing balls for
the 2-polytopes outlined in red

a circumscribing ball B ∈ Rk with cl(B) ∩ P = {z1, . . . , za+1} (here cl(B) denotes
the closure of B) and B ∩ P = ∅. A complex D is a Delaunay triangulation of P if
D is a triangulation of P so that every polytope in D is Delaunay. A polyhedral
complex is called a simplicial complex, if all the polytopes are simplices. Figure
13 shows a Delaunay triangulation of 5 points in R2. The circumscribing balls are
drawn for the 2-polytopes in red.

A requirement for a representation p1, . . . , pa ∈ PF of the Pareto front (given
e.g., in [90]) is that the points are mutually nondominated, i.e., there does not exist
i, j ∈ {1, . . . , a} such that pi dominates pj. The inherent nondominance property
of a set (defined later in this chapter) then generalizes this definition.

In the PAINT method, we need to consider relations between sets with re-
spect to Pareto dominance and, thus, we define (Pareto) dominance between two
sets in the objective space (in addition to dominance between two vectors in the
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objective space). A set A1 ⊂ Rk is said to dominate another set A2 ⊂ Rk, if there
exist vectors z1 ∈ A1 and z2 ∈ A2 so that the vector z1 dominates the vector
z2. A point z is said to dominate or be dominated by a set, if the singleton {z}
dominates or is dominated by the set.

Some matrix notations are used in introducing the PAINT algorithm. The
entry of a matrix A ∈ Ra×b on the row i and the column j is denoted by Ai,j. For
two matrices, A ∈ Ra,b and B ∈ Ra,c, the notation C = [A, B] denotes a matrix

C =

⎡
⎢⎣

A1,1 . . . A1,a B1,1 . . . B1,c
... . . . ...

... . . . ...
Ab,1 . . . Ab,a Bb,1 . . . Bb,c

⎤
⎥⎦ .

5.2 Inherent Nondominance

This section summarizes the definitions and theorems related to inherent non-
dominance given in [PI]. A fundamental concept in this research is inherent non-
dominance.

Definition 1. A set A ⊂ Rk is inherently nondominated, if there does not exist
vectors a, b ∈ A such that a ≤ b.

An equivalent formulation for Definition 1 would be that all the finite sub-
sets of A are mutually nondominated. Thus, inherent nondominance can be seen
as a generalization of mutual nondominance.

The following definition attaches an inherently nondominated set to a known
set of Pareto optimal outcomes P. It says that an inherently nondominated set is
called a Pareto front approximation if it contains the given set of Pareto optimal
outcomes.

Definition 2. Let P ⊂ Rk be a finite set of Pareto optimal outcomes. An inherently
nondominated set A is called an inherently nondominated Pareto front approxi-
mation based on the set P, if P ⊂ A.

An inherently nondominated set is connected in a natural way to a multiob-
jective optimization problem. This problem is called the multiobjective optimiza-
tion problem implied by the approximation.

Definition 3. Let A be an inherently nondominated Pareto front approximation.
Then the multiobjective optimization problem

min (z1, . . . , zk)
subject to (z1, . . . , zk) ∈ A

is called the multiobjective optimization problem implied by the approximation
A.
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Results of the most important theorems concerning inherent nondominance
are summarized below. Their interpretations are given in more detail in Paper
[PI], which also includes their proofs.

1. The Pareto front PF of a multiobjective optimization problem is an inher-
ently nondominated Pareto front approximation based on P for any finite
subset P ⊂ PF.

2. Let A ⊂ Rk be a set. Then the set A is inherently nondominated if and only
if PF(A) = A.

3. If a set A ⊂ Rk is an inherently nondominated Pareto front approximation
based on P, then

P ⊂ PF(A).

4. The given set of Pareto optimal outcomes P is an inherently nondominated
Pareto front approximation based on P.

An interpretation of result 1. above is that an inherently nondominated Pareto
front approximation is well defined in a way that the Pareto front itself satisfies
this property. It would be undesirable if this would not be the case. Result 2. gives
an equivalent definition for inherent nondominance and result 3. is a corollary of
result 2. that shows that the given set of Pareto optimal outcomes P is in the set of
Pareto optimal vectors in the inherently nondominated Pareto front approxima-
tion A. Finally, result 4. proves the existence of inherently nondominated Pareto
front approximations. Because of the simplicity of such an approximation, the
given set of Pareto optimal outcomes P is called the trivial inherently nondomi-
nated Pareto front approximation.

Now, we have demonstrated the desirable properties of an inherently non-
dominated Pareto front approximation. The following section includes a math-
ematical idea of constructing an inherently nondominated Pareto front approxi-
mation based on any given set of Pareto optimal outcomes.

5.2.1 An Inherently Nondominated Subcomplex of the Delaunay Triangula-
tion

In Paper [PII], it was suggested that similar ideas that are used in computational
geometry (see e.g., [23]) should be used to construct an inherently nondominated
Pareto front approximation from a given set of Pareto optimal outcomes. These
ideas were to use the Delaunay triangulation of the given outcomes as a basis
and then remove inappropriate polytopes from it according to some rules that
are based on inherent nondominance. This idea is similar to that of [4] in approx-
imating a general nonconvex set, where distance is used as a rule for removing
polytopes from the Delaunay triangulation. As our requirement for the Pareto
front approximation is inherent nondominance, distance cannot be used in our
case.
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The rules (given in [PII]) that govern the removal of polytopes are the fol-
lowing. From now on, let P be the set of m given Pareto optimal outcomes. The
Pareto front approximation is constructed based on this set. Assuming that for
all a = 0, . . . , m− 1, the a-polytopes in the complex D are Ka,1, . . . , Ka,ta

. For all
a = m− 1, m− 2, . . . , 1 and for all j = 1, . . . , ta, it holds that the polytope Ka,j is
removed, if either

(R1) there exists a Pareto optimal outcome p ∈ P that dominates or is dominated
by the polytope Ka,j or the polytope Ka,j dominates itself
OR

(R2) there exists a b-polytope Kb,j′ ∈ D with either b > a or b = a and j′ < j that
is not removed and that dominates, or is dominated by, the polytope Ka,j.

The result of applying the rules to a Delaunay triangulation is a set of polytopes,
which forms an inherently nondominated Pareto front approximation.

As the above rules include rather complicated rules and the Delaunay trian-
gulation may contain a large number of polytopes, it is not clear whether they can
be implemented efficiently on a computer. The PAINT method, introduced in the
following section and in a greater detail in Paper [PIV], constructs an inherently
nondominated Pareto front approximation that follows rules (R1) and (R2).

5.3 The PAINT Method

In this section, we introduce the PAINT method that implements rules (R1) and
(R2). The purpose of this section is to give an idea of the method and Paper [PIV]
contains a more rigorous treatment of the method.

5.3.1 The Algorithm

In Paper [PIV], the PAINT algorithm is introduced and, in this introduction, it
is given in Algorithm 1. In the algorithm, the Delaunay triangulation and the
inherently nondominated Pareto front approximation are represented as matrices
D and A, respectively. In those matrices, each row represents the vertices of a
polytope with each entry referring to an outcome in P. For example, a row with
entries 1, 2 and 3 represents a polytope defined by outcomes p1, p2 and p3 in P.
Polytopes defined with fewer outcomes than there are columns in D or A are
handled by repeating the same outcome multiple times. Furthermore, indices a
and b stand for the number of polytopes in the Delaunay triangulation and the
maximal number of outcomes defining a polytope in the Delaunay triangulation,
respectively.

The input of the algorithm is the given set of Pareto optimal outcomes P. In
line 2 of the algorithm, a Delaunay triangulation of the set P is constructed and
represented as a matrix D. In line 3 of Algorithm 1, the rows of matrix D are
ordered in a descending order with respect to the number of outcomes defining
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Algorithm 1 PAINT method: Construction of the inherently nondominated
Pareto front approximation

1: Read the Pareto optimal outcomes P = {p1, p2, . . . , pm} ⊂ Rk.
2: D ← the Delaunay triangulation of P
3: Sort the rows of D in descending order w.r.t. number of different entries in

the row
4: a, b ← the number of rows and columns of D, respectively, d ← 0
5: for i = 1 to a do
6: if the polytope given by vertices pDi,1 , pDi,2 , . . . , pDi,b is not inherently non-

dominated then
7: d ← d + 1 and interchange rows i and d of the matrix D
8: else
9: deleted ← false

10: for j = 1 to m do
11: if the polytope given by vertices pDi,1 , pDi,2 , . . . , pDi,b dominates or is

dominated by outcome pj then
12: d ← d + 1 and interchange rows i and d of the matrix D
13: deleted ← true
14: Break
15: end if
16: end for
17: if not deleted then
18: for l = d + 1 to i− 1 do
19: if the polytope given by vertices pDi,1 , pDi,2 , . . . , pDi,b dominates or

is dominated by the polytope given by vertices pDl,1 , pDl,2 , . . . , pDl,b

then
20: d ← d + 1 and interchange rows i and d of the matrix D
21: Break
22: end if
23: end for
24: end if
25: end if
26: end for

27: A ←

⎡
⎢⎣

Dd+1,1 . . . Dd+1,b
...

...
...

Da,1 . . . Da,b

⎤
⎥⎦

28: return A
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the polytope that is represented by the row. In lines 6, 11 and 19 of the algorithm,
there are three different if-conditions. The purpose of the conditions in lines 6
and 11 is to make sure that the final approximation follows rule (R1), and the
purpose of the condition in line 19 is to make sure that the final approximation
follows rule (R2).

All the if-conditions (in lines 6, 11 and 19) reduce to checking dominance
between two polytopes, which is the condition in line 19: (a) inherent nondom-
inance of a polytope in line 6 can be reduced to checking whether a polytope
dominates itself, because in Paper [PIII] it was proven that a polytope is inher-
ently nondominated if and only if it does not dominate itself, and (b) dominance
between an outcome and a polytope in line 11 is actually dominance between two
polytopes because a singleton containing a vector in Rk is by definition a poly-
tope. Thus, it is adequate to build mathematical tools for determining dominance
between two polytopes.

Let a matrix

B =

⎡
⎢⎢⎢⎢⎢⎣

p
Dr1,1
1 p

Dr1,2
1 . . . p

Dr1,b
1 −p

Dr2,1
1 . . . −p

Dr2,b
1

p
Dr1,1
2 p

Dr1,2
2 . . . p

Dr1,b
2 −p

Dr2,1
2 . . . −p

Dr2,b
2

...
...

...
...

...
...

...

p
Dr1,1

k p
Dr1,2

k . . . p
Dr1,b

k −p
Dr2,1

k . . . −p
Dr2,b
k

⎤
⎥⎥⎥⎥⎥⎦

.

In Paper [PIII], it was proven that if a polytope K1 is given by row r1 in the matrix
D (representing the Delaunay triangulation) and another polytope K2 is given by
row r2 in D, then the polytope K1 dominates the polytope K2 if and only if either
the optimal value of problem

min t

subject to [B,−1]

⎡
⎣ λ

μ

t

⎤
⎦ ≤

⎡
⎢⎣

0
...
0

⎤
⎥⎦

∑b
j=1 λj = 1, ∑b

j=1 μj = 1,

where λ ∈ [0, 1]b, μ ∈ [0, 1]b, t ∈ R, −1 =

⎡
⎢⎣
−1

...
−1

⎤
⎥⎦

(8)

is less than zero or the optimal value of problem (8) is zero and the optimal value
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of problem

min g
[

λ

μ

]

subject to B
[

λ

μ

]
≤

⎡
⎢⎣

0
...
0

⎤
⎥⎦

∑b
j=1 λj = 1, ∑b

j=1 μj = 1,

where g = [p
Dr1,1
1 + . . . + p

Dr1,1

k , . . . , p
Dr1,b
1 + . . . + p

Dr1,b

k

− p
Dr2,1
1 − . . .− p

Dr2,1

k , . . . ,−p
Dr2,b
1 − . . .− p

Dr2,b
k ]

λ ∈ [0, 1]b, μ ∈ [0, 1]b

(9)

is less than zero. Consequently, all the if-conditions in lines 6, 11 and 19 can be
checked by solving linear optimization problems (8) and (9).

This concludes discussion of the PAINT algorithm. Paper [PIV] contains a
more thorough treatment of the topics. In the next section, we demonstrate how
PAINT method applies to a simple multiobjective optimization problem.

5.3.2 PAINT with the Four-Objective DTLZ2 Test Problem

In this section, we give an example of Pareto front approximation with the PAINT
method and describe how we have implemented each step of Algorithm 1. The
multiobjective optimization problem that we are going to investigate is the four-
objective DTLZ2 test problem with n variables, introduced in [21]. The problem
can be formulated as

min ( f1(x), f2(x), f3(x), f4(x))
subject to 0 ≤ xi ≤ 1 for all i = 1, . . . , n
where g(x) = ∑n

i=4(xi − 0.5)2

f1(x) = (1 + g(x)) cos(x1π/2) cos(x2π/2) cos(x3π/2)
f2(x) = (1 + g(x)) cos(x1π/2) cos(x2π/2) sin(x3π/2)
f3(x) = (1 + g(x)) cos(x1π/2) sin(x2π/2)
f4(x) = (1 + g(x)) sin(x1π/2).

The Pareto front of the four-objective DTLZ2 test problem consists of a sub-
set of the unit sphere that is in the positive orthant of R4. It is easy to see that
the Pareto optimal solutions x∗ to the DTLZ2 problem have x∗i = 0.5 for all
i = 4, . . . , n. The DTLZ2 problem is not computationally expensive, but we can
use it here to demonstrate the PAINT method’s usefulness and operation in ap-
proximating Pareto fronts of nonconvex four-objective optimization problems.

Because the DTLZ2-problem is mathematically very simple, one can find a
set of Pareto optimal solutions to it by setting the components from four to n to
0.5 and randomly generating values between zero and one for the three first com-
ponents. By using this method, we generated a set of 20 Pareto optimal solutions
to this problem. The objective function values associated to these solutions are
given in Table 1. These were taken as the given set of Pareto optimal solutions P,
which was inputted into the PAINT algorithm.
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TABLE 1 The given set of Pareto optimal outcomes P for the four-objective DTLZ2 test
problem

Outcome f1 f2 f3 f4
p1 0.1712 0.7377 0.6467 0.0909
p2 0.4399 0.2015 0.4218 0.7668
p3 0.2457 0.1934 0.6819 0.6613
p4 0.7375 0.3556 0.2103 0.5343
p5 0.2430 0.6618 0.6582 0.2641
p6 0.4781 0.6984 0.0493 0.5304
p7 0.0952 0.4074 0.5114 0.7506
p8 0.5689 0.3861 0.7032 0.1810
p9 0.1823 0.0621 0.7022 0.6854
p10 0.3304 0.5462 0.5204 0.5672
p11 0.3074 0.7199 0.2407 0.5738
p12 0.5578 0.3268 0.3376 0.6842
p13 0.3685 0.5472 0.4703 0.5861
p14 0.3598 0.4594 0.6085 0.5378
p15 0.5401 0.1739 0.6530 0.5016
p16 0.0395 0.2779 0.7468 0.6030
p17 0.7778 0.4705 0.4110 0.0682
p18 0.5801 0.6938 0.1218 0.4089
p19 0.6200 0.2287 0.4903 0.5682
p20 0.5681 0.3916 0.6646 0.2868
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FIGURE 14 A projection of an inherently nondominated Pareto front approximation for
the 4-objective DTLZ2 test problem. The values of the fourth objective are
marked with color.

On line 2 of Algorithm 1, the structure of the Delaunay triangulation of P
is put into a matrix D. The Delaunay triangulation is constructed with the Qhull
implementation of the Quickhull algorithm [8]. The Qhull software outputs the
full-dimensional (in this case the four-dimensional) polytopes of the Delaunay tri-
angulation. The lower dimensional faces of these polytopes are then constructed
by a simple Octave (see [22]) code. If the Pareto optimal outcomes P are in gen-
eral position (as defined e.g., in [23]), the faces are the polytopes defined by the
subsets of the set of vertices of the full-dimensional polytopes. As described in
[24], the general position of points can be achieved by perturbing them slightly.
This idea is used in the Qhull software, also.

After constructing the Delaunay triangulation (containing 368 polytopes) as
the matrix D, we started removing inappropriate polytopes from it on lines five
to 25 of the algorithm. In this example, 38.8% of the polytopes were removed
due to rule (R1): 19.8% of the polytopes were removed on line 6 because they
were not inherently nondominated and 19.0% of the polytopes were removed
on line 11, because they were inherently nondominated, but dominated or were
dominated by an outcome in P. Furthermore, 34.2% of the polytopes that were
not removed due to rule (R1) were removed on line 19 due to rule (R2), because
they dominated, or were dominated by, a higher dimensional polytope. Running
the PAINT method took approximately 1.5 minutes, in this case.

The inherently nondominated Pareto front approximation given by PAINT
contained 148 polytopes. The body of the inherently nondominated Pareto front
approximation can be seen in Figure 14. In the figure, the approximation has
been projected to R3 by the projection function p : R4 → R3, (x1, x2, x3, x4) �→
(x1, x2, x3) and the fourth objective is marked with color.
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FIGURE 15 A flowchart of the decision making process with PAINT based on a given
set of Pareto optimal outcomes

5.4 Decision Making and the Surrogate Problem Implied by the
Approximation

As it was motivated in Section 4.1, once the Pareto front approximation is con-
structed the decision maker must be supported in finding a preferred vector on
the approximation (i.e., preferred approximate Pareto optimal outcome). With
the PAINT method, this is done through the mixed integer linear surrogate prob-
lem introduced in Paper [PIV]. Another issue is that, once a preferred approxi-
mate Pareto optimal outcome has been found, one must find the closest Pareto
optimal solution to the original problem. In this section, we discuss both of these
issues.

Decision making with PAINT is described in Figure 15. First, a Pareto front
approximation is constructed with the PAINT algorithm 1 based on a given set of
Pareto optimal outcomes. As described in Section 5.3, this yields a collection of
polytopes that together form a Pareto front approximation.

Once the Pareto front approximation has been constructed, the surrogate
problem implied by the approximation is formulated. The Pareto front of the
surrogate problem is exactly the Pareto front approximation and, thus, a pre-
ferred solution to the surrogate problem yields a preferred approximate outcome
on the Pareto front approximation. In Paper [PIV], it was shown that, when the
Pareto front approximation is given by the PAINT method as a collection of poly-
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topes A = {C1, . . . , Ca} with polytopes Cj = P(pAj,1 , . . . , pAj,b), where the matrix
A ∈ Ra×b is constructed with the PAINT method and the given Pareto optimal
outcomes are p1, . . . , pm, then the surrogate problem can be formulated as a mul-
tiobjective mixed integer linear problem

min (z1, . . . , zk)

subject to ∑a
j=1 ∑b

l=1 λj,l = 1
∑b

l=1 λj,l ≤ yj, for all j = 1, . . . , a
∑a

j=1 yj = 1
where λ ∈ [0, 1]a×b

y ∈ {0, 1}a

zi = ∑a
j=1 ∑b

l=1 λj,l p
Al,j
i for all i = 1, . . . , k.

(10)

Once the surrogate problem has been formulated, the decision maker gets
involved. Benefit of problem (10) is that it can be used with low computational
cost with interactive methods like NIMBUS, whose scalarizations preserve linear-
ity. When this is the case, the scalarizations are also mixed integer linear problems
that can be solved efficiently with e.g., CPLEX (see [39]) or GLPK (see [31]).

Once the computationally inexpensive mixed integer linear surrogate prob-
lem (10) has been solved, an actual Pareto optimal solution (to the original, com-
putationally expensive multiobjective optimization problem) corresponding to it
must be found. With the PAINT method, this is done with the achievement scalar-
izing problem (4). The preferred Pareto optimal outcome to the surrogate prob-
lem is taken as the reference point and the scalarization of the original problem
is solved. Depending on the original problem, this part can be computationally
expensive, but fortunately, no input is needed from the decision maker and, thus,
he/she can concentrate on other tasks while the analyst finds an optimal solution
to the achievement scalarizing problem. Because of the properties of the achieve-
ment scalarizing problem (4), this solution is Pareto optimal to the original prob-
lem and satisfies the aspirations of the decision described by the reference point
(as discussed in [84]).

If the decision maker is satisfied with the Pareto optimal solution found in
the previous step, we can naturally stop, since a preferred solution to the compu-
tationally expensive multiobjective optimization problem has been found. On the
other hand, if the decision maker is not satisfied with the actual Pareto optimal
solution, but he/she was satisfied with the approximate Pareto optimal solution
(i.e., the solution to the surrogate problem), we find that our Pareto front approx-
imation was not accurate enough near the Pareto optimal solution found. This
flaw can be corrected by adding the Pareto optimal solution (to the original prob-
lem) to the given set of Pareto optimal outcomes and recomputing the Pareto
front approximation with PAINT. This yields a Pareto front approximation that
is more accurate near the Pareto optimal outcome found with the achievement
scalarizing problem, because that outcome is included in the new approximation.

Once the new surrogate problem has been formulated, an interactive method
can be used again to find a preferred solution to the new surrogate problem. This
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iteration can be repeated as long as the decision maker is satisfied with the Pareto
optimal solution found. It must, however, be noted that solving the achieve-
ment scalarizing problem (formulated for the original computationally expensive
multiobjective problem) and recomputing the Pareto front approximation may be
time consuming, and, thus, they must be avoided if possible. Naturally, to avoid
spending time in solving the achievement scalarizing problem, one can first find
the point that minimizes the achievement scalarizing problem in the given set
of Pareto optimal outcomes (i.e., solves problem (4) with the feasible set S = P,
the objective function f as the identity mapping and the reference point as the
preferred approximate outcome) and then judge whether solving the computa-
tionally expensive problem is actually needed or if this point is already preferred
by the decision maker. The above does not take a long time, because it only in-
volves computing the value of a simple function for points in a relatively small
set P and then selecting the smallest one of those values.

The ideas described in this section are implemented in a new IND-NIMBUS®

PAINT module. The PAINT module (described in Paper [PV]) makes possible the
use of an approximation (constructed with the PAINT method) with the NIMBUS
method using a single graphical interface that is similar to the graphical interface
of the NIMBUS method, implemented in the the IND-NIMBUS® software frame-
work. The main screen of the IND-NIMBUS® PAINT module is shown in Figure
16.

FIGURE 16 The IND-NIMBUS® PAINT module

With the PAINT module, the decision maker can give his/her preferences
concerning the surrogate problem and, thus, find a preferred solution to the sur-
rogate problem. The preferred solution to the surrogate problem can also be
projected on the Pareto front of the original problem within the same interface
(using the Project Solution button near the bottom of the screen). The approxi-
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mate Pareto optimal solutions and the actual Pareto optimal solutions that have
been found are visualized on the right of the screen. Further description of the
PAINT module can be found in Paper [PV], which also includes an application of
it to solving a computationally expensive multiobjective optimization problem of
designing and operating wastewater treatment plant.



6 APPLICATIONS

In this Chapter, we describe how the applicability of the PAINT method has
already been studied with two multiobjective optimization problems. The first
problem was studied in Paper [PIII] and it was a multiobjective heat exchanger
network synthesis problem. This problem had been studied also in [47]. The
purpose of treating this problem in Paper [PIII] was to act merely as a proof of
concept of decision making on an inherently nondominated Pareto front approx-
imation. The number of given Pareto optimal outcomes used for approximating
the Pareto front was considerably smaller than it would be in a real application.
The number of given outcomes was small to reduce the complexity of the ap-
proximation. The PAINT method had not been developed, when Paper [PIII]
was being written, and the polytopes had to be removed manually using directly
the rules given in [PII].

The second example was studied in Paper [PV] and it was a multiobjective
optimization problem of designing and operating a wastewater treatment plant.
This problem had been previously studied in [77]. In Paper [PV], the PAINT
method is applied to a real life problem for the first time. In addition, our treat-
ment of this problem was in Paper [PV] much more rigorous than that of the heat
exchanger problem in Paper [PIII]. In the wastewater treatment problem, we had
a real decision maker Mr. Kristian Sahlstedt from Pöyry Environment Ltd who
was willing to invest his time in studying the problem with our method. In the
wastewater treatment problem, the new IND-NIMBUS® PAINT module (briefly
discussed earlier in Section 5.4) was also used. With the PAINT method and the
interactive NIMBUS method, we were able to find good compromise solutions to
the wastewater treatment problem with low computational cost.

6.1 Heat Exchanger Network Synthesis

According to [47], the objective of research in heat exchanger network synthe-
sis is to design a heat exchanger network that minimizes the total annualized
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cost, given sets of hot streams, cold streams, hot utilities and cold utilities. Each
hot and cold stream has a specific heat capacity flow rate, a start and a target
temperature. For a more detailed description of the problem, see [47] and the ref-
erences therein. Different optimization based solution approaches are given e.g.,
in [14, 47, 70]. Even though the problem has multiple conflicting objectives, the
conflicting objectives have been explicitly handled only in [47].

A way to model the heat exchanger network synthesis, called the SynHeat
model, has been introduced in [89]. Based on this model, a four-objective opti-
mization problem to minimize the cold utility consumption, hot utility consump-
tion, number of heat exchanger units and total heat exchanger surface area was
introduced in [47]. The problem was modeled with GAMS (see [30]) and solved
with the NIMBUS method that was also implemented on GAMS.

In Paper [PIII], a simplification of the heat exchanger network synthesis
problem of [47] was treated, where the cold utility was dropped from the set
of objectives. The cold utility could be dropped because it was found that it cor-
related with the hot utility and, thus, it was enough to consider only one of them.
In that paper, nine Pareto optimal outcomes were taken as the given set of Pareto
optimal outcomes. This set of outcomes acted as a basis for the Pareto front ap-
proximation. These Pareto optimal outcomes were the Pareto optimal outcomes
found in [47] with the NIMBUS method. Our aim was to see whether we could
gain any more insight about the problem by approximating the Pareto front and
then exploring the approximation by NIMBUS. Naturally, in a rigorous treatment
of the problem the set of Pareto optimal outcomes would be larger. As the pur-
pose of Paper [PIII] was to act merely as a proof of concept of decision making
on an inherently nondominated Pareto front approximation, the aim was for sim-
plicity of the treatment and, thus, only the nine Pareto optimal outcomes were
chosen.

As the given set of Pareto optimal outcomes was so small, the inherently
nondominated Pareto front approximation could be constructed manually with
the ideas of Paper [PII], i.e., without the PAINT method introduced in Paper
[PIV]. After the Pareto front approximation had been constructed, a surrogate
problem was formulated. The surrogate problem was a nonlinear mixed integer
problem, because the mixed integer linear surrogate problem (10) was not devel-
oped before Paper [PIV]. The surrogate problem was, however, simple enough
that the scalarizations were solvable with the single objective solvers available
within WWW-NIMBUS, which was chosen as the implementation of the NIM-
BUS method. The NIMBUS method was chosen, because of its success in solving
real-life multiobjective optimization problems (see Section 2.4.1).

The decision maker was able to find a preferred solution to surrogate prob-
lem with WWW-NIMBUS. The preferred approximate Pareto optimal outcome
was then projected on the Pareto front of the original problem with the help of
the achievement scalarizing problem (4). The Pareto optimal outcome obtained
was fairly close to the approximate one and the decision maker was satisfied with
it.

In conclusion, the decision maker was able to explore the Pareto front ap-
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proximation through the surrogate problem. The exploration of the Pareto front
approximation was cognitively easy to the decision maker with the help of the
NIMBUS method. The decision maker was able to find a preferred solution to the
original problem in a computationally inexpensive way.

6.2 Designing and Operating a Wastewater Treatment Plant

Designing and operating a wastewater treatment plant is a complex problem
with multiple conflicting objectives. In [77], a five-objective optimization prob-
lem of designing and operating wastewater treatment plant was examined. The
approach of [77] was to use the interactive NIMBUS method (and more specif-
ically its implementation IND-NIMBUS®) to design and find operating settings
for a wastewater treatment plant using activated sludge process. The problem
was an extension of the three-objective problem treated in [36], where only a part
of the plant was considered.

Figure 17 describes the schematic layout of the wastewater treatment plant
that was designed in [77]. The wastewater treatment begins with grit removal.
After the grit removal, solids are separated by a gravitational settling. Raw and
mixed sludge removed from the primary settlers is fermented in a separate reac-
tor and partly recycled back to the water line to provide readily biodegradable
carbon source for denitrification. The bioreactor consists of four anoxic zones,
three aerobic zones and one deoxygenation zone. Nitrate-rich activated sludge
is recycled from zone 8 of the bioreactor to zone 1. Return sludge and primary
effluent are directed to zone 1. Methanol is injected to zone 2 to support denitri-
fication. Excess sludge is pumped from zone 8 of the bioreactor to the beginning
of the water process, from which it is removed in the primary settlers together
with raw sludge. Raw and mixed sludge is thickened gravitationally into ap-
proximately 4.5% total solids prior to anaerobic digestion. Anaerobic digestion
produces biogas and the produced biogas can be converted into electrical or ther-
mal energy. The digested sludge is dewatered by centrifuges into approximately
28% total solids. The reject water from sludge treatment is pumped to the be-
ginning of the plant. For a treatment of state-of-the-art practices in wastewater
treatment, see e.g., [71].

The objectives of the five-objective optimization problem of [77] were amount
of nitrogen in the effluent, consumption of energy in the bioreactor, methanol con-
sumption, excess sludge production and biogas production. The first one is the
main goal of the activated sludge process and the four others are connected to the
operational costs. The multiobjective optimization problem allowed the simulta-
neous consideration of different aspects related to the performance of the plant
(through nitrogen removal rate) and different aspects of the operational costs.
Naturally, the last objective was maximized and the others were minimized. The
decision variables were percentage of sludge pumped into fermentation from the
primary gravitational settling, amount of excess sludge removed from aeration,
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FIGURE 17 A schematic layout of the wastewater treatment plant

O2 concentration in the last aerobic zone of the bioreactor and methanol dosage.
Like the model used e.g., in [36], this model was based on findings made in Pöyry
Engineering Ltd.

Each simulation of the wastewater treatment plant of [77] takes about 11
seconds on the GPS-X simulator. This makes the problem computationally ex-
pensive. In addition, one can notice from the Pareto optimal outcomes computed
for the problem that the problem is nonconvex. During the analysis in [77], 200
simulations were run to optimize each of the subproblems of the synchronous
NIMBUS method with the Controlled Random Search algorithm (see [72]), which
is implemented within the IND-NIMBUS® software framework. This means that
each iteration of the synchronous NIMBUS method took more than half an hour
even with only one scalarization. Even though, interesting compromise solutions
to the problem were found in [77], the computational time of iterations was an in-
convenience to the decision maker Mr. Kristian Sahlstedt (according to personal
communications with the authors of [77]).

Because of the computational cost of the wastewater treatment problem of
[77], it was worthwhile to revisit this problem using PAINT. This was done in Pa-
per [PV]. In order to study, how the introduction of the PAINT method changes
the use of the interactive method, all the remaining circumstances were kept the
same in solving the problem. I.e., the synchronous NIMBUS method was used
in decision making and the decision maker was Mr. Kristian Sahlstedt, as was
in [77]. The PAINT method was combined with the NIMBUS method using the
IND-NIMBUS® PAINT module that was also introduced in Paper [PV]. Because
the only thing that changed was the introduction of the PAINT method into the
decision making process, Mr. Sahlstedt was able to compare the experiences of
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using the NIMBUS method with and without the PAINT method. In the follow-
ing, the decision making process of Paper [PV] is described and conclusions are
drawn.

The Pareto front approximation with the PAINT method always starts with
computing the given set of Pareto optimal outcomes. A set of 197 mutually non-
dominated solutions to the problem was produced using the UPS-EMO evolu-
tionary algorithm of [2]. The mutually nondominated solutions were locally im-
proved using an achievement scalarizing problem of [83] and Matlab fmincon-
function with finite differences approximated gradients. The result was 195 mu-
tually nondominated solutions, because some of the solutions became dominated
by others. The implied 195 outcomes were taken as the given set of Pareto opti-
mal outcomes for the PAINT method.

Next, the Pareto front was approximated with PAINT based on the given set
of Pareto optimal outcomes. The approximation consisted of 4272 polytopes with
the given set of Pareto optimal outcomes as their vertices. As described in Paper
[PV], the Pareto front approximation implied a mixed integer linear surrogate
problem (10) with 3040 continuous variables and 608 binary variables.

The mixed integer linear surrogate problem was inputted into the IND-
NIMBUS® PAINT module. The module allowed the decision maker to investi-
gate the approximate Pareto optimal outcomes (i.e., the outcomes of the surrogate
problem) and to find the closest actual Pareto optimal solution to the approximate
outcome whenever he so wished. The computationally inexpensive investigation
of approximate Pareto optimal outcomes through the surrogate problem removed
the inconvenience that the decision maker would have had to wait while new so-
lutions based on his/her preferences are generated for investigation.

Mr. Kristian Sahlstedt felt that using the PAINT and NIMBUS methods to-
gether was a definite improvement to using the NIMBUS method directly with
the original computationally expensive problem. In addition, he was able to gain
more understanding about the problem, because he was more willing to experi-
ment with the surrogate problem, since it was computationally inexpensive. Fi-
nally, Mr. Sahlstedt found a preferred solution to the wastewater treatment prob-
lem by projecting a solution to the surrogate problem to the Pareto front of the
original problem. Paper [PV] contains a more thorough description of the deci-
sion making procedure and the tools that were used.



7 AUTHOR’S CONTRIBUTION

The idea to approximate the Pareto front came from my supervisor Professor
Kaisa Miettinen. In communications with Prof. Miettinen, our research objectives
were established.

After having established the goal of my research, I started doing literature
review. The aim of this was to find out the challenges in approximating the Pareto
fronts of nonconvex multiobjective optimization problems and to see if any of
the existing Pareto front approximation methods can handle these challenges.
Furthermore, I wanted to see how they fail if that is the case.

During the literature review, I constructed the motivational example given
in Section 4.1. With this motivation, I decided to approach the Pareto front ap-
proximation problem from a different direction. I did not directly try to come up
with a Pareto front approximation method, but instead developed the inherent
nondominance concept. The inherent nondominance of a Pareto front approxi-
mation guarantees that the Pareto front approximation will not fail e.g., with the
motivational example in Section 4.1 in a way that I had found most of the Pareto
front approximations to fail.

At this point, Prof. Miettinen and I decided that I would present the idea in
the MCDM2009 conference and the conference proceedings. This paper became
Paper [PI] that is included in this thesis. In writing the paper, Prof. Miettinen and
I had the privilege of having Prof. Margaret M. Wiecek from Clemson University,
U.S.A, as our co-author. I was the main author of Paper [PI] and the primary
source of new ideas. The co-authors Professors Miettinen and Wiecek contributed
with their guidance, helpful comments, ideas and feed-back. As this was my first
scientific paper, the role of my co-authors was rather large in writing the paper.

Paper [PII], containing the mathematical basis for the Pareto front approxi-
mation, is again mainly written by me. Before starting the writing process, I had
already developed an idea about the basis for the Pareto front approximation.
Professors Miettinen and Wiecek played an active role by always challenging me
to think everything again and to write a better scientific paper. They encour-
aged me always to find new ideas from a variety of areas of literature. Their
encouragement led me to modify the idea and bring new aspects from compu-
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tational geometry to the paper. However, the ideas always came from me, and
my co-authors’ role was to question my ideas and to use their knowledge and
experience to guide me if I had come up with alternative research directions.

In Paper [PIII], only Prof. Miettinen collaborated with me. Prof. Miettinen
had the idea of applying the ideas of Paper [PII] to a multiobjective optimiza-
tion problem treated in [47]. In addition, Prof. Miettinen contributed with her
knowledge on the problem. I computed the inherently nondominated Pareto
front approximation for the problem, did the analysis of the Pareto front approx-
imation with the WWW-NIMBUS software and did most of the writing of the
paper. Prof. Miettinen instructed me and provided support during the writing
process.

For Paper [PIV], introducing the PAINT method (that implements the ideas
from previous papers) and describing implementation issues, Prof. Wiecek re-
joined Prof. Miettinen and me in doing the research and writing the paper. I was
again the main author and the main source of ideas. My independence in writing
this paper even grew, because I had learned from the previous papers.

Paper [PV], describing an application of the PAINT method to designing a
wastewater treatment plant and introducing the IND-NIMBUS® PAINT module,
was written by my co-author Mr. Vesa Ojalehto and me. In this paper, I was re-
sponsible for providing the theoretical background on the PAINT method, and
mostly writing the paper. Mr. Ojalehto was on his behalf responsible for imple-
menting the PAINT module. During the writing of this paper, Dr. Jussi Hakanen
provided his expertise in the application and the simulator. Mr. Kristian Sahlst-
edt acted as our decision maker. In addition, Prof. Miettinen provided us with
support during the writing process.



8 CONCLUSIONS AND FURTHER RESEARCH

In this thesis, we have introduced the PAINT (PAreto front INTerpolation) method
for interpolating between a set of Pareto optimal outcomes. The method is espe-
cially useful in solving computationally expensive multiobjective optimization
problems, because the Pareto front approximation constructed with the PAINT
method implies a computationally inexpensive mixed integer linear surrogate
problem for the original problem.

The PAINT method is based on the concept of inherent nondominance, also
introduced in this thesis. Inherent nondominance is a property of a set that we
have shown to be beneficial for a Pareto front approximation.

In addition, we have shown in this thesis that ideas taken from computa-
tional geometry (see e.g., [23]) can be adapted to approximating the Pareto front.
In this way, we have opened new doors for further research, as ideas for Pareto
front approximations have previously mainly come from mathematical analysis
and optimization.

We have also developed a new IND-NIMBUS® PAINT module that com-
bines the PAINT method and the interactive NIMBUS method. This module has
been applied to solve a computationally expensive five-objective problem of de-
signing and operating a wastewater treatment plant. We have shown that the
PAINT method and the new module are effective tools in helping the decision
maker find a preferred solution with an interactive method. The PAINT method
and the IND-NIMBUS® PAINT module should prove useful in helping interac-
tive multiobjective optimization find new application areas in the future.

As further research on this subject, we are going to investigate different ap-
plications of the PAINT method. The single real application with a real decision
maker (i.e., the wastewater treatment plant problem) that we have had so far is
insufficient for determining the strengths and weaknesses of the method. In ad-
dition, different decision makers may have different viewpoints on approximate
outcomes provided by the PAINT method and this must also be investigated.

We have already identified three weaknesses of the PAINT method that are
possible directions for further research. First, the Pareto front approximation con-
structed with the PAINT method does not provide any information about its
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preimage in the decision space, which may be an issue in problems, where the
decision variables are also meaningful to the decision maker. Second, the PAINT
method interpolates between any set of outcomes whenever the interpolation is
inherently nondominated. Thus, the PAINT method is not capable of detecting
any disconnectedness in the Pareto front, which naturally is a problem. Third, the
PAINT method’s computational cost grows exponentially with the number of ob-
jectives and more efficient ways of implementing it are needed. Currently, a prob-
lem with five objectives and about 200 Pareto optimal outcomes in the given set
of Pareto optimal outcomes is at the upper limit of what the PAINT method can
handle. For this kind of situations, running the algorithm of the PAINT method
takes about 3-4 hours depending on the geometry of the Pareto front and, natu-
rally, the computer that the PAINT method is run on. Fortunately, the decision
maker does not have to wait while the approximation is computed but he/she
gets involved only after this step, as described also in Figure 15.



9 ERRATA

In Paper [PIII], the inherently nondominated Pareto front approximation was
constructed without the PAINT method, but directly with rules (R1) and (R2)
given in Paper [PII]. Without an algorithm, the construction of the Pareto front
approximation was susceptible to errors and this is exactly what happened. The
Pareto front approximation given in Paper [PIII] is inherently nondominated, but
it does not follow rules (R1) and (R2). The inherently nondominated Pareto front
approximation that follows rules (R1) and (R2) contains polytopes given in Table
2 and shown in Figure 18.

However, since the Pareto front approximation in Paper [PIII] is an inher-
ently nondominated Pareto front approximation, the conclusions drawn in Pa-
per [PI] hold. Thus, the analysis following the construction of the Pareto front
approximation is justified. However, since the inherently nondominated Pareto
front approximation in Figure 18 does not include the hole that was in the Pareto
front approximation of Paper [PIII] (compare with Figure 1 in Paper [PIII]) it
would have had more approximate outcomes to choose on it. Thus, the decision
maker’s preferences may have been better met when using the NIMBUS method
to solve the surrogate problem that would have in that case had more feasible
solutions. The author of this thesis thinks that the fact that there was a mistake
in trying to construct the Pareto front approximation directly with rules (R1) and
(R2) further emphasizes the need for the PAINT method that was then developed
in Paper [PIV].
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TABLE 2 Polytopes of the inherently nondominated Pareto front approximation that
follows rules (R1) and (R2) for the heat exchanger network synthesis problem
of Paper [PIII]

Polytope Vertices Polytope Vertices Polytope Vertices
P1 p1 P2 p2 P3 p3

P4 p4 P5 p5 P6 p6

P7 p7 P8 p8 P9 p9

P10 p1 p3 P11 p1 p6 P12 p1 p9

P13 p2 p4 P14 p2 p7 P15 p2 p8

P16 p3 p4 P17 p3 p7 P18 p3 p9

P19 p4 p7 P20 p4 p8 P21 p4 p9

P22 p6 p8 P23 p6 p9 P24 p8 p9

P25 p1 p3 p9 P26 p1 p6 p9 P27 p2 p4 p7

P28 p2 p4 p8 P29 p3 p4 p7 P30 p3 p4 p9

P31 p4 p8 p9 p4 P32 p6 p8 p9 p6

z1

z2

z3

p1

p 2

p3

p 4 p 5

p 6

p 7

p8

p9

FIGURE 18 The inherently nondominated Pareto front approximation that follows
rules (R1) and (R2) for the heat exchanger network synthesis problem of
Paper [PIII]
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YHTEENVETO (FINNISH SUMMARY)

Tässä väitöskirjassa, jonka otsikko on "Interpolointimenetelmä epäkonveksiin mo-
nitavoiteoptimointiin", käsitellään laskennallisesti vaativia monitavoiteoptimoin-
titehtäviä. Nämä ovat optimointitehtäviä, joissa on monia tavoitteita ja ainakin
yhden objektifunktion arvon selvittäminen vaatii paljon aikaa. Tämä on tilan-
ne esimerkiksi silloin kun objektifunktioiden laskemiseen täytyy käyttää raskaita
tietokonesimulaatioita.

Monitavoiteoptimointitehtävien ratkaisemisessa niin kutsuttu analyytikko
(monitavoiteoptimointimenetelmien asiantuntija) auttaa päätöksentekijää (sovel-
lusalan asiantuntija) löytämään parhaan mahdollisen kompromissin tehtävälle.
Interaktiiviset monitavoiteoptimointimenetelmät on nähty potentiaalisina, kos-
ka ne auttavat päätöksentekijää oppimaan tehtävästä ja tavoitteistaan. Interaktii-
visissa menetelmissä päätöksentekijä voi iteratiivisesti etsiä parasta ratkaisua ja
mahdollisesti muuttaa preferenssejään. Lisäksi, koska päätöksentekijä voi ohjata
interaktiivista menetelmää haluamilleen päätösavaruuden alueille, täytyy yleen-
sä varsin harvoja ratkaisuja tutkia halutun ratkaisun löytämiseksi.

Laskennallisesti vaativat monitavoiteoptimointitehtävät asettavat haasteita
kuitenkin myös interaktiivisille menetelmille. Koska interaktiivisia menetelmiä
käyttäessä täytyy uusi ratkaisu löytää jokaisella iteraatiolla, voi niiden käyttämi-
nen tulla erittäin hitaaksi. Tämä voi johtaa päätöksentekijän tuskastumiseen tai
hän voi jopa menettää uskonsa menetelmään. Erityisesti tätä ongelmaa on tutkit-
tu tässä väitöskirjassa.

Interaktiivisten menetelmien iteraatioiden nopeuttamiseksi on tässä väitös-
kirjassa kehitetty PAINT-menetelmä, joka interpoloi tunnettujen ratkaisujen välil-
lä. PAINT-menetelmän tuottamalla interpolaatiolla voidaan liikkua käyttäen mi-
tä tahansa interaktiivista menetelmää, koska tämä interpolaatio voidaan esittää
laskennallisesti vähemmän vaativana lineaarisena sekalukutehtävänä. Näin pää-
töksentekijä voi tutkia interpoloituja ratkaisuja ilman laskennallista vaativuutta,
vaikka alkuperäinen tehtävä olisikin sellainen.

Tämä väitöskirja sisältää myös kaksi sovellusta, joiden tarkoitus osoittaa
PAINT menetelmän hyödyt. Ensimmäinen sovellus näyttää, että interpolointi on
käytännöllinen lähestymistapa laskennallisesti raskaan lämmönvaihtimen mo-
nitavoitteisessa suunnittelussa. Toisessa sovelluksessa suunnitellaan jäteveden-
puhdistamoa. Tässä sovelluksessa käytetään myös kehittämäämme IND-NIMBUS®

PAINT lisäosaa, joka yhdistää PAINT-menetelmän ja interaktiivisen NIMBUS me-
netelmän IND-NIMBUS® ohjelmistokehikossa. Samalla tutkitaan päätöksenteki-
jän toimintaa tämän ongelman ratkaisemisessa PAINT menetelmän avulla.

Väitöskirjan lähestymistapa laskennallisesti vaativien epäkonveksien mo-
nitavoitteisten optimointitehtävien ratkaisemiseen on uusi. Väitöskirja avaa siten
uusia sovelluksia interaktiiviselle monitavoitteiselle optimoinnille tehtäviin, joita
on aikaisemmin pidetty niille liian vaikeina.
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Decision Making on Pareto Front
Approximations with Inherent Nondominance

Markus Hartikainen, Kaisa Miettinen, and Margaret M. Wiecek

Abstract Approximating the Pareto fronts of nonlinear multiobjective optimization
problems is considered and a property called inherent nondominance is proposed
for such approximations. It is shown that an approximation having the above prop-
erty can be explored by interactively solving a multiobjective optimization problem
related to it. This exploration can be performed with available interactive multiob-
jective optimization methods. The ideas presented are especially useful in solving
computationally expensive multiobjective optimization problems with costly func-
tion value evaluations.

1 Introduction

In multiobjective optimization (MO), the problem is to find a preferred solution in
the presence of several conflicting objectives (see e.g., [7, 17, 23]). In such prob-
lems, there is no single well-defined optimal solution but several mathematically
equally good solutions, so-called Pareto optimal (PO) solutions, can be identified.
To be able to find the most preferred among them as the final solution usually ad-
ditional preference information is needed from a human decision maker (DM), who
knows the problem domain.

According to [7], MO methods can be divided into no-preference methods, a
priori methods, a posteriori methods and interactive methods. For details of these
different methods see e.g., [17]. Interactive methods can be seen as the most promi-
nent - as argued in [20] - because the DM can learn about the problem as e.g., in [4]
and adjust his/her goals accordingly. Because only such PO solutions are generated
that are interesting to the DM, interactive methods are generally computationally
much less expensive than, for example, a posteriori methods, for which many PO
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solutions must be computed in order for the DM to get enough alternatives for mak-
ing an informed decision.

If a multiobjective optimization problem (MOP) is computationally very de-
manding i.e., function evaluations take a lot of time, even the classical interactive
methods can have problems; the DM may get frustrated in waiting while new PO
solutions that reflect his/her preferences are computed. This high computational de-
mand occurs often, for example, with the so-called black-box MOPs, whose objec-
tive functions are not explicitly known as algebraic functions of decision variables
but need to be e.g., simulated. Approaches based on evolutionary multiobjective
optimization methods have been proposed e.g. in [11, 14] for finding PO solutions
for computationally expensive MOPs. Another way to handle such MOPs is to use
design of experiments for constructing surrogate approximations of the objective
functions and then solving the surrogate MOP [26, 25]. However, according to [9],
the use of surrogate approximations loses its computational benefits as the number
of objectives increases. The approaches based on evolutionary algorithms have their
issues too; in order to produce a dense Pareto set representation, a large number of
solutions must be computed, which is time-consuming or sometimes even impossi-
ble. On the other hand, the choice of the final outcome from a large number of PO
outcomes is cognitively very demanding as noted in [13].

Instead of estimating each objective function with a surrogate, one can estimate
the set of PO outcomes (also called the Pareto front (PF)). In [4], an interactive
method called Pareto Navigator is proposed, in which a PF approximation for a
convex MOP is constructed based on a relatively small set of PO outcomes. Having
constructed the approximation, the preferences of the DM can be reflected in real
time by moving on the approximation in a way that resembles the visual interactive
Pareto Race method for linear problems [12]. When a preferred point on the approx-
imation has been found, the closest actual PO outcome can be found by means of
the achievement scalarizing function [24].

The construction of a PF approximation (that allows consideration of the objec-
tive vectors between known PO outcomes) and its exploration with MO methods
is a novel approach to computationally demanding MOPs and has some potential
benefits. When compared to a posteriori methods, some computational expense can
be avoided because a smaller number of PO outcomes is sufficient. Since the DM is
allowed to explore the approximation by iteratively expressing his/her preferences,
the cognitive load of going through a large set of PO outcomes becomes lighter. The
DM can also learn about the problem in the process. Finally, since the construction
of the PF approximation does not have any special requirements for the initial PO
outcomes, they may be generated with any method for finding PO outcomes, and
because the DM is not involved in this, the possible computational cost is not a
problem.

The Pareto Navigator method is, however, only applicable to convex MOPs, be-
cause of the type of approximation it uses. The ultimate goal behind our study is
to develop a MO method that uses the Pareto Navigator’s idea of navigating on the
approximation for general continuous nonlinear MOPs. The aim of this paper is to
concentrate on the issue of what kind of approximation can be used for the above
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mentioned exploration. Because interactive MO methods have been proven effective
in finding a preferred point on the PF, we want to employ them also for finding a
preferred point on the approximation. The process of finding a preferred point on a
PF approximation (by using interactive MO methods or other methods) is referred
to in this paper as decision making on the approximation.

There are numerous methods for approximating the PF of a MOP. A survey [22]
summarizes methods published before 2003. More recent approximation methods
for nonlinear MOPs are given e.g., in [3, 5, 15, 16]. However, the uses of the PF
approximations in decision making have not received the attention that they deserve.
Among the few exceptions are [2, 4, 8, 10, 15, 18, 21]. None of these, however, aims
at using general interactive MO methods in exploring the PF approximation. The
approach of this paper is, thus, different from all the above; we aim at characterizing
an approximation for a specific use of exploration with interactive MO methods.

The paper is structured as follows. Some terminology and notation is set in Sec-
tion 2. We introduce a new property called inherent nondominance (IND) for a PF
approximation and prove its relevant properties in Section 3. In Section 4, decision
making on the approximation is discussed and an example is given. We also propose
an approach to exploring an IND PF approximation by solving a special type MOP.
Finally, we draw conclusions in Section 5.

2 Notation and definitions

In this paper we study multiobjective optimization problems (MOPs)

min
s.t. x∈X

( f1(x), . . . , fk(x)) , (1)

where fi : X → R is a function for all i ∈ {1, . . . ,k}, X ⊂ Rn and k,n ∈ N. We also
define a vector valued function f : X →Rk, f (x) = ( f1(x), . . . , fk(x))T for all x ∈ X .

The set X is called the feasible decision set of (1) and every x ∈ X is called
a (feasible) decision. The set f (X) is the feasible outcome set of (1) and every
z ∈ f (X) is called a (feasible) outcome. The set Rk is called the objective space of
(1) and every point z ∈Rk is called an objective vector. With the above notation, the
MOP (1) can be formulated as

min
s.t. z∈ f (X)

z. (2)

For any objective vectors z1,z2 ∈ Rk notation z1 ≤ z2 means that z1
i ≤ z2

i for all
i = 1, . . . ,k and z1 6= z2. If z1 ≤ z2 it is said that z1 dominates z2. If B ⊂ Rk is a set,
then a point b ∈ B is Pareto optimal (PO) in B, if there does not exist a point b̃ ∈ B
that dominates b. An outcome z ∈ f (X) is PO for (1), if z is PO in f (X). Finally, the
Pareto front (PF) of B, PF(B), is the set of PO points in B and the PF of a MOP, PF ,
is the set of PO outcomes of the MOP. A feasible decision x ∈ X is a PO solution to
(1), if f (x) is a PO outcome.
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We assume a rational decision maker (DM): he/she always prefers a PO objective
vector over a dominated one in any set of possible objective vectors. In other words,
for every set A⊂Rk the preferred objective vectors of the DM belong to PF(A) and,
furthermore, the DM is not interested in A\PF(A) if he/she is aware of PF(A).

The starting point of this study is as follows. Assume that we are given a compu-
tationally demanding MOP with the above notation. This problem is referred to as
the initial MOP. If not otherwise defined, the notations PO and PF always refer to
this problem. We also assume that we are given a finite set of PO outcomes P. This
set is referred to as the initial set of PO outcomes. As in Pareto Navigator, the way
this set has been generated is not restricted in any way.

3 Inherent nondominance and inherently nondominated
approximation of the PF

In this section we introduce the concept of inherent nondominance and other related
concepts. We also present the relevant properties characteristic for an inherently
nondominated approximation of the PF. These properties will be further interpreted
in Section 4.

Definition 1. We say that a set A⊂Rk is inherently nondominated (IND), if for any
two points a1,a2 ∈ A neither a1 ≤ a2 nor a2 ≤ a1.

Definition 2. A set A⊂Rk is an inherently nondominated PF approximation (based
on P) if A is IND and P⊂ A.

According to the following theorem, the actual PF satisfies the IND condition.
The actual PF should be suitable as an approximation of itself, because naturally it
is the best approximation that one can hope for.

Theorem 1. The PF is an IND PF approximation based on P.

Proof. Since P is a set of PO outcomes, then P⊂ PF . The property that PF is IND
is trivial, since if z1,z2 ∈ f (X) so that z1 ≤ z2, then z2 /∈ PF . ut

The following theorem gives a sufficient and necessary condition for a set to
be IND and could, thus, have been chosen as the definition for an IND set. We,
however, chose the definition given above.

Theorem 2. Let A⊂ Rk be a set. Then the set A is IND if and only if PF(A) = A.

Proof. ”⇒ ”: Naturally PF(A)⊂ A. To show that A⊂ PF(A), assume the contrary
that there exists a point a ∈ A\PF(A). This implies a point b ∈ A so that b≤ a. But
this is a contradiction, since A is IND.
”⇐ ”: To show that A is IND assume the contrary that there exist distinct points
a,b ∈ A so that a ≤ b. This would imply that b /∈ PF(A) and would thus be a con-
tradiction. ut
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The following corollary follows directly from Theorem 2. It is, however, con-
siderably important, since according to it an IND approximation extends P without
losing Pareto optimality.

Corollary 1. If a set A⊂ Rk is an IND PF approximation based on P, then

P⊂ PF(A).

Proof. Now PF(A) = A⊃ P, because of Theorem 2 and Definition 2. ut

The above properties of an IND approximation are rather straightforward. Theo-
rem 3 establishes the existence of IND PF approximations.

Theorem 3. The set of initial PO outcomes P is an IND PF approximation based
on P.

Proof. Because outcomes in P are PO, they do not dominate each other. Also P⊂ P
trivially. ut

The IND approximation P is not, however, interesting, since it does not contain
any points outside the set of initial PO outcomes P. We want to construct IND
approximations A that extend P, but we must skip the development of algorithms
producing such IND approximations because of space limitions. Our general idea
is to start with a large set B, P ⊂ B ⊂ Rk, and then remove from B such points
b ∈ B\P that violate the IND condition. By Theorem 3, this procedure produces an
IND approximation. Also by Zorn’s lemma, there exists at least one minimal (by
inclusion) set B̃⊂ B\P such that B\ B̃ is an IND PF approximation.

Example 1. Let the set of initial PO points be P = {p1, p2, p3, p4}, where p1 =
(1,0,0), p2 = (0,1,0), p3 = (0,0,1) and p4 = (2/5,2/5,2/5). We compare two
piecewise linear PF approximations A1 = conv(P) and A2 = conv(p1, p2, p4) ∪
conv(p1, p3, p4)∪ conv(p2, p3, p4), where conv(C) is the convex hull of a set C.
These are shown in Figure 1. The convex hull of all outcomes in P is used e.g., in
[4, 21] for approximating the outcome set f (X) for convex MOPs and has thus been
used for getting also a PF approximation. Approximation A2 is IND, which can
be shown analytically. Approximation A1 is, however, not IND because the point
(1/3,1/3,1/3) ∈ A1 dominates the initial PO outcome p4 that is also in A1. For
this reason, approximation A1 is not able to capture the non-convex shape implied
by the initial set of PO outcomes and, unlike the IND approximation A2, gives too
optimistic estimates.

4 Decision making on the approximation

In this section we discuss decision making on the approximation. The underlying
reasoning is that once the PF approximation with desired properties has been cre-
ated, one can navigate on it with significantly lower computational cost than on the
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Objective 1

Objective 2

Objective 3

p1

p2

p3

p4

(a) Approximation A1

Objective 1

Objective 2

Objective 3

p1

p2

p3

p4

(b) Approximation A2

Fig. 1: Two piecewise linear PF approximations constructed with the same
initial set of PO outcomes. The approximation A1 is the convex hull of all
points and the approximation A2 is a union of three triangles.

PF of the original problem. Once a desired objective vector on the approximation
has been found, one can generate the closest corresponding PO solution as in Pareto
Navigator.

The problem of finding a preferred point on a PF approximation is similar to
finding a preferred outcome of a MOP; like the PF, its approximation A may have
many mathematically equally good objective vectors and, thus, there is a need for
decision making even on the PF approximation. An important aspect of decision
making on an approximation is the question of how well the preferences of the DM
on the approximation reflect the preferences on the real PF.

Based on a limited knowledge of the PF in a form of the initial set of PO out-
comes P, the accuracy of the approximation cannot naturally be guaranteed outside
the initial PO outcomes. What can, however, be done is that a rational DM is given
the opportunity to choose any of the initial PO points in P while making rational de-
cisions on the approximation. An undesirable occurrence happens e.g., in non-IND
approximation A1 in Example 1, where a rational DM will not be interested in the
initial PO outcome p4, because this point is not PO on the approximation.

Assuming that the PF approximation discussed above is IND, then we have the
following: First of all, all points in the initial set of PO outcomes are now plausi-
ble decisions for a rational DM because P ⊂ PF(A) by Corollary 1. Second, since
PF(A) = A by Theorem 2, the diversity of the PO objective vectors on the approxi-
mation can be examined directly from A. Since the DM is rational, then the diversity
of PF(A), not that of A, is interesting to him/her. If the PF approximation A is non-
IND, these are not the same things.

We are left with the question of how to help the DM find a preferred point on a PF
approximation. This is another instance where the concept of an IND approximation
helps. According to Theorem 4, an IND approximation is the PF of a MOP that also
has the set P on its PF.

Theorem 4. If a set A ⊂ Rk is an IND PF approximation based on P, then there
exists a MOP with notation (1) so that P⊂ PF( f (X)) and PF( f (X)) = A.
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Proof. Assume that f = I (the identity mapping), X = A and n = k in (1). Then
PF( f (X)) = PF(X) = PF(A) = A, where the last equation results from Theorem 2.
Also by definition P⊂ PF( f (X)) = A. ut

The MOP, whose existence is guaranteed by Theorem 4, can be seen as a surro-
gate MOP for the initial MOP. We define this MOP for a general set, and not just for
an IND approximation, and also give it a name.

Definition 3. For any nonempty set A⊂ Rk, the MOP

min
s.t. z∈A

z (3)

is called the MOP implied by A. The formulation above is analogous to formulation
(2) but instead of the set of outcomes f (X), an arbitrary set A in the objective space
Rk is used.

When trying to find a preferred point on an IND PF approximation, we thus pro-
pose to solve the MOP implied by A and take the final solution of the former as
a preferred point on the approximation A. This approach has a couple of apparent
benefits: All methods developed for solving MOPs are now applicable for decision
making on the approximation and there is no need to develop new ones for this.
Especially we can now use interactive MO methods in solving MOP (3). Also, since
the PF of the MOP implied by the approximation is explicitly known, the compu-
tational expense should be very low while using MO methods in solving this MOP.
Furthermore, since all the outcomes of the MOP are actually already on the PF of
this MOP, there is no need to be concerned about the convergence to the PF, which
also saves computational time. These aspects are clarified below with an example.

Example 2. In [6], a computationally expensive, black-box problem of wastewater
treatment planning involving three objective functions is solved with the interac-
tive multiobjective method NIMBUS [19, 17]. In the optimization process, 11 PO
outcomes including the final preferred outcome (0.72,332,524)T were computed.
Here we want to produce a PF approximation in the neighborhood of the final out-
come and then to formulate a MOP implied by this approximation in a form that
could be solved with interactive MO methods. We use the already generated PO
outcomes to construct this approximation but we want to emphasize that any appro-
priate method could have been used to generate the set P. We choose a subset of
known PO outcomes (and thus approximate only a part of the PF) for the simplicity
of the presentation.

The final outcome and four outcomes closest to it are chosen as the initial set of
PO outcomes P. Thus, we have P = {p1, p2, p3, p4, p5}, where p1 = (1.7,326,506),
p2 =(1.1,336,515), p3 =(0.9,333,519), p4 =(0.7,332,524), p5 =(0.5,347,528).
The set

A = conv(p1, p2, p3)∪ conv(p1, p3, p4)∪ conv(p3, p4, p5)∪ conv(p2, p3, p5)

shown in Figure 2 is an IND PF approximation and this can be checked analytically.
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Residual ammonium nitrogen
concentration

Alkalinity chemical dosing rate

Aeration energy consumption

p1

p2

p3

p4

p5

Fig. 2: The IND PF approximation A.

The IND PF approximation A can be parametrized with a slack variable t ∈
{0,1}3× [0,1]2 and, using this parametrization, the MOP implied by A can be for-
mulated as

min z(t)
s.t. z(t) = t1(t4 p1 + t5 p2 +(1− t4− t5)p3)

+t2(t4 p1 + t5 p3)+(1− t4− t5)p4)
+t3(t4 p2 + t5 p3 +(1− t4− t5)p5)
+(1− t1− t2− t3)(t4 p3 + t5 p4 +(1− t4− t5)p5)

t = (t1, . . . , t5) ∈ {0,1}3× [0,1]2

0≤ 1− t1− t2− t3 and 0≤ 1− t4− t5.

(4)

The MOP (4) includes 2 continuous and 3 discrete decision variables, 2 linear in-
equalities concerning them and also some box constraints. The decision variable t
does not have any meaning to the DM, but is merely a product of the parametrization
of A. However, the objective function values in the vector z(t) ∈ A have a meaning
to the DM for each feasible t and based on these values he/she can express prefer-
ences. Exploration of the PF approximation A means varying the decision variable t
based on the preferences of the DM and then showing him/her the resulted objective
function values.

MOP (4) can by inputed e.g., to the WWW-NIMBUS implementation of the
NIMBUS method [1]. Solving it is computationally inexpensive and the DM can
get feedback to his/her preferences quickly unlike with the initial computationally
expensive MOP. Thus, the DM could be more inclined to see more new outcomes
and this should help him/her obtain a better understanding of the problem.

The ideas presented in this paper are of general nature, but can be seen to be
related to some specific MO methods found in the literature. The Pareto Navigator
method [4] can be interpreted as solving a MOP implied by the convex cone of the
Pareto optimal solutions. The surface of this convex cone approximates the PF since
for Pareto Navigator the problem is assumed to be convex. The methods of [15], on
the other hand, can be seen as using a visual technique called the Interactive De-
cision Map for solving the MOP implied by an approximation (that is constructed
by methods mentioned therein) of the feasible outcome set. However, since the ap-
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proximations used in these methods are not necessarily IND approximations, the
benefits mentioned in this section do not apply.

5 Conclusion

We have proposed a new approach to solving computationally expensive multiob-
jectice optimization problems. In our approach, we first approximate the Pareto front
and then enable the decision maker to explore the approximation with his/her pref-
erences. We have also proposed inherent nondominance, a new property for Pareto
front approximations which ensures desirable properties for approximations so that
exploration can take place.

The utilization of proposed approximation approach requires an algorithm to
construct an inherently nondominated Pareto front approximation from a given set
of Pareto optimal outcomes. Furthermore, we must study which interactive multi-
objective optimization methods are best suited for solving the multiobjective opti-
mization problem implied by the approximation. These issues will be considered in
future papers.
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Abstract An approach to constructing a Pareto front approximation to computation-
ally expensive multiobjective optimization problems is developed. The approxima-
tion is constructed as a sub-complex of a Delaunay triangulation of a finite set of
Pareto optimal outcomes to the problem. The approach is based on the concept of in-
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front approximation works as a surrogate to the original problem for decision making
with interactive methods.
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1 Introduction

In practical decision problems, there are often multiple conflicting objectives that
need to be optimized at the same time (Keeney and Raiffa, 1993). These conflicting
objectives are often handled with ad hoc aggregation or by converting all but one
objective into constraints. Multiobjective optimization is a systematic approach to
optimizing multiple conflicting objectives (see e.g., (Miettinen, 1999)).

Different multiobjective optimization methods can be classified into four classes
with respect to the role of a decision maker (an expert in the application area who
is at liberty to make decisions concerning the problem) in the optimization process
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(Miettinen, 1999; Sawaragi et al., 1985). In no-preference methods, no preference
information is used. In a priori methods, the problem is optimized with respect to a
given preference information and then the decision maker is provided with a single
solution. In a posteriori methods, the decision maker is provided with a set of solu-
tions from which he/she can choose a preferred one. In interactive methods, an itera-
tive procedure is used to explore different solutions to the problem and the decision
maker is allowed guide the exploration. All these methods find their use in different
situations, but we have concentrated on interactive methods because they allow the
decision maker to learn about the problem while solving it (Miettinen et al., 2008). In
all methods, an important concept is Pareto optimality. A solution to a multiobjective
optimization problem is Pareto optimal, if none of the objectives can be improved
without impairing some other(s). An outcome is a vector containing the values of
objectives as its components, and an outcome is Pareto optimal if it is given by a
Pareto optimal solution. The preferences are in interactive methods typically (see
(Luque et al., 2011)) given in the form of desired values, changes or proportions of
the values of objectives in Pareto optimal outcomes (see e.g., the NIMBUS method
(Miettinen and Mäkelä, 1995, 2000, 2006) and the Tchebycheff method (Steuer and
Choo, 1983; Steuer, 1986, 1989) to name some).

In addition to having conflicting objectives, many practical decision problems are
also computationally expensive (see e.g., (Hasenjäger and Sendhoff, 2005; Laukka-
nen et al., 2010)). The computational cost results from the lack of closed-form de-
scription of the objective functions and the need to employ simulation, which may
take even hours (see e.g., (Hasenjäger and Sendhoff, 2005)). Computationally expen-
sive problems are naturally very hard to solve and even interactive methods – that are
often praised for their computational efficiency when compared to a posteriori meth-
ods (Miettinen, 1999) – may be inefficient. This is because the time grows between
the moments when the decision maker expresses his/her preferences and when he/she
can see the effects of those preferences in generated outcomes. The time grows be-
cause in most interactive methods the multiobjective optimization problem is in each
iteration solved with respect to the updated preferences of the decision maker. This
naturally slows down the solution process and makes it harder for the decision maker
to learn about the problem and may even make him/her reluctant to explore different
solutions to the problem.

We have developed an approach to help interactive methods deal with computa-
tionally expensive problems. The approach is based on replacing the original prob-
lem with a surrogate problem which approximates the set of Pareto optimal outcomes
(often also called the Pareto front). Following this idea, we proposed in (Hartikainen
et al., 2011) that one should construct (as defined therein) an inherently nondomi-
nated Pareto front approximation based on a small set of known Pareto optimal out-
comes and use this approximation with the interactive method instead of the original
problem. The reasoning behind an inherently nondominated Pareto front approxima-
tion is that we construct a set in the space of outcomes that contains the known Pareto
optimal outcomes as its subset. In this way, we can examine also other possible Pareto
optimal outcomes that are not contained in the set of known Pareto optimal outcomes.
In (Hartikainen et al., 2011), we argued that an inherently nondominated Pareto front
approximation does not include objective function values that would mislead the de-
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cision maker. To be more specific, when approximating the Pareto front of a noncon-
vex multiobjective optimization problem, convex approximations (e.g., convex hulls
or ellipses) may include vectors that are strictly better in all components than a known
Pareto optimal outcome that was used to construct this approximation. These vectors
are infeasible for the problem by definition of Pareto optimality. One of the benefits
of an inherently nondominated approximation is that it avoids this behavior.

An inherently nondominated Pareto front approximation gives rise to a multiob-
jective optimization problem that can in a meaningful way be seen as a surrogate for
the original problem. The Pareto front of the surrogate problem equals the inherently
nondominated approximation and solving this problem interactively can be seen as
exploring the approximation with interactive methods. This surrogate problem has a
closed form formulation and, thus, it is computationally much less expensive than
the original problem. The construction of the approximation unavoidably requires
computation, but it can be done before involving the decision maker. After the ap-
proximation has been constructed, the decision maker can use the interactive method
of his/her choice with the surrogate problem without computational delay. When a
preferred outcome for the surrogate problem is found, it can then be projected onto
the actual Pareto front of the original problem with e.g., an achievement scalarizing
function (Wierzbicki, 1986).

Approaches similar to ours, where a Pareto front approximation is used in deci-
sion making, are given in (Eskelinen et al., 2010; Lotov et al., 2004; Monz, 2006).
Eskelinen et al. (2010) and Monz (2006) use custom-made iterative procedures for
finding a preferred element on the approximation, while we develop an approxima-
tion that can be used with almost any interactive method. The benefit of being able
to use various interactive methods is that we can support diverse decision makers
who may prefer different methods. In addition, approaches in (Eskelinen et al., 2010;
Monz, 2006) are only applicable to convex multiobjective optimization problems,
while ours can handle both convex and nonconvex problems. The approach in (Lotov
et al., 2004) differs from ours, because it relies on a visualization technique called
Interactive Decision Maps to find a preferred element on the approximation.

Methods for constructing Pareto front approximations (published before the year
2003) are surveyed in (Ruzika and Wiecek, 2005) and more recent ones include (Bez-
erkin et al., 2006; Efremov and Kamenev, 2009; Goel et al., 2007; Martin et al.,
2005). Some of these methods are not applicable for our needs, because they can-
not create a Pareto front approximation for nonconvex multiobjective optimization
problems. Other methods cannot operate based on a given set of Pareto optimal out-
comes, but assume that some specific a posteriori method has been used to generate
the outcomes. The value added by being able to use a given set of Pareto optimal out-
comes is that one can use Pareto optimal outcomes generated with any a posteriori
method (see e.g., (Miettinen, 1999)) including evolutionary multiobjective optimiza-
tion methods (see e.g., (Deb, 2001; Coello Coello et al., 2007)). Furthermore, none of
the methods in the literature guarantee producing an inherently nondominated Pareto
front approximation.

In this paper, we lay theoretical foundations for constructing an inherently non-
dominated Pareto front approximation for (convex or nonconvex) multiobjective op-
timization problems with continuous objectives. The proposed approximation im-
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proves on the weaknesses of existing methods discussed above. Technically, our ap-
proximation is based on intelligent interpolation between a set of known Pareto opti-
mal outcomes. The interpolants are taken from the polytopes of a Delaunay triangula-
tion (see e.g., (Fortune, 1997)) of the set of known Pareto optimal outcomes. The idea
for our approximation comes from computational geometry (for a general overview
see e.g., (Goodman and O’Rourke, 1997)), where different subcomplexes of Delau-
nay triangulations have been extensively used in shape reconstruction (Edelsbrunner,
1998). We construct a subcomplex that satisfies some properties that are based on
inherent nondominance so that the final approximation is inherently nondominated.
The Delaunay triangulation is of combinatorial nature. Here we do not deal with the
implementation of our approximation but concentrate on the theoretical aspects.

The rest of this paper is structured as follows. Section 2 concentrates on the nota-
tions and basic definitions used in this paper. The most relevant concepts from com-
putational geometry are presented in Section 3 and combined with the inherent non-
dominance property in Section 4. Section 5 proposes an approach to constructing an
inherently nondominated Pareto front approximation as a sub-complex of a Delau-
nay triangulation while Section 6 demonstrates the proposed approximation with two
examples. Properties of the approximation for two special types of multiobjective
optimization problems are examined in Section 7 and error estimates for the approx-
imation are derived in Section 8. Finally, Section 9 concludes with some remarks on
decision making with the constructed Pareto front approximation.

2 Notation and Definitions

We consider multiobjective optimization problems

min
s.t. x∈S

( f1(x), . . . , fk(x)) , (1)

where fi : S→R is for all i ∈ {1, . . . ,k} a real-valued function and S⊂Rn. We define
a vector-valued function f : S→Rk, f (x) = ( f1(x), . . . , fk(x))T for all x ∈ S. Because
we aim to interpolate between the known Pareto optimal outcomes, we assume that
all objectives are measured in continuous scales. This is the case for example when
the set S is connected and the functions fi are continuous.

The set S is called the feasible decision set of the multiobjective optimization
problem and every vector x ∈ S is called a (feasible) decision. The set f (S) is the
feasible outcome set of the multiobjective optimization problem and every vector
z ∈ f (S) is called a (feasible) outcome.

For a set K ⊂ Rk the boundary of K is denoted by bnd(K) and the interior is
denoted by int(K). The closure of the set K is denoted by cl(K). The convex hull of
K is denoted by conv(K). For two sets K1,K2 ⊂Rk the notation K1 ⊂ K2 means that
if a vector s ∈ K1 then s ∈ K2. Notation K1 ( K2 means that K1 ⊂ K2 but K1 6= K2.

For two vectors z1,z2 ∈Rk, notation z1 ≤ z2 means that z1
i ≤ z2

i for all i = 1, . . . ,k
and z1 6= z2. If z1 ≤ z2 then z1 is said to dominate z2 or z2 is said to be dominated by
z1. A vector b ∈ B is Pareto optimal in a set B ⊂ Rk if there does not exist a vector
b′ ∈ B that dominates b. An outcome z ∈ f (S) is Pareto optimal for multiobjective
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optimization problem (1) if the vector z is Pareto optimal in the set f (S). Finally,
the Pareto front of the set B, denoted by PF(B), is the set of Pareto optimal vectors
in the set B and the Pareto front of (1), denoted by PF, is the set of Pareto optimal
outcomes of the multiobjective optimization problem. A feasible decision x ∈ S is a
Pareto optimal solution to the multiobjective optimization problem if f (x) is a Pareto
optimal outcome for the multiobjective optimization problem.

In (Hartikainen et al., 2011), some properties and definitions concerning Pareto
front approximations are given. They are summarized below.

Definition 1 A set A ⊂ Rk is inherently nondominated if there do not exist vectors
a,b ∈ A so that a≤ b.

Definition 2 Let P⊂ Rk be a finite set of Pareto optimal outcomes. A set A⊂ Rk is
an inherently nondominated Pareto front approximation (based on the set P) if the
set A is inherently nondominated and P⊂ A.

Definition 3 Let B ⊂ Rk be a set and let the set P ⊂ Rk be as above. A set A ⊂ B is
a B-maximal inherently nondominated Pareto front approximation (based on the set
P) if the set A is an inherently nondominated Pareto front approximation based on P
and for all vectors b ∈ B\A the set A∪{b} is not inherently nondominated.

As shown in (Hartikainen et al., 2011), an inherently nondominated Pareto front
approximation based on P is the Pareto front of a multiobjective optimization prob-
lem that has outcomes P on its Pareto front. In this way, an inherently Pareto front
approximation can be seen as a surrogate for the actual Pareto front.

The starting point of this study is as follows. We assume that we are given a
computationally expensive multiobjective optimization problem. This problem is re-
ferred to as the initial multiobjective optimization problem. We also assume that we
are given a finite set of m Pareto optimal outcomes P = {p1, . . . , pm}. This set is re-
ferred to as the initial set of Pareto optimal outcomes or the known Pareto optimal
outcomes. This set may have been generated with any appropriate method in the lit-
erature e.g., an evolutionary multiobjective optimization method (Deb, 2001) or any
of the 0th-order approximation methods mentioned in (Ruzika and Wiecek, 2005).
In this paper, we use the initial set of Pareto optimal outcomes for constructing an
inherently nondominated Pareto front approximation that intelligently interpolates
between the known Pareto optimal outcomes.

3 Background on Polytopes, Complexes and (Delaunay) Triangulations

The Pareto front approximation constructed in this paper is a complex i.e., a collec-
tion of polytopes with certain properties. In the first part of this section, we review
all the properties of polytopes and complexes that are needed in this paper. For the
proofs and further properties we refer to (Grünbaum, 1967) and references therein.
We mostly follow the notation and definitions established in (Grünbaum, 1967). The
only difference is that here the prefix ”a-” before the words ”polytope”, ”face” or
”complex” refers to the number of vertices minus one and not to the dimension. This
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is because in our setting it is easier to count the number of vertices of the polytope
than to compute the dimension of the polytope.

The rest of this section deals with triangulations of a finite vector set. A trian-
gulation is a complex with certain additional properties. Especially, we discuss the
Delaunay triangulation, which is a well-known triangulation (see e.g., (Edelsbrun-
ner and Shah, 1994; Fortune, 1997)). Some reasons for the fame of the Delaunay
triangulation are that it is useful in shape reconstruction, as argued in (Boissonnant,
1984), and it can be computed in Rk by computing the convex hull of a set in Rk+1,
as shown in (Edelsbrunner, 1987). In our approximation, the complex that approxi-
mates the Pareto front is a sub-complex of a Delaunay triangulation of the initial set
of Pareto optimal outcomes P. Previously Delaunay triangulations have been used
mostly in finite element methods (see e.g., (George and Borouchaki, 1998; Shenton
and Cendes, 1985)) and for reconstructing different solids from a set of vectors (see
e.g., (Edelsbrunner, 1998)). In (Schandl et al., 2002), the Delaunay triangulation is
used for initializing an algorithm for Pareto front approximation. Their aim is to con-
struct a piecewise linear approximation by means of block norms whose level sets
provide a polyhedral structure of the approximation. However, the resulting approxi-
mation has features different from ours and does not allow the decision maker to use
interactive multiobjective optimization methods.

An alternative comprehensive treatment of the topics contained in this section can
be found in (Fukuda, 2004). That article also contains references to more detailed
treatments of these and further topics.

Definition 4 Let a ∈ N. The set

P(z1, . . . ,za+1) = conv
({

z1, . . . ,za+1})
with vectors z1, . . . ,za+1 ∈ Rk is called a (convex a-)polytope. The empty set is a
(−1)-polytope. The polytope P(z1, . . . ,za+1) is said to be determined by vectors
z1, . . . ,za+1.

The following propositions and definitions summarize the properties of poly-
topes. The proofs can be found in (Grünbaum, 1967).

Proposition 1 Let a,b ∈ N and consider vectors z1, . . . ,za+1, ẑ1, . . . , ẑb+1 ⊂ Rk. If
{z1, . . . ,za+1} ⊂ {ẑ1, . . . , ẑb+1}, then P(z1, . . . ,za+1)⊂P(ẑ1, . . . , ẑb+1).

Definition 5 A vertex of a polytope is a vector x ∈ K so that if y, z ∈ K, 0 < λ < 1
and x = λy+(1−λ )z, then x = y = z. The set of all vertices is denoted by vert(K).

Definition 6 Let u ∈ Rk be a vector, α ∈ R be a scalar and K ⊂ Rk be a polytope.
The hyperplane

H = {x ∈ Rk : xT u = α}

is a supporting hyperplane of the polytope K if K ∩H 6= /0 and either K ⊂ {x ∈ Rk :
xT u≤ α} or K ⊂ {x ∈ Rk : xT u≥ α}.
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Definition 7 Let K ⊂Rk be a polytope. A set F ⊂Rk is called a face of the polytope
K if F = /0, F = K or if there exists a supporting hyperplane H of the polytope K so
that F = K∩H. The sets /0 and K are called improper faces of the polytope K and the
other faces are called proper faces of K. A face F that is also an a-polytope is called
an a-face.

Example 1 If K =P(z1,z2)⊂R3 is a 1-polytope with z1 6= z2, then the set of vertices
is vert(K) = {z1,z2} and the faces are /0, {z1}, {z2} and P(z1,z2).

Proposition 2 A face of a polytope is also a polytope.

Proposition 3 If K⊂Rk is a polytope, then the boundary of the polytope is bnd(K)=
∪F∈F F, where F is a collection containing all the proper faces of K.

Proposition 4 Let K1,K2,K3 ⊂ Rk be polytopes so that the polytope K2 is a face of
the polytope K1 and the polytope K3 is a face of the polytope K2. Then the polytope
K3 is a face of the polytope K1.

Definition 8 The dimension of a polytope K ⊂ Rk is the minimal dimension of a
linear subspace L⊂ Rk so that K ⊂ z+L with some z ∈ Rk.

Proposition 5 The dimension of an a-polytope K ⊂ Rk is at most a.

A simplex is a special type of polytope. In a way, a simplex can be seen as the
simplest type of all polytopes, as argued in (Grünbaum, 1967). In order to define a
simplex, we need to define affine independence of vectors in Rk.

Definition 9 Vectors v1, . . . ,vs ∈Rk are affinely independent if the vectors v2−v1, . . . ,
vs− v1 are linearly independent.

Definition 10 An a-polytope K = P(z1, . . . ,za+1) is called an a-simplex (or merely
a simplex) if the vectors z1, . . . ,za+1 are affinely independent.

By Proposition 5, the dimension of an a-polytope is at most a. We can say even
more about simplices.

Proposition 6 The dimension of an a-simplex is a.

Another important property of a simplex is that its faces are also simplices and
that any proper subset of vertices determines a proper face of the simplex. Notice
that the latter is not true all for polytopes, because e.g., the vertices (0,0),(1,1) of a
polytope P((0,0),(1,0),(0,1),(1,1))⊂R2 do not determine a face of the polytope.

Proposition 7 Let a,b ∈ N so that a ≥ b. All the b-faces of an a-simplex are b-
simplices and any b+1 vertices of a simplex determine a b-face of the simplex.

A complex is a collection of polytopes with certain properties. The complex is
used to describe polyhedral sets beyond polytopes.

Definition 11 A collection K of polytopes in Rk is called a (polyhedral) complex
provided that
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(1) every face of a polytope in K is also a polytope in K and
(2) the intersection of any two polytopes in K is a face of each of them.

A complex K is called an a-complex, if there exists an a-polytope K ∈K and there
is no b-polytope K′ ∈K with b > a.

The body of a complex contains all the vectors in all the polytopes in the complex.
The body is sometimes also called the underlying space (see e.g., (Vegter, 1997)).

Definition 12 The body of a complex K is body(K ) = ∪K∈K K.

Now we are ready to define a triangulation of a finite set P⊂ Rk. Informally, the
triangulation of a set can be seen as a subdivision of the convex hull of the set.

Definition 13 A triangulation of a finite set P⊂Rk is a complex K so that the body
of the complex is body(K ) = conv(P) and the set of vertices of the polytopes in the
collection K is the set P.

In this paper, we use the Delaunay triangulation. There are different definitions
for the Delaunay triangulation. Following (Edelsbrunner and Shah, 1994), we use the
following definition.

Definition 14 A triangulation D of a set P is a Delaunay triangulation if for every
polytope P(p1, . . . , pa+1) ∈ D there exists an open ball B so that B∩ P = /0 and
cl(B)∩P = {p1, . . . , pa+1}.

In an informal fashion, one may say that the Delaunay triangulation contains all
the polytopes defined by neighboring vectors. This is formalized by the link between
the Delaunay triangulation and the Voronoi diagram (see e.g., (Edelsbrunner, 1987)).

An important concept concerning Delaunay triangulations and their construction
is so-called general position of vectors (see e.g., (Rajan, 1994)). In this paper we do
not assume general position, because often it is not valid for outcomes of a multi-
objective optimization problem. See e.g., the first example in Section 6, where the
outcomes in P are not in general position.

Delaunay triangulations can be constructed with methods proposed in many pa-
pers e.g., (Edelsbrunner, 1987; Rajan, 1994). For this reason this is not a topic of
this paper, but we assume that some existing method has been used to construct a
Delaunay triangulation of the initial set of Pareto optimal outcomes P.

In this section, we have introduced the main concepts from computational geom-
etry that are used in this paper. In the next section, we further develop these concepts
for our purposes.

4 Inherently Nondominated Polytopes and Complexes

In this section, we discuss inherently nondominated polytopes and complexes. The
definition of an inherently nondominated polytope follows the original definition of
an inherently nondominated set established in Definition 1 and in Definition 15 in-
herent nondominance is generalized for complexes.
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According to Proposition 5, the dimension of an a-polytope is at most a. Accord-
ing to the following theorem, irrespective of the number of vertices, the dimension of
an inherently nondominated polytope is at most the number of objectives minus one.

Theorem 1 The dimension of an inherently nondominated polytope K ⊂ Rk is at
most k−1.

Proof Assume that K =P(z1, . . . ,za+1) with a≥ k, because if it held that a < k then
the claim would be trivially true by Proposition 5 . It can be seen that K ⊂ z1+L with
L = {l ∈Rk : l = ∑

a+1
i=2 λ i(zi−z1), λ i ∈R for all i = 2, . . . ,a+1}, because every vec-

tor s∈K can be written as s= z1+∑
a+1
i=2 λ i(zi−z1) with λ i ∈R for all i= 2, . . . ,a+1.

Thus, it remains to prove that dim(L)≤ k−1. To prove this assume the contrary i.e.,
dim(L) = k. If dim(L) = k, then there are linearly independent vectors v1, . . . ,vk ∈
{z2− z1, . . . ,za+1− z1}. Choose z = ∑

k
i=1(1/k)vi. By Propositions 7 and 3 and be-

cause the polytope P(v1, . . . ,vk) is now a simplex, it holds that z∈ int(P(v1, . . . ,vk))
and by Proposition 1 it holds that int(P(v1, . . . ,vk))⊂ int(P(z2−z1, . . . ,za+1−z1)).
Therefore, z1+z∈ int(K) and there exists a real number r > 0 so that B(z1+z,r)⊂K,
where B(z1 + z,r) is a ball with radius r centered at z1 + z, and, especially, it holds
that z1 + z− (r/2, . . . ,r/2) ∈ K. This is a contradiction with the fact that the polytope
K is inherently nondominated, since it holds that z1+z−(r/2, . . . ,r/2)< z1+z. This
completes the proof. ut

Corollary 1 A k-simplex is not inherently nondominated.

Proof This follows from Proposition 6 and Theorem 1. ut

An inherently nondominated polytope is always a union of polytopes with fewer
vertices than objectives. This is given by the following theorem.

Theorem 2 If a polytope K = P(z1, . . . ,za+1) ⊂ Rk is inherently nondominated,
then there exist ai-polytopes Ki ⊂ Rk, i = 1, . . . , t, so that K = ∪t

i=1Ki and ai ≤ k−1
for every i = 1, . . . , t.

Proof Let a vector s ∈ K be arbitrary. By Carathéodory’s theorem (Caratheodory,
1913), the vector s belongs to some k-polytope K′=P(v1, . . . ,vk+1) with v1, . . . ,vk+1 ∈
{z1, . . . ,za+1}. Assume that s = ∑

k+1
i=1 λ ivi ∈ K for some λ i ∈ [0,1]. By the proof of

Theorem 1, there exists a linear subspace L of Rk so that dim(L)≤ k−1 and K′−v1⊂
L. Thus, there exist real numbers µ2, . . . ,µk+1 ∈ R so that ∑

k+1
i=2 µ i(vi− v1) = 0 and

µ j 6= 0 for some j ∈ {2, . . . ,k+ 1}. Thus by choosing µ1 = −∑
k+1
i=2 µ i, it holds that

∑
k+1
i=1 µ ivi = 0 and ∑

k+1
i=1 µ i = 0. Therefore, for all α ∈ R it holds that

s =
k+1

∑
i=1

λ
ivi−α

k+1

∑
i=1

µ
ivi =

k+1

∑
i=1

(λ i−αµ
i)vi

and ∑
k+1
i=1 λ i−αµ i = 1 Especially by choosing

α = min
i=1,...,k+1

µ i 6=0

λ
i/µ

i
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it holds in addition that λ i−αµ i≥ 0 for all i= 1, . . . ,k+1 and λ i−αµ i = 0 for some
i∈ {1, . . . ,k+1}. Thus, s is presented as a convex combination of k vectors and, thus,
s belongs to some b-polytope with b≤ k−1. It follows that K ⊂∪t

i=1Ki for some ai-
polytopes Ki with ai≤ k−1 for all i= 1, . . . , t. From the construction it is seen that we
have for each polytope Ki = P(u1, . . . ,ub+1) with {u1, . . . ,ub+1} ⊂ {z1, . . . ,za+1}.
Thus, also K ⊃ ∪t

i=1Ki by Proposition 1. This proves the claim. ut

The inherent nondominance was defined in (Hartikainen et al., 2011) for sets and
not for collections of polytopes that we need in this paper. For this reason, we need
to extend that definition for our needs.

Definition 15 A collection of polytopes K is said to be inherently nondominated
if the set ∪K∈K K is inherently nondominated. Especially, a complex is inherently
nondominated if its body is inherently nondominated.

Finally, we have extensions to Definitions 2 and 3. These are the main concepts
in this paper.

Definition 16 A collection of polytopes K is said to be an inherently nondominated
Pareto front approximation if the collection of polytopes is inherently nondominated
and the singleton {p} ∈K for all p ∈ P.

Analogously to what is noticed in (Hartikainen et al., 2011), the complex { /0}∪
{{p}, p∈P} is by definition an inherently nondominated Pareto front approximation.
However, it is not a good approximation because it does include any intermediate
outcomes but only the initial Pareto optimal outcomes in P. This is why the following
definition is important. The collection K in the following definition is further on
chosen as a Delaunay triangulation of the initial set of Pareto optimal outcomes P.

Definition 17 Let K be a collection of polytopes. A collection of polytopes A is
said to be a K -maximal inherently nondominated Pareto front approximation if the
collection A is an inherently nondominated Pareto front approximation and for all
polytopes K ∈K \A the collection A ∪{K} is not inherently nondominated.

An important property is that a K -maximal inherently nondominated Pareto
front approximation is a complex whenever K is. This is given by the following
theorem.

Theorem 3 Let K be a complex so that singleton {p} ∈ K for all p ∈ P. If a
collection of polytopes A is a K -maximal inherently nondominated Pareto front
approximation, then the collection A ⊂K is a complex.

Proof The collection A is not empty, because the collection of sets { /0}∪{{p} : p ∈
P} is an inherently nondominated Pareto front approximation. Assume a polytope
K ∈A and let F be a face of the polytope K. Then two observations are immediate: (i)
the face F ∈K , because the collection K is a complex, and (ii) the collection A ∪
{F} is inherently nondominated, because its body is body(A ∪ {F}) = body(A )
since by Definition 7 face F ⊂ K. Observations (i) and (ii) yield that also the face
F ∈ A which implies property (1) in Definition 11. Property (2) is trivially true,
because A ⊂K . ut
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Finally, we have the following theorem implying the existence of at least one
K -maximal inherently nondominated Pareto front approximation for an appropriate
complex K . The following theorem combined with Theorem 3 yields that there ex-
ists a complex A ⊂K that is a K -maximal inherently nondominated Pareto front
approximation. In multiobjective optimization problems with more than two objec-
tives, the maximal inherently nondominated Pareto front approximation may not be
unique. For the proof of existence we need the Zorn’s lemma.

Lemma 1 (Zorn’s lemma) Every partially ordered set, in which every chain (i.e.
totally ordered subset) has an upper bound, contains at least one maximal element.

Theorem 4 Let K be a complex so that {p} ∈K for all p ∈ P. Then there exists a
K -maximal inherently nondominated Pareto front approximation.

Proof Define a family of collections of polytopes

K= {B : B ⊂K is an inherently nondominated Pareto front approximation.}.

The collection {{p} : p ∈ P} ∈K and thus K is not an empty family. Relation ⊂ is a
partial ordering in the family of collections K. Let collections B1,B2, . . . ∈ K be a
totally ordered chain so that Bi−1 ⊂Bi for all i = 2,3, . . .. Each collection Bi is then
especially an inherently nondominated Pareto front approximation. Define a collec-
tion B = ∪∞

i=1B
i. It is clear that the collection B is an upper bound for the chain

B1,B2 . . .. In order to use Zorn’s lemma we prove that the collection B ∈ K. Triv-
ially, the singleton {p} ∈B for all p ∈ P, because {p} ∈B1 by definition. Assume
now that the collection B is not inherently nondominated. Then there exist vectors
a1,a2 ∈ ∪K∈BK so that a1 ≤ a2. But then a1 ∈ ∪

K∈Bi1 K and a2 ∈ ∪
K∈Bi2 K for some

i1, i2 ∈ N and, moreover, the vectors a1,a2 ∈ ∪
K∈Bmax{i1,i2}K. This implies that the

collection Bmax{i1,i2} is not inherently nondominated, which is a contradiction with
the fact that the collection Bmax{i1,i2} ∈ K. Since all the assumptions of the Zorn’s
lemma have been fulfilled, there exists a maximal element within K. Trivially, this
maximal element is a K -maximal inherently nondominated Pareto front approxima-
tion. ut

5 The Construction of a Maximal Inherently Nondominated Pareto Front
Approximation

Naturally, the existence of a maximal inherently nondominated Pareto front approx-
imation given by Theorem 4 is not sufficient for practical uses. In this section, we
elaborate on how to construct a sub-complex of a Delaunay triangulation D of the
initial set of Pareto optimal outcomes P that is a D-maximal inherently nondomi-
nated Pareto front approximation. Because of Corollary 1, we however exclude the
k-simplices, with k being the number of objectives of the initial multiobjective opti-
mization problem, from the complex D . Without confusion, we use the same symbol
D for this sub-complex of the Delaunay triangulation. Even if Theorem 2 implies that
every inherently nondominated polytope can be represented as a union of polytopes
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with the number of vertices being lower than k, these polytopes may not be included
in the Delaunay triangulation of P.

We first develop methods for checking whether or not a collection of polytopes is
inherently nondominated. In Subsection 5.1, we show that checking this amounts to
checking all pairs of polytopes in the collection for a certain property. In Subsection
5.2, we show how to use the concepts developed in Subsection 5.1 for constructing a
D-maximal inherently nondominated Pareto front approximation.

5.1 Checking if a Collection of Polytopes is Inherently Nondominated

In this subsection, we show an efficient way of checking whether a collection of
polytopes, or a complex, is inherently nondominated. We first define what is meant
by dominance between polytopes.

Definition 18 Let K1,K2 ⊂ Rk be polytopes. The polytope K1 is said to dominate
(to be dominated by) the polytope K2, if there exist vectors s1 ∈ K1 and s2 ∈ K2 so
that s1 ≤ s2 (s2 ≤ s1). If the 0-polytope P(z) = {z} dominates (is dominated by) a
polytope K ⊂Rk then the vector z is said to dominate (be dominated by) the polytope
K.

The connection between inherent nondominance and dominance between sets is
given by the two following theorems. Theorem 5 deals with the inherent nondomi-
nance of a polytope and Theorem 6 deals with the inherent nondominance of a col-
lection of polytopes.

Theorem 5 A polytope is inherently nondominated if and only if the polytope does
not dominate itself.

Proof The proof follows directly from Definitions 1 and 18. ut

Theorem 6 Let K be a collection of polytopes. The collection K is inherently non-
dominated if and only if there does not exist polytopes K1,K2 ∈K so that K1 domi-
nates K2.

Proof ”⇒ ”: Assume the contrary, i.e., there exist polytopes K1,K2 ∈K so that the
polytope K1 dominates the polytope K2. This means that there exists a vector s1 ∈K1

that dominates another vector s2 ∈ K2. This is a contradiction with the assumption
that the collection of polytopes K is inherently nondominated, since the vectors
s1,s2 ∈ body(K ).
”⇐ ”: Assume that the collection of polytopes K is not inherently nondominated.
Then there exist vectors s1,s2 ∈ body(K ) so that the vector s1 dominates the vector
s2. This means that there exist polytopes K1,K2 ∈ K so that the vector s1 ∈ K1

and the vector s2 ∈ K2. But then, by Definition 18, the polytope K1 dominates the
polytope K2 which is a contradiction with the assumption. ut

As shown by Theorems 5 and 6, checking whether a polytope or a collection of
polytopes is inherently nondominated can be done by checking for dominance be-
tween polytopes as defined in Definition 18. For this reason we need an efficient way
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of checking for dominance between polytopes. According to the following theorem,
the dominance between polytopes can be checked by solving optimization problems.

Theorem 7 Let K1,K2 ⊂ Rk be non-empty polytopes. Consider optimization prob-
lems

min maxi=1,...,k(s1
i − s2

i )
s.t. s1 ∈ K1,s2 ∈ K2 (2)

and
min ∑

k
i=1(s

1
i − s2

i )
s.t. s1 ∈ K1, s2 ∈ K2

s1
i ≤ s2

i for all i = 1, . . . ,k.
(3)

The polytope K1 dominates the polytope K2 if and only if one of the following holds:

(i) the optimal value in problem (2) is less than zero
OR

(ii) the optimal value in problem (2) is exactly zero and the optimal value in problem
(3) is less than zero.

Proof Notice that problem (2) has a solution, because the outer objective function
g(s1,s2) := maxi=1,...,k(s1

i −s2
i ) is continuous and the feasible set is compact and non-

empty. Furthermore, problem (3) has a solution, if the optimal value in problem (2)
is zero, because the objective function is continuous and the feasible set is compact
and non-empty.

By Definition 18, if the polytope K1 dominates the polytope K2 then there exist
vectors s1 ∈ K1 and s2 ∈ K2 so that s1 dominates s2. The dominance can either be
strong or weak i.e., either

(1) s1
i < s2

i for all i = 1, . . . ,k
OR

(2) s1
i ≤ s2

i for all i = 1, . . . ,k and s1
j < s2

j for some index j ∈ {1, . . . ,k}.
Clearly, alternative (i) holds if and only if alternative (1) holds. Assume now that
alternative (2) holds but alternative (i) does not hold. Then the optimal value in prob-
lem (2) is equal to zero, because if it was more than zero alternative (2) could not
hold, and the optimal value in problem (3) is less than zero, because ∑

k
i=1(s

1
i − s2

i )<
s1

j − s2
j for all j ∈ {1, . . . ,k}. Finally, if alternative (ii) holds, then there exist vectors

s1 ∈ K1 and s2 ∈ K2 so that s1
i ≤ s2

i for all i = 1, . . . ,k and ∑
k
i=1(s

1
i − s2

i ) < 0. But if
∑

k
i=1(s

1
i − s2

i ) < 0, then there exists an index j ∈ {1, . . . ,k} so that s1
j < s2

j and thus
alternative (2) must hold. This completes the proof. ut

5.2 Removal of Polytopes from the Delaunay Triangulation

Assume that we have constructed the Delaunay triangulation D of the initial set of
Pareto optimal outcomes P ⊂ Rk and that we have excluded the k-simplices from
it. In this subsection, we propose an approach to finding a collection of polytopes
R ⊂D so that the collection of polytopes

D \R (4)
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is a D-maximal inherently nondominated Pareto front approximation based on the
initial set of Pareto optimal outcomes P. In other words, we propose ways to remove
polytopes from the Delaunay triangulation to get the approximation.

Without loss of generality we may assume that for all a = 0, . . . ,m− 1, the a-
polytopes in the complex D are Ka,1, . . . ,Ka,ta

. For all a = m−1,m−2, . . . ,1 and for
all j = 1, . . . , ta, it holds that the polytope Ka, j ∈R i.e., the polytope is removed, if
either

(R1) there exists an outcome p ∈ P that dominates or is dominated by the polytope
Ka, j or the polytope Ka, j dominates itself
OR

(R2) there exists a b-polytope Kb, j′ ∈D \R with either b > a or b = a and j′ < j that
dominates or is dominated by the polytope Ka, j.

Rule (R1) dictates that a polytope is removed if it either dominates or is dominated
by some of the Pareto optimal outcomes in P or if the polytope is not inherently
nondominated. There may be multiple D-maximal inherently nondominated Pareto
front approximations that can be constructed from polytopes that are not removed
by rule (R1) and rule (R2) dictates which of them we choose. According to it, the
polytopes with more vertices are less likely to be removed from the collection because
whenever we choose not to remove a polytope, then the polytopes with less vertices
are removed if they dominate or are dominated by this polytope.

Theorem 8 If the collection R is given by rules (R1) and (R2) then the collection of
polytopes given by (4) is a D-maximal inherently nondominated Pareto front approx-
imation.

Proof The polytopes in the complex D can be ordered as in rule (R2) with respect to
the number of vertices a and the index j. According to rule (R2) a polytope with at
least two vertices is removed from the complex if there exists a polytope prescribed
by this rule that is either dominated or dominates this polytope. For this reason there
cannot be distinct polytopes Ki, K j ∈D \R with more vertices than 2 that dominate
each other. The first part of rule (R1) dictates that there cannot be a polytope in the
collection that dominates or is dominated by an outcome in P and, thus, there are
no distinct polytopes in the collection that dominate each other. According to the
second part of rule (R1), no polytope in D \R is dominated by it self. According to
Theorem 7, the collection of polytopes D \R is inherently nondominated and since
the singleton {p} ∈ D \R for all p ∈ P, the collection of polytopes is an inherently
nondominated Pareto front approximation. Trivially, the Pareto front approximation
is D-maximal. ut

According to (McMullen, 1970), a Delaunay triangulation of the set P contains
at most O(mdk/2e) polytopes, where m is the number of outcomes in P and k is the
number of objectives of the multiobjective optimization problem. For this reason,
one may have to solve O(mk) optimization problems in order to find out all domi-
nations between the polytopes in the triangulation with problems (2) and (3). This is
computationally the most expensive part of the approximation approach. Methods for
reducing this computational expense go beyond the scope of this paper.
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6 Examples of Inherently Nondominated Pareto Front Approximations

In this section, we present two examples of inherently nondominated Pareto front ap-
proximations constructed as proposed in the previous section. In the first example,
we approximate the Pareto front of the three-objective DTLZ5 test problem intro-
duced in (Deb et al., 2002). The DTLZ5 test problem’s special feature is that even if
it has three objectives, the Pareto front is merely one-dimensional. Additionally, the
outcome set f (S) of the DTLZ5 test problem is nonconvex. For these reasons, ap-
proximating the Pareto front of this problem is not trivial, which makes it a suitable
task for demonstrating the power of our approximation approach. Even though the
DTLZ5 problem is not computationally expensive, we can demonstrate our approx-
imation approach with it, because the computational expense of the problem only
affects the computation of the Pareto optimal outcomes P and not the Pareto front
approximation. The second example concerns approximating the Pareto front of the
three-objective DTLZ2 test problem (Deb et al., 2002). In this example, we do not
show the construction of the approximation but merely give the inherently nondomi-
nated Pareto front approximation to further illustrate the versatility of our approach.

The DTLZ5 test problem can be formulated as

min ( f1(x), f2(x), f3(x))
s.t. 0≤ xi ≤ 1 for all i = 1,2,3
where f1(x) = (1+ x0.1

3 )cos( x1π

2 )cos(θ(x))
f2(x) = (1+ x0.1

3 )cos( x1π

2 )sin(θ(x))
f3(x) = (1+ x0.1

3 )sin( x1π

2 )
θ(x) = π

4(1+x0.1
3 )

(1+2x0.1
3 x2).

(5)

The actual Pareto front of the DTLZ5 test problem is explicitly known and given as{
( f1(x), f2(x), f3(x))T : x3 = 0

}
.

Assume that the set of initial Pareto optimal outcomes is

P = {p1, p2, p3, p4, p5}

=

{(
1√
2
,

1√
2
,0
)
,

(√
2+
√

2
2
√

2
,

√
2+
√

2
2
√

2
,

√
2−
√

2
2

)
,

(
1
2
,

1
2
,

1√
2

)
,

(√
2−
√

2
2
√

2
,

√
2−
√

2
2
√

2
,

√
2+
√

2
2

)
,(0,0,1)

}

given by x ∈ {(x1,x2,x3) : x1 = 0,1/4,1/2,3/4,1, x2 = 0 and x3 = 0}.
A Delaunay triangulation of this set is given by

D =
{

/0,P(p1),P(p2),P(p3),P(p4),P(p5),P(p1, p2),P(p2, p3),

P(p3, p4),P(p4, p5),P(p5, p1),P(p1, p2, p3, p4, p5)
}
,

=
{

K1, . . . ,K12} .
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The dimension of polytope K12 is two so it is not removed before applying the rules.
The different dominations between polytopes in the Delaunay triangulation can be
presented in a matrix with entries ai j equal to 1 if the polytope Ki dominates the
polytope K j and equal to 0 otherwise. In this problem, the dominations yield a 12×12
matrix 

0 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 1 1 1 1 0 1
0 0 1 1 1 0 1 1 1 1 0 1

 ,
where all entries in the 10 top rows are zeros. As an example we verify that polytope
K7 = P(p1, p2) is dominated by polytope K11 = P(p5, p1) using problems (2) and
(3). Problem (2) becomes

min maxi=1,...,k(s1
i − s2

i )

s.t. s1 = (1−λ 1)
(

1√
2
, 1√

2
,0
)
+λ 1(0,0,1)

s2 = (1−λ 2)
(

1√
2
, 1√

2
,0
)
+λ 2

(√
2+
√

2
2
√

2
,

√
2+
√

2
2
√

2
,

√
2−
√

2
2

)
0≤ λ j ≤ 1 for j = 1,2

and with some reformulation it assumes the form of a linear optimization problem

min t

s.t. t ≥ 2−
√

2+
√

2
2
√

2
λ 2− 1√

2
λ 1

t ≥ λ 1−
√

2−
√

2
2 λ 2

0≤ λ j ≤ 1 for j = 1,2.

This problem can be solved with e.g., the simplex method and the optimal value of t
is

2−
√

2+
√

2−
√

2−
√

2
2(
√

2+1)
≈−0.12698(< 0).

By Theorem 7, the polytope P(p5, p1) dominates polytope P(p1, p2).
Notice that in the complex D the polytope /0 is a −1-polytope, the polytopes

K2, . . . ,K6 are 0-polytopes, the polytopes K7, . . . ,K11 are 1-polytopes and the poly-
tope K12 is a 4-polytope. The polytope K12 ∈R by rule (R1), because it dominates
itself. This shows up in the above matrix with the entry a12,12 = 1. Of the 1-polytopes,
the polytope K11 dominates e.g., the outcome p3 ∈ P and, thus, K11 ∈R by rule (R1).
This rule does not apply to the other polytopes except for K11 and K12. As it can be
seen from the matrix, there is no domination left when the polytopes K11 and K12

have been removed from the collection. For this reason, rule (R2) does not apply
to any of the polytopes K1, . . . ,K10. Thus, the D-maximal inherently nondominated
Pareto front approximation is

D \R = D \
{
P(p1, p2, p3, p4, p5),P(p1, p5)

}
.

=
{

K1, . . . ,K10}
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(a) A D-maximal inherently nondominated
Pareto front approximation of the DTLZ5 test
problem based on 5 Pareto optimal outcomes.
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(b) An inherently nondominated Pareto front approx-
imation of the DTLZ2 test problem based on 19
Pareto optimal outcomes.

Fig. 1: Bodies of two inherently nondominated Pareto front approximations

The body of this complex is shown in Figure 1a.
The same approach applied to the DTLZ2 test problem introduced in (Deb et al.,

2002) with 19 random Pareto optimal outcomes p1, . . . , p19 yields the approximation
shown in Figure 1b. As in the DTLZ5 problem, the Pareto front of this problem is not
convex, either.

The two examples presented in this section demonstrate that the proposed approx-
imation approach can handle unusual or difficult problems. The Pareto front of the
DTLZ5 test problem is merely one-dimensional while the problem has three objec-
tives and the DTLZ2 test problem is nonconvex. In both cases, the approach produces
an interpolation between the known Pareto optimal outcomes that can be used with
an interactive method through the surrogate problem defined in Hartikainen et al.
(2011).

7 Two Special Cases of Multiobjective Optimization Problems

As in the previous section, assume that D is a Delaunay triangulation of the initial
set of Pareto optimal outcomes P and that the k-simplices have been excluded from
it. In this section, we demonstrate how the concept of a D-maximal inherently non-
dominated Pareto front approximation applies to two special cases, which are the
biobjective case and the Rk

+-convex case. It is shown that in these special cases the
approximation is similar to some approximations in literature and, thus, the approach
proposed in this paper can be seen as a generalization of those methods.
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7.1 Biobjective Case

If the number of objectives of the multiobjective optimization problem is two, then
the D-maximal inherently nondominated Pareto front approximation is unique and
can be explicitly stated. With the help of the following theorem one may construct
a D-maximal inherently nondominated Pareto front approximation without the rules
(R1) and (R2).

Theorem 9 If the number of objectives is k = 2 and the initial set of Pareto optimal
outcomes is P = {p1, . . . , pm} so that p1

1 < p2
1 < .. . < pm

1 , then the only D-maximal
inherently nondominated Pareto front approximation is

K = { /0}∪{{p} : p ∈ P}∪{P(pi−1, pi) : i = 2, . . . ,m}.

Proof Notice that since the outcomes in P are Pareto optimal, it must be that p1
2 >

p2
2 > .. . > pm

2 . Thus, the complex K is inherently nondominated, because if s1,s2 ∈
body(K ) and s1

1 < s2
1 then s1

2 > s2
2.

Assume now a non-empty polytope K ∈ D so that K ∪{K} is inherently non-
dominated and let a vector s ∈ K be arbitrary. Since s ∈ conv(P), it must be that
p1

1 ≤ s1 ≤ pm
1 . Thus, there must be a vector s′ ∈ body(K ) so that s1 = s′1. Because the

complex K ∪{K} is assumed inherently nondominated, it must be that s′2 = s2 and,
thus, s′ = s. Therefore, K ⊂ body(K ). Because the collection D is a sub-complex of
a Delaunay triangulation of the set P, it must be that K = K′ for some K′ ∈K . Thus,
the complex K is a D-maximal inherently nondominated Pareto front approxima-
tion.

For uniqueness of the complex K , assume another inherently nondominated
Pareto front approximation K ′ ⊂ D so that K ′ \K 6= /0. Choose a non-empty
polytope K′ ∈ K ′ \K . Since vert(K′) ⊂ P, K ′ is a complex and K′ /∈ K , there
must be i, j ∈ {1, . . . ,m} so that j− i > 1 and P(pi, p j)⊂ K′ and pi+1 /∈P(pi, p j).
However, by Definition 16 {pi+1} ∈K ′ and since K ′ is inherently nondominated,
pi+1 ∈P(pi, p j). ut

Corollary 2 If the number of objectives is k = 2, then the D-maximal inherently
nondominated Pareto front approximation is connected.

According to Theorem 9, the only D-maximal inherently nondominated Pareto
front approximation is the piece-wise linear curve that connects adjacent Pareto opti-
mal outcomes. This approximation has been used in e.g., in (Schandl et al., 2001).

7.2 Convex Case

In this subsection, we study the structure of the Pareto front approximation in convex
multiobjective optimization problems. Convex multiobjective optimization problems
have been studied extensively (see e.g., (Ruzika and Wiecek, 2005)). For our treat-
ment of this case, we need a lemma from (Yu and Zeleny, 1975).
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Lemma 2 The Pareto front of a polytope can be represented as a union of the Pareto
faces (i.e., the faces of the polytope in which all the vectors are Pareto optimal) of the
polytope.

Definition 19 Assume that B⊂ Rk is a set. Then a set A⊂ Rk is called B-convex, if
the set A+B = {a+b : a ∈ A, b ∈ B} is convex.

Theorem 10 If the outcome set f (S) is Rk
+-convex, then the complex

K = {K ∈D : K ⊂ PF(conv(P))}

is a D-maximal inherently nondominated Pareto front approximation.

Proof First, the collection K is inherently nondominated because, as noticed in
(Hartikainen et al., 2011), the Pareto front is inherently nondominated and body(K )⊂
PF(conv(P)) by definition. Second, because a face of a polytope is a subset of the
polytope, then if the polytope is in the collection K , then the face is in the collec-
tion. This again implies that the collection K is a complex. Thus the collection K
is an inherently nondominated complex.

To prove that the inherently nondominated complex K is D-maximal, let a poly-
tope K ∈D be so that the collection K ∪{K} is inherently nondominated. If K /∈K ,
then there exists a vector s ∈ K \PF(conv(P)). This immediately implies that there
exists s′ ∈ PF(conv(P)) so that s′ ≤ s. From Lemma 2 and Definition 13 it follows
that

PF(conv(P)) = body(K )

and, thus, s′ ∈ body(K ), which contradicts the inherent nondominance of K ∪{K}.
Therefore K ∈ K and the complex K is a D-maximal inherently nondominated
Pareto front approximation. ut

The set PF(conv(P)) has been used to approximate the Pareto front in e.g., (Es-
kelinen et al., 2010; Lotov et al., 2004). According to the following corollary the
body of a D-maximal Pareto front approximation based on P is equal to this set in
the Rk

+-convex case.

Corollary 3 If the outcome set f (S) is Rk
+-convex, then there exists a D-maximal

inherently nondominated Pareto front approximation K so that

body(K ) = PF(conv(P)).

8 Error Estimates

In this section, we examine how well a D-maximal inherently nondominated Pareto
front approximation K approximates the Pareto front. More accurately, we develop
the following estimate: given a vector s ∈ body(K ) we estimate an error vector
d(s) ∈ Rk that fulfills two conditions:

1. there exists an outcome z ∈ f (S) so that zi ≤ si +di(s) for all i = 1, . . . ,k and
2. there does not exist an outcome z ∈ f (S) so that z≤ s−d(s).
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These error estimates should have a clear meaning to the decision maker: (1) implies
that there exists an actual Pareto optimal outcome that is at least as good as s+d(s) in
all objectives and (2) implies that there is no actual outcome that dominates s−d(s).

We estimate d(s) in two ways. In Subsection 8.1, we develop estimates for d(s)
that require computing the approximation before the estimation and, in Subsection
8.2, we develop estimates that can be computed by means of just the set of initial
Pareto optimal outcomes P. The former error estimates can be used to help the deci-
sion maker in choosing a vector on the Pareto front approximation to be projected on
the actual Pareto front. The latter estimates can be used for deciding whether to add
more outcomes into P before computing the approximation – if these error estimates
are big it may be useful to compute more Pareto optimal outcomes if possible.

8.1 Estimates after Computing the Approximation

In this section, we assume that the complex K has already been computed. We de-
velop estimates for d(s) defined above. We start with a lemma.

Lemma 3 Let s, e ∈ Rk. If there exists an outcome p ∈ P so that pi ≥ si− ei for all
i = 1, . . . ,k, then there does not exist an outcome z ∈ f (S) so that z≤ s− e.

Proof This is clear since p is assumed to be Pareto optimal. ut

The following lemma gives the required estimates and the main result is given by
Theorem 11.

Lemma 4 Let K =P(z1, . . . ,za+1)∈K be a polytope. Furthermore, let s=∑
a+1
j=1 λ jz j ∈

K be a vector in this polytope with λ j ≥ 0 for all j = 1, . . . ,k and ∑
a+1
j=1 λ j = 1 and

let zmax,zmin and zdif be vectors in Rk so that for all i ∈ {1, . . . ,k}

zmax
i = max

j∈{1,...,a+1}
z j

i , zmin
i = min

j∈{1,...,a+1}
z j

i and zdif
i = zmax

i − zmin
i .

Then,

1. si− (1−λ j)zdif
i ≤ z j

i and
2. si +(1−λ j)zdif

i ≥ z j
i

for all j = 1, . . . ,a+1 and i = 1, . . . ,k.
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Proof Let ĵ ∈ {1, . . . ,a+1} and i∈ {1, . . . ,k} be arbitrary. With the above definitions

si− (1−λ
ĵ)zdif

i =
a+1

∑
j=1

λ
jz j

i − (1−λ
ĵ)zdif

i

= zmax
i +

a+1

∑
j=1

λ
j(z j

i − zmax
i )− (1−λ

ĵ)zdif
i

≤ zmax
i +λ

ĵ(z ĵ
i − zmax

i )− (1−λ
ĵ)zdif

i

= (1−λ
ĵ)zmax

i +λ
ĵz ĵ

i − (1−λ
ĵ)zmax

i +(1−λ
ĵ)zmin

i

= λ
ĵz ĵ

i +(1−λ
ĵ)zmin

i

≤ z ĵ
i ,

where the first inequality follows from the property z j
i −zmax

i ≤ 0 for all j = 1, . . . ,a+

1 and the second one follows from the inequality zmin
i ≤ z ĵ

i . In a similar way we obtain

si +(1−λ
ĵ)zdif

i ≥ z ĵ
i .

This proves the assertion. ut

Theorem 11 Let K = P(z1, . . . ,za+1) ∈ K be a polytope. Furthermore, let s =

∑
a+1
j=1 λ jz j ∈ K be a vector in this polytope and let zmax,zmin and zdif be defined as

above. Then d(s)≤ (1−λ j)zdif for all j = 1, . . . ,a+1.

Proof This follows from Lemmas 3 and 4. ut

Corollary 4 With the definitions of Theorem 11, it holds that d(s)≤ azdif/(a+1).

Proof Since ∑
a+1
i=1 λ j = 1, then there exists ĵ ∈ {1, . . . ,a+1} so that λ ĵ ≥ 1/(a+1)

and, thus, (1− λ ĵ) ≤ 1− 1/(a+ 1) = a/(a+ 1). This combined with Theorem 11
proves the assertion.

ut

Example 2 Continuing the DTLZ5 example from Section 6 assume that

s = 1/3p3 +2/3p4 ≈ (0.34707,0.34707,0.85162) ∈ K9 = P(p3, p4).

Then zmax =(1/2,1/2,
√

2+
√

2/2), zmin =(2−
√

2)/(2
√

2),(2−
√

2)/(2
√

2),1/
√

2)
and

zdif =zmax− zmin =

(√
2−
√

2−
√

2
2
√

2
,

√
2−
√

2−
√

2
2
√

2
,

√
2
√

2+
√

2−1
2
√

2

)
≈(0.22940,0.22940,0.21677).

Theorem 11 yields

d(s)≤ (1−2/3)(0.22940,0.22940,0.21677)≈ (0.076467,0.076467,0.072257)

and, thus,
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1. there exists an outcome z ∈ f (S) that is at least as good as

s+d ≈ (0.42353,0.42353,0.92388)

in all objectives and
2. there does not exist an outcome z ∈ f (S) so that

z≤ s−d ≈ (0.27060,0.27060,0.77936).

8.2 Estimates before Computing the Approximation

In this section, we assume that the complex K has not yet been computed but we
have the set of initial Pareto optimal outcomes P. Theorem 12 establishes an estimate
for d(s) without computing the complex K .

Theorem 12 Assume that Kl =P(p j1l , p j2l ) with Pareto optimal outcomes p j1l , p j2l ∈
P and l = 1, . . . ,r are all the 1-polytopes so that Kl ∪P is inherently nondominated.
Define a vector e ∈ Rk so that

ei = max
l=1,...,r

|z j1l
i − z

j1l
i |

for all i = 1, . . . ,k. Then it holds that

d(s)≤ k−1
k

e

for all s ∈ body(K ).

Proof Assume that K is a D-maximal inherently nondominated Pareto front ap-
proximation. The structure of K remains unknown but the existence of the ap-
proximation is proven in Theorem 4. Let a vector s ∈ body(K ) be arbitrary. Then
s∈P(p̂1, . . . , p̂a+1) for some p̂1, . . . , p̂a+1 ∈P. By Theorem 2, there exist z1, . . . ,zk ∈
{ p̂1, . . . , p̂m} so that s ∈P(z1, . . . ,zk). Now the union P(z j1 ,z j2)∪P is inherently
nondominated for all indices j1, j2 ∈ {1, . . . ,k}, because K is an inherently nondom-
inated Pareto front approximation and, thus,

|z j1
i − z j2

i | ≤ ei

for all indices i, j1, j2 ∈ {1, . . . ,k}. This immediately implies zdif
i ≤ ei for all i =

1, . . . ,k with the definitions of Lemma 4 and this combined with Theorem 4 yields
the claim. ut

In order to be useful, the computation of the above a priori error estimate should
be less expensive than the computation of the whole D-maximal inherently nondomi-
nated Pareto front approximation. This indeed is the case, if the number of objectives
k is sufficiently large. To find the polytopes Kl in Theorem 12, one has to solve
problems (2) and (3) O(m3) times, while the computation of the D-maximal inher-
ently nondominated Pareto front approximation demands solving problems (2) and
(3) O(mk) times in the worst case scenario. Thus, if k > 3, then the computation of
the a priori estimate is worthwhile.
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Example 3 Continuing with the DTLZ5 example from Section 6, the 1-polytopes Kl

of Theorem 12 are K7,K8,K9,K10. We calculate ei = max{|p1
i − p2

i |, |p2
i − p3

i |,
|p3

i − p4
i |, |p4

i − p5
i |} for all i = 1,2,3 and obtain

e =

(√
2−
√

2
2
√

2
,

√
2−
√

2
2
√

2
,

√
2−
√

2
2

)
≈ (0.27060,0.27060,0.38268).

By Theorem 12, d(s)≤ 2/3e≈ (0.18040,0.18040,0.25512) and for every s∈ body(K )

1. there exists an outcome z ∈ f (S) that is at least as good as

s+(0.18040,0.18040,0.25512)

in all objectives and
2. there does not exist an outcome z∈ f (S) so that z≤ s−(0.18040,0.18040,0.25512).

9 Concluding Remarks on Decision Making with the Pareto Front
Approximation

We have introduced a way to construct a Pareto front approximation that can be used
in decision making involving computationally expensive multiobjective optimization
problems. As shown in (Hartikainen et al., 2011), the problem of choosing a pre-
ferred vector on the inherently nondominated Pareto front approximation K can be
formulated as a multiobjective optimization problem

min (z1, . . . ,zk)
s.t. z ∈ body(K )
where z = (z1, . . . ,zk)

T ,
(6)

which can be used as a surrogate to Problem (1). Additionally, it holds that

PF(body(K )) = body(K ),

because K is inherently nondominated and, consequently, all vectors in the set
body(K ) are feasible solutions to problem (6). A preferred outcome of problem (6)
is called a preferred vector on the approximation K . Since problem (6) is a multi-
objective optimization problem, any interactive multiobjective optimization methods
can be employed to solve it.

The body of the inherently nondominated Pareto front approximation K can be
parameterized and so problem (6) has a representation that can be input to e.g., the
WWW-NIMBUS R© implementation (Miettinen and Mäkelä, 2000, 2006) (available
at http://nimbus.it.jyu.fi/) of the NIMBUS method (Miettinen and Mäkelä,
1995, 2006). Obviously, the parameters that are used for parameterizing the body of
K are not meaningful to the decision maker but the vectors z ∈ body(K ) are. The
only drawback of this approach is that the parameters used for describing the dif-
ferent polytopes in the complex K are discrete and thus problem (6) has discrete



24

variables in its decision space. In effect, the solvers used for solving the scalariza-
tions employed by an interactive multiobjective optimization method must be able
to handle discrete variables. Fortunately, e.g., WWW-NIMBUS R© has global solvers
that are able to do this.

The a priori error estimates are useful whenever a decision maker has chosen a
preferred vector on the approximation. Whenever this happens, the decision maker
can be given information about the actual Pareto optimal solutions in the form of
error estimates. Having examined the error estimates, the decision maker can either
choose to have the chosen point on the approximation projected on the actual Pareto
front by means of the achievement scalarizing function (Wierzbicki, 1986) or not.

Future research on this topic is needed to implement the approximation approach
given in this paper. For example, the computational expense of directly employing
rules (R1) and (R2) grows exponentially when the number of objectives rises and
smart computation schemes are needed to handle this. Second, we need to find an
efficient way to solving problems (2) and (3). As further research, it is of interest
to study which interactive multiobjective optimization methods and implementations
are most suitable for solving problem (6) in real life problems and with real decision
makers. The choice of the interactive method may obviously depend on the initial
multiobjective optimization problem and also on the decision maker’s desires. Fi-
nally, to make our approximation approach more versatile, we intend to examine how
the continuity assumption in Section 2 can be relaxed.

Another direction of research is to study other uses of our approximation in multi-
objective optimization. For example, in bilevel multiobjective optimization it is some-
times required to approximate the Pareto front of the lower level problem that is then
brought to the upper level. Because of the inherent nondominance property, our ap-
proximation has potential to be efficient in this kind of use.
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Abstract

We consider a heat exchanger network synthesis problem formulated as a multiob-
jective optimization problem. The Pareto front of this problem is approximated with
a new approximation approach and the preferred point on the approximation is found
with the interactive multiobjective optimization method NIMBUS. Using the approxi-
mation makes the solution process computationally inexpensive. Finally, the preferred
outcome on the Pareto front approximation is projected on the actual Pareto front.

Keywords: heat exchanger network synthesis, multiobjective optimization, Pareto
front approximation, interactive decision making, NIMBUS

1 Introduction

Multiobjective optimization means optimizing multiple objectives at the same time (11). In
multiobjective optimization problems there is no well defined single optimal solution, but
we can identify a set of so-called Pareto optimal solutions where none of the objectives can
be improved without impairing some other. A vector containing the values of all objectives
as its components is called an outcome and an outcome given by a Pareto optimal solution
is called a Pareto optimal outcome. The set of Pareto optimal solutions can be called the
Pareto front.

The many mathematically equal Pareto optimal solutions cannot be ordered without
preference information related to outcomes on the Pareto front and the person giving this
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information is called a decision maker. We can say that the aim of multiobjective opti-
mization approaches is to help the decision maker in finding the outcome that is the most
preferable. Different approaches to multiobjective optimization problems are summarized
e.g., in (1; 9; 11).

The heat exchanger network synthesis problem is an important problem concerning heat
exchange and the efficient use of energy in it. In (10), this problem is formulated in a new
way as a multiobjective optimization problem and solved with an approach where GAMS
(the General Algebraic Modeling System, see http://www.gams.com/) and the interactive
multiobjective optimization method NIMBUS (12; 14) are combined. The use of the NIM-
BUS method enables the examination of the trade-offs between different objectives of the
problem.

The drawback in the interactive method is, however, the fact that the problem is compu-
tationally expensive and the decision maker has to wait a relatively long time to get feedback
for his/her preferences. This is a common issue, when the problem formulation includes a
simulator and function evaluations take time. To keep waiting times feasible a local opti-
mizer is used in (10) to generate Pareto optimal solutions within NIMBUS. Local optimizers,
however, have the risk of getting caught in local optima instead of global ones.

In (8), an idea inspired by (4) for solving computationally expensive multiobjective opti-
mization problems is introduced. In this paper, it is proposed that the Pareto front should
be approximated in a way that enables examining this Pareto front approximation with ex-
isting interactive multiobjective optimization methods. It is argued that the computational
expense of the approximation phase which takes place before introducing the decision maker
in the solution process does not matter as much as the time-consuming computation done
while the decision maker is waiting. In that paper it is argued that an inherently nondom-
inated Pareto front approximation, as defined therein, is a good approximation to be used
because it does not mislead the decision maker in what is attainable in the problem and
what is not. In (7), a method for constructing such an inherently nondominated Pareto
front approximation is presented based on the Delaunay triangulation.

In this paper, we present an application of the Pareto front approximation approach
in heat exchanger network synthesis. We start with a small set of Pareto optimal out-
comes. An inherently nondominated Pareto front approximation is constructed based on
these outcomes with the approach given in (7). After this, the Pareto front approximation
is parametrized to get a multiobjective optimization problem related to the approximation
as defined in (8) and the preferred outcome on the Pareto front approximation is found
with the WWW-NIMBUS R© implementation of the NIMBUS method. The parametrized
multiobjective optimization problem based on the approximation is computationally much
less costly than the original problem. This is a benefit compared to (Laukkanen et al, 2010).
Finally, the preferred solution on the Pareto front approximation is projected on the actual
Pareto front by the means of an achievement scalarizing function (18).

The rest of this paper is organized as follows. In Section 2, we briefly describe the heat
exchanger network synthesis problem considered. We introduce the tools used, that is our
approximation algorithm and NIMBUS, in Section 3. Section 4 is devoted to generating
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a Pareto front approximation for the problem and to finding the preferred point on the
approximation with the help of NIMBUS. Finally, conclusions are drawn in Section 5.

2 Heat Exchanger Network Synthesis

The heat exchanger network synthesis is a problem for the efficient use of energy. According
to (10), the objective of research in heat exchanger network synthesis is to

. . . design a heat exchanger network that minimises the total annualised cost,
given sets of hot streams, cold streams, hot utilities and cold utilities. Each
hot and cold stream has a specific heat capacity flowrate, a start- and target
temperature.

For more detailed treatment of the topic see (10) and references therein. Different optimiza-
tion based solution approaches are given e.g., in (2; 10; 16). Even though the problem has
conflicting objectives, only in (10) it is clearly formulated as a multiobjective optimization
problem.

A way to model the heat exchanger network synthesis, called the SynHeat model, is
introduced in (19). Based on this model, a multiobjective optimization problem with four
objectives

min Cold utility consumption
min Hot utility consumption
min Number of heat exchanger units
min Total heat exchanger surface area
s.t. Energy balance for each stream

Energy balance for each stage
Calculation of hot and cold utility requirements
Assignment of inlet temperatures
Feasibility of temperatures
Logical constraints for process stream matches and utility matches
Calculation of approach temperatures

was formulated in (10). For details, see the appendix of (10). In this paper, we to consider
a slight modification of the above with three objectives

min Number of heat exchanger units
min Total heat exchanger surface area
min Hot utility consumption
s.t. x ∈ S,

(1)

where S is the set given by the constraints in the above multiobjective optimization problem.
The most important reason not to consider the cold utility consumption objective is that it
has been noticed to correlate with the hot utility consumption and it suffices to examine only
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one of them. Also an advantage of having three objectives is that then we can conveniently
illustrate the approximated Pareto front. Let us however stress that the usability of our
approximation approach does not depend on the number of objectives.

3 Background: Approximation and NIMBUS

Before solving the synthesis problem, we briefly describe the methods used. In other words,
we introduce the approximation method used as well as the NIMBUS method.

A Pareto front approximation is defined by (17) to be a set A in the objective space con-
sidered a surrogate of the Pareto front. Approximating the Pareto front of a multiobjective
optimization problem is an interesting problem from both the application and the theoretical
viewpoint. Surveys of approximation methods can be found in (Hartikainen et al., 2010 b)
and in references therein. However, as noted in (8), most of the Pareto front approximations
have not been designed with decision making at mind but mainly for representing Pareto
optimal solutions.

In (8), inherent nondominance is introduced as a desirable property for a Pareto front
approximation and it is shown that an inherently nondominated approximation of the Pareto
front is a good basis for decision making. A set A in the objective space is defined to be
inherently nondominated, if there does not exist vectors a, b ∈ A so that a dominates b. A
vector a is said to dominate another vector b, if a is at least as good as b in all objectives and
strictly better in at least one. If P is a set of Pareto optimal outcomes for the multiobjective
optimization problem, an inherently nondominated set A is called an inherently nondomi-
nated Pareto front approximation based on P , if also P ⊂ A. Furthermore, an inherently
nondominated set A is called a B-maximal inherently nondominated Pareto front approxi-
mation for some other set B if there does not exist an inherently nondominated set Ã ⊂ B
so that A � Ã. In (8), also an approach to solve multiobjective optimization problems using
a inherently nondominated Pareto front approximation was proposed, where a parametrized
problem is formed with the approximation so that e.g., interactive multiobjective optimiza-
tion methods can be applied for decision making on the approximation.

In (7), an approach to construct a D-maximal inherently nondominated approximation is
given, where D is a Delaunay triangulation of a given subset of Pareto optimal outcomes P .
The Delaunay triangulation is a complex (i.e., collection of polytopes with certain additional
properties (6)) so that the body (i.e., the union of all polytopes in the complex) is the
convex hull of the outcomes in P and also some other properties are satisfied. The Delaunay
triangulation is a useful concept in computational geometry (5). It is shown in (7) that an
inherently nondominated complex is such that there are no two polytopes in the complex so
that one dominates the other. It is said that a polytope K1 in the objective space dominates
another polytope K2 also in the objective space, if there exists vectors s1 ∈ K1 and s2 ∈ K2

so that s1 dominates s2. In (7), it is shown that, if all the objectives of the multiobjective
optimization problem are to be minimized and k is the number of objectives, the domination
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between polytopes K1 and K2 can be found by solving optimization problems

min maxi=1,...,k(s
1
i − s2i )

s.t. s1 ∈ K1, s2 ∈ K2 (2)

and
min

∑k
i=1(s

1
i − s2i )

s.t. s1 ∈ K1, s2 ∈ K2

s1i ≤ s2i for all i = 1, . . . , k.

(3)

The polytope K1 dominates the polytope K2 if and only if one of the following holds: (i)
the optimal value in problem (2) is less than zero or (ii) the optimal value in problem (2) is
exactly zero and the optimal value in problem (3) is less than zero.

The dimension of a polytope K ⊂ Rk is defined to be the minimal dimension of a linear
subspace L for which there exists a points z ∈ Rk so that K ⊂ z + L. According to (6), the
dimension of a polytope K with vertices z1, . . . , za ∈ Rk is the rank of the matrix

⎡
⎢⎣

1 z11 . . . z1k
...

...
...

...
1 za1 . . . zak

⎤
⎥⎦

minus one. A Delaunay triangulation contains polytopes of different dimensions. In (7), it
is shown that polytopes with dimension equal to the number of objectives are not inherently
nondominated. For this reason, we can remove these polytopes straight away and, thus,
we let D from now on be the Delaunay triangulation containing only the polytopes with
dimension less than the number of objectives.

In (7), an approach to construct a D-maximal inherently nondominated Pareto front
approximation is proposed based on removing polytopes from the Delaunay triangulation.
In this paper, we construct the approximation for problem (1) by removing polytopes from
the triangulation D according to the rules (R1) and (R2) given in (7). Assume that the a-
polytopes (i.e., polytopes with a vertices) in the Delaunay triangulationD areKa,1, . . . , Ka,ta .
A polytope Ka,j is removed from the triangulation D, if (R1) there exists a point p ∈ P that
dominates or is dominated by the polytope or the polytope dominates itself or (R2) there
exists a b-polytope Kb,j′ ∈ D with either b > a or (b = a and j′ < j) that is not removed
from the triangulation and that dominates or is dominated by the polytope Ka,j.

Before we describe how the Pareto front is approximated, we briefly introduce NIMBUS.
We use NIMBUS in this paper, because it was used also by (10) as it has been successfully
applied in various design and planning problems (15). NIMBUS is an interactive multiob-
jective optimization method (12; 14; 11). In interactive methods (9; 11; 15), the decision
maker expresses his/her preferences iteratively and before every iteration the decision maker
is given additional information about the problem related to the preferences that he/she has
given previously. This iterative procedure enables the decision maker to learn about the
problem (15) and also the decision maker is able guide the search to the areas of the Pareto
front that are most interesting to him/her.
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Interactive methods differ by the types of preference information asked from the decision
maker and by the ways this preference information is used. The NIMBUS method uses
classification of objectives to indicate how the current solution should be changed; given a
Pareto optimal solution to the multiobjective optimization problem the decision maker can
classify the objective functions into classes I<, I≤(z), I=, I≥(z) and I> defined, respectively,
as classes of objective functions that the decision maker wants to improve as much as possible,
wants to improve to the limit z, is allowed to remain unchanged, is allowed to deteriorate
until limit z and is allowed to change freely for a while. This preference information is
then converted into several different single-objective subproblems with the help of different
scalarization functions as proposed in (14). These subproblems are then solved to generate
different Pareto optimal outcomes which are then shown to the decision maker who can see
how well the designed changes could be attained. The decision maker can choose any of
these outcomes as the starting point of the next round of iteration. This iteration procedure
can either start with an outcome given by the decision maker or from a so-called neutral
outcome and it is repeated as long as the decision maker is satisfied with the outcome at
hand. Further information of this so-called synchronous NIMBUS with other means to direct
the search process is given in (14).

The WWW-NIMBUS R© is a web based implementation of the NIMBUS method intro-
duced in (13; 14). WWW-NIMBUS R© is free for academic use at http://nimbus.mit.jyu.
fi/.

4 Approximation and Solution Process in Heat Ex-

changer Network Synthesis

In this section, we solve the heat exchanger network synthesis problem and for that we first
generate an inherently nondominated Pareto front approximation for it. We assume we are
given nine Pareto optimal outcomes (forming the set P) summarized in Table 1.

Table 1: The Pareto optimal outcomes for the multiobjective heat exchanger network syn-
thesis problem

Point Number of heat exchanger
units

Total heat exchanger sur-
face area

Hot utility consumption

p1 4 1897 10250
p2 8 52175 1755
p3 5 52175 5371
p4 6 4913 3028
p5 8 4734 3028
p6 8 2608 4920
p7 6 79064 2882
p8 8 4734 3028
p9 5 4153 5902
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Figure 1: The body of the D-maximal inherently nondominated Pareto front approximation

Number of heat
exchanger units8

Total heat ex-
changer surface
area

79064

Hot utility

10250 p1

p2
p3

p4 p5
p6

p7

p8
p9

The Deulaunay triangulation of this set P contains 75 polytopes. Twelve of these poly-
topes are three-dimensional and they are removed as explained before, because the number
of objectives is three in this case. By solving optimization problems (2) and (3) for each
pair of polytopes in the complex D we determine which polytopes dominate each other
and by following rules (R1) and (R2) one can see which polytopes are removed from the
triangulation D. Solving problems (2) and (3) for each pair is easily implemented on any
programming language and here we have used GNU Octave (3). The polytopes in the re-
sulting D-maximal inherently nondominated Pareto front approximation are summarized in
Table 2 and the body of the resulting approximation is drawn in Figure 1.

Table 2: The polytopes in the D-maximal inherently nondominated Pareto front approxi-
mation

Polytope Vertices Polytope Vertices Polytope Vertices
P1 p6 P2 p7 P3 p2

P4 p1 P5 p3 P6 p4

P7 p8 P8 p9 P9 p6 p1

P10 p7 p2 P11 p3 p7 P12 p3 p1

P13 p3 p4 P14 p4 p7 P15 p4 p2

P16 p8 p6 P17 p8 p2 P18 p8 p4

P19 p8 p1 P20 p9 p4 P21 p9 p1

P22 p4 p1 P23 p9 p3 P24 p3 p4 p7

P25 p4 p7 p2 P26 p8 p4 p2 P27 p8 p6 p1

P28 p9 p4 p1 P29 p9 p3 p1 P30 p9 p3 p4
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Now that we have formulated an inherently nondominated approximation we can move
to the next phase and show how to use it for decision making. Through a parametrization
of the approximation, the multiobjective problem of choosing the preferred point on the
approximation A = {P1, . . . ,P30} can be formulated as a mixed-integer problem with three
objectives

min f(λ, t) =

t1(λ1p
3 + λ2p

4 + λ3p
7) + t2(λ1p

4 + λ2p
7 + λ3p

2)
+t3(λ1p

8 + λ2p
4 + λ3p

2) + t4(λ1p
8 + λ2p

6 + λ3p
1)

+t5(λ1p
9 + λ2p

4 + λ3p
1) + t6(λ1p

9 + λ2p
3 + λ3p

1)
+t7(λ1p

9 + λ2p
3 + λ3p

4)

s.t.
∑3

i=1 λi = 1∑7
i=1 ti = 1

λ ∈ [0, 1]3

t ∈ {0, 1}7.

The above formulation is imputed into the WWW-NIMBUS R© implementation of the NIM-
BUS method and the most preferred point on the approximation can be found with NIMBUS.

At this point the decision maker is involved. The iterations of the solution process
with WWW-NIMBUS R© can be seen Table 4. The chosen alternative on each iteration is
underlined.

Table 3: The course of the NIMBUS optimization procedure

Iter. Issue Number of heat
exchanger units

Total heat ex-
changer surface
area

Hot utility con-
sumption

0 Starting point 6.161743 3431.044 6347.206
Classification I≤(5) I≥(8000) I<

1 Alternative 1 5.829885 4783.843 3517.424
Alternative 2 8.0 52175.59 1755.5
Alternative 3 6.0 4913.04 3028.43
Alternative 4 5.392376 4458.865 4774.958
Classification I= I≥(6000) I≤(2500)

2 Alternative 1 7.162517 8383.323 2932.537
Alternative 2 6.153829 8548.212 2930.523
Alternative 3 6.117182 7682.189 2953.848

Because the decision maker sees that the desired changes in iteration 2 were not possible,
alternative 3 of iteration 1 is selected as the preferred outcome. During the solution process
the decision maker is interested in reducing the hot utility consumption near 3000 with
as few as possible heat exchanger units and as small as possible surface area. The true
Pareto optimal outcome corresponding to the selected approximate outcome is obtained by
using the achievement scalarizing function (18). The achievement scalarizing function is
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maximized with the reference point as the preferred point on the approximation and this
yields a Pareto optimal outcome to the initial problem with the number of heat exchanger
units 6.00, total heat exchanger surface area 4791.71 and hot utility consumption 3043.59.
The solution related to this outcome is taken as the final outcome since it is satisfactory to
the decision maker. However, if this was not the case we could have added this point to the
set P and repeated the approximation procedure to get a more accurate approximation.

5 Conclusions

This paper shows an application of a new Pareto front approximation approach to solving
a heat exchanger network synthesis problem. In the solution process the Pareto front is
first approximation and then the decision maker can find the most preferred approximated
outcome with an interactive method, here interactive multiobjective optimization method
NIMBUS. Finally, the preferred approximated outcome is projected on the true Pareto front.

The method has many advantages. First of all, because the starting point of the approx-
imation, that is, the finite set of Pareto optimal outcomes P is computed before involving
the decision maker, one can even use time consuming global optimization methods as in this
case. Since the approximation has analytical error estimates given in (7), one can find out
how good the approximation is. After having computed the Pareto front approximation it
is possible to use any multiobjective optimization method to study the approximation and
search for a preferred outcome. Because the parametrized problem formed based on the
approximation is computationally inexpensive, the decision maker does not have to wait for
new solutions being generated. In this paper, it was shown that NIMBUS can be used for
that. Finally, the preferred outcome on the approximation can be projected on the real
Pareto front with achievement scalarizing function (18).
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2 Markus Hartikainen et al.

1 Introduction

Multiobjective optimization means optimizing multiple conflicting objectives
at the same time [see e.g., 23]. Multiobjective optimization problems may have
many Pareto optimal solutions, whose objectives cannot be improved without
impairing some other objectives. A vector containing the objective values for
a single solution is called an outcome and the set of outcomes given by Pareto
optimal solutions is often called the Pareto front. The ultimate aim of mul-
tiobjective optimization is to help a decision maker find a solution that is
preferable to him/her. A decision maker is a person who has the right or is
expected to make decisions concerning the real life problem that is mathe-
matically modeled by the multiobjective optimization problem. Here we do
not assume that he/she has any knowledge about different multiobjective op-
timization methods.

One way to classify different multiobjective optimization methods, intro-
duced in [15] and followed in [23], is based on the relative order of the decision
maker’s preference articulation and optimization. In a priori methods, the pref-
erences of the decision maker are first specified and then a single Pareto opti-
mal solution is found with respect to these and in a posteriori methods many
Pareto optimal solutions are generated and then the decision maker is expected
to choose a preferred one among them. If the decision maker’s preferences do
not play a role or are unavailable then the method is called a no-preference
method. Finally, interactive methods employ an iterative procedure and allow
the decision maker to correct his/her preferences and also enable the decision
maker to learn about the problem [see e.g., 28]. Interactive methods have in
many instances been seen as the most prominent [8, 20, 23, 28], because they
allow the decision maker to gain more insight about the problem while solving
it without introducing too much cognitive load at a time. In other words, the
decision maker can consider only those Pareto optimal solutions that have been
generated based on his/her preferences. We have, thus, focused on interactive
methods in our research.

In interactive methods, new solutions to the multiobjective optimization
problem are often produced through scalarization, i.e., by converting the mul-
tiobjective optimization problem into single objective optimization problems
[20]. Different interactive methods use different scalarizations and some inter-
active methods even use multiple scalarizations (e.g., the synchronous NIM-
BUS method introduced in [27]). In this paper, a scalarization of the multiob-
jective optimization problem refers to a single objective optimization problem
whose optimal solutions are solutions to the multiobjective optimization prob-
lem. Usually, scalarizations include a way to take into account the decision
maker’s preferences (as e.g., in achievement scalarizing problem (8) from [33],
where the reference point contains aspiration levels for the objectives). For
more information about scalarizations, see e.g., [23, 26].

A drawback with iterative procedures of interactive methods is that the
decision maker has to wait while new Pareto optimal solutions are gener-
ated with his/her updated preferences. This is usually done in each iteration.
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Since many real-life problems are computationally expensive [see e.g., 14, 18],
scalarizations of the problems may also be computationally expensive. By a
computationally expensive multiobjective optimization problem we here mean
a problem that requires a long time to compute the objective values for a given
solution. For these problems, the time that is needed to optimize the scalar-
izations may be too long for the decision maker to spare. Besides, the decision
maker may become unwilling to explore different solutions to the problem in
the so-called learning phase (in which the most interesting region on the Pareto
front is to be identified [28]).

In this paper, we develop and implement a Pareto front approximation
method PAINT (PAreto front INTerpolation) that interpolates between a set
of given Pareto optimal outcomes. The interpolation satisfies the property
of inherent nondominance introduced in [13] and, thus, implies a surrogate
problem that can replace the computationally expensive original problem and
can be solved with any interactive method to yield a preferred solution for
the original problem. The inherent nondominance guarantees that none of
the interpolants dominate or are dominated by any of the given Pareto op-
timal outcomes, neither do they dominate each other. The interpolation is
based on the results developed in [12], where it was suggested that a certain
subcomplex of the Delaunay triangulation of the given Pareto optimal out-
comes should be used. Our surrogate problem allows the decision maker to
consider approximate outcomes (i.e., interpolants of the given Pareto optimal
outcomes produced by the PAINT method). In this paper, we also develop a
mixed integer linear formulation for the surrogate problem that is implied by
the interpolation. Replacing the original computationally expensive problem
with the surrogate problem will naturally offer computational time savings
when an interactive method is used.

Approaches similar to ours, where a Pareto front approximation is used to
search for interesting outcomes not limited to a given set, have been proposed
in [8, 19, 29]. The main difference between these approaches and ours is that
the others use their own tailor-made methods for finding a vector containing
preferred approximate outcomes on the approximations, while our approxi-
mation aims to work (through the mixed integer linear surrogate problem) in
concert with any interactive method. Furthermore, [8, 29] are only applicable
to convex multiobjective optimization problems, while ours can handle non-
convex problems. As mentioned before, PAINT has been developed to produce
interpolate outcomes to be used with an interactive method through the sur-
rogate problem. However, when looking at PAINT as a plain approximation
method, it can be compared to some existing methods in the literature. This
kind of approximation methods can be found in a survey [30] and in papers
[2, 7, 9, 16, 21]. These methods, however, do not concentrate on the question
of how to choose a Pareto optimal solution on the produced approximation
as we do. Also, none of the above methods guarantee the property of inher-
ent nondominance for nonconvex optimization problems with more than two
objectives.
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The rest of this paper is structured as follows: In Section 2, notation and
definitions are given. The PAINT method and related computational issues are
described in Section 3. In Section 4, the surrogate multiobjective optimization
problem implied by the approximation is discussed. Section 5 shows examples
of different Pareto front approximations to demonstrate the versatility of the
PAINT method. Finally, conclusions are drawn in Section 6.

2 Notation and definitions

In this paper, we study multiobjective optimization problems

min (f1(x), . . . , fk(x))
s.t. x ∈ S, (1)

where the integer k is the number of real-valued objectives. The set S is called
the feasible set. A vector z = f(x) = (f1(x), . . . , fk(x))T with x ∈ S is called
an outcome. The set f(S) is called the outcome set. We assume that the set S is
connected and that the objective functions fi are continuous. This assumption
is made in order to justify interpolating between the objective function values
of Pareto optimal solutions.

The set Rk is called the outcome space. For a vector z in the outcome
space, a component zi is called an objective value. Because problem (1) is a
minimization problem, less is preferred to more in each objective. A vector z1

in the outcome space is said to dominate another vector z2 in the outcome
space if z1 is at least as good as z2 in all objectives and strictly better in at
least one. If z1 dominates z2 then it is written z1 ≤ z2.

An outcome z1 is said to be Pareto optimal, if there does not exist another
outcome z2 so that z2 dominates z1. The set of all Pareto optimal outcomes
is called the Pareto front. In this paper, the set P always refers to the given
set of Pareto optimal outcomes on which the Pareto front approximation is
based. The number of these Pareto optimal outcomes is denoted by m and
the elements of this set are denoted by pj , where j = 1, . . . ,m. This set is
called the initial set of Pareto optimal outcomes and it is taken as given, i.e.,
we assume that we cannot influence the locations of these outcomes in the
outcome space.

Important elements in our PAINT method are polytopes and collections
of polytopes for which we mostly follow the definitions given in [10]: For
a nonnegative integer a, the convex hull of z1, . . . , za+1 ∈ Rk is denoted
by P(z1, . . . , za+1) and is called an a-polytope. It is said that the polytope
P(z1, . . . , za+1) is defined by vectors z1, . . . , za+1. A vertex of a polytope K is
a point x ∈ K for which it holds that λz+(1−λ)y = x, λ ∈ (0, 1) and z, y ∈ K
imply x = y = z. The set of vertices of a polytope K is denoted by vert(K).
A face of a polytope K is another polytope K ′ so that K ′ = ∅, K ′ = K or
there exist vectors z1, z2 ∈ Rk so that K ′ = {z1 + h : h ∈ Rk, hT z2 = 0} ∩K.
A polytope P(z1, . . . , za+1) is a simplex if the vectors z1, . . . , za+1 are affinely
independent.
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Collections of polytopes are sets whose elements are polytopes and they
are denoted by calligraphic letters A,B,K, . . .. The body of a collection of
polytopes A is body(A) = ∪K∈AK. A (polyhedral) complex K is a special
type of collection of polytopes so that (a) if it holds that a polytope K ∈ K
and another polytope K ′ is a face of K then it must hold that K ′ ∈ K,
and (b) if it holds that polytopes K1,K2 ∈ K then the set K1 ∩ K2 must
be a possibly empty face of both polytopes K1 and K2. A triangulation of
a finite set P ⊂ Rk is a complex T so that the body of T is the convex
hull of the set P and the set of vertices in T is P . A polytope P(z1, . . . , zk)
with z1, . . . , zk ∈ P is called Delaunay (in P ) if there exists an open ball
B ∈ Rk with cl(B) ∩ P = {z1, . . . , za+1} (here cl(B) denotes the closure of
B) and B ∩ P = ∅. A complex D is a Delaunay triangulation of P if D is
a triangulation of P so that every polytope in D is Delaunay. A polyhedral
complex is called a simplicial complex, if all the polytopes are simplices.

In [13], the most important concepts for the theory behind our Pareto front
approximation were given. First, a set A ⊂ Rk is called inherently nondomi-
nated, if there does not exist a, b ∈ A so that a ≤ b. Given a set of outcomes,
one can check whether any of them dominates the others. Inherent nondomi-
nance is a more advanced concept used to guarantee that when a new infinite
set of interpolating outcomes has been generated, none of them is dominated
by or dominates others. In order to connect the inherently nondominated set
to a known set of Pareto optimal outcomes P it was defined that an inherently
nondominated set A is called an inherently nondominated Pareto front approx-
imation (based on a set of outcomes P ), if it holds that P ⊂ A. Since also the
set P is by definition an inherently nondominated Pareto front approxima-
tion, it was further defined that for a set B ⊂ Rk, an inherently nondominated
Pareto front approximation A ⊂ B is called a B-maximal inherently non-
dominated Pareto front approximation, if there does not exist an inherently
nondominated set A′ so that A ( A′ ⊂ B. A B-maximal inherently nondom-
inated Pareto front approximation is a maximal (by inclusion) collection of
points from B that could be a part of a same Pareto front as the initial Pareto
optimal outcomes in P are.

Since an inherently nondominated Pareto front approximation is to be used
as an interpolation of the Pareto optimal outcomes in P , it usually contains an
infinite number of points. On the other hand, such an infinite set can be rep-
resented by a finite number of polytopes. Thus, it is easier to construct such
interpolations from polytopes than from points. Hence, the above concepts
were in [12] slightly modified to fit collections of polytopes and polyhedral
complexes. A collection of polytopes K is called inherently nondominated and
an inherently nondominated Pareto front approximation, whenever its body,
body(K), is that. Finally, if B is a collection of polytopes, an inherently non-
dominated collection of polytopes K is called a B-maximal inherently nondom-
inated Pareto front approximation if there does not exist a polytope K ∈ B\K
so that the collection of polytopes K∪{K} is inherently nondominated. Thus,
the difference between this definition and the corresponding definition for a
set is that a B-maximal inherently nondominated Pareto front approximation
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is a maximal collection of polytopes (not points) in B that could be a part of
a same Pareto front as the initial Pareto optimal outcomes in P are. A mem-
ber of the body of an inherently nondominated Pareto front approximation is
called an approximate Pareto optimal outcome.

To construct inherently nondominated collections of polytopes, a domi-
nance between polytopes was defined in [12]. Let K1,K2 ⊂ Rk be polytopes.
It is defined that the polytope K1 dominates the polytope K2 if there exist
vectors s1 ∈ K1 and s2 ∈ K2 so that s1 dominates s2. As shown in that
paper, a complex K ⊂ D is inherently nondominated if and only if there does
not exist polytopes K1,K2 ∈ K so that K1 dominates K2.

3 The PAINT method

In this section, we introduce the algorithm of the PAINT method, to be called
Algorithm 1. We describe data structures that can be used in implementing
this algorithm. Based on these data structures, we illustrate how the steps of
Algorithm 1 can be carried out. We also discuss the implementation aspects
of the algorithm and the complexity of the PAINT method. Finally, we de-
velop a way of resolving dominance between two polytopes, which is needed
in Algorithm 1.

The PAINT method takes as input a set of m Pareto optimal outcomes P
and its output is a D-maximal inherently nondominated Pareto front approx-
imation based on P , where D is a Delaunay triangulation of the set P . The
method is based on the ideas presented in [12] and it guarantees that the ap-
proximation satisfies the following rules (R1) and (R2) given in [12]: assuming
that l-polytopes in the Delaunay triangulation D are Kl,j with j = 1, . . . , tl,
a polytope Kl,j ∈ D is removed, if either

(R1) there exists an outcome p ∈ P that dominates or is dominated by the
polytope Kl,j or the polytope Kl,j dominates itself
OR

(R2) there exists an m-polytope Km,j′ ∈ D with either m > l or m = l and
j′ < j that is not removed, and that dominates or is dominated by the
polytope Kl,j .

In [12], it is shown that a resulting polyhedral complex after having applied
rules (R1) and (R2) is a D-maximal inherently nondominated Pareto front
approximation.

In the implementation of the PAINT method presented in this paper, the
Delaunay triangulation and the inherently nondominated Pareto front approx-
imation are represented as matrices D and A, respectively. In those matrices,
each row represents the vertices of a polytope with each entry referring to an
outcome in P . For example a row with entries 1, 2 and 3 represents a polytope
defined by outcomes p1, p2 and p3 in P . Polytopes that are defined with fewer
outcomes than there are columns in D or A are handled by repeating the same
outcome multiple times. This way of representing the complexes enables us to
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write e.g., the outcomes defining the polytope represented by row j in the
matrix D as pDj,1 , pDj,2 , . . . , pDj,b with b being the number of columns in D.

3.1 Algorithm

The PAINT method is described in Algorithm 1. Throughout the algorithm,
indices a and b stand for the number of polytopes in the Delaunay triangulation
and the maximal number of outcomes defining a polytopes in the Delaunay
triangulation, respectively. The algorithm begins by reading in the initial set
of Pareto optimal outcomes P . Line 2 of the algorithm is concerned with con-
structing a Delaunay triangulation of the set P . We propose to do this with the
Quickhull algorithm [1], which constructs the Delaunay triangulation by build-
ing the convex hull of a higher dimensional related set (see [3]). The Quickhull
algorithm assumes that the outcomes in P are in general position (see [1]),
which is not always the case for e.g., linear multiobjective optimization prob-
lems for which the outcomes may be affinely dependent. This dependency can
be removed by e.g., slightly perturbing the points as proposed in [6]. Whenever
necessary, we have used perturbation in the examples in Section 5.

In line 3 of Algorithm 1, the rows of matrix D representing the Delaunay
triangulation are ordered in a descending order with respect to the number of
different entries in the row that is defined as the number of outcomes defining
the polytope that is represented by the row. The ordering ensures that the
polytopes are checked in the loop starting from line 5 in a descending order
with respect to the number of outcomes defining the polytope.

In lines 6, 11 and 19 of the algorithm, there are three different if-conditions.
The purpose of the conditions in lines 6 and 11 is to make sure that the final
approximation follows rule (R1), and the purpose of the condition in line 19 is
to make sure that the final approximation follows rule (R2). Conveniently, all
these conditions reduce to checking dominance between two polytopes, which
is the condition in line 19: (a) the inherent nondominance of a polytope in line
6 can be reduced to checking whether a polytope dominates itself, because in
[12] it was proven that a polytope is inherently nondominated if and only if
it does not dominate itself, and (b) the dominance between an outcome and
a polytope in line 11 is actually dominance between two polytopes because
a singleton containing a vector in Rk is by definition a polytope.Thus, it is
adequate to build mathematical tools for determining dominance between two
polytopes. This is done in Subsection 3.2 by using two linear optimization
problems.

Assume now that the algorithm is in the loop starting from row 5 and
ending with row 26 and that the index i value is ı̂. If the polytope given by
row ı̂ in D is not inherently nondominated, it dominates or is dominated by
an outcome in P or it dominates or is dominated by a polytope given by any
of rows d+ 1, . . . , ı̂− 1 in the current D, then the polytope is removed from D
in lines 7, 12 and 20, respectively. This is done by increasing d (the number of
polytopes that have been already removed) and interchanging rows d and ı̂ in
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Algorithm 1 PAINT method: Construction of the inherently nondominated
Pareto front approximation

1: Read the Pareto optimal outcomes P = {p1, p2, . . . , pm} ⊂ Rk.
2: D ← the Delaunay triangulation of P
3: Sort the rows of D in descending order w.r.t. number of different entries in the row
4: a, b ← the number of rows and columns of D, respectively, d ← 0
5: for i = 1 to a do
6: if the polytope given by vertices pDi,1 , pDi,2 , . . . , pDi,b is not inherently nondomi-

nated then
7: d ← d + 1 and interchange rows i and d of the matrix D
8: else
9: deleted ← false

10: for j = 1 to m do
11: if the polytope given by vertices pDi,1 , pDi,2 , . . . , pDi,b dominates or is domi-

nated by outcome pj then
12: d ← d + 1 and interchange rows i and d of the matrix D
13: deleted ← true
14: Break
15: end if
16: end for
17: if not deleted then
18: for l = d + 1 to i− 1 do
19: if the polytope given by vertices pDi,1 , pDi,2 , . . . , pDi,b dominates or is dom-

inated by the polytope given by vertices pDl,1 , pDl,2 , . . . , pDl,b then
20: d ← d + 1 and interchange rows i and d of the matrix D
21: Break
22: end if
23: end for
24: end if
25: end if
26: end for

27: A←

Dd+1,1 . . . Dd+1,b

...
...

...
Da,1 . . . Da,b


28: return A

the matrix D. Because in line 27 only rows in D from row d+ 1 onwards are
set as matrix A, such a polytope will not be a part of the approximation. If
a polytope is not removed as described above, the row representing this poly-
tope will be inserted into matrix A (representing the inherently nondominated
Pareto front approximation) in line 27.

Finally, let us consider the complexity of the proposed implementation of
Algorithm 1. According to [1], the worst case complexity of the construction of
the Delaunay triangulation with the Quickhull algorithm is O((k+ 1) log(m))
for k ≤ 2 and O((k + 1)cm/m) for k ≥ 3, where

cm = O(mb(k+1)/2c/b(k + 1)/2c!).

According to [22], a Delaunay triangulation of the set P contains at most
O(mdk/2e) polytopes, where m is the number of outcomes in P and k is the
number of objectives of the multiobjective optimization problem. Thus, one
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may have to resolve O(mk) dominance relations between polytopes to deter-
mine which of the polytopes are to be removed. This means that resolving the
dominance relations between polytopes is computationally the most expensive
part of the PAINT method. Since in Subsection 3.2 it is shown that the dom-
inance between polytopes can be resolved by solving two linear optimization
problem, the worst case complexity of the PAINT method is O(mk) in linear
optimization problems.

The complexity of solving the linear optimization problems of Subsection
3.2 depends on the number of objectives and the number of variables. In these
problems, the numbers of objectives and variables depend linearly on the max-
imal number of outcomes defining a polytope in the approximation and on the
number of objectives. In practical problems, the number of objectives is usually
rather low, and if one perturbs the Pareto optimal outcomes before construct-
ing the Delaunay triangulation (as suggested in [6]), the maximal number of
outcomes defining a polytope is the number of objectives plus one. Since these
numbers are so low, also the linear optimization problems defined in Subsec-
tion 3.2 are fairly small and quick to solve. Consequently, we may here assume
that in practice the complexity of solving a single linear optimization problem
within the algorithm is low and independent of the numbers of objectives and
variables. With current personal computers, a feasible number of objectives is
about 10 and the maximal number of Pareto optimal outcomes is about 200.

3.2 Resolving dominance between two polytopes

According to [12], a polytope K1 ⊂ Rk dominates another polytope K2 ⊂ Rk

(which needs to be resolved in lines 6, 11 and 19 of Algorithm 1) if and only
if one of the following holds:

(i) the optimal value in problem

min maxi=1,...,k(s1i − s2i )
s.t. s1 ∈ K1, s2 ∈ K2 (2)

is less than zero
OR

(ii) the optimal value in problem (2) is exactly zero and the optimal value in
problem

min
∑k

i=1(s1i − s2i )
s.t. s1 ∈ K1, s2 ∈ K2

s1i ≤ s2i for all i = 1, . . . , k.

(3)

is less than zero.

In order to efficiently solve the above problems, it is beneficial to build linear
programs that are equivalent to them. Assuming that the polytope K1 is
given by row r1 in the matrix D (representing the Delaunay triangulation)
and the polytope K2 is given by row r2 in D, we introduce the following
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matrix B ∈ Rk×2b (with b being the number of columns in D and k being the
number of objectives of the problem)

B =


p
Dr1,1

1 p
Dr1,2

1 . . . p
Dr1,b

1 −pDr2,1

1 . . . −pDr2,b

1

p
Dr1,1

2 p
Dr1,2

2 . . . p
Dr1,b

2 −pDr2,1

2 . . . −pDr2,b

2
...

...
...

...
...

...
...

p
Dr1,1

k p
Dr1,2

k . . . p
Dr1,b

k −pDr2,1

k . . . −pDr2,b

k

 .

In matrix B, the first b columns include the components of the outcomes
defining the polytope K1 and the last b columns include the opposites of the
components of the outcomes defining the polytope K2. Using the matrix B
we can give the following representation for problem (2):

min t

s.t. [B,−1]

λµ
t

 ≤
0

...
0


∑b

j=1 λj = 1,
∑b

j=1 µj = 1

λ ∈ [0, 1]b, µ ∈ [0, 1]b, t ∈ R,

where −1 =

−1
...
−1

 .
(4)

In a similar way, problem (3) can be formulated as

min g

[
λ
µ

]

s.t. B

[
λ
µ

]
≤

0
...
0


∑b

j=1 λj = 1,
∑b

j=1 µj = 1

λ ∈ [0, 1]b, µ ∈ [0, 1]b,

where g = [p
Dr1,1

1 + . . .+ p
Dr1,1

k , . . . , p
Dr1,b

1 + . . .+ p
Dr1,b

k ,

− pDr2,1

1 − . . .− pDr2,1

k , . . . ,−pDr2,b

1 − . . .− pDr2,b

k ].

(5)

In both problems (4) and (5), the left hand side of the inequality constraint

B

[
λ
µ

]
=

b∑
j=1

λjp
Dr1,j −

b∑
j=1

µjp
Dr2,j

gives a vector that is in the set K1 − K2, because the components of both
vectors λ, µ ∈ [0, 1]b sum up to one. Furthermore, by definition, each element
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in the set K1 −K2 can be expressed in this way. Consequently, each row in
the inequality constraint of problem (4) is of the form

b∑
j=1

λjp
Dr1,j

i −
b∑

j=1

µjp
Dr2,j

i ≤ t

for some i = 1, . . . , k. Thus, minimizing t as the objective function is equivalent

to minimizing the maximum of
∑b

j=1 λjp
Dr1,j

i −
∑b

j=1 µjp
Dr2,j

i over all i. This
implies that problem (4) is equivalent to problem (2).

In problem (5), each row in the inequality constraint is of the form

b∑
j=1

λjp
Dr1,j

i ≤
b∑

j=1

µjp
Dr2,j

i

for some i = 1, . . . , k. The objective function becomes

g

[
λ
µ

]
=

k∑
l=1

 b∑
j=1

λjp
Dr1,j

l −
b∑

j=1

µjp
Dr2,j

l

 .

The inequality constraints and the objective function are thus the same as in
problem (3).

Problems (4) and (5) can be solved with any linear programming solvers
e.g., ILOG CPLEX (see http://www.cplex.com/) or GLPK (see http://

www.gnu.org/software/glpk/) or with the MATLAB linprog function (see
http://www.mathworks.com/access/helpdesk/help/toolbox/optim/ug/linprog.

html).

4 Decision making with the approximation – a surrogate problem

In this section, we discuss how one can use interactive methods with the ap-
proximation created in the previous section. The main tool is the surrogate
multiobjective optimization problem implied by the inherently nondominated
Pareto front approximation. The surrogate problem was introduced in [12, 13].
In order to accomplish this, there are two issues that need to be addressed:

1. The scalarizations of the surrogate problem given by the interactive method
at use need to be efficiently solvable in order to present the new computed
solutions to the decision maker in real time.

2. Once a preferred approximate outcome on the Pareto front approximation
has been found with the help of the surrogate problem and an interactive
method, one must find the closest Pareto optimal outcome on the Pareto
front of the original problem.
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Our solution to the first issue is a multiobjective mixed integer linear for-
mulation for the surrogate problem. Powerful mixed integer linear solvers,
e.g., CPLEX and GLPK, allow then to efficiently solve scalarizations of the
surrogate problem provided that the scalarization of the interactive method
maintains linearity of the problem. This enables us to efficiently use many
interactive methods e.g., the synchronous NIMBUS [23, 25, 27], because all its
scalarizations can be formulated in a way that they maintain linearity.

In [12], the surrogate problem given by an inherently nondominated Pareto
front approximation A was formulated as

min (z1, . . . , zk)
s.t. z ∈ ∪K∈AK.

(6)

The idea of the surrogate problem is that its outcomes are in the same space as
the outcomes in P and, thus, the decision maker should be able to articulate
his/her preferences about them when using an interactive method to solve
problem (6), because the objectives have corresponding meanings in (6) and
in the original problem..

Problem (6) cannot be inputted into standard multiobjective optimization
solvers because it contains a non-algebraic constraint z ∈ ∪K∈AK. Problem
(6), however, has an equivalent mixed integer linear formulation

min (z1, . . . , zk)

s.t.
∑a

j=1

∑b
l=1 λj,l = 1∑b

l=1 λj,l ≤ yj , for all j = 1, . . . , a∑
j=1 yj = 1

λ ∈ [0, 1]a×b

y ∈ {0, 1}a,
where zi =

∑a
j=1

∑b
l=1 λj,lp

Al,j

i for all i = 1, . . . , k.

(7)

In multiobjective optimization problem (7), there are two variables λ ∈
[0, 1]a×b and y ∈ {0, 1}a. The component λj,l of variable λ is for all j = 1, . . . , a
and l = 1, . . . , b the coefficient of the vertex l of the polytope given by row
j in the matrix A. The variable y determines which of the rows of matrix λ
are nonzero. Note, that the third equality states that all but one component
of the variable y must be zero. Matrix A refers to the representation of the
inherently nondominated Pareto front approximation given by the PAINT
method. According to the first equality constraint, all components λj,l must
sum up to one. According to the second inequality constraint, the entries in all
but one row in the matrix representing the variable λ must some up to zero,
because only one component of y nonzero. Thus, problem (7) is equivalent to
problem (6).

As an example of scalarizations that maintain linearity we consider the
achievement scalarizing problem [33], which can be formulated for multiobjec-
tive optimization problem (1) as

min
x∈S

max
i=1,...,k

wi(fi(x)− z̄i) (8)
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with the normalizing weight w in the positive orthant of Rk and the reference
point z̄ ∈ Rk representing desirable objective values. For example, with the
CPLEX solver and using an Acer laptop with Core 2 Duo P8700 processor
and 4 GB of RAM, we solved the achievement scalarizing problem formulated
for a surrogate problem implied by an inherently nondominated Pareto front
approximation with the number of objectives k = 5, number of initial points
m = 330, number of polytopes a = 1824 and the maximal number of outcomes
defining a polytope b = 5 in approximately 3 seconds. We consider this Pareto
front approximation to be as large as we need for decision making. We also
consider the computational time of 3 seconds to be small enough that the
formulations and tools of this section can be used with e.g., the NIMBUS
method to compute new approximate Pareto optimal outcomes for the decision
maker. These results show promise for further applicability of the PAINT
method.

The surrogate problem, while useful in solving computationally expensive
problems, also has some limitations. First, the problem does not provide infor-
mation about the preimage of the Pareto front in the decision space. Second,
the outcomes of the surrogate problem include all the inherently nondominated
interpolations between the Pareto optimal outcomes and, thus, the method
does not detect any possible areas where the Pareto front is disconnected.
The first limitation is an issue if the decision variables are very meaningful to
the decision maker in making decisions. This may sometimes be the case in
engineering problems, even though the opposite is argued in [17]. The second
limitation is an issue if the Pareto front has big areas of discontinuity and the
decision maker is especially interested in those areas in the outcome space.
These are topics of further research on this subject.

Finally, when a preferred approximate Pareto optimal outcome has been
found, we must find the decision vector in the decision space S that gives the
outcome on the actual Pareto front of the original problem that is the best
match to it. As described above, we propose to solve the achievement scalar-
izing problem formulated for the original problem with the preferred approxi-
mate Pareto optimal outcome as the reference point. If the resulting outcome
on the actual Pareto front is satisfactory to the decision maker, we stop. If
we find out that the approximate Pareto optimal outcome was satisfactory to
the decision maker but the actual Pareto optimal outcome was not, then we
must update the inherently nondominated Pareto front approximation. This
is done by adding the new Pareto optimal outcome to the set P and running
the PAINT method again. This yields a Pareto front approximation that is
more accurate close to the new Pareto optimal outcome. Note, however, that
both of these operations (finding the closest element on the actual Pareto front
and rerunning the PAINT method) take time. Hence, repeating them multiple
times should be avoided, if possible.
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5 Examples

In this section, we present examples of inherently nondominated Pareto front
approximations constructed with the PAINT method described in Algorithm
1. The implementation of Algorithm 1 was written under GNU Octave [5].
Delaunay triangulations of the finite sets of Pareto optimal outcomes were
constructed with a Qhull implementation (see http://www.qhull.org/) of the
Quickhull algorithm [1]. Optimization problems (4) and (5) were solved with
GLPK (GNU Linear Programming Kit, see http://www.gnu.org/software/

glpk/). This all was done on an Acer laptop with Core 2 Duo P8700 processor
and 4 GB of RAM running Fedora 12.

The different example problems with multiple objectives have been selected
to demonstrate different types of Pareto fronts and to show that the PAINT
method is suitable for approximating all of them. The problems in Subsections
5.1, 5.2 and 5.3 are test problems that are used for testing evolutionary mul-
tiobjective optimization algorithms. These problems are not computationally
expensive but have been selected because their Pareto front has an interesting
geometry to depict in three dimensions. Let us point out that even though the
PAINT method has been developed for enabling faster solution processes for
computationally expensive multiobjective optimization problems, it can nat-
urally be applied to computationally inexpensive problems. This is because
the computational expense of the problem does not play any role within the
PAINT method after the initial set of Pareto optimal outcomes has been com-
puted. The problem in Subsection 5.4 is a real application of multiobjective
optimization to wastewater treatment planning. With it, we demonstrate how
the PAINT method can be used with real-life applications.

We emphasize that the purpose of the examples is not to illustrate the
decision making aspect (including the surrogate problem), which has to be
studied with real-life problems and with real decision makers. As mentioned,
here we want to demonstrate how PAINT works as an approximation method.
Naturally, the benefits of the surrogate problem will better show up with
problems with more than three objectives, for which one cannot graphically
present the Pareto front nor its approximation.

5.1 The three-objective Viennet’s test problem

The Pareto front of the three-objective Viennet’s test problem [32] consists
of a one-dimensional curve in R3. Figure 1a illustrates 240 Pareto optimal
outcomes for this problem generated with a local search assisted evolutionary
multiobjective optimization algorithm [31]. This figure is drawn to give an
understanding of what the Pareto front looks like. If we dealt with a computa-
tionally expensive multiobjective optimization problem, the generation of this
large set would be too time-consuming.

Table 1 lists a subset of 20 Pareto optimal outcomes {p1, p2, . . . , p20} which
are randomly selected from the Pareto optimal outcomes in Figure 1a. This
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Table 1: The initial set of Pareto optimal outcomes P for the Viennet’s test
problem

Outcome z1 z2 z3
p1 0.030032 0.880533 0.991796
p2 0.000000 1.000000 -0.628862
p3 1.000000 0.894206 0.058335
p4 0.929845 0.893301 0.062197
p5 0.029038 0.880566 1.000000
p6 0.001497 0.955310 -0.588038
p7 0.111630 0.881325 0.471040
p8 0.451435 0.888326 0.124438
p9 0.000529 0.972149 -0.616055
p10 0.602037 0.887156 0.097756
p11 0.013991 0.895472 0.014610
p12 0.128648 0.881001 0.450349
p13 0.000014 0.995955 -0.628542
p14 0.002388 0.945419 -0.557775
p15 0.262487 0.882276 0.212985
p16 0.845441 0.889814 0.070032
p17 0.386630 0.883861 0.143005
p18 0.004519 0.928747 -0.471886
p19 0.000457 0.974112 -0.617907
p20 0.005243 0.924974 -0.439333

subset is taken as the initial set of Pareto optimal outcomes P for the problem.
These Pareto optimal outcomes are also illustrated in Figure 1b. Notice that
the vectors are distributed rather non-uniformly. If we dealt with a compu-
tationally expensive multiobjective optimization problem, generating this set
would obviously be a lot less time-consuming than generating the outcomes in
Figure 1a.

Figure 1c shows the body of a Delaunay triangulation of the set P , which
contains 395 polytopes. As it can be seen, the body of the Delaunay trian-
gulation covers the whole convex hull of P . By comparing Figures 1a and 1c
one can see that the Delaunay triangulation as such does not give a good ap-
proximation of the Pareto optimal outcomes because its body contains many
vectors that are very far from the Pareto optimal outcomes.

After the Delaunay triangulation has been constructed the inappropriate
polytopes are removed from it. In this case, the inherently nondominated
Pareto front approximation is represented (as described in Section 3) by the
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matrix 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 1 1 1 1 2 3 3 4 5 6 6 7
17 18 19 20 5 7 11 12 13 4 16 16 11 9 14 12
17 18 19 20 1 1 1 1 2 3 3 4 5 6 6 7
17 18 19 20 1 1 1 1 2 3 3 4 5 6 6 7

8 8 9 10 10 11 12 13 14 15 18 1 1 3 8
10 17 19 16 17 20 15 19 18 17 20 5 7 4 10
8 8 9 10 10 11 12 13 14 15 18 11 12 16 17
8 8 9 10 10 11 12 13 14 15 18 1 1 3 8


T

Notice that the matrix has been transposed and cut into three parts to save
space. The body of the this approximation is shown in Figure 1d. Comparing
this figure with Figure 1c one may notice that this approximation is a subset
of the Delaunay triangulation. By comparing Figures 1a and 1d, one can see
that the approximation is able to describe also many of the Pareto optimal
outcomes in Figure 1a but not in the set P .

All in all, 88.1% of the polytopes in the Delaunay triangulation were re-
moved in the PAINT method. All of these were removed due to rule (R1),
because 58.7% of the polytopes were removed as they were not inherently
nondominated and, after this, 29.4% of the polytopes were removed as they
dominated or were dominated by an outcome in P . The PAINT method took
2.3 seconds on the configuration described above. The D-maximal Pareto front
approximation contained 47 polytopes.

5.2 The three-objective DTLZ2 test problem

The Pareto front of the three-objective DTLZ2 test problem [4] consists of
the subset of the unit sphere that is in the positive orthant of Rk. A set of
200 Pareto optimal outcomes can be seen in Figure 2a. Again, this set would
be time-consuming to produce for a computationally expensive multiobjective
optimization problem. As in the case of Viennet’s test problem, the Figure 2b
illustrates a random subset of this consisting of 20 outcomes.

Figure 2c depicts an inherently nondominated Pareto front approximation
which is the output of the PAINT method. Since the Pareto front of this
problem is a two-dimensional part of the surface of the ball, the body of the
inherently nondominated Pareto front approximation is two-dimensional even
though no information about the dimensionality was given to the algorithm.
As it should be, the approximation can again describe also the Pareto optimal
outcomes that are not in the initial set of Pareto optimal outcomes P .
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(d) An inherently nondomi-
nated Pareto front approxima-
tion

Fig. 1: Approximating the Pareto front of the three-objective Viennet’s test
problem

In this case, 56.8% of the polytopes in the Delaunay triangulation were
removed due to (R1) as 33.6% of the polytopes were not inherently nondomi-
nated and 23.2% were inherently nondominated, but dominated or were dom-
inated by an outcome in P . Of the polytopes that were not removed due to
rule (R1), 31.8% were removed due to rule (R2). In total, the PAINT method
took 8.3 seconds. The final D-maximal inherently nondominated Pareto front
approximation given by PAINT contained 85 polytopes.
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(c) An inherently nondominated
Pareto front approximation

Fig. 2: Approximating the Pareto front of the three-objective DTLZ2 test
problem

5.3 The four-objective DTLZ2 test problem

The four-objective DTLZ2 test problem is similar to the three-objective one
but with one more objective. That is, the Pareto front of this problem consists
of a subset of the surface of the unit ball that is in the positive orthant of R4.

Table 2 lists the initial Pareto optimal outcomes in P . These outcomes are
randomly generated vectors on the Pareto front of this problem.

Of the polytopes in the Delaunay triangulation 38.8% were removed due
to rule (R1) as 19.8% were not inherently nondominated and 19.0% were in-
herently nondominated, but dominated or were dominated by an outcome in
P . Furthermore, 34.2% of the polytopes that were not removed due to rule
(R1) were removed due to rule (R2). Here the PAINT method took 111.2
seconds. The D-maximal inherently nondominated Pareto front approxima-
tion given by PAINT contained 148 polytopes. The body of the inherently
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Table 2: The given set of Pareto optimal outcomes P for the four-objective
DTLZ2 test problem

Outcome z1 z2 z3 z4
p1 0.1712 0.7377 0.6467 0.0909
p2 0.4399 0.2015 0.4218 0.7668
p3 0.2457 0.1934 0.6819 0.6613
p4 0.7375 0.3556 0.2103 0.5343
p5 0.2430 0.6618 0.6582 0.2641
p6 0.4781 0.6984 0.0493 0.5304
p7 0.0952 0.4074 0.5114 0.7506
p8 0.5689 0.3861 0.7032 0.1810
p9 0.1823 0.0621 0.7022 0.6854
p10 0.3304 0.5462 0.5204 0.5672
p11 0.3074 0.7199 0.2407 0.5738
p12 0.5578 0.3268 0.3376 0.6842
p13 0.3685 0.5472 0.4703 0.5861
p14 0.3598 0.4594 0.6085 0.5378
p15 0.5401 0.1739 0.6530 0.5016
p16 0.0395 0.2779 0.7468 0.6030
p17 0.7778 0.4705 0.4110 0.0682
p18 0.5801 0.6938 0.1218 0.4089
p19 0.6200 0.2287 0.4903 0.5682
p20 0.5681 0.3916 0.6646 0.2868

nondominated Pareto front approximation can be seen in Figure 3. In the fig-
ure the approximation has been projected to R3 by the projection function
p : R4 → R3, (x1, x2, x3, x4) 7→ (x1, x2, x3) and the fourth objective is marked
with colour.

5.4 Wastewater treatment planning

Finally, we have a real life multiobjective optimization problem of wastewater
treatment planning from [11]. The problem considers the so-called activated
sludge process, which is globally the most common method of wastewater treat-
ment. In this process, biomass (which is called activated sludge) suspended in
the wastewater to be treated is cultivated and maintained in an aerated biore-
actor. The wastewater is purified, i.e., organic carbon, nitrogen and phosphorus
are removed during its retention in the bioreactor. The bioreactor is followed
by a clarifier basin, in which the biomass is separated by gravitational settling
and returned to the bioreactor, and the treated wastewater is directed as over-
flow to further treatment or to discharge. Excess activated sludge is removed
from the process and treated separately. The process performs nitrification,
i.e., oxidation of ammonium nitrogen to nitrate nitrogen by autotrophic, slow-
growing micro-organisms. The biochemical reactions involved consume a lot of
oxygen and alkalinity. Oxygen is supplied by aeration compressors and alkalin-
ity partly by influent wastewater, partly by adding chemicals, e.g., Na2CO3.
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Fig. 3: A projection of an inherently nondominated Pareto front approximation
for the 4-objective DTLZ2 test problem. The value of the fourth objective is
marked with colour.

Aeration consumes energy and chemicals cost money, so minimizing the need
for aeration and alkalinity addition is important for the operational economy
of the plant.

The considered multiobjective optimization problem is computationally
expensive and no closed form equations are known for the objectives. In [11],
the process was simulated and a global solver was used to find Pareto opti-
mal solutions with the interactive method NIMBUS. Because the problem is
computationally expensive, it took a long time to find new Pareto optimal
solutions. Hence, this problem has room for improvement with our methods.

We considered the 11 solutions generated with NIMBUS in [11]. One of the
11 solutions was dominated by another solution in the set and, thus, it was
dropped. We assumed that the ten remaining solutions were Pareto optimal,
which was in fact uncertain because a global solver was used to optimize the
scalarizations of the multiobjective optimization problem that were given by
the interactive method NIMBUS. The outcomes implied by these solutions
(shown in Table 3) were given to the PAINT method as input P . The PAINT
method took 2.5 seconds and the final inherently nondominated Pareto front
approximation contained 37 polytopes. The body of the Pareto front approx-
imation is shown in Figure 4.

In computational tests, the achievement scalarizing problem formulated for
problem (7) takes 0.01 seconds to be solved with CPLEX for various values
of reference points and weights. After a preferred solution to the surrogate
problem has been found, one can project the outcome on the Pareto front
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Table 3: The given set of Pareto optimal outcomes P for the multiobjective
wastewater problem

Outcome residual ammonium
nitrogen concentra-
tion [gN/m3]

alkalinity chemical
dosing rate [m3/d]

aeration energy con-
sumption [kW ]

p1 8.05 218 460
p2 3.52 286 490
p3 1.69 326 506
p4 4.9 298 477
p5 1.11 336 515
p6 0.55 347 528
p7 9.36 246 448
p8 30.2 7.23 308
p9 0.9 333 519
p10 0.72 332 524

residual ammonium ni-
trogen concentration

alkalinity chemical dos-
ing rate

aeration energy con-
sumption

p 1

p 2

p 3

p 4

p 5
p 6

p 7

p 8

p 9p 1 0

Fig. 4: An inherently nondominated Pareto front approximation for the mul-
tiobjective wastewater treatment planning problem

by solving globally the achievement scalarizing problem of the reference point
method with the preferred solution to the surrogate problem as the preferred
solution.

In this case, the initial set of Pareto optimal outcomes was not the best
possible for our approximation because, as can be seen from Figure 4, the
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outcome p8 is very far from the other outcomes. This may lead to inaccuracy
of the approximation in interpolating between outcome p8 and the others.

If one had used the PAINT method in [11], the decision making process
would have been much faster with the interactive method. Because with the
help of the surrogate problem one could have provided the decision maker
quickly with new approximate Pareto optimal outcomes that correspond to
his/her preferences, the decision maker should have been more inclined to
further explore the Pareto front. This could have led the decision maker to get
more insight about the problem.

6 Conclusions

We have demonstrated how one can in practice generate a Pareto front ap-
proximation by interpolating between a small finite set of given Pareto optimal
outcomes. The interpolation is produced by the PAINT method proposed in
this paper. The theory behind this method is based on a property called in-
herent nondominance previously introduced by the authors. In this paper, we
have described a way of implementing the method and presented computa-
tional results on interpolating on Pareto fronts with the implementation. We
have also illustrated how the Pareto front approximation implies a mixed inte-
ger linear surrogate problem for the original one that can be used in decision
making concerning the original problem. This approach is especially useful
with computationally expensive multiobjective optimization problems.

The combination of the following two benefits of our approach make it
novel: (1) the proposed Pareto front approximation method can approximate
non-convex Pareto fronts, and (2) any interactive method can be used in de-
cision making with the proposed Pareto front approximation because of the
mixed integer linear surrogate problem that it implies. These benefits make
our approach applicable to different computationally expensive multiobjective
optimization problems and enable it to support various decision makers.

As an example of interactive methods that can be applied with the Pareto
front approximation produced, we have considered achievement scalarizing
function based approaches. The achievement scalarizing problem formulated
for the presented surrogate problem can be solved e.g., with the CPLEX linear
solver. This enables us to use an interactive method based on decision maker’s
preferences formulated as a reference point, like the NIMBUS method. While
the surrogate problem is a multiobjective optimization problem that can in
theory be used with any interactive method, the implementations of the meth-
ods may restrict its use because the surrogate problem contains integer vari-
ables.

Further research on this subject includes applying the PAINT method with
real-life problems and real decision makers. We can use the interface of IND-
NIMBUS [24] (see http://ind-nimbus.it.jyu.fi/) and solve the scalarized
problems of the mixed integer surrogate problem with the CPLEX solver. In
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this way, we can study the performance of the PAINT method in decision
making.
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Abstract

We demonstrate the applicability of a new PAINT method to speed up
iterations of interactive methods in multiobjective optimization. As our test
case, we solve a computationally expensive non-linear, five-objective problem
of designing and operating a wastewater treatment plant. The PAINT method
interpolates between a given set of Pareto optimal outcomes and constructs
a computationally inexpensive mixed integer linear surrogate problem for the
original problem. We develop an IND-NIMBUS R© PAINT module to combine
the interactive NIMBUS method and the PAINT method and to find a preferred
solution to the original problem. With the PAINT method, the solution process
with the NIMBUS method take a comparatively short time even though the
original problem is computationally expensive.

1 Introduction

In this section, we give background for our study and a brief overview of this
paper. First, in Section 1.1, we describe the aim of this study and the structure
of this paper. In Section 1.2, we introduce the basic concepts of multiobjective
optimization that are used in this paper. In Section 1.3, we consider the main
issues related to computationally expensive multiobjective optimization. Fi-
nally, in Section 1.4, we describe our test case, i.e., the multiobjective problem
of designing and operating a wastewater treatment plant.

1.1 About this Paper

In this paper, we demonstrate how the interpolation method PAINT (intro-
duced in [12–14]) can be used to speed up the iterations of an interactive
method when solving computationally expensive multiobjective optimization
problems. For this, we revisit a computationally expensive five-objective opti-
mization problem from [37] that models designing and operating a wastewater
treatment plant.
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In our study of the wastewater problem, we used the interactive NIMBUS
method, as was used in [37]. Compared to the previous study of [37], the
iterations of the interactive method NIMBUS were much faster because of a
surrogate problem constructed with the PAINT method. In our study, the
decision maker was Mr. Kristian Sahlstedt as in [37] and, thus, we were able to
ask the decision maker to compare his experiences of using the NIMBUS method
to solve the problem with and without the PAINT method. This comparison
of the two approaches gave a unique perspective to our study.

The structure of this paper is as follows: After describing the background of
our study in this section, we outline the PAINT approach to solving computa-
tionally expensive problems and the PAINT method in Section 2. We describe
the new IND-NIMBUS R© PAINT module (also called the PAINT module in
this paper for short) in Section 3. In Section 4, we illustrate how we used the
PAINT method to construct a Pareto front approximation and a mixed integer
linear surrogate problem for the wastewater treatment problem. In Section 4,
we also describe our decision maker’s involvement in solving the problem with
the PAINT module. In Section 5, we further analyze the decision making pro-
cess of Section 4. Finally, in Section 6, we give our conclusions and ideas for
further research.

1.2 Multiobjective Optimization

Multiobjective optimization concerns simultaneously optimizing multiple con-
flicting objectives. A general formulation for a multiobjective optimization
problem with k objectives is

min (f1(x), . . . , fk(x))
s.t. x ∈ S,

(1)

where fi are the objective functions and S is the feasible set. A vector x ∈ S
is called a (feasible) solution. For these problems, instead of a single optimal
solution there typically exist many Pareto optimal solutions. A solution x ∈ S
is said to (Pareto) dominate another solution y ∈ S if fi(x) ≤ fi(y) for all
i = 1, . . . , k and fj(x) < fj(y) for at least one j ∈ {1, . . . , k}. A solution x∗ ∈ S
is Pareto optimal, if there does not exist a solution x ∈ S that dominates it. A
vector z = (f1(x), . . . , fk(x)) with x ∈ S is called an outcome, and an outcome
is called Pareto optimal if it is given by a Pareto optimal solution. The set of
Pareto optimal outcomes is called the Pareto front.

Although many Pareto optimal solutions typically exist, only one has to be
chosen for implementation. Distinguishing between Pareto optimal solutions
requires preference information about the objectives of the problem. In multi-
objective optimization, it is often assumed that there exists a decision maker
who is an expert in the application area and who is prepared to answer ques-
tions concerning those preferences. In this paper, this whole process of choosing
a single solution for implementation is called solving the problem and, when
we want to emphasize the decision maker’s involvement, it is also referred to
as the decision making process.

The type of information that is asked from the decision maker depends on
the multiobjective optimization method that is used to solve the problem. Dif-
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ferent types of multiobjective optimization methods (as categorized in [22, 38])
are no-preference methods, a priori methods, a posteriori methods and inter-
active methods. In no-preference methods the decision maker is not asked any
questions. No-preference methods are applicable to problems, where the de-
cision maker is not available or does not want to get involved. In a priori
methods, the decision maker is first asked for preference information and then
the best solution according to those preferences is found. The difficulty with a
priori methods is that the decision maker may find it hard to define preferences
without ever seeing feasible or Pareto optimal solutions. In a posteriori meth-
ods, a representative set of the Pareto optimal solutions is found from which
the decision maker is allowed to choose a preferred one. The difficulty with
a posteriori methods is that generating a representative solution set may be
time-consuming and choosing a preferred solution from a large set of solutions
may be hard (see e.g., [19]).

In this paper, we follow the ideology of interactive methods in solving mul-
tiobjective optimization problems. In interactive methods, it is understood
that any preference information given by the decision maker is only partial
and perhaps flawed. Thus, the decision maker is allowed to explore the Pareto
optimal solutions by guiding the interactive method. This allows the decision
maker to learn about the problem (as argued e.g., in [27]) and find a preferred
solution without examining too many solutions. For more information about
interactive methods, see e.g., [22, 27]. More specifically, in this paper, we use
the interactive synchronous NIMBUS method, introduced in [24–26].

1.3 Solving Computationally Expensive Multiobjec-
tive Optimization Problems

Some multiobjective optimization problems are computationally expensive (see
e.g., [2, 10, 15, 37, 43]). This may be caused e.g., by the need to use compu-
tationally expensive simulations for evaluating the objective functions. Inter-
active methods have an advantage to a posteriori methods in solving computa-
tionally expensive problems, because the decision maker may guide the search
in interactive methods and, thus, fewer solutions need to be computed. There
is, however, a drawback. When using interactive methods, the decision maker
has to wait while new solutions are computed with respect to his/her updated
preferences. For computationally expensive problems, this may take a long
time, which may be frustrating for the decision maker (as argued e.g., in [18]).

In order to compute new solutions faster within the interactive method,
one can use approximation. Two different approximation schemes can be iden-
tified: approximating the objective functions and approximating the Pareto
front. The objective functions may be approximated e.g., with meta-models
like the response surface methodologies, Support Vector Machines or Radial
Basis Functions (see e.g., [30]). These have been used in multiobjective opti-
mization e.g., in [30, 42]. This is not, however, a straightforward task, because
as the number of decision variables and objectives increases, the approxima-
tion itself becomes a very computationally expensive task. Another approach
is approximating the Pareto front. Pareto front approximations can be found

3



e.g., in [1, 4, 6, 21, 29, 36, 44], where [1, 6, 21, 29] include decision making
aspects connected to these. Note that in this paper, we distinguish between a
Pareto front representation (a discrete set of Pareto optimal outcomes) and a
Pareto front approximation (something more approximate that possibly con-
tains vectors that are not outcomes of the problem, but merely approximate
them).

In this paper, we use the Pareto front approximation approach introduced in
[12–14]. In those papers, a new Pareto front approximation method PAINT is
introduced and details on decision making with the produced approximation are
covered. The PAINT method uses a novel way to integrate the knowledge about
Pareto dominance into the approximation. The PAINT method interpolates
between a given set of Pareto optimal outcomes to construct a Pareto front
approximation. The approach differs from the other approaches for decision
making with Pareto front approximations (mentioned above) because it is able
to approximate also nonconvex Pareto fronts. Furthermore, the Pareto front
approximation constructed with PAINT implies a multiobjective mixed integer
linear surrogate problem (for the original problem) that can be solved with any
interactive method. The other approaches are either applicable only to convex
multiobjective optimization problems or use only a custom-made procedure for
choosing a preferred point on the approximation. Further details on the PAINT
method are covered in Section 2.

1.4 Designing and Operating a Wastewater
Treatment Plant

Designing and operating a wastewater treatment plant is a complex problem
with many conflicting criteria that have to be considered at the same time. In
this paper, we consider a plant using so-called activated sludge process, which
is globally the most common method of wastewater treatment. We model the
problem as a five-objective optimization problem, which was previously studied
also in [37]. The five-objective problem is an extension of the three-objective
problem treated in [10]. The approach of this paper differs from the approach
of [37] because we use the PAINT method to approximate the Pareto front and
to construct a surrogate problem for the original problem. In this way, the time
that the decision maker has to wait while using an interactive method becomes
shorter.

Figure 1 shows the schematic layout of the wastewater treatment plant that
was designed in [37]. The wastewater treatment begins with grit removal. Af-
ter the grit removal, solids are separated by a gravitational settling. Raw and
mixed sludge removed from the primary settlers is fermented in a separate reac-
tor and partly recycled back to the water line to provide readily biodegradable
carbon source for denitrification. The bioreactor consists of four anoxic zones,
three aerobic zones and one deoxygenation zone. Nitrate-rich activated sludge
is recycled from zone 8 of the bioreactor to zone 1. Return sludge and primary
effluent are directed to zone 1. Methanol is injected to zone 2 to support denitri-
fication. Excess sludge is pumped from zone 8 of the bioreactor to the beginning
of the water process, from which it is removed in the primary settlers together

4



with raw sludge. Raw and mixed sludge is thickened gravitationally into ap-
proximately 4.5% total solids prior to anaerobic digestion. Anaerobic digestion
produces biogas and the produced biogas can be converted into electrical or
thermal energy. The digested sludge is dewatered by centrifuges into approx-
imately 28% total solids. The reject water from sludge treatment is pumped
to the beginning of the plant. The wastewater treatment process is simulated
with the commercial GPS-X simulator (see [8]) and the model is based on the
findings of Pöyry Engineering Ltd. For more information about the wastewater
treatment plants using activated sludge process, see e.g., [10, 32, 37].

The objectives of the optimization problem are the amount of nitrogen in
the effluent (g/m3, grams per a cubic meter of effluent), aeration power con-
sumption in the activated sludge process (kW ), chemical consumption (g/m3,
grams per a cubic meter of effluent), excess sludge production (kg/d, kilograms
per day) and biogas production (m3/d, cubic meters per day). The first one
is the main goal of activated sludge process and the four others are connected
to the operational costs. This multiobjective optimization problem allows the
simultaneous consideration of the performance of the plant (through the nitro-
gen removal rate) and different aspects of the operational costs. Naturally, the
last objective is maximized and the others are minimized. Decision variables of
the problem are the percentage of inflow pumped to fermentation, the amount
of excess sludge removed, the dissolved oxygen setpoint in the last aerobic zone
and the methanol dose. Thus, the methanol dose is both a decision variable
and an objective.
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Figure 1: A schematic layout of the wastewater treatment plant

Each simulation of the wastewater treatment plant of [37] took about 11
seconds on the GPS-X simulator. This made the problem computationally
expensive. In addition, one could notice from the Pareto optimal outcomes
computed for the problem that the problem is nonconvex. During the analysis
in [37], 200 simulations were run to optimize the scalarizations (i.e., single
objective optimization problems, whose optimal solutions are Pareto optimal
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solutions to the multiobjective optimization problem) given by the interactive
NIMBUS method that was used to solve the problem. This means that each
iteration of the interactive method took more than half an hour. Even though
interesting solutions to the problem were found in [37], the computational time
of iterations was an inconvenience to the decision maker (according to personal
communications with the authors of [37]). This means that there was room for
improvement using the PAINT method.

2 The PAINT Approach to Solving Com-

putationally Expensive Problems

In this section, we describe the PAINT approach to solving computationally
expensive problems. The applicability of the PAINT approach is then demon-
strated in Section 4 by solving a computationally expensive multiobjective op-
timization problem of wastewater treatment plant design and operation.

The PAINT approach is based on the Pareto front approximation con-
structed by the PAINT method. The PAINT method was proposed in [13],
and it is based on the concept of an inherently nondominated Pareto front
approximation introduced in [14] and the mathematical concepts of [12]. The
PAINT method interpolates between a given set of Pareto optimal outcomes
in a way that the interpolants neither dominate nor are dominated by the set
of given Pareto optimal outcomes and, in addition, they are not dominated by
each other (i.e., the interpolation is an inherently nondominated Pareto front
approximation, as defined in [14]). In this paper, a vector on the Pareto front
approximation is called an approximate (Pareto optimal) outcome.

The general functionality of the PAINT method is as follows: The PAINT
method first constructs the Delaunay triangulation of the given set of Pareto
optimal outcomes and then chooses the appropriate polytopes from it to the
Pareto front approximation. In this paper, this is realized with the Octave-
based (see [5, 31]) implementation that was developed during the research of
[13].

The Pareto front approximation constructed with the PAINT method im-
plies a computationally inexpensive mixed integer linear surrogate problem for
the original problem, as described in [13]. The Pareto front of the surrogate
problem is exactly the Pareto front approximation and, thus, a preferred so-
lution to the surrogate problem implies a preferred vector on the Pareto front
approximation, which is also called a preferred approximate outcome in this
paper. The algorithm of the PAINT method and more exact details can be
found in [13].

Decision making in the PAINT approach is described in Figure 2. In the
PAINT approach to solving computationally expensive problems, we assume
that there exists a set of Pareto optimal solutions to the computationally ex-
pensive problem. This set may have been generated with any a posteriori
method. The set of the related outcomes is inputted into the PAINT method.
PAINT then interpolates between the set of given Pareto optimal outcomes and
outputs the interpolation that implies a mixed integer linear surrogate problem
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Figure 2: A flowchart of the decision making process

for the original problem.
After the mixed integer linear surrogate problem has been formulated, the

decision maker gets involved and uses an interactive method of his/her choice
to find a preferred solution to the surrogate problem. The outcomes given by
Pareto optimal solutions to the surrogate problem are vectors on the Pareto
front approximation, which is in the same space as the original Pareto front.
Thus, the decision maker is able to give his/her preferences on them. The
preferred approximate outcome is projected on the actual Pareto front of the
original problem by solving achievement scalarizing problem (see [40, 41]) with
the approximate outcome as a reference point. More details on the projection
can be found in [13]. Projecting the solution may take time, depending on the
computational costs of the problem. If the problem is very computationally
expensive, the projection can be done without the involvement of the decision
maker.

The projection of the preferred approximate outcome (i.e., a Pareto optimal
solution to the original problem) is shown to the decision maker and, if he/she
is satisfied, the decision making process stops, because a preferred solution has
been found. If the decision maker is not satisfied, it is possible to update the
Pareto front approximation by adding the new Pareto optimal outcome to the
given set of Pareto optimal outcomes and by recomputing the approximation
with the PAINT method. This yields a more accurate approximation and we
can again use an interactive method to find a preferred solution to the new
(more accurate) surrogate problem. This process can be repeated as many
times as necessary.

The PAINT method is a powerful tool as it can interpolate between any
given set of Pareto optimal outcomes, i.e., the way that the outcomes have
been generated does not affect the functionality of the method. In addition,
since it is based on the concept of inherent nondominance (see [14]), it will not
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provide interpolants that would mislead the decision maker. Finally, the mixed
integer linear surrogate problem implied by the approximation allows one to
use any interactive method for finding a preferred approximate outcome on the
Pareto front approximation.

The PAINT method has a couple of shortcomings, already noted in [13].
First, the PAINT method does not provide any information about the preim-
age of the Pareto front approximation in the decision space. This means that
the decision maker has to project the approximate outcome (i.e., the solution
to the surrogate problem) on the Pareto front of the original problem in order
to find out the values of the decision variables. Second, the PAINT method
cannot detect any disconnectedness in the Pareto front, but always interpolates
between the outcomes whenever the interpolation is inherently nondominated.
Thus, the approximation might be inaccurate if e.g., the decision space is dis-
connected or the objective functions are highly nonconvex.

3 A New IND-NIMBUS R© PAINT Module

IND-NIMBUS R© (see [23]) is a multi-platform desktop software framework, cur-
rently available for Windows and Linux operating systems, intended to provide
a flexible tool-set for implementation of multiobjective optimization methods.
So far, the IND-NIMBUS framework has been used to implement the syn-
chronous NIMBUS [24–26] and the Pareto Navigator [6] methods. The IND-
NIMBUS R© software can be connected to an external sources that model the
problem, such as the GPS-X simulator used for modeling the wastewater treat-
ment plant. For this paper, the IND-NIMBUS R© software framework has been
used to develop a so-called IND-NIMBUS R© PAINT module that combines the
PAINT and NIMBUS methods for computationally expensive multiobjective
optimization. The PAINT module implements most of the functionalities de-
scribed in Figure 2.

The synchronous NIMBUS method [24–26] is an interactive multiobjective
optimization method. The NIMBUS method uses classification of objectives
as the preference information. Given a Pareto optimal solution to the multi-
objective optimization problem, the decision maker can classify the objectives
into classes I<, I≤, I=, I≥ and I<> defined, respectively, as classes of objective
functions that the decision maker wants to improve as much as possible, wants
to improve to a given aspiration level zi, allows to remain unchanged, allows
to deteriorate until a given bound εi and allows to change freely for a while.
This preference information is converted into several different single objective
subproblems with the help of different scalarization functions as proposed in
[26]. These subproblems are solved to generate different Pareto optimal solu-
tions, which are shown to the decision maker who can then see how well the
desired preferences could be attained. The decision maker can choose any of
these solutions as the starting point of the next iteration, i.e., classification.
This iterative procedure can either start with a solution given by the decision
maker or from a so-called neutral compromise solution and it is repeated until
the decision maker is satisfied with the solution at hand. Further information
about the synchronous NIMBUS with other means to direct the search process
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is given in [26].
The NIMBUS method has been successfully applied to shape design of ul-

trasonic transducers [16], designing a paper machine headbox [11], optimal
control in continuous casting of steel [28], separation of glucose and fructose
[9], intensity modulated radiotherapy treatment planning [34], brachytherapy
[35] and optimizing heat exchanger network synthesis [20], among others. In
addition, it uses classification of objectives that has been found cognitively just
[19]. These facts make the NIMBUS method an ideal choice as the interactive
method for solving the PAINT surrogate problem of the wastewater treatment
plant model.

Figure 3: A screen shot of the IND-NIMBUS R© PAINT module

Figure 3 shows the screen shot of the IND-NIMBUS R© PAINT module. In
the PAINT module, the decision maker can give his/her preferences concerning
the surrogate problem by classification of the objective functions. The given
classification information is used to formulate a single objective subproblem
of the surrogate problem. The subproblem is modeled using the Optimizing
Programming Language (OPL, see [39]), and this (mixed integer linear model)
is solved using CPLEX (see [17]). An optimal solution to the subproblem gives
a new approximate Pareto optimal outcome, corresponding to the preferences
given by the decision maker. This approximate outcome is shown to the decision
maker. If the decision maker so wishes, he reclassify the objectives of the new
approximate outcome which yields another approximate outcome.

As described in Section 2, approximate Pareto optimal outcomes can be
projected on the Pareto front of the original problem using the PAINT mod-
ule (using the Project Solution button near the bottom of the screen). The
projection of the approximate outcome, that is, a Pareto optimal solution to
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the original problem is shown to the decision make. As mentioned, for a com-
putationally expensive problem this may take time, but fortunately projecting
an approximate outcome can be done without the involvement of the decision
maker.

The approximate Pareto optimal outcomes and the actual Pareto optimal
solutions that have been found during the decision making process are visualized
on the right side of the PAINT module. The decision maker can choose any
of the approximate Pareto optimal outcomes as the starting point of the next
NIMBUS iteration (i.e., as the basis for a new classification of objectives). The
process stops when the decision maker has found a preferred solution to the
original problem through projecting an approximate Pareto optimal outcome.

In the current version of the PAINT module, only one of the scalarizations
of the synchronous NIMBUS method (i.e., the achievement scalarizing sub-
problem) has been implemented. That is, unlike in the synchronous NIMBUS
method, the decision maker can see only one approximate Pareto optimal out-
come for given preferences. It should also be noted that any solver capable of
solving the surrogate subproblem (e.g., GLPK, see [7]) could be used instead
of CPLEX.

The current version of the PAINT module does not implement the construc-
tion or updating of the surrogate problem. If one wishes to update the surrogate
problem using Pareto optimal outcomes obtained by e.g., projection, the de-
cision making process must be stopped, and the surrogate problem must be
manually updated using Octave. In future versions, updating the Pareto front
approximation should be implemented under a third button in the PAINT mod-
ule that would then automatically update the approximation and the surrogate
problem.

4 Solving the Wastewater Treatment Case

In this section, we demonstrate how the PAINTmethod and the IND-NIMBUS R©

PAINT module were used to solve the wastewater treatment problem, described
in Section 1.4. First, in Section 4.1, we describe the construction of the Pareto
front approximation with PAINT before the involvement of the decision maker.
Then, in Section 4.2, we describe how the decision maker used the PAINT
module to solve the wastewater treatment problem.

4.1 Pre-Decision Making phase

First, a set of 200 mutually nondominated solutions to the wastewater problem
was found with the evolutionary UPS-EMO algorithm (introduced in [3]) and
the GPS-X simulator. To study the optimality of these solutions, each one was
locally improved using an achievement scalarizing problem [40, 41], which was
optimized with Matlab fmincon-function with finite differences approximated
gradients. This resulted in 195 mutually nondominated solutions. The maxi-
mal improvement in the values of the achievement scalarizing problem was at
most 3% so the local improvement did not cause much change. This built our
confidence that the final solutions were close to Pareto optimal. We took the
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outcomes given by these solutions as the set of given Pareto optimal outcomes
for the PAINT method. The whole process of producing this set took about
three days on a standard laptop.

After this, we computed a Pareto front approximation based on the given
set of Pareto optimal outcomes with the PAINT method (see Section 2). The
PAINT method chose 4272 polytopes for interpolation in the Pareto front. In
order to reduce the computational complexity of the implied mixed integer
linear surrogate problem, we removed polytopes that were subsets of larger
polytopes from the approximation. This resulted in a collection of 608 polytopes
whose union covered the same space in R5 as that of the larger collection. In
addition, all sets of vertices of the polytopes in the collection were affinely
independent and, thus, the number of vertices of all the polytopes was five or
less, as shown in [12]. Using the PAINT method to construct the Pareto front
approximation took approximately 19 hours on Intel R© Xeon R© E5410 CPU.

The mixed integer linear surrogate problem implied by the smaller collection
was equivalent to that implied by the larger collection, but it was computation-
ally less expensive. As described in [13], the surrogate problem could be written
as

min (z1, . . . , z5)

s.t.
∑608

j=1

∑5
l=1 λj,l = 1∑5

l=1 λj,l ≤ yj , for all j = 1, . . . , 608∑608
j=1 yj = 1

where λ ∈ [0, 1]608×5

y ∈ {0, 1}608
zi =

∑608
j=1

∑5
l=1 λj,lp

Al,j

i for all i = 1, . . . , 5,

(2)

where each row of the matrix A ∈ R608×5 contained the indices of the vertices
of one polytope in the smaller collection of polytopes. The component λj,l of
the matrix variable λ ∈ R608×5 was for all j = 1, . . . , 608 and l = 1, . . . , 5 the
coefficient of the vertex l of the polytope given by row j in the matrix A. The
variable y determined which of the rows of the matrix λ was nonzero. By the
third constraint, only one row in the matrix λ had nonzero elements.

Problem (2) had 608× 5 = 3040 continuous variables and 608 binary vari-
ables. CPLEX was able to solve e.g., an achievement scalarizing problem for the
surrogate problem in less than a second. This was a tremendous improvement
to solving a scalarization of the original problem, which took about half an hour
with the Controlled Random Search algorithm (see [33]), which is implemented
in the IND-NIMBUS software.

4.2 Decision Making Phase

Using the PAINT module, our decision maker (Mr. Kristian Sahlstedt from
Pöyry Environment Ltd) was able to examine the approximate outcomes and
to project any of them on the Pareto front of the original problem. This entire
decision making process was done within a couple of hours and the decision
maker’s involvement was only about an hour, which could not have been pos-
sible by merely using the original computationally expensive problem.
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Out-
come

Amount of
Nitrogen
[gN/m3]
(min)

Aeration
power
[kW ]
(min)

Chemical
consump-
tion [g/m3]
(min)

Excess
sludge
[kg/d]
(min)

Biogas
production
[m3/d]
(max)

s1 16.67 412.2 21.89 15060 9731
s2 17.13 416.3 27.86 15250 9935
s3 17.30 419.0 16.27 14870 9560
s4 17.74 414.6 14.41 14910 9571
p1 16.80 414.1 18.24 14960 9626
p2 17.10 411.6 15.10 14860 9529

Table 1: The approximate and actual Pareto optimal outcomes inspected by the
decision maker with the PAINT module

Before the decision maker started using the PAINT module, we gave him a
brief overview of the methods from the user’s perspective. We told him that
a set of Pareto optimal outcomes has been computed and that a new PAINT
method has been used to interpolate between those outcomes. We also informed
him that the outcomes given by PAINT are only approximate Pareto optimal
outcomes and, thus, more computation has to be done to find the closest real
Pareto optimal outcome. In addition, we told him that the PAINT method
does not unfortunately provide any information about the decision variables
and those values can only be known after the real Pareto optimal solution is
found. Since our decision maker had previous experiences with the NIMBUS
method, all of this was very clear to him. In addition, he did not find any of
this too inconvenient.

Table 1 shows the approximate Pareto optimal outcomes generated (approx-
imate outcomes s1, . . . , s4) and the outcomes given by actual Pareto optimal
solutions to the wastewater treatment problem (outcomes p1, p2) that were in-
spected by the decision maker. The decision making process started from the
approximate outcome s1 in Table 1. The outcome s1 was given by the neutral
compromise solution to the surrogate problem.

The decision maker wanted to see further (approximate) Pareto optimal
outcomes. After a classification of objectives in the PAINT module, the op-
timal solution to the new subproblem for the surrogate problem gave the ap-
proximate Pareto optimal outcome s2. The approximate outcome s2 has more
biogas production than the approximate outcome s1, but is worse in all the
other objectives. Especially, the chemical consumption is very large. Let us
emphasize that finding the approximate outcome s2 was especially smooth,
since the mixed integer linear problem was computationally inexpensive.

Because the decision maker was not completely satisfied with the approx-
imate outcome s2, he decided to continue and find another approximate out-
come. This yielded the approximate outcome s3, which has much lower chemical
consumption and a slightly lower excess sludge production than both approxi-
mate outcomes s1 and s2. Unfortunately, the approximate outcome s3 is worse
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than both approximate outcomes s1 and s2 in all the other objectives.
A classification of objectives of the approximate outcome s3 and solving the

new subproblem for the surrogate problem led to the approximate outcome s4.
This new approximate outcome is roughly the same as the approximate out-
come s3 in both excess sludge production and biogas production. However, the
amount of nitrogen for the approximate outcome s4 is slightly higher than for
the approximate outcome s3, but this is compensated by chemical consumption
and aeration power that are considerably smaller.

After having inspected the four approximate Pareto optimal outcomes, the
decision maker felt that he had learned enough about the surrogate problem.
First, the decision maker decided to project the approximate outcome s1 on
the Pareto front of the original wastewater treatment problem. The projection
of the approximate outcome s1 (i.e., solution to the achievement scalarizing
problem with the approximate outcome s1 as the reference point) took a little
over half an hour. The projection was done using the GPS-X simulator and
the Controlled Random Search algorithm. The projection was outcome p1 in
Table 1. According to our decision maker’s assessment, the outcome p1 was
fairly close to the approximate outcome s1 in all objectives. However, he felt
that there might still be more preferred solutions to the problem.

Because the approximate outcome s1 and the actual Pareto optimal outcome
p1 were close to each other, it was decided not to update the Pareto front
approximation. Instead, the decision maker wanted to project the approximate
outcome s4 and obtained the outcome p2 in Table 1. The Pareto optimal
outcome p2 has slightly higher amount of nitrogen in the effluent than the
Pareto optimal outcome p1, but it has considerably lower aeration power and
the amount of chemical consumption. The Pareto optimal outcome p2 was
very preferred by the decision maker and he chose it as the final solution to the
problem.

The final solution (including a way to design and operate a wastewater
treatment plant) will be further inspected by more accurate simulators before
implementing. However, it will act as a guideline for the design of the wastew-
ater treatment plant.

5 Analyzing the Decision Making Process

with PAINT

We filmed our decision maker Mr. Sahlstedt during the decision making process
and asked him some additional questions regarding the usability of the methods.
The purpose of the video was to reveal any issues that he might have had while
using the PAINT module and to find out whether any aspects of the PAINT
method that were hard to understand.

When analyzing the video, it seems that the key point in the usability of
the PAINT method and the PAINT module is informing the decision maker
about the approximate nature of the method. In order to make the PAINT
method more usable, it would be a good idea to produce an introductory video
introducing the key points of the method. Since our decision maker was already
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familiar with the IND-NIMBUS R© software, there was no need to introduce it.
This may not always be the case and, thus, the video should also include a
short introduction to the NIMBUS method and the IND-NIMBUS R© software.

The decision maker thought that the PAINT method and the PAINT mod-
ule were easy and intuitive to use. In addition, he said that the PAINT method
provided a definite improvement to merely using the NIMBUS method because
of the faster computational times (a couple of seconds against half an hour)
between the iterations of the interactive method. He thought that neither the
approximate nature nor the fact that the preferences had to be based only on
the objective function values were big drawbacks. In addition, no approximate
outcomes that the decision maker would have assessed implausible were found
during the decision making process.

For both projected approximate outcomes s1 and s4, our decision maker
assessed that the actual Pareto optimal solutions were close enough, taking into
account the uncertainties in the model, and there was no need to recompute
the Pareto front approximation. Thus, the inability of the PAINT module in
reconstructing the Pareto front approximation (as mentioned in Section 3) was
not an issue.

Except for correcting a couple of minor bugs from the software, the decision
maker did not offer any improvements. He did, however, agree with us that the
PAINT method should be able to detect disconnectedness in the Pareto front
and that the decision variables should be somehow approximated, too. How-
ever, detecting disconnectedness was not an issue on this occasion, because all
the approximate Pareto optimal outcomes found seemed plausible to the deci-
sion maker and the approximate Pareto optimal outcomes that were projected
were rather close to their projections. Finally, since one of the decision vari-
ables was also an objective (i.e., the methanol dose), that was approximated in
our problem, although the PAINT method does not in general do this.

6 Conclusions

In this paper, we described how the PAINT method can be used to speed up
iterations of interactive methods when solving computationally expensive mul-
tiobjective optimization problems. The PAINT method was used to construct a
Pareto front approximation that then implied a mixed integer linear surrogate
problem for the original problem. As our case problem, we studied a five-
objective optimization problem of designing and operating a wastewater treat-
ment plant. In addition, we introduced a new IND-NIMBUS R© PAINT module
that combines the PAINT method and the interactive NIMBUS method.

The PAINT method and the PAINT module worked well in this problem.
The decision maker found it easy and intuitive to use the interactive NIMBUS
method to find a preferred approximate outcome on the Pareto front approx-
imation. The low computational cost of using the interactive method with
the surrogate problem was a definite improvement to using interactive method
directly to solve the computationally expensive wastewater treatment problem.

The experimental design in this paper was unique: Because our decision
maker had already used the IND-NIMBUS R© to study the same wastewater
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treatment problem, he was able to compare the experiences of using the IND-
NIMBUS software with and without the PAINT method. According to the
decision maker’s opinion, the PAINT method provided a significant improve-
ment. This implies that the PAINT method should be also applicable to other
computationally expensive problems.

The IND-NIMBUS R© PAINT module is still in the development phase and,
thus, it lacks some essential functionality (like the implementations of the other
scalarizations of the synchronous NIMBUS method) and, also, it still has some
bugs. If there had been no bugs in the software, the investigation of the problem
with the PAINT module would have been even more fluent. Further effort has
to be put in correcting these bugs.

The PAINT method requires one to use additional methods and software to
generate the given set of Pareto optimal outcomes and to solve the mixed integer
linear surrogate problem. In this paper, we used the UPS-EMO algorithm to
generate the Pareto optimal outcomes and the IND-NIMBUS software with the
PAINT module and the CPLEX solver to solve the surrogate problem. In future
research, other applicable methods and software can be also used together with
the PAINT method.
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from Pöyry Environment Ltd for his expertise on the problem and for acting as
the decision maker. In addition, the authors wish to thank Drs. Jussi Hakanen
and Timo Aittokoski from the Research Group in Industrial Optimization at the
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