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diss.

Methods for determining the in-plane thermal diffusivity in a planar sample geom-
etry were developed. These methods were tested and verified by measuring planar
metal samples with known thermal properties. The techniques used were based on
heating the sample at one edge and recording the evolution of the temperature field
in the sample by a thermographic camera. The temperature fields at different times
were processed and then fitted by a solution to a heat equation describing the ex-
perimental setup, thermal diffusivity as one of the fitting parameters.

In the first experimental setup the sample was placed in a weak constant flow
of air, and the situation was improved in the second setup by placing the sample
in a vacuum chamber, where convective heat transfer was totally removed. After
verification measurements, the latter setup was applied to porous sintered bronze
samples, and their effective thermal conductivities were determined. The sintered
samples were also imaged by X-ray microtomography so as to obtain a 3D model for
their structure. It was shown that the effective thermal conductivity of the samples
could be predicted by an analytical expression which involved certain parameters
determined from the 3D images.

Finally, as another application of the heat equation, propagation of tempera-
ture profiles in the form of slow-combustion fronts were studied in sheets of pa-
per. The dynamical properties of these fronts belong to the KPZ universality class,
for which theoretical results are available for the height-fluctuation distributions.
Height fluctuations for such fronts were determined experimentally, and their dis-
tributions were found to be well fitted by corresponding theoretical distributions.

Keywords Thermal diffusivity, thermal conductivity, thermography, slow combus-
tion, KPZ equation, height fluctuations
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Chapter 1

Introduction

Porous materials form a large group of substances that are found both in nature
and among man-made materials. Typical examples are wood, bone, many rocks,
paper, concrete, filters, and insulators. All these have empty space, or pores, within
them. The pores are usually filled with air or some other fluid, and the remainder is
composed of the solid portion of the material.

Understanding heat transfer phenomena in such materials is important in many
applications, but they are not however very well known. In this work we thus first
concentrate on developing a measurement method for determining the in-plane
thermal diffusivity of planar samples. This method is then applied to porous sam-
ples, and their effective thermal diffusivity (and conductivity) was determined. The
three-dimensional structure of these samples was determined by X-ray tomography,
which enabled their detailed characterization. By this way it is possible to analyze in
a detailed manner the dependence of thermal conductivity on structural properties.
Although numerical modeling of porous structures (especially packed beds of solid
particles) has been developed [1-3], one has previously relied on experimental work
when the effective thermal conductivity of porous materials has been needed [4-6].

The in-plane thermal conductivity of paper (or some other porous material) is
an important parameter when analyzing the propagation of slow-combustion fronts
in it. The properties of slow-combustion fronts can be shown to belong to the KPZ
universality class [7,8].

As an application of heat conductivity in porous materials, we finally consider
the height-fluctuation distributions of slow-combustion fronts in paper, and confirm
that these distributions are those predicted for the KPZ universality class.

The three principal heat transfer mechanisms are conduction, convection and
radiation. In addition to these three, transfer of latent heat may occur when first-
order phase transition of a fluid medium is involved. An example of the latter mech-
anism is evaporation from a water pond. Some water molecules have enough energy
to escape the liquid phase, whereby they remove thermal energy from the pond. Sit-
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uations that include phase changes or mass transfer are not however considered in
this work.

Heat transfer by conduction tends to equalize temperature gradients in the
material via thermal motion of atoms. The governing equation of the conductive
heat transfer is called Fourier’s law. It states that the heat flux ¢ is proportional to
temperature gradient:

Goong = —kVT. (1.1)

T =T(z,y, z) is the temperature field and the proportionality constant £ is the ther-
mal conductivity characteristic of the material, where thermal conduction is taking
place. Thermal conductivity is actually not strictly constant and depends usually on
temperature.

Convective heat transfer relates to situations, where there is a fluid flow around
an object, and their temperatures are different from each other. Newton’s law of
cooling gives the convective heat flux from a surface at temperature 7 surrounded
by a fluid at temperature 7¢,,,:

Gconv = h(Ts - Tenv)- (12)

Here constant & is the convection heat transfer coefficient, and the direction of the
heat flux is normal to the surface. Equation is exactly valid only locally. As the
flow conditions vary at different parts of the surface, so will the convection heat
transfer coefficient h and the heat flux g.o...

Radiative heat transfer is different from the other two transfer mechanisms,
because it does not require any medium. Heat is transferred by thermal radiation,
usually at infrared (IR) wavelengths, from/to the surface of a body to/from the
surroundings. All bodies at nonzero absolute temperature emit thermal radiation.
The radiative heat flux emitted by a surface is determined by the equation

Graa = €oT, (1.3)

where T is the surface temperature, o the Stefan-Boltzmann constant (5.67-10®
W-m2-K™?),and 0 < ¢ < 1 the emissivity of the surface. For a perfect radiator, so
called blackbody, € = 1. A surface not only emits radiation, it also absorbs radiation
emitted by its surroundings or other heat sources. The absorption heat flux is given
by the equation,

Gabs = A irr, (14)

where 0 < o < 1 is the absorptivity of the surface and ¢;, is the thermal irradiation
on the surface. When there are no extra heat sources present, the term g;,, is often
approximated by blackbody radiation, ¢, = T4, at the temperature of the sur-

roundings T,,. The net radiative heat transfer rate from a surface is the difference

of Egs and (1.4).



Heat transfer in a medium is described by the heat diffusion equation,

e, L0 (LOTN, 0 (0T O (LOT
Po o “or \"or ) Toy\"ay ) Tz \"az ) 1 (1.5)
= V- (kVT) + 4,

which is nothing more than a consequence of the conservation law of energy. Pa-
rameters p and ¢, are the density and the specific heat at constant pressure of the
material, respectively. The material parameters are often joined together as a single
parameter o = k/pc, called the thermal diffusivity. The energy generation rate per
unit volume, ¢, also includes possible heat losses from the system by convection, ra-
diation, and (chemical) reactions. To solve the heat equation one needs to know an
initial condition and two boundary conditions, in addition to the material param-
eters, because the partial differential equation is of first order in time and second
order in space. Its solution is then a temperature field T'(x, y, 2, t).

There are three common types of boundary conditions in heat transfer prob-
lems. The first type is the so called Dirichlet condition in which the temperature at
the boundaries is known. A simple one-dimensional example is 7'(L, t) = T}, where
L is the location of the boundary in the = direction and 77, is the (possibly time-
dependent) boundary temperature. The second type of boundary condition (also
known as the von Neumann condition) states that the heat flux at a boundary is

constant:
oT

o
Here the heat flux at the boundary ¢;, can also be zero for an insulated surface (adi-

abatic boundary). The third type of boundary condition is related to situations with
convective heat transfer at a boundary surface:

=d4r. (1.6)

xz=L

9T

ox = h[T(L7 t) - Tem}]- (17)

r=L

This equation states that heat is transferred from/to the surface by convection to/from
the surrounding liquid or gas at temperature 7,,, and an equal amount of heat has
to be transferred by conduction in on solid side of the boundary.

All the heat-transfer and heat-loss mechanisms described above, as well as
the boundary conditions, are involved in the thermal-conductivity measurements
reported below.

The remainder of this Thesis is organized as follows. In Chapter[2la new method
for experimental determination of the in-plane thermal diffusivity of planar samples
is described. Measurement results for copper and aluminum samples are presented
as validation data. After a slight modification of the method, it was also shown to be
applicable to a poorer thermal conductor, tantalum. In Chapter 3| the measurement
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method is refined further in order to study samples that have a still lower thermal
conductivity. A new measurement setup involving a vacuum chamber is presented
together with the results of test measurements. After this, the measurement method
is applied to porous sintered bronze plates in Chapter 4 The effective thermal con-
ductivities determined for such samples are compared with theoretical expectations
that involve certain structural parameters. These parameters are determined from
three-dimensional tomographic reconstructions of the samples. In addition, the con-
tact resistance between particles of which the samples are made can be included
by performing lattice-Boltzmann simulations in the tomographic reconstructions of
the samples. Chapter |5 expands the subject of heat transfer to height fluctuations
in slow-combustion fronts in sheets of paper. Distributions of these fluctuations are
compared with those predicted theoretically for the KPZ universality class. Finally,
the work is summarized in Chapter [6|



Chapter 2

Thermal diffusivity measurements
with convection present

In this section a method for determining the in-plane thermal diffusivity of planar
samples is described. This method is based on measuring by using an infrared cam-
era the transient temperature field of the sample heated at one edge. The tempera-
ture fields are spatially averaged over a narrow strip around the center line of the
sample, and the temperature profiles for varying time are fitted by a solution to a
corresponding one-dimensional heat equation. Two fitting parameters, the thermal
diffusivity and the effective heat-loss term, are then obtained from time-dependent
temperature data by optimization. With a known constant density and specific heat,
the thermal conductivity of the sample can thus also be determined.

2.1 Background

There already exist many measurement methods for thermal diffusivity or ther-
mal conductivity, see, e.g., [9]. The methods can be divided into steady-state and
nonsteady-state methods according to time dependence of the measured temper-
ature signal. The two categories can be further divided on the basis of, e.g., the
geometry of the sample. Majority of the methods introduced in [9] concentrate on
cylindrical sample geometries in either axial or radial heat flow. The quantities to
be measured include temperature and in some cases also the heat flux, in addition
to sample dimensions. If a comparative sample with known thermal conductivity is
used, then the measurement of the heat flux can be avoided. The more recent meth-
ods take advantage of the development of thermography. With an infrared camera
one can measure simultaneously both spatial distribution and time development of
a two-dimensional temperature field. This is a big advantage over the use of indi-
vidual temperature sensors.

The flash technique [10] is widely used (for a recent review, see [11]), and it is
based on measuring temperature of the rear side of a planar sample with infrared
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camera while the front side is heated with a flash lamp or a laser pulse. From the
temperature evolution the thermal diffusivity in the thickness direction of the sam-
ple can be determined. The flash method has also been applied to determination of
in-plane thermal diffusivity [12,(13]. However, in that case the signal-to-noise ratio
has to be quite high (at least 10 [13]), which requires a sensitive infrared camera or
a high heating temperature. The latter choice leads to complications with modeling
the heat-loss effects.

We decided to design an experimental setup, where heating of the sample was
realized by a simple heating element in contact with one end of the sample, while
the temperature field was measured by an infrared camera. Instead of measuring
the time evolution of temperature at two points like in Ref. [14], we used the whole
temperature profile in a planar sample. To increase the accuracy of the method the
convective and radiative heat transfer was modeled, and the linearized heat-loss
coefficient was determined when determining the thermal diffusion coefficient. To
this end, a weak flow of air was also induced around the sample to stabilize the
convective heat transfer.

A motivation for using a simple heating element was that, by this method,
a linear temperature front propagating in the sample can easily be produced. This
measuring geometry allows one-dimensional modeling (provided that the sample
can be regarded as isothermal in the thickness direction at all times), and different
heat-loss mechanisms can more easily be included in the model.

2.2 Experimental setup

The experimental setup is shown schematically in Fig. The sample that is be-
ing heated on one edge, is supported by pressing it between two heating elements.
Under the sample there is a 100 mm diameter pipe and a fan, which are used to intro-
duce a slow, laminar air flow over the plate in order to keep constant the convective
heat transfer from the sample. A part of the pipe is filled with porous material to
damp turbulence and to homogenize the air flow. The fan speed can be controlled.
The velocity of the air flow at the exit of the pipe was measured with a hot wire
anemometer, and it was found to be 0.1-0.2 m/s. This means that for a pipe 100 mm
in diameter and air at 20°C the Reynolds number was about 1300 indicating laminar
flow [15].

In the design of the experiment it was essential that the convective heat trans-
fer could be kept as constant as possible. The whole experimental setup was there-
fore located in a room in which all disturbing air flows had been eliminated. But
this alone was not sufficient and additional shielding around the measured sample
had to be used. It turned out that shielding of the measuring chamber around the
sample was necessary when good-quality temperature data were required. Without
shielding, reflections of, e.g., hot equipment in the surroundings could be seen in



the temperature field of the sample, although it was painted black.

FIGURE 2.1 Schematic diagram of the experimental setup. The upper part of the
measuring chamber is not shown. A is the sample, B is the heating unit, C is the IR
camera, D is the fan, and E is the flow controller. Figure: Kimmo Ranttila.

A measurement was started by suddenly pressing the sample plate, initially
at room temperature, between two copper plates heated by electric resistors. These
resistors were covered by Teflon casings so as to minimize heat losses. The two heat-
ing resistors were connected in series, and the heating power could be adjusted.
The time-dependent temperature field in the sample was recorded with an infrared
camera, and a PC was connected to the camera for image grabbing and further data
analysis. A total of 25 images per second were recorded in the measurements, and
the pixel resolution of the measured temperature field was typically about 0.3 mm.

The emittance of the samples was improved by painting them thinly on both
sides with black spray paint before measurements. The IR camera was then cali-
brated for each sample by attaching a thermocouple on the back surface of the sam-
ple, and measuring the temperature of that point on the front surface with the IR
camera. The procedure was repeated for several different plate temperatures, and a
calibration curve was eventually achieved. The emittance value was not determined
because the calibration curve gives accurately the needed temperature data from the
IR-camera images.

It was essential that the sample plate could be accurately cropped from the IR-



camera image. The temperature field was usually too blurred at the plate edges to
distinguish the sample clearly from the background, especially at the cooler edge of
the plate. Therefore, two electrically heated tungsten wires were attached vertically
to a frame that was placed in front of the sample before beginning a measurement.
The hot wires stood out from the background in the image, and with known distance
between the wires, the position of the sample edges was determined accurately.

2.3 Mathematical model

Since a whole edge of the planar sample was heated and the boundary conditions
were similar at the two adjacent plate edges, the system was symmetric in the trans-
verse direction. Provided that sample thickness was much less than the ratio of the
heat diffusion coefficient « to the effective heat-loss rate coefficient n) (see below), i.e.,
that the relevant Biot number was much less than unity, we could also assume that
the sample was isothermal in the thickness direction. Now we could have solved the
remaining two-dimensional heat equation, but if we restricted our consideration to
a narrow strip at the center line of the plate, we could use a one-dimensional heat
equation to describe the system;

oT 9 [, OT
P9 () 21
P o0 = ow (k 89&) +4 1)

Here T' = T'(z, t) is the temperature of the plate with = the distance from the heated
edge of the plate, ¢, is the specific heat, p is the density, & is the thermal conductivity
(more precisely the z component of the thermal-conductivity tensor) of the mate-
rial of the plate, and ¢ is the rate at which energy is generated (lost or gained) per
unit volume of the medium. The energy generation term includes convective and
radiative heat transfer;

§~ _s [W(T — Tw) + €0 (T* — Tyy,)] - (2.2)
Here a is the thickness of the plate, & is the convection heat transfer coefficient, e is
the emissivity, and o is the Stefan-Boltzmann constant. 7%, is the air temperature,
and Ty, the temperature of the walls of the measuring chamber. In our case, Ty, =

Tw. As temperature differences were quite small, we approximated the radiation
term by a first-order term in 7" — 7', such that

90 9 [ 90\ 29

where © = T — T, o = k/pc, is the heat diffusion coefficient and n := (h +
4eaT2 )/ pc, is an effective heat-loss rate coefficient.



One edge of the plate was heated and the time-dependence of its temperature
©(0,t) was measured. At the opposite edge we had convective and radiative heat
transfer. So, in Eq. (2.3)), we imposed the initial and boundary conditions

O(x,0) = f(z),

G(Ovt) - GO(t)a (24)
00

o — +nO(L,t) =0,
or|,_;

where L is the length of the plate. The initial temperature distribution f(z) and the
boundary temperature ©,(¢) were obtained from measurements.

If o and 7 are constants, the boundary value problem can be solved analytically
as described in Appendix A of the enclosed article II. The solution can be expressed

in the form .
=y — < / f(y) sin fny dy

a(B2+2n/aa)t (
n=l (2.5)

t
+ aﬁn/ e Pitn/aa)s g (o) ds) sin 3,7,
0
where ) /
n/a
==L+ ", 2.6
=30+ 5 r) 29
and 0 < 1 < B2 < ... are the solutions of the equation
n _
— tan fL = —f5. (2.7)
a

The unknown coefficients a and 7 can then be determined by minimizing the

integral
xo to
/ ( / (Oa. (@, 1) — O(a, 1)) dt) dz (2.8)
x1 t1

with respect to « and 7. Here O, ,) is the solution Eq. (2.5) and © is the observed
temperature. By this choice of the integral form we can take full advantage of the
position and time information of the measured temperature data.

For a stationary temperature distribution, this two-dimensional optimization
problem can be reduced into a one-dimensional problem in the following way. A
stationary temperature distribution satisfies the differential equation

a— — 1o =0 (2.9)
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with the boundary conditions

0(0) = O,

+nO(L) = 0. (210

=L

“

Eq. (2.9) is a homogeneous second-order constant coefficient linear differential equa-
tion and it can be solved analytically. The solution that satisfies the boundary con-

ditions (2.10) is

cosh (L — x) + (/) sinh B(L — x>) | 2.11)

O(z) = ©o < cosh BL + (n/af)sinh 5L

where % = 2n/aa. From the data we get ©, and the ratio 7/« is determined by
minimizing the integral

T2
/ (Oy/a() — O(x))* da, (2.12)
1

where O(z) is the measured stationary temperature profile. Because we now know
the ratio of the two fitting parameters of the time-dependent case, Eq. (2.8), it is bet-
ter to use 7/ and « as the actual fitting parameters rather than n and «. The other
reason for this choice is that the eigenvalues f,, in the solution of the time-dependent
case (see Eq. (2.7)) are functions of n/«, and it is possible to save computation time
by selecting this variable as a fitting parameter. The data were thus analyzed in
the following way. Optimization with respect to the 7/a parameter was done for
the steady-state temperature profile (Eq. (2.12)). Thereafter a two-dimensional opti-
mization of the time-dependent temperature profiles was performed (Eq. (2.8)) such
that minimization was searched around the 1/« value obtained for the steady-state
profile.

2.4 Measurement results for good heat conductors

Homogeneous samples with known thermal-conductivity properties were used to
validate the method. The sample plates were approximately 50 mm by 100 mm in
size and 1.0 mm thick. There were two sample materials: high-purity copper and
industrial aluminum (99.5 % pure). The known properties are shown for both mate-
rials in Table In the mathematical model above, it was assumed that the thermal
conductivity and the specific heat do not depend on temperature. These assump-
tions were well satisfied for the two materials because the temperature differences
within the samples were relatively small.

A sample plate was initially at room temperature and was then suddenly
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TABLE 2.1 Density, specific heat, thermal conductivity, and thermal diffusivity of the

samples.

Sample p(kg-m~2) ¢, (J-kg7"-K') kE(W-m*- K" a(103m?.s7)
Cu 8940 385 399 0.1159
Al 2700 899 229 0.0943

pressed between two hot heating plates. Both the time-dependent and the subse-
quent steady-state temperature fields in the sample were recorded. Figure 2.2{shows
a steady-state temperature field in a 1 mm thick copper plate. One-dimensional tem-
perature profiles T'(x,t) (see Figs. 2.3|and were obtained from the temperature
fields by taking an average in the y direction over the central fifth of the sample.
Noise in the resulting temperature profiles were reduced by taking a moving aver-
age over a 5-pixel (about 2 mm) wide window.

30 32 34 36 38 40
0 ﬁ
0.01}
— 0.02F
£
>

0.05} . %

0 001 002 003 004 005 006 007 008 0.09
X [m]

FIGURE 2.2 Steady-state temperature field (averaged over 30 s) of a copper plate
recorded by an IR camera. The gray scale bar corresponds to temperature values in
°C. The horizontal lines show the averaging window for which a one-dimensional
temperature profile was calculated. The small vertical lines are the boundaries for fit-
ting the temperature profile by theory.

A typical time evolution of the average temperature profile in a copper plate
is shown in Fig. The measured data were averaged over every five frames,
i.e., over 0.2 s, to smooth the time evolution. The initial and boundary conditions,
Eq. (2.4), for the solution of the heat equation, Eq. (2.3), were determined from the
measured data. When fitting experimental data by Eq. (2.5), or by Eq. in the
steady state, about 10 mm stretches at the edges in the = direction were left out of
the fit to eliminate edge effects.

After first finding the best fit ©,,(x) for the steady-state temperature profile
(see Fig.[2.3), the minimum value of Eq. for the time-dependent temperature
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FIGURE 2.3 Steady-state temperature profile (dots) of a copper plate together with a
theoretical fit by Eq. (continuous line). The fitting window is between the two
vertical lines. The best fit was found for the fitting-parameter value /o = 0.0276 m 1.
The air temperature was T, = 297.8 K in this measurement.

T K]

>

<T> -

2+ 4

0 . . . . . . . .
-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

X [m]

FIGURE 2.4 Transient average temperature profile of a copper plate at 10 s intervals.
A fourth-order polynomial was fitted to the first (lowest) profile and was taken as the
initial condition for the theoretical solution of the heat equation. The (time-dependent)
boundary condition was taken at = 0, and the two vertical lines show the integration
region for optimization. The smooth lines for x > 0, ¢ > 0 represent the theoretical
solution, Eq. (2.5), with optimized values for n/« and c.
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data was searched in the vicinity of the 7/« value obtained for the steady-state pro-
file. The contours of the cost function for a copper sample, normalized by the
integration area, are shown in Fig. It turned out that, in this case, the minimum
was found for n/a = 0.0274 m~! and a = 1.161 x 107 m?2-s~!. The n/a value ob-
tained differed from the steady-state value of 0.0276 m~* by 0.7 %. The bottom of
the cost-function surface in the fitting parameter space was quite flat, as can be seen
from the contours in Fig. and finding the minimum accurately was sensitive to
the n/a value.

0.0278
0.0277}
0.0276} :
0.0275]
< 0.0274 ’

é 0.0273

= 0.0272f
0.0271f

0.027

0.0269

—

0.0268*+

1.145 1.15 1.155 1.16 1.165 1.17

o [m?/s] x10"*

FIGURE 2.5 Normalized cost-function contours for a copper sample in the (o, 1/«a)
space. The small circle represents the location of the minimum. The values of the cost
function on adjacent contour lines differ by 1 %.

Figure 2.6/shows the difference between the measured average temperature in
a copper plate and the solution of the heat equation when using the best-fit param-
eter values n/a = 0.0274 m~! and o = 1.161 x 10~* m?-s~!. The square of this dif-
ference is actually integrated when determining the value of the cost function. The
square root of the cost-function minimum gives a measure for the mean deviation
between the theoretical solution and experimental data. In the case of Fig. the
minimum of the cost function normalized by the integration area was 0.00239 K2,
which means that the mean deviation of the solution from the measurement data
was 0.05 K. This is actually less than the temperature resolution of the IR camera
(0.1K).

The procedure described above for determining the thermal diffusion coeffi-
cient of a sample was repeated for several independent copper measurements, and
also for measurements on an aluminum plate. The results are shown in Table
The thermal-conductivity values were determined using the constant density and

-1

specific heat values of Table 2.1} The accuracy of the parameter n/a was 0.0001 m™,
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FIGURE 2.6 Difference between the measured temperature data for a copper sample
and the theoretical solution of the heat equation calculated by using the best-fit values
for the parameters 1/« and .

and it was 1.5 x 107" m?-s™! for parameter c.

The error limits in the individual results of Table 2.2] are of the order of 0.5
%. This estimate was obtained by changing the integration limits and the moment
when the initial temperature profile was taken from the measurement data. These
changes moved the position of the cost-function minimum by about 0.5 % at the
maximum. The mean values of the results shown in Table 2.2] are 401 and 220
W-m~!.K™! for copper and aluminum, respectively. The corresponding values for
the standard deviation of the mean are 3 and 1 W-m~' - K™!. Thus, the final results
of our measurements are 401 +3W-m~' K 'and 220+ 1 W-m~*- K.

It was known from independent measurements that for the copper of which
our sample was made, the thermal conductivity is &k = 399 W-m~!-K™' with un-
specified error bars. This result is based on an electrical-conductivity measurement
that is very accurate. Our result agrees well with this value. For the aluminum sam-
ple the measured thermal conductivity was only 4 % lower than the value shown in

Table 211

From Table 2.2l we can also calculate an average value for the parameter 7,
which consists of both convective and radiative parts as mentioned above. For the
copper sample, 7 pc, = h+4eo T3 = 11.940.2W-m~2-K~'. The contribution of the
radiation is about 50 %, and it cannot be ignored. Furthermore, we can now estimate
how accurate the linearized temperature dependence of the radiation term is. For



TABLE 2.2 Results for individual measurements and averages for copper and alu-
minum. oy, is the minimized value of the cost function (2.8) divided by the integra-
tion area.

Sample n/a(m™) o (103 m?.-s71) E(W-m-K") Lo (K?)

Cu 0.0284 0.1169 402.5 0.00304
0.0306 0.1153 397 0.00415

0.0294 0.1145 394 0.00314

0.0274 0.1161 399.5 0.00239

0.0293 0.1140 392.5 0.00305

0.0295 0.1148 395 0.00317

0.0304 0.1193 410.5 0.00311

0.0311 0.1200 413 0.00288

0.0308 0.1187 408.5 0.00338

0.0296 0.1159 399 0.00361

average  0.0297 0.1165 401 0.00319
Al 0.0488 0.09002 218.5 0.00235
0.0506 0.08919 216.5 0.00520

0.0500 0.09084 220.5 0.00350

0.0478 0.09084 220.5 0.00343

0.0486 0.09125 221.5 0.00272

0.0510 0.09187 223 0.00365

0.0514 0.09105 221 0.00205

0.0508 0.09084 220.5 0.00239

0.0509 0.09105 221 0.00186

0.0519 0.09187 223 0.00249

0.0505 0.08981 218 0.00291

average  0.0502 0.09079 220 0.00296
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the measurement shown in Figs. 2.3/ and 2.4, the linearized form 4eo T3 (T — T,.)
gives an about 7 % lower heat flux (on the average) than the fourth-power term
co (T* — T1) of the Stefan-Boltzmann law. This means a 0.5 % error in the flux
per 1 K temperature difference between the plate and the surroundings. But for the
fit parameter 7, the error is only about 0.25 % -K™', and this effective temperature
dependence is too low to detect when fitting the measurement data.

2.5 Towards poor heat conductors

The next step in the development of the measurement method was to extend it to
moderate and poor heat conductors. For a relatively poorly conducting sample ma-
terial, we chose tantalum as its thermal conductivity is constant over a wide temper-
ature range around room temperature (see Table[2.3). We used two high-purity tan-
talum plates to study the thermal diffusivity and the temperature-dependent heat-
loss coefficient. The thicknesses of the plates were 0.3 mm and 1.5 mm, and they
were painted black on both sides.

TABLE 2.3 Density, specific heat, thermal conductivity, and thermal diffusivity of tan-
talum at some temperatures [9, p. 907]. The values at temperature 300 K were applied
in this work.

TK) pkgm?) ¢( kg K" k(W-m'K") a(0°m’ s

200 - 133 57.5 -
300 16600 140 57.5 24.7
400 - 144 57.8 -

It became evident that the two-dimensional temperature field in tantalum sam-
ples was not symmetric (see Fig.[2.7), as in copper and aluminum samples. The rea-
son for this asymmetry was traced to the alignment of the sample perpendicular
to the weak flow of air used. The velocity boundary layer that forms on the plate
surface grows along the flow direction. The flow velocity is the largest at the lower
edge of the plate, and there the convective heat transfer is stronger than at the up-
per (trailing) edge. For poor heat conductors this obviously leads to an asymmetric
temperature field. A simple remedy to this problem was to place the sample par-
allel to the upward-going air flow with the heated edge up. The heater was placed
up because of practical reasons and because then the additional natural convection
caused by heating does not interfere too much with the measurement. This setup
indeed resulted in a symmetric temperature field, and a one-dimensional tempera-
ture profile could again be determined by averaging over a narrow strip around the
center line of the sample (see Fig.[2.§ on page[21). Other than the sample alignment,
the measurement procedures remained as described in sections 2.2/and
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FIGURE 2.7 Isotherms of a stationary temperature field measured on the 0.3 mm thick
tantalum sample. The direction of the air flow is indicated. The temperature field does
not remain symmetric with respect to the center line in the x direction of the sample.

The change in the sample alignment led, however, to a problem with the model
introduced in section 2.3 where it was assumed that the heat transfer by convection
would be constant in the direction in which the temperature profile was averaged.
Now that air was flowing parallel to the gradient of the temperature profile, this
assumption was no longer valid: the velocity and thermal boundary layers were in-
creased towards the hot end of the sample, and, consequently, the convective heat
transfer coefficient was also changing. The position dependence of this coefficient
had thus to be taken into account, and we modeled the effect by introducing a
temperature-dependent coefficient. This meant that the transient fin model became
nonlinear, and a new solution to it had to be found.

2.6 Mathematical model of the improved experimental

setup

The starting point is the same as before: we restrict our consideration to a narrow
strip around the center line of the sample plate, and use a one-dimensional transient
fin model to describe the system. So, Eqs (2.1)) and (2.2) with Ty, = T and constant
values of the material parameters p, c,, and k lead to the equation

or PT 2

— =k —=-[h(T-Tx (T -T)] - 2.13

pcp at (9.1'2 a |: ( ) +éeo ( oo)i| ( )

The only difference to the earlier is that the convective heat-transfer coefficient %
is now position dependent, h = h(x), because of the boundary-layer effects on the
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air flow across the plate. The temperature of the plate in a stationary situation is
described by the equation

fz—zpmwT—ﬂQ+awﬁ—rQ]:o (2.14)

dz? «a

with the boundary conditions

T(O) =1To
k i—z +h(L)(T(L) — Ty) + €0 (T(L)4 . T;Lo) _0, (2.15)

where L is the length of the plate and 7j is a measured boundary temperature. The
functional dependence h = h(z) is a priori unknown, and cannot be solved by stan-
dard methods applied [16] in the case of a homogeneous temperature in the sample
plate (in which case one finds h(z) oc 7/2; we also checked that experimental data
were not consistent with this kind of position dependence in /(z)). We can, however,
circumvent this problem as the temperature profile 7' = T'(z) is a monotonic func-
tion, and we thus have a one-to-one correspondence between x and 7, or rather x
and © = T'—T,,. This means that we can also consider x as a function of ©, x = z(0).
We can thus express Eq. in the form
2

%g—smmmT—ng+m@h4§ﬂ:o (2.16)
with an unknown function 2 = h(O). Since the temperature range in the plate is
quite narrow, we can also replace h(©) by its first-order approximation,

h(©) = ho + hi©, (2.17)

where Iy and h, are, in principle, functions of T',,. Variation of 7., is, however, so
small in the experiments that they can be considered here as constants. This kind of
approach has also been used before [17].

Substituting the expression Eq. (2.17) into Eq. (2.16)), expanding the term 7* —
T2 as a Taylor series with respect to © = T' — T,,, and retaining only its first two

terms, Eq. (2.16) becomes

d?©  2hg+ 4eaT2 + (hy + 6e0T2) O
dz? o« PCyp

a 0 =0. (2.18)

We can define

ho + 460’T§o n hl + 6€O'T30

PCp PCp

n:=n(0) =mn +mO = O (2.19)
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as an effective temperature-dependent heat-loss coefficient that includes both con-
vective and radiative heat transfer. With this notation, the stationary temperature
profile of the plate is determined by

e 2

a_ R
dz?

(0 +m©)0 = 0. (2.20)

a

The boundary conditions are now

0(0) = 0,
2.21
o g 4 (50 + mO(L)) O(L) = 0. (2.21)
=L

This boundary-value problem can most easily be solved numerically. The two un-
known coefficients, 7y/a and 7, /a, can be determined by minimizing the integral

/ 2 (6(770/067 m /o) (T) — é(x))z dx (2.22)

with rescpect to 7y/a and 7, /a. Here O,y /o, n, /o) is a solution to the boundary-value
problem, Eq.(2.20) with Eq. (2.21), and © is the measured stationary temperature
profile.

The time-dependent case, Eq. (2.13), can also be written in a similar form,

00 0 2

5 = %92 4 (no +m©) 6. (2.23)

Notice that Eq. is a nonlinear partial-differential equation. In the experiments
one edge of the plate was heated and the time dependence of the edge temperature,
©(0,t), was measured. At the opposite edge we had convective and radiative heat
transfer. So, in Eq. (2.23)), we imposed the initial and boundary conditions

O(z,0) = f(z),
©(0,t) = (1), (2.24)
a g—(;) + (no + mO(L,t)) ©(L,t) = 0.

The initial temperature profile f(x) and the time-dependent edge temperature ©y(¢)
are known (measured) functions.

Once the parameters 1 /a and 7, /o were extracted from the stationary temper-
ature profile, the transient case, Eq. with Eq. (2.24), could be solved numeri-
cally. Now there was, in principle, only one independent unknown parameter left,
the thermal diffusivity, o.. But, as in the earlier case with constant convective heat-
transfer coefficient, we searched for an optimal solution to the transient problem by
letting the 7y/a value obtained from the stationary data vary around the stationary
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value, and had thereby two fitting parameters also in the transient case, « and 7,/ .
Only the parameter 7, /a was taken as such from the stationary case. Variation of
m /o would have been a higher-order effect.

Experimental data were thus analyzed in the following way. Two-dimensional
optimization with respect to parameters, 1/« and 7, /o, was performed for the
steady-state temperature profile, Eq. (2.22), as described above. Thereafter, a two-
dimensional optimization by minimizing

/ - ( / 2 (O(a, noja) (1) — O(a, 1)) dt) dz (2.25)

t1

for the time-dependent temperature profiles ©(z,t) was performed with respect to
a and 7y/«. The minimum value of Eq. (2.25) was searched in the vicinity of the 79/«
value obtained for the steady-state profile.

2.7 Results of the tantalum measurements

It turned out that in transient measurements the temperature rise in the 0.3 mm thick
tantalum plate was too small to reliably determine the location of the minimum
of the cost function of Eq. in the two-dimensional parameter space. It also
became clear that changes in the temperature profile of the 1.5 mm thick sample
were too small in the stationary state for optimization by Eq. (2.22). For these reasons
we measured and analyzed only the stationary temperature profile in the 0.3 mm
thick sample and the transient temperature profile in the 1.5 mm thick sample. The
same conclusion can also be made based on a sensitivity analysis (see, e.g., [17]) of
the heat equation with respect to the fitting parameters. The analysis is conducted
in section 4 (Sensitivity Analysis) of the enclosed article III.

An example of a stationary temperature field in the 0.3 mm thick tantalum
plate is shown in Fig. Isothermal contours show clearly the symmetry of the
tield, and the window in the vertical direction (x axis), in which the temperature is
averaged over the y direction, is marked by straight lines. The resulting mean tem-
perature profile in the x direction is shown in Fig. 2.9|together with the best theoret-
ical fit based on Eqs (2.20)-(2.22). The fitted interval in the x direction is indicated by
short horizontal lines in Fig. i.e., 10-mm-long intervals at both edges were left
out of the fit. The inset in Fig.[2.9|shows the difference between the data and the fit in
more detail. For comparison the corresponding difference is also shown for a linear
fin model (see section[2.3) where the convective heat-transfer coefficient does not de-
pend on temperature. It is evident that the model with the temperature-dependent
coefficient provides a better fit. For various stationary measurements with tantalum
the minimum value of the cost function was reduced by 64 % to 88 % compared
to that of the linear fin model. For the measurement of Fig. the parameters that
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FIGURE 2.8 Isotherms of a stationary temperature field measured on the 0.3 mm thick
tantalum sample. The direction of the air flow is indicated. The field was obtained
by time averaging over all saved infrared camera frames in the stationary regime.
The vertical lines border the window in which the mean temperature profile in the
x direction was determined. The short horizontal lines indicate the interval in the z
direction in which the temperature profile of Fig. [2.9| was fitted by the stationary fin
model.

gave the best fit were 19/ = 0.10693 m~! and 7, /o = 0.00503 m~' - K™, as indicated
by the contour lines of the cost function, Eq. (2.22), shown in Fig.

The fitted results for all the stationary temperature data measured are listed
in Table 2.4 The same results are shown graphically in Fig. where the ratio of
the effective heat-loss coefficient (see Eq. (2.19)) to thermal diffusivity is plotted as
a function of temperature. Each line corresponds to a result measured in the tem-
perature range given by the end points of the line. The lengths and positions of the
lines are thus variable. From Table [2.4] the averaged final results for the two fitting
parameters are 7p/a = (0.121 4 0.003) m~! and 7; /o = (0.0044 4 0.0002) m~' - K.
The error estimates are based on the standard deviation of the mean. The value for
the temperature-dependent part of the effective heat-loss coefficient, 1, /o, was used
later in the numerical solution of the transient fin model.

Time-dependent temperature profiles from a single measurement in the 1.5
mm thick tantalum plate are shown in Fig. with 12 s intervals. Also plotted in
this figure is the best fit by a numerical solution of the transient fin model, Eq. (2.23),
with Eq. (2.24). As in the stationary case, the last 10 mm of the experimental temper-
ature profile data were left out when optimizing the cost function, Eq. (2.25). Since
the differences between the experimental and numerical data were so small, they
are shown separately in Fig. They are of the order of 0.1 K at maximum, which
is also the accuracy of the IR camera.
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FIGURE 2.9 The stationary temperature profile from the data of Fig. (dots)
smoothed by a nine-point moving average. The ambient temperature 7, = 297.8 K
has been subtracted. Note that the first 10 mm interval in the z direction of Fig.
is omitted, and the origin has been shifted accordingly. The solid line represents the
best fit by numerically solving the stationary fin model, Eqs (2.20)—(2.22). The last 10
mm interval of the measured profile was not used in the optimization. The differences
between the data and the fit are shown in the inset for two different fin models. The
dashed line is the result for the linear model of section2.3|while the solid line is the re-
sult for the improved fin model with a temperature-dependent convection coefficient.

TABLE 2.4 Fitted parameter values for the stationary temperature measurements on
the 0.3 mm thick tantalum sample, and measured temperature of air flow.

Measurement 7,/ (m™") 7 /a (m™'- K1)

T (K)

1

O 0O U1 WIN

10
average

0.11869
0.12033
0.12262
0.11360
0.11708
0.12083
0.13123
0.13829
0.12366
0.10693
0.12133

0.00501
0.00398
0.00402
0.00462
0.00442
0.00422
0.00417
0.00357
0.00505
0.00503
0.004409

298.7
298.5
298.4
298.6
298.7
298.6
2979
298.1
298.2
297.8
298.35
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FIGURE 2.10 Contour lines of the cost function, Eq. (2.22), for the stationary tem-
perature profile of Fig. The best fit is provided by the parameter values, 79/a =
0.10693 m~! and 11 /a = 0.00503 m~! - K~!. The location of the minimum is marked by
a small circle. The value of the cost function on the innermost contour line is 3 % larger
than the minimum value; on the second contour line, it is 13 % larger; and thereafter,
lines indicate an additional 10 % unit increase in the value.
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FIGURE 2.11 Results of Table[2.4(in a graphical form, ie., 2 = + (T — T ) as a
function of temperature for each individual measurement.
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FIGURE 2.12 Transient temperature profiles in the 1.5 mm thick tantalum plate at 12
s intervals together with the best fit by a numerical solution of the transient fin model,
Eq. with Eq. (2.24). The last 10 mm interval of the measured profile was not used
in the optimization.

006 0

FIGURE 2.13 Difference between the best fit and the measured data of Fig. within
the optimization region.
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The contour lines of the cost function, Eq. (2.25), are shown in Fig. for the
transient temperature data of Fig. In the cost function the parameters were o
and 7, /c, but we actually used the thermal conductivity & as a fitting parameter in-
stead of the thermal-diffusion coefficient «, using the known values for the density
and specific heat of the tantalum shown also in Table 2.3| A comparison to the result
of the linear transient fin model was also made for this measurement. The mini-
mum of the cost function was 30 % higher when the linear model was used. This
is another indication that the temperature-dependent convection coefficient must
be used when fitting the data, although the difference between the models is lower
than in the case of the stationary data above.

0.172
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0.164f¢
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0.158} E
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k W 1B ™Y

FIGURE 2.14 The equal-value contour lines of the cost function, Eq. (2.25), for the
transient temperature profiles of Fig. The minimum of the function is indicated
by a small circle. The value of the cost function on the innermost contour line is 1 %
larger than the minimum value, and subsequent contour lines are drawn at 5-%-unit
increments in the value.

The fitted results for all transient-measurement parameters are shown in Ta-
ble According to our measurements, the thermal conductivity of tantalum is
k= (57.5 4+ 0.2) W-m~!-K™!, which is in excellent agreement with the generally
accepted value in the literature, 57.5 W - m~-K™!, while its thermal diffusivity is
a = (24.74 £ 0.08) x 107% m?-s!. The parameter 7y/a = (0.158 & 0.003) m~* was
31 % greater than the value obtained from the stationary measurements. This dif-
ference can be explained by the different thicknesses of the plates. The transient
measurements were done on a factor-of-five times thicker sample than the station-
ary measurements. Sample thickness can affect the effective heat-loss coefficient 7
only through the contribution of convective heat transfer. The structure of the flow
tield of air on both sides of the plate thus seems to depend on sample thickness,
causing a thickness dependence also in the convective heat-transfer coefficient.



TABLE 2.5 Fitted parameter values for the transient measurements on the 1.5 mm
thick tantalum sample. The values for thermal diffusivity « are related to those of
thermal conductivity k£ by using known values for the density and specific heat of
tantalum (Table[2.3). The measured air flow temperatures are also tabulated.

Measurement &k (W-m™-K™) o (107°m?-s7') ny/a (m™!) T, (K)

1 57.6 24.78 0.1469 298.2
2 57.8 24.87 0.1621 297.8
3 57.0 24.53 0.1565 298.0
4 57.7 24.83 0.1593 298.3
5 57.9 2491 0.1559 298.2
6 57.0 24.53 0.1658 298.3

Average 57.5 24.74 0.1578 298.1




Chapter 3

Thermal diffusivity measurements in
a vacuum chamber

The mathematical models for the experimental setup and its improvement intro-
duced in the previous section took into account both radiative and convective heat
losses from the sample. However, the radiative heat-loss term had to be linearized
in order to combine the two heat-loss components. If we could totally suppress the
convective heat transfer, it would enable us to solve (numerically) the correspond-
ing heat diffusion equation without first linearizing the radiative heat-loss term, i.e.,
the Stefan—Boltzmann law. This would presumably further improve the accuracy of
the method and its suitability for poor heat conductors.

3.1 Experimental setup

In order to entirely get rid of the convective heat transfer from the sample we re-
designed the experimental setup and placed the sample in a vacuum chamber. In
other respects the basic idea of the measurement was the same. The only heat loss
mechanism left now was the radiation exchange between the sample and the sur-
roundings. Our stainless steel vacuum chamber was cylindrical with an inner di-
ameter of 0.3 m and a horizontal length of 1.0 m. One end of the chamber could be
opened entirely by removing a flange plate. The other end had a smaller flange with
an orifice covered by a germanium window 50 mm in diameter and 3 mm thick. The
infrared (IR) camera was placed outside the vacuum chamber and the temperature
evolution of the sample was recorded through the germanium window. This mate-
rial was chosen for its good transmittance at infrared wavelengths. The window was
installed at an angle of 15 degrees relative to the IR camera lens in order to avoid
reflections from the liquid-nitrogen-cooled detector of the camera. A Bourdon tube
gage was used to measure the pressure in the vacuum chamber. Typically, the pres-
sure was lower than the minimum reading, 10 mbar, of the gage scale, which was
sufficient to eliminate the effect of convection. A quick test measurement showed

27
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that at least at a pressure level of 200 mbar the temperature profiles in the sample
were clearly asymmetric.

There were two flat bars welded on the inside walls of the chamber on which
there was placed a gliding steel frame. The sample holder was attached to the frame
(see Fig. B.I). With this arrangement it was easy to keep the position of the sample
constant during repeated measurements, even if the sample had to be taken out of
the chamber in between. The sample holder was made of two split pieces of Bakelite
(see Fig.[3.2). One half of both pieces was attached to the steel frame. The sample was
pressed between the two halves which were screwed together. The material of the
sample holder was chosen based on poor thermal conductivity so as to minimize
the conductive heat loss from the sample to the holder.

FIGURE 3.1 A planar sample inside a vacuum chamber covered with foamed plastic.
On the inside of the units at both ends of the sample are first the room-temperature
water-circulation elements and then the sample holders. The outer parts of these units
are (left) the heater and cooling (right) elements.

The heater element was separated from the sample holder and consisted of
two small copper plates that both had five 7.5-ohm resistors attached side by side to
their outer surfaces. The resistors were connected in two series of five resistors and
these were then connected in parallel for uniform heating result. The copper plates
were tightened around one end of the sample.

At first there was only one sample holder near the heating edge of the sample
and the other end was freely in vacuum. It soon turned out that the temperature dif-
ference between the two ends was not large enough for accurate determination of
thermal conductivity from the temperature profile of the sample. The heat loss from
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[
FIGURE 3.2 A cross-section diagram of the experimental setup of Fig.[3.1|as seen from

above. A is the heater, B and F are the sample holders, C and E the room-temperature
water-circulation elements, D is the sample, and G the cooling element.

the sample by radiation only was too weak for producing a large enough temper-
ature gradient in the sample. To improve the sensitivity of the measurement setup
we introduced a water cooling system at the edge opposite to the heated edge of
the sample. By this way the temperature difference between the sample edges was
enhanced. The free end of the sample was pressed between two halves of a cooling
element that consisted of two hollow copper bars inside which cooling water was
running.

It became clear that the walls of the vacuum chamber reflected infrared radi-
ation and this affected the measured temperature profile of the sample plate. These
complicated reflections would be difficult to handle mathematically. The preferred
situation would be the one where the vacuum chamber could be assumed to be a
black (or gray) body which means, among other things, diffusive reflections and
uniform temperature throughout the chamber. The curved side walls of the vac-
uum chamber were thus covered with 20-mm-thick foamed plastic and the straight
end walls with 50-mm-thick profiled foamed plastic so as to absorb reflections of
infrared waves originating from the heater, cooling element, and sample. A ther-
mocouple was attached to each of the thick foamed plastic pieces for temperature
measurement of the environment.

There was still a problem that caused artifacts in the temperature profile. The
sample holder warmed up during the heating of the sample and consequently there
was radiative heat transfer between the two. Also, at the other end of the sample
the cold cooling element absorbed heat from the sample. In order to prevent the
sample from directly ‘seeing’ the warm end of the sample holder warmed up by
the heater element, or the cold end cooled down by the cooling element, a water-
cooled shielding element was added to the system. Water at room temperature was
circulated through two hollow copper plates attached to each end of the sample
holder. In this way the whole surroundings seen by the sample was kept at uniform
temperature, i.e., that of the vacuum-chamber walls.
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The samples were painted thinly on both sides with black spray paint for en-
hanced sample emittance and thereby for better visibility to and sensitivity of the
IR camera. The IR camera was calibrated for each sample against a thermocouple
that was sandwiched between the back side of the sample and a same-size copper
plate. The temperature at that point of the sample was measured with the IR cam-
era. During calibration the sample temperature was controlled and kept constant by
two heaters, one at each end of the sample. The thermocouple was located in the
middle of the sample between the heaters, where temperature gradient was zero.

3.2 Mathematical model

As there was no convection present in our experimental setup, the temperature field
in the sample was symmetrical with respect to its center line, as was the case in the
earlier setup for very good conductors of heat (section 2.3). We thus restricted our
consideration again to a narrow strip at the center line of the sample plate and used
a one-dimensional heat equation to describe the system,
2

pCp %—7; = 277; - 263 o (T* —eTY). (3.1)
The nomenclature is the same as before with a couple of new parameters. Sample
emissivity, €,, and the emissivity of the chamber walls, €., are assumed to be con-
stants. 7, is the temperature of the chamber walls. In Eq. it has been assumed
that the absorptivity of the sample is equal to its emissivity, and that the thermal
conductivity k is constant and does not depend on temperature.

One end of the sample plate was heated and the time dependence of its temper-
ature 7'(0,t) was measured. The opposite end was cooled to keep the temperature
there as constant as possible, but the time evolution of this temperature, T'(L, t), was
also measured. So, the initial and boundary conditions for Eq. are

I(x, 0) = f($)a
T O,t) = To(t), (3.2)
T(L,t)=TL(t),

where L is the length of the plate. The initial temperature distribution f(z) and the
temperatures 7y (t) and 77 (t) were obtained from the IR-camera measurements.

To determine the unknown emissivity of the measurement chamber, €, in
Eq. (3.1), we made some transient temperature measurements with a tantalum sam-
ple. Tantalum was chosen because its thermal conductivity remains constant over
the temperature range that was used in our measurements. Temperature-dependent
thermal properties would have complicated accurate determination of the emissiv-
ity of the vacuum chamber. The thermal properties of Ta were known (see Table[2.3),
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and the two remaining unknown parameters were determined from the measure-
ments by minimizing the cost function

/ </tt (T e a:8) = T 1)) dt) dz (3.3)

with respect to €. and ¢,. Here 7|, .,) is the numerical solution of the boundary
value problem, Eq. with Eq. (3:2), and T is the measured transient temperature
profile, averaged over the central fifth of the sample.

For the other samples (stainless steel and low-carbon steel) that were studied to
validate the method, the measured transient temperature data were fitted similarly
as for tantalum, but the two unknown parameters were now the thermal conductiv-
ity, k, and the emissivity, ¢,, of the sample.

3.3 Validation of the method

A 0.25-mm-thick tantalum sample was used for the determination of chamber emit-
tance. One end of the sample was first cooled down and, after reaching a steady-
state condition, the heater at the other end was switched on. The time evolution
of the temperature field in the sample was recorded by the IR camera connected
to a PC. One image per second was saved during the heating, because now the
temperature rise in the sample was quite slow. The images were averaged over the
central fifth of the sample width so as to obtain a one-dimensional time-dependent
mean temperature profile. An example of (part of) the measurement data is shown
in Fig.[3.3|

Numerical solution to Eq. with Eq. was computed for several values
of the fitting parameters, ¢, and ¢;, using the material properties of tantalum at 300
K given in Table The fitted results for all measurements are given in Table
and contours of the cost function, Eq. (3.3), for the first measurement are shown in
Fig. The normalized cost-function values I,,,,,, in Table 3.1} were obtained by di-
viding the minimum of the cost function by the integration area. This normalization
was done so that comparison between individual measurements would be reason-
able. According to our measurements, the emittance of the vacuum chamber was
€. = 0.950 £ 0.002, and this value was used later when fitting other measurement
data (two steel samples). The emittance of the tantalum sample plate was found to
be e, = 0.961 + 0.011.

A 0.5-mm-thick low-carbon steel sample that consisted mostly of iron (about
99.2 %) was measured to check that the method and equipment worked properly.
Measurement data for this case are shown in Fig. 3.5/ together with the best fit. Con-
tour lines of the cost function, Eq. (3.3), with fitting parameters k and ¢,, are shown
in Fig. The results for all measurements are given in Table and they indi-
cate that the thermal conductivity of the sample was 54.8 £ 0.6 W-m~!-K™". This is
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FIGURE 3.3 Transient temperature profiles in a 0.25-mm-thick tantalum sample at 60
s intervals (blue) together with the best fit (red) by the model, Eqs and (3.2).

TABLE 3.1 The values of best-fit parameters for the individual measurements on the
tantalum sample. I,,,,r, is the normalized value of the cost-function minimum. Error
estimates are based on the standard deviation of the mean.

Measurement € €s Lnorm (K?)
1 0956 0.93 0.016869
2 0950 0.99 0.010438
3 0945 095 0.016143
4 0945 098 0.012299
5 0954 097 0.011550
6 0943 099 0.016001

7 0954 0.92 0.019381

Average 0950 0961 0.0147
Error estimate 0.002 0.011 0.0013

TABLE 3.2 Density, specific heat, and heat conductivity of the sample materials at 300

K.
Sample pkg-m3) ¢, (J-kg7" - K') kE(W-m'-K?)
stainless steel 7900 440 15.0
low-carbon steel 7870 447 62

bronze 8780 355 54
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FIGURE 3.4 Contour lines of the cost function, Eq. , for a tantalum measurement.
The best fit for the measured temperature data is provided by parameter values ¢, =
0.956 and €5, = 0.93 which minimize the cost function. Each contour line indicates a 5
% increase in the cost-function value compared to its minimum value.

about 12 % lower than the value quoted in Table which was obtained from the
manufacturer and was estimated based on the material composition.

As another verification, we made measurements on a 0.8-mm-thick stainless
steel sample. The resulting best-fit parameters are given in Table The thermal
conductivity was found to be in this case 14.33 £0.09 W-m~! - K~', which is slightly
(by less than 5 %) lower than the value 15.0 W-m~!- K" provided by the manufac-
turer. The mean value of the emissivity of the sample was 1.01, which is of course
unphysical, but fluctuations between the individual measurements in this parame-
ter were about ten times larger than those in the thermal conductivity, and evidently
the number of the measurements did not provide a representative value for this
quantity. As the thermal conductivity did not seem to depend too much on sample
emissivity, measurements were not continued.
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FIGURE 3.5 Transient temperature profiles in a 0.5-mm-thick low-carbon-steel sample
at 30 s intervals (blue) together with the best fit by the model (red).
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FIGURE 3.6 Contour lines of the cost function, Eq. (3.3), for a measurement on the
low-carbon-steel sample. The innermost contour line shows the 1 % difference to the
minimum of the cost function value and thereafter each line indicates an additional
5-%-unit increase in the value.



TABLE 3.3 The values of best-fit parameters for the individual measurements on the
low-carbon-steel sample.

Measurement &k (W-m~"-K™) ¢  Lm (K%

1 54.5 095 0.017431

2 52.5 0.83 0.031479

3 57.0 1.07 0.017849

4 54.0 091 0.017667

5 54.0 0.98 0.017464

6 56.0 1.07 0.017593

7 54.0 0.92  0.020850

8 56.5 1.05 0.016896
Average 54.8 0.97 0.021
Error estimate 0.6 0.04 0.003

TABLE 3.4 The values of best-fit parameters for the individual measurements on the
stainless-steel sample.

Measurement &k (W-m™-K™) ¢  Lm (K%

1 14.5 0.97 0.017434
2 14.1 0.90 0.005049
3 14.4 1.15 0.008680
4 14.3 1.03  0.008169
Average 14.33 1.01 0.010

Error estimate 0.09 0.06 0.003
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Chapter 4

Effective thermal conductivity of
porous materials

Porous materials are used in many applications, e.g., as insulators, filters and sep-
arators, and knowledge of the heat transport properties of the substance is often
important. The thermal conductivity of such a material may differ greatly from that
of solid 'bulk” material of which the porous material is made. Inside the material
there is air or some other fluid (or even vacuum in some cases) surrounding solid
particles that form the ‘skeleton” of the material. Heat transport in this kind of com-
plex network of solid and fluid phases is a complicated process and involves all
three heat transport modes. However, the heat transfer rate through the material
can be described by an effective thermal conductivity, i.e., the thermal conductivity
the sample would have if it was regarded as a block of homogeneous material.

The effective thermal conductivity of porous materials is not only dependent
on the properties of the solid component and porosity, but also the structural orga-
nization of the material plays an important role. That is it depends on the way the
solid constituents of the material are connected so as to form a three-dimensional
(3D) body [18].

A common group of porous materials is formed by packed beds of solid (mostly
spherical) particles. Especially packed beds with regular structures have been much
studied analytically, and many results for their effective thermal conductivity are
given in Ref. [19, pp. 129-130], see also [20]. It is important to determine how well the
analytical (averaged) expressions describe the properties of real porous materials.
This question is in essence related to how the relevant structural parameters used
in theoretical expressions can actually be determined except for regular structures.
Recently methods of X-ray tomography have been advanced so that such questions
can now be answered via 3D structural analysis. To begin with one has, however,
to measure the effective thermal conductivity. The method for measuring thermal
conductivities in vacuum as described in the preceding chapter is well suited for
porous samples, as long as their thermal diffusivity is high enough.

37
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4.1 Theoretical expectations

For the porous material, filters made of sintered bronze spheres was chosen, also
because a similar problem had been investigated theoretically by Chan and Tien
[21], who had studied thermal conductivity of packed spheres in vacuum. Their
spheres were of uniform size and the contacts between spheres were assumed to
follow the Herzian elastic deformation relation,

1/3
F 4.1
= R} R<R 4.1)

where R, is the radius of the spherical contact area, ji, the Poisson ratio of the ma-
terial, £, its Young’s modulus, and F' the force pressing the spheres of radius R
together. They assumed a uniform heat flux through the contact surface and calcu-
lated the thermal resistance of a single sphere. Thermal resistance can be defined as
the ratio of the temperature difference between two opposing contacts of the sphere
to the conductive heat flux through the sphere.

The thermal resistance of a system consisting of packed spheres was consid-
ered in Ref. [21] as a network of individual thermal resistances, and the final out-
come depended on the structure of the packing. Results were given for simple cubic,
body-centered cubic, and face-centered cubic lattices. The ratio of the effective ther-
mal conductivity, k., of the porous material to the conductivity of the solid sphere
material, k;, was found to be given by [19, p. 132]

ke (30— 1 1 /N,
k_s_[ R o\, ) (4.2)

where Ny is the number of particles per unit area in the plane perpendicular to the
heat flow and Ny, is the number of particles per unit length along the direction of
the heat flow. The value of constant S depends on the packing structure such that
S~ gives the number of contact pairs through which heat flows into and out of an
individual sphere. In the case of irregular packings, S~' can be considered as the
average number of such contact pairs per particle.

It is evident from Eqs and that the effective thermal conductivity of
a porous material is proportional to the size of the total contact area, 2 R./S, for
an individual particle. So as to test such dependences we imaged the porous sam-
ples with X-ray tomography, and determined the quantities that appear in Eq.
from the resulting 3D images. Furthermore, these tomographic images were used to
simulate heat diffusion (conduction) through the system of solid particles. In these
simulations we could also include, if necessary, the effect of contact resistance that
is missing from Eq. (4.2), and thereby analyze its importance in real materials.
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4.2 Thermal conductivity of sintered bronze plates of
varying porosity

The measurement method developed and validated as described in Chapter 3| was
applied to three samples made of sintered bronze (89 % Cu + 11 % Sn) by GKN
Sinter Metals Filters GmbH. The relevant properties of these samples are given in
Table Properties of bulk bronze were already given in Table The porosities
of the samples were obtained from X-ray tomographic images described in the next
section. An example of contour lines of the cost function, Eq. (3.3), with fitting pa-
rameters k£ and ¢,, are shown in Fig. for a measurement on sample B 30. The
averaged results for the measured thermal conductivities of the three samples are
given in Table These effective thermal conductivities are roughly 20 % of the
conductivity value 54 W-m~! - K™ for bulk bronze.

TABLE 4.1 Porosity, thickness, and density of the samples made of sintered bronze.

Sample ¢ (%) thickness (mm) p (kg-m™?)
B 30 37+1 2.00 £ 0.05 5650 £ 150
B 45 38 £2 2.05 £ 0.05 5420 £ 140
B 80 42 + 2 1.80 +£0.05 5260 + 150
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FIGURE 4.1 Contour lines of the cost function for a sintered bronze plate (sample
B 30) measurement. The best fit for the measured temperature data is provided by
parameter values k¥ = 11.87 W-m~!-K™! and ¢, = 0.83 which minimize the cost
function. The value of the cost function on the innermost contour line is 1 % larger
than the minimum value, and thereafter each line indicates an additional 5-%-unit
increase in the cost-function value.
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TABLE 4.2 The average values of the best-fit parameters for the measurements on the
sintered bronze plates.

Sample k (W-m~!.K™) €s Lorm (K?)
B 30 12.0£0.3 0.85+0.06 0.017£0.003
B 45 9.68 + 0.08 0.84 £0.04 0.0193 £0.0010
B 80 9.3+0.2 1.04 +£0.02 0.0101 4 0.0008

Because the measurement setup was in vacuum, the measured thermal con-
ductivities for porous materials are lower limits. In air the conductivity should be
slightly higher as the pores are then filled with air, although it is a poor conductor
of heat.

The emissivity of sample B 80 deviates from those of the other two samples,
and the result is unphysical. Even with the lower error limit the result is greater
than one. In Chapter 3.3|the measured emissivity of the 0.8-mm-thick stainless steel
sample was 1.01 £ 0.06, which was explained by large fluctuations between four
individual measurements. Experimental data for sample B 80 consist of seven mea-
surements and, as evidenced by the small error limits, fluctuations between indi-
vidual measurements were quite low. The fits to the measured temperature pro-
tiles were also good, because of the three sintered bronze samples the cost function
value I,,,,,, was the lowest for B 80 (see Table . The only explanation left for the
too large emissivity is that, in addition to radiative heat transfer, there has been an-
other mechanism of heat transfer from the sample. Most probably some heat from
the sample has escaped by conduction through connections with the sample hold-
ers (see Fig.[3.2), and this is seen as an abnormally high apparent emissivity. This
phenomenon is most significant for samples that are poor heat conductors.

4.3 3D structural analysis of sintered plates by X-ray to-
mography

X-ray tomography is a method for obtaining a 3D digital representation of the inner
structure of a sample based on differences in the attenuation of X-rays inside the
sample. The method is based on computational reconstruction of a series of 2D X-
ray projection images into a 3D representation. The projection images are obtained
by exposing the sample to X-rays from various angles by rotating the sample around
its axis on a sample holder. Typically a 180- or 360-degree rotation is used with a step
size of less than one degree. The X-ray source is an X-ray tube in table-top scanners.
The detector is a 2D CCD chip coupled with a scintillator plate that converts sample-
penetrating X-rays into visible light.

The end product of an X-ray tomography scan and reconstruction procedure
is a 3D data matrix that contains the X-ray attenuation factors (proportional to ma-
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terial density) in the volume of view of the CT scanner. In other words the device
generates a 3D density map of the sample and air that are in the scanning area. This
density map can be considered as a 3D image of the sample structure and can be
analyzed and used in simulations. X-ray tomography thus enables one to analyze
samples with their original complex structure without destroying or mechanically
altering their structure during imaging.

The sintered bronze plates were imaged with an X-ray microtomography scan-
ner (Xradia MicroXCT-400) for detailed 3D reconstructions of their structure. The
voxel sizes of the images were (1.95 yum)?, (3.03 um)3, and (3.13 um)? for the sam-
ples B 30, B 45, and B 80. A part of sample B 30 is visualized in Fig.

FIGURE 4.2 A 3D visualization of part of a tomographic reconstruction of sample B
30 (left) and a zoomed-in 3D rendering of some particles inside the sample (right). The
average diameter of the particles was about 130 ym. Figures: Tuomas Turpeinen.

For quantitative structural analysis the original gray-scale images of the sam-
ples were first thresholded so that bronze and air were segmented from each other,
see Figs 4.3/ (a) and (b). The porosity of the sample was then easily determined by
dividing the number of black voxels (now representing void volume) by the to-
tal number of voxels. Next the thresholded black and white images were further
segmented so as to identify the individual spherical bronze particles for more de-
tailed structure analysis. To find the particle boundaries a watershed segmentation
algorithm was applied. This was the most challenging part in the structural
analysis. Algorithmic software development was needed to complete this task. An
example of a sample with segmented particles is shown in Fig. (c). For each
identified particle we determined the volume, surface area, and number and area
of contacts ("throats’) with neighboring particles. From these results the particle-size
and contact-area distributions were computed.

It was also possible to compute the number of particles per unit area and per
unit length of the sample, the quantities N4 and Ny, respectively, of Eq. (4.2). But
first it was necessary to determine the volume in which to count the particles. One



42

side in every sample was quite even, but the other one was rough. On the rough
surface the particle density was lower than in the bulk material. If a sample had
been cropped according to the highest peaks of the two surfaces, a lot of air would
have been included and thus the particle densities would have become unrealisti-
cally low. Instead, mode heights of the two surfaces were used as boundaries. The
particle number distributions are shown for sample B 45 in Fig. 4.4l Notice that these
distributions were plotted for pure number of particles counted for a certain cross-
section area and sample length, and thus the (dimensionless) distributions are de-
noted by N} and N;. The distributions N4 and N were obtained by dividing N}
and N; by sample area and length, respectively.

Mode surface heights were, however, not used when determining the thick-
ness of a sample, because they would have led to a too low thickness value. The
rough surfaces were instead identified by fitting them with a flexible, elastic, falling
sheet. By an appropriate choice for the value of a stiffness parameter, the relaxed
sheet followed the surface shapes close enough, but still smoothing them suffi-
ciently. Mean thickness was then calculated for the volume constrained by elastic
surfaces on both sides.

FIGURE 4.3 (a) A thin slice of an X-ray tomographic reconstruction of sample B 45.
(b) A thresholded version of (a) in which bronze (white) and air (black) have been
segmented. (c) The result of segmentation of the individual particles by applying a
watershed algorithm. Individual bronze particles are marked by random gray-scale
values. (d) The contacts between segmented particles are highlighted with 2-voxel-
thick gray boundaries.

Another important quantity was the total contact area for each bronze particle,
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FIGURE 4.4 (a) Distribution of the number of bronze particles per an area of 660 x
500 pixels for sample B 45. The mean of the distribution is 90.9. (b) Distribution of the
number of particles per sample length of 1857 pixels with a mean value of 25.5. The
pixel size in this sample was 3.03 ym.

which is needed for obtaining an estimate for the parameter R./S that also appears
in Eq. (4.2). The distribution of the total contact area per particle is shown in Fig.
The mean values of the distributions determined for the three samples are given in
Table 4.3

TABLE 4.3 The mean values of the distributions determined by X-ray tomography
and image analysis for the sintered bronze plates.

Sample N, (10°m™2) N (103m™') A%, . (1078 m?)

contact

B 30 90.8 7.50 2.535
B 45 30.1 4.53 5.773
B 80 13.2 2.90 10.156

We are now in the position to check the validity of Eq. (4.2) in the form

k. 1 R.N [Att, N
e _ dleiVA x CO’rLtact_A7 (43)
k’s 0.531 S NL m NL

which is now directly related to quantities determined by X-ray tomography anal-
ysis. The left-hand side of this equation is the ratio of measured thermal conduc-
tivity to that of bulk bronze given in Table The result, k./ks as a function of
(ALt . Jm)Y%- Na/Ny,is plotted in Fig.

It is evident from Fig. 4.6|that the measured thermal conductivities for sintered
bronze plates follow roughly the dependence suggested by Eq. (4.3). The biggest
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FIGURE 4.5 Distribution of the total contact area per particle for sample B 45.
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uncertainty lies in the = coordinates of the measurement data in Fig. 4.6/ because
of the wide distributions of the total contact area and the number of particles per
unit area and length. In order to analyze the thermal conductivity in the samples in
more detail, numerical heat-conduction simulations in tomographic reconstructions
of the sintered plates were performed.

4.4 Simulation of thermal conductivity in tomographic
reconstructions of sintered plates

Segmented X-ray tomography images were used as simulation geometries in a nu-
merical determination of the thermal conductivity of the sintered bronze plates. For
these simulations the final segmented images were manipulated so that to each con-
tact a two-voxel-deep layer was added, and the rest of the particles were treated as
bulk bronze, see Fig.4.3|(d). In this way it was possible to associate the contacts with
a different (smaller) thermal conductivity than that of bronze so as to incorporate the
effect of thermal (contact) resistance between individual particles. Simulations were
based on the lattice-Boltzmann method [23]] that has recently been applied success-
fully to porous structures [3,24].

The lattice-Boltzmann (LB) method is a kinetic-theory-based mesoscopic ap-
proach used to simulate various transport phenomena. Most commonly, the LB
method has been used to simulate fluid flow, but it also suits well to, e.g., mass
and heat diffusion problems. One of the main advantages of the LB method is the
straightforward implementation of boundary conditions, which enables simulations
in complex geometries such as porous materials. Thus, we can directly use the seg-
mented tomographic reconstructions as the computational lattices and solve the
heat-conduction problem in the imaged structures.

For practical reasons, the tomographic images were divided into three smaller
pieces in the direction of the heat flow in the experiments. In each piece a constant
temperature was imposed at two opposite edges of the sample, and the conductive
heat transfer through the sample was simulated until a steady state was obtained.
The steady-state heat flux was determined, and the effective thermal conductivity
was obtained from that.

For each sample thermal conductivity was simulated first without contact re-
sistance between contacting particles. Results from the simulations are shown in
Table {4.4] together with the measured thermal-conductivity ratios. The simulation
result for each sample was taken as the average of the results for the three smaller
geometries. Thermal conductivities between the smaller pieces varied a couple of
percent.

The simulated thermal-conductivity ratios were systematically higher than the
measured ones. A possible explanation to this discrepancy lies in the resolution of
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TABLE 4.4 Ratio of the effective thermal conductivity to bulk bronze conductivity for
the sintered bronze samples. Simulations by the lattice-Boltzmann method are com-
pared to measurements.

Sample Measured k./k; Simulated k./k; Difference (%)

B 30 0.222 £ 0.006 0.286 29
B 45 0.179 £ 0.002 0.279 56
B 80 0.172 £ 0.004 0.252 46

the X-ray tomographic images. Simulations are sensitive to the throat areas between
bronze particles, and these contacts were determined from the segmented X-ray re-
constructions. If resolution is not good enough, small gaps between adjacent par-
ticles may appear as closed, and the contact area is increased from its true value,
which leads to a higher effective thermal conductivity in the simulations.
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FIGURE 4.7 The effect of contact resistance between bronze particles on the effec-
tive thermal conductivity of the sample by lattice-Boltzmann simulations. The mea-
sured effective-to-bulk thermal-conductivity ratios are indicated by the horizontal
lines. Simulation data by Jari Hyvdluoma.

For each sample thermal conductivity was also simulated for a varying contact
resistance between contacting particles, assumed to be the same for all the contacts
in a given sample. The resulting simulation data (see Fig. [£.7) indicated a progres-
sively lower thermal-conductivity ratio k./k, for all samples as the thermal con-
tact resistance was increased, i.e., the thermal conductivity of the contacts was de-
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creased. Matching simulation data with the measurement results also proposed that
the contact resistance would be different for each sample. The smallest contact re-
sistance, i.e., the largest kcontact/ks ratio was determined for sample B 30 that was
imaged with the smallest voxel size, (1.95 um)?. Also, the largest contact resistance
was related to sample B 80 that was imaged using the largest voxel size, (3.13 ym)?.
This supports the assumption that insufficient resolution has induced an apparent
contact resistance.

The effect of contact resistance (whether it is real or apparent, i.e., induced by
overestimating the contact areas because of insufficient resolution in the simulation
geometries) can be included in the theoretical expression Eq. (4.3). Assuming that
the heat conductivity (current) through a contact is proportional to contact area, the
latter can be normalized by the real or apparent contact resistance determined by
simulations. This means that the total contact area per particle was reduced by a
factor of 0.195 in sample B 30, 0.105 in B45, and 0.075 in B80. After this renormaliza-
tion of A%, . to Aren, . we find the results shown in Fig.
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FIGURE 4.8 A linear least-squares fit to the measurement data as a function of
(Aren, ./m)Y/2. Na /Ny, for the three sintered bronze plates. The samples correspond-
ing to the data points from top to bottom are B 30 (x), B 45 (-), and B 80 (O). The total
contact area per particle was normalized in every sample so as to take into account the
overestimation of contact areas in the tomographic images. In the inset the measure-
ment data (dots) are shown as a function of porosity. The lines are theoretical upper
(effective-medium theory, green line) and lower (dispersed particles, red line) bounds
for the dependence.

Interestingly, the results that include renormalized contact areas look similar
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to those of Fig. It may have been just a coincidence that the different contact
resistances of the samples were such that, after correcting the total contact area per
particle, the relative locations of the three data points remained almost the same as
before the correction. The inset of Fig.4.8shows the measured thermal conductivity
ratio as a function of porosity. Theoretical thermal-conductivity bounds given by the
Maxwell-Eucken model for dispersed particles (lower bound) [25] and the Effective-
Medium Theory (upper bound) [26,27] for two continuum phases are also plotted
for comparison [18]. Even though the particles were not dispersed in the sintered
bronze plates, it is evident that the effective conductivity can hardly be described
by a simple function of porosity as the area of possible conductivities between the
upper and lower bounds is very large. Also, the relative locations of the measured
points even for the short range of porosities covered indicate a similar conclusion. It
is clear that more than one structural parameter are needed to describe the thermal
conductivity of sintered bronze plates.

In conclusion, the theoretical result, Eq. (4.3), explained well the measured
thermal conductivities for the present samples, when their detailed 3D structure
was analyzed. Notice that three structural parameters are needed to describe the
thermal conductivity and that there appears to be no simple relationship between
heat conductivity and porosity. The effect of thermal contact resistance, or incor-
rect contact area, between constituent particles could be included in the model by
normalizing the contact areas determined by tomographic analysis. This effect was
estimated by numerical simulations based on tomographic reconstructions of the
samples. In the present set of samples, there should not have been any significant
(real) contact resistance. According to the simulation results the smallest apparent
contact resistance, i.e., the largest k.oniact/ ks ratio, was determined for sample B 30
that was imaged with the smallest voxel size. Also, the largest apparent contact re-
sistance was related to sample B 80 that was imaged using the largest voxel size.
This supports the assumption that insufficient resolution in the simulation geome-
tries had induced an apparent contact resistance due to overestimation of the contact
area. Tomographic images of samples with a better voxel resolution also supported
this assumption as narrow gaps beween particles could be observed, which disap-
peared when the images were thresholded into bronze particles and air. In principle
this effect could be confirmed by numerical simulations of conductivity using to-
mographic reconstructions of clearly higher resolution. Unfortunately high resolu-
tion means small sample size, and such simulations would not give representative
results (and would be too time consuming if large sample sizes could somehow
be used). In the 3D structural analysis by X-ray tomography, the most challenging
task was thus the segmentation of individual particles. Algorithmic software de-
velopment was needed to reach even the present segmentation results that were
estimated to be satisfactory. The contact area between particles is sensitive to image
quality, and at present it seems difficult to avoid the narrow-gap problem. Methods
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should be developed further, or some other methods should be incorporated as we
did here, so as to better estimate this parameter.
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Chapter 5

Height-fluctuation distributions of
slow-combustion fronts in paper

Slow-combustion fronts in paper sheets have been studied earlier [7]. The sheets
were treated with potassium nitrate (KNO;), because without an oxidizer paper
would not burn slowly (flamelessly) for extended periods of time. Then a paper
sheet aligned vertically was induced to smolder by igniting it on one edge with
an electrically-heated tungsten wire. The time evolution of the smoldering front
in paper was recorded with a CCD-camera system for data analysis. The slow-
combustion fronts in paper were shown to belong to the KPZ universality class [7],
i.e., the dynamics of a propagating front is statistically governed by the Kardar-
Parisi-Zhang equation [28] which can be written in the form

o (0
8t_yax2 2

2
%> + 77(.1', t) (51)
for a one-dimensional front in a two-dimensional space. Here h(z, t) is the local po-
sition (height) of the propagating front, v is the surface tension parameter, A is the
coefficient of the nonlinear term, and 7 is the noise term that is assumed to be Gaus-
sian and uncorrelated. Notice that here we denote the front position by %, while the
coefficient of convective heat transfer is denoted by I' (in contrast with the previous
chapters).

Propagation of combustion fronts in paper is essentially a heat transport prob-
lem. Combustion is a chemical reaction that produces heat which is then transported
away by conduction along the paper and by convection (and radiation) to the sur-
rounding air. The whole propagation process can be studied by a temperature field
T in the paper. When the radiative heat transfer is neglected, the evolution of the
temperature field is described [8] by the equation

%_;F =aV?T —T-[T —Ty] + R(T,C), (5.2)
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which is the heat diffusion equation with a source term consisting of the two latter
terms on the right-hand-side of the equation. The first of these is the convective heat
loss described by Newtonian cooling (7 is the temperature of the surrounding air),
and the second one is a heat generation term related to chemical reactions, i.e., slow
combustion in this case. The convective heat transfer coefficient I' is, in principle,
dependent on the location of the front in a similar way as in Chapters 2.5and
But as the effect of the correction term was quite small (see the inset of Fig. 2.9 on
page , here we approximate I" to be a constant.
The term R(T', C') depends in a nonlinear way on the local temperature 7'(z, y, t),

and is proportional to the reactant concentration C(z,y,t). In Ref. [§] this term was

modeled as
oC

A3/2
R=XM——T324TC = _\, ==,

PCp ot
where A is the activation energy of the reaction (with the Boltzmann constant set to
unity), p is the density and ¢, the specific heat of air, and A, and A, are constants.
As it turns out [8], Eqs and are equivalent to the KPZ equation, if short
wavelength components in the fronts are not considered and the reactant concen-
tration is nearly uniform. Because these criteria were met in our experiments, the
slow-combustion fronts are considered from the perspective of KPZ dynamics in
the following.

(5.3)

5.1 KPZ-type interfaces and their height-fluctuation dis-
tributions

The (squared) front width measures the roughness of an interface and is defined as
w(L,t) = ((h = h)?), (5.4)

where the overbar denotes spatial and the brackets noise averaging. L is the system
size in the x direction. For an initially flat interface that follows KPZ dynamics the
roughness scales as w ~ t'/? at early times. Later, when the system becomes spa-
tially correlated over the whole system length, L, a stationary state is reached as the
roughness saturates on a certain level w;, ~ LY/2 [29-31].

Exact results are available for height fluctuations of the KPZ type interfaces
[32]. This problem is related to distributions of the largest eigenvalues of certain
ensembles of random matrices. More specifically, if h(z,t) is the position of the in-
terface at point « at time ¢ in a translationally invariant system, the probability dis-
tribution for local fluctuations of the position around its mean value is given by

P(h(x,tQ) — [A(z, 1) + (2 — t1)(0ih)] < s>

Aty — 1)1/ a($), (5.5)
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where A, is a constant depending on system-specific parameters, and (0;h) is the
average velocity of the interface in the time interval ¢t; < ¢t < t,. The distribution
function F;(s) depends on the global geometry of the average interface and also on
its initial conditions: this distribution function is different for stationary and tran-
sient fluctuations meaning stationary and flat initial configurations of the interface,
respectively.

For transient dynamics that evolve from the initial conditions h(z,t;) = 0 for
all z, realized for times ¢, < ty < tg With ¢4, the time at which the stationary state
is reached, the distribution function for fluctuation in the local position (height) of
the interface is denoted by Fj(s) in Ref. [32]. For a system in a stationary state, for
which the times ¢; and t, defined above must satisfy t.,, < t; < to, this distribution
function is denoted by Fy(s) [32]. Expressions for the distribution functions F(s)
and the respective probability densities f,(s) = dF,(s)/ds in both these cases can be
found in Refs [32-36].

5.2 Slow-combustion front experiments

Ample experimental evidence had been provided [7,37-40] that indicates the dy-
namics of slow-combustion fronts in paper asymptotically belong to the KPZ uni-
versality class. Therefore it was interesting to study also the height-fluctuation dis-
tributions in these fronts and try to verify existing theoretical results.

The experimental setup used was the one reported by Maunuksela et al. [37]],
and described in more detail in [7]. In brief, paper samples were made to smolder,
with initially a linear combustion front, inside a chamber whose air flow could be
controlled. A sample was attached to an aluminum frame with columns of thin pins
pushed through folds at the vertical edges of the sample. The folds also compen-
sated for the heat loss from the combustion front to the metallic pins. The frame was
placed vertically in a chamber where air flow was directly upwards. Propagating
fronts were recorded with three parallel black and white CCD cameras each hav-
ing 768 x 548 pixels. The images were joined together and saved on-line on a hard
drive for further processing and data analysis. The sample rate of the cameras was
2 images per second, i.e., At = 0.5 s, and the spatial resolution was 0.15 mm.

Copier paper of basis weight 80 g/m? and sample size 340 mm (width) by
600 mm was used in the experiments. To achieve flameless slow-combustion fronts,
paper was impregnated with potassium nitrate that acted as an oxygen source. A
dilute aqueous solution of KNO; was sprayed over the samples, after which the
samples were dried in a press to maintain their planarity. Random small-scale vari-
ations in the concentration were obviously introduced by the spraying process. The
average KNOj concentration of the samples varied between 1.3 and 1.9 g/ m2.

Ignition of the front was made with a tungsten wire heated by an electric cur-
rent. The wire was stretched over the sample with two metallic strings to keep
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its tension constant during heating, and to thereby get a linear front initially. The
copier-paper samples were burned from top to bottom to minimize the convective
heat transfer ahead of the front during its propagation.

Two initial conditions were used in the experiments: horizontal ignition and
ignition with a slope of about ten degrees in the propagating fronts. The tilt an-
gle used was only selected because it was convenient for the three-camera system.
The angle was also chosen such that the system was not expected to be near the
known phase boundaries for related models in the same universality class [41]]. For
the horizontal and tilted ignition a total of 18 and 21 successful burns were recorded,
respectively.

5.3 Measured height fluctuation distributions

An example of combustion-front-height data for a horizontal ignition is shown in
Fig. Only the first half of the burn is shown, and the analysis window inside the
transient regime (where w ~ t'/%) is indicated by the lowest and highest of the thick
lines. The front-height data from points close to the boundaries of the sample were
excluded to avoid any boundary effects.

300

250

200
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100

50

0 50 100 150 200 250 300
X [mm]
FIGURE 5.1 The first half of a horizontal burn. The analysis window used in the tran-
sient regime is indicated by the lowest and highest of the thick lines. In this particular
case a pronounced avalanche in the middle of the burn was removed by lowering the

upper limit of the analysis window. The time difference between the fronts shown is
10s.
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The height-fluctuation distribution determined for horizontal slow-combustion
fronts in the transient regime is shown by dots in Fig. The distribution is an av-
erage over individual burns. The average velocity (0,h) in Eq. was determined
as a linear least-squares fit to the mean height as a function of time of the front.
Within the indicated time interval, which was the interval over which the height-
fluctuation averages were taken, these velocities varied in time. The front velocities
averaged over the whole analysis intervals were also somewhat sample dependent.
This caused the mean values of individual fluctuation distributions to differ from
each other, and their direct summation would not have been meaningful. Because
of this, the mean value was subtracted from every individual distribution before
summation, and hence the experimental distribution has zero mean. This is why the
theoretical f; distribution had to be transferred also to zero mean before fitting with
it the transient height-fluctuation distribution.
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FIGURE 5.2 Height-fluctuation distribution for horizontal fronts in the transient

(w ~ t'/3) regime, and a fit by a (scaled and shifted) theoretical distribution f;. A
theoretical inversion of the measured distribution is shown in the inset. The dots de-
note the measured data and the circles the data with an avalanche suppressed.

Unexpected peaks appear at large positive fluctuations in Fig. These peaks
can be attributed to so called ‘avalanches’, i.e., to narrow intermittent parts of the
front that rapidly advance ahead of the rest of it. This kind of behavior is trig-
gered by quenched noise in the system (variations in the density of paper ma-
terial and in the KNO; concentration), and would not be present in a pure KPZ
system with uncorrelated white noise. In order to diminish the effect of such "un-
wanted” avalanches on the height-fluctuation distribution, one distinct avalanche
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was suppressed from the measured data (see Fig. 5.1). When the analysis window
was reduced for the measurement containing an avalanche, the height-fluctuation
distribution was well fitted by the theoretical distribution f; shown by a line in
Fig. The original [32-36] horizontal scale of the f; distribution was multiplied
by a proper scaling factor, in this case by 0.67845. The scaling factor was selected
such that the two distributions had equal variance after normalization. Because the
mean value of the experimental distribution was zero as explained above, the fit-
ted distribution was also shifted horizontally to zero mean. A theoretical inversion
of the measured distribution is shown in the inset of Fig. and it indicates close
agreement of the experimental result with the theoretical distribution.
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FIGURE 5.3 Height-fluctuation distribution for horizontal fronts in the saturated
regime, and a fit by a (scaled) fy distribution.

Height-fluctuation distribution was also determined for saturated fronts (sat-
urated width wy). Figure 5.3|shows the distribution measured for horizontal fronts
together with a fit by the theoretical f; distribution. It seems that, in the saturated
regime, height fluctuations follow fairly closely the f; distribution. For large fluctu-
ations, i.e., for large o, the results fall below the theoretical distribution because of
limited statistics and finite system size. The skewness of the measured distribution
is 0.32 while that of a f; distribution is 0.359.

It is not possible to maintain indefinitely a tilted slow-combustion front with
free boundaries because the front will gradually straighten as a A term responsible
for KPZ-type behavior will drive small-tilt fluctuations inwards from the up-hill
boundary. The leading edge of the front thus tends to get retarded from its constant-
average-tilt position (see Fig.[5.4). These boundary effects will eventually penetrate
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the system and straighten out the whole front.

However, it is possible to study the behavior of the tilted part of a propagating
front when an appropriate position window is applied in the analysis. There is an
upper limit to the time scale during which it is possible to examine in this way a
tilted front. This time scale obviously depends on system size.

h [mm]

0O 50 100 150 200 250 300
X [mm]

FIGURE 5.4 A slow-combustion burn for a tilted ignition with an average slope of ten
degrees. The time difference between the fronts shown is 20 s. Penetration inwards of
boundary effects is clearly visible.

The definition Eq. (5.4) of front roughness w is not quite consistent for tilted
fronts, because the mean height i does not represent the “average profile’ of a front.
Therefore, for tilted fronts, the front width was measured with respect to linear least-
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squares fits of the fronts.

Figure [5.5/shows the height-fluctuation distribution measured for tilted fronts
in the transient regime. These fluctuations were measured in the direction perpen-
dicular to the tilted ignition front, i.e., the fronts of a tilted burn were rotated by 10
degrees before determining their height fluctuations. The skewness of the measured
distribution is 0.33 while that of the f; distribution is 0.2935.
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FIGURE 5.5 Height-fluctuation distribution for tilted fronts in the transient regime,
and a fit by a (scaled and shifted) f; distribution.

The theoretical results reported for height-fluctuation distributions [32] were
derived for infinite systems for which front width can grow without saturation. In
real life the finite size of the system leads to a transient regime of finite duration
before saturation sets in. Thus there will always be a cutoff in the measured ampli-
tude of fluctuations in the front position, and the data will fall below the theoretical
distribution at large Jh.



Chapter 6

Conclusions

Measurement methods for determining the in-plane thermal diffusivity of planar
samples were developed. The techniques used were based on heating a planar sam-
ple at one edge and recording the evolution of the temperature field of the sample
by an infrared camera. The temperature fields at different times were averaged over
a narrow strip at the center line of the sample for obtaining one-dimensional tem-
perature profiles. These profiles were then fitted by a solution to a one-dimensional
heat equation describing the experimental setup, thermal diffusivity as one of the
titting parameters.

The methods developed can be applied to good and moderate conductors of
heat, as verified by measurements on metal samples. For good heat conductors it
was sufficient to do the measurements in air, provided that all disturbing air flows
were removed, i.e., the convective heat transfer from the sample was made constant.
Both convective and radiative heat losses from the sample were taken into account
in the heat equation that was used to describe the experimental setup.

The experimental setup was further improved by placing the sample in a vac-
uum chamber, where convective heat transfer was totally removed. After the mea-
surement method was verified by measuring (metallic) samples with known ther-
mal properties, the effective thermal conductivity of porous sintered bronze samples
were determined. In addition to thermal conductivity measurements, the sintered
samples were imaged with an X-ray microtomography scanner to obtain a detailed
3D model of the structure of each sample.

The analysis of the 3D reconstructions of the sintered bronze samples showed,
together with the measured effective thermal conductivities, that the theoretical pre-
diction k./ks o< /A% ,.../7- Na/Np did indeed reflect the behavior of a porous
system. However, this simple theory does not include the possible effect of ther-
mal contact resistance between particles. Limited resolution of the X-ray images
induced contact area estimates larger than in reality, and therefore the simulated
thermal conductivities were higher than measured. This effect could be taken into
account in simulations by introducing thermal resistance between particles, and by
reducing the area of contacts to the same effect in the theoretical prediction. An im-
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portant conclusion of this result is that, in order to describe thermal conductivity,
three structural parameters are needed, and there does not seem to be any simple
relationship between thermal conductivity and porosity in heterogeneous porous
systems. In regular structures many structural parameters are, however, connected.

One limitation of the measurement methods applied in this work is that the
position dependence of the thermal conductivity cannot be obtained. Only average,
or effective, thermal conductivity of a heterogeneous sample can be measured as
in the case of the sintered bronze samples. But this information is often enough for
porous but otherwise homogeneous materials.

The measurement method for thermal diffusivity in vacuum could be still im-
proved by modifying the heating element such that the temperature field in the
sample could be measured closer to the point of heating. This would enable mea-
surements on poor heat conductors. It would also be interesting to study the effect
of convection in more detail by varying the pressure in the chamber in a control-
lable way. Of course, then there would be three parameters to optimize when fitting
temperature data if the radiative heat-loss term was not linearized.

The heat equation that was applied in the experimental determination of ther-
mal conductivity provides also the theoretical framework for the propagation of
slow-combustion fronts in planar materials. Mean field approximation of a certain
heat equation has been shown to lead to the KPZ equation [8] for the evolution of
the front line. We now know that the heat equation relevant to the problem also
includes a radiative heat-transfer term and a position dependent coefficient in the
convective heat-transfer term, both of which were neglected in the original deriva-
tion of the KPZ equation. We get the same result if the radiative heat-transfer term is
linearized and the position dependence is neglected in the convective heat-transfer
term. In the slow-combustion experiments reported here both these approximations
are expected to be fairly good, but further work is needed to analyze their possi-
ble effects in more detail. In any case, the height-fluctuation distributions of slow-
combustion fronts in paper were shown to be very similar to the ones derived for the
KPZ universality class. They were clearly non-Gaussian and were well fitted by the
/1 distribution of Ref. [32] for the transient fronts and by the f, distribution for sat-
urated fronts. Deviation from the KPZ behavior was observed only for the biggest
fluctuations of the front position, and such fluctuations were obviously depleted in
the measurement data because of limited system size.
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