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Over the last decade, data mining has gone through a significant transformation 
influenced by advanced data collection technologies. Today data mining faces 
the challenge of dealing with increasingly complex data structures. As a result, 
data often exhibits instability in measured attribute values (features). In other 
words, the set of relevant features is not the same through the entire set of 
domain examples. Considering this problem from another angle, data includes 
regions with local properties that, in particular, differ from each other with 
regard to the feature relevance profiles. Global models, therefore, cannot reflect 
the essential knowledge about the data structure. This thesis presents a 
description of the unstable feature relevance problem in classification tasks, 
elaborating the concept of heterogeneous classification problems and 
introducing different types of feature space heterogeneity. It also suggests a 
multi-model solution derived from the definition of a subproblem as a group of 
instances with easier class discrimination and lower complexity in the subspace 
of locally relevant features. The solution is presented within an ensemble 
learning framework. The search strategies, suggested for decomposition of 
classification problems with unstable feature relevance, express different levels 
of granularity with respect to classes. Evaluation of the candidate subproblems 
is executed through profiles of feature relevance. These profiles are vectors of 
weights obtained from feature merit measures and, alternatively, a result of 
distance metric adaptation. Additional measures of complexity, including class 
boundaries and density-based measures, are suggested to evaluate 
decomposition and to serve as preliminary heterogeneity tests. This research 
contributes towards reaching complementary data analysis goals on 
classification problems and revealing important insights on the data structure 
and its complexity. The effects on classification performance were studied 
through numerous experiments on synthetic, benchmark, and real data from a 
biomedical research domain. It was found that extraction of subproblems is 
possible in many cases and it provides meaningful data partitioning results. In 
many cases it also leads to improvement in predictive performance. 

Keywords: feature relevance, feature selection, feature weighting, classification, 
clustering, ensemble learning, data mining, knowledge discovery, machine 
learning 
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1 INTRODUCTION 

Over the last decade, data mining and knowledge discovery went through an 
enormous transformation influenced by rapid growth of web/e-commerce, 
tremendous progress in biology, and an increased power of collecting, storing 
and analyzing data in general (Piatetsky-Shapiro, 2007). With the advent of 
high-throughput experimental technologies and of high-speed Internet 
connections, generation and transmission of large volumes of data have been 
automated. As a result, science, industry, and even individuals have to face the 
challenge of dealing with large data sets, which are not only impractical for 
manual analysis, but also challenging for some automated analysis techniques 
(Kriegel et al., 2007). Since the first definition of the knowledge discovery 
process (Fayyad et al., 1996), the concept of a "golden nugget" has evolved, and 
knowledge has to be extracted now from increasingly complex data. 

Modern automated methods for measurement, collection, and analysis of 
data in all fields of science, industry, and economy are providing more and 
more data with drastically increasing complexity of structure. This growing 
complexity is justified on one hand by the need for a richer and more precise 
description of real-world objects, and on the other hand by the rapid progress 
in measurement and analysis techniques allowing versatile exploration of 
objects. (Kriegel et al., 2007) 

Intrinsic complexity of a problem may result from an insignificant amount 
of data, too much data, or ambiguity due to classification problems. In addition, 
complexity of data may be increased by different factors, including the 
combination of different data types, accumulation of data from different 
sources, data having been collected over different periods of time, integration of 
data in heterogeneous databases, and the pre-processing for further analysis 
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that sometimes may entail loss or redundancy in information. For example, 
medical data may include biological analyzes, textual data coming from clinical 
reports, and image data such as radiographies, echograms, or 
electrocardiograms. Each type of information needs pre-processing in order to 
consider these different data simultaneously, thereby encompassing all their 
complexity.  

In order to ensure that measurements in data carry complete information 
with respect to the entity or phenomenon being analyzed in the problem 
domain, data is often collected with redundancy. Recent trends of data 
collection are based on the paradigm “gather whatever possible data, whenever 
you can”. The expectations are that gathered data will have value either for the 
purpose collected or for a purpose not envisioned. As a result, dimensionality 
of the data becomes high, while the number of representative examples needed 
for a consistent problem description and acceptable predictive accuracy level 
rises exponentially with the number of dimensions (Blayo et al., 1995). 

In a variety of application domains, data mining deals with data sets 
having unstable feature relevance across the set of instances with respect to 
class discrimination (Apte et al., 1998; Lazarevič & Obradovič, 2001a; Lazarevič 
& Obradovič, 2001b). This problem has been recognized by data mining, 
machine learning and pattern recondition communities for over a decade 
gaining new meaning nowadays. Many large-scale data analysis problems 
involve an investigation of relationships between attributes in heterogeneous 
databases. Large data sets very often exhibit attribute instability, such that the 
set of relevant attributes is not the same through the entire data space.  

For example, in spatial databases different spatial regions may have 
completely different characteristics. In medical diagnostics data, relevance of 
attributes depends on context. In heterogeneous databases success of data 
integration critically depends on the availability of accurate semantic 
information on data contents (Kim & Seo, 1991). Integration often leads to 
unstable feature relevance. Problem domains, where predictive models are 
constructed from heterogeneous data, include bioinformatics, for example, gene 
functional classification (Pavlidis et al., 2001) and prediction of proteins 
interaction (Thierry-Mieg, 2000). An example from biomedical research is 
classification of human cancer types using microarray gene expressions (Golub 
et al., 1999; Ramaswamy et al., 2001). The number of such domains has lately 
increased along with the new trends in data collection. Therefore, among the 
most important characteristics of contemporary real data is heterogeneity due 
to the data nature and/or source. 

Heterogeneous data encompass complexity for modeling with a unimodal 
approach (Ho et al., 2006; Ho & Basu, 2002). There is an ultimate need for 
improved data analysis techniques which will effectively process 
heterogeneous data reducing complexity of the analysis problems. 

In data mining, a predictive model is constructed using a predefined set of 
pattern representations (decision rules and trees, similarity-based and 
probability-based models, and so on). The model is evaluated upon its ability to 
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discern patterns in the data being analyzed. Classification tasks in data mining 
are predictive tasks, where the target variable to be predicted takes discrete 
(categorical) values - classes. Other important analysis tasks, which often 
accompany a classification task, are finding important dependencies between 
features representing data, discovering meaningful patterns in data, and 
acquisition of knowledge about the problem domain. 

The approach explored in this thesis aims to discover new patterns in data 
via decomposition of a complex classification problem onto a number of 
simpler subproblems, where subproblems themselves serve as patterns or can 
be viewed as forms of domain knowledge. In particular, classification 
complexity of labeled data in supervised learning calls for seeking data 
structure beyond class labels via decomposition of classification problems, that 
is data partitioning. 

This thesis addresses the problem of constructing effective predictive 
models for heterogeneous data used for classification tasks, disregarding the 
source of heterogeneity and prior knowledge regarding heterogeneity. In 
practice, prior knowledge about the problem domain is fairly limited after data 
passes through a number of pre-processing steps, for example, at the 
integration stage in multiple heterogeneous database systems. 

This chapter introduces the research work performed within the scope of 
the thesis. Section 1.1 presents the motivation and considers efforts of other 
researchers in this area. The research questions raised in this thesis are outlined. 
In Section 1.2 the thesis statement is provided, describing research goal, 
approach and methods, and a brief overview of the outcomes and contribution. 
The thesis overview is presented in Section 1.3. Contributions made by the 
author are summarized in Section 1.4. An overview of author’s published 
works is provided in Section 1.5. 

1.1 Motivation 

Analysis of literature on machine learning, data mining, and knowledge 
discovery from databases with respect to recent trends of data collection, new 
application domains, and new developments enlightened various aspects of the 
unstable feature relevance problem. It has motivated the study of classification 
heterogeneity phenomenon in general following with development of a 
theoretical background, solutions, and details of their practical application. A 
few most important aspects are highlighted below. 

The flexibility of machine learning techniques makes them well suited to 
applications where little is known a priori about the domain, and/or relevant 
knowledge is hard to elicit (Domingos, 2002). The most important machine 
learning elaboration for heterogeneous classification problems is that 
computational power is often better when used to induce multiple models and 
combine them, instead of adapting a single model (Kuncheva, 2004). Therefore, 
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decomposition of a classification problem into subproblems for heterogeneous 
data has been accomplished using an ensemble learning framework. 

Currently, the theory of ensemble learning is being explored 
enthusiastically. As part of this, hierarchical ensembles are being utilized, 
allowing for improved classification performance as well as the extraction of 
valuable domain knowledge about relationships and hierarchies among classes, 
and feature relevance profiles for existing and encoded class combinations 
(Ghosh, 2002). 

Some aspects of the classification heterogeneity problem in contemporary 
data have been pointed out in earlier machine learning works on local learning 
and context-sensitive learning (Hastie & Tibshirani, 1996; Friedman, 1994; 
Turney, 1993). At about the same time the problem was named “classification 
heterogeneity” and its variations, feature space heterogeneity and class 
heterogeneity, have been introduced (Apte et al., 1998). These notions were kept 
for elaboration of the heterogeneity concept in the thesis. With the growth and 
expansion of multiple heterogeneous database systems and large scale data 
analysis problems, a vision of complex classification problems becomes an 
interpretation of classification heterogeneity. 

In several later works from the data mining and databases research 
community, different perspectives of the heterogeneity problem have been 
considered. Commonly, the solutions utilize domain knowledge and require 
human expertise. Therefore, their application is often restricted to a certain 
problem domain. For example, in Pavlidis et al. (2001) gene functional 
classification is based on different types of genomic data (yeast phylogenetic 
profiles and DNA microarray expression) which is analyzed after its 
decomposition on subsets of domain examples using domain knowledge. 

Performance of traditional ensemble learning techniques from different 
categories of ensemble generation has been investigated in heterogeneous 
classification problems, such as in Lazarevič et al. (2000), and it has been shown 
that ensemble generated manipulating features (attributes) are potentially 
advantageous when feature relevance is unstable across the set of domain 
examples. However, the proposed elaborations on the ensemble techniques 
manipulating features (Opitz, 1999; O’Sullivan et al., 2000) build global models 
disregarding grouping of instances (domain examples) at homogeneous 
regions. Another approach (Lazarevič & Obradovič, 2001a) is based on 
constructing local models, each responsible for a particular region of a 
heterogeneous data set. Applicability of this approach depends on the success 
in discovering or approximating those homogeneous regions and their coverage 
by the local predictive models. 

The ensemble technique combining local feature selection and class 
encoding for class heterogeneity developed in this thesis follows the approach 
to construct local predictive models for homogeneous regions. A major 
motivation for this approach is that the subproblems are typically much easier 
to solve and interpret. Feature weighting, selection, or extraction, can be 
performed individually for each subproblem as a step of local model 
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construction. Decomposition of heterogeneous classification problems into 
subproblems, constructing local models for each subproblem, and using these 
models for prediction, determine the focus of this research. 

This thesis covers the following research issues: variations of classification 
heterogeneity, data characteristics for evaluating structure of heterogeneous 
data, approaches to decomposition of heterogeneity using class encoding for 
class heterogeneity, and the Bidirectional Data Partitioning technique for 
feature space heterogeneity. Applicability of feature merit measures and data 
complexity measures for subproblem evaluation, and the related search 
strategies, is proven by the experimental results on the synthetic and real data. 

This research is currently in the mainstream of major activities in data 
mining, machine learning, and knowledge discovery from large heterogeneous 
databases. 

1.2 Thesis statement 

Unstable feature relevance in classification tasks is the research problem being 
investigated. In this thesis, it is considered to be an expression of classification 
heterogeneity. Therefore, the problem is solved introducing the basic 
heterogeneity types and their variations. A classification problem is regarded to 
one of heterogeneity types based on prior domain knowledge, exploratory 
analysis, preliminary heterogeneity tests, or an assumption and its verification 
in case there is no other clue. 

For class heterogeneity, it is assumed that a subset of relevant features 
differs in homogeneous regions that correspond to different classes, or subsets 
of classes. For contextual heterogeneity, it is assumed that there are contextual 
features that specify subproblems. If the contextual features are not available, 
and heterogeneity does not appear at the class level, which is feature space 
heterogeneity, it is assumed that heterogeneity presence can be identified 
exploring other data characteristics. 

The main statement is that decomposition into subproblems representing 
homogeneous regions can effectively model heterogeneous classification 
problems. Decomposition is performed within an ensemble framework. It is 
expected that ensemble learning will help to improve predictive performance, 
while decomposition will help to reveal some structure or meaningful patterns 
in data. 

The main goal of this research is to develop a general approach for all 
heterogeneity types, and suggest the solutions. This goal has subsidiary, more 
specific research goals. The first goal is to develop the theoretical background 
for the research problem. At this level, conceptual analytic research is applied to 
investigate types and variations of heterogeneity, data characteristics that can 
be associated with classification heterogeneity, and the benefits of combining 
ensemble generation methods. At this research stage, various theories, models, 
and frameworks applied in prior significant studies on the topic are considered, 
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and the problem is formulated using the basic concepts, definitions, terms, and 
notions. 

The second goal is to propose practical solutions for the basic 
heterogeneity types. This includes investigation of known techniques and 
measures to be used as components of the suggested multi-model solutions, 
development of the technique called Bidirectional Data Partitioning (BDP) as a 
solution for feature space heterogeneity, and an empirical evaluation of 
applicability of the proposed techniques. At this level, constructive and 
experimental research approaches are applied.  

The collection of data sets for the experimental study includes the 
benchmark data sets used by the data mining, pattern recognition and machine 
learning communities, the synthetic data sets representing different 
heterogeneity types and other data properties of interest, and the real medical 
and biomedical data sets in the field to cancer research. 

The research results show that information-theoretic and geometrical data 
characteristics used with an appropriate search strategy are applicable to 
uncover data structure related to heterogeneity. The experimental results have 
demonstrated that the proposed decomposition approach and the derived BDP 
schemes perform better than a unimodal approach, and, by preliminary results, 
better than some state-of-the-art ensemble techniques in terms of classification 
accuracy. It was shown that in cancer survival analysis and in discovery of 
cancer subtypes, BDP has a potential to provide meaningful results. 

1.3 Thesis overview 

In this section, a brief thesis overview is provided. Chapter 2 is devoted to 
multi-model classification overlooking a traditional approach established in the 
data mining community. This chapter provides an overview of concepts and 
formalizes classification, clustering and feature selection tasks. The related basic 
algorithms are described in Appendices. Introductory material is provided on a 
relatively new perception of predictive problems accentuating data structure 
and intrinsic complexity of a classification problem given a data set as a 
marginal description of the observed phenomenon. 

Ensemble learning is introduced as an established multi-model approach. 
The rationale for using an ensemble of predictive models to accomplish 
decomposition of classification problems is presented. Basic methods of 
ensemble generation and combination of learning models are discussed. Three 
major categories of ensemble methods are described in connection with the 
proposed bidirectional partitioning technique, which can be viewed as a 
combination of the three. 

Chapter 3 introduces the classification heterogeneity problem that served 
as a motivation for developing the bidirectional partitioning technique. The 
problem is presented in theoretical generalized form. Variations of classification 



18 
 

 

heterogeneity are described. Data structure for different heterogeneity cases is 
given interpretation. 

In particular, feature space heterogeneity is presented as unstable feature 
relevance. Related literature overview is provided. Chapter 3 also introduces 
three approaches to perform decomposition of heterogeneous classification 
problems into subproblems related to three different heterogeneity types. 
Search and evaluation, the two constituents of decomposition are discussed. 
Feature merit measures used to encompass the evaluation part are described. 
The ensemble technique combining local feature selection and class encoding is 
developed using a formalized decomposition scheme. Different integration 
strategies are outlined and a dynamic selection method of integration based on 
the probability estimates is detailed. 

Chapter 4 details the decomposition approach of bidirectional data 
partitioning (BDP). This approach is introduced as optimization of class 
separability in local regions implemented by means of local feature weighting 
and clustering. Data partitioning via clustering at different levels of granularity 
with respect to class labels is described. Two component classifier integration 
schemes are presented. Practical implementation of BDP is detailed covering 
different BDP schemes. 

Chapter 5 provides case studies for empirical evaluation of the proposed 
BDP technique and its multiple schemes. Implementation issues and related 
experimental settings are described. Experiments are carried out on synthetic 
and benchmark data sets. Class separability and complexity measures as 
possible candidates for BDP’s evaluation function are studied. Evaluation of 
superclass/subclass structure with BDP is presented. 

Chapter 6 describes real data sets and experiments with BDP in medical 
and biomedical domain. The related data pre-processing techniques are 
discussed. The results are given extensive interpretation. 

Chapter 7 is the thesis summary, with conclusions, limitations, and 
prospective work. Background materials are included in the Appendices. 

1.4 Contributions of the doctoral research 

The main idea presented in this thesis is that heterogeneous classification 
problems, the origins of unstable feature relevance, can be decomposed into 
subproblems and approximated with a set of predictive models covering 
homogeneous regions. Decomposition of a heterogeneous classification 
problem to construct those models can be performed assuming presence of 
certain data characteristics based on which the classification problem can be 
related to a particular type of heterogeneity. In some cases, those characteristics 
are a part of domain knowledge, in other cases they can be uncovered using 
preliminary heterogeneity tests, or assumed and verified with respect to 
performance of the suggested techniques. 
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Author identifies three basic types of heterogeneous classification 
problems: class heterogeneity, contextual heterogeneity, and feature space 
heterogeneity. Variations of classification heterogeneity are defined based on 
these three basic types and their combinations. 

Author suggests and discusses sources of classification heterogeneity in 
general and provides examples from medical and biomedical domains. 

In the doctoral thesis, author has proposed a general solution for a case of 
feature space heterogeneity, which is the hardest due to absence of key 
information to perform decomposition. The technique implementing this 
solution is named Bidirectional Data Partitioning (BDP). Approach to a 
contextual heterogeneity decomposition suggested by the author is an evolved 
version of the solution described in early work of Apte et al. (1998), where 
heterogeneous classification problems were mentioned for the first time. An 
advanced solution for contextual heterogeneity is among author’s topics for a 
future research. In Licentiate thesis that preceded doctoral research, author has 
suggested a solution for a simpler case of heterogeneity that appears at the class 
level, a class heterogeneity variation, which is refined in the doctoral thesis. In 
the doctoral thesis, author has shown that bidirectional partitioning approach is 
applicable for all types and variations of heterogeneity. 

A solution developed in this thesis has been applied to cancer survival 
analysis and cancer genomics, and demonstrated encouraging results. 

Out of this research, author has developed and implemented BDP as a 
meta-classifier in the open-source non-commercial data mining project, WEKA. 
Software implementing BDP will be improved and submitted for the next 
release of the WEKA system. Author has extended functionality of other 
modules in WEKA and added implementation of heterogeneity tests based on 
class separability and geometrical complexity measures creating a preliminary 
analysis component in WEKA. 

Practical implementation of the proposed approach resulted in extended 
functionality of the BDP technique. Integration into WEKA system, among 
others, opened a possibility to perform integration of classifiers into ensemble 
in different ways and covering homogeneous regions in data with multiple 
models using WEKA’s concept of meta-classifier, different clustering and 
feature selection techniques. With certain settings, BDP can also be reduced to 
functionality of COSA, a subspace clustering technique. However, a separate 
implementation of COSA in WEKA is planned. Many of the above possibilities 
are not explored in this thesis, but provide a solid background for further 
experiments. 

The research work described in this thesis comes from the original 
author’s research that has been performed without collaborators since 
publication of the Licentiate thesis in 2005. It has been presented in more than 
ten Int. scientific conferences and published in seven single-author papers 
referenced in this thesis. Some of those papers along with early papers 
co-authored with other researches are mentioned in the next section. 



20 
 

 

1.5 Summary of author’s selected published works 

During the years of research related to the topic of this thesis a number of 
research papers has been published. This summary highlights various aspects 
of the unstable feature relevance phenomenon described in these publications. 
The efforts toward developing a strategy for data decomposition and a 
multi-model solution based on the theory of ensembles led to exploration of 
alternative strategies that was not covered in the thesis. Some of them are 
mentioned below. 

The most recent paper (Skrypnyk, 2011) is devoted to analysis of various 
class separability measures and their suitability as a criterion in bidirectional 
data partitioning as well as an independent characteristic of a problem domain 
with respect to heterogeneity presence. Easily separable classification problems 
or problems with globally relevant subset of features are not subject to feature 
space or class heterogeneity decomposition. Complexity measures, based on 
heuristics not directly related to Bayes minimum error rate and exploring 
geometrical properties of data are used to support the conclusions. 

In Skrypnyk (2010) Bidirectional Data Partitioning (BDP) technique is 
explored with DBSCAN weighted distance-based clustering on entire data set 
with IPA-based merging procedure that joins subgroups in one go. The 
criterion used in that version of BDP is based on a difference in intra- and 
inter-class distances. Based on these results author have extended functionality 
of BDP adding clustering inside classes, agglomerative merging procedure, 
estimation of DBSCAN parameters inside classes and possibility to use 
weighted distance-based k-Means clustering. In this paper, local feature 
selection is performed using feature values overlap heuristics that has its 
limitations, and does not produce meaningful results in case of nominal values. 
Taking into account this fact, author has implemented a possibility to use an 
external feature selection technique in groups of instances, perform feature 
selection by means of feature weighting, or use a combination of both in current 
version of BDP. Experiments with several benchmark data sets from UCI 
repository were not particularly encouraging and it motivated additional 
evaluation of data characteristics in these data sets. It was established that these 
data sets are not suitable for heterogeneity decomposition. However, other data 
sets have shown accuracy improvement and were used in further analysis 
thereafter. 

The paper by Skrypnyk (2008) mainly investigates feature weighting 
based on the feature values span in each dimension as a measure of dispersion 
for the ability to improve class discrimination in subspaces. It describes the 
details of entropy-based regularization and investigates weights adaptation in 
the local neighborhood using a case-based study. It also presents distance-based 
selection of a local model for new instances. Based on these results, current 
version of BDP has been supplied by a meta-classifier as an alternative method 
of local model selection. Neighborhood purification procedure is described in 
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order to cover for weight adaptation mistakes. Later, this led to experiments 
with the β parameter and introduction of clustering inside classes. 

In Skrypnyk (2007), a BDP’s prototype approach, Localized Selective 
Partitioning based on the intra-class and inter-class ratio criterion and weights 
based on feature values overlap is presented. An analytical solution cannot be 
directly obtained for this criterion and it provides a suboptimal solution. 

Papers by Skrypnyk (2009) and Skrypnyk & Ho (2006) are devoted to the 
Stochastic Discrimination theory (Kleinberg, 1990) and the stochastic 
discrimination multi-model technique based on the coverage optimization 
paradigm. It has been concluded that stochastic component successfully used in 
many ensemble techniques is capable of boosting predictive accuracy, but has 
little potential in knowledge acquisition related to data structure required in 
such disciplines as cancer genomics. When feature relevance is not equally 
distributed among features, Random Subspace Method and stochastic 
discrimination are not competitive to other techniques (Skrypnyk & Ho, 2003). 
Research on stochastic discrimination is not included to this thesis.  

Decomposition strategies related and not related to class labels are 
explored in (Skrypnyk, 2004; Skrypnyk, 2002a; Skrypnyk 2002b). Earlier works 
are motivated by exploration of ensemble techniques in combination with 
feature selection (Puuronen et al., 2001). Feature selection by means of ranked 
feature merits is used as a part of ensemble feature selection. In order to 
stabilize the results obtained by a cut-off threshold value, data driven adaptive 
generation of candidate features has been used to stabilize the results in a range 
of threshold values. Criterion for inclusion of additional feature candidates 
besides those already included from the top of rank is directly related to 
accuracy estimates. Favorable results on accuracy have been obtained. This and 
other research work of that period explored stability of feature relevance in 
subproblems. Different integration strategies, static and dynamic, selection and 
voting, have been preliminary tested with decomposition into ensemble based 
on locally relevant features in Tsymbal et al. (2001). 
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2 MULTI-MODEL APPROACH TO CLASSIFICATION 

The tools provided by machine learning, such as generalization, induction, 
validation, bias considerations, are indispensable for knowledge discovery. 
Data mining methods are based on machine learning techniques along with 
statistical, pattern recognition, and other techniques. 

Machine learning is a study of algorithms that automatically improve their 
performance with experience (Hall, 1999). Prediction is a central task of those 
algorithms. Building a model within the pattern representation is accomplished 
by learning. Learning is not related to the exact representation of the data, but 
to the process that generates the data. In other words, from the specific 
knowledge provided by domain examples, an inductive learning method is 
capable to obtain general domain knowledge. If the constructed model exhibits 
good generalization, it is likely to make good predictions for new data. 

Usually data items called instances (objects, or examples) are represented 
as attribute-value pairs. In some tasks, a structured representation of the 
domain objects is more natural. The term feature is used for a formal view of 
the structured data representation. Structured representation means that an 
instance is represented by a set of features taking some values. Each feature is a 
particular dimension in which the instances viewed. Feature selection 
techniques derived from machine learning provide one of the best solutions for 
high-dimensional problems. 

Research described in this thesis combines these important achievements 
of machine learning in developing the approach to decomposition of 
heterogeneous classification problems. This chapter introduces the basic 
concepts and definitions of supervised and unsupervised learning algorithms. 
Section 2.1 provides a formal description of the classification and clustering 
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tasks in a single framework along with the related task of feature selection and 
dimension reduction. The notion of feature relevance in classification is 
explained. Sources of classification problem complexity are given a special 
attention following by a closing subsection that considers performance 
evaluation of learning algorithms. 

2.1 Classification and related tasks 

Often in data analysis it is useful to consider dividing the set of instances into 
classes in a way that instances within a class are similar to one another. The 
classification task occurs in a wide range of human activities when some decision 
or forecast is made on the basis of currently available information, and a 
classification procedure (or classification rule) is then some formal method for 
repeatedly making such judgments in new situations. (Michie et al., 1994) 
Classification tasks can generally be handled relatively well with machine 
learning techniques (Halteren, 1999). In machine learning classification is 
performed as inductive learning, or induction that is generalization from the 
known to the unknown, so that appropriate responses to the unknown can be 
formulated when it appears. For example, to determine whether an animal is a 
giraffe people know to look for dark patches and horns rather than estimate its 
tail or ears. Thus, patches and horns form the concept (generalization) of a 
giraffe. Now the unknown new animal, which is a leopard having dark patches 
also, cannot be assigned to the class “giraffe”, because it doesn’t have horns. 

Statistical approach is generally characterized by having an explicit 
underlying probability model, which provides a probability of being in each 
class. Commonly, statistical classification models provide an estimate of the 
joint distribution of the features within each class, which in turn provides a 
classification rule. (Michie et al., 1994) 

Classification methodology has been applied in many diverse disciplines. 
In statistics, as well as in the applied fields, such as pattern recognition, it is 
referred to as classification. In machine learning the corresponding term is 
supervised learning. Data mining encompassing both, statistical and machine 
learning techniques, relate classification to the prediction tasks along with 
regression (Weiss et al., 1998). 

In this thesis classification is considered as a task of predictive data 
mining. The respective terms will be used throughout the text, borrowing when 
appropriate the terms from machine learning, statistical decision theory and 
information theory. 

2.1.1 The classification task 

Classification tasks in data mining are presented as specific goals, which are 
related to the instances with known class labels to be used in construction of a 
predictive model in order to assign class labels to the new instances. Thus, 
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instances with known class labels should be available. Each new instance must 
be assigned to one of a set of pre-defined classes based on observed instance 
descriptors, features (or attributes). For the above example of animal 
classification horns, patches, legs length and neck length are some of the 
descriptive features.  

The classification task is to construct a procedure that will be applied to a 
sequence of instances in which each new instance must be assigned to one class 
of a set of pre-defined classes based on observed features. Classification 
produces categorical class labels unlike regression that models 
continuous-valued function. 

A learning algorithm (or induction algorithm) forms the concept 
description inducing some general function from the specific example data 
called the training set, or a set of training instances. In concept learning, the 
most studied machine learning approach, a target concept is a function over 
instances according to which class labels are assigned according to the 
underlying distribution. Concept description is a model (hypothesis, or 
knowledge) that the learning algorithm has induced from the data. This model 
for classification task takes a form of some discrete function, which 
hypothesizes, or estimate, the true value of a class variable. 

Suppose some functional dependence ݕ ൌ ݃ሺxሻ exists between features x 
and a class variable ݕ  that is exemplified by the training instances. 
Approximation of this functional dependence ݕො ൌ ݄ሺxሻ is built by a learning 
algorithm L using the training set TR. As a result, a certain release of this model 
called a classifier C is produced. The training set TR is a set of training instances ሼሺxଵ, ,ଵሻݕ … , ሺxெ, ெሻሽ, where x௜ݕ  are vectors of the form ݔۃ௜,ଵ, … , ,௜,௝ݔ … ,  , ۄ௜,ேݔ
where ݔ௜,௝ are feature values of x௜, and ܯ is the size of the training set TR. 
Features will be further referred to as variables ௝݂ , ݆ ൌ 1 … ܰ, where ܰ is the 
number of features. Class label ݕ௜ is a special categorical feature taking its 
values within the range delimited by the number of classes , ݕ௜ א ሺܿଵ, … , ܿௗ, … , ܿ஽ሻ, where ܿௗ are the class values, ݀ ൌ 1 …  Other features .ܦ
may take either categorical or numerical values which might be discrete or 
continuous. 

Classification is a two-step process. The first step is model construction, or 
training. At this step, the training set TR containing instances ሺx௜,  ௜ሻ is used byݕ
learning algorithm L to produce a model ݕො ൌ ݄ሺxሻ presented by classification 
rule, decision tree, or analytical expression. 

The second step is model usage, or application. During this step model 
accuracy is estimated on the test set TE having the same representation as the 
training set. Test set should be independent of the training set in order to have 
more reliable estimates. The data can be partitioned onto the training and test 
sets before model construction. The details are considered in Section 2.3. 

For each instance from the test set ൫x௝,  ො௝ from the modelݕ ௝൯ the estimateݕ
is obtained and compared with the known class value ݕ௝. Then the accuracy 
rate or the error rate is calculated. The accuracy rate is the percentage of the 
instances from the test set that are correctly classified by the model. 
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Correspondingly, the error rate is the percentage of the instances from the test 
set that are incorrectly classified by the model. The other measures for 
evaluation of the constructed model, that is performance of the learning 
algorithm, which is used to construct the model, are considered in Section 2.3. 

A classification problem and its solution can be described in the terms 
borrowed from decision theory, such as logical decision rule, and from 
statistical decision theory, such as class boundary, decision boundary and 
decision surface (or decision regions). Training instances can be schematically 
represented as points in some space or probability distribution, for example, in 
the feature space or its projection. Then class boundaries describe location of the 
training instances of different classes in this space, the structure of data. 
Decision surface demonstrates coverage of the data structure by a predictive 
model constructed, i.e. by a classifier. 

In order to view and comprehend a phenomenon a multidimensional data 
representation comes handy in data mining. In classification and clustering 
tasks data instances are considered as points in multidimensional space, where 
axes are features or attributes. Multidimensional presentation of data from 
practical classification tasks shows some structure that typically differs from 
data created by random processes. For example, an image data represent an 
important category of structured data. For image data processing typical 
predictive methods involve split-and-merge approaches (Starck et al., 1998). 
Instances in image data are pixels or regions of the image. Decomposition of an 
image is a part of split-and-merge – an image is successively divided into 
smaller regions until a homogeneity criterion is met. A homogeneity criterion 
can be based on the pixel values or grey-levels within the corresponding image 
region. 

2.1.2 The clustering task 

Clustering, or unsupervised learning, is applied in data mining in order to 
discover unknown categories or groups in data based on similarity or 
dissimilarity concepts. Clustering can be useful in finding structure in data, for 
example, hierarchical relations between categories. Clustering results are often 
evaluated by known class labels, but this approach is not always applicable. 

The idea of using clustering as a supplement to classification has been 
marginally used in pattern recognition community since early 1960’s. However, 
systematic approaches to combination of clustering and classification appeared 
only in early 90’s along with research on local learning and ensemble 
classification (Fradkin, 2006). 

Clustering methods differ in the assumptions about the nature of data, 
constrains applied to data partitioning, and similarity measures. Therefore, 
different methods may lead to different results, which cannot be directly 
compared, because the choice of criterion for comparison is not straightforward 
as in the classification task. Thus, the choice of clustering method depends on 
the nature of data and the researcher’s goal. 
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Clustering task is often viewed as an optimization task. Therefore, 
clustering algorithms are often computationally demanding. Finding clusters in 
high-dimensional data is particularly challenging. Another challenge faced by 
clustering is finding arbitrary regions in data of uneven density and shapes 
with possible noise and outliers.  

Various data analysis techniques have in common the intent to analyze, 
summarize and extract useful information from data. Many of them consider 
data in a form of a rectangular table and operate simultaneously by two sets, a 
set of instances (examples, vectors) and a set of features (attributes, variables). 

A wide variety of techniques are based on simplifying data matrices 
performing a bidirectional search. In data mining, these techniques originate 
from factor analysis and clustering methods. Their procedures of bidirectional 
partitioning differ in the assumptions they rely on, data types to which they 
apply, and the criteria reflecting a data analysis task. 

In clustering, a bidirectional data partitioning approach, also known as 
subspace clustering, two-mode partitioning, and block clustering, has been 
actively researched over a few decades (Rosmalen et al., 2009; Madeira & 
Oliveira, 2004; Kriegel et al., 2009; Domencioni et al., 2004; Parsons et al., 2004; 
Moise & Sander, 2008; Mechelen et al., 2004). Clustering techniques of this type 
seek a set of instances assigned to a cluster along with a subset of features as the 
related dimensions. A search is performed simultaneously in the subspace of 
instances and in the subspace of features in order to partition data. In other 
words, both rows and columns of a data table are assigned to one or more 
clusters. Elements in the same cluster are close to each other in terms of a 
pre-defined distance function or a similarity measure. However, an evaluation 
function does not rely on class labels. This thesis discusses a technique based on 
a bidirectional data partitioning methodology transferred to classification tasks, 
which follows an ever-growing demand in effective ways to process 
contemporary data. 

A problem of unstable feature relevance in classification (Lazarevič et al., 
2000) has become a main motivation for the proposed technique. Unstable 
feature relevance is a distinguishing characteristic of heterogeneous 
classification problems (Apte et al., 1998). From a classification task perspective, 
one may assume existence of “regions” in data where a true data structure is 
presented by a smaller subset of locally relevant features. Disregarding 
irrelevant features provides a clarified data structure. This description implies 
that normality of class distribution used as an assumption in many statistical 
measures is violated on the entire data set. But in those “local regions” it may 
hold true. The goal is to identify those regions in case they exist. 

A solution to this problem can be obtained by solving an optimization 
task. This involves a simultaneous search for subsets of features and subsets of 
instances with an optimum in a criterion function that in a way reflects 
“stabilized feature relevance”. The next section briefly outlines an optimization 
task. 
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Clustering finds groups of instances in data identical in some sense. It 
resembles discovering classes, which are unknown. Thus, often the existing 
class labels are used to evaluate clustering results. In real world, division by 
classes sometimes can be uncertain. The more relevant information is encoded 
in data, the better is classification. The lack of relevant information presented by 
features, along with limited domain knowledge motivates, seeking data 
structure beyond class labels, for example, superclasses and subclasses. On the 
other side, classes could be well known, but information encoded in the 
descriptive features may not be enough to describe them without ambiguity. 
Supervised, semi-supervised, and unsupervised learning all have related goals 
and related tools. Therefore, class separability measures can be adopted from 
measures used in clustering. 

2.1.3 Relevance of features and feature selection 

For classification problems importance and contribution of a feature to classify 
instances, i.e. its predictive ability, is usually expressed by a degree of feature 
relevance. In some cases, it is convenient to project feature relevance on a 
gradual scale and consider a degree of feature relevance. In other cases, it is 
sufficient to consider two extreme meanings, relevant or irrelevant. 

For prediction tasks, the notion of relevance is related to both features and 
instances (Blum & Langley, 1997; John et al. 1994). Different definitions of 
relevance depend on the particular goals and related to the question ”relevant 
to what?” Probabilistic definition of feature relevance is proposed in Kohavi 
(1994). Relevance to the target concept (according to machine learning 
definition), relevance to the sample/distribution (according to statistical 
definition), relevance as a complexity measure and relevance as incremental 
usefulness are considered in Blum and Langley (1997).  

Besides being relevant or irrelevant, features can be redundant and 
interacting. In this thesis, the following definitions are used. Features that 
provide information about the class for a given set/subset of instances are 
called relevant features. Features that do not provide information about the class 
for a given set/subset of instances are irrelevant. Interacting features are those 
whose values are dependent both on the values of other features and on the 
class variable for a given set/subset of instances. One of two interacting 
features may be discarded if it does not imply any loss of information about the 
class. Redundant features are those whose values are dependent on the values of 
other features regardless the class for a given set/subset of instances, that is 
they may be created as a transformation of a relevant feature, and as such, 
provide no further information about the class.  

In spite of the seeming conclusion that redundant features in a 
high-dimensional data could contribute to learning improvement by additional 
information, machine learning generally points to the contrary. Increasing the 
number of dimensions leads to exponential growth of the data quantity needed 
for reliable learning. 
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The usefulness of redundant features depends on the complexity of a 
classifier and on the proportion of instances in the training set to the number of 
features so that more simple classifiers perform better in high-dimensional 
classification problems than more complex ones, which require more 
parameters to estimate from the training set. Construction of a learning model 
considering redundant features might be useful in very specific cases 
(Skurichina, 2001). 

Two features are called interacting if dependence between the class 
variable and a feature is conditioned by the values of another feature. The level 
of interaction may vary. The following example of conditional dependency is 
taken from the problem of prediction of automobile accidence risk. A feature 
“driver’s age” taking value “17-23 years” acquires great significance if, and only 
if, a feature “sex” takes value “male” at the same time. In Hall (1999) features 
are considered under moderate level of interaction if they are individually 
predictive of class at least some of the time. Features whose ability to predict 
the class is always dependent on the others exhibit higher order dependencies. 

In the vast majority of classification problems contribution of different 
features for predictability of classes (class discrimination) is not equal. Usually 
relevant features are unknown prior to learning. Also, when a data set contains 
too many features, a practical need arises to select a relevant subset of features 
for generating a model for classification. 

Feature relevance is estimated using feature merit measures. There are 
measures designed to evaluate an individual contribution of a feature to 
discriminate between classes / predict classes, contribution of a feature 
considering interaction with other features, or contribution of a feature subset. 
Feature selection techniques mostly based on individual feature / feature subset 
measures. The aim of feature selection is to choose a subset of features in order 
to improve prediction accuracy and/or simplify a classifier without 
significantly decreasing prediction accuracy by means of building that classifier 
using the selected features only. There are also several other definitions 
considered in Dash and Liu (1997) looking at the feature selection task from 
various points of view.  

Majority of classification methods are based on evaluation of features 
contribution to discriminate between classes rather than on the intrinsic data 
characteristics. The examples are decision tree, Naїve Bayes and k-Nearest 
Neighbor learning algorithms. However, the embedded feature selection is not 
always effective. The curse of dimensionality problem may arise. In particular, 
when the model is built over many features it becomes large and hard to 
interpret. The basic learning algorithms with embedded feature selection 
usually evaluate features individually, thus they are not capable to identify 
feature interactions and redundant features. A partial solution for this problem 
is provided, for example, by the random subspace methods (Ho, 1998; 
Skurichina & Duin, 2001). 

Contribution of a feature to discriminate between classes can be measured 
as (1) the difference between the prior uncertainty and expected posterior 
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uncertainty using this feature (the Information gain from a feature) (Soofi, 2000; 
Quinlan, 1986), (2) the ability to predict a class variable from the considered 
feature (correlation between a feature and a class that may be based on distance 
or Information gain measures) (Hall, 1999), (3) divergence or distance-based 
separability, when one feature is preferred to another if this feature induces a 
greater difference between two-class-conditional probabilities than another 
feature (Ho, 2002). 

Some measures that evaluate the worthiness of feature subsets take into 
account feature dependencies without finding the explicit form of the 
dependency. The simplest method of feature subset evaluation performs 
evaluation of randomly selected subsets iteratively. Usually such feature subset 
selection methods use performance of the particular classifier as an evaluation 
function, which produces biased estimates. The example is a classifier error rate 
measure used in wrapper feature selection (Kohavi & John, 1998).  

Feature selection and dimension reduction is also performed in 
unsupervised learning. Unsupervised feature selection methods analyze only 
intrinsic characteristics of data such as variance of feature values. Contrary, 
supervised filter techniques assess relevance of features evaluating data 
characteristics related to distributions of classes. 

2.1.4 Sources of classification complexity 

Classification problem complexity is often associated with geometrical 
complexity of decision boundary or class boundaries. Recent studies on 
complexity measures (Ho et al., 2006) have shown that boundaries between 
classes, not class shapes, contribute to problem complexity and, hence, 
classification performance of different classifiers. Wider margins between 
classes reduce demand on the precision of decision boundary. 

A widely used “divide and conquer” approach can be applied to reduce 
complexity of a classification problem, while class separability measures can 
serve as a criterion for decomposition into subproblems. Presence of irrelevant 
features is an important constituent of complexity. Although the idea of 
reducing complexity by means of improved class discrimination is central to 
many data mining techniques, including clustering, feature selection, extraction 
and discretization, in this study it is explored for potential application in 
two-way decomposition schemes that combine clustering and feature selection. 

Practical classification problems are created by non-chaotic processes with 
some underlying physical or behavioral models (Ho & Basu, 2002). These 
processes create data with some distinctive structure even in presence of some 
stochastic components (Ho & Basu, 2000). However, class labels incorporate 
information strongly biased by a human perception of the phenomenon and 
cannot be easily obtained in some situations (Xiang et al., 2008).  

Classification problem can be difficult for different reasons. There could be 
an intrinsic class ambiguity due to specifics of a problem and features chosen to 
represent it. In this case there is no possible improvement beyond a certain 
point. Some problems known to have nonzero Bayes error, hence the classes are 
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ambiguous regardless of sample size or feature dimensionality. On the other 
hand, the class discrimination problem can be difficult due to decision 
boundary complexity that can be reduced. For example, structure related to 
subclasses may impose a complex decision boundary. Problem presented by 
sparse data may appear deceptively simple (Ho & Basu, 2002) 

Analysis of data structure can be help improving classification accuracy.  
Geometrical properties of high dimensional data in classification and 

clustering are studied by Jimenz and Landgrebe (1998). Their research shows 
that human perception of three-dimensional space is not applicable to 
understanding geometrical and structure statistical properties of data in higher 
dimensions. It tends to mislead one’s intuition when it comes to the choice of 
data analysis methods. Using Euclidean and Cartesian geometry, they provide 
a mathematical proof that leads to the following conclusions.  

High dimensional space is mostly empty, which implies that multivariate 
data in RN is usually in a lower dimensional structure. As a consequence, high 
dimensional data can be projected to a lower dimensional subspace without 
losing significant information on class separability and data structure. 

Data instances in Gaussian distributions will have a tendency to 
concentrate in the tails. In uniform distributions data instances will more likely 
reside in the corners, making density estimation more difficult. Local 
neighborhoods of a fixed radius are mostly empty, requiring the radius to be 
large in order to capture instance. It produces the effect of losing detailed 
density estimation and leads to data sparsity. 

These findings provide an explanation why the stochastic discrimination 
method fails in high dimensions without random subspace projections involved 
(Skrypnyk & Ho, 2006; Skrypnyk, 2009). Interpreting unstable feature relevance 
in machine learning as a mixture of distributions in high dimensions helps to 
understand functionality of distance-based subspace clustering and 
bidirectional partitioning studied in this thesis. 

Authors in Jimenz and Landgrebe (1998) find support for the 
aforementioned tendency in the statistical behavior of normally and uniformly 
distributed multivariate data at high dimensionality. It is expected that as the 
dimensionality increases the data will concentrate in “an outside shell”. As the 
number of dimensions increases that shell will increase its distance from the 
origin as well. 

Performance of classification and clustering techniques has been linked to 
geometrical properties and complexity of data only recently (Singh et al., 2002; 
Pranckeviciene et al., 2006; Bernadó-Mansilla & Ho, 2005). Acknowledgement of 
this fact is important in understanding the sources of classification problems 
complexity and the phenomenon of feature space heterogeneity. 

2.2 Learning and prediction using multiple models 

Decomposition of the classification problem stated on heterogeneous data 
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represents each homogeneous region as modeled separately in a particular 
subspace of relevant features. It can be presented using an ensemble framework 
based on multiple learning models. The component classifiers of an ensemble 
can be built using methods that combine local feature selection, class encoding 
and sampling. 

Combining multiple learning models into ensemble is based on many 
theoretical reasons and an empirical evidence of the effectiveness. This section 
introduces ensemble learning as to a separate machine learning direction and 
reviews these theoretical reasons and the obtained empirical results.  

An ensemble learning framework and a rationale of using multiple models 
are addressed in Subsection 2.3.1. Ensemble methods based on local feature 
selection / feature set manipulation, class encoding, sampling and their 
combination are presented in Subsection 2.3.2. The results obtained with these 
methods are briefly reviewed. The combined methods are accented in 
connection with decomposition of heterogeneous data. 

2.2.1 Ensemble learning: a general framework 

Multi-model solutions are widely used in machine learning, data mining and 
pattern recognition. Usually, the final solution is derived out of consensus 
between the component models. A plenty of terms are used in the literature: 
ensemble learning, decision committee, ensembles of learning machines, 
ensemble of learning models, classifier fusion/combination/aggregation, or 
multiple classifier systems. The terminology reflects a particular way to 
integrate multiple models or specific classifiers used to build the component 
models. In this subsection, the basic notions with respect to multi-model 
approach are introduced. 

In this study, a multi-model solution will be considered as an ensemble of 
classifiers as a set of models. In Subsection 2.1.1, a notion of a classifier has been 
introduced as a particular realization of a learning model. Given the training set 
TR and a single learning algorithm L the model ݕො ൌ ݄ሺxሻ can be constructed in 
different ways. Multiple models ݕො௜ ൌ ݄௜ሺxሻ are collected and integrated into an 
ensemble. The way to produce those multiple models, i.e. multiple classifiers, is a 
subject of the ensemble generation techniques. Multiple classifiers that compose 
an ensemble are called component classifiers. Sometimes in the literature, 
component classifiers are referred to as base, constituent or individual 
classifiers. In this thesis, the base classifier refers to a particular learning 
algorithm, such as J48 decision tree or 1-Nearest Neighbor. The component 
classifier refers to a model built within an ensemble, a member of ensemble 
created using a base classifier. The way to integrate (combine or select) multiple 
predictions obtained from the component classifiers is a subject of the ensemble 
integration techniques. 

Let us denote the component classifiers as ݄ଵ, … , ݄௦, … , ݄ௌ, where ܵ is the 
size of an ensemble. An ensemble of classifiers is a set of learning models 
(component classifiers) whose individual decisions are combined in some way 
to classify new instances. Commonly, prediction of class membership for a new 
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instance obtained from ensemble of classifiers is viewed as a two-stage process 
that includes learning and prediction (Figure 1). 

During the learning stage, learning model construction over the initial 
training set TR is performed multiple times in different ways to obtain multiple 
models. It is usually done by modifying TR (for example, sampling multiple 
times, encoding multiple times, or partitioning at once) and altering the model 
generation process. Predictions of the component classifiers are integrated in a 
certain way ܨ to derive ݄כ ൌ ,ሺ݄ଵܨ … , ݄௦, … , ݄ௌሻ that will be used to obtain a 
final prediction. At the prediction stage, a new instance ሺx, ? ሻ  with the 
unknown value ݕ is given as an input an ensemble and class value כݕ is 
predicted as כݕ ൌ  ሺxሻ. Generation and integration of the component classifiersכ݄
are two key steps of ensemble construction. Many existing categorizations of 
ensemble techniques are mostly based on the differences in generation and 
integration. 
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FIGURE 1 Ensemble of classifiers: learning and prediction. 

Generation of the component classifiers is a subject of altering the training 
process, which is mainly derived from modification of TR. Modification is 
performed manipulating the set of training instances, the set features, class 
labels, or combinations of the above according to a certain sophisticated 
strategy. The strategy is based on an underlying theory, prior assumption, may 
involve search heuristics with evaluation function or a stochastic process. 
Further in the text, it will be referred to as an ensemble generation rule. The 
simplest approach to generate component classifiers is to produce alternative 
perturbations of the training process created by random sampling or random 
feature subspace projections. This approach can be used to optimize coverage of 
the data with multiple models picking models from the stream of randomly 
generated models (coverage optimization). Another approach is to partition data 
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and model parts separately. In this case the number of models is significantly 
smaller and their integration can optimize their predictions (decision 
optimization). 

A new model in ensemble can be constructed independently of the other 
models or taking into account what models have been generated so far. For 
example, additive models like boosting, seek to minimize some criterion 
function that is based on training error. Figure 2 represents the process of 
component classifiers generation. In general, the ensemble construction process 
is iterative, that is generation of a new classifier depends on the current 
ensemble consistency. In some methods the inputs for all component classifiers 
are calculated at once, skipping the blocks 5, 7, 9, and 10 in Figure 2. The 
process starts from initialization of the learning parameters (block 1), then 
proceeds with setting a heuristic rule (block 2) for a subsequent modification of 
the training set (block 3). The block 3 outputs a training set TR modified by 
multiple feature subspace projection, class encoding, sampling, and so on. With 
this input a new classifier is generated (block 4) and evaluated (block 5). 
Subsequent modification of the ensemble (block 6) includes addition and/or 
deletion of some classifier from/to the ensemble. Having the current set of the 
component classifiers, ensemble characteristics (accuracy, diversity, and so on) 
are estimated (blocks 7) and then used for the stopping criterion evaluation 
(block 8). Block 9 is a decision block altering the process: construction of the 
next component classifier (dashed arrow to the block 3), modification of the 
ensemble generation rule (block 10), or stopping the process with the current 
ensemble (block 11). 

Existing ensemble generation methods do not necessarily include all steps 
shown in Figure 2. For example, bagging (Breiman, 1996), which is based on 
sampling, generates a set of the component classifiers at once without their 
evaluation and modification of an ensemble generation rule. Thus, blocks 5, 7, 
and 10 with the corresponding outputs are not in use for bagging. Boosting 
(Freud & Schapire, 1996) evaluates each new generated classifier and changes 
the ensemble generation rule each time after a new classifier is added to an 
ensemble, skipping block 7. 

The rationale of using multiple classifiers in an ensemble is the following. 
Different component classifiers make errors for different instances due to their 
different design. When they are combined, they produce more accurate 
prediction comparatively to a single classifier trained to reach the highest 
accuracy for all instances in a data set. There are different theories explaining 
ensemble efficiency (Dietterich, 1997; Kleinberg, 1990; Schapire et al., 1998). 
Usually ensembles are used to improve the prediction accuracy by mechanisms 
motivated by the learning theory rather than by particular data characteristics. 

Many researchers (Ali & Pazzani, 1996; Dietterich, 1997; Maclin & Opitz, 
1997; Opitz & Maclin, 1999; Tumer & Ghosh, 1996) has concluded that 
combining outputs of several classifiers can be useful only if they produce 
uncorrelated errors, that is if they are independent in production of their errors. 
When all component classifiers are identical an ensemble has no gain. 
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FIGURE 2 Generation of component classifiers. Block symbols represent the basic process 
stages, and small letters associated with arrows denote the input/output data 
for each stage. Real techniques does not necessary include all those 
components and arrows. Small letters near the arrows denote the following: p 
- learning parameters, a – a training set TR, b – a heuristic ensemble 
generation rule, c – inputs for the classifier generation (a modified training 
set), d – classifier, e – fitness value for a classifier, f – current set of classifiers 
in an ensemble, g – control ensemble characteristics, h – control value for the 
stopping criterion, i – parameters for a heuristic ensemble generation rule. 

The Stochastic Discrimination theory (Kleinberg, 1990) considers supervised 
learning from the perspective of enforcing the uniform coverage of data by the 
set of models and suggests that a set of classifiers in ensemble should cover all 
instances uniformly and with equal chance of success. Then discrimination 
between classes is achieved when the number of the component classifiers is 
large and all classifiers satisfy the particular requirement of minimal difference 
in inclusion of instances from different classes. This theory, in particular, was 
successfully applied to explain performance of ensemble learning techniques 
such as boosting and the random subspace method (Kleinberg, 2000). The 
considered approaches emphasize properties of the component classifiers that 
will be integrated into ensemble. By the result of numerous ensemble studies 



35 
 

 

summarized in Dietterich (1997), error rate of each component classifier should 
not exceed 0.5. Otherwise, ensemble error rate will usually increase as a result 
of combination of their predictions. In particular, it has been shown that 
ensembles consisting of weak classifiers that make independent errors provide 
dramatic improvements in the predictive performance. Hence, the key to 
successful ensemble creation is to construct component classifiers that will be 
more than 50% accurate and will produce their errors independently. 

However, the above argumentations about the properties that component 
classifiers should possess are strongly related to the integration strategy. For 
example, error correlation of the component classifiers and error reduction in 
ensemble is proven mathematically in Tumer and Ghosh (1996a) and Tumer 
and Ghosh (1996b) for integration by averaging. Independence of the 
component classifiers can be estimated using various ensemble diversity 
measures as considered, for example, in Cunningham and Carney (2000), 
Kuncheva and Whitaker (2002), and Prodromidis and Stolfo (1998). Stochastic 
discrimination theory is also applicable to coverage optimization techniques. 

With respect to ensemble generation, there are three major categories of 
generation methods (Dietterich 1997): (1) multiple feature subspace projection, (2) 
class encoding, and (3) sampling the training set (changing the class distribution). 
Coverage optimization techniques are based on random perturbation or 
manipulation in (1), (2), (3), or in combination of those. In coverage 
optimization, the goal is to create a diverse set of classifiers with a given 
combination function. There are also decision optimization techniques that use 
probabilistic and Bayesian methods as well as majority vote, sum or product as 
a function of the component predictions, or assign scores/ weights to the 
component predictions to produce ݄כ. In decision optimization, the goal is to 
optimize some combination function for a particular set of classifiers. 
Bidirectional data partitioning technique and class encoding with feature 
selection schemes developed in this thesis, are examples of a decision 
optimization ensemble. 

Good performance of an ensemble technique is achieved upon successful 
choice of generation and integration methods along with a learning model. 
There are stable and unstable classifiers with respect to their response to a 
change in the input data induced by the generation method.  

Ensemble performance depends on the amount of correlation between 
predictions of the component classifiers and on integration of those predictions, 
which is directly related to the amount of classification error reduction in 
ensemble (Tumer & Ghosh, 1996b). Diversity and uniform coverage provided 
by ensemble generation method are not themselves a sufficient condition for 
good ensemble performance. The integration method chosen must take 
advantage of both diversity and coverage of the component classifiers. 

Integration of the component classifiers is based on decision which of their 
predictions to accept as a final prediction or how to combine individual 
predictions to develop a final prediction. The corresponding strategies, selection 
and combination, are the basic strategies of the component classifiers integration. 
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An example of integration by selection is the cross-validation majority 
technique (CVM) (Schaffer, 1993; Kohavi, 1995). The commonly used combining 
method is voting, which is based on the majority voting principle (Bauer & 
Kohavi, 1999). Another basic combination method is stacked generalization (or 
stacking) (Wolpert, 1992). The integration methods used for in experimental 
sections of this thesis cover both categories: selection (based on distance and 
based on a meta-classifier in bidirectional partitioning) and combination (a 
variation of the stacking technique in class encoding). 

There are two approaches to select or combine classifiers, static and 
dynamic. Static techniques analyze the outputs of all component classifiers and 
then develop a final prediction. They attempt to find a single “best” classifier 
for the entire data set. This approach, however, is not suitable for 
heterogeneous data. According to a dynamic approach the integration rule is 
revised for every unclassified instance: the most suitable of the component 
classifiers is assigned, or a combined classifier is built. The most suitable 
classifier is usually determined using some distance metric. An extensive 
review of different integration methods can be found, for example, in Tsymbal 
(2002). Different integration strategies, static and dynamic, selection and voting, 
have been evaluated with combined ensemble technique in author’s joint work 
in Tsymbal et al. (2001). 

Classification by ensemble provides accuracy increase due to 
disagreements of the component classifiers in different situations. Each 
component classifier is competent in certain situations, but domains of 
competence of different classifiers may overlap, making majority voting, and in 
particular, dynamic voting applicable. An attempt to relate domains of 
competence of the component classifiers and geometrical complexity of a 
classification problem has been made in Ho et al. (2006). 

The theoretical backgrounds of ensemble learning are important to 
understand in order support argumentations for using ensemble framework 
while developing a solution for heterogeneous classification problems. 

2.2.2 Feature set manipulation, sampling and class encoding 

Methods belonging to three main ensemble generation categories can be used 
for heterogeneity decomposition only partially. Manipulation by the set of 
features in order to make multiple feature subspace projections can be 
performed as local feature selection. Class encoding provides a partition of the 
set of instances in accordance to class labeling that may be used for 
decomposition of class heterogeneity. Sampling provides a partition of the set 
of instances according to some heuristic rule in order to find instances 
representing homogeneous regions. The basic methods are based on the simple 
heuristic rules of ensemble generation, such as manipulating features, class 
labels, or training instances. 

Constructing component classifiers in different feature space projections, 
i.e. on different feature subsets, has been proved to increase the diversity of an 
ensemble providing uncorrelated errors in predictions of the component 
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classifiers in general. However, success of this technique mainly depends on the 
classification problem specifics. Ensembles built manipulating features, 
contrary to sampling and class encoding techniques, keep the distribution of the 
training set unchanged. Pseudo-random multiple feature subspace projection 
methods are based on heuristic search and evaluation of different feature 
subsets for construction of the component classifiers towards effective ensemble 
prediction. The examples are the Random Subspace Method for decision tree 
ensembles (Ho, 1998), the Input Decimation method (Tumer & Ghosh, 1996b), 
and the Stochastic Attribute Selection Committees method (Zheng & Webb, 
1998). 

In the Random Subspace Method (RSM) for decision tree ensembles (Ho, 
1998) the component classifiers are constructed systematically selecting feature 
subsets in a pseudo-random fashion. This way a random feature subspace in 
the original feature space is obtained, and a component classifier is constructed 
in this subspace. It was indicated that RSM is more successful when the 
information is uniformly spread over all features rather than it is condensed in 
few features, especially for small random subsets. When all features are 
informative, redundancy does not affect RSM performance. 

Skurichina and Duin (2001) have shown that bagging performs better than 
RSM for the highly redundant feature spaces when the discrimination power is 
condensed in few features and the training set is small. However, RSM 
outperforms bagging when the discriminating power is distributed over all 
features. 

Kuncheva and Whitaker (2001) investigated the potential improvement 
from ensembles constructed on feature subsets comparatively to a single 
classifier. They analyzed distribution and the extremes of improvement (or 
failure), the chances that ensemble outperforms a single best classifier when the 
feature space is partitioned at random, relationship between the spread of 
accuracies of the component classifier and ensemble, and the performance of 
integration schemes. 

A genetic search for different feature subsets on which an ensemble of 
neural networks is constructed is considered in Opitz (1999). In order to 
optimize the ensemble characteristics further search for feature subsets is 
conducted. For a stopping criterion, a trade-off between ensemble diversity and 
accuracy is used. 

The Input Decimation method (Tumer & Ghosh, 1996b) reduces 
correlation among errors produced by the component classifiers. In this 
method, features to construct the component classifiers are selected according 
to their correlation with a class variable. Oza and Tumer (1999) have adapted a 
correlation based approach to construct an ensemble of classifiers. To estimate 
the goodness of feature subsets correlation between features and a particular 
class was calculated, and features with highest correlation were selected to 
construct a classifier for that class separately producing different models for 
different classes. 
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Oza and Tumer (2001) have found that deleting even a few of the input 
features hurt the performance of the component classifiers so that accuracy of 
the voted ensemble degrades. The input decimation method performs well 
when the input features are highly redundant. 

The Stochastic Attribute Selection Committees (SASC) method (Zheng & 
Webb, 1998) generates ensembles of classifiers stochastically modifying the set 
of features. It was concluded that on average SASC is more accurate than 
bagging and less accurate than boosting, but like bagging, SASC is more stable 
than boosting. Their work demonstrates a competitive strength of ensembles 
constructed by feature set manipulation compared to the most popular 
sampling methods. 

Methods encoding a class variable were originally developed to solve 
multi-class problems. They are based on splitting a multi-class problem into a 
series of independent two-class problems according to the rule of class 
re-labeling called dichotomizer and recomposing them using dichotomizer’s 
outputs. This approach is implemented, for example, in support vector 
machines, multi-layer perceptrons, and most rule-based learning algorithms 
(Masulli & Valentini, 2000). 

Class encoding ensemble techniques are well-represented by three 
techniques described and compared in Masulli and Valentini, (2000): 
one-per-class, pairwise, and error correcting output codes (ECOC) ensemble 
techniques. 

The one-per-class ensemble technique (Anand et al. 1995), also called in the 
literature one-against-all binarization, is designed to separate a single class from 
all the others. As a consequence, the number of the component classifiers in 
ensembles ܵ equals to the number of classes ܦ. Integration of the component 
classifiers is usually performed using some similarity measure. Binary outputs 
of all component classifiers are collected as a vector ሺݕଵ, … , ܵ ௌሻ, whereݕ ൌ  ,ܦ
and compared with the binary D-bit codeword corresponding to the class 
re-labeling scheme. 

The pairwise ensemble technique (Hastie & Tibshirani, 1998; Moreira & 
Mayoraz, 1998, Fürnkranz, 2002), also called pairwise coupling or round robin, 
converts a D-class problem into a series of two-class problems by learning one 
classifier for each pair of classes using only training instances for these two 
classes and ignoring all the others. Ensemble consists of ܵ ൌ ܦሺܦ െ 1ሻ 2⁄  
component classifiers in this case. A typical integration scheme for the pairwise 
ensemble technique that works in many cases is simple voting (Fürnkranz, 
2002). However, in this case for each new instance to be classified the outputs of 
majority classifiers are not significant and introduce noise for the voting scheme 
by the inappropriate information. 

Error correcting codes are applied in the ECOC technique introduced in 
Dietterich and Bakiri (1991 and 1995), which is established as one of the most 
successful ensemble techniques in general. Correcting schemes taken from 
coding theory induce some redundancy in representation of subproblems that 
increases classification accuracy.  
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Ensemble techniques based on training set sampling have been recently 
under intensive research. In this category of ensembles, bagging and boosting 
are the best-known and most widely applicable techniques (Opitz & Maclin, 
1999). The main principle of ensemble generation using sampling is the 
following. A number of folders /samples is obtained from the training set, and 
then the learning algorithm runs several times, each time on a different sample 
from the training set. Then, multiple classifiers are integrated to produce a final 
prediction. 

Ensembles generated manipulating the subsets of training instances 
perform especially well for unstable learning algorithms, such as decision tree, 
neural networks, or rule-based learning algorithms (Dietterich, 1997). 
Variability of their predictions can be reduced due to the training set variability. 
Their output classifier undergoes major changes in response to small changes in 
the training data. Nearest Neighbor, linear regression, and linear threshold 
algorithms are stable when the training sample size is reasonably large and 
unstable when it is quite small (Skurichina, 2001). 

As proposed in Breiman (2000), consider the training set as consisting of ܯ independent draws from the same underlying distribution. Conceptually, 
training sets of size ܯ  can be drawn repeatedly, and the same learning 
algorithm will be used to construct a predictive model. Those models will vary, 
and the extent of this variability is a dominant factor in producing 
generalization error. The way to reduce the variability realized in sampling 
techniques is perturbation of the training instances to produce alternative 
training sets (samples), and constructing multiple predictive models to be 
integrated, for example, by voting. 

Bagging (Breiman, 1996) is based on a repeated bootstrap sampling (Efron 
& Tibshirani, 1993) and an aggregation procedure. Bootstrap sampling uses 
sampling with replacement, thus in a sample some instances appear more than 
once, and some instances are not included at all. It has been shown that on 
average 63.2% of the instances of the learning set are included in the sample at 
least once (Breiman, 1996; Bauer & Kohavi, 1999). Then a classifier is 
constructed on this sample by a learning algorithm. Generation of new samples 
continues until the desired number of component classifiers is achieved. 
Bootstrapping helps to avoid or get less non-representative instances in the 
training set. 

In order to generate a component classifier a random sampling is 
performed drawing a sample of ܯ instances having repeated instances. Then a 
classifier is constructed on this sample by a learning algorithm. Generation of 
new samples continues until the desired number of component classifies is 
achieved. Bootstrapping helps to avoid or get less non-representative instances 
in the training set. 

Boosting is generally proven as more accurate than bagging, although 
performance of boosting is more variable than performance of bagging (Opitz & 
Maclin, 1999; Tumer & Ghosh, 1996b). Boosting is the most efficient for large 
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training sample sizes while bagging and RSM are beneficial for small and 
critical sample sizes (Skurichina, 2001). 

Boosting scheme, illustrated by the AdaBoost algorithm (Freund & 
Schapire, 1996; Freund & Schapire, 1997), also chooses a training set of size ܯand initially sets the probability of picking each instance to be 1 ⁄ܯ . At each 
iteration, these probabilities are changed according to error rate of each 
classifier ݄௦, ݏ ൌ 1 … ܵ, weighted with the probabilities of instances incorrectly 
classified by ݄௦. The component classifiers are then integrated using weighted 
voting. The effect of the change in weights is to place more weight on training 
instances that were misclassified by ݄௦, and less weight on instances that were 
classified correctly. 

AdaBoost algorithm requires weak classifiers produced, for example, by 
decision trees or neural networks to be integrated. Their error rate should be 
bounded by a constant strictly less than 0.5. Schapire et al. (1998) provided an 
explanation for the fact that the generalization error does not increase when 
many classifiers are combined. 

Another sampling technique called cross-validation partitioning 
(Parmanto et al., 1996) is based on the procedure employed in the 
cross-validation majority technique. Samples are constructed leaving out 
disjoint subsets of the training set. Training set is randomly divided onto l 
folders and l overlapping samples are generated each time dropping out one of 
the folders. 

2.2.3 Combined ensemble techniques 

The approach proposed in this thesis for heterogeneous classification problems 
is a synergy of multiple feature subspace projection, sampling, and class 
encoding. In this subsection related works on ensemble techniques combining 
multiple feature subspace projection, sampling, and class encoding ensemble 
generation methods are considered. Combined ensemble techniques derive 
benefits in some situations uniting the strengths of different techniques and 
avoiding their weaknesses. The advantage is demonstrated as the measured 
ensemble performance characteristics, that is training/generalization accuracy, 
diversity, complexity, and error bias/variance reduction. 

Several recent research works studied combination of ensemble 
techniques for various learning algorithms. Mostly, different sampling 
techniques have been combined with boosting, which is effective for a wide 
variety of classification tasks. However, only a few studies have been done on 
combination of multiple feature subspace projection with class encoding and 
multiple feature subspace projection with sampling techniques, which can bring 
potential advantage for heterogeneous classification problems. 

For example, in Oza and Tumer (1999) a combination of correlation-based 
feature subset selection and one-per-class decomposition has been proposed to 
generate the component classifiers. This method called Input Decimation is 
based on the assumption that features highly correlated with particular class 
and uncorrelated between each other are important to classify instances from 
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that particular class. This reduces correlation between errors produced by the 
component classifiers promoting ensemble diversity and accuracy growth. 

In Fürnkranz (2002) a straightforward combination of pairwise ensemble 
technique and bagging has been explored for a decision tree learning algorithm. 
A number of classifiers in ensemble has been increased by 10 times since for 
each pairwise partitioning 10 samples with replacement were drawn. The 
obtained component classifiers were integrated through simple voting. As a 
result, performance of the pairwise technique was considerably improved. 

Considerable increase of classification accuracy for the Nearest Neighbor 
learning algorithm is obtained by combining ECOC with local feature selection 
proposed in Ricci and Aha (1997a). 

Guruswami and Sahami (1999) extended ECOC performance in solving 
multiclass problems with the power of boosting to annul the error correlation 
disadvantages of ECOC. Feature selection was employed for each output 
coding that significantly increased classification accuracy on several multi-class 
data sets, and the conditions under which the method works were explained. 

In Windeatt and Ardeshir (2002) combination of boosting and ECOC is 
explored for decision trees. Experiments have shown that this technique 
demonstrates better accuracy for unpruned decision trees. 

In Lazarevič et al. (2000) an Adaptive Attribute Boosting technique has 
been proposed to coalesce multiple local classifiers, which are constructed at 
each boosting round on different subsets of features. The benefits of this 
technique have been demonstrated on heterogeneous spatial data sets. 

Several studies have been performed on combination of class encoding 
with boosting and/or bagging, and multiple feature subspace projection with 
boosting and/or bagging that enhances the effect of formers. For example, 
Zheng, Webb and Ting (1998) combined boosting with stochastic attribute 
selection and showed that the combined technique effectively increases 
ensemble diversity and accuracy. In Zheng and Webb (1998) authors enhanced 
this combination incorporating bagging and got further increase of accuracy 
and reduction of variability. Combination of multiple feature subspace 
projection and sampling techniques was also explored by Breiman (2001). In 
that paper, random feature selection is enhanced with bagging. 

In Skrypnyk and Ho (2003) it was indicated that the mechanisms of 
accuracy increase offered in bagging and boosting in combination with random 
feature selection are different from those required for heterogeneous 
classification problems. Such sampling techniques as bagging and boosting pick 
up nearly equal number of instances representing different subproblems in 
synthetic data. Though, combination of boosting and feature selection based 
one-per-class ensembles promotes accuracy growth for some data sets, as 
shown in Skrypnyk et al. (2003). It can potentially help to improve accuracy in 
subproblems associated with homogeneous regions. 
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2.3 Chapter summary 

In this chapter, the classification and clustering tasks are introduced under a 
unified framework. The related notion of feature relevance in classification and 
the feature selection task are considered. These tasks are subsidiary to 
multi-model approach in classification, which is introduced thereafter. Basic 
notions are described from perspectives of machine learning and statistical 
decision theory. Introduction of theoretical and structural basis of ensemble 
learning is followed by categorization of ensemble techniques and brief 
overview of the relevant findings. This chapter provides the essential 
backgrounds for understanding the problem of unstable feature relevance in 
classification, the concept of heterogeneous classification problems, and the 
developed solutions based on heterogeneity decomposition. 

Classification is a prediction of the class labels for the structured domain 
examples (instances) using a model build on the similar instances with known 
class labels. The C4.5 decision tree, Naїve Bayes, and k-Nearest Neighbor that 
exemplify different approaches to learning are described in Appendix 2. A 
particular attention is given to their performance in high dimensions response 
to the presence of irrelevant features. Clustering task deals with discovery of 
new classes and structural relationships between categories in data. In this 
thesis it has been considered with respect to finding homogeneous regions in 
classification problems. Basic clustering techniques are briefly introduced in 
Appendix 2. Selection of relevant features addressed in this chapter is 
considered with respect to classification task. The aim of feature selection is to 
find a subset of relevant features to increase predictive accuracy and/or 
simplify a learning model. The notions of relevant, redundant and interactive 
features are considered. A BDP multi-model approach follows the 
divide-and-conquer paradigm in data mining. Ensembles learning based on 
multiple models provides a convenient tool for decomposition and mechanisms 
for prediction accuracy improvement. 
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3 HETEROGENEOUS CLASSIFICATION PROBLEMS 
AND DECOMPOSITION APPROACHES 

This chapter addresses the problem of unstable feature relevance in predictive 
data mining introducing the concept of heterogeneous classification problems. 
A few basic heterogeneity types are considered in Section 3.1. Decomposition as 
a generalized solution is suggested in Section 3.2. Under ensemble framework, 
decomposition is a part of the learning stage followed by construction of local 
models covering homogeneous regions. The chapter provides an introduction 
for two approaches to perform decomposition of a heterogeneous classification 
problem, at the class level and beyond the class level, which are presented in 
Chapters 4 and 5. 

Decomposition approaches based on local feature relevance evaluation 
and local class separability estimation considered in subsections 3.2.2 and 3.2.3 
are conceptually similar, but follow different decomposition schemes. The first 
one is applied at the class level, and the second one reaches beyond class labels. 
The search strategies used to find candidate local regions that possess 
homogeneity and related evaluation criteria are briefly discussed. Evaluation 
functions and search strategies specific to both approaches are elaborated in the 
subsequent chapters. Section 3.3 presents decomposition within an ensemble 
framework and describes ensemble generation using a general decomposition 
scheme and integration of the component classifiers. 
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3.1 The classification heterogeneity 

During the last decade, the problem of heterogeneity in data have been 
addressed in several machine learning studies under different names, such as 
local feature relevance, attribute instability and relevance in context. This 
problem has been forestalled in earlier machine learning research on 
context-sensitive and local learning, for example, discussing relevance of 
features in context (Domingos, 1997) and local feature relevance (Howe & 
Cardie, 1997; Friedman, 1994). The problem of heterogeneity in contemporary 
data has been introduced recently as a problem related to classification tasks 
(Apte et al., 1998; Lazarevič et al., 2000).  

At the same time in the databases research community integration of 
heterogeneous databases has become an actively discussed topic (Dey et al., 
2002). As a result, many issues related to mining massive heterogeneous 
databases were brought on top, including classification tasks (Pinheiro & Sun, 
1998, Fuseida & Satou, 1999). The data sets obtained from heterogeneous 
databases are often used for prediction in different areas, for example, in 
bioinformatics (Pavlidis et al., 2001, Thierry-Mieg, 2000) and medicine (Golub et 
al., 1999; Ramaswamy et al., 2001). 

In this thesis, unstable feature relevance is considered as a part of a bigger 
problem, a problem of classification heterogeneity. A starting point for this 
research became a paper by Apte et al. (1998), where classification heterogeneity 
of two types is described, feature space heterogeneity and class heterogeneity. 
This thesis uses basic terminology established in this paper. The extended 
definitions of the heterogeneity types used throughout the manuscript are 
presented later in this section. Before formalizing the definition of classification 
heterogeneity, early research works discussing this phenomenon and pointing 
out to the problem will be overviewed. 

3.1.1 Unstable feature relevance: early works on local feature selection 

The fact that feature relevance may vary across the set of instances was 
elaborated in early works on feature weighting for lazy learning algorithms, 
mostly for the k-Nearest Neighbor learning algorithm. Two representative local 
weighting schemes for k-Nearest Neighbor (Hastie & Tibshirani, 1996; 
Friedman, 1994) are instance-specific. In Hastie and Tibshirani (1996) a separate 
distance metric for each target instance is computed through an iterative 
process. In Friedman (1994) the most relevant feature is scaled at each step such 
that a fixed fraction of the given training instances fall outside of a 
predetermined range around the target instance. The training instances outside 
of that range are then discarded, the new most relevant feature is determined, 
and the process is repeated until only k training instances remain. The local 
relevance of each feature is estimated from the estimated reduction in 
classification error. Both papers report favorable results on their local 
approaches comparatively to global ones, but both of those local approaches 
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proposed are computationally expensive.  
Howe and Cardie (1997) have proposed a coarsely local feature weighting 

scheme, class distribution weighting, where feature weights are allowed to vary 
being identical for certain clusters of instances. This method is a precursor for 
several class encoding feature selection and ensemble techniques, for example 
proposed in Oza and Tumer (1999) and Hall (1999), which assume that there are 
features that are useful at distinguishing whether an instance is of one 
particular class, but are not useful at distinguishing between the remaining 
classes. The method presented in Howe and Cardie (1997) is based on the 
assumption that although classes are not always homogeneous, it is plausible that for 
many domains features informative for a particular class are the same for most or all 
instances belonging to that class. 

Domingos (1997) has extended the concept of local feature relevance. He 
motivated that some features may be highly relevant in certain regions of the instance 
set being irrelevant everywhere else by their sensitivity to a context that is to the values of 
the other features. The Relevance-in-Context method proposed is distance-based 
and instance-specific that makes it computationally expensive. In Domingos 
(1997) a feature difference measure is also considered to evaluate the context 
dependency effect exhibited by Relevance-in-Context in real data sets.  

Alternatively, the idea of contextual features has been explored by Turney 
(1996, 1993). He distinguishes three different types of features: primary, 
contextual, and irrelevant features. By his definition, primary features are useful 
for classification when considered in isolation, without regard for the other 
features. Contextual features are not useful in isolation, but can be useful when 
combined with other features. Irrelevant features are not useful, either when 
considered alone or when combined with other features. In those works, 
different strategies for exploiting context have been studied, assuming that 
contextual features are available for learning. 

Harries and Horn (1996) recognize hidden changes in context for concept 
learning and propose a batch learning approach. They identify environmental 
features, which reflect hidden context. The examples of environmental features 
are time or spatial location. The SPLICE method proposed is a meta-level 
algorithm that uses a learning algorithm capable to perform context-sensitive 
feature selection, like Relevance-in-Context, or decision tree. Such learning 
algorithms select features at each node, rule, or clause in the context of locally 
relevant prior selections. Partitions made by them over some environmental 
feature selected (for example, time feature) identify possible changes in context. 
Then contextual clustering is performed over the intervals according to 
apparent similarity of context, and local context-specific concepts are learned. 
SPLICE does not seek or extract the contextual features from heterogeneous 
data, assuming that context may be contiguous over some ordinal features 
(environmental).  

In Apte et al. (1998) a method to search for evidence of heterogeneity and a 
method to decompose the problem into constituent subproblems are proposed. 
A transformed cosine similarity measure, the Importance Profile Angle (IPA), 
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has been suggested to perform a test for heterogeneity. IPA reflects the degree 
of dissimilarity between the decision boundaries for a pair of subproblems. In 
IPA profiles of feature importance are compared based on some feature merit 
measure used to create a scored rank. Authors in Apte et al., (1998) have 
developed a contextual merit measure and compared it to Information gain and 
ReliefF measures. If any heterogeneity is found, a tree–like search procedure is 
used to perform splits of the data set until homogeneous regions are found. 
This strategy is applicable in situation when contextual features are available, 
for example, age or gender. Then a spit is performed by the values of those 
contextual features, implying that predictive models will be different for males 
and females, or for children and adults. 

Authors in Apte et al. (1998) have shown that heterogeneity may appear at 
the class level: a set of features to discriminate one class from the other class(es) 
is different from a set of informative features associated with another class. A 
similar line of thinking can be observed also in Cardie and Howe (1997), Hall 
(1999), and Oza and Tumer (1999). Authors in Apte et al. (1998 suggested that 
differences in class probability distribution may give an indirect indication for 
decomposition. Therefore, they based their heterogeneity test solely on feature 
relevance profiles in subproblems. 

Dependence between contextual and primary features as a particular case 
of feature dependencies has been considered in Robnik-Šikonja and Kononenko 
(1996) and Robnik-Šikonja and Kononenko (1999). Robnik-Šikonja and 
Kononenko (1996) state that Relief and its extension ReliefF are both capable to 
estimate correctly the quality of features in classification problems with strong 
feature dependencies. By exploiting the local information provided by different 
contexts they provide a global view and recognize contextual features.  

In the original Relief (Kira & Rendell, 1992) the quality of features is 
estimated according to how well their values distinguish between the instances 
that are near to each other, evaluating two nearest neighbors of the target 
instance - from the same and different class. When calculating a merit measure 
for a feature Relief, similar to contextual merit, takes into account correlations 
between features contrary to the “myopic” feature merit measures that assume 
feature independence, such as Information gain and Gini index. 

Later works dealing with heterogeneous data and unstable feature 
relevance use ensemble learning. Class encoding ensemble techniques 
considered in the next section originally have been designed to solve multi-class 
classification problems. A new use of class encoding has been proposed in Oza 
and Tumer (1999). The Input Decimation method described in this paper 
generates one component classifier per each class using a subset of features 
correlated with this class.  

In Lazarevič et al. (2000) the Adaptive Boosting technique for 
heterogeneous spatial databases with unstable feature relevance has been 
developed. Authors point out that in heterogeneous databases there are 
features that change their relevance across the instance set. In the boosting 
round of Adaptive Boosting the local information for the drawn sample is 
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maximized by feature selection, extraction or weighting and at the same time, 
spatial data blocks are drawn. 

These are a few examples of unstable feature relevance considered in the 
literature a decade ago. From that literature we have observed two tendencies 
in solving the unstable feature relevance problem: (1) data structure oriented or 
class separability oriented, and (2) identification of contextual features or 
increasing sensitivity to context changes. Currently, the problem is recognized 
mostly with respect to different application domains. This thesis considers 
examples from medical and biomedical domains in the experimental section.  

The decomposition approaches and heterogeneity types proposed in this 
thesis are conforming to these tendencies, with an attempt to extend, formalize, 
categorize, and unify them all. 

3.1.2 Classification heterogeneity types 

In many prediction tasks, characteristics of the class boundaries are very 
different in different regions of the feature space (Ho & Basu, 2002; Pierson, 
1998). The spatial location of those homogeneous regions has a vital 
importance. In this situation often the contribution of features to discriminate 
between classes may be unequal across the set of instances. Thus, in general, 
classification heterogeneity is feature space heterogeneity. 

Data structure differs in homogeneous regions having different relevant 
features. It may happen that in a particular feature subspace some group of 
instances can be separated from the others with a simple boundary (for 
example, linear or piecewise-linear boundary). In addition, this group may 
contain instances of a particular class, or a subset of classes. It means that those 
features are relevant to discriminate classes at this particular group of instances 
while being less useful or completely useless for the rest of instances.  

A particular case of classification heterogeneity when the homogeneous 
regions are composed by instances of one particular class, or a subset of classes, 
is denoted in Apte et al. (1998) as class heterogeneity. In this case, the decision 
rules that distinguish one subset of classes from another might be different from 
those that discriminate classes within this subset.  

Class heterogeneity occurs in practical prediction tasks quite often, 
because the data sets usually have some structure resulting from non-random 
processes that generated the data. For classification tasks, this structure is 
related to class labeling and grouping of instances. Thus, homogeneous regions 
may often correspond to class labeling (Skrypnyk, 2004). 

Interactions, in particular, higher order dependencies between features are 
important characteristics of heterogeneous classification problems. Sometimes 
local relevance of other features, and hence, grouping of instances at 
homogeneous regions is specified by the values of so-called contextual features. It 
can be illustrated by the following example from medical domain considered in 
Apte et al. (1998). In medical diagnostics diagnosis may require quite different 
predictive models for different genders, thus a feature “gender” by its values 
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specifies different symptoms (relevant features) to consider for females and 
males. 

Sometimes grouping of instances at homogeneous regions can be clearly 
seen in a particular projection of a feature space to a restricted subspace. 
Important roles in this situation play contextual features. By their values, they 
specify groups of instances and locally relevant features.  

In order to demonstrate how projections of those groups in corresponding 
feature subspaces improve class separability, consider an example on 
continuous data illustrated in Figures 3 – 6. This synthetic data set has 7 
features following Gaussian distributions; feature ଴݂ by two intervals of its 
values specifies local relevance of feature subsets ( ଵ݂, ଶ݂, and ଷ݂) and ( ସ݂, ହ݂, 
and ଺݂) in homogeneous regions. There are two homogeneous regions each 
containing instances of both classes. 

 

FIGURE 3 7-dimesional Gaussian data shown in the subspace of features ଵ݂, ଶ݂, and ଷ݂. 
Instances belonging to different classes are of different colors. In these 
dimensions class boundaries are unseen. 

One may see that in some arbitrary projection of the feature space classes (and 
class boundaries) heavily overlap, as shown in Figure 3. When contextual 
feature(s) are used in projections distribution of instances from different classes 
is different along the corresponding dimensions (Figure 4). After decomposition 
of the classification problem into two subproblems, where homogeneous 
regions are modeled separately, classes become easier separable (Figures 5 and 
6). 
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FIGURE 4 7-dimesional Gaussian data shown in the subspace of features ଴݂, ଵ݂, and ଶ݂. 
Feature ଴݂ is contextual. Distribution of instances from different classes is 
different along this dimension.  

Often the domain knowledge is limited and contextual features are, which by 
their values can specify some division onto homogeneous regions, are not 
present or unknown. Consider an example of feature space heterogeneity where 
homogeneous regions are not related to a particular class labeling. 

A data set contains all legal 8-ply positions in the Connect-4 6 x 7 board 
game (Allen, 1990) in which neither player has won yet and the next move is 
not forced. From these positions, it is necessary to predict either win/loss for 
the first player, or draw. In this data set each cell is represented by a feature 
taking three possible values: x – the first player has taken, o – the second player 
has taken, and b – blank. In order to make a prediction for each case (instance) 
there is no need to consider all cells (features). The features relevant for 
prediction may change from case to case. Obviously, the subset of features 
taking x or o values in the particular instance is always relevant for this 
instance.  

This example illustrates an extreme case when each instance in a data set 
has a unique subset of relevant features. In general, instances can be grouped 
according to the relevance degree of different features, or by subsets of relevant 
features. Considering such grouping one can assume the following situations. 
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FIGURE 5 7-dimesional Gaussian data shown in the subspace of features ଵ݂, ଶ݂, and ଷ݂ 
after decomposition. Data set is decomposed on two subproblems according 
to the particular values of the contextual feature ଴݂. In these dimensions it is 
visible that instances from class 2 surround instances from class 1. 

Subsets of relevant features for different groups may be disjoint or a subset at 
one region may have a superset at another region. Division by groups assumes 
that each group includes sufficient number of instances to describe a 
homogeneous region and to construct a local model using those instances. 

There are variations of feature space and class heterogeneity. In Table 1 a 
general case of heterogeneity is shown schematically.  

TABLE 1 An interpretation of a general case of heterogeneity in data. Relevant features 
are marked by R, and irrelevant ones by I. Each group includes all the 
instances for which the combination of relevant and irrelevant features holds. 

Instances Features Class ݔ ଵ݂ ଶ݂ ଷ݂ … ௝݂ … ே݂ ݕ 
Group 1 R R I … R … R ܿଵ, … , ܿ஽ 
Group 2 I R R … R … R ܿଵ, … , ܿ஽ 
Group 3 I I R … I … R ܿଵ, … , ܿ஽ 

… … … … … … … … … 
Group i R I I … I … R ܿଵ, … , ܿ஽ 

… … … … … … … … … 
Group Z I R R … I … R ܿଵ, … , ܿ஽ 
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FIGURE 6 7-dimesional Gaussian data in the subspace of features ସ݂, ହ݂, and ଺݂  after 
decomposition. Data set is decomposed on two subproblems according to the 
particular values of the contextual feature ଴݂. In these dimensions it is visible 
that instances from class 1 surround instances from class 2. 

Instances are grouped according to coincidence in their relevant features. 
Globally relevant features (such as feature ே݂ in Table 1) appear in every group. 
Each group may include instances from different classes. 

Each group may be composed of instances that belong to different classes, 
which means that heterogeneity is not related to class labeling. In practice, 
different groups may include instances from the particular subsets of classes. 
This is a particular case of heterogeneity, class heterogeneity schematically 
presented in Table 2.  

In the particular case of class heterogeneity, one-class heterogeneity, 
different subsets of features are considered relevant to distinguish one class 
from the others. This case is shown schematically in Table 3. 

Sometimes the domain knowledge regarding heterogeneity is available. 
For example, in medical diagnostic problems for different individuals various 
clinical analyses, tests, symptoms, and anamneses recorded as features may be 
needed to identify same diseases. Then individual’s sex, age group, belonging 
to some risk category by individual’s employment, residence, and so on, are 
contextual features. 

It is assumed that a contextual feature by its values may specify groups of 
instances with identical subsets of relevant features. Those relevant features, 
specific for each group, are called primary features. In case of one-class 

Instances

class 2

class 1

3030

F4

-20

-10

20 20

0

10

10

20

10

F6F5
0 0-10 -10-20



52 
 

 

heterogeneity, when contextual features specify groups inside which all 
instances belong to the same class, sometimes there is no need to consider 
primary features.  

TABLE 2 An interpretation of class heterogeneity. Classes within subsets are separable 
in a particular set of dimensions (features) specific for this subset of classes. 
Relevant features are marked by R, and irrelevant ones by I. Each group 
includes all the instances for which the combination of relevant and irrelevant 
features holds. 

Instances Features Class ݔ ଵ݂ ଶ݂ ଷ݂ … ௝݂ … ே݂ ݕ 
Group 1 R R I … R … R ܿ௜, ௝ܿ , … , ܿ௞ 
Group 2 I R R … R … R ܿ௟, ܿ௠, … , ܿ௡ 
Group 3 I I R … I … R ܿ௣, ܿ௥, … , ܿௌ 

… … … … … … … … … 
Group i R I I … I … R ܿ௧, ܿ௨, … , ܿ௏ 

… … … … … … … … … 
Group Z I R R … I … R ܿ௚, ܿ௤, … , ܿ௪ 

TABLE 3 An interpretation of one-class heterogeneity. Each class is separable from the 
rest of classes in a particular set of dimensions (features) specific for this class. 
Relevant features are marked by R, and irrelevant ones by I. Each group 
includes all the instances for which the combination of relevant and irrelevant 
features holds. Groups include different number of instances. 

Instances Features Class ݔ ଵ݂ ଶ݂ ଷ݂ … ௝݂ … ே݂ ݕ 
Group 1 R R I … R … R ܿଵ 
Group 2 I R R … R … R ܿଶ 
Group 3 I I R … I … R ܿଷ 

… … … … … … … … … 
Group i R I I … I … R ܿௗ 

… … … … … … … … … 
Group Z I R R … I … R ܿ஽ 

Contextual features may specify relevance of primary features by their values. 
Several contextual features may be interacting, that is they specify relevance of 
primary features and group them by combination of their values. This case is 
schematically shown in Table 4. 

It is not necessary that each of all possible combinations of the contextual 
features values defines a group. At the same time some features may be locally 
relevant, but not under control of contextual features (the feature ௝݂ in Table 4). 
Some features may be globally relevant (the feature ே݂ in Table 4) or relevant 
for several groups. Similar to examples provided in Table 2 and Table 3, each 
group defined by contextual features may include instances from different 
subsets of classes (class heterogeneity) or an individual class (one-class 
heterogeneity). Class heterogeneity defined by P contextual features is shown in 
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Table 5. In this case, contextual features by their particular values combination 
specify relevance of the primary features, which unambiguously identify 
subsets of classes. 

TABLE 4 Contextual heterogeneity with P features. Relevant features are marked by R, 
and irrelevant ones by I. Each group includes all the instances for which the 
combination of relevant and irrelevant features holds. Groups include various 
numbers of instances. Relevance of the feature ௝݂  does not depend on 
contextual features. The feature ே݂ is globally relevant. 

Instances Contextual 
features 

Primary features Class ݔ ܿଵ … ܿ௉ ଵ݂ ଶ݂ ଷ݂ … ݂ … ே݂ ݕ 

 
… ௉,௥ R R Iݒ … ଵ,௜ݒ R … R ܿଵ, … , ܿ஽ … … … R R I … R … R ݒଵ,௝ … ݒ௉,௦ R R I … I … R 

… … … … … … … … … … … … 

 
… ௉,௧ I I Rݒ … ଵ,௞ݒ R … R ܿଵ, … , ܿ஽ … … … I I R … I … R ݒଵ,௟ … ݒ௉,௤ I I R … R … R 

… … … … … … … … … … … … 

 
ଵ,௠ݒ … ௉,௚ R I Rݒ … I … R ܿଵ, … , ܿ஽ … … … R I R … I … R ݒଵ,௡ … ݒ௉,௪ R I R … R … R 

TABLE 5 Class heterogeneity with P contextual features. Relevant features are marked 
by R, and irrelevant ones by I. Each group includes all the instances for which 
the combination of relevant and irrelevant features holds. Groups include 
various numbers of instances. Relevance of the feature ௝݂ does not depend on 
contextual features. The feature ே݂ is globally relevant. 

Instances 
Contextual 

features Primary features Class ݔ ܿଵ … ܿ௉ 1f 2f 3f … ௝݂ … ே݂ ݕ 

 
… ௉,௥ R R Iݒ … ଵ,௜ݒ R … R ܿ௜, ௝ܿ , … , ܿ௞ … … … R R I … R … R ݒଵ,௝ … ݒ௉,௦ R R I … I … R 

… … … … … … … … … … … … 

 
… ௉,௧ I I Rݒ … ଵ,௞ݒ R … R ܿ௧, ܿ௨, … , ܿ௏… … … I I R … I … R ݒଵ,௟ … ݒ௉,௤ I I R … R … R 

… … … … … … … … … … … … 

 
… ௉,௚ R I Rݒ … ଵ,௠ݒ I … R ܿ௚, ܿ௤, … , ܿ௪… … … R I R … I … R ݒଵ,௡ … ݒ௉,௪ R I R … R … R 

One-class heterogeneity defined by P contextual features is shown in Table 6. In 
this case, contextual features by their particular values combination specify 
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relevance of the primary features, which unambiguously identify instances 
from a particular class. This makes primary features redundant. 

TABLE 6 One-class heterogeneity with P contextual features. Relevant features are 
marked by R, and irrelevant ones by I. Each group includes all the instances 
for which the combination of relevant and irrelevant features holds. Groups 
include various numbers of instances. Relevance of the feature ௝݂ does not 
depend on contextual features. The feature ே݂ is globally relevant. 

Instances 
Contextual 

features Primary features Class ݔ ܿଵ … ܿ௉ ଵ݂ ଶ݂ ଷ݂ … ௝݂ … ே݂ ݕ 

 
… ௉,௥ R R Iݒ … ଵ,௜ݒ R … R ܿଵ … … … R R I … R … R ݒଵ,௝ … ݒ௉,௦ R R I … I … R 

… … … … … … … … … … … … 

 
… ௉,௧ I I Rݒ … ଵ,௞ݒ R … R ܿௗ … … … I I R … I … R ݒଵ,௟ … ݒ௉,௤ I I R … R … R 

… … … … … … … … … … … … 

 
… ௉,௚ R I Rݒ … ଵ,௠ݒ I … R ܿ஽ … … … R I R … I … R ݒଵ,௡ … ௉,௪ R I Rݒ … R … R 

Feature relevance in heterogeneous classification problems characterizes ability 
of features to discriminate between classes in a particular group of instances. 
Relevance of features in local regions of the instance set is specified by a 
context, for example, by the values of contextual features or by the neighboring 
instances in terms of some distance metric, especially when contextual features 
are not present. 
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3.2 Decomposition approaches 

In this section author suggests different decomposition approaches for different 
types of heterogeneity. Two main constituents of these approaches are search 
and evaluation. Search strategies and evaluation criteria depend on a 
heterogeneity type. 

3.2.1 Classification heterogeneity decomposition basics 

The approaches to construct predictive models on heterogeneous data currently 
presented in the literature are mostly based on accommodation of the prior 
domain knowledge. Mainly, those approaches were developed for a particular 
application task in collaboration with the domain experts (Golub et al., 1999; 
Ramaswamy et al., 2001; Pavlidis et al., 2001; Thierry-Mieg, 2000). When the 
origins of heterogeneity are unknown and the domain knowledge is limited, 
construction of local models becomes challenging and requires approaches 
based on assumptions about the problem domain. 

There are two main directions toward developing an approach to 
construct predictive models on heterogeneous data with limited domain 
knowledge. The first one is to perform decomposition of a heterogeneous 
classification problem with local models covering homogeneous regions in the 
data set, one or more models per region, according to the divide-and-conquer 
principle. Similar approach has been applied, for example, in Lazarevič and 
Obradovič (2001a) for spatial agricultural data. The second one is to apply a 
local similarity based learning procedure that is capable to handle instability of 
features’ relevance, also known as lazy learning, or local learning. Local 
learning methods do not provide a complete description of the input/output 
mapping but rather approximate the function in the neighborhood of the 
instances to be predicted. However, this approach is very intensive 
computationally and mainly associated with the necessity of a possibly large 
amount of memory to store the data. 

A decomposition approach divides a classification problem into simpler 
subproblems. Solutions to subproblems in combination yield a solution to the 
original problem. This approach has two main advantages over the global 
modeling approach. First, the choice of the local model complexity and the 
estimation of parameters can rely on the linear techniques, well studied and 
developed over the years. Second, it provides better adjustment to the 
properties of the data set. Mathematically, the problem of function estimation 
turns to the problem of value estimation. (Bontempi & Birattari, 2005) 

There are 4 steps that should be performed following the decomposition 
approach: (1) location of homogeneous regions has to be approximated finding 
corresponding groups of instances in feature subspaces, (2) local regions have 
to be modeled individually, (3) the group membership of a new unclassified 
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instance has to be identified according to a certain rule, for example, description 
of the approximated regions, and (4) the local model(s) associated with a 
homogeneous region has to be applied to predict class of the new instance. 

At the first step, a search procedure and an evaluation function have to be 
chosen in order to find and evaluate the candidate local regions as groups of 
instances. Each group of instances has to be modeled using a subset or relevant 
features that also have to be found. Simultaneous grouping of instances in 
feature subspaces is an optimization task, where the criterion is specified by the 
evaluation function. 

The two decomposition approaches proposed in Subsection 3.2.2, 3.2.3, 
and 3.2.4 accordingly use different evaluation functions and search strategies. 
In this chapter, we mainly focus on search strategies. Steps (2)-(4) are presented 
within an ensemble learning framework in Section 3.3. Evaluation of candidate 
homogeneous regions and all related measures are detailed in Chapters 4. 

3.2.2 Decomposition based on local feature relevance evaluation 

Contribution of different features to discriminate between classes is different 
and varies across the set of instances when the data is heterogeneous. This is a 
general definition of heterogeneity and implies the following problem 
statement: how to find / approximate homogeneous regions in order to 
evaluate local feature relevance? The natural approach is to examine different 
groups of instances estimating local relevance of features inside the groups and 
use some evaluation function to find the best decomposition. After 
decomposition of the instance set into groups according to the approximated 
homogeneous regions, a subset of relevant features, unique for each group, will 
be used to build a local model to cover that region. A subset of locally relevant 
features can be found using feature selection methods over the corresponding 
subset of instances.  

The most problematic part of this approach is to find the candidate local 
regions, in other words, groups of instances. The simplest way is to use random 
sampling with replacement to find the candidate instance subsets and then 
apply an evaluation function and a weighting scheme for instances with respect 
to groups. Evaluation function may be based on the difference in the features 
importance locally and globally as measured in terms of some feature ranking 
or feature weighting method. 

One-class heterogeneity assumption (Table 3) makes decomposition of the 
data set straightforward. The local regions consist of instances belonging to the 
same class. In this case one-against-all or one-against-one class encoding can be 
performed (Valentini & Masulli, 2002). Ensembles based on one-per-class and 
pairwise class decompositions are able to provide accuracy improvement for 
classification tasks that are not heterogeneous (Masulli & Valentini, 2000) 

The search for local regions can be guided by the contextual features if 
they are available. Then, the first step is to identify the contextual features. If 
they are determined, decomposition of the data set into homogeneous regions 
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can be performed by the values of the contextual features. After that, locally 
relevant subsets of features can be found. 

One-class heterogeneity with contextual features (Table 6) reduces to a 
homogeneous classification problem. In this case, no difference whether the 
contextual features are independent or not, the set of contextual features is 
enough for the perfect class discrimination. There can be a higher order 
dependency between the contextual features (Chapter 4), when neither is 
individually predictive of the class, but they are relevant together, in a subset. 
Feature selection algorithms that are based on individual feature evaluation 
cannot identify the contextual features correctly in this case. The feature 
ranking algorithms will assign low rank to interacting features as consider the 
primary features as partially predictive. The synthetic example of this situation 
will be considered in the experimental section.  

In the general case of class heterogeneity contextual features by their 
values may suggest decomposition of the data set into group each represented 
by subsets of classes (Table 5). It means that discrimination within a certain 
subset of classes needs a different decision rule, hence a different model, 
comparatively to another subset of classes. A known class encoding scheme can 
be applied in this case to perform decomposition, for example one-against-one 
class encoding (Masulli & Valentini, 2000). However, in the general case of 
heterogeneity with contextual features (Table 5) the groups of instances do not 
fall onto subsets of classes in the local regions. It is expected that local feature 
selection will result in simpler local models and better class separation.  

Features possibly considered as contextual may not be present in a data 
set. This makes the search for the right splits very challenging. An adaptive 
search with instance weighting can be a possible solution for this problem. The 
difference in feature importance profiles after split can be used as an evaluation 
function for candidate decompositions. 

A crucial distinction of the decomposition approach based on local feature 
relevance evaluation is that the evaluation function is based on a feature merit 
measure or a feature subset merit measure. An evaluation function applied to 
subsets of contextual or primary features should take into account interactions 
between features (Apte et al., 1998). This kind of evaluation function is used in 
so called “non-myopic” feature selection / ranking methods measuring the 
contribution of features to class discrimination that take into account 
interactions between features. The nature of feature interactions, that is their 
individual and mutual contribution to class discrimination, can be different. 
Thus, it is important to take into account the way a certain method considers 
these interactions. This is mostly related to the feature ranking methods that 
create a profile of feature importance in a local region.  

Chapter 4 is dedicated to estimation of local feature relevance. It details 
the approach based on local feature relevance evaluation considering different 
feature selection and ranking methods along with feature weighting schemes. 
An evaluation function and a search strategy for this approach are proposed.  
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3.2.3 Decomposition based on local class separability estimation 

Classification performance is directly influenced by class separability along 
with the other factors, such as dimensionality, training data size, and classifier 
type (Hsieh & Landgrebe, 1998). There are techniques attempting to improve 
class separability directly by changing data representation or using class 
separability in construction of local models. In particular, the approach 
proposed in this thesis is a combination of the above. 

A natural and straightforward approach to construct a predictive model 
for heterogeneous data is to perform decomposition approximating 
homogeneous regions in data and modeling them separately (Apte et al., 1998). 
The domain knowledge in form of contextual features could guide such 
decomposition. For example, different diagnostic models may be built on 
different symptoms (features) for different genders or age groups, which can be 
considered as contextual features. However, the relevant domain knowledge 
for decomposition is often missing or not so obvious, especially because data 
not always purposefully collected for analysis. In this case, decomposition can 
be performed searching for local regions and evaluating complexity of 
classification locally (Ho & Basu, 2002). In particular, the BDP method proposed 
in Chapter 5 uses a criterion based on the class separability measure for 
evaluation of the candidate local regions. A heuristic search strategy needed to 
avoid the complete enumeration of the candidate local regions for evaluation is 
proposed as a k-Nearest Neighbor search for local neighborhoods in order to 
adjust weights. 

A class separability measure can be derived from the complexity measure 
that characterizes local clustering properties of a data sample with respect to 
class labels (Ho, 2002; Pranckeviciene et al., 2006). This measure compares the 
dispersion within the classes to the separation between the classes.  

Considering the two-class data case, let us denote ݀௟,௦௔௠௘ the intra-class 
distance, which is calculated as an average distance between two nearest 
neighbors of the same class inside the group ݈. Let ݀௟,ௗ௜௙௙ be the inter-class 
distance, which is calculated as an average distance between two nearest 
neighbors of different classes inside the group ݈. The component distances 
calculated in one feature ݆ can be denoted as ݀௟,௦௔௠௘௝  and ݀௟,ௗ௜௙௙௝ . 

In (Ho & Basu, 2002) the ratio of the inter class and the intra class 
distances is used as a data complexity measure. Our goal is to maximize class 

separability in subproblems that is to maximize the ratio ߲௟ ൌ ௗ೗,ೞೌ೘೐ௗ೗,೏೔೑೑ . A close to 

1 ratio may be an indication of heavily interleaved classes. 
Features that bring a considerable contribution to discrimination of classes 

can be determined using a measure based on the overlap of the individual feature 
values (OT) (Ho & Basu, 2002). For each feature ௝݂ , ݆ ൌ 1 … ܰ, the minimum and 
the maximum value in class ݀ is measured over ܯ௟ instances in the group ݈, ௝݂ minௗ , ௝݂ max.ௗ  Then the measure of feature values overlap for classes 1 and 2 is 
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calculated as the length of the overlap region normalized by the range of values 
spanned by both classes (Formula 1). ܱ ଵܶ,ଶ௝ ൌ min൫ ௝݂ maxଵ , ௝݂ maxଶ ൯ െ max൫ ௝݂ minଵ , ௝݂ minଶ ൯max൫ ௝݂ maxଵ , ௝݂ maxଶ ൯ െ min൫ ௝݂ minଵ , ௝݂ minଶ ൯ (1) ܱ ଵܶ,ଶ௝  is equal to 0 if the values of the particular features in two classes does not 
overlap. In order to evaluate the contribution produced by the instance ݅ from 
the group ݈  minimum and maximum values of feature ݆  are found 
considering instance ݅ in the group ݈ and then withdrawing it from the group ݈, ௜߱௝ ൌ ை భ்,మೕ ሺ௟|௜ሻை భ்,మೕ ሺ௟ሻ . This measure is easily adapted to calculation of weights inside 

the relatively small groups and will be used in BDP. 
Bidirectional Data Partitioning is based on the bottom-up search. It divides 

a data set into local regions to build local models simultaneously finding the 
feature subspaces such that groupings of instances from the same class tend to 
be denser, while different groupings tend to be far apart. The goal is to uncover 
the local structure in subspaces, where discrimination between classes will be 
simplified. The size of local regions is controlled to build the reliable local 
predictive models. In the overlapped subspaces, features that do not contribute 
to discrimination and grouping are assigned small weights by the choice of a 
weight function. 

Theoretically, the solution is derived optimizing a criterion that 
encourages separability of instances from different classes and closer location of 
instances from the same class in feature subspaces. The weights assigned to 
features and instances are simultaneously adjusted. The process is repeated 
until all weights are stabilized. As a result, the local neighborhoods become 
increasingly enriched with instances belonging to the same region. 

Final solution groups are modeled using relevant feature subspaces to 
produce the component classifiers of an ensemble. The rule of grouping 
instances with known class labels can be applied to new unclassified instances 
with a simple modification. Unclassified instances are assigned to one or 
another region based on the proximity of grouped instances, where proximity is 
determined only by distance disregarding class membership. Group 
memberships for the unclassified instances are used to determine the 
component classifier to be used for classification. 

3.2.4 R-IPA for contextual heterogeneity 

In Apte et al. (1998) the difference in class probability distributions in 
subproblems was considered as one of the heterogeneity criteria. Alternatively, 
the Importance Profile Angle (IPA) has been proposed to determine the degree 
to which the importance of features varies between two subproblems. 

The profile of feature importance in subproblems is defined by the rank of 
normalized feature merits obtained by the ranking method (ReliefF, 
Symmetrical Uncertainty, or Information gain). The profiles of importance for 
subproblems A and B are denoted by the vectors of merits ൫ܯ஺,ଵ, ,஺,ଶܯ … ,  ஺,ே൯ܯ
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and ൫ܯ஻,ଵ, ,஻,ଶܯ … ,  ஻,ே൯ correspondingly, where ܰ is the number of featuresܯ
and ܯ denotes a measure of feature importance or feature merit. 

IPA is the angle formed by the two vectors in the N-dimensional space. 
Formula 2 defines the normalized IPA taking values between 0 and 1 (Apte et 
al., 1998). 

If the feature is assigned a zero merit, it does not improve discriminating 
ability of a model. The IPA can be calculated for both discrete and continuous 
features. The large value of the IPA indicates that class heterogeneity is present. 

ܣܲܫ ൌ ߨ2 arc cos ۇۉ ∑ ∑஻,௜ே௜ୀଵටܯ஺,௜ܯ ஺,௜ଶே௜ୀଵܯ ට∑ ஻,௜ଶே௜ୀଵܯ (2) ۊی

The search for the candidate subproblems can be performed using a 
tree-like algorithm (Apte et al., 1998). In order to find a candidate split, splitting 
is performed by the values of every feature, and the feature producing the best 
split determined by IPA is placed in the tree node. The best split corresponds to 
the maximum IPA value. 

This procedure searches for the contextual features considering them 
independently. It creates a hierarchy of contextual features according to the 
difference in subproblems created by the splits. Assuming that there are ݌ 
contextual features, 0 ൑ ݌ ൑ ܲ , one has to set a stopping criterion for the 
splitting process. In Apte et al. (1998) a stopping criterion is defined by a certain 
threshold ݐ௣ placed for the IPA values. The experiments suggest ݐ௣ ൌ 0.4 as a 
default value that can be used for many data sets.  

If there are no contextual features in the data set, the threshold will never 
be exceeded and no splits will be performed. In this case, one of the alternative 
search strategies proposed in Section 4.3 can be used to find the candidate 
decompositions. 

The tree-like search proposed in Apte et al. (1998) cannot find the 
candidate splits in the case of higher order dependency between contextual 
features. Thus, the random tree will be used as a part of this decomposition 
approach. A random tree-like search considers ܭ randomly chosen features at 
each node and the splits are performed according to combination of their 
values. This method will further be referred to as R-IPA. 

In order to obtain the reliable IPA estimates for the candidate splits and 
subsequently build a model for a local region, the number of instances in a 
subproblem should not be too small. This is a perennial problem for all tree-like 
algorithms. Therefore, another threshold ݐ௡ is needed to indicate a minimum 
number of instances in a subproblem ݊, ݐ௡ ൑ ݊ ൑ ܰ. If ݊ ൏  ௡, the candidateݐ
split is rejected. This problem implies a restriction for a number of interacting 
contextual features considered in a subset, as the number of candidate splits 
increases with the increased number of contextual features, and the number of 
instances in candidate subproblems tends to be small.  

IPA value can be computed only for a pair of the candidate subproblems. 
For features having more than two discrete values, IPA can be computed for 
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each pair of the values considering splits between these two values and 
ignoring all instances, where this feature takes any other value. Then values can 
be merged recursively by grouping together the pair of values with the lowest 
IPA and regenerating the vector of feature merits for the just-grouped values 
versus the rest, until IPA values within each group are large comparing to the 
threshold ݐ௣. As a result, more than two groups can be obtained. The smallest of 
the IPA values between the final groups should be used as an IPA for the 
feature being tested. (Apte et al., 1998) 

It may happen that within a good split for one-class heterogeneity some 
features may have constant values. In decomposition, the feature having 
constant value for a subset of instances of the same class does not bring any 
new information and can be discarded. 

Contextual dependence between contextual and primary features may be 
hierarchical, that is one set of contextual features controls relevance of another 
subset of features, which in their turn may serve as contextual features for some 
different subset of features. The original tree-like strategy from Apte et al., 
(1998) is preferable in this case. 

The success of IPA estimates also depends on the feature merit measure 
used. Following the assumption that in local regions primary features are not 
necessary independent, the feature merit measure used in IPA calculation 
should take into account feature interactions. The observations from the 
experiments on the synthetic data sets described in Apte et al., (1998) confirm 
this. 

3.3 Multi-model classification based on the decomposition 
scheme 

Homogeneous regions are hard to elicit without prior domain knowledge, 
contextual features, or knowing that class combinations are worth exploring. 
That is general case called feature space heterogeneity in this thesis. For 
example, in (Golub et al., 1999), 4 subclasses of two leukemia cancer types were 
discovered, but an expensive additional study with production of additional 
features was needed to understand the meaning of those 4 subclasses. 

Known methods capable to identify homogeneous regions, partially 
considered in Section 3.2, are designed for specific cases of heterogeneity, for 
example, heterogeneity influenced by the presence of contextual features. These 
points provide an argumentation for application of an ensemble framework in 
order to find a solution for the classification heterogeneity problem. 
Decomposition using ensemble is also well in concordance with the basic 
methods of ensemble generation: sampling, multiple feature subspace 
projection, and class encoding. 

The main idea of applying combined ensemble generation methods for 
heterogeneity decomposition is the following: 
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− make multiple feature subspace projections on different instance sets and 
re-label a class variable in order to view classification subproblems in the 
relevant dimensions;  

− apply to the training data to cover those subproblems by different learning 
models; 

− apply the frames to the test data in order to identify the corresponding 
component classifier(s), or the combined classifier, for prediction. 

Thus, the component classifiers can be generated combining sampling, 
multiple feature subspace projection and class encoding techniques. Searching 
through different subsets (samples) of instances and viewing them in different 
feature subspace projections in order to find homogeneous regions is an 
intractable, and sometimes an unfeasible task. Heuristics used in traditional 
ensemble techniques to narrow this search space may provide a solution for the 
problem. 

3.3.1 Decomposition scheme for ensemble generation 

First, let us consider a decomposition scheme for class heterogeneity. This is the 
simplest case when homogeneous regions include instances from particular 
groups of classes. From the above follows, that decomposition can be 
performed using class encoding. 

Denote the instance set decomposition matrix which distributes ܦ classes of 
the training set TR into two sets of classes A and B in the partition ݏ as ܫܦ ൌ ݏ ௦,௜൧, whereݖൣ ൌ 1 … ܵ, ܵ ൑ ݅ ,ܦ ൌ 1 …  is the number of instances in ܯ ,ܯ
the training set TR. According to this matrix, ܵ partitions will be created and 
thereafter a single component classifier ݄௦ will be trained at each partition. The 
elements of the instance set decomposition matrix, each specifying which 
instance with what class label to use in sth classifier construction, are defined as 
shown in Formula 3. 

௦,௜ݖ ൌ ቐ ൅1, if ݕ௜ א ,0ܣ if ௜ݕ ב ሺܣ ׫ ,ሻെ1ܤ if ௜ݕ א ܤ  (3)

The training set TR is sampled according to ܵ partitions and in each 
sample the class variable is re-labeled according to the expression below. ݕ௜ ൌ ൜ ஺ܿ, if ௦,௜ݖ ൌ ൅1ܿ஻, if ௦,௜ݖ ൌ െ1 (4)

Denote the feature set decomposition matrix as ܨܦ ൌ ݏ ௦,௝൧, whereݍൣ ൌ 1 … ܵ, ݅ ൌ 1 … ܰ , ܰ  is the number of features in the feature set  used in the 
training set TR. This matrix specifies which ܲ of ܰ features, ܲ ൑ ܰ, from the 
initial feature set ܨ to use in sth classifier construction. In such a way, a subset ܨᇱ ك ܨ  is used in each of ܵ  samples. The elements of the feature set 
decomposition matrix are defined as shown below. 

F
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௦,௝ݍ ൌ ൜൅1, if ௦݂,௜ א ,ᇱെ1ܨ if ௦݂,௜ ב ᇱ (5)ܨ

The subsets ܨᇱ of relevant features ௦݂,௝  can be found by some feature 
selection method based on feature merit measures estimation. When individual 
feature merit measure calculations produce a rank of feature merits, some 
amount of features from the top of a rank can be used in construction of a 
component classifier. Different approaches to select a subset of features from 
rank are described in Section 4.2. Application of individual feature / feature 
subset merit measures for generating multiple classifiers has been preliminary 
investigated in Puuronen et al. (2001). The most appropriate individual feature 
/ feature subset merit measures to use for local feature selection in subproblems 
are considered in the next chapter.  

Class heterogeneity is a simple case of feature space heterogeneity (Section 
3.1). It can be used for heterogeneous classification problems by analogy of the 
normal distribution that is successfully applied to data at many practical tasks. 
With application of class decomposition the task to find the instances 
corresponding to homogeneous regions comes to find subsets of classes. 
Decomposition for one-class and class heterogeneity is the most 
straightforward, but in order to complete this decomposition the subsets of 
relevant features have to be determined. Various individual feature / feature 
subset merit measures used in feature selection methods can be applied for this 
purpose. Several of them will be described in the next chapter.  

Consider details of learning and application of an ensemble constructed 
using the decomposition matrixes above for one-class heterogeneity. In this 
case, subset A includes one class, and subset B includes the rest of classes. Such 
decomposition will be further referred to as one-per-class decomposition. The 
ensemble obtained as a result of such decomposition will be referred to as 
one-against-all ensemble. According to the instance and feature set decomposition 
matrixes, the component classifiers are constructed on locally relevant features 
and designed to distinguish a particular class from the others.  

Each time a new component classifier has to be generated, the training set 
TR is partitioned assigning the representative instances to subsets A and B 
according to the instance set decomposition matrix and class encoding is 
performed re-labeling instances in a sample. Then some individual feature / 
feature subset merit measure is calculated at the re-labeled sample. According 
to measurements of individual feature / feature subset merit for each classifier ݄௦, ݏ ൌ 1 … ܵ, the feature set decomposition matrix is created and used to select 
a subset of features. In such a way, each component classifier is constructed on 
the re-labeled sample using selected subset of features. For one-per-class 
decomposition re-labeled sample includes all instances of the initial training set 
TR, while for the other class decomposition schemes it includes only instances 
from subsets A and B. So, for pairwise class decomposition both subsets A and B 
include only one class, thus only instances from those two classes are used to 
construct a component classifier. Ensemble created after pairwise class 
decomposition will be further referred to as one-against-one ensemble. 
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3.3.2 Integration of binary component classifiers 

The component classifiers in one-against-all and one-against-one ensembles 
output two possible values, ஺ܿ and ܿ஻. Predictions of the component classifiers 
can be considered as binary decisions that is to say, the classifiers are binary. 

Integration of binary component classifiers in both one-against-all and 
one-against-one ensembles can be performed using probability calculations. 
This integration strategy is commonly used for ensembles based on class 
encoding, as for example, for pairwise coupling considered in Moreira and 
Mayoraz (1997).  

According to this integration strategy for each new unclassified instance 
the component classifier output is the estimated membership probabilities that 
class variable ݕ  takes value ܿ௜  or ௝ܿ . Thus, a partial answer is provided 
regarding the class(es) that this component classifier is designed to distinguish. 
Considering the answers as votes a natural approach for integration is to choose 
the class that has received majority of votes. Assuming that the classifier 
discriminating between class ܿ௜  (as positive) and class ௝ܿ  (as negative) 
computes an estimate of the probability ݌௜,௝ as shown below. ݌௜,௝ ൌ ܲ ൬ሺݔ, ݕ ൌ ܿ௜ሻ| ቀሺݔ, ݕ ൌ ܿ௜ሻڂ൫ݔ, ݕ ൌ ௝ܿ൯ቁ൰ (6)

Then the ensemble prediction is determined according to the following 
expression. arg maxଵஸ௜ஸ஽ ෍ ௜,௝൯௝ஷ௜݌൫ߟ  (7)

In Formula 8 ߟ is determined as follows. ߟ ൌ ൜0, if ݌௜,௝ ൑ 0.51, otherwise.  (8)

This integration strategy is a variation of stacked generalization (Wolpert, 
1992). Ensemble prediction is obtained as an output of a stacked multiclass 
classifier. The mechanisms of accuracy improvement provided by stacking are 
based on information learned about biases each component classifier produces 
with respect to the initial classification problem (Tsymbal, 2002). The basic idea 
is to perform induction over the outputs of binary classifiers at higher level in 
order to correct their biases by means of a meta-classifier that combines 
predictions of the component classifiers.  

This integration scheme is applied with one-against-all ensemble in the 
following way. For a new unclassified instance in reality belonging to class ஺ܿ 
the probability that it may belong to class ௝ܿ calculated by the outputs of S-1 
component classifiers should be greater than 50%. But this probability should 
be smaller than probability that this instance belongs to class ܿ௜ , which is 
obtained from the output of classifier designed to distinguish class ஺ܿ from the 
other classes, that is ܿ௜ ൌ ܿ஺. In one-against-one ensemble for a new instance in 
reality belonging to class ஺ܿ  D-1 component classifiers produce random 
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decisions; the other S-D-1 component classifiers should output high 
probabilities that the instance belongs to class ஺ܿ. 

Ensembles based on one-per-class and pairwise class decompositions are 
able to provide accuracy improvement for classification tasks that are not 
heterogeneous (Masulli & Valentini, 2000). However, it was shown that 
error-correcting ensembles often outperform them due to redundancy in 
representation of the subproblems (Dietterich & Bakiri, 1995; Moreira & 
Mayoraz, 1998). Thus, for heterogeneous classification problems it is expected 
that extension of one-against-all and one-against-one ensembles with local 
feature selection by correcting codes will promote further accuracy increase as 
well as incorporation of boosting. 

3.4 Chapter summary 

In this chapter, decomposition approach and decomposition schemes are 
described. These schemes are intended for different types of heterogeneity and 
based on different evaluation functions and search strategies. Decomposition 
for construction of local models is performed assuming presence of data 
characteristics valuable to relate the classification problem to a particular type 
of heterogeneity. 

Search for heterogeneity has to be performed in the feature space and in 
the set of instances simultaneously. However, assuming that some grouping of 
instances exists at the class level and estimating locally relevant features, 
candidate decompositions can be found and verified. In case of class 
heterogeneity, grouping of instances is related to class labeling. This is the 
simplest case of heterogeneity for which the class encoding decomposition 
scheme can be used. 

Decomposition of heterogeneous classification problems performed within 
an ensemble framework is based on establishing domains of competence for the 
component classifiers in accordance with homogeneous regions found. In case 
of feature space heterogeneity, decomposition is performed at the level of 
subclasses or super classes. 
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4 DECOMPOSITION BASED ON LOCAL FEATURE 
RELEVANCE PROFILES 

This chapter describes decomposition approaches focusing on evaluation 
criteria. Feature relevance profiles in subproblems obtained by means of feature 
merit measures are used for evaluation of the candidate subproblems. Class 
separability measures, widely applied to evaluate and score features in feature 
selection, are also considered here as suitable candidates to develop 
decomposition criteria. 

Search strategies for the candidate subproblems are different in case of 
class heterogeneity, contextual heterogeneity, and feature space heterogeneity. 
Decomposition of class heterogeneity is based on the assumption that 
heterogeneity exists at the class level and the search is performed via class 
encoding, in this case, one-against-all and pairwise class combinations. The 
main idea of this approach is to find local regions out of different class 
combinations and establish features locally relevant to discriminate between 
subproblems. Local models are integrated as component classifiers of the 
ensemble by means of weighted voting. 

Decomposition of contextual heterogeneity is based on a tree-like search 
procedure that performs splits according to values of contextual features. 
Evaluation function is based on the Importance Profile Angle (IPA), a measure 
derived from cosine similarity, applied to feature relevance profiles. 

Feature merit measures producing ranks of feature scores, or feature 
relevance profiles, are applied to the candidate regions. The difference between 
feature importance profiles before and after decomposition obtained using an 
Importance Profile Angle (IPA) provides an additional evidence of 
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heterogeneity presence. Heterogeneity in presence of contextual features is also 
considered. 

Section 4.1 discusses the effects of feature interactions and irrelevant 
features on class discrimination. It describes a suitable feature subset evaluation 
measure that takes into account feature correlations to be applied for local 
feature selection. Higher order dependency between features is presented as 
one of the characteristics attributed to heterogeneity. Contextual dependence 
between features is presented with respect to classification heterogeneity. 

Section 4.2 is devoted to feature merit measures used in ranking methods 
applied either to select features or to obtain feature relevance profiles in 
candidate local regions.  

4.1 Evaluation of individual features and feature subsets 

Evaluation of features for the classification task is based on measures that 
express contribution of a feature or a subset of features to class discrimination. 
These measures include distance measures, information measures, dependence 
measures, or classifier error rate measures (Dash & Liu, 1997). In classification, 
the criterion for feature selection is related, but different from the criteria 
applied in clustering, because it incorporates information about classes. It is 
also somewhat different from the criteria used in dimension reduction, which 
are based on self-descriptiveness of the selected feature subset and measure 
how well the subset reproduces an intrinsic data structure (Aivazyan et al., 
1989). 

Individual feature merit measures or subset merit measures are directly or 
indirectly related to the Bayes minimum error, therefore, many of them are 
based on class separability. Many class separability measures are estimates of 
Bayes minimum error. Feature selection techniques have a natural goal of 
minimizing the error using theoretical bounds or the error rate from a specific 
classifier. 

Discovering interactions between features during evaluation of individual 
features or feature subsets is crucial, because these interactions reflect data 
structure. Features are considered interacting if dependence between the class 
variable and a feature is conditioned by the values of another feature. 
Interacting features may not be predictive individually, but predictive 
depending on the values of other features, which can be contextual features. 
Two or more features, whose ability to predict the class always depends on 
each other while their individual contribution to class discrimination is 
insignificant, exhibit higher order dependency. Higher order dependency may 
also exist between contextual features. It creates an additional obstacle to detect 
them. 

A measured quantitative dependence between features gives an idea 
about the strengths of interaction using some numerical scale. Assigning 
interaction between features a score is desirable for many application tasks. In 
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particular, it can be used to find contextual features. Dependence between a 
feature and a class variable is a non-symmetrical relation. Dependence between 
redundant features is a symmetrical relation. Higher order dependence 
between features is a symmetrical relation as well. Dependence between a 
contextual and a primary feature is a non-symmetrical relation. 

4.1.1 A correlation-based merit measure for a feature subset 

Unknown relation between variables can be estimated using a modeled 
dependency in a standard form, for example, linear or nonlinear. In 
classification, these estimates are needed to decide whether one variable could 
be expressed by means of another. The term correlation can be applied here in its 
general sense referring to a degree of dependence or predictability of one 
variable to another. Statistical correlation coefficient is a measure of linear 
symmetrical relation between variables. For example, linear or nonlinear 
regression is a measure of a non-symmetrical relation between variables.  

Considering influence of feature-feature relations on determining 
feature-class relations, the feature selection task is to retain individually 
predictive features, whose contribution to class discrimination does not depend 
on the other features and does not duplicate the information provided by the 
other individually predictive independent features of the same kind, and retain 
features that are not individually predictive but predictive together, in 
combination. 

The similar idea formulated somewhat differently is used in the 
correlation-based feature subset selection (CFS) method proposed by Hall 
(1999). CFS is based on the idea that a good feature subset is one that contains 
features highly correlated with (predictive of) the class, yet uncorrelated with 
(not predictive of) each other. Hall (1999) has compared performance of CFS to 
wrapper feature selection (Kohavi & John, 1998). It was shown that CFS is 
competitive to wrapper in many cases. Let us consider why the condition to 
discard correlated features was introduced in CFS. 

In statistics, the correlation coefficient ݎ௝,௞ between two random variables 
(numerical features ௝݂ and ௞݂) is found by dividing their sample covariance ௝ܵ,௞ by the product of their sample standard deviations ௝ܵ and ܵ௞, as shown in 
the expression below. (It is only defined if these standard deviations are finite.) corr௝,௞ ൌ ௝ܵ,௞௝ܵܵ௞ (9)

where sample covariance ௝ܵ,௞ ൌ ଵெ ∑ ൫ݔ௜௝ െ ҧݔ ௝൯൫ݔ௜௞ െ ҧ௞൯ெ௜ୀଵݔ  and sample standard 

deviations are ௝ܵ ൌ ට ଵெିଵ ∑ ൫ݔ௜௝ െ ҧݔ ௝൯ଶெ௜ୀଵ  and ܵ௞ ൌ ට ଵெିଵ ∑ ൫ݔ௜௞ െ ҧ௞൯ଶெ௜ୀଵݔ . 

The correlation takes values 1 or -1 in the case of an increasing or 
decreasing linear relationship accordingly. Values in between express the 
degree of linear dependence between the variables. If the variables are 
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independent the correlation is 0, but the converse is not true because the 
correlation coefficient detects only linear dependencies between two variables. 

Pearson's product moment correlation coefficient ݎ௝,௞ (Kenney & Keeping, 
1962) is also known as a sample correlation coefficient and defined as the sum 
of the products of the standard scores ݖ௝ and ݖ௞ of ௝݂ and ௞݂ divided by the 
degree of freedom. It is a measure of the linear association between two 
variables which have been measured on interval or ratio scales (Formula 10).  

௝,௞ݎ ൌ 1ሺܯ െ 1ሻ ෍ ௞ݖ௝ݖ ൌ corr௝,௞ሺܯ െ 1ሻெ
௝ୀଵ  (10)

where ݖ௝ ൌ ௫ೕି௫ҧೕௌೕ  and ݖ௞ ൌ ௫ೖି௫ҧೖௌೖ . However, Pearson's correlation coefficient 

can be misleadingly small when there is a nonlinear relationship between two 
variables.  

The merit of a feature subset in CFS corrி  is calculated according to 
Formula 11, where ܨ is a feature subset containing ܲ features, ܲ ൏  is a ݕ ,ܰ
class variable, ݎҧ௝,௬ is the average feature-class correlation ൫ܨ௝ א  ҧ௝,௞ isݎ ൯, andܨ
the average feature-feature correlation.  corrி ൌ ܲหݎҧ௝,௬หඥܲ ൅ ܲሺܲ ൅ 1ሻݎҧ௝,௞ (11)

This formula was initially developed by researches in behavioral sciences 
and adopted to feature selection purposes in data mining by Hall (1999). The 
subset merit measure in Formula 19 is derived from the Pearson’s correlation 
coefficient, where all variables have been standardized (Hall, 1999). 
Standardized quantity is invariant over changes in the units of measurement. It 
turns out that the numerator in Formula 19 gives an indication of how 
predictive for the class the subset of features is, and the denominator expresses 
how much redundancy there exists. The formula shows that relation between a 
feature subset and a class variable is a function of the number of features in a 
subset and the magnitude of feature-feature correlations together with the 
magnitude of feature-class correlations (Hall, 1999). 

The CFS merit measure implies that (1) the higher feature-class 
correlations in the subset, the higher subset score is, (2) the lower 
feature-feature correlations in the subset, the higher subset score is, and (3) the 
more highly correlated with class yet uncorrelated to each other features are 
included into the subset, the higher subset score is. 

Features whose individual ability to predict a class variable always 
depends on the other features will be discarded by the CFS merit measure 
(Hall, 1999). This holds true for both redundant features, which are individually 
predictive, and interactive features with higher order dependencies, which are 
not individually predictive, or appear to be partially predictive. Thus, CFS can 
be used with a measure of linear or nonlinear dependence as a base correlation 
measure, but it cannot take into account higher order feature dependencies 
(Hall, 1999).  
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The CFS measure (Hall, 1999) is designed to take into account a certain 
type of feature dependencies defined by the basic correlation measure used in 
it. However, with some modifications proposed in Hall (1999), it and can be 
applied to estimate mutual relations between features taking into account 
higher order feature dependencies. These modifications and an alternative 
method are considered in the next subsection. 

Statistical correlation coefficients provide an estimate for the strength of 
linear dependency between features or a feature and the class variable. In order 
to obtain a general measure for different dependencies in the data (also 
nonlinear) a correlation ratio or mutual information based measures is 
preferable. Such measures can be effective in finding dependencies of different 
kind. 

A measure of predictive ability of a feature regarding a class variable is 
usually non-symmetrical. A symmetrical variant is needed to estimate mutual 
predictive abilities of features. Correlation between two features, or a feature 
and a class variable, can be evaluated using the Symmetrical Uncertainty (SU) 
measure (Hall, 1999), a variant of the Information gain measure. 

By Hall (1999), the Information gain measure (IG) is biased in favor of 
features with more values. SU is a normalized version of measure proposed in 
Hall (2000) to estimate mutual predictability of two features (Formula 12). SU 
can be used to calculate correlation between categorical (nominal) variables as 
well as between numeric variables. ܷܵு ൌ 2 ሻݕሺܪܩܫ ൅ ሺ݂ሻ (12)ܪ

Another symmetrical measure proposed in Hall (1999) based on the 
Minimum Description Length principle (MDL) (Rissanen, 1978) is a 
modification of its non-symmetrical version developed by Kononenko (1995). 

The measures applied to individual features are often called in the 
literature “myopic” if they do not take into account (indirectly) feature 
interactions during individual feature evaluation. IG, SU, the MDL-based 
measure, OT (Formula 1 in subsection 3.2.3) and Fisher’s discriminant ratio are 
examples of “myopic” measures. There are measures called “non-myopic” that 
consider an impact of feature interactions indirectly while evaluating individual 
contribution of a feature to class discrimination. The examples of such measures 
is ReliefF merit measure considered in Subsection 4.3.2. 

Non-symmetrical “non-myopic’ measures, just as “myopic” measures, can 
be transformed to its symmetrical variants. For example, symmetrical variants 
of the measures investigated by Kononenko (1995) can be applied to calculate 
mutual relations between features. 

The statistical correlation coefficients are applicable to numeric features 
only. However, the data used for classification tasks is usually a mixture of 
categorical (nominal) and numeric (discrete and continuous) variables. In order 
to calculate correlation for discrete variables binarization of discrete variables 
may be performed, for example, as proposed in Hall (2000). 
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Let us consider ௝݂  being a discrete feature having T values ݒଵ௝, … , ,௧௝ݒ … , ௝்ݒ . One may form ܶ binary features ܾ௧ ݐ , ൌ 1 … ܶ according to 
Formula 13.  ܾ௧ ൌ ቊ1, if ௝݂ ൌ ,௧௝0ݒ otherwise (13)

The expression below is used to calculate correlation between the discrete 
feature ௝݂ transformed to ܶ binary features ܾ௧ and a continuous feature ௞݂. 

௝,௞ݎ ൌ ෍ ܲ൫ ௝݂ ൌ ௧௝൯்ݒ
௧ୀଵ ௧,௞ (14)ݎ

If ௝݂  is a discrete feature having ܶ values ݒଵ௝, … , ,௧௝ݒ … , ௝்ݒ  and ௞݂  is a 
discrete feature having L values ݑଵ௝, … , ,௟௝ݑ … , ݐ ,௅௝, then the binary features ௝݂௧ݑ ൌ 1 … ܶ  and ௝݂௟ , ݈ ൌ 1 … ܮ  are formed as described above. Correlation 
between these two discrete features can be calculated using the following 
expression (Hall, 2000). 

௝,௞ݎ ൌ ෍ ෍ ܲ൫ ௝݂ ൌ ,௧௝ݒ ௞݂ ൌ ௧,௟௅ݎ௟௝൯ݑ
௟ୀଵ

்
௧ୀଵ  (15)

The above two expressions are robust to missing values (Hall, 2000). 

4.1.2 Higher order dependency between features 

In some cases, the ability of a particular feature to predict the class variable 
always depends on the other features as measured on a particular sample or the 
entire training set. This is called a higher order dependency between features. 
Contrary to redundant features, two features having higher order dependency 
are not predictive of the class individually. 

The synthetic two-spirals classification problem (Lang & Witbrock, 1988) 
shown in Figure 7 is an example of interacting features with a nonlinear 
dependency. Features ଵ݂ and ଶ݂  are predictive only if considered together. 
The data has 3 irrelevant features ଷ݂, ସ݂, and ହ݂, uniformly distributed in the 
interval [0..12]. Figure 8 shows 3 dimensions corresponding to features ଵ݂, ସ݂ 
and ହ݂. The presence of interacting features negatively affects accuracy of many 
learning algorithms. Irrelevant features destroy the data structure, as shown in 
Figure 8. 
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FIGURE 7 Two spirals data set in 2-dimensional feature space (Lindenbaum et al., 1999). 
Features ଵ݂ and ଶ݂ are not correlated in terms of statistical correlation tests 
(Pearsons and Spearman’s correlation coefficients are 0.003, Kendall’s 
correlation coefficient is 0.002). However, these features are considered as 
interacting regarding their contribution to class discrimination. 

Detecting higher order dependencies in general is difficult because of the 
various problems with data, in particular, imbalanced class representation that 
increases risk of overfitting and mixed feature types that require discretization 
and may result in biased estimates. 

Evaluation of all possible combinations of feature subsets for dependency 
is an intractable task. In Sahami (1996), it is shown that even when each feature 
is constrained to be dependent on at most two other features the search for 
interacting features is an NP-hard problem. 

In Hall (1999), a limited pairwise approach to detect feature interactions is 
presented. This approach is straightforward and computationally feasible. A 
similar approach to detect higher order feature dependencies during feature 
subset selection is proposed below.  

There are two features ௜݂  having ௜ܶ  values ݒଵ,௜, … , ,௧,௜ݒ … , ௜,்ݒ   and ௝݂ 
having ௝ܶ values ݒଵ,௝, … , ,௧,௝ݒ … , ௝,்ݒ . Joining these features a derived feature ݖ௜,௝ having ௜ܶ ௝ܶ values is obtained. An algorithm that considers all possible 
pairwise combinations of features in this manner is quadratic to the original 
number of features (Hall, 1999). Once a derived feature is created, its predictive 
ability regarding the class variable can be calculated using a feature merit 
measure. 
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FIGURE 8 Two spirals data set in 3-dimensional feature space (Lindenbaum et al., 1999). 
Features ସ݂  and ହ݂  are uniformly distributed irrelevant features. In this 
projection the spiral data structure is destroyed. 

Possible strategies include evaluation of the non-symmetrical relation between 
derived features and the class variable, non-symmetrical relation between 
individual features and the class variable and symmetrical relation for pairs of 
features. These symmetrical and non-symmetrical relations can be calculated 
using a particular feature merit measure and its symmetrical version. In this 
thesis, the experiments are performed using ReliefF an SU measures. The basic 
steps are: 

− evaluation of individual contribution to class discrimination for each 
feature to determine strongly predictive relevant features; 

− pairwise evaluation for strongly predictive of each other redundant 
features; 

− pairwise evaluation for higher order dependency between features joining 
their values and comparing the predictive ability of a derived feature to 
individual predictive abilities of two features; 

− confronting results of the previous steps to select the individual predictive 
features, predictive features of higher order dependency and to discard 
the redundant features. 
The threshold, ݐ௠  (default practical value is ݐ௠ ൌ 0.6) specifies which 

features are considered as relevant according to the normalized feature merit ܯ௙ [0..1]. If ܯ௙ ൐  ௠, the feature is relevant. Then pairs of relevant features areݐ
evaluated for redundancy. Features assigned ܯ௙ ൏  ௠ are considered in pairsݐ
and the derived features are evaluated same as the individual features. 
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This method can be applied to the subset of instances representing a 
subproblem found after decomposition. The decomposition is performed using 
IPA. If IPA cannot find contextual features for splits, an alternative weighting 
scheme can be used to perform decomposition.  

4.1.3 Contextual dependence between features 

The contextual dependence between features can be considered as a particular 
case of higher order dependency. Domingos (1997) presents the concept of local 
feature relevance considering contextual dependence. By his definition, some 
features may be highly relevant in certain regions of the instance set being irrelevant 
everywhere else by their sensitivity to a context, that is to the values of the other 
features. 

In Turney (1996, 1993), the definition of primary, contextual and irrelevant 
features is proposed. By this definition, primary features are useful for 
classification when considered in isolation, without regard for the other 
features. Contextual features are not useful in isolation, but can be useful when 
combined with other features. Irrelevant features are not useful, either when 
considered alone or when combined with other features. In this definition, 
contextual features are defined as having higher order dependency between 
features in general. 

Harries and Horn (1996) define so-called environmental features, which 
reflect hidden context, for example, time or spatial location. The SPLICE 
method described in Harries and Horn (1996) does not select or extract the 
contextual features from heterogeneous data, assuming that context may be 
contiguous over some features (environmental).  

In this thesis, the notion of contextual dependence is used to address the 
situation when relevance of a particular feature, called contextual, depends on 
the values of another feature, called primary. If contextual features are known in 
advance or can be identified, they can be used to perform decomposition by 
their values and find locally relevant features in subproblems. 

In Domingos (1997), a feature difference measure is proposed to evaluate the 
contextual dependency. The Relevance-in-Context method described in 
Domingos (1997) is distance-based and instance-specific that makes it 
computationally expensive. 

Harries and Horn (1996) have proposed a meta-level algorithm that uses a 
learning algorithm capable to perform context-sensitive feature selection, 
similar to the Relevance-in-Context method, or decision tree. Commonly, these 
methods perform selection of features at each node, rule, or clause in the 
context of locally relevant prior selections. Partitions are made over a contextual 
feature. Then contextual clustering is performed over the intervals according to 
apparent similarity of context, and local context-specific concepts are learned. 

The presence of contextual features can be foreseen by considering 
individual and joint distribution of feature values. Similar feature evaluation is 
performed in a hierarchical density-based subspace clustering technique 
(Parsons et al., 2004). A random tree-like procedure using IPA suggested to 
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determine contextual features and perform splits (Apte et al., 1998) is used as a 
prototype for R-IPA search for decomposition of contextual heterogeneity 
described in Subsection 3.2.4. 

4.2 Estimation of dissimilarity between subproblems 

This section presents feature merit measures that can be used in evaluation of 
candidate local regions as well as in the subsequent feature selection. Those are 
feature ranking methods that assign each feature a numerical score. 
Dissimilarity between subproblems is measured by means of Importance 
Profile Angle (IPA) that uses numerical feature scores in a vector form. 
Alternatively, those vectors can be made of feature weights, as in the BDP 
technique, proposed in Chapter 5. 

Some measures evaluating individual feature’s contribution also can 
foresee the effects caused by interaction with other features. Such measures are 
often called “non-myopic” measures. The example is ReliefF (Kononenko, 1994) 
and contextual merit measure (Hong, 1997; Skrypnyk, 2005). In this section, two 
individual feature merit measures are considered. Local feature selection in the 
subproblems can be performed after decomposition using those measures and 
the correlation-based measure, presented in Subsection 4.1.1. 

In feature selection, and individual feature or a feature subset are 
evaluated. Estimating a quality of a subset is more advantageous, because even 
measures that indirectly take into account interactions between features do not 
perceive all kinds of higher order relations that may exist between features. 
However, for high-dimensional data evaluation of subsets is computationally 
expensive. Exhaustive search through all possible feature subsets with a fixed 
number of features becomes intractable. Therefore, a heuristic search procedure 
is usually applied (Dash & Liu, 1997). 

There are two approaches to measure merit of an individual feature. The 
first approach, often called “myopic”, is based on the assumption about 
independence of features; therefore, the merit of a feature is estimated ignoring 
the other features. The second approach, called “non-myopic”, considers 
feature interactions; therefore, the merit of a feature is estimated taking into 
account the values of the other features. A “myopic” approach is 
computationally more efficient than a “non-myopic” one, but the latter has a 
potential in discovering relations between features and higher order relations 
(Kononenko & Hong, 1997; Hall, 1999). 

Interactions between features can be measured similar to measuring 
feature’s contribution in discrimination between classes, but using symmetrical 
variants of “myopic” measures. Non-symmetrical and symmetrical variants of a 
“myopic” mutual information based measure, Information gain, are considered 
in Subsection 4.2.1. A “non-myopic” feature merit measure, ReliefF, is described 
in Subsections 4.2.2. 
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More advanced feature subset selection methods take into account a 
certain kind of feature interactions. The example is the correlation-based feature 
subset selection (CFS) method (Hall, 1999) described in Subsection 4.1.1. The 
correlation-based merit measure can be considered as a shell for using 
symmetrical and non-symmetrical “myopic” measures. 

To some extent, all feature merit measures are biased toward the number 
of discrete values, classes, number of training instances, and so on. It is 
important to take into account those biases to understand the effect of feature 
selection as a part of an ensemble technique. Different ways to measure biases 
of various feature merit measures have been explored in Hong et al. (1996), 
White & Liu (1994), Kononenko (1995), and Hall (1999). Feature merit measures 
considered in this work are reported to have reasonable biases. 

4.2.1 The mutual information based measures 

In machine learning, the mutual information (information gain, or cross 
entropy, or in probability theory, Kullback-Leibler divergence) measure is a 
widely used information theoretic descriptor for stochastic dependency of 
discrete random variables (Kullback, 1968; Cover & Thomas, 1991; Soofi, 2000). 
Mutual information estimates the general dependence of random variables 
without making any assumptions about the nature of their underlying 
relationships. It is used to select features for classification problems on the basis 
of low values of mutual information with the class (Zaffalon & Hutter, 2002; 
Duda et al., 2001). 

The mutual information based measures for estimation of individual 
feature merit considered here originate to information theoretic impurity 
measures used in decision tree induction, Information gain (Quinlan, 1986), and 
Gini (Breiman et al., 1984). Information theoretic measurements, like entropy, 
are able to express an ability of a feature to distinguish among several classes. 

These measures are “myopic” assuming independence of features. Many 
data mining algorithms are based on this assumption. These methods are 
applicable to many classification problems, where interactions between features 
have no or only marginal effect (Kononenko et al., 1997). However, this 
assumption is often violated for heterogeneous data sets, which are in focus of 
this research. 

Using the mutual information criterion feature merit is measured by the 
difference between an impurity of the classes and the resulting impurity of the 
classes under assumption that the feature value is known. The most frequently 
used in decision tree induction impurity measures are entropy used in C4.5 
decision tree and Gini index used in CART decision tree algorithms. 

In general, impurity can be determined as a function of a set of 
probabilities, which are summed up to 1. Below impurity measures will be 
defined similar to Apte et al. (1998) using the notions provided in Section 2.1.  

Let us denote by ܫሺ ଵܲ, … , ௄ܲሻ  the impurity of a set of probabilities ଵܲ, … , ௄ܲ , ଵܲ ൅ ڮ ൅ ௞ܲ ൅ ڮ ൅ ௄ܲ ൌ 1 . An impurity measure should satisfy 
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ሺܫ ଵܲ, … , ௄ܲሻ ൌ 0 whenever ௞ܲ ൌ 1 for some ݇, and should be maximized when ௞ܲ ൌ 1 ⁄ܭ  for all ݇. 
The entropy measure of impurity is then defined according to the 

following expression. ܪሺ ଵܲ, … , ௄ܲሻ ൌ െ ෍ ௞ܲ௞ logଶ ௞ܲ (16)

A probabilistic model for a categorical (nominal) class variable ݕ, or a 
categorical feature ݂, can be formed by estimating the individual probabilities 
of the values it takes, ݕ א ሺܿଵ, … , ܿௗ, … , ܿ஽ሻ or ݂ א ሺݒଵ, … , ,௧ݒ … ,  ,ሻ respectively்ݒ
from the training data TR, where D is the number of classes, T is the number of 
different values of a feature. Consider ݕ taking ܿଵ, … , ܿௗ, … , ܿ஽  values with 
frequencies ߟଵ, … , ,ௗߟ … , ஽ߟ  estimated from TR, and ݂  taking ݒଵ, … , ,௧ݒ … ,  ்ݒ
values with frequencies ߤଵ, … , ,௧ߤ … ,  estimated from TR. The conjunction of ்ߤ
the class value ܿௗ and the feature value ݒ௧ occurs with frequency ߱ௗ,௧. 

The impurity of the class variable can be defined as shown in Formula 17, 
where ܯ is a number of instances in TR. ܫሺ݂ሻ ൌ ଵߟሺܫ ⁄ܯ , … , ௗߟ ⁄ܯ , … , ஽ߟ ⁄ܯ ሻ (17)

The impurity of the feature is then defined by Formula 18. ܫሺ݂ሻ ൌ ଵߤሺܫ ⁄ܯ , … , ௧ߤ ⁄ܯ , … , ்ߤ ⁄ܯ ሻ (18)

For instances from TR corresponding to a particular value ݒ௧  of a 
considered feature ௝݂ ൌ ݂, the impurity is denoted according to Formula 19. ܫሺݕ|݂ ൌ ௧ሻݒ ൌ ൫߱ଵ,௧ܫ ,௧ߤ … , ߱ௗ,௧ ⁄௧ߤ , … , ߱஽,௧ ⁄⁄௧ߤ ൯ (19)

When feature value ݒ௧  occurs with probability ܲሺݒ௧ሻ  the average 
impurity of a class variable ݕ, given the feature ݂ can be written as follows. 

ሻ݂|ݕሺܫ ൌ ෍ ܲሺݒ௧ሻ்
௧ୀଵ ൫߱ଵ,௧ܫ ,௧ߤ … , ߱ௗ,௧ ⁄௧ߤ , … , ߱஽,௧ ⁄⁄௧ߤ ൯ (20)

For the training set of ܯinstances the proportion of occurrences of a 
feature value ݒ௧  is ߤ௧ ⁄ܯ . Using this value as ܲሺݒ௧ሻ  Formula 17 can be 
expressed as shown in Formula 21. 

ሻ݂|ݕሺܫ ൌ ෍ ்ܯ௧ߤ
௧ୀଵ ൫߱ଵ,௧ܫ ,௧ߤ … , ߱ௗ,௧ ⁄௧ߤ , … , ߱஽,௧ ⁄⁄௧ߤ ൯ (21)

This is impurity remaining in a class variable after the information present 
in the particular feature variable has been used. 

If the observed values of ݕ in TR are partitioned according to the values 
of a particular feature ݂ , the entropy of ݕ  with respect to the partitions 
induced by ݂, ܪሺݕ|݂ሻ is less than the entropy of ݕ prior to partitioning, ܪሺݕሻ. 

The average impurity of a class variable ݕ, after observing the feature ݂ 
using the entropy can be written as follows. 
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ሻ݂|ݕሺܪ ൌ െ ෍ ்ܯ௧ߤ
௧ୀଵ ෍ ߱ௗ,௧ߤ௧

஽
ௗୀଵ logଶ ߱ௗ,௧ߤ௧ ൌ ܯ1 ൥෍ ௧ߤ௧logଶߤ െ ෍ ෍ ߱ௗ,௧ logଶ ߱ௗ,௧஽

ௗୀଵ
்

௧ୀଵ
்

௧ୀଵ ൩ (22)

The best feature is the one that achieves the lowest value of the entropy ܪሺݕ|݂ሻ. 
The amount by which the entropy of ݕ  decreases reflects additional 

information about ݕ provided by ݂. This can be used as a measure to estimate 
merit of a feature ݂.  

The Information gain (IG) measure is defined according to the following 
expression. ܩܫሺݕ|݂ሻ ൌ ሻݕሺܪ െ ሻ݂|ݕሺܪ ൌ ሺ݂ሻܪ െ ሻݕ|ሺ݂ܪ ൌ ሻݕሺܪ ൅ ሺ݂ሻܪ െ ,ݕሺܪ ݂ሻ (23)

According to this measure, a feature ݕ is more correlated to feature ଵ݂ 
than to feature ଶ݂, if ܩܫሺݕ| ଵ݂ሻ ൐ |ݕሺܩܫ ଶ݂ሻ. 

Formula 23 demonstrates that Information gain is symmetrical measure, 
that is the amount of information gained about ݕ after observing ݂ is equal to 
the amount of information gained about ݂ after observing ݕ. Hence, these 
measures can be used to measure interactions (correlation) between two 
categorical features. 

Information gain is biased in favor of features with more values. Thus, the 
values have to be normalized to ensure they are compatible and have the same 
affect. Symmetrical Uncertainty (SU) considered in Section 4.1 is a symmetrical 
version of Information gain that compensates for Information gain’s bias. 
Symmetrical Uncertainty also normalizes Information gain’s values to the range 
[0,1] with the value 1 indicating that knowledge of the value of either one 
completely predicts the value of the other and the value 0 indicating that two 
features are independent. (Yu & Liu, 2003).  

In the C4.5 decision tree learning algorithm Gain ratio is used instead of 
Information gain, because the latter tends to favor features with large number 
of values. Gain ratio (GR) is defined according to Formula 24. ܴܩሺݕ|݂ሻ ൌ ሺ݂ሻܪሻ݂|ݕሺܩܫ ൌ ሻݕሺܪ ൅ ሺ݂ሻܪ െ ,ݕሺܪ ݂ሻܪሺ݂ሻ  (24)

4.2.2 The ReliefF measure 

The ReliefF measure is derived from the Relief algorithm developed by Kira 
and Rendell (1992a and 1992b) and its extension ReliefF (Kononenko, 1994) for 
estimating merits of features with strong dependencies among them. In contrast 
to “myopic” feature merit measures, such as Information gain and similar 
estimates like Gini index or Mántaras’s distance measure (Lopez de Mántaras, 
1991), Relief takes into account dependency between features estimating feature 
merits. Features are evaluated according to how well their values distinguish 
between instances that are near each other in terms of Relief’s distance function. 
In Relief for a given instance two its nearest neighbors are taken: one from the 
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same class (called nearest hit) and another from a different class (called nearest 
miss). The original Relief’s estimate of feature merit is limited to two nearest 
neighbors and to the two-class problem. For a given instance ሺx௥, ݎ ,௥ሻݕ ൌ 1 …  ,ܯ
where ܯ is the size of TR, the merit of feature ௝݂ ൫ܨܴ , ௝݂൯, is estimated as 
shown below. ܴܨ൫ ௝݂൯ ൌ ܲ൫ݔ௞,௝ ് ௞ݕ|௥,௝ݔ ് ௥൯ݕ െ ܲ൫ݔ௞,௝ ് ௞ݕ|௥,௝ݔ ൌ ௥൯ (25)ݕ

Instances ሺx௞, ,௞ሻݕ  ݇ ൌ 1 … ,ܭ  are the nearest neighbors of ሺx௥, ௥ሻݕ  in 
terms of Relief’s distance function. In the original Relief method ܭequals to 2. 
The distance function in Relief is determined as a difference between values of 

particular feature for instances of different and same classes. The distance ݀௥,௜௙ೕ  
between the values of a discrete feature ௝݂ for the given instance ሺx௥,  ௥ሻ andݕ
an instance ሺx௜, ௥ݕ ௜ሻ from different or the same class, that isݕ ൌ ௥ݕ ௜ orݕ ്  ௜ݕ
is defined as shown in Formula 26. ݀௥,௜௙ೕ ൌ ൜0, if ௥,௝ݔ ൌ ,௜,௝1ݔ otherwise     (26)

The distance ݀௥,௜௙ೕ  between the values of a continuous feature is defined as 
shown in Formula 27. ݀௥,௜௙ೕ ൌ หݔ௥,௝ െ ௜,௝ห௝݂ݔ max െ ௝݂ min (27)

This ݀௥,௜௙ೕ  is used for calculating the distance between instances to find the 
nearest neighbors. The total distance ܦ௥,௜ defined below is simply the sum of 
distances over all features, so-called Manhattan distance, where ܰ is a number 
of features. 

௥,௜ܦ ൌ ෍ ݀௥,௜௙ೕே
௝ୀଵ  (28)

Relief updates a merit over all features for a particular instance from the 
training set depending on their values for the given instance, its nearest hit, and 
its nearest miss. Let us denote the nearest neighbor of the instance ሺx௥, ݎ  ,௥ሻݕ ൌ 1 … ݊, ݊ ൑ ,from the same class (nearest hit) as ሺx௛ ,ܯ ݄ ,௛ሻݕ ൌ 1 …  and ,ܭ
from the different class (nearest miss) as ሺx௠, ݉ ,௠ሻݕ ൌ 1 …  Then for every .ܭ
instance randomly selected from the training set (or a sample) the Relief merit 
measure is recursively calculated according to the following expression. 
Initially ܴܨ൫ ௝݂൯ is set to 0.0, and then updated over all features, ݆ ൌ 1 … ܰ. For 
any new instance selected from the training set Relief merit measure is updated. 
Normalization by n guarantees that all merits are in the interval [-1, 1]. ܴܨ൫ ௝݂൯ ൌ ൫ܨܴ ௝݂ିଵ൯ െ ݀௥,௛௙ೕషభ ݊ൗ ൅ ݀௥,௠௙ೕషభ ݊ൗ  (29)

The rationale is that a good feature should differentiate between instances 
from different classes and should have the same value for instances from the 
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same class. If the instances ሺx௥, ,௥ሻ and ሺx௛ݕ  ௛ሻ have different values of theݕ
feature ௝݂ିଵ then feature ௝݂ିଵ separates the two instances from the same class, 
which is not desirable, and therefore, the merit is decreased. On the other hand, 
if the instances ሺx௥, ,௥ሻ and ሺx௠ݕ  ௠ሻ have different values of the feature ௝݂ିଵݕ
then feature ௝݂ିଵ separates the two instances from different classes, which is 
desirable, then the merit is increased. The process is repeated ݊ times, where ݊ 
is user defined parameter, ݊ ൑  In order to get more precise estimate ݊ can .ܯ
be set to its upper bound ܯ, the number of instances in the training set TR. 

In Kononenko (1994) an extension of Relief for multi-class problems, 
ReliefF, is proposed. This extension takes into account k nearest neighbors, and 
can deal with missing feature values and noisy data as well (Kononenko, 1994; 
Robnik-Šikonja & Kononenko, 2003). ReliefF searches for k nearest hits and k 
nearest misses from each of the different classes. The contribution of all the hits 
and all the misses is averaged. The contribution for each class of the misses is 
weighted with the prior probability of that class ܲሺݕ௜ ൌ ܿௗሻ,  ݀ ൌ 1 …  ,ܦ
(estimated from the training set). The ReliefF merit measure (RFF) is derived 
from Formula 30 as shown below (Robnik-Šikonja & Kononenko, 2003). 

 
(30)

The selection of k hits and misses is the basic difference to Relief, which 
ensures greater robustness of ReliefF concerning noise. The k is the user-defined 
parameter that controls the locality of the estimates. For most purposes it can be 
safely set to 10 (Kononenko, 1994; Robnik-Šikonja & Kononenko, 2003). 

In order to deal with missing feature values the distance function can be 
changed as shown in the following two expressions. Formula 31 is applied for 
the case when one instance ሺx௥,  ௥ሻ has unknown feature values. Formula 32 isݕ
applied for the case when both instances ሺx௥, ,௥ሻ and ሺx௞ݕ  ௞ሻ have unknownݕ
values. Then the probability that two given instances have different values for 
the given feature conditioned over class is calculated according to the following 
expressions. Consider ௝݂ having ܶ values ݒଵ,௝, … , ,௧,௝ݒ … , ௝. ݀௥,௞௙ೕ,்ݒ ൌ 1 െ ܲ൫ݔ௞,௝|ݕ ൌ ௥൯ (31)ݕ

݀௥,௞௙ೕ ൌ 1 െ ෍ ቀܲ൫ݒ௧,௝|ݕ ൌ ݕ|௧,௝ݒ௥൯ܲ൫ݕ ൌ ௞൯ቁ்ݕ
௧ୀଵ  (32)

The conditional probabilities are approximated with the corresponding 
frequencies from the training set. 

The context sensitivity in the RFF measure is provided by the “nearest 
instance“ condition. The key idea is to estimate feature merits according to how 
well their values distinguish between the instances that are near each other. 

Kira and Rendell (1992) provide experimental evidence that Relief is 
effective at identifying relevant features even when they interact, for example, 
in parity (XOR) problems. However, according to Kira and Rendell (1992), if 
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most of the given features were relevant to the concept, Relief would select 
most of the given features even though only a small number of them is 
necessary for concept description. In other words, Relief does not discard 
redundant features. 

In Hall (1999), the symmetrical version of ReliefF has been developed and 
applied for correlation-based feature subset selection. To use ReliefF 
symmetrically for two features, the measure is calculated twice, so that each 
feature is treated in turn as a dependent variable, and the results are averaged. 
Formula 33 shows symmetrical version of ReliefF (SRFF). ܴܵܨܨሺ ଵ݂| ଶ݂ሻ ൌ ሺܨܨܴ ଵ݂ሻ ൅ ሺܨܨܴ ଶ݂ሻ2  (33)

4.2.3 Biases of feature merit measures 

Information gain, ReliefF and CM suffer from the inherent bias that favors 
features having more values (Hall, 1999; Hong et al., 1996; Yu & Liu, 2003). 
White and Liu (1994) have demonstrated the prevalence of this bias and 
discussed the negative effects that it has on the predictive models that were 
constructed using biased measures. In Hong et al. (1996) the term variety effect 
were used to describe this phenomenon, especially in connection with numeric 
features that have mostly unique values for each instance in the training set. 

When a feature takes many distinct values, it certainly has more power to 
model the target variable (class). At the extreme case, a feature whose values 
are distinct for training instances is sufficient by itself to model the target 
variable. In real data sets, it happens often in the form of ID features, account 
numbers or names. Such features should be excluded at the pre-processing step. 

In Hall (1999) a systematic study of the bias caused by the number of 
feature values was performed along with the study of effects caused by small 
training set size for Information gain, ReliefF and their symmetrical variants. It 
was concluded that the effect tends to increase for small training sample sizes. 
For irrelevant features with many values this is especially undesirable, because 
such feature will appear more useful than a relevant feature with fewer values.  

In practical terms, feature selection using these measures should prefer 
features with fewer values to those with more values. Since probability 
estimation is likely to be more reliable for features with fewer values, especially 
if the training set size is limited, there is less risk of overfitting the training data. 
(Hall, 1999) 

In Hong et al. (1996) a scheme based on randomization was proposed in 
order to neutralize this bias by normalizing feature merits. The basic idea is to 
consider what would be the merit for a random feature with the same 
distribution of values as a given feature. Then, if the merit of the original 
feature is close or less than the average merit of random features with the same 
distribution, the feature should not be assigned a high merit value. A random 
feature with the same distribution is obtained by random permutation of the 
original feature’s among the training instances. The original feature’s merit is 
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then normalized dividing it by the expected merit of the random feature. A 
feature in question, whose merit is lower than a merit of random feature, is a 
candidate to be removed. However, “non-myopic” feature merit measures 
reflect a discriminative power of the feature in the presence of other features. It 
means, if the normalized value is less than one, a random feature would 
contribute more in the presence of other features. Hence, additional information 
about “how much better than random” should be introduced. (Hong et al., 1996) 

There could be alternative normalization schemes. For example, in Yu and 
Liu (2003) it was indicated that Symmetrical Uncertainty somewhat 
compensates bias toward features with more values and normalizes merit 
values to the range [0,1], where 1 indicates that feature has maximum 
discriminative power for the target variable. In Hall (1999), it was shown that 
symmetrical variants of Information gain and modified ReliefF (“myopic” 
version with removed context sensitivity provided by nearest instances) 
measures also reveal bias toward features having many values and to the small 
training set size. The estimates of both Symmetrical Uncertainty and modified 
Symmetrical ReliefF show a tendency to increase exponentially with fewer 
training instances. The effect is more marked for features with more values. 

4.3 Class separability based and other complexity measures 

Class separability in a feature subspace characterizes class discrimination using 
a variety of measures not related directly to a Bayes error estimate. These 
measures reflect statistical, geometrical and topological, or 
information-theoretic properties of data. Majority of class separability measures 
are primarily used in unsupervised learning, as they reflect a criterion for 
clustering. 

4.3.1 Class separability and Bayes minimum error 

Assuming that distributions of features as random variables are known, 
Bayesian classifier is a theoretically best classifier. It minimizes the probability 
of misclassification and therefore has the smallest possible error (Bayes 
minimum error, ε). It can be viewed as a cardinal class separability measure as 
by definition it is a minimal classification rate that can be obtained for a certain 
data (Fukinaga, 1990; Pierson, 1998). In most cases, calculation of ߝ is not 
feasible, because it relies on probability density functions in each class, prior 
class probabilities, and requires numerical integration. In case the only 
information regarding underlying distributions is a finite data sample, 
estimation of the probability density functions is made and the upper bound for 
ε is found. Difficulties in estimating ε has led to development of different class 
separability measures based on mathematical bounds on ε, 
information-theoretic concept of class separability, nonparametric proximity 
measures, and heuristic concept of class separability (Pierson, 1998). 
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Class separability in a feature subspace characterizes class discrimination 
using a variety of measures. Some of them are directly related to a Bayes 
minimum error estimate, while others are based on heuristic concept of class 
separability. These measures reflect statistical, geometrical and topological, or 
information-theoretic properties of data. In this paper, several measures from 
each category are evaluated. Expressions for class separability measures are 
presented in form of estimates based on a finite sample of population.  

Usually, class separability is used as a criterion for dimension reduction to 
downscale the classification problem preserving data structure with inherent 
discriminatory information. The term feature selection is used in context of 
improved class discrimination. Application of class separability as a criterion in 
most cases leads to decrease in classification error rate, despite the exact relation 
to biases of different classifiers has not been established. 

4.3.2 Parametric measures and their generalizations 

Parametric measures make assumptions regarding underlying distribution in 
data, which is often unknown. To simplify the matters, probability estimates 
obtained from a data set can be used to substitute unknown parameters. 
However, such estimates may not be reliable (Pierson, 1998). Mahalanobis and 
Bhattacharyya distances are often used as Bayes minimum error estimates (Mao 
& Tang, 2011). As a class separability measure, Mahalanobis distance between 
classes can be compared to a sum of standard deviations of both classes. 
Mahalanobis distance increases with increasing distances between class 
centroids (means) and with decreasing within class variation (Everitt et al., 
2011). Mahalanobis distance assumes that covariance matrices of two classes are 
identical, their distribution is Gaussian, and prior probabilities of the classes are 
equal. When this is not at least approximately so, this measure is not 
meaningful and has to be substituted by one of the alternatives. Such an 
alternative is provided by a Normal Information Radius (ܴܰܫ஺,஻) (Everitt et al., 
2011). Given two sets of instances corresponding to classes A and B with mean 
vectors ߤ஺ and ߤ஻, covariance matrices ΣA and ΣB, ܴܰܫ஺,஻ between the two 
classes is shown in Formula 34.  

஺,஻ܴܫܰ ൌ 12 logଶ ቌቚ12 ሺߑ஺ ൅ ஻ሻቚߑ ൅ 14 ሺߤ஺ െ ஺ߤ஻ሻ்ሺߤ െ |஻ߑ||஺ߑ|஻ሻඥߤ ቍ 
ሺ34ሻ

Bhattacharyya distance (ܽ஺,஻) is a generalization of the Chernoff bound on 
Bayes error, which is widely used as a class separability measure (Fukunaga, 
1990; Pierson, 1998). The Bhattacharyya coefficient expresses overlap between 
two statistical samples that correspond to two classes as shown in Formula 35. 
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ܽ஺,஻ ൌ 18 ሺߤ஺ െ ஻ሻ்ߤ ቆ12 ሺߑ஺ ൅ ஻ሻቇିଵߑ ሺߤ஺ െ ஻ሻߤ ൅ 12 ln ቌቚ12 ሺߑ஺ ൅ |஻ߑ||஺ߑ|஻ሻቚඥߑ ቍ 
ሺ35ሻ 

The first term represents class separability due to the means difference 
while the second term reflects class separability due to the covariance 
difference.  

Measures that involve computation of covariance matrices and their 
inversion are computationally intensive. Another limitation associated with 
covariance matrices is that if the number of instances per class is less than the 
number of features, the covariance matrix is singular and inverse cannot be 
computed. Regularization is one possible solution to this problem. 

4.3.3 Information-theoretic measures 

Information-theoretic measures are based on examination of the concept of 
statistical independence between distributions of features and a class variable 
(Pierson, 1998).  

Kullback-Leibler distance (ܮܭ஺,஻) is an information-theoretic measure of 
relative entropy that measures discrepancy between two probability 
distributions (Kullback, 1968). If used as a class separability measure, it’s a 
distance between histograms of features (Cantú-Paz, 2004). Kullback-Leibler 
distance is often used in filter feature selection, for example, in (Koller & 
Sahami, 1996). Symmetric version of this measure is given by Formula 36.  

஺,஻ܮܭ ൌ 12 ቆܲሺx|ܣሻ ln ܲሺx|ܣሻܲሺx|ܤሻ ൅ ܲሺx|ܤሻ ln ܲሺx|ܤሻܲሺx|ܣሻ ቇ 
ሺ36ሻ

Mutual separability measure between two classes can be expressed by 
divergence (ܫܦ ஺ܸ,஻), the measure derived from the Bayes rule, (Formula 37). 

ܫܦ ஺ܸ,஻ ൌ ൫ܲሺx|ܣሻ െ ܲሺx|ܤሻ൯ ln ܲሺx|ܣሻܲሺx|ܤሻ 
ሺ37ሻ

For multi-class problems, ܲሺx|ܣሻܲሺx|ܤሻܫܦ ஺ܸ,஻ is accumulated for all pairs 
of classes. ܫܦ ஺ܸ,஻ ൒ 0. Divergence is 0 for completely overlapped classes. 

4.3.4 Proximity based and heuristic measures 

Nonparametric measures are mostly based on density estimates and often 
utilize the neighborhood concept. Nonparametric estimates are used, for 
example, to assess multimodality, skewness, or any other structure in 
distributions of the data. Parzen and k-Nearest Neighbor (k-NN) based 
measures are representative in this category (Pierson, 1998). Both measures are 
based on defining the ratio of instances in a close vicinity of an instance in a 
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data set. These measures also provide a Bayes minimum error estimate and is 
used as class separability based feature selection, for example, in (Singh et al., 
2002). The density estimation for instance x is defined by the ratio of neighbors 
k in volume v adjusted by the number of instance in a data set, M. Initial 
settings for v or k might significantly influence the result and require 
preliminary estimation. The density estimation for Parzen measure is measured 
with the volume of the local region fixed. For k-NN measure, the number of 
neighbors is fixed. The related approach is employed in adherence mapping 
(Ho et al., 2006) and used as a complexity measure called the fraction of 
maximum covering spheres. This approach is also used in density-based 
clustering such as DBSCAN. 

Fisher's linear discriminant (ܨ஺,஻) does not make strong assumptions about 
normally distributed features, equal covariance matrices, and Gaussian classes 
contrary to linear discriminant analysis; it is a more flexible measure. For two 
classes A and B with the respective means (centroids) ߤ஺  and ߤ஻ , Fisher 
(Fisher, 1936) defined the separation between two distributions in feature j to be 
the ratio of the variance between the classes ߪ௜௡௧௘௥ଶ  to the variance within the 
classes ߪ௜௡௧௥௔ଶ , (Formula 38). 

஺,஻ܨ ൌ ௜௡௧௥௔ଶߪ௜௡௧௘௥ଶߪ  ൌ ሺߤ஺ െ ஻ߤ ሻଶߪ஺ଶ ൅ ஻ଶߪ  
ሺ38ሻ

Not all features necessarily contribute to class discrimination. As long as 
one or a few discriminative features are found, the classes are linearly 
separable. If none of the features has a nonzero Fisher’s linear discriminant 
ratio, it does not mean that the classes are not separable, but it means that the 
separating line is not parallel to the axis in the given feature space.  

In discriminant analysis (Fukunaga, 1990), three scatter matrices are 
computed: intra-class (within class), inter-class (between class), and total scatter 
matrix. There are three popular scatter matrix based measures that use the idea 
of class means separation and covariance tightness (Fukunaga, 1990). An 
intra-class scatter matrix is similar to class covariance matrix, but it is adjusted 
with prior class probabilities, as shown in (Formula 39). 

௜ܵ௡௧௥௔,஺ ൌ ܯ஺ܯ ሺx െ ஺ሻሺxߤ െ ஺ሻ்ߤ ൌ ܲሺܣሻߑ஺ 
ሺ39ሻ

Total intra class scatter matrix is accumulated over all classes. An inter 
class scatter matrix is computed as shown in (40) and accumulated over all 
classes. 

௜ܵ௡௧௘௥,஺ ൌ ܯ஺ܯ ሺߤ஺ െ ஺ߤሻሺߤ െ  ሻ்ߤ
ሺ40ሻ

A total scatter matrix is a common covariance matrix, ܵ ൌ  Average .ߑ
mean vector ߤ ൌ ܲሺܣሻߤ஺ ൅ ܲሺܤሻߤ஻ . 
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Various scatter matrix based measures (Fukunaga, 1990; Pierson, 1998) use 
tuples S1, S2 from ሼ ௜ܵ௡௧௥௔, ௜ܵ௡௧௘௥, ܵሽ, for example, as shown in (Formula 41) - (ܬଵ) 
and (Formula 42) - (ܬଶ). ܬଵ ൌ ሺݎݐ ௜ܵ௡௧௥௔ିଵ ௜ܵ௡௧௘௥ሻ ሺ41ሻ
 

ଶܬ ൌ ሺݎݐ ௜ܵ௡௧௥௔ሻݎݐሺ ௜ܵ௡௧௘௥ሻ 
ሺ42ሻ

A few other variants are listed in Pierson (1998). A class separability 
measure for feature selection based on the difference between intra-class 
distances and inter-class distances computed with respect to class centroids is 
used in Liang et al. (2008). Class centroids that correspond to the means of two 
classes, ߤ஺  and ߤ஻ , can be found in a different way with nonparametric 
estimates. The measures derived from scatter matrices include computation of 
intra-class and inter-class distances via average distances to a nearest neighbor 
from the same or different class respectively (Ho et al., 2006). 

The ratio of average intra- and inter-class nearest neighbor distance ஺߲,஻ ൌ ௗ ೞೌ೘೐ௗ ೏೔೑೑  ( ஺߲,஻ ) is a class separability measure that is closely related to 

empirical measures and nonparametric estimates, such as scatter matrices. 
Intra- and inter-class ratio compares dispersion within class to the gap between 
classes involving a distance function. This measure has more flexibility than 
scatter-based measures as it conveys density and does not deal with class 
centroids, which can be a nontrivial task. ஺߲,஻  is sensitive to outliers and can 
be misleading in case of uneven density and unusual class shapes. Heuristic 
measures based on scatter matrices are not directly related to Bayes minimum 
error estimate. Intra- and inter- class distances ratio is previously discussed in 
Subsection 3.2.3 with respect to decomposition based on local class separability. 

4.3.5 Complexity measures 

Geometrical complexity of a classification problem refers to length and shape of 
class boundaries, class distributions and/or density within classes, margins 
between classes, dimensionality, data size, overall presentation of a 
classification problem by a data sample (intrinsic unambiguity), and other 
factors directly or indirectly influencing Bayes minimum error and error of a 
particular classifier. Geometrical complexity measures examine class boundary 
and class margins explicitly, but characterize class separability indirectly. It can 
be useful in assessing class separability measures in aspects related to 
classification accuracy, but independent on a classifier choice (Ho, 2002; Ho et 
al., 2006). 

Fraction of points on the class boundary (N1) is the number of instances 
connected to the opposite class by the edge of minimum spanning tree with 
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respect to all instances. It takes values in the interval (0..1), where smaller 
values correspond to better class separability. This measure is misleading when 
intra-class distance is smaller than inter-class distance, but classes are separable. 
For example, two elongated linearly separable classes with narrow margin 
between them. 

The leave-one-out error rate of the 1-NN classifier (N2) is used as a 
complexity measure in (Ho, 2002) as it shows how proximity of instances from 
an opposite class (margin between classes) affects error rates of a basic 
distance-based classifier. The nonlinearity of the 1-NN classifier (N3) is a 
complexity measure that originates form the measure of nonlinearity of a linear 
classifier, L3, as described below.  

Measure (T1) is based on the notion of adherence subsets used to describe 
the shape of class manifolds. An adherence subset is spherical ε-neighborhood 
with a radius ε centered on an instance. The neighborhood is expanded until it 
touches an instance from an opposite class. A list of such neighborhoods 
needed to cover two classes is a composite description of the shape of the 
classes (Ho et al., 2006). This is an interior description rather than a boundary 
description given by measure N1. The number and order of the retained 
adherence subsets indicate how much the instances tend to be clustered in 
hyperspheres or distributed in thinner structures (Ho et al., 2006). In a problem, 
where each instance is closer to instances of the other class than instances of the 
same class, each adherence subset is retained and is of a low order. When used 
as a measure of class separability, the count of the retained adherence subsets is 
normalized by the total number of instances. T1 values are in the interval (0..1], 
where smaller values correspond to better class separability.  

The average number of points per dimension (T2) is a ratio of instances 
and features in a data set that is a rough indicator of data sparseness. T2 is a 
complimentary measure; it increases with elimination of irrelevant features. 

Measures derived from error rates of a linear classifier (SVM with linear 
kernel trained with Sequential Minimum Optimization (SMO) are the 
minimized sum of the error distance of a linear classifier (L1) and the training 
error of a linear classifier (L2). These measures evaluate to what extent the 
classes are linearly separable. L1 is the sum of the differences in predicted and 
actual class, hence, a zero value indicates linear separability. L2 returns the 
training error for the same linear classifier.  

The measure of nonlinearity of a linear classifier (L3) is an error rate from 
linear SVM classifier obtained from the test set that is created by linear 
interpolation from the original data. The test instance x is created from a pair of 
randomly selected instances of the same class x1 and x2 with random 
coefficients rnd in each feature j: ݔ௝ ൌ rnd כ ଵ௝ݔ ൅ ሺ1 െ rndሻ כ  ଶ௝. This measure isݔ
for the alignment of the decision boundary produced by linear SVM with the 
shape of the gap or overlap of class boundaries presented as convex hulls. Zero 
test error is an indication of good class separability. It is of particular interest in 
cases of uneven density and existence of subclasses. In multi-class problems the 
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results of L1, L2, and L3 are averaged over pairwise class decompositions. 
Measures of this category can be compared directly for different data sets. 

4.4 Chapter summary 

There are different approaches to estimate a discriminative power of the feature 
subset. In this thesis, only feature selection methods independent of a learning 
algorithm are considered in order to avoid inductive biases of those algorithms. 
In some methods, merits of individual features are evaluated one by one, while 
in other methods merits of different feature subsets are evaluated. “Myopic” 
feature merit measures disregard possible interactions between features 
evaluating each feature independently. Methods using “myopic” feature merit 
measures are successful in many cases, since the assumption about 
independence of features is often true in practice. “Non-myopic” measures take 
into account feature interactions considering values of the other features. 

Estimating a quality of feature subsets is more computationally expensive, 
but can be advantageous, because even “non-myopic” measures cannot 
perceive all kinds of higher order relations that may exist between features. 
Some feature subset merit measures, for example, correlation-based feature 
subset merit measure, consider only particular feature interactions to find a 
subset, and therefore gain more computational efficiency.  

Considering feature-feature, feature-class interactions and higher order 
relations between features is important for heterogeneous classification 
problems (Subsection 4.2.1). Different merit measures handle redundant and 
interacting features differently, because they are based on different assumptions 
about the data nature, for example, such as a tendency to group by classes in 
distance-based methods. In such a way, individual feature / feature subset 
merit measures may correspond to the underlying data characteristics of 
different data set to a various extent.  

The Information gain feature merit measure is based on the mutual 
information and estimates a general dependence of random variables without 
making any assumptions about the nature of their underlying relationships. 

ReliefF assumes that a good feature should differentiate between instances 
from different classes and should have the same value for instances from the 
same class. ReliefF is able to identify interactive features, but tends to consider 
redundant features as important. 

The rationale for a correlation-based subset selection is the following. A 
good feature subset is one that contains features highly correlated with 
(predictive of) a class variable, yet uncorrelated with (not predictive of) each 
other. 

In this thesis the considered individual feature merit measures producing 
rank of features are used as a part of IPA to evaluate dissimilarity between 
subproblems.  
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5 BIDIRECTIONAL DATA PARTITIONING 

This chapter presents a novel Bidirectional Data Partitioning (BDP) technique 
that follows a decomposition approach for a general feature space heterogeneity 
proposed in Chapter 4. This decomposition approach does not assume existence 
of contextual features that facilitate data partitioning or that homogeneous 
regions can be found among pairwise or one-against-all class combinations. The 
main challenge of finding regions as sets of instances with associated sets of 
relevant features, is to encompass search in the space of instances and the space 
of features simultaneously. In BDP, this task is accomplished via adaptive 
learning of distance metric with feature weighting. Weighted distances are 
given as inputs to a distance-based clustering algorithm. Because clustering 
cannot obtain regions with increased class separability directly, agglomerative 
merging of clusters is performed comparing feature weight profiles in clusters. 
Merged groups of instances represent subproblems of the original classification 
problem. Relevant subset of features is found in each subproblems by means of 
feature weights or an external feature selection technique. Subproblems are 
modeled separately. Selection of the right model for novel instances is a 
distance-based procedure. A few alternative solutions presented in 
implementation of BDP are discussed. 

Implementation of the proposed approach adopts a local neighborhood 
search to adjust feature weights iteratively and then involves a weighted 
distance-based grouping procedure. Feature weights reflect local improvement 
of class discrimination; specifically, they promote increased density of the 
same-class instances while separating instances from a different class. Better 
class separability reflects wider margin between classes and larger distance 
between class centroids, less complex form of boundary between classes, and 
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higher density within classes. A criterion based on intra- and inter-class 
distances is presented among nonparametric class separability measures in 
Section 5.1. Bidirectional data partitioning is presented as an optimization task 
in Section 5.2. A practical solution to the optimization task that utilizes a local 
neighborhood concept is described in Section 5.3. Bidirectional partitioning as a 
multi-model approach is presented under ensemble framework in Section 5.4. 
Additional aspects and related approaches are covered. Summary and 
conclusions are provided in Section 5.5. 

5.1 Criterion function 

In classification tasks, or supervised learning, data instances are classified 
according to certain observable characteristics. In clustering, or unsupervised 
learning, and semi-supervised learning, the same set of observable 
characteristics is available, except for the class labels, which can be partially 
available. There are measures used in clustering, filter feature selection, and 
data complexity evaluation that make suitable candidates for decomposition 
evaluation. Those measures bring their inherent bias and some of them are not 
directly related to minimum Bayes error rate, but they are proven to be effective 
in classification tasks (Fukunaga, 1990; Ho et al., 2006). 

Data structure can be seen beyond class labels at different levels of 
granularity (subclasses and super classes). In different projections of the feature 
space, unstable feature relevance shows off in form of uneven density regions 
and complex nonlinear class boundaries (illustrated by synthetic data examples 
presented in Chapter 6 and Appendix 3). Criterion for decomposition of a 
classification problem onto a few simpler subproblems then can be derived 
from complexity characteristics, and in particular, class separability measures. 

Class discrimination can be improved via improved class separability. 
This statement is widely used in the literature on developing feature selection 
methods based on class separability, distance functions used in classification, 
clustering for classification, and classification itself. The approach proposed 
here increases densities of classes increasing margins between classes. The next 
section reviews and summarizes several parametric and nonparametric class 
separability measures in order to provide a background for further 
development of BDP technique. 

5.1.1 Criteria based on class separability 

Criteria based on class separability have been extensively used in filter feature 
selection (Liu & Motoda, 1998). A problem related to unstable feature relevance 
in classification has recently received increased attention in clustering. Subspace 
clustering, also known as two-mode partitioning and block clustering, is an 
extension of traditional clustering that seeks clusters in different feature 
subspaces. A search is performed simultaneously in the subspace of instances 
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and in the subspace of features in order to partition data. In other words, both 
rows and columns of a data table are assigned to one or more clusters. Elements 
in the same cluster are close to each other in terms of a pre-defined distance 
function or a similarity measure. 

The rationale for choosing a criterion for bidirectional data partitioning in 
classification is based on the following observation. Classes are groups of 
conceptually meaningful objects that share common characteristics. Clusters are 
similar by nature. In clustering, an evaluation function is based on intrinsic 
properties of data, a criterion that reflects data structure with respect to a 
chosen distance function or a similarity measure. Evaluation functions used in 
clustering are often applied as class separability measures in case of known 
class labels, for example, in filter feature selection and feature extraction. These 
measures provide additional description of labeled data indirectly related to 
error rates from a particular classifier. Improved class separability in many 
cases implies easier class discrimination in terms of classification rule 
complexity, resistance to overfitting, and accuracy of prediction. Examples of 
class separability measures include a variety of scatter matrix based, Fisher’s 
linear discriminant ratio based, and Bhattacharyya distance-based measures 
among others (Fukunaga, 1990; Pierson, 1998). 

Intuitively, in order to improve class discrimination in high-dimensional 
data one may find a subset of features such that data projection onto 
corresponding dimensions will produce smaller inter-class distance and larger 
intra-class distance and wider margin between classes. This reasoning comes 
from various class separability measures and minimum Bayes error estimates. 
Related approach is used in subspace clustering (Parsons et al., 2004). Irrelevant 
dimensions hide clusters in noisy data. 

In order to pick suitable class separability based criterion for 
decomposition, parametric and nonparametric measures has been analyzed in 
Section 4.3 and preliminary experiments are carried in Section 6.1 in order to 
relate geometrical properties of data and class separability measures. It has 
been shown that intra- and intra-class based measure ஺߲,஻ (Subsections 3.2.3 
and 4.3.4) is generally applicable, but computationally demanding. The next 
best candidate is a scatter matrix based measure that is a ratio of traces over 
intra-class and inter-class scatter matrices, which is basically the ratio of 
respective variances accumulated over all features. Scatter matrix based class 
separability requires much less computations. Experiments with these measures 
in presence of irrelevant features suggest that reduction of intra-class distance, 
or variance within class for each class separately will result in increased 
inter-class distance, or variance with respect to the mean vector obtained 
disregarding class labels. 

A class separability measure chosen for BDP is a function of within and 
between class distances. There are variants of this measure that compute 
intra-class difference via class means (Liang et al., 2008) and as an averaged 
distance to the nearest neighbor of the same class (Ho & Basu, 2002). In our 
implementation we use a synergy of these two considering the fact that class 
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means are not meaningful if clusters are non-globular and have an odd shapes, 
density, or boundaries. In order to obtain an analytical solution, a criterion 
function based on a class separability measure must be differentiable function 
of distance with weights assigned to features and instances likewise. 

5.1.2 Criterion based on intra- and inter-class distances 

Let us denote ௝߱௟, ݆ ൌ 1 … ܰ, the criterion component to optimize in feature ௝݂ 
over a subset (group) of instances ݈ , ݈ ൌ 1 … ,ܮ  on the training set TR ሼሺxଵ, ,ଵሻݕ … , ሺxெ, ݀ ,which includes D classes ,ܯ ெሻሽ of sizeݕ ൌ 1 …  ݀ Class .ܦ
includes ܯௗ  instances. Group ݈ includes ܯ௟  instances of the training set. If 
the group is a part of class, it’s denoted ܯௗ௟ . The number of instances of class ݀ 
in group ݈  is denoted as ܯ௟,ௗ . The criterion component ௟߱௝  includes 
calculation of a distance between two instances ݎ and ݏ in feature ௝݂ , ݀௥,௦௝ , 
which is assigned a weight ݓ௥,௦௝  (pairwise weight). The optimal weighting will 
promote optimization of class separability inside a group of instances (a 
homogeneous region), ߱௟ ൌ ∑ ௟߱௝.ே௝ୀଵ  We need to obtain optimal grouping with 

minimum ߱௟  inside them, therefore the criterion is ∑ ∑ ௟߱௝ே௝ୀଵ௅௟ୀଵ . 
Numerous distance functions are suggested in the literature for distance 

measures on individual features. Some of them are considered in Appendix 2.2. 
Particular choices of a distance function reflect the analysis goal. 

Manhattan distance is more preferable than Euclidian distance metric for 
high-dimensional applications (Aggarval et al., 2001), therefore the distance 
used throughout BDP is a combination of normalized Manhattan distance 
(divided by the range of feature’s values) for continuous features and Value 
Difference Metric (VDM) (Stanfill & Waltz, 1986) for nominal features. 

A non-normalized Manhattan distance in a continuous numeric feature is ߜ௥,௦௝ ൌ หݔ௥,௝ െ  ௦,௝ห. In case of discrete numeric, boolean, or symbolic features itݔ

takes form ߜ௥,௦௝ ൌ ൜0, if ݔ௥,௝ ൌ ௥,௝ݔ ௦,௝1, ifݔ ്  ௦,௝ . Normalization (Formula 43) preventsݔ

contribution of features that take values on a larger interval to be overrated. For 
example, in a similar distance function in COSA subspace clustering technique 
the distance between instances in one dimension is scaled by the average 
distance between instances in that dimension (Friedman & Meulman, 2002). 
This is a scale for measuring “closeness” in each dimension, for which another 
measure of dispersion can be used. A reason to use variance in preference to 
other dispersion measures is that variance of the sum (or the difference) of 
uncorrelated random variables (independent features) is the sum of their 
variances. Based on our experiments with class separability measures in Section 
6.1, scatter matrices based measure ܬଶ that used variances (mean involved) has 
performed almost as good as intra- and inter-class distance-based measure. ݀௥,௦௝ ൌ ௥,௦௝หmax௝ߜ െ min௝ห (43)
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In case, an equal influence of all features in distance computation is 
preferable when weights ݓ௥,௦௝  are equal, the average distance ݏ௝  computed 
over all pairs of instances in TR should be used instead of หmax௝ െ min௝ห in 
Formula 43, same as in COSA. This approach is more advanced, but requires 
additional computations making the technique more computationally 
expensive. 

A weighted distance ܦ௥,௦ in all features is defined by Formula 44, where 
the weights ݓ௥,௦௝  sum up to 1 over all features. 

௥,௦ܦ ൌ ෍ ௥,௦௝ݓ ݀௥,௦௝ே
௝ୀଵ  (44)

If two well-separated classes are elongated and the margin between them 
is narrow (most instances connected to the instances of a different class by the 
edge of Minimum Spanning Tree), the difference between intra- and inter-class 
distances will be relatively small. In a criterion function it can be adjusted by a 
parameter ߚ so that the difference within a partition ݈ is ݀௟,௦௔௠௘௝ െ ௟,ௗ௜௙௙௝݀ߚ . 
The difference criterion function derives a function of weights in a less 
complicated form than the ratio criterion function, as will be seen from the 
subsequent expressions. 

In order to evaluate contribution of individual features in ௟߱௝ we have to 
assume their independent contribution to class discrimination. This assumption 
does not hold in practice in many cases, but nevertheless successfully used in 
many data mining techniques. ௟߱௝ can be presented via ݀௥,௦௝  as a distance from 
the instance ݎ to be evaluated to the neighboring instance ݏ of the same and 
different class(es). A class-membership function is given by (Formula 45). ݃ሺݎ, ሻݏ ൌ ൜1,  if ݔ௥ and ௦ݔ are in the same class0,  otherwise  (45)

The intra-class distance ݀௟,௦௔௠௘௝ , which is calculated over the instances of 
group ݈ in feature ௝݂, is an averaged distance to the nearest neighbor of the 
same class (Formula 46), where 1ܰܰሺݎ,  .ሻ is defined in Formula 47ݏ

݀௟,௦௔௠௘,ௗ௝ ൌ ௟,ௗܯ1݇ ෍ ෍ 1ܰܰሺݎ, ,ݎሻ݃ሺݏ ሻெ೗,೏ݏ
௦ୀଵ ௥,௦௝ݓ ݀௥,௦௝ெ೗,೏

௥ୀଵ  (46)

 1ܰܰሺݎ, ሻݏ ൌ ൜1,  if ௥ݔ is a nearest neighbor of ௦0,  otherwiseݔ  (47)

The intra-class distance ݀௟,௦௔௠௘௝  calculated over the instances of group ݈ 
in feature ௝݂ is an average distance to the nearest neighbor of different class 
(Formula 48). 
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݀௟,ௗ௜௙௙,ௗ௝ ൌ ௟,ௗܯ1݇ ෍ ෍ 1ܰܰሺݎ, ሻ൫1ݏ െ ݃ሺݎ, ሻ൯ெ೗ିெ೗,೏ݏ
௦ୀଵ ௥,௦௝ݓ ݀௥,௦௝ெ೗,೏

௥ୀଵ  (48)

The criterion constituent based on an intra- and inter-class difference is 
given by Formula 49, where ܦ௟ is a number of classes included in group ݈ and ߚ ൐ 1. 

௟߱௝ ൌ ௟ܦ1 ෍ ݀௟,௦௔௠௘,ௗ௝ െ ௟,ௗ௜௙௙,ௗ௝஽೗݀ߚ
ௗୀଵ  (49)

An accumulated criterion that minimizes a distance in each dimension can 
be conveniently applied in case of ܮଵ norm, or Manhattan distance, in order to 
minimize distance used in a corresponding class separability measure. A 
similar criterion that ignores class labels is used in subspace clustering 
(Friedman & Meulman, 2002). A similar difference criterion is used for feature 
selection in Liang et al. (2008). The difference criterion function allows 
presenting the weight function in a less complicated form than the ratio 
criterion function in order to obtain an analytical solution. However, for the 
sake of simplicity in practical implementation െ݀ߚ௟,ௗ௜௙௙,ௗ௝  can be omitted in 
Formula 49. This option is available in BDP as clustering inside classes (CIC). 

If ห ௟߱௝ห  was taken in Formula 50, the criterion would have to be 
maximized, same as the class separability. In Formula 49 the difference is 
negative in case of good class separability and ௟߱௝  is minimized, which is 
convenient if to think of it as a distance component. 

As an alternative to the intra- and inter-class difference in one feature, 
(Formula 49), a simplified criterion can be used based on measure of feature 
values overlap within group. That will lead to a suboptimal solution, but can be 
used as a substitute considering drastic reduction in computation it entails 
(Skrypnyk, 2008). Another alternative is the use a ratio of within class variance 
and total variance computed inside group in one feature. This measure is a 
heuristic derived from a scatter matrix based class separability measure 
(Formula 42), though accumulated in all features, it will not be equal to the 
original measure, and also leads to a suboptimal solution. 

To some extent, counterparts of most class separability measures that are 
transformed to a sum of individual feature components can be used in criterion 
function. Examples are Kullback-Leibler, Fisher linear discriminant, etc. Criteria 
not based on distance may not be directly linked to distance-based clustering, 
but other type of clustering can be used, for example, information-theoretic 
clustering. All of these alternatives are worth exploring and comparing in the 
future research. 
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5.2 Solution to the optimization task 

In this section the task of bidirectional data partitioning is formalized. Data 
partitioning is performed in a metric space with a distance function involved. 
The distances are iteratively transformed by feature weights until the process 
stabilizes. The constituents of bidirectional data partitioning are a 
distance-based clustering to obtain subgroups, a cosine similarity function for 
agglomerative merging subgroups to form groups, feature selection by means 
of feature weights, feature selection by external criteria, and distance-based 
selection of a local model in ensemble. In our implementation, the criterion is 
reduced to minimization of within class distances following empirical 
observation from preliminary studies. In this form it resembles the criterion 
used in COSA subspace clustering (Friedman & Meulman, 2002). Description 
and notations are intentionally chosen to connect with COSA to in order to 
relate distance-based feature space heterogeneity decomposition in 
classification and distance-based subspace clustering. 

5.2.1 Grouping instances in feature subspaces 

The goal is to partition the training set TR ሼሺxଵ, ,ଵሻݕ … , ሺxெ,  ,ெሻሽ of size Mݕ
where x௜  are vectors of the form ݔۃ௜,ଵ, … , ,௜,௝ݔ … , ۄ௜,ேݔ  and ݔ௜,௝  are feature 
values of x௜, onto groups according to the specified encoder ܿכ (Formula 50). 
On an upper level, “encoder” is a function of TR implementing a distance-based 
clustering algorithm with its pre-set parameters for a distance-based class 
separability. The relative influence of each feature ௝݂ in a distance component 

is regulated by the corresponding weight ݓ௝. Optimal weighting ݓ ൌ ൛ݔ௙ೕൟଵே 
has to be found as a part of the grouping process jointly minimizing the 
criterion with respect to encoder ܿ and weights ݓ in order to obtain a solution ሺܿכ, ,כሻ. ሺܿכݓ ሻכݓ ൌ arg minሺ௖,௪ሻ ܳሺܿ, ሻ (50)ݓ

In COSA criterion, a ratio of averaged weighted distant components ݀௥,௦௞  
computed over all pairs of instances within a cluster ݈ and computed over all 
instance pairs on TR is considered. Then an average obtained in all features is 
taken to optimize. In bidirectional partitioning, the difference ݀௟,௦௔௠௘,ௗ௝ െ݀ߚ௟,ௗ௜௙௙,ௗ௝  is taken instead of ݀௥,௦௞ . This magnitude can be perceived as a 
“balanced” distance component. 

In order to obtain an analytical solution an entropy-based regularization 
can be used. We choose the same regularization term as in COSA, ݓߣ௥,௦௝  ln ݓ௥,௦௝  
that shapes the criterion function, where parameter ߣ controls the degree of 
deformation caused by regularization. A practical value for this parameter is ߣ ൌ 0.2 … 0.5 (Friedman & Meulman, 2002), and k = 1. This regularization term 
is added to (46) and (49) deriving (51 and 52). This regularization term is 
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required to distribute high weights among feature subspaces, where the 
number of features in the subspace is regulated by ߣ. Increasing its value will 
encourage higher dimensionality subspaces. ߣ ൌ ∞ forces to distribute weight 
equally among all features in the group. Without this regularization term, ߣ ൌ 0 
an analytical solution would give a maximal weight to the most discriminative 
feature in terms of the class separability criterion used, ignoring the rest of 
features. ݀௟,௦௔௠௘,ௗ௝ ൌ ௟,ௗܯ1݇ ෍ ෍ ݇ܰܰሺݎ, ,ݎሻ݃ሺݏ ௥,௦௝ݓሻ൫ݏ ݀௥,௦௝ ൅ ௥,௦௝ݓߣ ln ௥,௦௝ݓ ൯ெ೗,೏

௦ୀଵ
ெ೗,೏
௥ୀଵ  (51) 

 ݀௟,ௗ௜௙௙,ௗ௝ ൌ ௟,ௗܯ1݇ ෍ ෍ ݇ܰܰሺݎ, ሻ൫1ݏ െ ݃ሺݎ, ሻ൯ெ೗ିெ೗,೏ݏ
௦ୀଵ ൫ݓ௥,௦௝ ݀௥,௦௝ ൅ ௥,௦௝ݓߣ ln ௥,௦௝ݓ ൯ெ೗,೏

௥ୀଵ  is a parameter used to control the impact of the inter-class distance, a ߚ (52) 
suggested value is ߚ ൌ 2 (Liang et al., 2008). Our empirical observations with 
synthetic data have shown that for cases with ߚ ൒ 2  class separability is 
reached (Section 6.2). 

Taking into account two facts, that ݇ܰܰሺݎ, ሻݏ  and ݃ሺݎ, ሻݏ  are 
“membership” functions taking values either 0 or 1, and that for Manhattan 
distance ∑ ∑ ∑ ሺ·ሻே௝ୀଵெ௦ୀଵெ௥ୀଵ ൌ ∑ ∑ ∑ ሺ·ሻெ௦ୀଵெ௥ୀଵே௝ୀଵ , we can define a criterion as 

shown in Formula 53 where ௟߱௝ is given by Formula 49. 

ܳሺܿ, ሼw௟ሽଵ௅ሻ ൌ  ෍ ௟ܹ ቌ෍൫ݓ௥,௦௝ ௟߱௝ ൅ ௥,௦௝ݓߣ ln ௥,௦௝ݓ ൯ே
௝ୀଵ ൅ lnܰቍ௅ߣ

௟ୀଵ  (53)

In (53) ௟ܹ ൌ  ௟ଶ gives equal weight to all solution groups or can controlܯ
the number of instances in a group if taken as a function of the number of 
instances in a group. 

Minimization of the criterion ܳሺܿ, ሼݓ௟ሽଵ௅ሻ that uses weights assigned to 
features inside each group will encourage solutions with one “best” feature 
selected for the group. Since the goal is to find a subset of features, a function 
that achieves its minimum value for equal weights and grows as the weights 
become more unequal is needed for regularization. The negative entropy 
function (Formula 54) satisfies this condition.  

݁ሺݓ௟ሻ ൌ ෍ ௟௝ݓ ln ௟௝ேݓ
௝ୀଵ  (54)

The negative entropy function is illustrated for the two-dimensional case 
(feature weights ݓଵ,  .ଶ) in Figure 9ݓ
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FIGURE 9 Simulated graphical presentation of a negative entropy function, ݂ሺݓଵ, ଶሻݓ ൌ∑ ௝ݓ ln ௝ଶ௝ୀଵݓ ଵݓ , ൅ ଶݓ ൌ 1. Weights ሺݓଵ,  ,ଶሻ take values (0.01, 0.99),…,(0.5ݓ
0.5),…,(0.99, 0.01). In bidirectional partitioning, weights are initially equal, so 
in this case weights would take values (0.5, 0.5),…,(0.99, 0.01).  

By analogy with COSA, we introduce a distance controlled by ߣ, which is a 
part of Formula 55. 

௥,௦ሺఒሻܦ ൌ  ෍൫ݓ௥,௦௝ ௟߱௝ ൅ ௥,௦௝ݓߣ ln ௥,௦௝ݓ ൯ே
௝ୀଵ ൅ lnܰ (55)ߣ

In Formula 56 term ߣlnܰ is added in order to provide a translation so that 
overall distance is 0 when the component distances in ௝݂  are all 0, that is 

minw೗ܦ௥,௦ሺఒሻሾw௟ሿ ൌ 0 whenever ൛݀௥,௦௝ ൌ 0ൟ௝ୀଵே
. 

In general, the rule of assigning a unique weight to a each feature with 
respect to a particular group will be the following. Inside the group ݈, the weight ݓ௟௝ in feature ௝݂ should be proportional to the average distance between instances of 
the same class balanced with the average distance between instances of different classes, ݓ௟௝~ ௟߱௝.  

Now the solution for the criterion function defined in Formula 53 can be 
defined with respect to the group weights vectors, as shown in Formula 56. ሺܿכ, ሼݓ௟כሽଵ௅ሻ ൌ arg min൫௖,ሼw೗ሽభಽ൯ ܳሺܿ, ሼw௟ሽଵ௅ሻ (56)

Here Q is a function of parameters ሼw௟ሽଵ௅. In order to find weights values 
that minimize the criterion function over all possible groupings, an equation for 
parameters has to be solved. In this case, the criterion function is differentiable; 
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hence, unknown weights can be expressed explicitly in analytic form. The 
criterion function argument ݓ௟௝ at the extremum point can be obtained from 
Formulae 49, 51, 52, and 53 by the first derivative (Formula 57). This weight is 
related to a feature ௝݂ with respect to a group of instances ݈. ݓ௟௝~ exp ቆെ ߣ ൅ ௟߱௝ߣ ቇ (57)

In order to provide ∑ ௟௝ݓ ൌ 1,ே௝ୀଵ  ݈ ൌ 1 …  the expression in Formula 57 ,ܮ
is divided by total weight, as shown in Formula 58. 

௟௝ݓ ൌ  exp ቆെ ߣ ൅ ௟߱௝ߣ ቇ
∑ exp ቆെ ߣ ൅ ௟߱௣ߣ ቇே௣ୀଵ  (58)

As intra-class and inter-class distances in feature ௝݂ change towards better 
class separability, the weight assigned to feature ݓ௟௝ increases to encourage 
usage of this feature for group ݈. Figure 10 shows the weight function with ߣ ൌ 0.5. 

 

FIGURE 10 Simulated graphical presentation of ݓ௟௝൫ ௟߱௝൯ ൌ exp൫െ2 ௟߱௝ const⁄ ൯ ߣ , ൌ 0.5 , ܰ ൌ 3,  ∑ ௟௝ே௝ୀଵݓ  ൌ 1. Shown for discriminative features only, 0 ൑ ௟߱௝ ൑ 1. 

In classification and regression, regularization technique is used to alleviate or 
prevent the overfitting problem (Mao & Tang, 2011). Regularization is often 
performed by introduction of extra terms, for example, penalty of complexity to 
optimization function. Thus, regularized solution is usually suboptimal with 
respect to the original optimization function.  
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A theoretical part of bidirectional partitioning has a lot in common with 
COSA, therefore plenty of details can be found in (Friedman & Meulman, 2002). 
In particular, considerations related to parameter ߣ. Optimization strategy for 
BDP described in the next section can be conveniently adopted from COSA, 
though alternatives are a subject of future research. 

5.2.2 Optimization strategy 

The reasoning in obtaining weight function for a feature in a particular instance 
(single weight) ݓ௥௝ follows the same logic as for COSA’s weight function. A 
similar search strategy based on a local neighborhood is also applied here. For a 
classification task this search strategy will undergo some transformations that 
will be discussed along with other implementation details in the next section. 

Assuming that suitable criterions function ܳሺ·ሻ  has been chosen to 
evaluate relevance of feature subsets over different data partitions (groups of 
instances), the optimization task is reduced to a search performed 
simultaneously in the feature space and instance space. As a result, class 
separability in every partition should be better than in the original data space. 
An exhaustive search is computationally prohibitive in most realistic problems. 
Therefore, one needs to explore a search strategy for suboptimal results. 
Literature in subspace clustering suggests many search strategies for 
bidirectional (two-mode) data partitioning (Rosmalen et al., 2009). Among the 
best search strategies is a heuristic search strategy based on the neighborhood 
concept. In particular, this search strategy has been successfully applied in 
COSA (Friedman & Meulman, 2002). Practical implementation of COSA search 
strategy is related to the criterion function. The criterion used in BDP is related 
to that used in COSA, therefore heuristic search can be performed in a similar 
way. 

Most straightforward way to find subspaces of features is to project the 
instances in all possible subspaces and find those with better class separability. 
Such an approach, however, is not feasible, because complete enumeration of 
the candidates is impossible. A particular search strategy is used to obtain a 
local minimum of the criterion function. The strategy is to explore local 
neighborhood of an instance in order to adjust single weight assuming that all 
instances in this neighborhood belong to the same group. This local 
neighborhood is found using a certain distance function and pairwise weights 
assigned to a distance between two instances in a particular feature. In 
(Friedman & Meulman, 2002) the weighted inverse exponential distance is 
obtained from the regularized criterion function with a substitution using 
f-mean. In our case, an averaged difference of distances from the same and 
different class ௟߱௝ can be considered as a measure of dispersion of distance 
differences in one feature, in analogue to a measure of dispersion of distances in 
(Friedman & Meulman, 2002). After application of f-mean the criterion changes 
as shown in Formula 59. This criterion depends only on the encoder. 
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ܳሺܿሻ ൌ ෍ 1ܰ௅
௟ୀଵ ෍ െ ߣ exp ቆെ ߣ ൅ ௟߱௝ߣ ቇே

௝ୀଵ  (59)

Then, the quantity to be optimized, which is essentially the difference of 
distances from the same and different class, can be considered as a 
discriminating weighted exponential distance. It brings closer instances from the 
same class while separating instances from different classes in local regions. 
Discriminating weighted exponential distance (60) can be viewed as a 
homogeneity measure of the instance space. More theoretical details in 
obtaining this type of distance can be found in (Friedman & Meulman, 2002). 

௥,௦ሺఒሻܦ ൌ െ ln ߣ ቌ෍ ௥,௦௝ேݓ
௝ୀଵ exp ቆെ ߣ ൅ ߱௥௝ߣ ቇቍ (60)

In (60) ߱௥௝ is an approximation of ௟߱௝ made using local neighborhood, as 
shown in (61). ߱௥௝ ൌ 1݇ ෍ ݀௥,௦௝ ݃ሺݎ, ௞ேேሺ௥ሻאሻ௦ݏ െ ௥,௦௝݀ߚ ൫1 െ ݃ሺݎ, ሻ൯ (61)ݏ

As the constraints of known groups ܮ are not present in the distance 
given by Formula 60, weights ݓ෥௥,௦௝  are the pairwise weights that have no group 
constraints, as shown in Formula 61.  

෥௥,௦௝ݓ ൌ exp ቆെ ൣ݀௥,௦௝ ݃ሺݎ, ሻݏ െ ௥,௦௝݀ߚ ൫1 െ ݃ሺݎ, ሻ൯൧ݏ ൅ ߣߣ ቇ
∑  exp ቆെ ൣ݀௥,௦௣ ݃ሺݎ, ሻݏ െ ௥,௦௣݀ߚ ൫1 െ ݃ሺݎ, ሻ൯൧ݏ ൅ ߣߣ ቇ௉௣ୀଵ  (62)

Pairwise weights given by Formula 62 are not the same for all same-class 
or different-class instance pairs in a local neighborhood, but the set of features 
for which pairwise weights are large for all instances in the neighborhood tends 
to be a super set of those for which actual solution weights should be large. This 
statement is illustrated on a synthetic example later in this subsection. 

For a clustering task in (Friedman & Meulman, 2002) intersections of 
highly weighted feature subsets in two different groups are not allowed. Thus, 
single weight ݓ௥௝ (Formula 63) substitutes ݓ෥௥,௦௝ , in order to calculate pairwise 
weight ݓ௥,௦௝ , which would be calculated as a maximum of single weights in each 
feature adjusted by the sum of weights in all features (Formula 64). 

௥௝ݓ ൌ exp ቆെ ߣ ൅ ߱௥௝ߣ ቇ
∑ exp ቆെ ߣ ൅ ߱௥௣ߣ ቇ௉௣ୀଵ  (63)
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௥,௦௝ݓ ൌ max൫ݓ௥௝, ∑௦௝൯ݓ max൫ݓ௥௣, ௦௣൯௉௣ୀଵݓ  (64)

In order to distinguish all different weights mentioned so far, further we 
assume that single weights ݓ௥௝ are found by the search procedure in order to 
approximate weights in the actual groups ݓ௟௝, while pairwise weights ݓ௥,௦௝  are 
needed in distance calculation ܦ௥,௦ሺఒሻ in order to find a local neighborhood of an 
instance. 

By analogy with COSA, the number of neighbors can be chosen as ݇ ൌ  The value of parameter ݇ can be adjusted considering the number of .ܯ√
ungrouped instances after several experimental trials (Friedman & Meulman, 
2002). 

A practical solution for the optimization task entails some adjustments to 
the original expressions. The next section discusses details and algorithmic 
steps of BDP. 

5.3 Description of the Bidirectional Data Partitioning technique 

This chapter describes details of Bidirectional Data Partitioning (BDP) 
technique. These details cover important elaborations on weight adaptation, 
procedure of merging subgroups, and integration of classifiers.  

5.3.1 Weights adaptation 

Application of a local neighborhood search for weights adaptation assumes that 
majority or all neighbors belong to the same group. In practice, this assumption 
can only be verified on a benchmark data set with known group membership 
for all instances. Preliminary experiments have shown that instances from a 
different group often appear among k neighbors. This will be further referred to 
as error I. In order to explain error I, one has to consider mean and standard 
deviation in values of relevant and irrelevant features. Class conditional 
distribution of feature values suggests a non-zero probability of appearance of 
the different-group instances in the neighborhood due to irrelevant features. 
Small ௟߱௝  requires all intra-class distances to be small and all inter-class 
distances to be large, whereas irrelevant features contribute to these distances 
calculation. Irrelevant features can be assigned higher weights. It is expected 
that there will be more highly weighted features than there should be, but all 
relevant features will appear among them. 

Highly weighted irrelevant features cause intersection of distance interval 
for instances of the same class in the same group and distance interval for 
instances of the same class in different groups. This will be further referred to as 
error II. As a result, DBSCAN would assign all instances of the same class to 
one group, which would be wrong. 
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In order to remove this negative effect, pairwise weights (Formula 64) 
should be calculated differently. If highly weighted features mostly coincide for 
two instances, minimum of feature weights is used in (Formula 64) instead of 
maximum, as these two instances are likely belong to the same group, and 
distance between them should be decreased using smaller weights in every 
feature, disregarding their class membership. 

We apply the Importance Profile Angle (IPA) measure (Formula 65) for 
weight vectors in order to determine the extent to which profiles of feature 
importance differ. IPA = 0.5 is used as a default threshold. If IPA∈(0, 0.5], 
profiles of feature weights mostly coincide; if IPA ∈(0.5, 1) – vice versa. 

௥,௦ܣܲܫ ൌ ߨ2 arccos ۈۉ
ۇ ∑ ∑௦௝ே௝ୀଵቀݓ௥௝ݓ ൫ݓ௥௝൯ଶே௝ୀଵ ቁଵଶ ቀ∑ ൫ݓ௦௝൯ଶே௝ୀଵ ቁଵଶۋی

ۊ
 (65)

The preliminary experiments have shown that error I is greater than error 
II, and correction of error II only does not eliminate the problem. With 
application of IPA-guided pairwise weight calculation distance discrepancy 
was greatly improved according to preliminary experiments. 

In order to avoid group intersections, it has been recommended that 
subsets of highly weighted features in different groups should not intersect 
(Friedman & Meulman, 2002). It is suggested to take maximal of single weights 
in pairwise weight computation (Formula 64). However, in classification tasks 
globally relevant features are common, and they should not be ignored. During 
single weight computations in a local neighborhood some instances may appear 
with equally distributed feature weights. Such instances should be assigned to a 
separate group at this stage and removed from the local neighborhood. 

5.3.1 Merging subgroups and feature selection 

A grouping procedure takes instances with assigned weights in every feature as 
an input. At the output it produces group labels for every instance. As the goal 
of weighting is non-intersecting or minimally intersecting distance intervals for 
intra-class distances at different groups, a grouping procedure succeeds if 
weighting succeeded. 

Preliminary experiments have shown that distance-based grouping 
procedures (DBSCAN) was able to identify components of the groups, which 
mostly contain instances of the same class. However, without IPA-guided 
pairwise weight calculation all same-class instances are assigned to the same 
group, which was incorrect. After clustering, subgroups are joined according to 
feature weights profiles (Formula 65). We have used a cut-value for IPA to 
establish which subgroups should be merged. 

Finally, group descriptions are obtained as enumeration of instances from 
the training set and assigned feature weights. In order to build a predictive a 
model for each group, feature selection should be performed by means of 
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feature weighting, or feature weights should be given directly to some 
distance-based learning model, such as k-Nearest Neighbor. 

Feature selection can be performed by translation of continuous weights 
distributed on the interval [0…1] into binary weights {0,1}. It can be also 
performed establishing the weight cut-off value computed as a median for a 
ranked weight set. Features with weights above the cut-off values are retained.  

However, feature selection by means of feature weighting can be incorrect. 
For example, if a feature has been assigned a high weight, it means that in a 
subgroup consisting of one class this feature has high probability of a particular 
value(s). At the same time, this feature may be assigned high weight in another 
subgroup consisting of different class, due to high probability of the same 
value(s). This feature is not discriminative and should be penalized. 

Therefore, feature selection can be performed according to an external 
evaluation function in addition or instead of feature selection by means of 
feature weighting. We have implemented a possibility to use any feature 
selection technique available in WEKA open source software (Hall et al., 2009). 

5.3.2 Description of local regions and ensemble construction 

As the group memberships are established for all training instances and models 
are built for every group, the next step is to select an appropriate model for 
unclassified instances. In order to obtain a group membership for a new 
instance ൫ݔ௤, ? ൯, where ? denotes the unknown class label, feature filters of 
every group ݈ ൌ 1 …  should be subsequently applied to this instance and the ܮ
distance between new instance and all instances in every group should be 
found according to Formula 66. In order to minimize possible error associated 
with the cut-off value for feature selection, we have used group weights as 
pairwise weights in calculation of Formula 66. The necessity to do this 
adjustment has been demonstrated in Skrypnyk (2008). 

௤,௟ܦ ൌ ௟ܯ1 ෍ ෍ ݀௜,௤௝ே
௝ୀଵ

ெ೗
௜ୀଵ  (66)

Group membership for the new instance is then defined by Formula 67. ݕ௤ ൌ min൫ܦ௤,௟൯ (67)

After the group membership has been identified, a classifier associated 
with the selected group should be applied to a new instance. Among the 
candidate groups, the one with globally relevant features should be considered, 
while the noise group should be ignored. 

5.3.3 Implementation 

In practice, the bidirectional partitioning part is accomplished via two steps: (1) 
weighted distance-based grouping of instances, where distance is computed 
using pairwise weights computed based on single weights, and (2) feature 
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selection for each group of instances based on feature weights or other feature 
selection technique. Thereafter, the component classifiers are built on subsets of 
instances and associated subsets of features. Integration of component 
classifiers is performed in accordance with a chosen integration technique to 
perform a prediction for test instances. 

Therefore, the main five steps of BDP technique include: 
− features weights adaptation; 
− weighted distance-based grouping of instances; 
− feature selection for a group of instances; 
− building local models – the component classifiers; 
− integration of the component classifiers. 

We have created a flexible experimental environment with extended 
possibilities for research beyond what is covered in this study. The BDP 
technique is implemented as a part of WEKA-3-6 open-source software (Hall et 
al., 2009; Witten & Frank, 2005) as a meta-classifier. It may use any classification 
technique available in WEKA as a base classifier, including other 
meta-classifiers, such as boosting, multi-class classifiers, and classifiers with 
embedded feature selection technique. 

Weights adaptation procedure recursively updates two type of weights: 

(1) feature weight for an instance called single weight, ݓഥ௜௙ೕ , and (2) feature 

weight for a pair of instances called pairwise weight, ݓഥ௥,௦௙ೕ. 
The process begins with equal pairwise weights used to calculate 

distances ܦഥ௥,௦௙ೕ  needed to find k nearest neighbors for an instance and updating 
single weights for each instance using local neighborhood of k nearest 
neighbors. Procedure of weights adaptation is performed in several iterations I 
specified by a user. Each iterations repeats steps (2)-(4): 

(1) Set equal pairwise weights, ݓഥ௥,௦௙ೕ ൌ 1 ܰ⁄ , where N is the number of 
features; 

(2) Compute distances using pairwise weights and find k nearest neighbors 
for each instance (Formula 60); 

(3) Update single weights according to dispersion of feature values in local 
neighborhood (Formula 63); 

(4) Compute pairwise weights by means of feature weights (Formula 64); 
In our implementation, bidirectional data partitioning and subsequent 

integration of the component classifiers can be performed in several alternative 
ways depending on the following optional settings: 

− perform clustering inside classes to obtain subgroups of instances (default: 
clustering disregarding class labels to obtain subgroups); 

− perform subgroups merging according to feature weights profile (used as 
a default option, alternative: treat subgroups as final groups of instances 
to build component classifiers); 

− perform feature selection by means of feature weights inside each group 
(used as a default option, alternative: skip feature selection by means of 
feature weights); 



105 
 

 

− perform feature selection using any of WEKA’s feature selection technique 
inside each group (default: use WEKA’s Correlation-based feature 
selection (CFS), alternative: use a different feature selection technique or 
skip feature selection); 

− use group labels as new class labels to perform selection among 
component classifiers as an integration scheme (default: the component 
classifier is selected via finding the nearest group of instances to the test 
instance). 
In addition, one can assess class separability and classification complexity 

on original data and inside each group. After partitioning, with or without 
feature selection, each group of instances can be recorded as a separate data file 
in WEKA’s format for further analysis. 

BDP implementation required modification of some basic WEKA’s 
components in order to incorporate storage and manipulation for 
instance-feature pair associated weights called single weights. Therefore, 
distance metrics and clustering techniques used in WEKA had to be updated to 
use instances with feature weights. 

For the experiments with BDP, only Manhattan distance function and two 
clustering techniques DBSCAN and k-Means underwent modifications related 
to handling single weights. 

Any WEKA’s feature selection technique can be chosen in order to build 
the component classifiers of BDP. In addition, component classifiers can be built 
using a local feature weight profile (an average or median feature weights of the 
correspondent data partition called group of instances). In this case, a threshold 
for feature weights is applied in order to perform feature selection. A threshold 
is an average or median cut-value calculated over a local feature weight profile. 

Due to specifics of weight adaptation and subgroups merging procedure 
in BDP, high weights in a local feature weights profile can be assigned to 
features that are not individually predictive in this group, because they had 
small dispersion of values in different classes that fall into the highly intersected 
intervals of values in two classes. Therefore, local feature selection with 
WEKA’s techniques can be optionally performed on top of somewhat 
redundant feature selection by feature weights. 

For data sets with known globally irrelevant features, especially, if the 
number of features extremely large with respect to the number of instances, 
BDP’s work can be facilitated by application of global feature selection. In this 
case, BDP can be used as a base classifier inside WEKA’s meta-classifier with 
embedded feature selection (AttributeSelectionClassifier). 

In our implementation, weights adaptation via local neighborhood is an 
optional step. For comparison purposes, grouping of instances can be 
performed without weights adaptation.  

There are several numeric parameters in BDP: the number of nearest 
neighbors k (default: ൌ  where M is a number of training instances), λ that , ܯ√
controls strength of the incentive to distribute high weight among smaller 
number of features (default: ߣ  = 0.2). The group sizes are controlled by 
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introduction of weight ௟ܹ  to the criterion ܳሺܿሻ (Formula 59), where ሼ ௟ܹ ൌܯ௟ଶሽଵ௅ to encourage the nearly equal sized groups. The number of the retained 
features in a subset for in each group is controlled by ߣ. 

We have used empirical values for initial parameter settings based on 
recommendations provided in related studies, whenever available. For 
example, argumentation for I, λ, and k settings is given in (Friedman & 
Meulmann, 2002). In the future, best parameter settings can be found with 
parameter tuning on a validation set or using a designated parameter tuning 
techniques available in WEKA, for example, CVParameterSelection technique. 

The clustering algorithms in BDP are deterministic. Therefore, we have 
experimented with two clustering techniques that can use a weighted inverse 
exponential distance function: (1) DBSCAN, which does not require 
specification for the number of clusters, and (2) k-Means, which does. 

WEKA’s filter for removing “useless” variables that vary too much or too 
little is used in BDP implementation. A filter removes variables taking nearly 
constant values from consideration. We have used 95% as a value frequency 
threshold for SEER cancer data sets, and default 99% for other data sets. This 
filter also works for missing values if a missing value is treated a separate 
value. Nominal features that vary too much, for example, a patient’s ID feature, 
do not possess any discriminative power to distinguish classes. We have used 
WEKA’s filter with the threshold set to 99% in order to remove features that 
take a different nominal value in 99% of all cases. In addition, we have filtered 
out inconsistent instances that are identical instances in all features but class 
variable. We have implemented a new filter in WEKA called RemoveInconsistent 
among supervised instance filters in order to accomplish this task. Data set is 
filtered twice: in the beginning and before building local models. Features that 
vary too much or too little may appear locally as a result of partitioning and 
should be removed.  

The basic scheme for BDP technique is presented in (Figure 11). Iterative 
weight adaptation if followed by weighted distance based clustering which 
obtains subgroups of interests (due to clustering methods specifics). These 
subgroups are merged to obtain final local groups, or given directly as an input 
to a meta-classifier. This BDP scheme can be realized in exactly 27=128 ways 
depending on combination of seven key procedures: (1) weight adaptation 
(WA) (alternative: equal weights), (2) clustering inside classes (CIC) 
(alternative: clustering disregarding class labels), (3) clustering with preset 
number of clusters (NumClust) (using k-Means) (alternative: preset radius 
parameter for density (using DBSCAN)), (4) clusters merging based on weights 
profile (IPA-merge) (alternative: treat clusters as final grouping of instances), (5) 
feature selection using feature weights profile (FSbyFW) (alternative: do not 
perform feature selection by feature weights profile), (6) local feature selection 
(LFS) (alternative: skip local feature selection), (7) integration using 
meta-classifier that maps clusters to classes (MetaC2C) (alternative: weighted 
inverse exponential distance-based integration based on nearest group 
(WIED-NN)). 
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Each procedure can be assigned a binary value: “yes” or “1” to perform 
the procedure in BDP and “no” or “0” to perform the alternative procedure. 
Among all 128 combinations we have selected a few most interesting ones to 
perform BDP, as shown in Table 7. 

 

FIGURE 11 General Bidirectional Data Partitioning (BDP) scheme. 

Enumerated BDP scheme realizations do not include a number of alternatives 
that can be introduced by selection of feature selection method for LFS, for 
example, CFS, ReliefF, InfoGain, or SU. Even more alternatives can be 
introduced by selection of a basic classification method, for example, J48, 
NaiveBayes, k-NN, SVM, etc. In addition, BDP itself can be used as a base 
classifier of any WEKA’s meta-classifier, for example, AttributeSelectedClassifier, 
RandomSubSpace, Bagging, or AdaBoostM1. A meta-classifier can also be used as 
a base classifier in BDP. In the experimental sections, the abbreviation specified 
in Table 7 will be supplied with additional details, including feature selection 
and base classifier names. 

In this work we do not aim to study systematically all possible variants 
along with parameter tuning. For the experiments one or several schemes are 
chosen based on empirical observations. 

BDP scheme has several parameters crucial for instances grouping: (1) 
subgroups are obtained based on the number of clusters if k-Means clustering is 
used, or the �-radius parameter if DBSCAN is used, and (2) subgroups merging 
into final groups depends on the IPA threshold, where IPA is an Importance 
Profile Angle measures over feature weights profiles in subgroups. Default 

Iterative feature-instance weighting

Density-based clustering using weights 

Agglomerative procedure comparing feature weights in subclasses 

Subclass 1,1 Subclass 2,1 Subclass 1,i Subclass 2,i 

Instances grouping 1 Instances grouping S 

Component classifier 1 Component classifier S 

Combined classifier
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parameter for IPA threshold is 0.5 based on empirical results (Apte et al., 1998). 
A more appropriate parameter value that regulates the number of final groups 
can be chosen after several runs. It has been done manually in our experiments. 
Default radius parameter in DBSCAN is set to an average distance to kth 
neighbor across the data set, where ݇ ൌ  .ܯ√

TABLE 7 Bidirectional Data Partitioning (BDP) implementation schemes. 

Scheme WA CIC NumClust IPA-merge FSbyFW LFS MetaC2C 

BDP-1 1 0 0 1 0 0 0 

BDP-2 1 1 0 1 0 0 0 

BDP-3 1 0 1 1 0 0 0 

BDP-4 1 1 1 1 0 0 0 

BDP-5 1 0 0 0 0 0 1 

BDP-6 1 1 0 0 0 0 1 

BDP-7 1 0 1 0 0 0 1 

BDP-8 1 1 1 0 0 0 1 

BDP-9 1 0 0 1 0 1 0 

BDP-10 1 1 0 1 0 1 0 

BDP-11 1 0 1 1 0 1 0 

BDP-12 1 1 1 1 0 1 0 

BDP-13 1 0 0 0 0 1 1 

BDP-14 1 1 0 0 0 1 1 

BDP-15 1 0 1 0 0 1 1 

BDP-16 1 1 1 0 0 1 1 

BDP-17 0 0 0 1 1 0 0 

BDP-18 0 1 0 1 1 0 0 

BDP-19 0 0 1 1 1 0 0 

BDP-20 0 1 1 1 1 0 0 

BDP-21 0 0 0 0 1 0 1 

BDP-22 0 1 0 0 1 0 1 

BDP-23 0 0 1 0 1 0 1 

BDP-24 0 1 1 0 1 0 1 

BDP-25 0 0 0 1 0 1 0 

BDP-26 0 1 0 1 0 1 0 

BDP-27 0 0 1 1 0 1 0 

BDP-28 0 1 1 1 0 1 0 

BDP-29 0 0 0 0 0 1 1 

BDP-30 0 1 0 0 0 1 1 

BDP-31 0 0 1 0 0 1 1 

BDP-32 0 1 1 0 0 1 1 

Integration of the component classifiers is implemented in two ways: 
distance-based integration and integration using a meta-classifier. 

Distance-based integration includes the following steps: 
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− calculate distances, 
− find k-neighborhood, 
− consider to which group neighbors belong, 
− apply a group classifier where majority of k-NN belong, 
− apply the respective filter. 

Meta-classifier is built on group labels and assigns instance to the 
corresponding class thereafter. 

In BDP, distance is used during weights adaptation, pre-estimation for 
DBSCAN, DBSCAN or k-Means, and integration of classifiers. 

5.4 Chapter summary 

This chapter describes the Bidirectional Data Partitioning technique that 
searches for local homogeneous regions in feature subspaces with simplified 
discrimination between classes, builds classifiers, one per local region, and 
combines them in an ensemble for prediction. The method is derived from the 
subspace clustering technique COSA and uses a discrimination criterion based 
on a class separability measure. The theoretical background provided includes 
formulation of an optimization task and choice of weight functions. 

Bidirectional Data Partitioning is based on the bottom-up search. It divides 
a data set into local regions to build local models simultaneously finding the 
feature subspaces such that subgroups of instances from the same class have 
smaller intra class distances, and at the same increasing interclass distances. The 
goal is to uncover the local structure in subspaces, where discrimination 
between classes will be simplified. Therefore subgroups are merged thereafter 
for better class separability. The size of local regions is controlled, so that they 
would not be too small for building local predictive models. The overlapped 
regions are joined. The local regions found during the learning phase are 
described as convex hulls in local subspaces and this description is used during 
the classification phase. A new unclassified instance falls into one or more 
regions, thus an appropriate local model to classify this instance is selected. 
k-NN based procedure is used to select an appropriate group and associated 
classifier. Alternatively, subgroups are used as new classes in meta-classifier. 
This meta-classifier assigns a new instance a label, and then determines which 
local classifier to use for this instance. In Fradkin (2006) a simplified version of 
this meta-classifier is used when clustering is performed within classes, local 
models are not constructed, only translation of labels is performed. 
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6 EMPIRICAL EVALUATION OF BIDIRECTIONAL 
DATA PARTITIONING 

This chapter describes an empirical evaluation of the suggested decomposition 
strategies at all stages. Characteristics of selected data complexity measures are 
studied on synthetic and benchmark data sets in order to evaluate their 
descriptive abilities regarding data structure, and in particular, unstable feature 
relevance. Decompositions by means of class encoding and decompositions 
guided by a class separability criterion are studied. A detailed study on 
synthetic and benchmark data sets is performed for Bidirectional Partitioning. 
This includes evaluation of the weights adaptation scheme, decomposition into 
subgroups of instances representing subclasses, joining subgroups with similar 
weights profiles, building local classifiers, and a classifiers selection scheme. 
Related data pre-processing and experimental setup topics are briefly covered 
in the beginning. 

6.1 Evaluation of class separability measures 

Unstable feature relevance characterizes a general case of classification 
heterogeneity. According to its description given in Subsection 3.2.1, data 
instances can be grouped according to feature relevance profile. In other words, 
two groups may have different subsets of relevant features; hence, locally 
irrelevant features can be ignored. Local regions in data presented by groups of 
instances in the subset of relevant dimensions assumed to have better class 
separability and decreased classification complexity. Class separability 
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measures, therefore, can be used to produce a criterion function in search of 
those local regions, especially, considering the fact, that majority of feature 
selection techniques used in classification tasks are based on class separability 
criteria and related measures. 

Before modeling feature space heterogeneity, it is useful to evaluate to 
which extent various class separability and other complexity measures respond 
to elimination of irrelevant features as well as their ability to characterize 
geometrical structure of data. In order to give a geometrical interpretation to the 
abstract notion of data structure, a collection of synthetic and benchmark data 
sets with known properties is created. Focusing on data characteristics such as 
class shapes, class boundaries, margins between classes, density and 
disconnected regions, contributes to understanding bidirectional data 
partitioning performance and in case of unstable (local) feature relevance and 
class heterogeneity. Studying these cases with class separability and other data 
complexity measurements helps to interpret these measurements on data with 
unknown properties. Some of the complexity measures may indirectly give an 
indication of heterogeneity presence.  

6.1.1 Synthetic and benchmark data sets 

We would like to investigate classification problems of different geometrical 
complexity with class separability and other complexity measures.  

Several data sets with known irrelevant features are described below. 
Those include synthetic data sets with irrelevant features and benchmark data 
sets with irrelevant features added for this study. All irrelevant features are 
artificially created according to definitions of feature relevance given in 
Subsection 2.1.3. 

Data properties under study include: (a) linearity and nonlinearity of 
boundaries between classes, (b) even or uneven density within class, (c) equal 
or unequal density in different classes, (d) wide or narrow margins between 
classes, (e) Gaussian or non-Gaussian subclasses. Each data set being analyzed 
is representative to several properties of interest. 

This study is limited to data sets with the same type of features 
(continuous numeric), though in reality matters are complicated by a mixture of 
data types. Unbalanced class distributions and missing values are also avoided. 

Below the data sets used in this study are described. Graphical 
presentation of all synthetic data sets is provided in Appendix 2. 

GaussS-2 is a synthetic data set with two Gaussian classes, 2500 instances 
in each, almost completely separable, with means µA = 5, stdevA = 1 denoted as 
G(5;1); µB = 10, stdevB = 1 denoted as G(10;1). GaussS-2+1U has one additional 
unimodal irrelevant feature that has a Gaussian distribution G(7.5;3). 
GaussS-2+1B has one additional bimodal irrelevant feature that is a mixture of 
G(6;3) and G(9;3). GaussS-2+1M has one irrelevant feature that is a mixture of 
G(2;3), G(5;3), and G(8;3). GaussS-2+1 has one irrelevant feature uniformly 
distributed in the interval [0…15] denoted as U(0;15). GaussS-2+all includes all 
of the above irrelevant features. 
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Gauss-8 (Blayo et al., 1995) is a data set with 8 continuous features 
generated according to Gaussian distributions in two classes. There is a set of 
seven databases corresponding to the same problem with dimensionality 
ranging from 2 to 8. The class 0 is represented by a multivariate normal 
distribution G(0.0, 1.0) in all dimensions, and the class 1 is given by G(0.0, 2.0) 
in all dimensions. There are 5000 instances, 2500 in each class. The center of 
gravity is the same for two classes, which makes them heavily overlapped. The 
theoretical error is 9%. Gauss-8+10 is a modified version of Gauss-8 with 10 
irrelevant features, U(-5; 5). It has heavily interleaved classes, approximately 
equal covariances in classes, equal density in both classes. 

FourSubclass-2 data set has two Gaussian subclasses per each of two 
classes. The first class cl0 is composed of two Gaussian distributions: subclass 1 
as G(5.0, 1.0) in both features f1 and f2, and subclass 2 as G(10.0, 1.0) in both 
features. Two subclasses of class cl1 are f1 - G(10.0, 1.0), f2 - G(5.0, 1.0) and f1 - 
G(5.0, 1.0), f2 - G(10.0, 1.0). Each subclass is represented by 250 instances in both 
training and test sets. This data set has a Bhattacharyya upper bound on 
minimum Bayes error 0.2415. In FourSubclass-2+5G there are 5 irrelevant 
features created with G(7.5, 2.0). In FourSubclass-2+5U there are 5 irrelevant 
features created with U(2.0, 13.0). FourSubclass-2+10 includes both types of 
irrelevant features, 5 of each. 

Clouds-2 data set (Blayo et al., 1995) has 2 classes, one of which has three 
Gaussian subclasses. One of the subclasses is heavily interleaved with the other 
Gaussian class, while the other two are partially interleaved. The original data 
set has 5000 instances, 2500 in each of two classes, 2 continuous numeric 
features. The theoretical error is 9.66%. Clouds-2+10 data set has 10 irrelevant 
features added, U(-3; 3). 

Concentric-2 data set (Blayo et al., 1995) consists of two classes: one 
uniformly distributed within a concentric area, and another class surrounds it 
without overlapping. This is an example of narrow margin between classes, 
nonlinear boundary, equal and even density in classes. The original data set has 
5000 instances, equal-size classes, and 2 features. The theoretical error is 0%. 
Concentric-2+10 has additional 10 irrelevant features, U(-5; 5). 

Spirals-2+5 data set is a modified version of 2-dimensional data presented 
in (Lindenbaum et al., 1999). It has 3 irrelevant features, uniformly distributed, 
U(0; 12). In the original Spirals-2 data set two features take values in the 
interval (0…20). This data set is an example of nonlinear class boundaries with 
narrow margins. 

Fourclass-2+7M is a data set that presents a case, where irrelevant features 
obtained from mixed distributions partially capable do discriminate classes, 
and two relevant features show nonlinear boundary between classes with a 
wide margin. There are 4 classes (271, 266, 274, and 327 instances), 9 numeric 
features, 2 relevant and 7 irrelevant features. Fourclass-2 is a data set with two 
relevant features retained. This data set is a class-balanced 12% sample of the 
original data set used in (Bernadó-Mansilla & Ho, 2005), which has an equal 
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density unbalanced classes. In Fourclass-2 classes have unequal density. 
Fourclass-2+3 has 3 uniformly distributed irrelevant features, U(0;1). 

Birch-2+8 data set is generated using BIRCH data generator in WEKA 
(“grid” pattern is used). The data set has 3 classes and 10 continuous features, 
only two of which are partially discriminative. Features #1 and #2 each 
discriminate a different class from the other two and fully discriminative 
together; in other features classes are heavily interleaved. There are 11055 
instances, classes are balanced: 3695, 3782, 3578 instances respectively. Birch-2 
is the same data set with only two relevant features retained. 

RBF-10+10 data set is generated in WEKA using RandomRBF generator. 
The data set is created by first creating a random set of centers for each class 
following the number of specified centroids. Each center is randomly assigned a 
weight, a central point per feature, and a standard deviation. To generate new 
instances, a center is chosen at random taking the weights of each center into 
consideration. Feature values are randomly generated and offset from the 
center, where the overall vector has been scaled so that its length equals a value 
sampled randomly from the Gaussian distribution of the center. The particular 
center chosen determines the class of the instance. RandomRBF generated data 
contains only numeric features. In RBF1-10 there are 5000 instances, 2 classes, 
2327 and 2683 instances accordingly, 10 features distributed in the interval 
(-2...2.5), the number of centroids is 50. In addition, there are 10 irrelevant 
uniformly distributed features, U(-5; 5). RBF-10 data set is the same except for 
these 10 irrelevant features. This data set is an example of Gaussian subclasses 
in heavily interleaved classes. 

RDG-10+10 data set have been obtained using WEKA’s random data 
generator RDG1. It creates data randomly by producing a decision list 
consisting of rules. Instances are generated randomly one by one. If the decision 
list fails to classify the current instance, a new rule according to this current 
instance is generated and added to the decision list. RDG-10+10 has 10 
continuous relevant features distributed in the interval (-1.5…2.5) and 
additional 10 irrelevant features, U(-5; 5). The maximum and minimum 
numbers of tests in rules are set to 10 and 1 accordingly. There are 2 classes, 
2548 and 2452 instances. RDG-10 data set is the same except for the 10 
irrelevant features. Data more elongated in irrelevant dimensions compared to 
relevant dimensions, but there is no visual distinction between relevant and 
irrelevant features in terms of class boundaries. Classes are heavily interleaved. 

6.1.2 Experimental settings 

For multi-class problems, pairwise decomposition has been performed and the 
results are averaged. Probability estimates to calculate class separability 
measures are implemented in connection to previous usage in data mining and 
pattern recognition research papers. Sample mean and covariance estimates are 
used. 

Data sets used in this study include only continuous features due to 
various difficulties associated with computation of parametric measures 
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originated from multivariate statistical methods on data with mixed feature 
types (Kowalsky, 1972). All continuous features have been normalized. 
Continuous numeric features have been discretized for calculation of 
information-theoretic measures using unsupervised discretization with a 
number of bins equal to ଵଶ  where M is a training set size. Supervised , ܯ√
discretization (Fayyad & Irani, 1993) detects uniformly distributed irrelevant 
features and assigns them a constant value, therefore unsupervised 
discretization has been chosen.  

Distance computation for continuous features in complexity 
measurements, as well as in intra/inter class distance ratio, is based on a 
non-normalized Euclidean distance function (Orriols-Puig et al., 2010).  

For this study, all class separability measures have been implemented in 
WEKA (Witten & Frank, 2005) and MATLAB. All related experiments have 
been also performed in WEKA, except for complexity measures that were 
calculated using Data Complexity Library DCoL v1.1 (Orriols-Puig et al., 2010). 
Synthetic data have been generated using WEKA and MATLAB.  

Classification error rate is reported over a single run of 10-folds 
cross-validation. Unless specified, WEKA and DCoL techniques have been used 
with default parameters. Euclidean distance is used in k-Nearest Neighbor 
classifier, k = 10. Normalized data sets versions are used for classification and 
feature ranking. 

6.1.3 Class separability, complexity, and irrelevant features 

In Section 4.3 different class separability and other complexity measures have 
been discussed. Considering applicability restrictions of various measures, a set 
of measures is selected to evaluate their sensitivity to irrelevant features and 
their descriptive abilities on different geometrical data structures. Class 
separability measures are candidates for a criterion function in bidirectional 
data partitioning. Complexity measures not based on class separability provide 
additional insights about data and contribute toward results interpretation. 

Eight measures based on class separability (1-8) and eight (9-16) based on 
other criteria are chosen:  

1. Normal Information Radius (ܴܰܫ஺,஻); 
2. Bhattacharyya distance (ܽ஺,஻); 
3. Kullback-Leibler distance (ܮܭ஺,஻); 
4. divergence (ܫܦ ஺ܸ,஻); 
5. scatter matrices based criterion (ܬଵ); 
6. scatter matrices based criterion (ܬଶ); 
7. Fisher's discriminant ratio (ܨ஺,஻); 
8. the ratio of average intra/inter class nearest neighbor distance ( ஺߲,஻); 
9. fraction of points on the class boundary (N1); 
10. the leave-one-out error rate of the one-nearest neighbor classifier (N2); 
11. the nonlinearity of the one-nearest neighbor classifier (N3); 
12. the fraction of maximum covering spheres (T1); 
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13. the average number of points per dimension (T2); 
14. the minimized sum of the error distance of a linear classifier (Linear SMO 

SVM) (L1); 
15. the training error of a linear classifier (Linear SMO SVM) (L2); 
16. the nonlinearity of a linear classifier (Linear SMO SVM) (L3). 

In original formulae some measures are directly proportional to class 
separability (ܬଶ  and ஺߲,஻ ), while others are inversely proportional to class 
separability (ܴܰܫ஺,஻ , ܽ஺,஻ ஺,஻ܮܭ , ܫܦ , ஺ܸ,஻ ଵܬ , , and ܨ஺,஻ ). Therefore, we have 
transformed the latter so that all measures are inversely proportional to the 
class separability, and criterion based on these measures would have to be 
minimized. 

Class separability measures cannot be compared directly due to different 
measurement scales. Most of the measures are unbounded. Therefore, we 
observe the relative change after irrelevant features elimination and provide 
interpretation of the results for each particular data set. Most measures are not 
invariant to the number of features in the data set and need to be adjusted 
accordingly to observe a change in class separability. Absolute values of all 
measures depend on the number of features used. ܮܭ஺,஻, ܫܦ ஺ܸ,஻, and ܨ஺,஻ can 
be computed for an individual feature in order to find a maximum 
discriminative one (the rest of features are just ignored), but in this study ܮܭ஺,஻, ܫܦ ஺ܸ,஻ and ܨ஺,஻ are computed over all features. 

In order to see how the number of features affects the measures, Gauss-8 
data set is used with different number of features, from 2 to 8. This data set 
originally has been created in order to study classifiers behavior for different 
dimensionalities of the feature space, for heavily overlapped distributions and 
for nonlinear separability. All features in this data set follow the same 
distribution. The results are presented in Table 8. In addition to class 
separability and complexity measures used in further experiments, results on 
intra class and inter class distances as well as their ratio and difference (intra 
class – β * inter class, β = 2) are shown. Measures for ஺߲,஻ and distances are 
provided for Euclidean distance (Eucl) and for Inverse Exponential distance 
with equal weights (InvExp).  

The results have shown that intra class distance increases with increased 
number of dimensions, while the inter class distance decreases encouraging 
low-dimensional solutions in BDP. The difference between intra and inter class 
distances increases. The ratio of these distances increases with the number of 
dimensions increased. Despite the averaging we can still observe that the 
measures are still dependent on the number of dimensions used, hence, the 
improvement obtained after elimination of irrelevant features should be 
partially credited to this effect. Most of the measures are not a sum of 
individual feature’s items, therefore averaging would not derive a measure in 
one feature (knowing that all features in this data set are synthetically created in 
the same way). 

Being scaled down to average per feature, some measures show slight 
decrease in class separability with the number of dimensions increased due to 
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the curse of dimensionality problem. Most techniques dealing with metric space 
cannot resist this problem: in high dimensions all points in the metric space 
become nearly equidistant (Parsons et al., 2004). On the other hand, research on 
high-dimensional data projections into low dimensions states that under certain 
conditions of a weak regularity for a high-dimensional distribution, its 
low-dimensional linear projections can turn into a mixture of centered 
spherically symmetrical Gaussian distributions (Dümbgen & Zerial, 2011; 
Jimenez & Landgrebe, 1999) that can affect measured class separability. 

As shown in Table 8, being scaled down to average per feature, some 
measures have a tendency to change slightly with the number of dimensions 
increased. This effect can be partially credited to aforementioned phenomena. 

Both ܴܰܫ஺,஻ and ܽ஺,஻ , generalizations of Mahalanobis distance, have a 
tendency to decrease with a number of dimensions, either adjusted by the 
number of features or not, which means that class separability provided by ܴܰܫ஺,஻  and ܽ஺,஻  increases with the number of dimensions. The original 
measures in Formulae (34) and (35) correctly identify that classes are completely 
overlapped with values 0.3156 and 0.2170 accordingly, but those values 
misleadingly increase with the number of dimensions. These measures can 
possibly lead to biased results in high-dimensional problems. ܮܭ஺,஻  and ܫܦ ஺ܸ,஻  are related measures. In particular, symmetric 
Kullback-Leibler distance is twice of divergence. As measures are unbounded, 
their values considerably decrease with the number of dimensions in both 
variants, adjusted by features number or not. The original measures, Formulae 
(36) and (37), take values close to 0, which stands for completely overlapped 
classes. The less dimensions used in Gauss-8 data, the closer to 0 the values get. 
Hence, some bias in high dimensions is present. In original measures, though, it 
appears on a smaller scale. ܬଵ  and ܬଶ , scatter matrices based measures, ܨ஺,஻ , Fisher’s linear 
discriminant, and ஺߲,஻, intra- inter class distances ratio, have also demonstrated 
a bias resulted from the properties of high-dimensional data projections. ܬଵ, ܬଶ, 
and ܨ஺,஻  slightly increased in higher dimensions showing better class 
separability for the problem. ஺߲,஻ shows a tendency to decrease. 

To conclude, in Gauss-8 data set measures ܴܰܫ஺,஻, ܽ஺,஻, ܮܭ஺,஻, ܫܦ ஺ܸ,஻, ܬଵ, ܨ஺,஻, and ܨ஺,஻ have shown more class separability in higher dimensions, while ஺߲,஻ (measured as equally weighted inverse exponential distance) has shown 
less class separability, due to the λ factor. 

Complexity measures N1, N2, N3, T1, L1, L2, L3 all take values in the 
interval (0..1), with 0 corresponding to better class separability, except for T2, 
which is a ratio of instances and features. N1, fraction of points on the class 
boundary, N2, leave-one-out error rate of the 1-NN classifier, and N3, the 
nonlinearity of the 1-NN classifier, are decreasing in higher dimensions 
showing more class separability. T1, the proportion of retained adherence 
subsets, which involves distance computation, remains nearly unchanged. T2, 
the average number of points per dimension, decreases naturally in higher 
dimensions. Among measures derived from error rates of a linear classifier, L1 
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decreases very slightly, L2 and L3 practically remain unchanged. 

TABLE 8 Class separability and complexity measures in different dimensionality. The 
smaller the value, the better class separability. Complexity measures values 
are all spanned in the interval (0,1). 

Measures 
Number of features retained in Gauss-8 data set 

2 3 4 5 6 7 8 
 Not scaled by the number of features ܴܰܫ஺,஻ 3.1682 0.7962 0.2267 0.1280 0.0889 0.0673 0.0551 ܽ஺,஻ 4.6082 3.0383 2.2554 1.7723 1.4888 1.2684 1.1228 ܮܭ஺,஻ 6640.10 4291.07 3171.87 2521.11 2132.26 ܫܦ 1606.93 1822.42 ஺ܸ,஻  3320.05 1430.36 792.968 504.222 355.377 ஺,஻ 155.578 19.8597ܨ ଶ 3.8*104 1.0*104 1.0*104 1.1*104 1.3*104 1.0*104 1.0*104ܬ ଵ 1.8*104 0.3*104 0.2*104 0.2*104 0.2*104 0.1*104 0.1*104ܬ 803.467 911.211 16.6683 15.6895 15.2234 10.8071 9.6500 ஺߲,஻, InvExp 0.0038 0.0116 0.0201 0.0279 0.0344 0.0405 0.0456 ஺߲,஻, Eucl 0.3825 0.5846 0.6620 0.7173 0.7517 0.7794 0.7944 

 Scaled by the number of features ܴܰܫ஺,஻ 1.5841 0.2654 0.0567 0.0256 0.0148 0.0096 0.0069 ܽ஺,஻ 2.3041 1.0128 0.5638 0.3545 0.2481 0.1812 0.1403 ܮܭ஺,஻ 3320.05 2145.53 1585.94 1260.55 1066.13 ܫܦ 200.867 260.346 ஺ܸ,஻  1660.02 715.178 396.484 252.111 177.689 ଵ 0.9*104 0.09*104ܬ 100.433 130.173 0.05*104 0.04*104 0.03*104  ஺,஻ 77.789 6.6199 4.1671 3.1379 2.5372 1.5439 1.2063 ஺߲,஻, InvExp 0.0019 0.0039 0.0050 0.0056 0.0057 0.0058 0.0057 ஺߲,஻, Eucl 0.1912 0.1949 0.1655 0.1435 0.1253 0.1113 0.0993ܨ ଶ 1.9*104 0.3*104 0.2*104 0.2*104 0.2*104 0.1*104 0.1*104ܬ 104*0.01 104*0.02

 Not scaled by the number of features 
N1 0.5213 0.4533 0.3979 0.3561 0.3303 0.3147 0.3147 
N2 0.3499 0.3089 0.2702 0.2406 0.2098 0.1944 0.1836 
N3 0.3797 0.3309 0.2828 0.2603 0.2446 0.2466 0.2463 
T1 0.9730 0.9952 0.9998 1.0000 0.9996 0.9994 0.9996 
T2 2499.5 1666.3 1249.7 999.80 833.17 714.14 624.87 
L1 0.9997 0.9990 0.9986 0.9985 0.9985 0.9977 0.9973 
L2 0.4999 0.4163 0.4999 0.4999 0.4999 0.4999 0.4999 
L3 0.5000 0.4315 0.5000 0.5000 0.5000 0.5000 0.5000 
Intra dist, 
InvExp 

0.0034 0.0095 0.0162 0.0218 0.0262 0.0303 0.0340 

Inter dist, 
InvExp 

0.8768 0.8224 0.8042 0.7817 0.7600 0.7485 0.7456 

Ratio 0.0038 0.0116 0.0201 0.0279 0.0344 0.0405 0.0456 
Diff, β=2 -1.7502 -1.6353 -1.5922 -1.5416 -1.4938 -1.4667 -1.4571 

Complexity measures, except for T2, are bounded, and their change appears on 
a different scale. Some of them show slight decrease in higher dimensions that 
is a better class separability. 
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In higher dimensions, theoretical error rate for this data set decreases 
(Blayo et al., 1995). We can expect that class separability has a tendency to 
increase. ܮܭ஺,஻, ܫܦ ஺ܸ,஻, and ஺߲,஻ measures came up with an opposite tendency. 
This impact of high dimensions should be taken into account as we observe the 
change in class separability after elimination of irrelevant features. 

In further computations, class separability measures are not scaled down 
by the number of features over the number of features, as this step does not 
stabilize the results. Also the original values of ܴܰܫ஺,஻, ܽ஺,஻, ܮܭ஺,஻, ܫܦ ஺ܸ,஻, ܬଵ, 
and ܨ஺,஻ are used, which are inversely proportional to class separability. These 
measures, except for ܬଵ, are bounded by a 0 value for a complete overlap, which 
is convenient for results interpretation. ஺߲,஻ takes values in the interval (0..1), 
approaching 0 in case of better class separability, approaching 1 in case of 
possibly interleaved classes. ܬଵ and ܬଶ are unbounded measures, therefore one 
can only observe a relative change. 

Next, selected class separability measures are evaluated on Gaussian data 
without irrelevant features. All data sets in this experiment are 
two-dimensional, have two classes, 1000 instances each. Gauss-2-sep is a data 
set with distributions in class 1 G(5.0, 1.0) – feature 1, and G(10.0, 1.0) – feature 
2, and in class 2 G(10.0, 1.0) – feature 1, and G(2.0, 1.0) – feature 2. Gauss-2-sep 
is an example of linear separability with wide margins between classes. 
Gauss-2-one is a data set with distributions in class 1 G(5.0, 1.0) – feature 1, and 
G(10.0, 1.0) – feature 2, and in class 2 G(10.0, 1.0) – both feature 1 and 2. 
Gauss-2-one is linearly separable in feature 1, there is a minor intersection 
between classes, a narrow margin. Gauss-2-onesep is a data set with 
distributions in class 1 G(5.0, 0.5) – feature 1, and G(10.0, 0.5) – feature 2, and in 
class 2 G(10.0, 0.5) – both feature 1 and 2. Gauss-2-onesep is linearly separable 
in feature 1 with no intersection between classes. Gauss-2-ov has G(10.0, 0.5) in 
both dimensions, both classes, that means classes are completely overlapped. 
Table 9 holds the results. 

TABLE 9 Class separability and margins between classes. 

Data 
Class separability measures ܴܰܫ஺,஻ ܽ஺,஻ ܮܭ஺,஻ ܫܦ  ஺ܸ,஻  ,஺,஻ ஺߲,஻ܨ ଶܬ ଵܬ

InvExp
Gauss-2-sep 5.3303 6.5491 0.0046 0.0093 13.0974 0.1607 3232.61 0.0030 
Gauss-2-one 4.0246 3.2028 0.0024 0.0047 6.4056 0.7028 1847.56 0.0041 
Gauss-2-onesep 5.0959 12.3223 0.0026 0.0051 24.6433 0.2840 14004.7 0.0031 
Gauss-2-ov 0.0394 0.0013 0.0000 0.0000 0.0013 1616.15 0.1180 0.0063 

Values of ܴܰܫ஺,஻ , ܽ஺,஻  are not close to 0 for Gauss-2-sep, the case of 
complete separability with wide margins, which is right. Values for ܮܭ஺,஻ and ܫܦ ஺ܸ,஻ are highest of all cases, that is a non-zero class separability. Values of ܬଵ 
and ܨ஺,஻  are not nearly close to 0, which corresponds to non-zero class 
separability. ܬଶ and ஺߲,஻ are expected to have small values in case of complete 
separability, and they do show small values in this case. In case of linear 
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separability and wide margins between classes, Gauss-2-sep, all measures were 
capable to detect it.  

In case of one discriminative features and narrow margin between classes, 
Gauss-2-one, ܴܰܫ஺,஻ , ܽ஺,஻ ଵܬ , , and ܨ஺,஻  produce smaller value for class 
separability compared to Gauss-2-sep, but this value is far from 0. ܮܭ஺,஻ and ܫܦ ஺ܸ,஻ return smaller value than in case of Gauss-2-sep and Gauss-2-onesep, 
but higher than in Gauss-2-ov. ܬଶ  and ஺߲,஻  produced proper values, but 
smaller compared to separability with wide margin between classes. 

 In case of one discriminative features and wide margin between classes, 
Gauss-2-onesep, ܽ஺,஻ ଵܬ , , and ܨ஺,஻  have responded with a highest value. 
Possibly, feature relevance distributed among fewer features is more favorable 
for these measures. ܴܰܫ஺,஻ indicates class separability with about the same 
value as in Gauss-2-sep. ܮܭ஺,஻ and ܫܦ ஺ܸ,஻ provide unexpected results: wide 
margin between classes seems to be worth than narrow margin between classes 
in case of one separating feature. 

In case of fully overlapped classes, Gauss-2-ov, where means coincide and 
variances are equal, all measures, except for ஺߲,஻ , indicate low class 
separability. Only ஺߲,஻  can detect non-zero separability in presence of 
nonlinear decision boundaries. ܮܭ஺,஻ and ܫܦ ஺ܸ,஻ have value larger that in case 
of linearly separable classes in Gauss-2-sep.  

To conclude, ஺߲,஻, the intra- and inter-class ratio, respond with the most 
adequate results, which is easy to interpret. 

Before proceeding with experiments on data sets of different geometrical 
complexity, we briefly outline specifics of class separability measures used in 
addition to the basic information provided in Section 4.3. ܴܰܫ஺,஻, Normal Information Radius, is defined in the interval [0;∞) and 
depends on the distribution of feature values. The value of ܴܰܫ஺,஻ is different 
before and after normalization. The larger ܴܰܫ஺,஻  is the better class 
separability. ܽ஺,஻ , Bhattacharyya distance, is defined in the interval [0; ∞) 
measuring to which extent two classes overlap. Same as for ܴܰܫ஺,஻ , ܽ஺,஻ 
depends on both means and covariances of two classes. The larger ܽ஺,஻, the 
better class separability. In case of equal covariances ܽ஺,஻ reduces to Chernoff 
bound on minimum Bayes error, which is 1/8 of Mahalanobis distance. In cases 
of non-Gaussian classes, empirically, ܽ஺,஻  is still an informative class 
separability measure. ܮܭ஺,஻ and ܫܦ ஺ܸ,஻ take values in the interval [0;∞), where 
0 corresponds to completely overlapped classes.  ܮܭ஺,஻, Kullback-Leibler distance, and ܫܦ ஺ܸ,஻, divergence, not only depend 
on two means of the pair of classes, but also on their covariances. For example, 
if two classes have coinciding means but different covariances, the divergence 
still can be far greater than 0. This makes sense, as class discrimination is 
possible to a certain extent due to the difference in variances. Direct relation of 
Bayes error and divergence is only possible for normally distributed classes 
with equal variances and prior probabilities, when divergence take form of 
Mahalanobis distance. It is also known that small variations of the differences 
between class means produces large changes in divergence and sometimes may 
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bring misleading results. Higher values of ܮܭ஺,஻  and ܫܦ ஺ܸ,஻  indicate better 
class separability taking values in the interval [0;∞). ܬଵ and ܬଶ are unbounded measures. Class separability measured by ܬଵ 
and ܬଶ depends on both means difference and variances difference. The larger 
the value of ܬଵ the larger the inter class scatter, the better class separability. The 
smaller the value of ܬଶ the smaller the intra class scatter as compared to the 
inter class scatter, hence the better class separability. These measures are based 
on the separation of means, while the rest of class distribution information is 
ignored. ஺߲,஻ is a ratio on intra and inter class distances, where intra and inter class 
distances are computed as an average distance to the first nearest neighbor of 
the same class and different class distance correspondingly. In these 
experiments Euclidean distance normalized by the range of values in each 
feature is used. From Table 5.1 one can see that non-averaged variant of ஺߲,஻ 
shows increased class separability in higher dimensions, just like other 
measures, and it will be easier to interpret the results using this measure. This 
measure take values in the interval (0..1). Low value of ஺߲,஻  indicates that 
instances of the same class lie close to each other compared to any other class, 
and high value indicates that classes might be intersecting. In problems, where 
most instances appear next to class boundaries with narrow margins between 
them, this measure could be misleading. In multi-class problems this measure is 
averaged over pairwise decompositions. This means, for example, if two of 
three classes are intersecting while the third one is well-separated, the effect is 
averaged. 

Results on class separability measures are provided in Table 10. Results, 
where class separability is improved as expected after elimination of irrelevant 
features are shown in bold. 

For GaussS-2-all data, which is a complete linear separability case in all 
variants, with wide boundaries in GaussS-2, all measures expressed a similar 
behavior to what was demonstrated in Table 8. Additional dimensions in some 
cases contributed to class separability, most visibly in ܴܰܫ஺,஻ . Additional 
non-discriminative features had no impact on separability as demonstrated by ܽ஺,஻ ஺,஻ܮܭ , ܫܦ , ஺ܸ,஻ ஺,஻ܨ ଵ, andܬ , . Only ܬଶ and ஺߲,஻  have been able to detect 
irrelevant features properly. However, ܮܭ஺,஻ ܫܦ , ஺ܸ,஻ , and ܨ஺,஻  to the less 
extent, returned high individual feature merits for relevant features and small 
for irrelevant features. Therefore, these measures are more effective when 
applied for individual features in case the feature independence assumption is 
valid. Binomial irrelevant feature case was the most confusing for ܨ஺,஻ that 
tries to establish class mean. 

Foursublass-2 is a non-linear class boundaries case with narrow margins. 
Additional irrelevant dimensions, uniform and Gaussian contribute to class 
separability according to all measures, except for ஺߲,஻. ஺߲,஻ is the only measure 
that can show benefits of eliminating irrelevant features. Presence of subclasses 
means substantial deviation from multimodal distribution, therefore measures 
based on evaluation of class means (centroids) fail. 
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Clouds-2 has partially overlapped Gaussian classes; one of classes is 
composed of three Gaussian distributions. The measure based on variances, ܬଶ, 
has shown the most noticeable improvement, because uniformly distributed 
irrelevant features have the range approximately equal to the range of relevant 
features. ஺߲,஻ has also shown increase in class separability. However, all other 
measures were not able to see the difference or went counterproductive 
 .(஺,஻ܴܫܰ)

TABLE 10 Class separability measures. 

Data ܴܰܫ஺,஻ ܽ஺,஻ ܮܭ஺,஻ ܫܦ ஺ܸ,஻ ܬଵ ܬଶ ܨ஺,஻ ஺߲,஻ 

GaussS-2-all 15.8519 6.4777 0.0023 0.0045 12.9524 1.6091 3685.64 0.2385 

GaussS-2+1 7.2149 6.2617 0.0021 0.0041 12.5228 1.1052 3630.12 0.0602 

GaussS-2+1M 8.3181 6.3769 0.0022 0.0043 12.7530 0.3565 3655.47 0.0602 

GaussS-2+1B 8.4044 6.3650 0.0022 0.0043 12.7292 0.3340 1220.07 0.0525 

GaussS-2+1U 8.1545 6.2622 0.0021 0.0041 12.5240 0.4163 3630.18 0.0548 

GaussS-2 5.4132 6.2614 0.0021 0.0041 12.5228 0.1593 3630.12 0.0130 

Gauss-8+10 38.5893 0.9058 0.0006 0.0013 0.0050 2629.0 0.2038 0.9729 

Gauss-8 18.1565 0.8907 0.0006 0.0012 0.0008 9728.7 0.1036 0.7944 

Foursubclass-2+10 21.4552 0.7323 0.0003 0.0006 0.0096 1390.86 0.5756 0.8268 

Foursubclass-2+5G 11.5477 0.7033 0.0002 0.0003 0.0055 1746.43 0.4783 0.5706 

Foursubclass-2+5U 7.6588 0.6966 0.0002 0.0003 0.0040 1590.70 0.0974 0.6816 

Foursubclass-2 0.2911 0.6816 0.0000 0.0001 0.0000 1264177.6 0.0001 0.0740 

Clouds-2+10 20.285 0.2518 0.0005 0.0010 0.4875 96.7449 56.5910 0.7601 

Clouds-2 2.4372 0.2430 0.0005 0.0009 0.4853 4.0805 56.5524 0.1463 

Concentric-2+10 16.6454 0.2277 0.0009 0.0018 0.0040 2793.52 0.1055 0.9279 

Concentric-2 0.3025 0.2100 0.0008 0.0017 0.0000 43350.02 0.0016 0.0798 

Spirals-2+3 6.0510 0.1127 0.0002 0.0004 0.2231 26.9939 6.5963 0.8302 

Spirals-2 0.9393 0.1118 0.0002 0.0004 0.2231 10.0411 6.5932 0.1313 

Fourclass-2+3 7.7605 1.3123 0.0058 0.0116 1.7672 12.6692 88.0288 0.5017 

Fourclass-2+7M 29.6570 12.4522 0.0286 0.0573 17.4358 1.7272 722.0508 0.2182 

Fourclass-2 2.4322 1.3015 0.0056 0.0111 1.7620 3.8305 87.9588 0.0532 

Birch-2+8 38.3900 15.0656 0.0024 0.0048 23.6531 1.1779 7649.02 0.2743 

Birch-2 7.1526 12.2908 0.0011 0.0023 23.6077 0.1213 7648.93 0.0073 

RBF-10+10 44.4200 0.4435 0.0004 0.0007 0.0891 670.7541 11.7520 0.9657 

RBF-10 26.359 0.4263 0.0003 0.0007 0.0874 106.5059 11.7052 0.4393 

RDG-10+10 33.6445 0.3805 0.0005 0.0011 0.5676 54.2270 10.1653 0.9460 

RDG-10 15.7455 0.3652 0.0005 0.0010 0.5676 26.7136 10.1208 0.8350 

Concentric-2, Spirals-2, and Fourclass-2 have even density, balanced classes, 
nonlinear boundaries, and non-Gaussian classes. In this case, most measures 
evaluating means and covariances /variances of two classes would give 
unreliable results. 
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Concentric-2+10 appeared to be one of the hardest cases of all used, 
because any of the measures were able to detect improvement in class 
separability except for ஺߲,஻. In Concentric-2 the boundaries are nonlinear and 
the margin is narrow (touching). The distribution is uniform inside the 
concentric areas. Additional features were considered as somewhat informative, 
hence, class separability is better in presence of irrelevant features.  

Spirals+2 has nonlinear boundaries with narrow margins. Most measures 
expressed a similar behavior as in Concentric-2+10. However, ܬଶ  and ஺߲,஻ 
were able to see increase in class separability after elimination of irrelevant 
features. ܴܰܫ஺,஻  shows more class separability in presence of irrelevant 
features, the other measures practically remained unchanged. 

Fourclass+2 has nonlinear boundaries with wide margins. In Fourclass-2 
with 3 uniformly distributed irrelevant features only ܬଶ  and ஺߲,஻  has 
succeeded. Fourclass-2+7M has 7 irrelevant multimodal features. As one can see 
from two-dimensional projections in Figure 40, those features can partially 
separate classes. Therefore, ܬଶ  based on variance is confused by these 
additional features, same as all other measures except for ஺߲,஻. ஺߲,஻ captures 
density and local neighborhood, which were the most important characteristics 
in this case.  

Birch-2+8 data set has 8 partially discriminative features, which are 
considered as irrelevant. Only ܬଶ  and ஺߲,஻  were able to see better class 
separability in just 2 relevant dimensions, where class boundaries are piecewise 
linear with wide margins. 

Classes are heavily interleaved in all-relevant features versions of RBF-10, 
and RDG-10. RBF-10 looks somewhat like Gauss-8, only it has 50 centroids 
densely located, each of the centroids mimics a Gaussian distribution. The 
density is uneven and boundary is nonlinear. Though, contrary to Gauss-8, ܬଶ 
has shown increased class separability, as variances ratio in this case took effect. ஺߲,஻ provided a good result on class separability, unlike all other measures. 

RDG-10 looks like nearly uniformly distributed classes with no clear 
clusters or boundaries in relevant dimensions – the structure is barely visible 
(Figure 46). It provides a good illustration of what real structured data might 
look like when continuous features are used for rules of which decision lists for 
classification are made, only the natural process is reversed to create synthetic 
data. Yet this structure is detected by ܬଶ and ஺߲,஻ in two relevant dimensions 
compared to irrelevant uniformly distributed ones. 

Expecting improvement in class separability after elimination of irrelevant 
features, one should keep in mind that higher dimensions actually contribute to 
better class serapability, as shown in Table 8. This effect appears on a smaller 
scale (as can be seen from scaling down by the number of dimensions), so in 
most cases this improvement in class separability was insignificant in higher 
dimensions. ஺߲,஻ has shown class separability improvement in all cases in spite 
of this effect taking place. 

In order to obtain additional information on data structure we would like 
to evaluate geometrical complexity of classification problems using complexity 
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measures. Results are provided in Table 11. All cases where complexity is 
reduced as expected after elimination of irrelevant features are shown in bold. 
All complexity measures, except for T2, take their values in the interval (0..1), 
the smaller the less complex classification problem is. 

TABLE 11 Classification problem complexity measured on synthetic and benchmark 
data sets. 

Data N1 N2 N3 T1 T2 L1 L2 L3 

GaussS-2-all 0.0008 0.2385 0.0002 0.7681 833.17 0.5448 0.0002 0.0000 
GaussS-2+1 0.0004 0.0602 0.0002 0.2712 1666.3 0.5388 0.0002 0.0000 
GaussS-2+1M 0.0004 0.0602 0.0002 0.2712 1666.3 0.5388 0.0002 0.0000 
GaussS-2+1B 0.0010 0.0525 0.0006 0.2222 1666.3 0.5405 0.0002 0.0000 
GaussS-2+1U 0.0004 0.0548 0.0002 0.2080 1666.3 0.5425 0.0002 0.0000 
GaussS-2 0.0004 0.0130 0.0002 0.0600 2499.5 0.5382 0.0002 0.0000 

Gauss-8+10 0.6521 0.4355 0.3605 1.0000 277.72 0.9720 0.4715 0.4677 
Gauss-8 0.3147 0.1836 0.2463 0.9996 624.87 0.9973 0.4999 0.5000 

Foursubclass-2+10 0.2492 0.1421 0.2217 1.0000 83.25 0.9771 0.4815 0.4990 
Foursubclass-2+5G 0.0601 0.0300 0.2442 0.9950 142.71 0.9929 0.4995 0.5000 
Foursubclass-2+5U 0.1772 0.0921 0.2432 1.0000 142.71 0.9835 0.4965 0.5010 
Foursubclass-2 0.0290 0.0170 0.2532 0.4975 499.50 0.9990 0.4995 0.5000 

Clouds-2+10 0.5807 0.4045 0.3316 1.0000 416.58 0.7155 0.2480 0.2092 
Clouds-2 0.2198 0.1536 0.2928 0.8938 2499.5 0.7162 0.2470 0.2005 

Concentric-2+10 0.5254 0.3313 0.2851 1.0000 208.25 0.7373 0.3685 0.5000 
Concentric-2 0.1580 0.0918 0.0489 0.4930 416.58 0.8807 0.0196 0.0050 

Spirals-2+3 0.5337 0.3252 0.4145 1.0000 995.00 0.7733 0.3401 0.2913 
Spirals-2 0.1037 0.0466 0.4172 0.7992 2487.5 0.7739 0.3405 0.2914 

Fourclass-2+3 0.1821 0.0853 0.1991 0.9850 227.40 0.6111 0.2412 0.4837 
Fourclass-2 0.0044 0.0000 0.1896 0.3355 568.50 0.6124 0.2414 0.4850 

Fourclass-2+7M 0.0172 0.0048 0.0964 0.9309 126.33 0.5789 0.0754 0.1330 
Fourclass-2 0.0044 0.0000 0.1896 0.3355 568.50 0.6124 0.2414 0.4850 

Birch-2+8 0.0023 0.0013 0.0282 0.8150 1105.4 0.5238 0.0016 0.0102 
Birch-2 0.0013 0.0007 0.0248 0.2272 5527.0 0.5240 0.0018 0.0111 

RBF-10+10 0.5921 0.3999 0.3132 1.0000 249.95 0.8454 0.3193 0.3589 
RBF-10 0.1148 0.0616 0.2547 0.8778 499.90 0.8449 0.3187 0.3657 

RDG-10+10 0.4883 0.3229 0.1922 1.0000 249.95 0.8087 0.2282 0.1896 
RDG-10 0.3603 0.2164 0.2110 1.0000 499.90 0.8077 0.2290 0.1873 

Most of these measures are not informative individually as they cover different 
aspects of classification complexity. However, together they can supply 
additional information on data characteristics.  

Out of 8 complexity measures evaluated on selected data sets N1, N2, and 
T1 appeared to be the most informative with respect to complexity created by 
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additional irrelevant features. All of them access proximity of instances from 
the opposite class based on the neighborhood concept.  

L1 and L2 evaluate to what extent the classes are linearly separable. 
GaussS-2 is the only linearly separable case, but the margins are quite narrow. 
Birch-2 has a piecewise linear decision boundary with wide margins between 
classes. L1 and L2 in these cases were quite similar. With additional 
discriminative information misleadingly brought by irrelevant features, L2, the 
training error of a linear classifier, is quite low for Concentric-2+10 and 
Fourclass-2+7. T1 is a very informative measure when it comes to 
distinguishing cases with wide or narrow margins between classes, or if classes 
are intersecting.  

Two measures, N2 and L3, evaluate error rates obtained by nonlinear and 
liner classifiers respectively on the data obtained using linear interpolation of 
the original data set. Error reduction after elimination of irrelevant features in 
both N2 and L3 are obtained for Clouds and Concentric data sets only, but in 
many cases from none of them. Considering properties of selected data sets, N3 
predictably performed better. 

Computational costs bring another important consideration for a class 
separability measure to be used as a criterion to optimize. In order to determine 
approximate computational costs for class separability measures, the following 
costs for basic operations are used, where M is a number of instances, M = 
MA+MB for classes A and B, 2L is the number of pairwise decompositions of L 
classes, N is the number of features: 

− Mean vector for mean value in each feature, O(MN)=O(MAN)+O(MBN); 
− Variance vector for variance in each feature, O(MN)=O(MAN)+O(MBN); 
− Mean vectors difference, O(N); 
− Covariance matrix computation, O(MN2); 
− Sum of N x N matrices, O(N2); 
− N x N matrix multiplication, O(N3); 
− N x 1 and 1 x N matrix multiplication, O(N2); 
− 1 x N and N x N and N x 1 matrix multiplication, O(N2)+O(N); 
− Matrix determinant (LU decomposition), O(N3); 
− Matrix inversion by Gauss-Jordan elimination, O(N3); 
− Matrix trace, O(N); 
− Covariance matrix inversion by Cholesky decomposition, O(N3/3+N2/2); 
− Counting discrete feature values in each class, O(MN); 
− Normalization of attribute values counts, O(N); 
− Calculation of probabilities, O(0.5ܰ√ܯ), where the number of feature values after 

unsupervised discretization is 0.5√ܯ; 
− Distances between all pairs of instances from different classes, O(MAMBN); 
− Distances between all pairs of instances of the same class, 

O(MA(MA-1)N+MB(MB-1)N)); 
− Finding a nearest neighbor of the opposite class in one go, O(2MAMB); 
− Finding a nearest neighbor of the same class in one go, O(MA(MA-1)+MB(MB-1)); 

Operations for transposing a matrix and logarithm computations are not 
taken into account as well as elementary mathematical operations of O(1). 
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Approximate computational costs for two-class problems are derived as 
follows. ܴܰܫ஺,஻: O(MN2)+O(N2)+O(N3)+O(MN)+O(N)+O(N2)+2O(N3)= 

=O(N(M+1)+N2(M+2)+3N3); ܽ஺,஻: O(MN)+O(N)+O(MN2)+O(N2)+O(N2)+O(N)+3O(N3)= 
=O(N(M+2)+N2(M+2)+3N3); ܮܭ஺,஻, ܫܦ ஺ܸ,஻: O(MN)+O(N)+O(0.5N√ܯ)=O(N(M+1+0.5√ܯ)); ܬଵ: 2O(MN2)+O(N2)+O(N3)+O(MN)+3O(N)+2O(N2)+O(N2)+O(N3)+O(N)= 

=O((MN)(2N+1)+4N(1+N)+2N3); ܬଶ: 2O(MN2)+O(N2)+O(MN)+3O(N)+2O(N2)+O(N2)+2O(N)= 
O((MN)(2N+1)+5N+4N2); ܨ஺,஻: O(MN)+O(MN)=O(2MN); ஺߲,஻: 2O(MAMBN)+O(MA(MA-1)N+MB(MB-1)N))+2O(MAMB)+O(MA(MA-1)+ 

MB(MB-1))=O((2MAMB+MA(MA-1)+MB(MB-1))(N+1)); 
Alternatively, ஺߲,஻: O(M2N). 

Computational costs of class separability and other complexity measures 
are calculated using a difference in one feature between two instances as a basic 
operation, d. Computational costs estimates are provided in Table 12 taking M 
as the number of instances in the training set, N as the number of features, and 
L as the number of classes. Using the expressions above rough estimates for 
computational costs for all class separability measures are made. These 
estimates provide the upper cost limit, but they are satisfactory to support the 
conclusions on class separability measures application: ஺߲,஻ is one of the most 
computationally intensive measures. However, much less computations are 
used in BDP implementation, as only intra-class distance is minimized via 
neighborhood variances minimization.  

TABLE 12 Approximate computational costs for 1000 instances, 2 classes, 500 each class, 
10 features. 

Class 
separability 

ܫܦ ஺,஻ܮܭ ஺,஻ ܽ஺,஻ܴܫܰ ஺ܸ,஻ ܬଵ ܬଶ ܨ஺,஻ ஺߲,஻ 

Computational 
costs 

113210 113220 10170 10170 212440 210450 20000 10989000 

Approximate computational complexity of weights adaptation in one run is 
O((MA(MA-1)+MB(MB-1))(N+1)). It breaks down computational complexity of ஺߲,஻ measure by half. There are many ways to simplify computation of these 
measures described in the literature, which can be used to improve BDP in the 
future. 
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6.2 Investigation of superclass / subclass structure 

Class heterogeneity in data means that there exists a superclass/subclass 
structure beyond class labels. In other words, class distribution can be a mixture 
distribution having a few modes. Statistically, it is not necessarily recognized as 
a multimodal distribution. Such techniques as, for example, Linear 
Discriminant Analysis and Kernel Based Analysis assume that each class has a 
single Gaussian distribution in the original or transformed feature space (You & 
Martinez, 2010). This assumption is too restrictive and seldom met in practice. 
In order to relax this assumption, single class can be viewed as a mixture of 
Gaussians (You & Martinez, 2010). A similar reasoning is applied in 
bidirectional partitioning. In this section, synthetic and benchmark data sets are 
used to study performance of BDP in case of class heterogeneity exhibited in 
low dimensions.  

6.2.1 A case study of distance-based grouping on binary data 

The crucial part of finding local groups of instances in subspaces with 
improved class discrimination is distance-based grouping that uses obtained 
pairwise feature weights. The existing data structure is changed as distances are 
changed by weights. It is expected that distances between groups will become 
considerably larger than distances between different classes within a group 
after agglomerative merging. In addition, as the class separability within a 
group increases, instances of the same class become relocated densely. We 
verify this assumption using a simple synthetic example. Let us consider a 
manually computable example with predefined groups and pre-set weights 
(Table 13). 

Example 1 includes 2 groups, 6 binary features, 12 instances – 6 in each 
group, and 2 classes – 3 instances of each class in each group. Features ଵ݂, ଶ݂, 
and ଷ݂ are relevant for the first group and take uniformly distributed random 
values in the second group; features ସ݂, ହ݂, and ଺݂ are relevant for the second 
group and take uniformly distributed random values in the first group. 

Weight adaptation is performed through a pre-defined number of 
iterations. Initially all weights are equal. Local neighborhood is found using 
weighted Manhattan distance, not a weighted exponential distance. Local 
neighborhood for each instance may include instances of the same and a 
different group. Our goal is to have at least majority of same-group instances in 
the neighborhood. In the synthetic example, during first iteration of weights 
adaptation instances #12, 14, and 19 had minority of instances of a different 
group in their neighborhood. In second iteration due to weights adaptation all 
instances have only same-group nearest neighbors.  

Some irrelevant features have small variance in the local neighborhood 
and obtain high weight. This may introduce an error at computation of pairwise 
weights and distances. This error is corrected by choosing maximal weight of 
two single weights for a pairwise weight in case of IPA>0.5 between single 
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weight vectors as ݓ௥,௦௝ ൌ max൫ݓ௥௝, ௦௝൯ݓ  and minimal of two single weights 
otherwise. In order to enhance the effect, all weighted distances are multiplied 
by (IPA + 1), where IPA is measured between weight vectors. Therefore, 
pairwise weights do not sum up to 1 in all features on the instance pairs from 
different groups. Table 14 demonstrates distribution of weights after 5 iterations 
in our synthetic example. With the above weights weighted inverse exponential 
distances are distributed as follows: distances between instances of the same 
class, same group appear in the interval [0.001…0.016], distances between 
instances of the same class and different group appear in the interval 
[0.112…0.303]. These distances are given as an input to a distance-based 
clustering algorithm. DBSCAN implemented in WEKA (Hall et al., 2009) has 
been used. In our example, DBSCAN with a radius 0.0102 assigns instances 
#0-5 to the subgroup #1 and instances #12-18 to the subgroup #3. Instances 
#6-11 and #19-25 are assigned to the subgroups #2 and #4 accordingly. 

TABLE 13 A simple illustrative binary data example of feature space heterogeneity. 

# f1 f2 f3 f4 f5 f6 
Class Grou

p 
0 0 1 0 0 0 0 0 0 
1 0 1 0 0 1 0 0 0 
2 0 1 0 0 1 1 0 0 
3 0 1 0 1 0 0 0 0 
4 0 1 0 1 0 1 0 0 
5 0 1 0 1 1 1 0 0 
6 0 1 0 0 0 0 1 0 
7 0 1 0 0 1 0 1 0 
8 0 1 0 0 1 1 1 0 
9 0 1 0 1 0 0 1 0 
10 0 1 0 1 0 1 1 0 
11 0 1 0 1 1 1 1 0 
12 0 0 0 1 1 0 0 1 
13 0 0 1 1 1 0 0 1 
14 0 1 1 1 1 0 0 1 
15 1 0 0 1 1 0 0 1 
16 1 1 0 1 1 0 0 1 
17 1 1 1 1 1 0 0 1 
18 0 0 0 1 1 0 1 1 
19 0 0 1 1 1 0 1 1 
20 0 1 1 1 1 0 1 1 
21 1 0 0 1 1 0 1 1 
22 1 1 0 1 1 0 1 1 
23 1 1 1 1 1 0 1 1 

At this step, parameter tuning for radius is required in order to correctly identify 
one-class group components. Among all parameters, the most important are 
those that define the local neighborhood, because no default value can be used 
in this case. Proportion of the same-class and different-class instances in the 
local neighborhood is crucial for weight adjustments and subsequent weighted 
distance-based grouping. In order to preserve the data structure and produce 
correct estimates with respect to varying density of instances, it is suggested to 
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use pre-estimated ߝ radius and where appropriate, set the number of nearest 
neighbors dynamically using this radius. In our implementation we used a 
pre-estimated empirical value for the DBSCAN radius parameter which is an 
average distance to the kth neighbor of the same class. 

TABLE 14 Single feature weights after 5 iterations. 

# w1 w2 w3 w4 w5 w6 
0 0.308 0.308 0.308 0.025 0.025 0.025 
1 0.314 0.314 0.314 0.026 0.007 0.026 
2 0.308 0.308 0.308 0.025 0.025 0.025 
3 0.308 0.308 0.308 0.025 0.025 0.025 
4 0.314 0.314 0.314 0.026 0.026 0.007 
5 0.308 0.308 0.308 0.025 0.025 0.025 
6 0.308 0.308 0.308 0.025 0.025 0.025 
7 0.308 0.308 0.308 0.025 0.025 0.025 
8 0.308 0.308 0.308 0.025 0.025 0.025 
9 0.308 0.308 0.308 0.025 0.025 0.025 
10 0.308 0.308 0.308 0.025 0.025 0.025 
11 0.308 0.308 0.308 0.025 0.025 0.025 
12 0.025 0.025 0.025 0.308 0.308 0.308 
13 0.025 0.025 0.025 0.308 0.308 0.308 
14 0.025 0.025 0.025 0.308 0.308 0.308 
15 0.025 0.025 0.025 0.308 0.308 0.308 
16 0.025 0.025 0.025 0.308 0.308 0.308 
17 0.025 0.025 0.025 0.308 0.308 0.308 
18 0.025 0.025 0.025 0.308 0.308 0.308 
19 0.025 0.025 0.025 0.308 0.308 0.308 
20 0.025 0.025 0.025 0.308 0.308 0.308 
21 0.025 0.025 0.025 0.308 0.308 0.308 
22 0.025 0.025 0.025 0.308 0.308 0.308 
23 0.025 0.025 0.025 0.308 0.308 0.308 
24 0.025 0.025 0.025 0.308 0.308 0.308 
25 0.025 0.025 0.025 0.308 0.308 0.308 

In this case, DBCSAN was able to find subclasses and assign them to different 
subgroups. Every subgroup contains instances of one class given the distance 
distribution regulated by 2=ߚ. At the next step, subgroups are joined into 
groups. Subgroups #1 and #2, #3 and #4 are joined with IPA=0, that is they 
have identical weights distribution. Weighted distances were given as an input 
for DBSCAN in Weka (Hall et al., 2009). DBSCAN clusters instances 
disregarding their class labels. DBSCAN with radius ߝ  assigns [0.66…0.33] א
instances #7, 8, and 9 to one group and the rest to the other group, with radius ߝ  DBSCAN produces 4 clusters, each includes 3 instances of the [0.32…0.1] א
same class and same group. The same experiment has been performed with 
COSA original software and average-linkage hierarchical clustering. Instance 
#1 was assigned to the incorrect group. With the correct radius threshold, all 
found groups included instances of the same class and same known group, 
otherwise DBSCAN as a grouping method did not produce correct group 
assignments. Irrelevant features have a negative impact, but even with 
completely irrelevant features one-class group components were identified 
correctly. 



129 
 

 

There is a tradeoff between side effects of using the feature-specific radius 
components and radius obtained over all features. On one hand, the interactive 
features, which are discriminative only when considered together, may be 
underestimated. On the other hand, the neighborhood defined in the original 
feature space will be affected by all irrelevant features. In this case, we follow 
the assumption of feature independence. Results of weighted inverse 
exponential distance computations given as input to a clustering algorithms are 
shown in Table 15.  

TABLE 15 Weighted distances matrix in Bidirectional Data Partitioning (BDP) for all 
pairs created out of 12 instances. Not highlighted main diagonal shows 
distances between instances of the same class that belong to the same group. 
Two other diagonals along the main one present the distances for different 
classes that belong to the same group. The anti-diagonal shows distances of 
different classes that belong to different groups. Two other diagonals along 
the anti-diagonal are distances between instances of the same class that 
belong to different groups. Cases that were not assigned to the correct 
subgroup by a clustering algorithm are shown in italic. 

 1 2 3 4 5 6 7 8 9 10 11 12 
1 - 0.03 0.08 -0.91 -0.96 -0.91 0.21 0.21 0.13 -0.86 -0.78 -0.91 
2 0.03 - 0.03 -0.96 -0.91 -0.91 0.35 0.35 0.21 0.78 0.64 0.86 
3 0.08 0.03 - -0.91 -0.96 -0.86 0.21 0.21 0.13 -0.86 -0.78 -0.91 
4 -0.91 -0.96 -0.91 - 0.13 0.03 -0.78 -0.78 -0.86 0.13 0.21 0.08 
5 -0.96 -0.91 -0.91 0.13 - 0.08 -0.86 -0.86 -0.91 0.08 0.13 0.03 
6 -0.91 -0.96 -0.86 0.03 0.08 - -0.86 -0.86 -0.91 0.08 0.13 0.03 
7 0.21 0.21 0.13 -0.78 -0.78 -0.86 - 0.08 0.03 -0.96 -0.91 -0.91 
8 0.35 0.35 0.21 -0.86 -0.86 -0.91 0.08 - 0.03 -0.96 -1.00 -0.91 
9 0.21 0.21 0.13 -0.86 -0.86 -0.91 0.03 0.03 - -1.00 -0.96 -0.96 
10 -0.86 -0.78 -0.91 0.13 0.21 0.08 -0.96 -0.91 -0.91 - 0.03 0.03 
11 0.78 0.64 0.86 0.08 0.13 0.03 -0.96 -1.00 -0.91 0.03 - 0.03 
12 -0.86 -0.78 0.91 0.08 0.13 0.03 -1.00 -0.96 -0.96 0.03 0.08 - 

In the next step, pure class subgroups are combined into final groups based on 
the agglomerative merging procedure that uses feature weights in calculation of 
the Importance Profile Angle (IPA). Weight profiles are obtained by finding 
median or average feature weight in each group, ݓ௟௝. After a few iterations 
those weights stabilize and should have relatively close values within a group 
compared to the other groups. Feature weights profiles ൫ݓଵଵ, … , ,௟௝ݓ … ,  ௅ே൯ areݓ
found for each subgroup and IPA between these vectors is found for all pairs of 
subgroups. At each step, two groups with smallest IPA are merged, if their IPA 
does not exceed an IPA threshold (empirical value is used, commonly in the 
interval [0.2…0.5]). 

6.2.2 Experiments with class decomposition and two classifier combination 
schemes 

The aim of this experimental series is to investigate performance of two 
decomposition schemes: (1) with meta-classifier that uses cluster labels as new 
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class labels; (2) with IPA-based agglomerative grouping procedure and 
distance-based component classifier selection. As an illustrative example of 
BDP technique we shell use a synthetic data set that resembles Fourclass-2, but 
has wide margins (Figure 29). Subclass 0 of class c0 in the lower left is created as 
G(5.0; 0.25) in features f1 and f2. Subclass 0 of class c1 in the lower right has 
G(10.0;0.25) in f1 and G(5.0; 0.25) in f2. Subclass 1 of class c0 in the upper right 
has G(10.0; 0.25) in both f1 and f2. Subclass 1 of class c1 in the upper left has 
G(5.0;0.25) in f1 and G(10.0; 0.25) in f2. Original version before normalization is 
used to facilitate results interpretation.  

Class separability measurements for this data are:  ܴܰܫ஺,஻  – 1.1636; ܽ஺,஻ ஺,஻ܮܭ ;1.9546 -  ܫܦ , ஺ܸ,஻ ଵܬ ;0.0 =  ଶܬ ;0.0 =   = 
஺,஻ܨ ;975560.7614  = 0.0; ஺߲,஻  = 0.0047. T1 characterizes complexity of class 
boundary with the value 0.9722, which signifies rather high complexity (the 
ratio threshold is fixed). Fraction of points on the class boundary, N1, is 0.0015, 
which is reasonable for wide margins between classes. A complexity measure 
that characterizes linearity of decision boundary, L1, correctly assigns this data 
set a value 0.9997, which corresponds to a non-linear boundary. Other 
complexity measures that evaluate error of a linear model, L2, and non-linearity 
of a liner model, L3, are approximately 0.5. 

 

FIGURE 12 A synthetic data set with two classes, two subclasses each, Foursubclass-2. 

Nearly all measures consider this case as poor class separability, except for ஺߲,஻ 
 ଶ and ஺߲,஻ has small values in case of good class separability, unlike otherܬ)
measures). From the point of evaluation function, poor separability 
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characteristic is fine, because this data set needs decomposition in order to 
improve performance of most classifiers as will be shown below. There are a 
few exceptions, for example, k-NN and LibSVM Support Vector Machine (SVM) 
with polynomial kernel that are 100% accurate. For that kind of classifiers ஺߲,஻ 
as an evaluation function would tell BDP to stop partitioning.  

In general, the best performance would be achieved if this data set is 
partitioned so that one model is built per pair of subclasses that belong to 
different classes. However, if any three subclasses are assigned to one group 
and the fourth subclass is assigned to another group, the local models are still 
linearly separable. Performance will depend on how wide the margins between 
subclasses are and how a particular base classifier treats that kind of margins. 

First, let us consider an example of BDP that updates weights through the 
entire data set and subsequently clusters instances using weighted clustering, in 
this example – DBSCAN. Both features are relevant; hence, weights do not 
change dramatically. However, small change in feature weights entails different 
clustering results compared to distance-based clustering with equal feature 
weights.  

FIGURE 13 Feature weights in four subgroups of Foursubclass-2 data set. Each subgroup 
of instances found by weighted clustering corresponds to a subclass. 
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The results below also demonstrate optional output during model construction 
in BDP software. IPA threshold for grouping is 0.002. Feature weights after 2 
iterations:  

Median weight of feature #0 in the group #0: 0.5016 
Median weight of feature #1 in the group #0: 0.4984 
Median weight of feature #0 in the group #1: 0.4972 
Median weight of feature #1 in the group #1: 0.5028 
Median weight of feature #0 in the group #2: 0.4983 
Median weight of feature #1 in the group #2: 0.5017 
Median weight of feature #0 in the group #3: 0.5008 
Median weight of feature #1 in the group #3: 0.4992 

Feature weights after 20 iterations 

Median weight of feature #0 in the group #0: 0.5010 
Median weight of feature #1 in the group #0: 0.4990 
Median weight of feature #0 in the group #1: 0.5022 
Median weight of feature #1 in the group #1: 0.4978 
Median weight of feature #0 in the group #2: 0.4995 
Median weight of feature #1 in the group #2: 0.5005 
Median weight of feature #0 in the group #3: 0.5026 
Median weight of feature #1 in the group #3: 0.4974 

We can see that weights have stabilized after only 2 iterations (Figure 13). 
Below are the results of agglomerative procedure of subgroups merging based 
on IPA. 

Round 1. 

IPA, group #0 and group #1 : 0.0015 
IPA, group #0 and group #2 : 0.0019 
IPA, group #0 and group #3 : 0.0020 
IPA, group #1 and group #0 : 0.0015 
IPA, group #1 and group #2 : 0.0034 
IPA, group #1 and group #3 : 0.0005 
IPA, group #2 and group #0 : 0.0019 
IPA, group #2 and group #1 : 0.0034 
IPA, group #2 and group #3 : 0.0039 
IPA, group #3 and group #0 : 0.0020 
IPA, group #3 and group #1 : 0.0005 
IPA, group #3 and group #2 : 0.0039 
Lowest IPA, group #1 and group #3 : 0.0005 

Round 2. 

IPA, group #0 and group #1 : 0.0020 
IPA, group #0 and group #2 : 0.0019 
IPA, group #1 and group #0 : 0.0020 
IPA, group #1 and group #2 : 0.0039 
IPA, group #2 and group #0 : 0.0019 
IPA, group #2 and group #1 : 0.0039 
Lowest IPA, group #0 and group #2 : 0.0019 
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Round 3. 

IPA, group #0 and group #1 : 0.0020 
IPA, group #1 and group #0 : 0.0020 
Lowest IPA, group #0 and group #1 : 0.0020 
But these groups will not be merged, because IPA ൒ 0.002. 

Total number of instances in group #0 = 1920, class distribution:  
class 0: 954 instances, 
class 1: 966 instances. 
Total number of instances in group #1 = 1911, class distribution:  
class 0: 945 instances, 
class 1: 966 instances. 
A relatively small number of instances are marked as “noise” by DBSCAN 

procedure and do not participate in model construction. If an IPA threshold 
value is small enough, the final partitioning would be the same as in original 
data, and BDP results would be the same as the result for a basic classifier used 
with it.  

IPA agglomerative merging procedure is based on feature weights. In case 
weights adaptation is not performed, either all or none of subgroups are joined, 
depending on the threshold. If each subgroup is used to build a model, all 
component classifiers are based on a simple one-class rule. Integration of the 
component classifiers to find the right model is based on a k-NN procedure; 
hence, BDP performance is similar to k-NN classifier that uses weighted inverse 
exponential distance1. 

DBSCAN has two parameters, (1) minimum number of instances required 
in an epsilon-range-query, minPoints = k/2, and (2) radius of the 
epsilon-range-queries, �, set to an average distance to the kth neighbor of the 
same class, where distance is weighted inverse exponential and k = 0.5* √ܯ ,ܯ 
is a training set size. 

For the Foursubclass-2 data set, DBSCAN with these parameters returns 
the same results with or without weights adaptation: every subclass assigned to 
its own subgroup for subsequent merging, if chosen. However, k-Means 
produces different results with and without weights having the same number 
of clusters as a parameter. 

When clustering inside classes (CIC) is chosen as an option, clustering is 
performed for each class separately and subgroups from each class are collected 
for further merging. In case DBSCAN applied to Foursubclass-2 derives the 
same partitioning, CIC or not, with weights adaptation or without.  

Alternatively, integration of the component classifiers can be performed 
with meta-classifier that uses cluster labels as new class labels, that is each 
subgroup of instances is used to build a separate model.  

                                                 
1 BDP is functioning as k-NN with weighted inverse exponential distance, if clustering 

inside classes is chosen along with IPA threshold set to -1 (outside the possible range 
[0..1]), and weight adaptation is performed. BDP is functioning as a base classifier 
used as a global model, if IPA threshold is more than 1. 
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WEKA’s Multi-Class Classifier is not able to improve any of those 
poor-performing base algorithms, neither is AdaBoostM1. Bagging is able to 
raise performance of J48 to 98.6% but no other algorithm’s performance. Among 
variety of base algorithms and ensemble schemes tests, Ridor tree-based rule 
learner (98.0%) and RandomTree (98.5%) with random selection of features at 
each node are noted for high accuracy on this data set. It confirms that this kind 
of classification problem is difficult for most classifiers and ensemble techniques 
of which WEKA has a good representation. 

6.2.3 Evaluation of different BDP schemes on benchmark data 

Usually, the presence of subclasses and/or super classes in data is unknown, 
but in some cases domain knowledge suggests a potential ability to discover 
them. Therefore, a few benchmark data sets have been used. In these 
experiments, data partitioning has been performed at different levels of 
granularity according to different strategies.  

Wine data set (Blake et al., 1998) has linearly separable classes. There are 
13 continuous features and 3 classes. Class separability measurements for this 
data set are: ܴܰܫ஺,஻  – 9.1320, ܽ஺,஻ ஺,஻ܮܭ ,8.8791 –  ܫܦ ,0.1087 –  ஺ܸ,஻ ଵܬ ,0.2175 –   – 
 .஺,஻ – 329.7224, ஺߲,஻ – 0.0558 (Manhattan distance-based)ܨ ,ଶ – 2.6254ܬ ,13.8701
The most informative measures, ܬଶ and ஺߲,஻, suggest good class separability 
for this data set.  

Out of different BDP schemes evaluated, the most interesting results are 
presented in Table 16. All BDP schemes use weight adaptation performed in 5 
iterations, pre-estimation of radius parameter for DBSCAN performed on the 
entire data set. The base classifiers used in this experiment are J48 pruned 
decision tree, 1-Nearest Neighbor (IB1), and NaiveBayes with Gaussian 
distribution estimator (NB). No feature selection has been performed. 
Preliminary experiments have confirmed that feature selection has no benefit in 
accuracy in case of J48, because it has an embedded feature selection. The BDP 
schemes used are: 

1. BDP with clustering on entire data set (noCIC) using DBSCAN, IPA 
merging with manually selected threshold (user-specified), weighted 
inverse exponential distance based integration of component classifiers 
based on nearest group (WIED-NN) (BDP-1 in Table 7, Subsection 5.3.3). 

2. BDP with clustering inside classes (CIC) using DBSCAN, IPA merging 
with manually selected threshold, WIED-NN component classifiers 
integration (BDP-2). 

3. BDP with clustering on entire data set (noCIC) using k-Means with 
manually selected number of clusters per class, IPA merging with 
manually selected threshold (user-specified), WIED-NN component 
classifiers integration (BDP-3). 

4. BDP with clustering inside classes (CIC) using k-Means with manually 
selected number of clusters per class, IPA merging with manually selected 
threshold (user-specified), WIED-NN component classifiers integration 
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(BDP-4). 
5. BDP with clustering inside classes (CIC) using k-Means with manually 

selected number of clusters per class, component classifiers integration 
using meta-classifier that maps clusters to classes (MetaC2C) (BDP-8). 

TABLE 16 Wine benchmark data set: Bidirectional Data Partitioning (BDP) with weight 
adaptation vs. Multi-Class Classifier (MCC) with pairwise class combination. 
Pruned J48 decision tree is used as a base classifier. Additional characteristics 
of BDP scheme are provided. In particular, pre-set threshold values (number 
of clusters in k-Means, IPA-threshold for merging subgroups) and 
pre-estimated threshold values (�-radius for DBSCAN and number of 
obtained clusters in DBSCAN). The number of clusters, # clusters, is given per 
one class, multiplied by 3 for 3 classes. In case k-Means was not able to find 
pre-set number of clusters, the actual number of clusters is given in 
parentheses. The number of final groups after IPA-merging, if different, is 
provided in square brackets. Accuracy is measured using 10-folds CVM 
performed in a single run. 

BDP 
parameters 

and 
performance 

BDP-1 BDP-1 BDP-3 BDP-4 BDP-4 BDP-8 BDP-8 
Base 
classi- 
fier 

MCC 
Pairwise

CIC no no no yes yes yes yes - - 

Clusterer DBSCAN DBSCAN k-Means k-Means k-Means k-Means k-Means - - 

# clusters 3[2] 3 18(4)[4] 6x3[14] 6x3[17] 4x3[12] 6x3[18] - - 

�-radius 0.09 0.09 - - - - - - - 

IPA 0.2 0.05 0.05 0.1 0.05 - - - - 

Integration WIED-NN WIED-NN WIED-NN WIED-NN WIED-NN MetaC2C MetaC2C - - 

Acc, %, J48 94.9438 98.3146 89.3258 96.0674 96.6292 91.0112 93.8202 93.8202 89.8876 

Acc, %, IB1 96.0674 98.3146 93.2584 95.5056 96.6292 94.9438 94.9438 94.9438 94.3820 

Acc, %, NB 96.6292 98.3146 97.7528 96.0674 96.6292 98.3146 98.3146 96.6292 97.1910 

The highest accuracy level with all classifiers has been achieved using BDP-1 
with 3 clusters. In this case BDP produced groups of instances each consisting 
of one class only, and the base classifier is a very simple rule assigning a test 
instance to that particular class. Therefore, BDP performed as a weighted 
1-Nearest Neighbor. It outperforms unweighted 1-Nearest Neighbor by 
approximately 4%. Somewhat lower accuracy level (94.9%) has been achieved 
using BDP-1 with IPA threshold = 0.2, which merged 2 of three classes into one 
group. BDP-4 that created 6 clusters per class using k-Means clustering. Joining 
two of them with IPA threshold = 0.05 lead to highest accuracy level with 17 
component classifiers compared to 14 classifiers using distance-based 
integration. 

k-Means works better if clustering is performed inside classes having the 
same total number of classes. k-Means performs better with IPA joining than 
with meta-classifier. 
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DBSCAN cannot find clusters inside classes, either used with global or 
inside class pre-estimation of radius. Best performance achieved if every class 
forms a group with no FS, than BDP works as a weighted nearest neighbor. 

The highest accuracy achieved for Wine data set corresponds to 3 
misclassified instances, one instance from one class, and two instances from 
another. BDP results suggest that one class is better separable from the other 
two. This interpretation is hard to obtain just from two-dimensional data 
projections out of 14 dimensions. In order to verify this result, class separability 
has been calculated in one-against-all and pairwise class combinations.  

1-against-2&3:  
 ଶ: 0.4749ܬ -
- ஺߲,஻: 0.0554 
2-against-1&3: 
 ଶ: 1.8980ܬ -
- ஺߲,஻: 0.0537 
3-against-1&2: 
 ଶ: 18.6887ܬ -
- ஺߲,஻: 0.0539 
1-vs-2: 
 ଶ: 0.4082ܬ -
- ஺߲,஻: 0.0597 
1-vs-3: 
 ଶ: 0.5672ܬ -
- ஺߲,஻: 0.0534 
2-vs-3: 
 ଶ: 6.9008ܬ -
- ஺߲,஻: 0.0579 

These results suggest that class 1 is easier to separate than classes 2 and 3. 
There is limited domain knowledge on this data set, but it is known that in the 
original study classes have been described using 30 features. A new study on 
wine characteristics from different origins might suggest what factors 
influenced similarity of origin 2 and 3, and what stays behind 6 per class groups 
discovered by BDP with k-Means that contributes to dissimilarity in wine 
characteristics. 

All the above BDP schemes with local feature selection performed by CFS 
decreased accuracy, because CFS tends to select small number of features. Local 
feature selection by ReliefF and Information Gain using 4 features as cut-value 
were not able to raise the classification accuracy. Feature selection by means of 
feature weights with a median weight as a cut-value was not able to increase 
accuracy either for this particular data set. In case BDP has one-class groups 
and functions as a weighted 1-Nearest Neighbor, local feature selection cannot 
be performed. 
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6.2.4 Evaluation of BDP with correlation-based feature selection 

In this section, experiments with weight adaptation are presented on 
continuous and binary data. In the data set syn_1 features f1, f2, f3 are relevant, 
features f4, f5, f6, f7, f8, f9 are locally relevant, features f10, f11, f12 are globally 
irrelevant. Features take binary values. Relevant features are generated so that 
they take a certain value within a class with a probability of 0.99, and another 
value with a probability 0.01. Globally relevant features follow this distribution 
on 400 instances of the original data. Irrelevant features take both "0" and "1" 
values with probability equal to 0.5 on 400 instances of the original data. 

The data set has two groups, first one includes instances from 0 to 199, 
second includes instances from 200 to 399. Each group consists of two classes, 
where the first 100 instances belong to class "0" and the second 100 instances 
belong to class "1". Features f4, f5, and f6 are relevant for the first group of 
instances, and features f7, f8, and f9 are relevant for the second group of instances. 
The data set has been split randomly onto training and test sets with probability 
0.60 to be included to the training set and probability 0.40 to be included to the 
test set. As a result, the training set includes 240 instances, 17 of which are 
duplicate cases. The test set includes 160 instances, 9 of which are duplicate 
cases. Among duplicate cases there were inconsistency – the same instances 
belong to different classes and groups. A special filter RemoveInconsistant has 
been implemented in WEKA for this case study to remove these instances as a 
part of pre-processing step. Results of comparing BDP and one-against-all class 
encoding are shown in Table 17. 

TABLE 17 Bidirectional Data Partitioning (BDP) with correlation-based feature selection 
(CFS) vs. Multi-Class Classifier (MCC) on synthetic binary data sets with 
different width of classes intersection interval. In BDP, clustering has been 
performed on entire data set using DBSCAN, integration has been performed 
using distance-based component classifier selection, feature selection in 
subproblems has been performed using CFS, and J48 has been used as a base 
classifier. 

Data set 
Classification 
accuracy, %. 

BDP+CFS MCC 

Syn_bin_0.99_no_irr 99.50 96.50 

Syn_bin_0.85_no_irr 90.25 79.25 

Syn_bin_0.75_no_irr 69.75 62.00 

Syn_bin_0.99_10_irr 99.25 96.50 

Syn_bin_0.85_10_irr 90.75 79.25 

Syn_bin_0.75_10_irr 73.50 70.00 

As can be seen from Table 17, BDP outperforms Multi-Class Classifier (MCC). 
Correlation-based feature selection was able to identify irrelevant features 



138 
 

 

locally in most cases, therefore, accuracy with and without irrelevant features is 
nearly the same. Overlap between classes affected performance of both BDP 
and MCC. 

6.3 Chapter summary 

In this chapter we have investigated various aspects of Bidirectional Data 
Partitioning (BDP) technique design empirically on synthetic and benchmark 
data sets. Various class separability measures have been evaluated on data sets 
of different geometrical complexity with the following properties of interest: (1) 
Gaussian or non-Gaussian classes; (2) classes of even or uneven density; (3) 
wide, narrow margins between classes or completely interleaved classes; (4) 
subclasses or no subclasses; (5) linear or non-linear class separability; (6) 
irrelevant features as unimodal, multimodal, uniform, or mixed distributions 
that statistically cannot be qualified as multimodal; (7) different number of 
dimensions per irrelevant features; (8) two-class or multi-class problems. 

Irrelevant features are independent of the class variable in reality, but 
incidentally, they may still exhibit a non-zero correlation with the class. Such 
co-incidences influence results on class separability obtained on synthetic and 
benchmark data sets. Nevertheless, intra- and interclass ratio as a measure of 
class separability ( ஺߲,஻) appeared to be less sensitive to this problem. It gave the 
best results out of eight class separability measures compared, but it’s 
computationally the most demanding. Another measure that demonstrated 
good results is a scatter-matrix based measure (ܬଶ) that is a ratio of variances 
(sum of within-class variances in all features to the sum of total variances in all 
features). This measure is also closely related to the one implemented in BDP 
for weight adaptation that minimizes variance of features within a group. 

Intra- and inter-class ratio does not make any assumption regarding class 
distribution, does not rely on means and covariances, and does not require 
balanced classes. It depends on the distance function being based on a 
neighborhood concept. Related research on distance metrics has established the 
best distance function for high-dimensional applications is Mahalanobis 
distance (Aggarval et al., 2001). 

Implementation of BDP is based on heuristic search strategy to improve 
intra- and inter-class distances for a class separabiliy criterion, specifically, to 
reduce intra-class distance in multi-class problems. This heuristic has been 
tested on synthetic and benchmark problems with a subclass structure, that is 
class heterogeneity. Same as the intra- and inter-class ratio measure was the 
most effective in presence of subclasses, BDP technique was also effective in 
case of class heterogeneity. 

Weight adaptation in BDP is able to detect noisy, missing, and irrelevant 
features. This is confirmed by numerous experiments on benchmark data sets 
with noise infusion and known irrelevant features.  
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Experiments on benchmark data sets confirm that data partitioning 
performed in BDP also reduces complexity in classification subproblems 
according to the best complexity measures established in our experiments: 
fraction of points on the class boundary (N1), the leave-one-out error rate of 
1-NN classifier (N2), and the fraction of maximum covering spheres (T1). 

As BDP builds local models based on data partitioning results, those 
models are combined under ensemble framework. Two classifiers integration 
schemes were studied: selection using a meta-classifier and distance-based 
selection. The experiments show that while meta-classifier shows better results 
in most cases, in particular situations distance-based selection is preferable. 

BDP local models are built on unbalanced groups. It decreases 
performance. Imbalanced class representation is a common problem in data 
mining. Data generation or resampling using the Synthetic Minority 
Oversampling Technique (SMOTE) are possible solutions (Chawla et al., 2002).  

Clustering techniques that are used and potentially can be used in BDP all 
have different characteristics leading to success in different situations. For 
example, DBSCAN can identify clusters of arbitrary shapes, but cannot handle 
clusters of uneven density. Parameter tuning in DBSCAN is a very 
computationally demanding task. The results vary drastically, yet the only way 
to verify them is classification accuracy of BDP, that is computationally 
demanding too. 
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7 EXPERIMENTAL STUDY 

This chapter describes an empirical evaluation of the suggested decomposition 
strategies for class heterogeneity and feature space heterogeneity. Related data 
pre-processing topics are covered in the beginning. Decompositions by means 
of class encoding and decomposition with an IPA tree are studied. SEER Cancer 
data are used for evaluation of the suggested decomposition approaches. The 
chapter is summarized with conclusions. 

7.1 Data pre-processing and exploratory analysis techniques 

Data pre-processing is a very important step in data mining to prepare data for 
further analysis. A number of issues with data arise when it comes to 
application of a predictive technique. Some algorithms have built-in 
discretization, normalization, dealing with missing values, etc., while other 
algorithms have not. Data analysis without pre-processing may lead to 
inefficient model construction, or even entail incorrect results. For example, a 
particular variable may have numeric values, and in addition, some categorical 
values encoded by numbers. Thus, it has to be encoded at the pre-processing 
step. In addition, data may have imbalanced class representation, missing class 
labels, inconsistent data (for example, similar instances that belong to different 
classes), differences in scales of measuring features, and different feature types.  

Among commonly used data-preprocessing techniques are normalization, 
standardization, discretization, encoding, and re-sampling. Usually, feature 
transformation techniques, such as feature selection and feature extraction, are 
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not considered a part of data pre-processing. Therefore, these topics are not 
covered here. 

This section briefly reviews techniques relevant to the experimental study, 
feature selection and classification methods used, and also pays attention to 
selection of a distance function as a similarity measure. 

7.1.1 Normalization, standardization, and discretization 

Most techniques considered in this thesis are designed to deal with discrete 
numeric or nominal features. Many learning algorithms require nominal 
features as well. Most of feature selection and learning algorithms were 
adopted to deal with mixed feature types, but recent research shows that 
common machine learning algorithms benefit from treating all features in a 
uniform fashion (Dougherty et al., 1995; Hall, 1999).  

Discretization is the process of transforming continuous feature values 
into categorical ones. The basic learning algorithms and the feature 
selection/ranking algorithms are developed to deal with nominal values or 
discrete numeric values, but also adopted to continuous numeric features. For 
example, CFS requires all features to be of the same type and therefore, the 
discretization is needed. In order to calculate Information gain the 
discretization of numeric features has been performed using the minimum class 
entropy method proposed by Fayyad and Irani (1993). 

The minimum class entropy method evaluates the class entropy ܪሺݕ|݂ሻ 
using candidate partitions of a continuous feature ݂ into two intervals as its 
new discrete values ݒଵ  and ݒଶ  in order to select a cut point T for 
discretization. A cut point resulting to minimum entropy is selected. Formula 
17 (Section 4.2) is used for calculations of entropy of a class variable y observing 
the continuous feature ݂ for each partition into two intervals, where interval µଵ corresponds to the number of instances for which a feature ݂ takes the 
value ݒଵ, and interval µଵ corresponds to the number of instances for which a 
feature ݂ takes the value ݒଶ. 

This method is applied recursively to the two intervals of the previous 
partition until some stopping criterion is satisfied. The minimum class entropy 
method employs a stopping criterion based on the MDL principle (Rissanen, 
1978).  

Several studies have shown that in some cases discretization can degrade 
generalization accuracy (Ventura & Martinez, 1995; Ismail & Ciesielski, 2003). 
The method of discretization and the level of inherent error placed in the class 
have a major impact on classification errors generated after discretization. The 
general effectiveness of discretization varies significantly depending on the 
shape of data distribution considered. Ismail and Ciesielski (2003) have shown 
that highly skewed distributions or distributions having high peaks tend to 
result in higher classification errors, and relative superiority of supervised 
discretization over unsupervised discretization is diminished significantly 
when applied to these data distributions. However, real data do not exactly 
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follow the statistical distributions, thus in the case of different feature types 
discretization is preferable. 

The scales of individual features can be drastically different due to specific 
measurement units use. These measurement units are not inherent 
characteristics of data; therefore, normalization can prevent potential problems 
with distance computation and feature weighting caused by different scales. In 
addition, features measured on the same scale might have considerably 
different means, variances, and possibly higher order moments, which can lead 
to similar problems as different scales (Fradkin, 2005). It is desirable for many 
feature selection, clustering, and classification techniques that features would 
not only be of one type (discrete numeric), but their values also would be 
normalized to the same norm. The values of features have to be normalized in 
order to ensure they are comparable and have the same effect. 

If one feature has a relatively large range of values, it can overpower the 
other features. For example, if feature ଵ݂ has values form 1 to 1000, and feature ଶ݂ has only values from 1 to 10, then the influence of ଵ݂ on distance estimation 
will be higher. Feature selection algorithms tend to encourage features with 
many values as well, as it was explained in (Skrypnyk, 2005). Therefore, feature 
values are often normalized by dividing by the range of that feature values. 
Where appropriate, the distances can be normalized instead of direct 
normalization of the attribute values. 

It is also common to divide by the standard deviation instead of range, or 
to “trim” the range by removing the highest and lowest few percent (for 
example, 5%) of the data from consideration in defining the range. It is also 
possible to map any value outside this range to the minimum or maximum 
value to avoid normalized values outside the range [0..1]. Domain knowledge 
can often be used to decide which method is most appropriate (Wilson & 
Martinez, 1997). 

The side effect of discretization is that some instances become 
indiscernible and therefore, duplicate instances appear in the data. Those 
instances have to be removed before further processing, because they will 
confuse the results obtained from most learning algorithms. This fact stands for 
discretization as a prior step to model construction. 

All data sets used in the experimental study have been pre-processed in 
the following way. All numeric features are normalized and discretized. All 
nominal attributes are encoded to binary. Features with a particular dominating 
value appearing in no less than in 70% of instances are removed. Missing values 
are treated as separate values in case of nominal features, or replaced with a 
mean value in continuous and discrete numeric features. 

The choice of an appropriate pre-processing technique is problem-specific 
in this study. The methodology is described in the subsections describing the 
experiments. Weighted inverse exponential distance function used for 
clustering part of BDP has two options for normalization described in 
Subsection 5.1.2, (1) conventional statistical normalization, where each feature 
independently transformed to have zero mean and unity variance, and (2) 
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normalization by range of feature values so that each feature takes values in the 
interval [0..1]. In the experiments, described in this thesis, normalization has 
been made according to Formula 43. 

7.1.2 The imbalanced class representation problem, sample size 

The imbalanced class representation problem is created by a significant 
difference in the number of instances representing classes in the training set. 
Prediction accuracy for the minority class is usually low. Often all instances are 
assigned to the majority class. In this case, the overall accuracy does not depict 
actual classifier’s performance. Feature selection methods that assign scores to 
features considering their class (supervised feature selection) also have 
difficulties to produce correct estimates of feature merits. In practical 
applications, the ratio of the small to the large classes can be drastic, such as 1 to 
100, 1 to 1000, 1 to 10000, and sometimes even more (Chawla et al., 2002). This is 
addressed in the literature as a problem of imbalanced class representation, the 
class imbalance problem, or skewed class distributions (Chawla et al., 2002, 
Monard & Batista, 2003). 

There are several possible solutions to this problem. If the data set is large 
enough and the minority class includes reasonable number of instances to train 
a classifier, the majority class can be balanced via sampling. Thus, the first 
solution is to alter the training balance replicating instances from the minority 
class called “up-sampling” and ignoring some instances from the majority class 
called “down-sampling” (Weiss & Provost, 2003). Cost-sensitive learning 
approach provides a mechanism to control the process of learning from the 
minority class. 

This study is limited to a standard approach to measure accuracy taking 
into consideration the effect of imbalanced classes (Monard & Batista, 2003). For 
future comparative studies one of the appropriate sampling techniques can be 
used.  

Sample size is a critical issue in some natural domains, such as 
biomedicine (Mukherjee et al., 2003). Theoretical proof is provided, for example, 
in Fukunaga (1990): the required number of training samples is linearly related 
to the dimensionality for a linear classifier and to the square of the 
dimensionality for a quadratic classifier. The experiments have demonstrated 
that there are circumstances where second order statistics are more relevant 
than first order statistics in discriminating among classes in high dimensional 
data. In terms of nonparametric classifiers, it has been estimated that as the 
number of dimensions increases, the sample size needs to increase 
exponentially in order to have an effective estimate of multivariate densities. 
(Jimenez & Landgrebe, 1999) 

Jimenez and Landgrebe (1999) state that it is reasonable to expect that high 
dimensional data contains more information in the sense of a capability to 
detect more classes with more accuracy. At the same time these characteristics 
entail that a supervised learning algorithm performing computations at full 
dimensionality, may not deliver this advantage unless the available labeled 



144 
 

 

data is substantial. This was proven that with a limited number of training 
samples there is a penalty in classification accuracy as the number of features 
increases beyond some point. (Jimenez & Landgrebe, 1999) 

7.2 Experimental evaluation of IPA on heterogeneity variations 

Relevance of features in subproblems can be evaluated using individual feature 
merit measures or subset merit measures. Subset merit measures output 
numerical estimates of different subsets and the best subset. Individual feature 
merit measures evaluate the contribution of each feature to discriminate 
between classes. Individual feature merit measures following the assumption of 
independence between features are called “myopic merit measures. Information 
gain is one of such merit measures. Individual feature merit measures that in 
some way take into account interactions between features while evaluating the 
merit of each feature are called non-myopic merit measures. (Hong, 1997) In 
this study, ReliefF (Kononenko, 1994) is considered as one of them. 

IPA is based on comparing profiles of relevance of features in 
subproblems. Those profiles are ranks of features produced according to their 
estimated merits. Thus performance of IPA depends on the success of a feature 
merit measure selected. Experimental evaluation of IPA using Information gain 
and ReliefF feature merit measures on several data sets representing different 
variations of heterogeneity is considered. 

7.2.1 Data sets used in the experiments 

The benchmark data sets used in this study has been taken from UCI Machine 
Learning Repository (Blake et al., 1998). Langley (1994) indicates that finding 
adequate data sets to test new techniques is crucial. In particular, UCI 
Repository has a few data sets with a substantial fraction of irrelevant features. 
From the previous studies on local feature relevance, for example, those 
described in Domingos (1997), Howe and Cardie (1997), and Apte et al. (1998), 
one may conclude that even fewer data sets from public repositories are 
suitable to investigate local feature relevance. The main characteristics of these 
data sets are summarized in Table 18. 

Connect-4 Opening (CON) 

This data set consists of the instances representing all legal 8-ply positions in 
the game of Connect-4 in which neither player has won yet, and in which the 
next move is not forced. From these positions it is necessary to predict either 
win/loss for the first player, or draw. The board contains 6 rows numbered 
from 1 to 6, and 7 columns marked form a to g. Each cell of the board is 
represented by a feature having three possible values: x – the first player has 
taken, o – the second player has taken, and b – blank. (Blake et al., 1998) 

The original data set contains 67557 instances with the following class 
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distribution: 44473 win (65.83%), 16635 loss (24.62%) and 6449 draw (9.55%). 
The data set used here contains 5% randomly sampled instances of the original 
data set with the nearly same class distribution: 2235 win (66.18%), 818 loss 
(24.22%) and 324 draw (9.59%). 

For the Connect-4 classification task features are locally predictive. In each 
new unclassified instance there is no need to consider all features (values of 
each cell) in order to make a prediction. The features important for prediction 
change from instance to instance. Obviously, the subset of features taking x or o 
values in the particular instance is always relevant for this instance. In order to 
make a prediction one has to consider first the nearest cells around those that 
are taken. Thus for each instance the subset of features taking x or o values 
specifies an additional subset of features taking b value (the nearest cells around) 
to be considered. Therefore, relevance of the particular subset of b-valued 
features depends on the contextual features whose values are either x or o.  

TABLE 18 Characteristics of synthetic and benchmark data sets used in the experiments. 
A row of the table presents the mnemonic of the data set, the number of 
instances included in the data set, the number of different classes of instances 
and the number of instances # per each class n (#/cln), and the number of 
categorical and numeric features in the instances. 

№ Data # instances # classes # instances per class 
Features 

Categorical Numeric
1 CON 3377 3 2235/cl1, 818/cl2, 324/cl3 42 - 
2 VEH 846 4 199/cl1, 217/cl2, 218/cl3, 212/cl4 - 18 

3 VOW 990 11 
90/cl1, 90/cl2, 90/cl3, 90/cl4, 
90/cl5, 90/cl6, 90/cl7, 90/cl8, 
90/cl9, 90/cl10,90/cl11 

- 10 

4 VOWC 990 11 
90/cl1, 90/cl2, 90/cl3, 90/cl4, 
90/cl5, 90/cl6, 90/cl7, 90/cl8, 
90/cl9, 90/cl10,90/cl11 

2 10 

5 WINE 178 3 59/cl1, 71/cl2, 48/cl3 - 12 

6 
1-CL 
HET 

3000 3 1000/cl1, 1000/cl2, 1000/cl3 - 9 

Vehicle Recognition Using Silhouettes (VEH) 

The classification problem is to associate a given silhouette as one of four types 
of vehicle (double decker bus, Chevrolet van, Saab 9000, and an Opel Manta 
400), using a set of features extracted from the silhouette. This particular 
combination of vehicles was chosen with the expectation that the bus, van and 
either one of the cars would be readily distinguishable, but it would be more 
difficult to distinguish between the cars. The vehicles have been viewed from 
the constrained elevation. They were rotated and their angle of orientation was 
measured using a radial gratitude beneath the vehicle. The data set contains 18 
numerical features extracted from silhouettes of vehicles. 

An investigation of rule trees indicated that the tree structure was heavily 
influenced by the orientation of the objects, and grouped similar object views 
into single decisions. (Blake et al., 1998) 
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Vowel Recognition (VOW) with Contextual Features 

Vowel data set (VOW) represents the problem of speaker independent 
recognition of the eleven steady state vowels of British English using a specified 
training set. There are 15 individual speakers, male and female, each saying 
each vowel 6 times. The vowels are indexed by integers 0-10. For each 
utterance, there are ten floating-point input values, with array indices 0-9 used 
as features. There are the following vowels: 

vowel word vowel word vowel word vowel word 
i heed A had O hod u: who'd 
I hid a: hard C: hoard 3: heard 
E head Y hud U hood   

In the Vowel Context data set (VOWC) the contextual information implicit in 
the original data was added as two contextual features - speaker's gender and 
identity. The use of contextual information for this classification problem is 
described in Turney (1993). 

Wine Recognition (WINE) 

This data set has been created as the result of a chemical analysis of wines 
grown in the same region in Italy but derived from three different cultivars. The 
analysis determined the quantities of 13 constituents found in each of the three 
types of wines having different origins. The classification task is to determine 
the origin of wine using results of the chemical analysis represented by 13 
continuous numeric features corresponding to those 13 wine constituents. There 
are 3 classes corresponding to wine origins. These classes are separable. In a 
classification context, this is a well-posed problem with "well behaved" class 
structures. (Blake et al., 1998) 

Pure One-Class Heterogeneity synthetic data set (1-CLHET) 

The Pure one-class heterogeneity data set exemplifies the case of one-class 
heterogeneity where a subset of features is relevant only to distinguish 
instances of a particular class from the other. Synthetic data is continuous for 
the sake of vivid visual interpretation of heterogeneity. 

Local relevance of features, in this case, relevance at the instances 
corresponding to the particular class labeling, is represented as features taking 
particular non-random values for these instances. Features ଵ݂ , ଶ݂,  and ଷ݂ 
follow normal distribution N(1,0) in class 1, features ସ݂ , ହ݂ , and ଺݂  follow 
normal distribution N(1,0) for instances of class 2, and features ଻݂, ଼݂ , and ଽ݂ 
follow normal distribution N(1,0) for instances of class 3 as shown in Table 19. 
The irrelevant features take random values following the uniform distribution 
U(-6,6). 
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TABLE 19 Synthetic pure one-class heterogeneity data set (1-CLHET). 

 
Features 

 ଵ݂ ଶ݂ ଷ݂ ସ݂ ହ݂ ଺݂ ଻݂ ଼݂  ଽ݂ 
1 N(0,1) N(0,1) N(0,1) U(-6,6) U(-6,6) U(-6,6) U(-6,6) U(-6,6) U(-6,6) 

 … N(0,1) N(0,1) N(0,1) U(-6,6) U(-6,6) U(-6,6) U(-6,6) U(-6,6) U(-6,6) 
1000 N(0,1) N(0,1) N(0,1) U(-6,6) U(-6,6) U(-6,6) U(-6,6) U(-6,6) U(-6,6) 
1001 U(-6,6) U(-6,6) U(-6,6) N(0,1) N(0,1) N(0,1) U(-6,6) U(-6,6) U(-6,6) 

 … U(-6,6) U(-6,6) U(-6,6) N(0,1) N(0,1) N(0,1) U(-6,6) U(-6,6) U(-6,6) 
2000 U(-6,6) U(-6,6) U(-6,6) N(0,1) N(0,1) N(0,1) U(-6,6) U(-6,6) U(-6,6) 
2001 U(-6,6) U(-6,6) U(-6,6) U(-6,6) U(-6,6) U(-6,6) N(0,1) N(0,1) N(0,1) 

 … U(-6,6) U(-6,6) U(-6,6) U(-6,6) U(-6,6) U(-6,6) N(0,1) N(0,1) N(0,1) 
3000 U(-6,6) U(-6,6) U(-6,6) U(-6,6) U(-6,6) U(-6,6) N(0,1) N(0,1) N(0,1) 

Visual interpretation for the pure one-class data set presented in Table 19 is 
provided in Figure 14. 

 

FIGURE 14 Synthetic pure one-class heterogeneity. 9-dimesional data (Table 19) presented 
in the subspace of features ଵ݂, ଶ݂, and ଷ݂, which are relevant to distinguish 
instances of class 1 from the other instances. In these dimensions instances of 
class 1 are mainly concentrated in the interval [-1;1] with respect to features ଵ݂, ଶ݂, and ଷ݂, but they are heavily interleaved with instances of classes 2 and 
3 in this interval. 

It shows that in the subspace of feature relevant for class 1 this class is separable 
from classes 2 and 3. Instances of class 2 and 3 are heavily interleaved, 
surrounding instances of class 1 concentrated in the center of the cloud. It is 
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despite the fact that in the dimensions corresponding to features ଵ݂, ଶ݂, and ଷ݂, 
instances of class 1 are mainly concentrated in the interval [-1;1], but they are 
heavily interleaved with instances of classes 2 and 3 in this interval. Figure 14 
shows half of the original data points for which ଷ݂ ൏ 0 in order to reveal the 
structure inside. 

7.2.2 Experiments with feature ranking in subproblems 

This subsection demonstrates how feature rankings produced by a myopic 
feature merit measure (Information gain) and by a non-myopic feature merit 
measure (ReliefF) differ in the initial problem and in the subproblems of the 
selected data sets after decomposition. 

Table 20 presents ranks of feature merits produced using these two 
measures. Table 21 provided the IPA calculations based on the ranks shown in 
Table 20. 

Considering the synthetic problem representing one-class heterogeneity 
one may see that ranks produced by Information gain and ReliefF are not very 
different. In the subproblems both measures placed locally relevant features to 
the top of ranks. This synthetic problem does not have interacting features, thus 
both measures have succeeded. 

By author’s preliminary results and the results obtained in Hong (1997), 
IPA൒ 0.3 indicates some heterogeneity and decomposition into subproblems is 
worthy. IPA in subproblems for 1-CLHET is about 0.4 (Table 21). For the 
Vehicle data set importance of features varies in subproblems as well, but the 
estimates produced by Information gain and ReliefF are quite different. The IPA 
calculations indicate that there is a significant difference in feature relevance 
estimates for the initial problem, where all vehicles are presented, and in the 
subproblem op_sb between cars. Dissimilarity between the initial problem and 
the subproblem bs_vn is not that significant according to IPA, because their 
measured parameters vary more than those of cars. Thus, the IPA values 
obtained for this data set can be explained in accordance to the domain 
knowledge available. The IPA values obtained using ReliefF are higher in 
general. One might assume that the numerical features extracted from the 
silhouette interact, and thus the ReliefF estimates are more reliable. 

For the Vowel Context data set Information gain and ReliefF have 
produced quite similar ranks in the initial problem and the subproblems. The 
IPA values indicate that decomposition by the values of the “gender” feature 
should be successful. 

Decomposition of the Connect-4 data set is not straightforward. Local 
feature selection for this data set might be beneficial for classification because of 
the simpler predictive models considering fewer features. From Table 20 one 
may see that ranks of features in the subproblems are very different for both 
Information gain and ReliefF.  
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TABLE 20 Feature ranking produced by Information gain and ReliefF. 

Data set Problem Rank of features
Information gain ReliefF

1-CLHET 
1-clhet 4,5,8,7,9,3,2,1,6 4,7,5,8,6,9,3,1,2
cl1_all 3,2,1,5,9,7,4,8,6 3,1,2,9,7,4,8,5,6
cl2_all 4,5,6,3,8,7,2,9,1 5,4,6,3,8,7,2,1,9
cl3_all 8,7,9,4,1,2,6,5,3 7,8,9,4,6,5,1,2,3

VEHICLE 

vehicle 12,7,8,11,9,3,6,2,1,4,13,10,14,17,18,5,16,
15 

8,18,7,12,9,3,10,11,2,17,1,13,4,6,14,15,5,
16

op_sb 12,10,2,1,7,8,18,6,3,4,5,15,16,17,14,9,11,
13 

1,15,18,6,10,5,2,3,17,13,11,4,8,12,14,7,9,
16

op_bs 6,12,7,11,8,9,14,3,10,17,18,2,13,5,16,4,
15,1 

18,3,10,14,15,2,17,11,5,6,13,16,7,9,12,8,
4,1

op_vn 8,12,11,7,9,4,3,1,2,13,10,16,14,17,5,6,15,
18 

12,9,7,8,11,10,3,2,1,4,13,17,16,18,15,6,5,
14

sb_bs 6,12,11,7,8,9,14,3,2,13,10,18,17,5,15,1,
16,4 

18,3,10,14,2,17,15,6,5,11,12,13,7,1,9,16,
8,4

sb_vn 8,12,7,11,4,9,3,1,2,13,10,16,17,14,6,5,
18,15 

12,9,7,8,11,10,2,3,1,4,13,17,18,16,6,5,14,
15

bs_vn 12,7,8,9,11,6,1,3,4,14,13,2,5,18,17,15,10,
16 

8,7,9,12,18,3,1,11,10,17,2,13,4,6,14,5,15,
16

VOWEL  
CONTEXT 

vowc 4,3,7,6,9,11,10,8,5,12,1,2 3,4,6,7,8,12,5,11,9,10,1,2 
vowc_F 3,2,5,8,6,11,9,4,7,10,1 5,3,2,6,8,4,11,7,9,10,1 
vowc_M 2,3,6,10,7,4,11,5,8,9,1 2,3,7,6,5,10,4,11,8,9,1 

CONNECT-4 

connect-4 1,2,7,8,14,15,19-22,26,27,31-34,37,38 1,2,7-9,13-16,19-21,25,26,31-33,37,38 

subpr1 
8,19,9,25,2,31,38,20,7,37,5,4,3,27,39,1,
21,26,22,40,33,13,32,10,34,11,6,23,35,41,
42,36,24,29,16,15,18,17,12,30,14,28

8,9,19,7,2,37,13,38,10,1,20,4,3,31,32,5,11
,26,21,22,40,33,27,34,30,29,35,41,42,6,36
,18,17,23,24,16,28,12,15,14,39,25 

subpr2 
14,32,38,37,7,13,33,34,41,40,20,16,25,15,
2,39,8,3,31,21,9,1,35,19,10,30,6,36,42,5,
4,11,18,17,24,22,23,29,12,28,26,27

37,38,14,32,33,13,19,31,39,8,1,7,2,41,15,
40,34,16,20,4,6,5,12,10,11,17,29,28,30, 
36,42,27,23,22,18,26,24,3,9,35,21,25 

subpr3 
15,14,1,37,10,3,2,31,39,26,25,27,8,9,38,
19,16,33,32,17,11,13,34,7,4,28,5,6,12,36,
35,30,42,41,40,29,21,20,18,24,23,22

15,14,37,8,1,13,9,7,16,19,38,25,2,31,39,3,
26,33,32,27,10,28,4,5,12,6,35,30,29,36, 
42,41,40,24,21,20,18,22,23,34,17,11 

subpr4 
21,20,1,19,31,37,33,7,15,13,32,18,16,39,
22,14,17,3,9,8,25,4,2,40,23,10,34,38,24,6,
5,11,30,29,35,41,36,42,12,26,28,27

20,21,1,19,7,15,13,14,31,37,22,8,9,25,32,
2,33,18,17,16,4,38,39,11,6,5,12,29,28,27,
36,35,30,41,26,42,24,10,40,34,23,3 

subpr5 
7,21,9,14,2,20,37,8,15,31,19,26,28,13,10,
22,39,1,3,38,27,25,23,29,4,16,11,5,40,42,
6,33,32,34,36,35,30,17,12,18,24,41

21,13,7,20,19,26,25,27,8,1,14,2,22,9,37,3
9,31,28,15,29,23,16,5,6,12,11,35,34,33, 
41,40,36,42,17,18,24,32,30,3,10,4,38 

subpr6 
2,7,1,37,26,32,31,15,27,8,33,13,9,19,25,
28,14,16,34,20,38,35,3,4,6,11,10,12,5,39,
36,30,42,41,40,29,21,18,17,24,23,22

31,32,13,7,26,33,37,1,2,14,19,8,15,27,16,
9,20,25,34,11,5,4,12,10,6,17,41,30,29,40,
39,36,22,21,18,24,42,23,3,35,28,38 

subpr7 
21,37,1,25,2,23,22,31,38,13,20,32,8,7,19,
24,15,14,5,6,3,4,11,12,9,10,16,35,34,33, 
36,41,40,39,30,42,18,17,26,29,28,27

21,37,1,22,2,31,25,19,20,23,8,13,7,17,16,
15,14,5,6,3,4,11,12,9,10,34,33,41,35,39, 
40,36,30,26,42,18,28,29,27,24,32,38 

subpr8 
15,37,26,32,7,19,2,17,38,16,1,13,18,31,
25,14,5,6,3,4,8,11,12,9,10,35,36,33,34,41,
42,39,40,30,22,23,20,21,28,29,24,27

15,1,25,38,19,16,37,2,32,17,14,26,7,18,
13,5,6,3,4,8,11,12,9,10,34,35,42,33,40,41,
36,39,30,22,23,20,21,28,29,24,27,31 

subpr9 
19,14,26,37,1,20,32,38,6,16,25,23,21,3,4,
15,31,22,7,2,5,13,17,41,33,9,8,24,30,42, 
28,29,10,18,39,35,36,27,12,11,40,34

19,1,14,37,13,25,5,20,7,38,6,15,16,31,32,
26,2,23,9,10,11,8,12,18,39,36,35,42,41, 
40,34,28,27,24,33,30,29,21,17,22,3,4 

subpr10 
37,20,7,19,13,25,21,26,11,32,9,31,10,1,
38,12,22,8,41,2,15,14,3,6,42,4,5,29,28,27,
30,35,34,33,36,18,17,16,40,24,23,39

19,37,20,7,25,13,10,31,26,11,9,1,38,32,8,
21,12,39,40,36,34,35,41,3,2,42,6,5,4,23, 
29,30,27,28,24,16,15,14,17,33,18,22 

subpr11 
8,37,9,14,38,13,19,7,10,29,30,3,28,2,15,
27,31,16,1,4,25,26,5,6,11,12,35,36,33,34,
41,42,39,40,20,21,17,18,24,32,22,23

37,8,7,27,28,38,13,14,19,31,1,3,9,2,25,26,
29,10,4,30,15,5,6,11,12,17,35,36,33,34, 
41,42,39,40,21,20,18,22,32,24,23,16 

subpr12 
2,15,20,19,1,13,16,3,35,25,4,37,7,8,34,32,
11,17,9,10,14,36,33,21,31,6,38,30,5,41, 
42,39,40,23,24,18,22,26,28,29,27,12

13,1,19,7,2,15,33,32,14,20,8,34,31,3,37,
25,35,16,9,10,17,4,11,5,12,6,38,30,29,39,
42,41,40,23,24,18,22,27,28,26,36,21 

subpr13 
19,1,14,8,26,21,20,31,37,15,4,3,13,16,2,
41,22,40,27,25,28,38,9,10,42,39,5,7,11,6,
12,33,32,34,36,35,30,18,17,23,29,24

19,1,37,8,13,14,26,38,25,20,15,2,21,31,3,
9,41,7,22,39,28,16,42,10,36,6,11,12,23, 
32,24,29,30,18,17,34,33,35,5,4,40,27 

subpr14 
1,37,15,14,26,32,4,16,28,39,25,31,2,3,5,
40,17,10,34,27,38,7,8,11,41,13,35,9,33,6,
12,29,24,30,42,36,23,19,18,20,22,21

15,14,37,26,1,3,7,25,32,8,4,31,9,2,27,28,
13,39,38,16,33,40,10,34,5,41,17,12,6,29,
24,23,42,36,30,18,19,20,22,21,11,35 

subpr15 
20,7,15,22,40,39,37,4,21,32,8,31,2,1,19,
38,34,24,13,14,33,16,9,23,17,10,11,5,35,
3,18,41,6,30,29,42,26,25,36,28,27,12

20,7,31,8,19,21,15,32,37,14,38,39,13,1,
22,2,9,33,4,34,16,10,40,3,18,24,41,42,28,
6,36,30,29,26,25,12,27,17,5,11,23,35 

subpr16 
14,13,20,1,19,27,26,21,8,38,15,37,31,28,
39,22,10,25,7,2,32,16,4,34,23,3,40,5,29, 
33,9,18,24,17,35,36,42,30,41,12,11,6

14,13,20,38,19,26,25,1,15,37,8,27,2,21,
31,7,32,33,28,16,22,9,3,39,10,34,24,18, 
41,42,6,11,30,35,12,36,4,5,40,29,23,17

subpr17 
13,32,1,14,19,20,8,26,2,38,25,37,31,7,17,
16,15,5,6,3,4,11,12,9,10,35,36,33,34,41, 
42,39,40,30,22,23,18,21,28,29,24,27

13,14,26,2,1,32,8,20,19,25,31,7,37,38,17,
16,15,5,6,3,4,11,12,9,10,35,36,33,34,41, 
42,39,40,30,22,23,18,21,28,29,24,27 
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When considering a cell (feature) taken by a player, all its neighboring cells 
should be considered too. It can be interpreted as a kind of interaction between 
features for this classification problem. By the IPA values we verify 
dissimilarity between the subproblems that is quite big according to the IPA 
values provided in Table 21. In general, IPA values provided by both 
Information gain and ReliefF are on the same level, 0.3-0.6. 

TABLE 21 The IPA values obtained using Information gain and ReliefF between the 
initial problems and subproblems. 

Data sets Importance Profile Angle (IPA)
Information gain ReliefF

1-CLHET 
0.442058/cl1_all 0.400908/cl1_all
0.429688/cl2_all 0.385818/cl2_all
0.430890/cl3_all 0.389900/cl3_all

VEHICLE  

0.535326/op_sb 0.926461/op_sb
0.201226/op_bs 0.316210/op_bs
0.200287/op_vn 0.256522/op_vn
0.191050/sb_bs 0.329820/sb_bs
0.192242/sb_vn 0.235890/sb_vn
0.134379/bs_vn 0.145933/bs_vn

VOWEL 
CONTEXT 

0.525948/vowc_F 0.334231/vowc_
F

0.534664/vowc_M 0.403693/vowc_
M

CONNECT-4 

0.580264/subpr1 0.595368/subpr1
0.618577/subpr2 0.612920/subpr2
0.595173/subpr3 0.581786/subpr3
0.352986/subpr4 0.397846/subpr4
0.492375/subpr5 0.519617/subpr5
0.501064/subpr6 0.601788/subpr6
0.491130/subpr7 0.508985/subpr7
0.541579/subpr8 0.528261/subpr8
0.468015/subpr9 0.517040/subpr9
0.488271/subpr10 0.495667/subpr1

0
0.611159/subpr11 0.584605/subpr1

1
0.490500/subpr12 0.528872/subpr1

2
0.393300/subpr13 0.381412/subpr1

3
0.532395/subpr14 0.493549/subpr1

4
0.454669/subpr15 0.331949/subpr1

5
0.471771/subpr16 0.305274/subpr1

6
0.515651/subpr17 0.489565/subpr1

7

 

7.2.3 Evaluation of classification accuracy after decomposition 

From the previous section one may see that IPA has provided an indication of 
heterogeneity where it was expected taking into account the domain 
knowledge. Considering the difference in classification accuracy before and 
after decomposition obtained with global/local feature selection provides 
additional information on the advantages and disadvantages of using IPA. 

For this purpose three commonly used learning algorithms, 1-Nearest 
Neighbor (1-NN), Naive Bayes (NB), and C4.5 decision tree (C4.5), representing 
different approaches to learning have been selected. Feature selection in the 
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initial problems and in the subproblems has been performed using CFS, and 
alternatively, using the wrapper feature selection. Table 8 presents feature 
subsets selected on an entire data set, and feature subsets selected after 
decomposition. Table 9 provides classification accuracy of 1-NN, C4.5, and NB.  

From Table 22 one may see that in the case of pure class heterogeneity CFS 
and wrapper selected nearly all features, and all the basic learning algorithms 
reached high accuracy level (Table 23). 

TABLE 22 Global vs local feature selection produced by correlation-based feature 
selection (CFS) and wrapper feature selection by means of three different base 
classifiers. 

Data set Problem 
Selected features

Wrapper
CFS 1-NN C4.5 NB 

1-CLHET 
1-clhet 1-9 1-9 1-6 1-9 
cl1_all 1,2,3 1-8 1-3,7-9 1-9 
cl2_all 4-6 1-9 1,4-6,8 1-9 
cl3_all 7-9 1,2,4,6-9 1,2,7-9 1-9 

VEHICLE 

vehicle 4-9,11,12,14-16 3,5,6,8,10-13,17,1
8 1,3,6,9,10-14,17,1 1,5,6,8,11,14-16,1

8 
op_sb 1,10,12 1,3,8,12 3,6,13,14,16-18 5,17 
op_bs 6,11,14 1,3,5,6,8-12 3-8 3,5,14,15 
op_vn 1,7,8,11,12,16 1,2,4-6,8-11,13 1,2,4-6,8-10,12,13 1,5,8,11,12,14,16 
sb_bs 3,5,6,12,14,15 2,3,5,6,8,11,13,14 3,5-7,10-12,14 2,3,5,14,15 
sb_vn 4,7-9,11,12,16 2,4-6,8-11,13 5-10,13,17 8,16 
bs_vn 4,6,7,12 3,5-9,12,14,18 3,4,6,7,12 1,4,6,8,15-18 

VOWEL 
CONTEXT 

vowc 3,4 1,3-9,11,12 1,3,4,5,10 3-11 
vowc_F 2,3,5,6,8,11 2-10 2,3,5,6 2-11 
vowc_M 2,3,6,7,10 2-10 2-5,8 2-8,10,11 

CONNECT-4 

con-nect-4 1-38 
1,5,7,8,11,13-16,1
8-24,26,27,30,31, 
36,37,42

1,2,8,14-17,19-22,
31,32 

1,2,8,14,15,17,19, 
20,21,26,37,38 

subpr1 2,5,7,8,34,37,39,
40 1,5,7,8,38 1-38 1,22,27 

subpr2 1-3,7-9,33-35,39-4
1 1-3,14 2,14,38 1,14,37,41 

subpr3 1-3 1,7,15 1,8,13-15,37 2,3,14,15 
subpr4 13-23,31 1,14,19,20,21,31,

32 2,14,15,20-22 1,14-16,18,20,21, 
38,40 

subpr5 7,39 1,2,4,9,20,21,26 1-38 21,27 
subpr6 1,2 14,15,19,26,32,34 1-38 1-38 
subpr7 1,2 1,2,8,19-23,25,37 1-38 1,25,32,37 
subpr8 1,2 2,19 1-38 1,2,37 
subpr9 13-23,26 1,32 1,2,15,19,20,21,31 1-3,14,19,22,23, 

26,32,37,38 
subpr10 5,7,11,37,39 1-38 1-38 1-38 
subpr11 1-10 8 8 8 
subpr12 1-4,11,33-36 13,20,33,35 1-38 1,2,16 
subpr13 1 3,19-21,31 3,19,20,21,31 3,19,20,21,31 
subpr14 1,5,7,33,37,39 1,4,9,14,15,26,32,

41 1,9,14,33 3,4,15,41 
subpr15 7,8,39,40 1,15,16,21,22,40 1-38 13,21,32,40 
subpr16 13-23,27 1,4,22,33 13,14,20,21 4,10,13,14,20,21 
subpr17 1,2 32 1-42 1-42 

Nevertheless, in subproblems, where CFS selected the relevant features 
correctly, accuracy is even higher. Wrapper used more features in subproblems 
considering the irrelevant ones, and it’s accuracy even outperformed accuracy 
of CFS. 

For the Vehicle data set there is no prior knowledge about the difference 
between the subsets of features relevant in subproblems. Decomposition has 
promoted accuracy growth in subproblems comparatively to the initial 
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problem. Distinguishing between cars in the corresponding subproblem yields 
lower accuracy than in the other subproblems accordingly to the prior 
knowledge about it. 

Subsets of features selected by CFS in the subproblems of Vowel Context 
differ in 3 features (Table 22), and using that subsets has promoted significant 
accuracy increase in subproblems after decomposition. Wrapper with C4.5 
selected less features than wrapper with 1-NN and NB, and accuracies are 
nearly same for the latter two, while 1-NN is superior in accuracy. CFS is 
comparable to wrapper with 1-NN in accuracy. 

In the majority of subproblems of the Connect-4 data set decomposition 
has promoted accuracy increase both with CFS and wrapper. However, in many 
cases, especially with wrapper, high accuracy has been obtained as a result of 
bad performance – almost all instances have been assigned to the majority class 
because of the imbalanced class representation in subproblems (italics in Table 
23). 

TABLE 23 Classification accuracy obtained on data representing the initial problems and 
subproblems after decomposition. 

Data set 
Classification accuracy, %

1-NN C4.5 NB 
CFS Wrapper CFS Wrapper CFS Wrapper 

1-CLHET 
1-clhet 90.3667 90.3667 89.4333 89.3333 96.6667 96.6667 
cl1_all 90.6667 92.3000 93.2667 93.2000 94.2333 95.3333 
cl2_all 91.2333 92.8000 88.7333 93.3667 78.6667 95.2000 
cl3_all 91.6667 94.0667 93.7667 93.9000 93.7667 95.5667 

VEHICLE 

vehicle 64.8936 71.1584 67.6123 70.8038 49.0544 56.9740 
op_sb 54.5455 55.4779 54.7786 57.5758 53.8462 51.7483 
op_bs 89.3023 96.2791 92.3256 95.5814 72.5581 85.3488 
op_vn 84.4282 95.3771 86.6180 92.2141 82.4818 84.1849 
sb_bs 90.5747 96.5517 93.3333 92.6437 82.9885 84.8276 
sb_vn 82.9327 96.1538 84.6154 91.8269 81.7308 83.8942 
bs_vn 96.6427 98.5612 97.8417 97.8417 67.8657 85.8513 

VOWEL 
CONTEXT 

vowc 62.6263 99.0909 58.9899 81.9192 65.8586 66.9697 
vowc_F 98.0519 99.1342 78.5714 80.3030 74.6753 80.3030 
vowc_M 92.6136 97.9167 79.7348 81.0606 69.8864 78.0303 

CONNECT-4 

con-4 63.9621 55.6115 70.9802 61.2245 70.7137 71.7501 
subpr1 59.5469 63.4304 66.9903 68.2848 67.3139 68.2848 
subpr2 60.4167 65.2778 70.8333 71.5278 70.1389 71.5278 
subpr3 61.4458 61.4458 64.1566 69.5783 65.0602 67.7711 
subpr4 68.5131 61.2245 72.8863 68.2216 71.4286 66.4723 
subpr5 63.3929 63.3929 66.0714 64.2857 65.1786 62.5000 
subpr6 82.5243 80.5825 82.5243 82.5243 79.6117 82.5243 
subpr7 71.7172 65.6566 65.6566 65.6566 66.6667 63.6364 
subpr8 60.6061 64.8485 64.2424 64.2424 62.4242 63.0303 
subpr9 72.8625 62.8253 74.7212 69.5167 66.9145 68.4015 
subpr10 77.4436 73.6842 78.1955 78.1955 75.9398 76.6917 
subpr11 45.8716 65.1376 65.1376 65.1376 63.3028 65.1376 
subpr12 62.5806 69.6774 71.6129 71.6129 69.0323 69.0323 
subpr13 62.0253 65.4008 62.0253 68.7764 62.0253 66.2447 
subpr14 57.2614 61.4108 65.1452 62.2407 65.1452 63.4855 
subpr15 61.7241 65.8621 66.5517 65.5172 65.8621 63.4483 
subpr16 63.4615 66.9872 69.8718 69.5513 70.5128 68.9103 
subpr17 50.0000 54.1667 75.0000 66.6667 70.8333 54.1667 

The experiments shown that decomposition and local feature selection on 
subproblems resulted in accuracy growth in the most of cases according to the 
expectations. 

An ability of IPA to provide an indication of heterogeneity has been 
studied on several variations of heterogeneity: one-class heterogeneity, class 
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heterogeneity, feature space heterogeneity and feature space heterogeneity with 
contextual features. 

The profile of features importance used in IPA is based on the individual 
contribution of every feature. The contribution of each feature is evaluated by a 
feature merit measure, which itself may consider a particular interaction 
between features (non-myopic), or may not consider feature interactions 
(myopic). 

The experimental results with Information gain and ReliefF merit 
measures have confirmed that success of IPA depends on how well the selected 
feature ranking methods can handle presented feature interactions. Sometimes 
heterogeneity estimates using ReliefF and Information gain were quite 
different. For example, for the Vehicle data set the IPA values using ReliefF was 
somewhat higher, and for the Vowel Context data set, vice versa, IPA using 
Information gain was higher. 

Indication of heterogeneity provided by IPA using feature ranking is 
verified via classification accuracy obtained after local feature selection in 
subproblems. For this purpose the non-myopic CFS feature subset merit 
measure based on the symmetrical uncertainty, a variant of Information gain, 
has been applied along with wrapper feature selection. 

The experiments have shown that in the most of cases accuracy growth 
has been reached as a result of decomposition. These results confirm an 
indication of heterogeneity by high IPA values in the corresponding 
subproblems. 

CFS is competitive to wrapper in majority of practical situations. Often 
wrapper yields higher accuracy, but considering different learning algorithms 
one may see that the subsets of features selected in subproblems are very 
different. Wrapper’s performance depends on inductive bias of a learning 
algorithm. 

The most important issues related to the heterogeneity problem are 
building a set of models and combining those models for the final prediction. 
Finding the effective way to combine models is an important task of future 
research. 

7.3 Experiments with cancer survival prediction data 

Cancer survival analysis is commonly used to assess cancer treatment programs 
and to monitor the progress of regional and national cancer control programs 
(Green et al., 2002). It is also used in medical research to answer the questions 
such as: how do particular circumstances or treatments increase or decrease the 
odds of survival and what is the fraction of a population which will survive 
past a certain time? Of those that survive, at what rate will they die or fail? Can 
multiple causes of death or failure be taken into account? How do particular 
circumstances or characteristics increase or decrease the odds of survival?  
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Cancer survival rates are defined by the percentage of people who survive 
a certain type of cancer for a specific amount of time. It helps to put survival 
statistics in perspective establishing whether a certain cancer type is relatively 
easy or more difficult to cure, and what are the factors that influence this 
statistics. Researchers have developed tools called nomograms that can be used 
to predict cancer outcomes or assess risk based on specific characteristics of a 
patient and of his or her disease. These tools are pioneered by researchers at 
Memorial Sloan-Kettering Center, NY, USA, to help patients and physicians 
make important treatment decisions (Delen et al., 2005). 

Cancer survival prediction is an example of applications, where high 
predictive accuracy is a secondary goal, while determining and understanding 
the risk factors is primary. Considering the large number of diverse factors, 
either presented in the data or hidden, one can assume existence of subclasses 
or survival groups, where the outcome is influenced by different factors, 
relatively common within each group. Bidirectional data partitioning is applied 
in order to discover data structure. Further data analysis reveals relative 
importance of factors that influence the outcome that has local relevance of the 
descriptive features, speaking in data mining terms. 

7.3.1 SEER cancer data description 

The SEER Cancer data sets are provided by the Surveillance, Epidemiology and 
End Results (SEER) Program of the National Cancer Institute (SEER, 2011), the 
authoritative source of information about cancer incidence and survival in USA. 
Data used in the experiments are combined from SEER 9, 13, and 17 Registries 
Databases for patients diagnosed in the period 1973-2008, released in April 
2011. SEER 9 registries are Atlanta, Connecticut, Detroit, Hawaii, Iowa, New 
Mexico, San Francisco-Oakland, Seattle-Puget Sound, and Utah. In this data set, 
cases diagnosed from 1973 through 2008 are available for all registries except 
Seattle-Puget Sound (1974+) and Atlanta (1975+). The database contains one 
record for each of 4,021,996 tumors. Cases are associated with the population 
data using three racial groups: White, Black, and Other. The Other race category 
used in the SEER 9 Registry database consists of American Indian/Alaska 
Native and Asian/Pacific Islander combined. All descriptions related to data 
fields and data format provided in this thesis refer to this data version. 
Population and mortality data collections, provided along with the primary 
data collection, are not used in the survival time analysis. Published reports on 
survival time prediction using data mining techniques are based on previous 
versions of SEER data (Delen et al., 2005; Fradkin et al., 2006; Sarvestani et al., 
2010; Bellaachia & Guven, 2006).  

The primary data collection includes separate records on 9 site-specific 
cancer groups: (1) breast cancer, (2) colon and rectum cancer, (3) digestive 
system cancers, (4) female genital cancer, (5) male genital cancer, (6) lymphoma 
of all sites and leukemia, (7) respiratory apparatus cancer, (8) urinary apparatus 
cancer, and (9) all other sites cancers. 
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Descriptive features contain two types of information: demographical and 
clinical. Demographical information includes age, sex, race/ethnicity, place of 
birth, etc. Clinical information includes history of previous diseases and 
treatments, diagnostic information, such as location of the disease, its type 
(morphology, histology) and extent, the types of treatment (radiation, surgery) 
and cause of death, where applicable. Original data cases (instances) are stored 
in rows containing fields (features) of fixed length (124 features in 276 
positions). The database version used in this thesis is available at 
http://www.seer.cancer.gov/. 

7.3.2 SEER data pre-processing 

SEER database has evolved over time and therefore certain information is only 
available in recent years. For our analysis goal, we have selected only records 
collected in the period 1998-2008, as in 1998 several particularly significant 
features were introduced.  

Original data sets include cases diagnosed in 1973-2008. During the period 
of data collection treatments has changed, new categories (features) were 
introduced and data collected from new locations was added (in SEER 11 and 
13 databases). All features are listed in Table 24.  
We used a combined data set based on SEER 9, 13, and 17 databases. Duplicate 
instances corresponding to multiple entries of the same patient have been 
removed from the data set. 

For our analysis goal, we have selected only records collected in the 
period 1998-2006 from SEER 9 database, as in 1998 several particularly 
significant features were introduced. 

Survival time recode variable (#112) is originally calculated using the data of 
diagnosis and one of the following: date of death, date last known to be alive, or 
follow-up cutoff date used for a current version of data, December 31, 2008. 

Based on previous studies of SEER Cancer data sets in the data mining 
community (Delen et al., 2005; Fradkin et al., 2006), the analysis goal is to predict 
8 months survival time. 8 months is a median survival time has been 
established as a cut-off for short-time survival (class 1) and long-term survival 
(class 0). A class variable is obtained as follows: 

− if survival time is unknown, or a patient died within 8 months, but not 
from a specific cancer type, or a patient was diagnosed in 2008, alive by 
December 31, 2008, and survival time is less than 8 months such instances 
will be discarded from consideration; 

− if a patient died within 8 months and the cause of death is a specific 
cancer, the instances are assigned to class 1; 

− if a patient’s survival time is more than 8 months, the instances are 
assigned to class 0; 

− all remaining instances, where class cannot be determined, are discarded. 
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Cause of death can be determined incorrectly as a metastatic site (SEER: 
Measures of Cancer Survival, 2011). This processing step discards these cases 
from consideration. 

TABLE 24 SEER feature names in the original encoding. Years are provided if features 
were not available during the entire period of SEER data collection. 
Information on applicable years, where not specified, can be obtained from 
data. More details are can be found at 
http://seer.cancer.gov/data/documentation.html. 

№ Name Years № Name Years 
1 Patient ID number - 63 RX Summ-Reconstruct 1st 1998-2002
2 Registry ID - 64 Reason for no surgery - 
3 Marital Status at DX - 65 RX Summ-Radiation - 
4 Race/Ethnicity - 66 RX Summ-Rad to CNS  1988-1997
5 Spanish/Hispanic Origin - 67 RX Summ-Surg / Rad Seq - 
6 NHIA Derived Hispanic Origin - 68 RX Summ-Surgery Type  1973-1997
6 Sex - 69 RX Summ-Surg Site 98-02  1998-2002
8 Age at diagnosis - 70 RX Summ-Scope Reg 98-02  1998-2002
9 Year of Birth - 71 RX Summ-Surg Oth 98-02  1998-2002
10 Birth Place - 72 SEER Record Number - 
11 Sequence Number--Central - 73 Over-ride age/site/morph - 
12 Month of diagnosis - 74 Over-ride seqno/dxconf - 
13 Year of diagnosis - 75 Over-ride site/lat/seqno - 
14 Primary Site - 76 Over-ride surg/dxconf - 
15 Laterality - 77 Over-ride site/type - 
16 Histology (92-00) ICD-O-2 - 78 Over-ride histology - 
17 Behavior (92-00) ICD-O-2 - 79 Over-ride report source - 
18 Histologic Type ICD-O-3 - 80 Over-ride ill-define site - 
19 Behavior Code ICD-O-3 - 81 Over-ride Leuk, Lymph - 
20 Grade - 82 Over-ride site/behavior - 
21 Diagnostic Confirmation - 83 Over-ride site/eod/dx dt - 
22 Type of Reporting Source - 84 Over-ride site/lat/eod - 
23 EOD-Tumor Size 1988-2003 85 Over-ride site/lat/morph - 
24 EOD-Extension  1988-2003 86 SEER Type of Follow-up - 
25 EOD-Extension Prost Path  1985-2003 87 Age Recode <1 Year olds - 
26 EOD-Lymph Node Involv 1988-2003 88 Site Recode - 

27 Regional Nodes Positive  1988+ 89 
Site Rec with Kaposi and 
Mesothelioma 

- 

28 Regional Nodes Examined  1988+ 90 Recode ICD-O-2 to 9 - 
29 EOD-Old 13 Digit 1973-1982 91 Recode ICD-O-2 to 10 - 
30 EOD-Old 2 Digit 1973-1982 92 ICCC site recode ICD-O-2 - 

31 EOD-Old 4 Digit 1983-1987 93 
SEER modified ICCC site recode 
ICD-O-2 

- 

(continues) 
SEER Cancer data include many variables, where numeric code is used to 
describe a categorical/nominal variable. For example, feature V99 - histology 
recode for brain groupings that has 29 code values. Two of those values 
correspond to all other brain histologies, not included in previous 27 values, 
and non-brain recode. Some values are associated with a certain cancer type. 
For breast cancer data V99 has a constant value. 
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TABLE 24 (continues) 

№ Name Years № Name Years 
32 Coding System for EOD  1973-2003 94 ICCC site recode ICD-O-3 - 

33 Tumor Marker 1 1990-2003 95 
ICCC site recode extended 
ICD-O-3 

- 

34 Tumor Marker 2  1990-2003 96 Behavior Recode for Analysis - 
35 Tumor Marker 3  1998-2003 97 ICD-O Coding Scheme - 

36 CS Tumor Size  2004+ 98 
Histology Recode-Broad 
Groupings 

- 

37 CS Extension 2004+ 99 
Histology Recode-Brain 
Groupings 

- 

38 CS Lymph Nodes  2004+ 100 CS Schema v0202 - 
39 CS Mets at Dx  2004+ 101 Race recode (White, Black, Other) - 
40 CS Site-Specific Factor 1 2004+ 102 Race recode (W, B, AI, API) - 

41 CS Site-Specific Factor 2  2004+ 103
Origin recode NHIA (Hispanic, 
Non-Hisp) 

- 

42 CS Site-Specific Factor 3  2004+ 104 SEER historic stage A - 

43 CS Site-Specific Factor 4 2004+ 105
AJCC stage 3rd edition 
(1988-2003) 

- 

44 CS Site-Specific Factor 5  2004+ 106
SEER modified AJCC Stage 3rd ed 
(1988-2003) 

- 

45 CS Site-Specific Factor 6 2004+ 107
SEER Summary Stage 1977 
(1995-2000)  

1995-2000

46 CS Site-Specific Factor 25 2004+ 108
SEER Summary Stage 2000 
(2001-2003)  

2001-2003

47 Derived AJCC T 2004+ 109 Number of primaries - 
48 Derived AJCC N 2004+ 110 First malignant primary indicator - 
49 Derived AJCC M  2004+ 111 State-county recode - 
50 Derived AJCC Stage Group  2004+ 112 Survival time recode - 

51 Derived SS1977  2004+ 113
Cause of Death to SEER site 
recode 

- 

52 Derived SS2000  2004+ 114 COD to site rec KM - 
53 Derived AJCC-Flag  2004+ 115 Vital Status recode - 
54 Derived SS1977-Flag  2004+ 116 IHS Link - 
55 Derived SS2000-Flag  2004+ 117 Summary stage 2000 (1998+)  1998+ 
56 CS Version Input Original 2004+ 118 AYA site recode - 
57 CS Version Derived 2004+ 119 Lymphoma subtype recode - 

58 CS Version Input Current 2004+ 120
SEER Cause-Specific Death 
Classification  

- 

59 RX Summ-Surg Prim Site  1998+ 121
SEER Other Cause of Death 
Classification 

- 

60 RX Summ-Scope Reg LN Sur  2003+ 122 CS Tumor Size/Ext Eval 2004+ 
61 RX Summ-Surg Oth Reg/Dis 2003+ 123 CS Lymph Nodes Eval 2004+ 
62 RX Summ-Reg LN Examined  1998-2002 124 CS Mets Eval 2004+ 

Coding systems used in cancer research have been revised several times since 
1973 and new coding systems have been introduced. SEER Cancer data in some 
cases include a separate variable for a newly introduced code, and in some 
cases old codes are converted to a new system, while this conversion is stored 
in a separate variable. These data characteristics are particularly representative 
in terms of classification heterogeneity.  
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Such codes often include contextual information. For example, feature V90 
– recode ICD-O-2 to 9.  

Data includes four racial groups: White, Black, American Indian/Alaska 
Native, and Asian/Pacific Islander. In SEER 9 database they are encoded as 
White, Black, and Other.  It also includes the ethnic groups Hispanic and 
Non-Hispanic, which are not mutually exclusive from White, Black, American 
Indian/Alaska Native, and Asian or Pacific Islander. Therefore, these data 
require decomposition for predictive models construction. 

Similar to other analyses described at SEER, we encode variable Year of 
birth dividing all patients onto 19 age groups (< 1, 0-4, 5-9,..., 85+). 

7.3.3 Experiments with respiratory apparatus cancer data 

The respiratory apparatus cancer data set used in the experiments has been 
extracted from the respiratory data. The pre-processed version of the data set 
was granted by the DIMACS researchers that investigated it with application of 
k-means clustering (Fradkin, 2006), SVM and logistic regression (Fradkin et al., 
2005). 

The data set used in the experiments contains no missing values. All 
categorical and ordinal features were encoded as binary features. Patient 
survival time used as a class variable is encoded as short-term and long-term 
with a cut-off value of 8 months. There are 45 features, including age, race, 
gender, diagnosis age, region of birth, cancer site, grade, medical treatments, 
histology, etc. Data includes 120,318 training instances (66,923 and 53,395 in two 
classes) and 97,240 test instances (52,849 and 44,391 in two classes). The larger 
class includes patients with more than 8 months survival time, the negative 
class. 

Specificity depicts the proportion of patients who passed 8 month survival 
time which are correctly identified. Sensitivity shows percentage of patients 
that did not pass 8 month survival time who are correctly identified. 

The baseline result is obtained with 10-folds CVM performed in one run. 
J48 pruned decision tree has 67.07% accuracy, 69.7% specificity, and 63.9% 
sensitivity2. F-measure as a weighted average over two classes is 67.1%. 

BDP with 5 iterations of weight adaptation, DBSCAN (estimated ߝ ൌ0.005), minPoints = 21, IPA threshold = 0.3, clustering inside classes (CIC), 
obtains 2 groups. The accuracy with J48 without feature selection is 70.18%, 
specificity is 71.5%, sensitivity is 68.6%, and weighted average F-measure is 
70.20%. Our experiments with BDP identified that having DBSCAN assigned all 
instances of the training set to the same group except for some instances 
qualified as noise should deliver the original performance of the base classifier 
that does not use weights. However, instances discarded as noise (about 3%) 
lead to decrease in accuracy for about 4%. Therefore, we conclude that some loss 

                                                 
2  Sensitivity and specificity are the most widely used statistics used to describe a 

diagnostic test. Sensitivity is a probability of a positive test among patients with disease 
specificity is a probability of a negative test among patients without disease. 
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in performance of BDP is credited to non-optimal settings for parameters in a 
clustering algorithm. Increasing ߝ may reduce noise, but decreasing ߝ will not 
help finding larger number of smaller subgroups (as they probably do not exist 
according to DBSCAN), it will just increase noise. 

As k-Means is used on the entire data set with 8 clusters as a parameter, 
only 5 clusters were found (WEKA’s implementation allows that). With IPA 
threshold = 0.25 these subgroups are not merged. Accuracy is 70.06%, specificity 
is 71.00%, sensitivity is 68.9%, and weighted average F-measure is 70.10%. If 
only 5 clusters are specified as a parameter, the clustering process goes 
differently, 5 clusters are found, and performance is slightly lower. 

Having 4 clusters specified on the entire data set resulted in 4 subgroups 
found, two of which are merged with IPA < 0.25. However, the results are 
slightly better with 3 final pure-class groups – accuracy is 70.62%, specificity is 
71.7%, sensitivity is 69.3%, and weighted averaged F-measure is 70.07%. With 3 
clusters the accuracy is 70.51%, specificity is 73.10%, sensitivity is 67.4%, 
weighted average F-measure is 70.05%. 

Manipulating the number of clusters and IPA threshold in BDP with 
k-Means in this manner we tried to find the number of clusters that corresponds 
to better accuracy of weighted k-NN (pure-class groups). 

Clustering inside classes did not produce drastic changes in accuracy, 
more clusters were found: k-Means with CIC, 4 clusters per class, has found 8 
subgroups. After using them as final pure-class groups with IPA threshold = 
0.25, k-Means accuracy is 70.01%, specificity is 72.4%, sensitivity is 67.10%, and 
weighted average F-measure is 70.00%. With pure-class subgroups functionality 
of BDP corresponds to a weighted k-Nearest Neighbor that takes advantage of 
distances transformed by weights. Having the same groups by k-Means, we 
have compared performance of IPA-based agglomerative merging (in this case, 
weighted k-NN) to performance of a meta-classifier that builds a J48 decision 
tree over group (cluster) labels, this way predicting which base classifier to 
select. The performance of k-Means with meta-classifier has been lower: 
accuracy is 67.68%, specificity is 69.5%, sensitivity is 65.5%, and weighted 
average F-measure is 67.7%. 

Manipulating the number of clusters and IPA threshold in BDP with 
k-Means we tried to find the number of clusters that corresponds to better 
accuracy of weighted k-NN (pure-class groups). 

Furthermore, we have explored pairwise and one-against-all combinations 
of subgroups in a meta-classifier with the same 5 clusters obtained by k-Means 
on the entire data set, which is another way to merge subgroups. Only in this 
case, instead of merging according to feature weight profiles or class 
separability, we can explore all possible combinations. This approach can 
provide additional insights of data structure, such as hierarchical structure 
(one-against-all subgroups). In pairwise combinations, if both include only 
instances of one class, that combination will not have an important vote in the 
combination scheme, but meaningful combinations of different subclasses 
might have. 
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Using the same settings as above, but instead of giving group labels to 
multi-class meta-classifier, we used WEKA’s Multi-Class Classifier with J48 
with pairwise and one-against-all combinations. The results obtained with 
pairwise combination are the following: 70.07% accuracy, 71.00% specificity, 
68.90% sensitivity, and 70.1% weighted average F-measure. 

The most important features appeared in groups are related to surgery 
recommended or performed, radiation, and histology code. The homogeneous 
regions are exhibited in the age of diagnosis and region of birth features. Some 
features appeared in subproblems have specific extension code, which is hard 
to interpret by a non-expert. 

7.3.4 Summary on cancer survivor analysis 

SEER Cancer data sets exemplify the problem of unstable feature relevance in 
real-world practical tasks. These data sets demonstrate to which extent the 
problem of unstable feature relevance may appear in real-world practical tasks. 
In these data sets, unstable feature relevance appears to some extent. 

Regional and time period factors appear to be important in determining 
data structure. This may be due to different environmental factors such as air 
and water pollution, nuclear and chemical accidents in the area, industrial 
waste discharges, etc. On a larger scale, even preferences in lifestyle could be 
related to a regional factor. For example, Los Angeles is well-known for 
popularization of sports, healthy habits, body weight control - all known to be 
risk-lowering factors of cancer and other diseases. These are example of 
hypotheses provided to epidemiology experts for further testing by application 
of data partitioning technique. Data partitioning results may suggest a need for 
collection of measurements for additional features, or extracted latent features. 

7.4 Prediction of cancer types using microarrays 

The recent development of high-throughput genomics technologies has enabled 
researchers to take a comprehensive and high-resolution view of the genetic 
and epigenetic changes present in cancer cells. A new field of cancer genomics 
studies abnormalities that promote cancer development. These include changes 
in DNA sequence and organization, DNA copy number, gene and microRNA 
expression, alternative splicing, DNA methylation, and histone modifications. 
Due to rapid accumulation of genomics data its successful translation into 
meaningful clinical end points has proven difficult. Complex, high-dimensional 
cancer genomics data face a challenge of integration, modeling, and knowledge 
discovery. (Cancer Genomics Workshop Materials, 2011) 

Microarray chips enable measuring the expression level (i.e. the intensity 
of the expression) of thousands of genes simultaneously under different 
conditions or in different tissues. Therefore, specifics of classification problems 
in bioinformatics include redundant representation of the problem in a high 
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dimensional feature space where each feature corresponds to a gene, and the 
number of instances, each corresponding to a single experiment on measuring 
gene expression, is fairly limited. Typically, an instance is presented by a 
number of genes that are irrelevant, insignificant, or redundant to the 
classification problem at hand (Zhou & Mao, 2005). 

Data mining techniques are successfully applied in gene expression 
analysis. In particular, functional relationships among genes are discovered 
finding groups of instances, where certain subsets of genes have similar 
expression behavior. Knowledge on functional relationships among genes is 
important for understanding gene regulation. Application of standard 
clustering methods is limited for this kind of task. Seeking subsets of genes as 
features with respect to groups of instances as microarray chip experiments is 
imposed by the existence of a number of experimental conditions where the 
activity of genes is uncorrelated (Madeira & Oliveira, 2004). Therefore, this 
domain is a target application for Bidirectional Data Partitioning in 
classification problems, having subspace clustering as an established tool for 
clustering tasks. 

Bioinformatics and biomedicine are rapidly changing fields with explosive 
growth of advanced technologies. Many new directions have been explored in 
the last decade. The problems described below are used for illustration 
purposes and do not necessarily reflect current state of research in these fields. 
Genetics basics needed for understanding the background of the problem 
domain are provided in the Appendix 5. 

7.4.1 Predicting the type of cancer based on gene expression data 

Cancer is a genetic malady, mostly resulting from acquired mutations and 
epigenetic changes that influence gene expression. Accordingly, a major focus 
in cancer research is identifying genetic markers that can be used for precise 
diagnosis or therapy. (Tamayo et al., 2002) Having collection of tumor tissue 
samples from patients with cancer, researchers study the genome of these 
cancer samples for clues about cancer’s root cause, how it thrives and spreads, 
and how to stop it. The Broad Institute of Harvard and MIT, MA, USA, has 
several dedicated platforms to collect and track information on cancer tissues 
prior to analysis. MIT Center for Genome Research, Whitehead Institute, 
Cambridge, MA, USA, has released data sets containing gene expression data 
open to public, which can be accessed from ELVIRA Biomedical Data Set 
Repository (ELVIRA, 2011), or in a raw format (Cancer Program Data Sets, 
2011). 

Microarrays are used to get clues about which genes are expressed to 
control cell, tissue or organ function. By measuring the level of RNA production 
for every gene at the same time, researchers can learn the genetic programming 
that makes cell types different and diseased cells different from healthy ones. 
Different types of microarray use different technologies for measuring 
messenger RNA expression levels. Affymetrix arrays are oligonucleotide 
microarrays, which are currently the most popular commercial arrays 
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(Pitetsky-Shapiro & Tamayo, 2003). Affymetrix GeneChip platform generate 
absolute expression values from a single sample 

Biological samples (tissue samples) are homogeneous or heterogeneous 
mixtures of different cell types (e.g. malignant cells with varying degrees of 
differentiation, stromal elements, blood vessels, and inflammatory cells). Two 
tumors with similar clinical stages can vary markedly in grade and in relative 
proportions of different elements (e.g., prostatic adenocarcinoma). Tumors of 
different grades might potentially differ in gene expression, and different 
markers can be expressed either by malignant cells or by other cellular 
elements. 

Because heterogeneity in the sample population can complicate the 
interpretation of gene expression studies, sample selection is an important issue 
that must be kept in mind when analyzing gene expression data. (Tamayo et al., 
2002) 

Two major sources of variation include biological variation and variation 
due to technical factors. The latter has been significantly reduced with 
technologic improvements. To understand the range of biologic variation the 
number of samples is increased. However, the process of obtaining additional 
biological samples is often expensive, involved, and time consuming 
(Mukherjee et al., 2003). Therefore, high-level analysis techniques in data 
mining should compensate for heterogeneity in data affecting performance of 
predictive modeling. 

Leukemia (AML-ALL) data set. 

The leukemia data set is described in Golub et al. (1999). This data set contains 
gene-expression levels measured from bone marrow and peripheral blood 
samples of 72 patients with either acute lymphoblastic leukemia (ALL, 47 
instances) or acute myeloid leukemia (AML, 25 instances) for 7129 human genes 
(features). ALL and AML are two classes. All the samples were derived from 
patients at the time of diagnosis before chemotherapy. The raw data are 
available among Cancer Datasets from Broad Institute (Cancer Program Data 
Sets, 2011) and at ELVIRA Biomedical Data Set Repository (2011). The original 
raw data is generated by the Affymetrix Gene Chip microarray scanning 
software. The task is to predict one of two cancer types based on a subset of 
genes relevant to discriminate between ALL and AML. The goal is to see if the 
type of cancer can be predicted based solely on gene expression monitoring. 
Authors in Golub et al. (1999) pointed out that two classes were detected by 
clustering without prior knowledge of classes. Therefore, importance of this 
study extends to development of a general strategy for discovering and 
predicting cancer classes. This also suggests that application of BDP in 
discovering subclass/superclass data structure has a potential in this kind of 
problems. 

The original data generated by Affymetrix's GeneChip software includes 
markers for gene presence in a sample. Thus, each sample has two pieces of 
data associated with it: an expression value for a gene and an 
Absent/Marginal/Present (A/M/P) call. The A/P calls are an indication of the 
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confidence in the measured expression value. These markers are currently 
ignored in GeneCluster2, software produced by the research team of Whitehead 
Cancer Genomics Group, and by many other researches who presented results 
on this and other related data sets (Zhou & Mao, 2005; Wang et al., 2007; 
Ramaswamy et al., 2001). 

Our preliminary results obtained after partitioning the entire data set with 
BDP have discovered that class ALL is densely grouped in feature f2280 (gene 
M84526) and f1179 (gene M19507), while class AML is densely grouped in feature 
f758 (gene D88270) and feature f4680 (gene X82240). Figures 15 and 16 
demonstrate 2-dimensional projections of this data set. However, this clear 
result is explained by markers for genes absence. Genes D88270 and X82240 are 
absent in most cases of AML and present in most cases of ALL. Genes M19507 
and M84526 are vice versa, absent in most cases of ALL and present in most 
cases of AML. There are other genes that expressed a similar pattern. This result 
connects with the cancer prediction results reported by Wang et al. (2007). They 
have quantified gene expression levels which can be considered as supervised 
discretization. This quantification is meant to represent gene regulation 
information that is implicitly represented in gene expression data. This 
information is also reflected in gene expression markers. 

 

FIGURE 15 ALL_AML Leukemia data set, genes D88270 and X82240. 72 samples from 
bone marrow and peripheral blood as instances, expression levels for 7129 
genes as features. Shown in two dimensions corresponding to genes D88270 
(GB DEF = (lambda) DNA for immunoglobin light chain) and X82240 (TCL1 
gene (T cell leukemia) extracted from H.sapiens mRNA for Tcell 
leukemia/lymphoma 1). 
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According to Wang et al. (2007), from a biological viewpoint, gene expression 
tends to be controlled by gene regulation activities. It appears that biological 
phenotypes are more directly correlated with gene regulation than gene 
expression results. For this reason, gene regulation information can be extracted 
from microarray data for cancer classification to avoid the harmful effects of 
noise and errors at the gene expression level. As a result, a set of genes have 
been selected following a global filter feature selection approach. 

The results presented below are performed using the original set of genes 
without normalization. Normalization (standardization) is applied if one is 
interested in emphasizing relative rather than absolute differences in gene 
intensity and therefore, optional (Tamayo et al., 2002). 

Class discovery by means of clustering performed in Golub et al. (1999) 
aimed to identify fundamental subtypes of cancer in general, and finer 
subclasses of Leukemia, in particular. Using SOM in a modification of the 
GeneCluster computer package (Reich et al., 2004), they have obtained the 
following 4 clusters. Immunophenotype data on the instances within clusters 
have shown that four clusters largely corresponded to AML, T-lineage ALL, 
B-lineage ALL, and B-lineage ALL, respectively (Golub et al., 1999). One 
subgroup is exclusively AML, another contains all 8 T-ALLs, and last two 
subgroups contain the majority of B-ALL instances. The results suggested that 
the latter two subgroups might best be merged into a single class. 

 

FIGURE 16 ALL_AML Leukemia data set, genes M19507 and M84562. 72 samples from 
bone marrow and peripheral blood as instances, expression levels for 7129 
genes as features. Shown in two dimensions corresponding to genes M19507 
(MPO Myeloperoxidase) and M84562 (DF D component of complement 
(adipsin)). 
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In our experiments, clustering has been performed on the entire data set. 4 
clusters have been discovered with an average-linkage distance-based 
hierarchical clustering with 3 instances as outliers. 

Clusters as subgroups and classes are placed in the following 
correspondence. Instances indices (first instance labeled “1”): 

Subgroup 1: 28 29 30 31 32 33 35 36 38 60 61 62 65 67 68 70 71 72 (AML). 
Subgroup 2: 1, 3, 4, 6, 7, 8, 9, 23, 27, 40, 44 (AML); 37 (ALL). 
Subgroup 3: 12, 21, 45, 46, 47, 48, 49, 50, 56, 58 (ALL); 34, 59, 63, 64, 66, 69 (AML). 
Subgroup 4: 2, 5, 10, 11, 13, 14, 15, 16, 18, 19, 20, 22, 24, 25, 26, 41, 42, 43, 51, 52, 53, 54, 55 
(ALL). 
Noise: 17, 39, 57 (ALL).  

12 genes from the rank top are selected in each group to compare with 12 
most important genes identified on the entire data set in (Zhou & Mao, 2005). 

Gene importance profiles based on weights are shown in Figure 17. 
Profiles are shown for all genes that appear as top 12 in one or more subgroups. 

4 genes with the highest ranks in subgroups: 

1: D88270, L33930, X82240, M11722. 
2: U46499, M84526, M19507, D88422. 
3: Y09616, X95190, M23323, M12886. 
4: M84526, U46499, M27891, D88422. 

 

FIGURE 17 Gene importance profiles in 4 subgroup discovered in ALL_AML Leukemia 
data set. 

BDP with weight adaptation performed in 5 iterations over 8 nearest neighbors, ߣ ൌ ߚ ,0.2 ൌ 2, DBSCAN with  -radius = 0.1023 and minPoints = 4, clustering 
on entire data set, has detected only 2 pure-class subgroups. With IPA lower 
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than 0.2885 they were not merged back to the original data set, hence 
distance-based classifier combination scheme possessed functionality of 
weighted k-NN. Using meta-classifier resulted in functionality of the base 
classifier with weight information lost. Accuracy for weighted k-NN and J48 is 
86.3014% and 87.6712 correspondingly. 

Preliminary experiments have shown that DBSCAN was not able to find 
subclasses. It has assigned 43 instances to one pure-class subgroup and 23 to 
another. 6 instances are filtered as noise. CFS raised accuracy of J48 to 87.5%.  

BDP with weight adaptation performed in 5 iterations over 8 nearest 
neighbors, k-Means with 4 clusters per class, clustering inside classes, has 
detected 8 subgroups on entire data set. With IPA agglomerative merging at 
IPA = 0.3, subgroups were merged into 2 groups, where the smallest subgroup 
included 14 instances, 3 ALL and 11 AML. The accuracy obtained with such 
partitioning using J48 is 90.2778%. Lowering IPA to 0.225 resulted in 4 groups 
and 84.7222% accuracy. Using the original 8 groups with meta-classifier 
resulted in 91.6667% accuracy. 

The success of data partitioning cannot be considered with respect to 
accuracy only. The same result on weighted distances used in three different 
clustering algorithms with their parameters settings leaded to different results, 
not to mention different ensemble integration schemes and possibly different 
base classifiers. For example, J48 has embedded feature selection. Therefore, 
feature selection performed by means of feature weighting had no effect on 
accuracy. 

As for manual selection of 4 features discovered using bidirectional data 
partitioning, the improvement in accuracy is considerable: J48 – 91.6667%, BDP 
with k–Means, clustering inside classes, 4 clusters per class, meta-classifier 
combination scheme with J48 – 93.0556%, BDP with k–Means, clustering inside 
classes, 4 clusters per class, IPA threshold = 0.2 with J48 (3 final groups) – 
94.4444%, BDP with k–Means, clustering inside classes, 4 clusters per class, IPA 
threshold = 0.02 with Multi-Class Classifier and J48 – 95.8333%. 

Cancer class prediction represents an important paradigm in molecular 
classification. The simplest analysis involves selecting the features (genes) most 
correlated with a phenotypic distinction of interest. These features or “marker 
genes” are biologically interesting in themselves, but they can also be used as 
the input of a classification algorithm that uses existing instances with known 
class labels (samples) to build a model to predict class labels for future samples. 
For example, marker genes (a subset of relevant features) in a cancer data set 
are given as an input to a classifier to distinguish cancer types on the basis of 
site / cell of origin or clinical outcome. (Tamayo et al., 2002) This data set has 
been extensively studied in the literature, in particular using filter feature 
selection. Published report on gene selection by gene using ranking techniques 
for Leukemia data includes 100 top genes obtained using 8 gene ranking 
techniques (Su et al., 2003). 
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7.4.2 Summary on cancer types discovery 

According to medical research in cancer diagnostics, nowadays there is no 
general approach to identify new cancer types (classes) or for assigning tumors 
to known categories (classes). Cancer classification relies on clinical 
information, such as data related to patient age, gender, race, history of 
previous diseases and treatments, diagnostic information, etc. together with 
histopathological information of diseased tissue obtained after examination of 
tissues with surgery, biopsy or autopsy. The interpretation of both information 
types is subjective and tends to place tumors in currently known cancer classes 
based on the tissue of origin of the tumor. 

Clinical information often can be incomplete or misleading. In addition, 
there is a wide spectrum of cancer morphology and many tumors are atypical 
or lack of morphological features. These difficulties can result in diagnostic 
confusion and hinder patient care, add expenses and confront the results of 
clinical trials. (Ramaswamy et al., 2001) 

Recent studies have demonstrated feasibility of cancer classification based 
solely on gene expression monitoring by DNA microarrays (Golub et al., 1999). 
This generic approach suggests a general strategy for discovering and 
predicting cancer classes for other types of cancer, independent of previous 
biological knowledge. 

The accurate classification of human cancer based on anatomic site of 
origin is an important component of modern cancer treatment. In many cases 
cancer type can be difficult to classify using standard clinical and 
histopathological approaches. Molecular approaches to cancer classification 
have the potential to effectively address these difficulties. However, decades of 
research in molecular oncology have yielded few useful tumor-specific 
molecular markers. An important goal in cancer research, therefore, continues 
to be the identification of tumor specific genetic markers and the use of these 
markers for molecular cancer classification.  

Oligonucleotide microarray-based gene expression profiling allows 
investigators to study the simultaneous expression of thousands of genes in 
biological systems. In principle, tumor gene expression profiles can serve as a 
molecular fingerprints that allow for the accurate and objective classification of 
tumors. A medical research group at the Whitehead Institute for Biomedical 
Research, USA, has developed computational approaches with application of 
supervised and unsupervised learning using gene expression data to accurately 
distinguish between two common blood cancer cases (acute lymphocytic and 
acute myelogenous leukemia) (Golub et al., 1999). The classification of primary 
solid tumors, by contrast, is a harder problem due to limitations with sample 
availability, identification, acquisition, integrity, and preparation. Moreover, a 
solid tumor is a heterogeneous cellular mix and gene expression profiles might 
reflect contributions from non-malignant components further confounding 
classification. In addition, there are intrinsic computational complexities in 
making multi-class classification. 
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8 SUMMARY AND CONCLUSIONS 

This chapter summarizes the contributions made and the conclusions gained 
from analytical and experimental investigations of classification heterogeneity. 
Classification heterogeneity and its variations have been extensively studied 
and a decomposition approach under ensemble framework has been proposed. 
Decomposition is generally a synergy of class encoding and local feature 
selection. Local predictive models are constructed for each homogeneous region 
of a data set and applied to new instances in combination or selectively. The 
search strategy for finding candidate homogeneous regions is suggested for 
each heterogeneity type. The future perspectives for development and 
extension of this approach are outlined at the end. 

8.1 Summary 

Decomposition of heterogeneous classification problems is performed in this 
thesis within an ensemble framework. It is proposed to perform such 
decomposition via selection of instances representing homogeneous regions. 

Classification heterogeneity phenomenon has been described and 
variations of the basic heterogeneity types have been considered. 
Heterogeneous classification problem can be characterized as having the class 
boundaries that are very different in different regions of the feature space. So, 
importance and contribution of different features to discriminate between 
classes varies across the set of instances. 
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Heterogeneous data has some structure related to grouping of instances at 
homogeneous regions and class labeling. This structure is usually unknown 
prior to learning. Therefore, data characteristics revealing this structure can be 
estimated using information-theoretic, statistical, and geometrical descriptors. It 
is suggested that local feature interactions and local predictive ability of 
individual features are important characteristics related to heterogeneity that 
can be estimated using feature selection heuristics. 

Class heterogeneity type is prevalent in certain practical tasks because of 
specifics of the processes generating the data used for prediction. As a result, 
data sets have a structure related to class labeling, and heterogeneity is 
exhibited around classes. Data structure in the case of classification 
heterogeneity differs in homogeneous regions having different relevant features 
and being represented by instances from different classes, or subsets of classes. 

Practical tasks often exemplify so called class heterogeneity, where 
grouping of instances in homogeneous regions is related to class labeling. In the 
case of class heterogeneity covering the representative instances is more 
straightforward, since homogeneous regions correspond to particular classes, or 
subsets of classes. For this case decomposition based on local feature-feature 
and feature-class interactions is suggested. 

In order to approximate grouping of instances in the case of class 
heterogeneity class encoding has been applied. The ensemble technique 
combining class decomposition and local feature selection is developed for this 
type of heterogeneity. A decomposition scheme for ensemble generation has 
been described. Decomposition within an ensemble learning framework makes 
use of the accuracy improvement mechanisms provided by ensemble learning. 
In particular, the use of several learning models generated to cover one 
homogeneous region has promoted increase of prediction accuracy. 

Three feature merit measures employed in feature selection methods have 
been experimentally studied regarding their ability to estimate local 
feature-feature and feature-class interactions. A correlation-based feature subset 
selection based on the Symmetrical Uncertainty measure have been used in 
combination with one-per-class and pairwise class decomposition schemes in 
the experiments on the natural and synthetic data sets. 

During the experimental study various aspects of using this combined 
ensemble technique have been studied. They include specifics of the basic 
learning algorithms, representation of the training set (feature types, class 
representations, irrelevant and redundant features), and integration of the 
component classifiers in ensemble. 

The Importance Profile Angle (IPA) measure is considered as providing an 
additional indication of heterogeneity. In the experimental study IPA has been 
calculated for the initial problem and subproblems obtained after 
decomposition. Class separability and complexity measures applied to 
classification problem at hand may point out that heterogeneity is not present. 
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The results of the analytical and empirical study described in this thesis 
are encouraging and may be considered as an important step towards 
developing specific solutions for practical problems. 

8.2 Conclusions 

Over the years researchers in data mining, machine learning, and other related 
fields have come up with various algorithms and improvements to existing 
approaches. Currently, there is a vast majority of supervised learning 
algorithms that have proven success for different applications. Some techniques 
and approaches are considered as most popular in data mining and contribute 
to trend setting (Wu et al., 2008). But on a larger scale, no one method is “best” 
because its applicability depends on the data characteristics. 

In practice, every algorithm takes advantage of certain characteristics and 
relationships of a given data set. If those characteristics and relationships vary 
across the data set one deals with heterogeneity in a classification problem. The 
idea of bidirectional data partitioning is driven by this problem of 
heterogeneity, which was recognized more than ten years ago and continuously 
evolved since then. The goal of bidirectional partitioning is to automatically 
detect heterogeneity uncovering data structure, model subproblems, and 
combine those local models using the strengths of well-known 
divide-and-conquer approach. 

The goal was accomplished via a synergy of feature selection/weighting, 
classification, and clustering considering them in a single framework and 
appealing to their common basic criteria of class separability and at the same 
time employing the power of a traditional ensemble approach. 

The following conclusions have been drawn from the empirical 
investigation of applicability of the combined ensemble technique derived from 
the ideas of classification heterogeneity decomposition. 

The experimental study has confirmed known factors affecting 
performance of the feature ranking and selection methods used to perform local 
feature selection, and the basic learning algorithms used to implement the 
component classifiers. Among those factors are imbalanced class 
representations, globally irrelevant, redundant and interacting features, 
combination of different feature types, small sample size providing insufficient 
representation of the classification problem, and intrinsic complexity of a 
classification problem whenever the analysis goal and the data collection goal 
did not fully coincide. Understanding these factors is crucial in interpretation of 
the obtained results, especially with such multi-component technique as BDP. 

Different feature selection and classification methods fall under influence 
of those factors to a different extent. Besides, each learning algorithm has its 
own bias in building a learning model as well as each method evaluating merit 
of an individual feature or a feature subset has its own bias in producing 
estimates. 
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Relevance of the features to discriminate between classes can be 
determined evaluating a subset of features, or each feature individually. 
Evaluation of individual features independently of other features may skip 
important feature interactions, for example, when two features have a 
discriminative power together, but each of them contributes to class 
discrimination independently. However, some feature merit measures take into 
account feature interactions indirectly, for example, ReliefF considered in this 
thesis. Evaluation of a feature subset is more effective, but also is a more 
expensive method because of time required to evaluate feature subsets. As an 
example of such a method, correlation-based feature subset selection has been 
used in the study. This feature selection method can be comparative or superior 
to the methods evaluating features individually in many cases. However, 
correlation-based feature subset selection cannot reveal higher order feature 
interactions, as contextual features sometimes have. In this thesis it is shown 
that correlation-based feature subset selection can be successfully applied in 
decomposition of class heterogeneity, where grouping of instances in 
subproblems is not defined by higher order dependencies. A possible approach 
based on pairwise combination of features to produce one feature or binary 
encoding of feature values is described. 

The experimental results have revealed that retaining both correlated 
features, retaining one of them, or discarding one of them is appropriate in 
different situations depending on the existing interaction between features. 
Hence, different individual feature / feature subset selection methods succeed 
in different situations being based on different assumptions about feature 
interactions. 

The conclusion made from the experimental investigation of one-per-class 
decomposition is that the major problem is an imbalanced representation of 
two-class subproblems, especially when the initial classification problem 
contains many classes. Pairwise class decomposition helped to overcome this 
problem in many cases. In addition, with pairwise class decomposition more 
component classifiers are generated, thus homogeneous regions are better 
approximated and accuracy of ensemble prediction is higher in general than 
with one-per-class decomposition. Nevertheless, for the data sets with many 
classes pairwise class decompositions would be impractical. In general, the 
1-Nearest Neighbor learning algorithm is more resistant to imbalanced class 
representation compared to Naїve Bayes, and especially C4.5. 

As the goal of the experimental study was to discover specific domains 
where the approach is applicable, the comparative studies with many different 
data sets for statistically significant results were not performed. After 
experimental investigation of class heterogeneity decomposition, the 
conclusions are drawn taking into account the magnitude of standard 
deviation. Changes in accuracy are considered as significant when standard 
deviations are relatively small. When standard deviations are of the same order 
of magnitude as accuracy improvement, these results are not significant. 
Experiments with BDP are mostly illustrative. 
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There are alternative approaches to handle imbalanced class 
representations. Stratified sampling is a typical solution, but it can be applied 
with one-per-class decomposition only if the minority class in a subproblem is 
represented by a sufficient number of instances. Another possible approach is 
to apply cost-sensitive learning, since different errors are not equally 
destructive. 

In BDP the problem of imbalanced class representation transforms to a 
problem of imbalanced group representation. The following regulation 
mechanism is applied: a designated parameter is used to control the minority 
group capacity. Minority group is merged with another group during 
IPA-based agglomerative merging. Noise group, which should be kept to a 
reasonable minimum with clustering parameters, is not participating in model 
construction. 

Application of correlation-based feature subset selection (CFS) using 
Symmetrical Uncertainty with one-class and pairwise class decompositions has 
been justified in many cases. As a result, features individually predictive of the 
class are used in the feature subspace projections for homogeneous regions. 
However, in some situations heterogeneity is exhibited via the presence of 
contextual features, as for example in the Vowel context data set. Relevance of 
primary features depends on the values of contextual features, i.e. higher order 
dependencies take place. Correlation-based feature subset selection assuming 
feature independence given the class does not perform well in this case. The 
Information gain and ReliefF feature merit measures are applied to produce 
ranks of features. Those ranks can be used in feature selection, for example, 
within the correlation based approach, or in order to gain additional 
information about the presence of heterogeneity by computing the Importance 
Profile Angle (IPA) between feature relevance vectors. 

When decomposition is performed for the data set without any prior 
knowledge about heterogeneity, IPA calculations between subproblems may 
indicate the presence of heterogeneity. Then feature merits obtained using 
Information gain or ReliefF for the initial problem and subproblems are used in 
feature merit vectors between which IPA is measured. Success of their 
application depends on the properties of the particular data set, mainly, on 
feature-feature and feature-class interactions. 

Because some of the factors described above are always present in the 
natural data, from the pool of selected natural data sets only a few came under 
influence of the accuracy improvement mechanisms provided by a combined 
class decomposition ensemble with local feature selection. For several data sets 
the effects produced by class decomposition and feature selection separately 
have diminished in combination. However, in several cases accuracy has been 
increased only in combination of class encoding and local feature selection. 

The lack of consensus in the results produced by different feature ranking 
methods and instability of their individual results has been a subject of research 
in data mining community for quite some time (Boz, 2002; Alelyani et al., 2011; 
Wang & Khoshgoftaar, 2011; Gao et al., 2011). Therefore, either selection of a 
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pre-defined number of features or selection by a cut-off value can greatly affect 
the accuracy. There are methods to overcome this problem including parameter 
tuning, but for the sake of simplicity and, in some cases, feasibility, these 
approaches are not applied here acknowledging the fact that current 
performance is not the best possible. 

Integration scheme for the two-class component classifiers considered in 
this study greatly depends on how good the component classifiers are in 
determining probability of being in one of the classes. In order to get a correct 
classification with this integration scheme probability that an unclassified 
instance belongs to class B of D-1 classifiers should be greater than 50%, but 
smaller than probability that this instance belongs to class A produced by the 
right classifier to use, where D is the number of classes. 

Calculations of the Importance Profile Angle is helpful in detection of 
heterogeneity despite the fact that it is heavily affected by imperfections of the 
obtained feature merits. In the cases accuracy increase has been reached after 
decomposition, IPA may indicate whether it is due to the presence of 
heterogeneity in the initial problem, or some other reasons. When IPA is 
applied as a measure of similarity between feature weight profiles, reaching 
consensus is not an issue. 

Often in practical tasks the prior knowledge about the data structure 
related to heterogeneity is fairly limited or not available. In such cases the 
homogeneous regions to be modeled as subproblems can be estimated, for 
example, using some information theoretic, geometrical or statistical descriptors 
(Ho & Basu, 2002). The study is aimed to cover applicability of BDP, and the 
entire classification heterogeneity decomposition approach, describing 
additional class separability and complexity measures as well as indirect 
heterogeneity testing procedures, which at least can point to non-existence of 
heterogeneity in the domain of interest and can be useful in preliminary data 
analysis. 

High computational complexity of BDP, mostly due to distance-based 
clustering and weight adaptation. is well justified by a natural setup, when 
investment to computational resources is saving time of a human expert that 
looks for decomposition of a complex classification problem formulated on 
voluminous high-dimensional data onto simpler subproblems. 

Currently, the most promising results of classification heterogeneity 
decomposition approach application are obtained in biomedicine, in particular, 
in molecular classification of cancer types. The primary goal of cancer genomics 
research with application of predictive data mining is discovery of cancer 
subclasses and local gene interactions. BDP has a great potential in this domain 
being conceptually based on local feature relevance discovery and 
decomposition. This technique is very flexible and can be easily extended to 
target problems associated with every particular project or study in cancer 
genomics. Future application domains are described in Section 8.4. 
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8.3 Limitations and future work 

The study of classification heterogeneity phenomenon described in this thesis 
has opened many other research directions regarding decomposition of 
heterogeneous classification problems. 

The combined ensemble technique for heterogeneity decomposition can be 
extended for all variations of heterogeneity since the way to partition the set of 
instances for decomposition is determined. The alternative decomposition 
schemes may be developed for different variations of classification 
heterogeneity. The key to developing such decomposition schemes is in the 
investigation of data structure and characteristics related to different types and 
variations of heterogeneity. In addition, predictive performance is greatly 
influenced by the basic learning algorithm and an ensemble integration scheme 
selected. 

Comparative analysis of learning algorithms that relate their performance 
to data characteristics has received attention only recently. Typically the 
measurements applied to data are some statistical or information theoretic 
descriptions. In classification tasks, where instances are assigned with class 
labels, it is also important to measure geometrical characteristics of class 
distribution. (Ho, 2002) 

Some measures may highlight the manner in which classes are separated 
or interleaved. Therefore, another approach to heterogeneity decomposition is 
based on geometrical data characteristics (class boundaries, and structure of 
clusters regarding class labeling) that serve to find subsets of instances 
representing homogeneous regions simultaneously analyzing different feature 
subspace projections. 

Investigation of different types and variations of classification 
heterogeneity will be continued aiming to develop a solution for a general case 
of classification heterogeneity using geometrical approach to approximate the 
homogeneous regions in the data. Applicability of spectral clustering to find 
homogeneous regions is currently under research. 

Additional theoretical and experimental work has to be performed before 
the ideas of decomposition using an ensemble learning framework for 
heterogeneous classification problems can be routinely used in practice. The 
study resulted in this thesis has the following limitations that should be taken 
into account in further research on this topic. 

Geometrically, the decomposition approach applied expands only to 
discriminating by hyperplanes orthogonal to the axes of features in the feature 
space where instances reside. The problem of finding new or derived features 
other than given features can be addressed in the future. A liner combination or 
other functional combination of several features may contribute to separating 
out homogeneous regions. 

The problems with data that require pre-processing, for example, noisy 
data, missing feature values, small data sample, imbalanced class 
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representation, and so on, may significantly influence predictive performance 
and smooth the effect of application of the technique proposed, as has been 
demonstrated in the experimental study. Such data problems should be 
regarded as a separate issue along with the problem of mixed feature types. A 
number of experimental trials and data sets used in experiments can be 
increased for obtaining statistically sound conclusions. 

In this thesis decomposition approaches are developed for class 
heterogeneity, and a general case, feature space heterogeneity. Approach based 
on contextual features is described, but not implemented. It remains a topic of 
future research considering some preliminary results obtained in this thesis and 
in Apte et al. (1998). Class heterogeneity decomposition is limited to 
one-per-class and pairwise class encoding. Whenever one-per-class encoding is 
applied to a general class heterogeneity case, the feature subsets used in 
different component classifiers will be interleaved. Pairwise encoding method 
may generate too many models in some situations. Other class encoding 
methods will be evaluated in further studies.  

Another research direction to be explored to eliminate this limitation is 
related to increasing the number of local models covering homogeneous regions 
to make use of the mechanisms of accuracy improvement of ensemble learning. 
Accuracy of the ensemble constructed on locally relevant features for class 
heterogeneity can be further improved using direct error minimization 
approach as in traditional sampling techniques, such as boosting and bagging. 
By the preliminary results considered in Skrypnyk et al. (2003), incorporation of 
boosting increases a number of learning models providing better coverage of 
homogeneous regions. 

Integration of local learning models to predict class membership of new 
unclassified instances is a crucial issue in development of the decomposition 
approach based on the ensemble learning framework. Alternative integration 
schemes based on selection will be considered in the future. Promotion of local 
regions coverage optimization by means of stochastic discrimination theory is 
another potential way to improve the existing technique. 

Addition of randomizing component would enhance ensemble based on 
ensemble theory. That is during approximation of local regions one may 
introduce boosting or random clustering and create partitioning multiple times 
to cover for errors. Such approaches have been widely explored before and 
added to increased performance. Applicability of other class separability 
measures and clustering techniques may provide improvements in certain 
situations, or in general. Information-theoretic based criteria for class 
separability and clustering are currently under investigation. 

As every method in data mining, BDP has its advantages and 
disadvantages, situations where it will produce good results and situations 
where it will fail. BDP includes many components: feature weighting, distance 
function, clustering, feature selection, ensemble integration, and classification 
with a base classifier. All of those components influence performance of BDP. 
Their standalone performance is extensively studied in the literature. For 
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example, weight adaptation is implemented using k-Nearest Neighbor 
technique and Manhattan distance function. k-Nearest Neighbor is not suitable 
for data with varying density. In high dimensions, data is sparse and the 
concept of similarity may not be meaningful anymore. k-Nearest Neighbor is 
computationally expensive, but using Manhattan distance instead of Euclidean 
helps to lower computational costs. Distance-based clustering techniques also 
depend on a distance function choice. Reaching consensus between different 
clustering techniques is a known problem in data mining. Clustering techniques 
in BDP produce very different results; therefore, particular choice should 
depend on data specifics. DBSCAN, having many advantages, is also sensitive 
to varying densities and high dimensions. Uneven density can be attributed, in 
particular, to a hierarchical data structure. BDP targets this problem with 
weight regulation in a distance function. Still, if different classes have different 
densities, DBSCAN requites different parameter settings in the 
clustering-inside-classes mode. Otherwise, most instances are considered as 
noise. Estimation of the radius parameter inside classes leads to additional 
computational expenses and not always effective. k-Means tends to produce 
equal-sized clusters, which is not suitable for situations where subgroups are 
very unequal. One way to overcome this problem is to increase the number of 
clusters, and then subsequent application of IPA-based agglomerative merging 
procedure will join clusters that belong to one subgroup. 

Empirical evaluation of BDP has uncovered many specifics not associated 
with the use of particular component techniques. IPA-based agglomerative 
merging procedure can merge two subgroups at a time when sometimes it is 
preferable to merge all candidate subgroups in one go. The latter has it is own 
drawbacks, therefore agglomerative merging was the choice. Experimental 
evaluation has shown that in many situations, even a less than ideal merging 
from domain knowledge point of view still leads to improved classification 
performance. 

Multiple components of BDP have dual influence on the final result. On 
one side, their choice is complicated without proper understanding of how 
those components work and what their parameters mean overall leading to a 
poor result which cannot produce any meaningful knowledge about the 
problem domain or show increased performance either. On the other side, 
consensus of the components can lead to consolidation covering for each other’s 
drawbacks. That is a main reasoning for designing most of the combined 
techniques in data mining. 
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YHTEENVETO (FINNISH SUMMARY) 

Skrypnyk, Iryna 
Epävakaiden ominaisuuksien merkitys luokittelutehtävissä 
Jyväskylä: Jyväskylän yliopisto, 2011 
Väitöskirja 
 
Viime vuosikymmenen aikana tapahtunut tiedonkeruuteknologioiden 
kehittyminen on muuttanut tiedonlouhinnan luonnetta huomattavasti. Tänä 
päivänä yksi tiedonlouhinnan haasteista on rakenteeltaan yhä 
monimutkaisemmaksi käyvän datan käsittely. Tämän seurauksena datan 
sisältämissä muuttujissa/piirteissä esiintyy usein epävakaisuutta. Toisin 
sanoen, merkityksellisten piirteiden joukko ei ole sama läpi koko 
havaintoaineiston. Tarkastellessa tätä ongelmaa toisesta näkökulmasta, data 
sisältää lokaaleja aliavaruuksia, joissa relevanttien piirteiden joukot eroavat 
toisistaan. Globaalit mallit eivät täten kykene tuomaan oleellista tietoa esille 
datarakenteista. 

Tässä väitöskirjassa kuvataan epävakaiden piirteiden relevanssiongelma 
luokittelutehtävien yhteydessä. Työssä käsitellään yksityiskohtaisesti myös 
heterogeenisten luokitteluongelmien käsitettä sekä erityyppisten 
piirreavaruuksien heterogeenisuutta. Väitöskirjassa esitellään myös 
osatehtävistä johdettu monimalliratkaisu. Osatehtävissä annettu 
luokittelutehtävä on jaettu ryhmittelemällä joukoksi yksinkertaisempia, 
paremmin separoituvia tehtäviä, joista kullekin voidaan luoda oma malli. 
Ratkaisu esitetään kokonaisuusmallin viitekehyksessä. Piirteiden relevanssin 
osalta epävakaiden luokitteluongelmien hajotelmien muodostamiseen 
ehdotetut hakustrategiat perustuvat luokkien suhteen erilaisiin 
tarkkuustasoihin. Nämä kandidaattiosatehtävät arvioidaan piirteiden 
relevanssiprofiilien kautta. Profiilit esitetään painovektoreina, jotka saadaan 
piirteiden hyötyä kuvaavista mitoista tai vaihtoehtoisesti etäisyysmittojen 
sovittamisen tuloksena. Muita kompleksisuusmittoja, kuten luokkien 
erottelevuutta ja tiheyspohjaisia mittareita, ehdotetaan hajotelmien 
arvioimiseen ja alustaviin heterogeenisuustesteihin. 

Tämä tutkimus edistää luokittelutehtäviin liittyvien 
data-analyysitavoitteiden saavuttamista ja valottaa tiedon rakenteisiin sekä 
monimutkaisuuteen liittyviä näkemyksiä. Vaikutuksia luokittelukykyyn 
tutkittiin lukuisten biolääketieteen tutkimusalueelta saatujen synteettisten ja 
aitojen aineistojen sekä yleisesti käytettyjen testiaineistojen testaamisen kautta. 
Tässä tutkielmassa havaittiin, että osatehtävien louhinta on useissa tapauksissa 
mahdollista ja se tuottaa merkityksellisiä tuloksia datan osittamisessa. Monissa 
tapauksissa se osoitti johtavan myös menetelmien parempaan ennustuskykyyn. 
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Appendix 1 

The basic learning algorithms for classification 

The state-of-the-art learning algorithms described in this section represent 
different approaches to learning. These algorithms are well known in data 
mining community and have proven effective in practice. J48 (C4.5) decision 
tree represents an information-theoretic approach, k-Nearest Neighbor 
represents a distance-based approach, and Naїve Bayes exemplifies a 
probabilistic approach to learning. There are other learning algorithms 
originated from pattern recognition, statistics and artificial intelligence, 
including Fisher’s linear/quadratic/logistic discriminant, association rules, 
rough sets, neural networks, support vector machines/kernel methods, but 
their performance is out of scope of this thesis. 

Of particular interest here is performance of J48 (C4.5) decision tree, 
k-Nearest Neighbor, and Naїve Bayes on heterogeneous classification problems 
with locally relevant and interacting features, and as the component classifiers 
of ensemble generated on locally relevant features and subsets of instances 
representing homogeneous regions. 

1.1 J48 (C4.5) decision tree 

Decision tree is a widely used learning algorithm that has proved to be 
effective in many practical tasks (Michie et al., 1994). A decision tree is 
represented as a set of nodes with incoming and outgoing branches, where nodes 
correspond to features, and branches correspond to their associated values. A 
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node from which branches merely outgo is called a root, a node to with 
branches merely income is called a leaf. Leaves in a decision tree correspond to 
class values. Together a node and the outgoing branches represent a decision 
about the path an instance follows when being classified by the tree. 

A set of instances (usually a subset of the original instance set in the tree 
generation process) generally contains instances from different classes. If a 
subset contains instances of one class only, no more tests need to be applied to 
the decision path that led to separation of the subset from its superset. The 
degree of uncertainty about the classes of instances in a set is often called its 
class impurity. 

Given a set of training instances, a decision tree is usually induced by 
repeatedly dividing instances according to their values for a particular feature. 
This is known as a “divide and conquer” or “recursive partitioning” approach 
to learning (Breiman et al., 1984). All instances belong to one part in the first 
partition and each feature is evaluated for its ability to improve the “purity” of 
the classes in the partitions it produces. The splitting process continues 
recursively until all leaf nodes belong to the same class.  

Different decision tree learning algorithms use different ways to make 
splits and grow the tree. The simplest of the growing schemes used in the ID3 
and C4.5 algorithms (Quinlan, 1986; Quinlan, 1993) proceeds from the tree 
growing in a top-down fashion. In order to classify an instance different values 
of a root feature are tested for a split. Various splitting functions have been 
investigated, for example, in Ho (1998).  

The impurity measure originally used in ID3 (Quinlan, 1986) to evaluate a 
partition induced by current split is Information gain that is based on entropy 
calculation (Formula 23, Subsection 4.2.1). However, it has one significant 
drawback: it does not take into account the number of feature values. As a 
result, this leads to a bias towards features taking many values overestimating 
them. 

The C4.5 decision tree learning algorithm (Quinlan, 1993) has a number of 
improvements over ID3. In C4.5 Gain ratio (Formula 24, Subsection 4.2.1) is 
used instead of Information gain. The Gain ratio measure compensates for the 
number of features normalizing by the information encoded in the split itself. 
The other extensions of C4.5 include, for example, ability to deal with the 
missing feature values estimating probabilities of various possible results of the 
split. 

Both ID3 and C4.5 handle continuous features in the following way. In the 
case of a continuous feature ௝݂ all ܶ values it takes on the training set TR are 
considered in an increasing order, ݒଵ,௝, … , ,௧,௝ݒ … , ௧,௝ݒ ௝.Then, for a value,்ݒ ݐ , ൌ 1 … ܶ, instances are partitioned into subsets where ௝݂ takes values up to 
and including ݒ௧,௝. For each of these splits Information gain or Gain ratio is 
computed, and the split that maximizes the gain is chosen.  

The decision tree built using the training set, because of the way it was 
built, deals correctly with most of the instances in the training set. In fact, in 
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order to do so, it may become quite complex, with long and very uneven paths. 
Often this leads to overfitting.  

Pruning is a common strategy to avoid overfitting for decision tree 
learning. It is performed by replacing a whole sub-tree by a leaf node. Decision 
trees may be easily interpreted in the form of logical decision rules. Then, the 
replacement takes place if a decision rule establishes that the expected error rate 
in the sub-tree is greater than in a single leaf. (Quinlan, 1993) 

Pruning improves generalization performance on a relatively small set of 
pruning validation instances. In C4.5 pruning is performed using the upper 
bound of a confidence interval on the resubstitution error as the error estimate. 
Nodes with fewer instances having a wider confidence interval are removed if 
the difference in error between them and their parent nodes is not significant. 
(Quinlan, 1993) 

Determining the relative importance of features is basic to all decision tree 
algorithms. While constructing a tree at each interior node a feature to make a 
split on is selected and the instance set is divided into subsets. However, each 
time the best feature is selected for splitting the test is done relying on this 
individual feature’s effect on class discrimination. This is problematic especially 
at the nodes near the root, because the context of other features is ignored 
(Hong, 1997).  

In the decision tree algorithms based on impurity measures instances with 
different class values are separated into different sub-trees. In Robnik-Šikonja 
and Kononenko (1999) it is stated that strong class-conditional dependencies 
(interactions) between features are not properly detected by these measures, 
therefore dependent features are not selected as splits near the root of the tree, 
which would guarantee compact representation of dependencies. Instead 
interacting features are selected in subsequent levels of the tree, mostly near the 
fringe, which causes node replication, and might decrease accuracy.  

Langley and Sage (1997) have shown that the effect of irrelevant features 
on C4.5 depends on the classification problem. As long as relevant features 
discriminate between classes being independent on other features, accuracy of 
C4.5 is unaffected by introduction of irrelevant features. However, when 
features interact (as in the parity-like problems), that is none of the relevant 
features in isolation is able to discriminate classes, accuracy of C4.5 severely 
degrades after addition of irrelevant features. 

How deeply should a decision tree be developed? Too shallow tree 
growth will smooth out the boundaries between classes, thus generating a 
stable but rigid and therefore, inaccurate model. On the other hand, an 
overgrown tree will build overdetailed boundaries that will be mostly 
determined by the random nature of the data. Consequently, class boundaries 
will then heavily depend on the particular sample at hand, and the predictions 
of the model will be unreliable. 

1.2 Naїve Bayes 

The Bayesian learning algorithm, often called Naїve Bayes, represents an 
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approach to construction of a predictive model based on the Bayes theorem. 
This learning algorithm is originated from pattern recognition (Duda & Hart, 
1973). Contrary to the C4.5 and k-Nearest Neighbor learning algorithms 
(Subsection 2.3.3), Naїve Bayes does not assume a deterministic relationship 
between each instance and its class. In many real-world classification problems 
there is no deterministic relationship, because all relevant information is not 
encoded in the input representation, or it may be due to real randomness of the 
problem domain (Halck, 2002). Instead, a probability of class membership 
called conditional class probability is estimated. 

Since the underlying probabilities of class membership are always 
unknown, the probabilities are estimated from the training set. The posterior 
probability of each class is calculated, given the feature values present in the 
instance, and then the instance is assigned to the class with the highest 
probability. This learning algorithm produces a linear decision boundary 
through the instance space. Each time the algorithm encounters a new instance 
from the training set, the probabilities stored with the specified class are 
updated. Upon being given an unclassified instance from the test set, the 
classifier created uses an evaluation function to rank the alternative classes 
based on their probabilistic summaries, and assigns the instance to the class 
with the highest score (Langley et al., 1992). 

Formula 67 shows a simplified Bayes formula used in the Naїve Bayes 
learning algorithm, which makes an assumption that feature values are 
statistically independent within each class (Duda et al., 2001; Hall, 1999). 

  

(67)

The left side of Formula 1 is the posterior probability of class ܿௗ, ݀ ൌ1 … ,௜,ଵݔ ,given the feature values ,ܦ ,௜,ଶݔ … ,  ௜,ே, observed in the instance to beݔ
classified. The denominator on the right side of Formula 1 is constant and can 
be omitted. The remaining probabilities can be calculated from the training set. 
The posterior probability of each feature value ݔ௜,௝ given the class value ܿௗ 
can be defined as shown in Formula 68. ܲ൫ݔ௜,௝|ݕ௜ ൌ ܿௗ൯ ൌ ܲ൫ݔ௜,௝൯ܲ൫ݕ௜ ൌ ܿௗ|ݔ௜,௝൯ܲሺݕ௜ ൌ ܿௗሻ  (68)

Then Formula 67 can be rewritten as follows. 

ܲ൫ݕ௜ ൌ ܿௗ|ݔ௜,ଵ, ,௜,ଶݔ … , ௜,ே൯ݔ ן ܲሺݕ௜ ൌ ܿௗሻ ෑ ܲ൫ݕ௜ ൌ ܿௗ|ݔ௜,௝൯ܲሺݕ௜ ൌ ܿௗሻே
௝ୀଵ  (69)

This interpretation of the Bayes formula considered in Hong et al. (2002) 
presents a contribution of individual features in calculation of the class 
probability: the class probability given the values of a set of features is 
proportional to the prior probability of the class adjusted multiplicatively by 
factors, each reflecting the influence of the particular feature. 
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Recent extensions of the Bayesian learning algorithm are complex and not 
so easily amenable to analysis. But despite its simplicity, the Naїve Bayes 
learning algorithm performs well on most classification tasks, and is often more 
accurate than more sophisticated methods (Langley et al., 1992). Although the 
probability estimates that it produces can be inaccurate, it often assigns 
maximum probability to the correct class (Eibe et al., 2000). 

An assumption of class-conditional independence between features that 
Naїve Bayes relies on is rarely valid in practical learning problems: features 
used for deriving a prediction are not independent of each other, given the 
predicted class value. However, it has been shown that Naїve Bayes is 
surprisingly robust to obvious violation of this independence assumption, 
yielding accurate classification results even when there are clear conditional 
dependencies. (Hong et al., 2002) 

Many studies of the Bayesian learning algorithm’s performance have been 
undertaken. For example, in Domingos and Pazzani (1997) theoretical 
conditions of Naїve Bayes optimality are explored considering the situation 
when the independence assumption may not hold. In Garg and Roth (2001) the 
dependence between the number of all joint distributions and the product 
distribution of Naїve Bayes is established explaining the power of Naїve Bayes 
beyond the independence assumption. A comparison of the simple Bayesian 
learning algorithm with state-of-the-art learning algorithms on standard 
benchmark datasets has been performed in Domingos and Pazzani (1997). 

1.3 k-Nearest Neighbor 

The k-Nearest Neighbor learning algorithm is one among the most successful 
methods for many classification problems. It is the earliest nonparametric 
method proposed for classification and has been extensively studied in pattern 
recognition and applied statistics (Duda & Hart, 1973; Dasarathy, 1991). This 
learning algorithm is based on a similarity concept. 

The k-Nearest Neighbor learning algorithm, or its variant, an 
instance-based learning algorithm (Aha et al., 1991), classifies an unknown 
instance from the test set to the plurality class of its k nearest neighbors from the 
training set using some distance metric defined in the feature space, most 
commonly, Euclidian metrics. The metric chosen to define the distance can 
strongly affect performance. The optimal choice depends on the classification 
problem specifics characterized by the respective class distributions in the 
feature space and within a given problem, on the location of the unknown 
instance in this feature space (Friedman, 1994). 

The decision boundary of the nearest neighbor rule consists of the 
boundaries of the Voronoi regions that separate the regions of different classes 
(Toussaint, 2002).  

Prediction for a new unclassified instance is based on the closest instance, 
or several instances (Aha et al., 1991; Wettscherech, 1994). To classify a new 
instance, its distance to all the training instances is calculated and the class label 
corresponding to the closest training instance is assigned to this instance. A 
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more sophisticated version of the Nearest Neighbor learning algorithm returns 
the most frequent class among the k closest training instances (denoted k-NN) 
(Aha et al., 1991). 

Selection of a distance metric for k-Nearest Neighbor is crucial. In Stanfill 
and Waltz (1986) a value difference metric that can be used for categorical 
features is described, for symbolic features a Hamming distance may be applied 
(Dasarathy, 1991; Bay, 1998). 

In Boolean domains a natural measure for the k-Nearest Neighbor learning 
algorithm is the number of feature values that differ between the test instance 
and the stored instance, called city-block metric (Langley & Sage, 1997). 

k-Nearest Neighbor is known to be very sensitive to irrelevant features 
(Duda & Hart, 1973, Dasarathy, 1991). 

(Blayo et al., 1995) provide more information on Nearest Neighbor 
performance and error estimates. 

1.4 Classifier performance evaluation 

Whether various assumptions about the data hold in practice is a nontrivial 
question. Therefore, applicability of a certain technique is often verified by the 
classification performance, which is usually evaluated by classification 
accuracy. Classification performance mainly depends on intrinsic problem 
complexity, training set size, dimensionality, and type of discriminating 
function used in a classifier. Intrinsic problem complexity and unambiguity 
assessment is formalized as a Bayes minimum error, which is estimated using 
class separability measures. 

The results for a classifier are usually summarized in a confusion matrix 
shown in Table 25, where a, b, c and d represent the number of instances falling 
into each possible outcome. Therefore, (c+d) is a number of instances in class 
denoted as positive; (a+b) is a number of instances in class denoted as negative. 
In multiclass case a negative class includes all classes but positive. 

TABLE 25 Confusion matrix for classifier’s performance evaluation. 

True Class Label 
Predicted class label 

Negative Class Positive Class 

Negative Class 
a 

(true negative) 
b 

(false positive) 

Positive Class 
c 

(false negative) 
d 

(true positive) 

Commonly, the results are evaluated according to the following performance 
measures easily extended for multiclass problems. True positives rate (TPR) is a 
ratio of correctly predicted positives to the number of all correctly predicted 
instances, TPR = d/(a+d). For example, it’s a ratio of sick patients correctly 
diagnosed as sick to all patients with correct diagnoses, both sick and healthy. 
False positives rate (FPR) is a ratio of negatives predicted as positives to all 
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incorrectly predicted instances, FPR = c/(c+b). For example, it’s a ratio of 
healthy patients incorrectly identified as sick to all incorrectly diagnosed 
patients. 

The recall (REC) measure (also called sensitivity) is a ratio of true positives 
per instances of positive class d/(c+d). Sensitivity measures the proportion of 
actual positives which are correctly identified as such (for example, the 
percentage of sick patients who are correctly identified as having the condition). 
Specificity measures the proportion of negatives which are correctly identified, 
a/(a+b), for example, the percentage of healthy people who are correctly 
identified as not having the condition. These two measures are closely related to 
the concepts of type I and type II errors in statistical tests. A type I error, also 
known as a false positive, occurs when a statistical test rejects a true null 
hypothesis. A type II error, a false negative, occurs when the test fails to reject a 
false null hypothesis. 

The precision measure (PRE) is a ratio of true positives per all instances 
classified as positives d/(b+d). For example, it’s a ratio of sick patients correctly 
diagnosed as sick to all patients diagnosed as sick, including healthy patients. 
This measure characterizes proportion of actual positives in the population 
being recognized as such rather than being a characteristic of a classifier. 

When dealing with highly imbalanced classes, precision against recall (PR) 
curve is more informative with respect to algorithm’s performance then 
commonly used Receiver Operator Characteristic (ROC) curve that is true 
positive rate against false positive rate (Davis & Goadrich, 2006). 

F-Measure (F) with respect to a particular class is a harmonic mean of 
precision and recall, where they are equally weighted, 
F=(2*REC*PRE)/(REC+PRE). 

The balanced error rate (BER) is the average of the errors on each class: 
BER = 0.5*(b/(a+b) + c/(c+d)). 

The area under curve (AUC) is defined as the area under the ROC curve. 
This area is equivalent to the area under the curve obtained by plotting a/(a+b) 
against d/(c+d) for each confidence value, starting at (0,1) and ending at (1,0). 
The area under this curve is calculated using the trapezoid method. In the case 
when no confidence values are supplied for the classification the curve is given 
by {(0,1),(d/(c+d),a/(a+b)),(1,0)} and AUC = 1 - BER. 

When comparing accuracy of two classifiers statistical significance testing 
is used. McNemar test (Dietterich, 1998) is used for tests whether combinations 
of values between two dichotomous variables are equally likely. The output 
includes a cross-tabulation table for each pair and a test statistics table for all 
pairs, showing the number of valid cases, chi-square, and probability for each 
pair. 

1.5 Biases of learning algorithms 

Every learning, feature selection, transformation or discretization method, same 
as other techniques used in the knowledge discovery process, has own bias. A 
bias is “a rule or method that causes an algorithm to choose one generalized 
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output over another” (Mitchell, 1980). The bias is influenced by different 
factors, for example, by the choice of distance function, evaluation function, the 
basic assumption abound which the method is designed. A learning algorithm 
must have a bias in order to generalize and it has been shown that no learning 
algorithm can generalize more accurately than any other when summed over all 
possible domains (Schaffer, 1994), unless some domain knowledge about the 
problem is available. It follows then that no feature selection method can be 
strictly better considering all possible problems with equal probability. 

Known biases of learning and feature selection techniques considered in 
this thesis are mentioned in each particular technique’s description. The results 
obtained in the experimental sections are interpreted taking into account data 
characteristics and geometric complexity as well as biases of the applied 
techniques. 
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Appendix 2 

Clustering algorithms 

Below a brief introduction to the clustering techniques used in Bidirectional 
Data Partitioning (BDP) is provided. Both, k-Means and DBSCAN are well 
known algorithms extensively studied in the literature. Therefore, this overview 
mainly emphasizes their advantages and disadvantages crucial to understand 
performance of BDP. 

2.1 k-Means and DBSCAN 

k-Means is one of the most commonly used clustering algorithm, but it does not 
perform well on data with outliers or with clusters of different sizes or 
non-globular shapes. The single link agglomerative clustering method is the 
most suitable for capturing clusters with non-globular shapes, but this 
approach is very sensitive to noise and cannot handle clusters of varying 
density. Other agglomerative clustering algorithms, e.g., complete link and 
group average, are not as affected by noise, but have a bias towards finding 
globular clusters. More recently, clustering algorithms have been developed to 
overcome some of these limitations. In particular, for low dimensional data, 
DBSCAN have shown good performance. In DBSCAN, the density associated 
with a point is obtained by counting the number of points in a region of 
specified radius, ߝ, around the point. Points with a density above a specified 
threshold, MinPoints, are classified as core points, while noise points are 
defined as non-core points that don’t have a core point within the specified 
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radius. Noise points are discarded, while clusters are formed around the core 
points. If two core points are within a radius of ߝ of each other, then their 
clusters are joined. Border points, which are non-noise and non-core points, are 
assigned to the clusters associated with any core point within their radius. Thus, 
core points form the skeleton of the clusters, while border points flesh out this 
skeleton. While DBSCAN can find clusters of arbitrary shapes, it cannot handle 
data containing clusters of differing densities, since its density-based definition 
of core points cannot identify the core points of varying density clusters. (Ertöz 
et al., 2003) 

Clustering methods have no access to class label information. Therefore, a 
good distance metric is crucial for clustering high-dimensional data. A distance 
metric can be adaptively learned by a clustering algorithm. Most distance-based 
clustering algorithms appeal to projecting observed data onto a 
low-dimensional manifold, where geometric relationships such as local or 
global pairwise distances are preserved. (Ye et al., 2007; Chen et al., 2007) 

2.2 Measuring similarity and distance 

Data analysis for supervised and unsupervised learning involves various 
approaches, such as probability-based and statistical approaches, 
information-theoretic approach, neural networks, evolutionary algorithms and 
other. One of the most popular approaches is based on a similarity concept, 
which requires measuring similarity between two instances for learning and 
prediction. 

Measuring similarity involves investigation of a relationship between two 
instances and specification of a distance - a number that is assigned to a pair of 
instances (points in the feature space), which indicates how far those points are 
from one another. A distance function is called a metric when it is always 
positive (except when measuring the distance from any points to itself, which 
must be zero), if it is always symmetric, and if it permits no “short-cuts” or 
“wormholes”. A similarity measure is the converse of a distance function. 
Similarity functions take a pair of points and return a large similarity measure 
for the nearby points, a small similarity value for distant points. (Widdows, 
2003) 

Many techniques used in data mining, including classification, clustering, 
feature selection/extraction, and constituent measures are very sensitive to the 
choice of an appropriate distance metric. Considering classification and 
clustering tasks in a single framework, data projections and metric help to 
identify data structure. Class labels introduce additional information on data 
structure, and often given a top priority. Then similarity definition is acquired 
from class labels by means of metric learning. A distance function used 
contributes to a success of learning. In clustering, similarity is solely defined by 
a distance function. If clustering is performed in the presence of some 
background knowledge or supervisory information (semi-supervised 
clustering), this information is often expressed as pairwise similarity or 
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dissimilarity constraints and a chosen metric is adjusted accordingly. Several 
distance functions popular in data mining are considered below. 

Distance functions depend on the working space, so one may choose 
different ways to determine distance that are appropriate for different 
applications. In machine learning this choice depends on the problem domain, 
and hence, on the type of features and their measurement scale. The related 
data preprocessing issues are considered in Section 7.1. 

Majority of metrics are designed to handle continuous features well, but 
they do not handle discrete and nominal features appropriately. There are also 
distance functions designed to find reasonable distance values between nominal 
(symbolic) features, such as the Value Difference Metric (VDM) (Stanfill & 
Waltz, 1986). However, they largely ignore continuous features requiring 
discretization to map continuous values into discrete values, which sometimes 
can degrade generalization accuracy (Ventura & Martinez, 1995). 

Heterogeneous Value Difference Metric (HVDM) (Wilson & Martinez, 
1997) is a combination of normalized Euclidean distance (divided by the range 
of feature’s values) for continuous features and VDM for nominal features.  

The choice of a distance function depends on the type of a problem. In 
general, some distance functions can be more preferable in the particular 
domains that the others leading to the prediction accuracy increase. 
Categorization of the problems where a particular distance function is better 
than another is yet to be done by the machine learning and pattern recognition 
research communities. 

A variety of distance functions have been developed, including the 
Minkowsky (Batchelor, 1978), Mahalanobis (Nadler & Smith, 1993), Canberra, 
Chebychev, Quadratic, Correlation, and Chi-square distance metrics (Michalski 
et al., 1981; Diday, 1974); the Context-Similarity measure (Biberman, 1994); the 
Contrast Model (Tversky, 1977); hyperrectangle distance functions (Salzberg, 
1991; Domingos, 1995) and others. Many of them were developed by the 
statistical community serving particular goals, like outliers detection. Some 
measures used in data mining are briefly described below.  

Minkowsky distance is the generalized metric distance. When ߣ ൌ 1 it 
becomes Manhattan distance and when ߣ ൌ 2, it becomes Euclidean distance. 
Chebyshev distance is a special case of Minkowsky distance with ߣ ൌ ∞ 
(taking a limit). This distance can be used for both ordinal and quantitative 
variables. Formula 70 shows Minkowsky distance for two instances ሺܠ௥,  ௥ሻݕ
and ሺܠ௦, ௥,௦ܦ .௦ሻ calculated over ܰ featuresݕ ൌ ඨ෍ หݔ௥,௝ െ ௦,௝หఒே௝ୀଵഊݔ

 (70) 

Euclidian distance is the most common and widely used distance function 
that provides a geometrical distance between two points in a feature space. 
However, in majority of problem domains features do not represent 
geometrical distances or their derivatives, and the learning algorithms that use 
Euclidian distance are not designed to consider this fact. Euclidian distance is 
not scale-invariant and does not account for correlations between features as 
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every feature is assumed to be equally important to class discrimination and 
independent of the others. This assumption may not be always satisfied in real 
applications, especially in high-dimensional classification problems. In some 
applications, though, feature selection and dimension reduction is applied to 
eliminate this problem, while in other applications a preferred choice is a 
problem-specific distance metric that is capable to identify most important 
dimensions (Xiang et al., 2008).  

Manhattan distance, or city-block distance, is an averaged over all 
dimensions differences between coordinates of two points. It is similar to 
Euclidian distance, but the particular large differences receive less influence, 
because the differences are not squared. 

The Value Difference Metric (VDM) (Stanfill & Waltz, 1986) was 
introduced to define an appropriate distance function for nominal (symbolic) 
features. ܦ௥,௦ ൌ ෍ หݔ௥,௝ െ ௦,௝หே௝ୀଵݔ  

(71) 
Bhattacharya distance is based on the probabilistic approach and can be 

used to evaluate how much each feature contributes to separability of instances 
from different classes (Duda et al., 2001; Devijver & Kittler, 1982). The larger the 
overlap between the distributions for a certain feature is, the higher uncertainty 
regarding the class. Therefore, lower Bhattacharya distance corresponds to 
more “discriminatory” features. Bhattacharya distance is a special case of a 
more general Chernoff distance. 

Many unsupervised and supervised learning algorithms depend upon a 
good distance function to be successful. In geometrical interpretation, the 
relative importance of the dimensions in the feature space in development of 
the distance measurement depends on how the instances are situated in this 
space, i.e. how much they are stretched or squashed, do they form clusters and 
how dense they are. Irrelevant and noisy features, as well as redundant features 
and features with missing values should be excluded from consideration since 
they will harm representation of the data structure. 

For the classification tasks geometrical interpretation of the data in terms 
of the selected similarity measure or distance function has a goal to represent 
the instances of different classes in the feature space in the way to provide the 
most simple and effective class discrimination including class separability. In 
order to achieve this goal the relevant features should be selected, then the 
spatial data structure should be put into correspondence with the class labels 
and finally, class separability may be increased considering feature subspaces 
or using derived features.  

Different distance functions, among which popular choices are 
Mahalanobis, Bhattacharyya, and Kullback-Leibler, can be used as measures of 
class separability and estimates of Bayes minimum error in prediction tasks. 
Manhattan distance, Euclidian distance and Value Difference Metric (VDM) 
remain among the most popular choices to use in predictive models that 
involve density estimated and based on the neighborhood concept. It has been 
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shown that Manhattan distance metric is consistently more preferable than 
Euclidian distance metric for high-dimensional data mining applications 
(Aggarval et al., 2001). Following these argumentations, Manhattan distance 
metric has been used in our implementation of Bidirectional Data Partitioning 
technique. 
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Appendix 3 

Data sets for validating complexity measures 

Synthetic and benchmark data sets used in class separability and complexity 
measures study are briefly described in this appendix. All descriptions are 
supplied with graphical projections onto relevant and irrelevant dimensions. 

Gauss-2-sep is a two-dimensional data set, has two classes, 1000 instances 
each, with distributions in class 1 G(5.0, 1.0) – feature 1, and G(10.0, 1.0) – 
feature 2, and in class 2 G(10.0, 1.0) – feature 1, and G(2.0, 1.0) – feature 2. 
Gauss-2-sep is an example of linear separability with wide margins between 
classes. Gauss-2-one is a two-dimensional data set, has two classes, 1000 
instances each, with distributions in class 1 G(5.0, 1.0) – feature 1, and G(10.0, 
1.0) – feature 2, and in class 2 G(10.0, 1.0) – both feature 1 and 2. Gauss-2-one is 
linearly separable in feature 1, there is a minor intersection between classes, a 
narrow margin. Gauss-2-onesep is a two-dimensional data set, has two classes, 
1000 instances each, with distributions in class 1 G(5.0, 0.5) – feature 1, and 
G(10.0, 0.5) – feature 2, and in class 2 G(10.0, 0.5) – both feature 1 and 2. 
Gauss-2-onesep is linearly separable in feature 1 with no intersection between 
classes. Gauss-2-ov is a two-dimensional data set, has two classes, 1000 
instances each, with distributions G(10.0, 0.5) in both dimensions, both classes, 
that means classes are completely overlapped. Four of these two-dimensional 
data sets are shown in Figures 18-21 accordingly. 



207 
 

 

 

FIGURE 18 Gauss-2-sep two-dimensional data set: both features are discriminative. 

 

FIGURE 19 Gauss-2-one two-dimensional data set: ଵ݂ is discriminative, narrow margin 
between classes, ଶ݂ is irrelevant with Gaussian distribution. 
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FIGURE 20 Gauss-2-onesep two-dimensional data set: ଵ݂  is discriminative, wide 
margin between classes, ଶ݂ is irrelevant with Gaussian distribution. 

 

FIGURE 21 Gauss-2-ov two-dimensional data set: both features are irrelevant, Gaussian 
distribution. 
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GaussS-2 is a synthetic data set with two Gaussian classes, 2500 instances in 
each, almost completely separable, with means µA = 5, stdevA = 1 denoted as 
G(5;1); µB = 10, stdevB = 1 denoted as G(10;1). GaussS-2+1U has one additional 
unimodal irrelevant feature that has a Gaussian distribution G(7.5;3). 
GaussS-2+1B has one additional bimodal irrelevant feature that is a mixture of 
G(6;3) and G(9;3). GaussS-2+1M has one irrelevant feature that is a mixture of 
G(2;3), G(5;3), and G(8;3). GaussS-2+1 has one irrelevant feature uniformly 
distributed in the interval [0…15] denoted as U(0;15). GaussS-2+all includes all 
of the above irrelevant features. Projections onto relevant and irrelevant 
dimensions are presented below. 

 

FIGURE 22 GaussS-2 data set shown in two relevant dimensions. 
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FIGURE 23 GaussS-2+1U data set shown in one relevant dimension and one irrelevant 
dimension (unimodal Gaussian). 

 

FIGURE 24 GaussS-2+1B data set shown in one relevant dimension and one irrelevant 
dimension (bimodal Gaussian). 
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FIGURE 25 GaussS-2+1M data set shown in one relevant dimension and one irrelevant 
dimension (multimodal Gaussian). 

 

FIGURE 26 GaussS-2+1 data set shown in one relevant dimension and one irrelevant 
dimension (uniform). 
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FIGURE 27 Gauss-8+10 data set shown in two relevant dimensions. 

 

FIGURE 28 Gauss-8+10 data set shown in one relevant and one irrelevant dimension. 
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Gauss-8 (Blayo et al., 1995) is a data set with 8 continuous features generated 
according to Gaussian distributions in two classes. The center of gravity is the 
same for two classes, which makes them fully overlapped. The theoretical error 
is 9%. Gauss-8+10 is a modified version of Gauss-8 with 10 irrelevant features, 
U(-5; 5). It has heavily interleaved classes, approximately equal covariances in 
classes, equal density in both classes. 

FourSubcl-2 data set has two Gaussian subclasses per each of two classes. 
The first class cl0 is composed of two Gaussian distributions: subclass 1 as 
G(5.0, 1.0) in both features f1 and f2, and subclass 2 as G(10.0, 1.0) in both 
features. Two subclasses of class cl1 are f1 - G(10.0, 1.0), f2 G(5.0, 1.0) and f1- 
G(5.0, 1.0), f2- G(10.0, 1.0). Each subclass is represented by 250 instances in both 
training and test sets. This data set has a Bhattacharyya upper bound on 
minimum Bayes error 0.2415. In FourSubcl-2+5G there are 5 irrelevant features 
created with G(7.5, 2.0). In FourSubcl-2+5U there are 5 irrelevant features 
created with U(2.0, 13.0). FourSubcl-2+10 includes both types of irrelevant 
features, 5 of each. Graphical representation is shown below. 

 

FIGURE 29 FourSubclass-2+10 data set shown in two relevant dimensions. 

Clouds-2 data set (Blayo et al., 1995) has 2 classes, one of which has three 
Gaussian subclasses. One of the subclasses is heavily interleaved with the other 
Gaussian class, while the other two are partially interleaved. The original data 
set has 5000 instances, 2500 in each of two classes, 2 continuous numeric 
features. The theoretical error is 9.66%. Clouds-2+10 data set has 10 irrelevant 
features added, U(-3; 3). 
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FIGURE 30 FourSubclass-2+10 data set shown in one relevant dimension and one of the 
Gaussian irrelevant dimensions. 

 

FIGURE 31 FourSubclass-2+10 data set shown in one relevant and one of the irrelevant 
dimensions with uniform distribution. 
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FIGURE 32 Clouds-9 data set shown in one relevant and one irrelevant dimension. 

 

FIGURE 33 Clouds-9 data set: projection onto one relevant and one irrelevant 
dimension. 
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Concentric-2 data set (Blayo et al., 1995) consists of two classes: one uniformly 
distributed within a concentric area, and another class surrounds it without 
overlapping. This is an example of narrow margin between classes, nonlinear 
boundary, equal and even density in classes. The original data set has 5000 
instances, equal-size classes, and 2 features. The theoretical error is 0%. 
Concentric-2+10 has additional 10 irrelevant features, U(-5; 5). 

 

FIGURE 34 Concentric-2+10 data set show in two relevant dimensions. 

Spirals-2+3 data set is a modified version of 2-dimensional data presented in 
(Lindenbaum et al., 1999). It has 3 irrelevant features, uniformly distributed, 
U(0; 12). In the original Spirals-2 data set two features take values in the 
interval (0…20). This data set is an example of nonlinear class boundaries with 
narrow margins. This data set is presented in Figures II.19 and II.20 below. 
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FIGURE 35 Concentric-2+10 data set shown in one relevant and one irrelevant 
dimension. 

 

FIGURE 36 Spirals-2+3 data set shown in two relevant dimensions. 
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FIGURE 37 Spirals-2+3 data set shown in one relevant dimension and one irrelevant 
dimension. 

Fourclass-2+7M is a data set that presents a case, where irrelevant features 
obtained from mixed distributions partially capable do discriminate classes, 
and two relevant features show nonlinear boundary between classes with a 
wide margin. There are 4 classes (271, 266, 274, and 327 instances), 9 numeric 
features, 2 relevant and 7 irrelevant features. Fourclass-2 is a data set with two 
relevant features retained. This data set is a class-balanced 12% sample of the 
original data set used in (Bernadó-Mansilla & Ho, 2005), which has an equal 
density unbalanced classes. In Fourclass-2 classes have unequal density. 
Fourclass-2+3 has 3 uniformly distributed irrelevant features, U(0;1). The data 
set is presented in Figures II.21-II.24. 

Birch-2+8 data set is generated using BIRCH data generator in WEKA 
(“grid” pattern is used). The data set has 3 classes and 10 continuous features, 
only two of which are partially discriminative. Features #1 and #2 each 
discriminate a different class from the other two and fully discriminative 
together; in other features classes are heavily interleaved. There are 11055 
instances, classes are balanced: 3695, 3782, 3578 instances respectively. Birch-2 
is the same data set with only two relevant features retained. Graphic 
presentation is given below, Figures 42 and 43. 
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FIGURE 38 Fourclass-2 data set shown in two relevant dimensions. 

 

FIGURE 39 Fourclass-2+3 data set shown in one relevant dimension and one irrelevant 
dimension. 
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FIGURE 40 Fourclass-2+7M data set shown in one relevant dimension and one 

irrelevant dimension. 

 

 

FIGURE 41 Fourclass-2+7M data set show in two irrelevant dimensions. 
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FIGURE 42 Birch-2+8 data set shown in two relevant dimensions. 

 

FIGURE 43 Birch-2+8 data set shown in one relevant dimension and one irrelevant 
dimension. 
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RBF-10+10 data set is generated in WEKA using RandomRBF generator. The 
data set is created by first creating a random set of centers for each class 
following the number of specified centroids. Each center is randomly assigned a 
weight, a central point per feature, and a standard deviation. To generate new 
instances, a center is chosen at random taking the weights of each center into 
consideration. Feature values are randomly generated and offset from the 
center, where the overall vector has been scaled so that its length equals a value 
sampled randomly from the Gaussian distribution of the center. The particular 
center chosen determines the class of the instance. RandomRBF generated data 
contains only numeric features. In RBF-10+10 there are 5000 instances, 2 classes, 
2327 and 2683 instances accordingly, 10 features distributed in the interval 
(-2...2.5), the number of centroids is 50. In addition, there are 10 irrelevant 
uniformly distributed features, U(-5; 5). RBF-10 data set is the same except for 
these 10 irrelevant features. This data set is an example of Gaussian subclasses 
in heavily interleaved classes. 

 

FIGURE 44 RBF-10+10 data set shown in two relevant dimensions. 
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FIGURE 45 RBF-10+10 data set shown in one relevant dimension and one irrelevant 
dimension. 

RDG-10+10 data set have been obtained using WEKA’s random data generator 
RDG1. It creates data randomly by producing a decision list consisting of rules. 
Instances are generated randomly one by one. If the decision list fails to classify 
the current instance, a new rule according to this current instance is generated 
and added to the decision list. RDG-10+10 has 10 continuous relevant features 
distributed in the interval (-1.5…2.5) and additional 10 irrelevant features, U(-5; 
5). The maximum and minimum numbers of tests in rules are set to 10 and 1 
accordingly. There are 2 classes, 2548 and 2452 instances. RDG-10 data set is the 
same except for the 10 irrelevant features. Data more elongated in irrelevant 
dimensions compared to relevant dimensions, but there is no visual distinction 
between relevant and irrelevant features in terms of class boundaries. Classes 
are heavily interleaved. 
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FIGURE 46 RDG-10+10 data set shown in two relevant dimensions. 

 

FIGURE 47 RDG-10+10 data set shown in one relevant dimension and one irrelevant 
dimension. 
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Appendix 4 

Author’s additions to WEKA software package 

The novel Bidirectional Data Partitioning (BDP) technique has been 
implemented using WEKA open source data mining package, the latest stable 
release WEKA 3.6.6. WEKA (Hall et al., 2009) is a collection of machine learning 
algorithms for solving real-world data mining problems. WEKA API can be 
found at [http://weka.sourceforge.net/doc.stable/]. 

In order to support BDP implementation, author has extended 
functionality of WEKA with addition of the following classes: 

− weka.classifiers.meta.BidirectionalPartitioning; 
− weka.clusterers.DBScanWeighted; 
− weka.clusterers.KMeansWeighted; 
− weka.clusterers.HierarchicalClustererWeighted; 
− weka.clusterers.forOPTICSAndDBSCAN.Databases.DatabaseWeighted; 
− weka.clusterers.forOPTICSAndDBSCAN.Databases.SequentialDatabaseWeighted; 
− weka.clusterers.forOPTICSAndDBSCAN.DataObjects.DataObjectWeighted; 
− weka.clusterers.forOPTICSAndDBSCAN.DataObjects.ManhattanDataObjectWeighte

d; 
− weka.core.InstancesWeighted; 
− weka.core.InstanceWeighted; 
− weka.filters.supervised.instance.RemoveInconsistent. 

Additional analysis goals, such as preliminary heterogeneity tests, have 
motivated author to create a weka.analysers package and add the following 
classes: 

− weka.analysers.Analyser; 
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− weka.analysers.AnalyserEvaluation; 
− weka.analysers.AdherenceMapping; 
− weka.analysers.IPABasic; 
− weka.analysers.IPAEvaluation; 
− weka.analysers.MultiClassAnalyser; 
− weka.analysers.WeightedDistanceAnalyser; 
− weka.analysers.UpdatableAnalyser. 

This package is currently under development and will be supplied with 
class separability and complexity tests which are currently a part of BDP. 
Another addition planned is a sampling technique with a stochastic component 
that will serve as wrapper for heterogeneity tests. ContextualPartitioning 
technique and its component, R-IPA tree-like search procedure, are currently 
under development as well. 

In order to handle higher order feature dependencies, author has 
developed a filter that merges values of two features with nominal or discrete 
numeric values:  

− weka.filters.unsupervised.MergeTwoValues, 
− weka.filters.unsupervised.attribute. 

Stochastic Discrimination technique used in supporting studies on 
coverage optimization ensemble techniques has been included among WEKA’s 
meta-classifiers: 

− weka.classifiers.meta.sd.StochasticDiscrimination. 

This implementation uses the original variant with random subspaces and 
author’s multi stream version with neighborhood search (Skrypnyk, 2009; 
Skrypnyk & Ho, 2006). 

Screenshots demonstrating BDP within WEKA, parameter settings and 
BDP results, are shown in Figures VI.1 and VI.2 correspondingly. 
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FIGURE 48 BidirectionalPartitioning in WEKA, parameter setting. 
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FIGURE 49 BidirectionalPartitioning in WEKA, classification results. 

Decomposition approach developed for class heterogeneity is currently 
implemented in WEKA and available through combination of the following: 

− weka.classifiers.meta.MultiClassClassifier; 
− weka.classifiers.meta.AttributeSelectedClassifier. 
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Appendix 5 

Genomics basics 

Material presented in this appendix have been acquired from various electronic 
publications from leading research centers and scientific news media sources 
(Piatetsky-Shapiro & Tamayo, 2003; Cancer Genome, 2011; National Institute of 
General Medical Sciences, 2011; Genetics Home Reference, 2011; National 
Human Genome Research Institute, 2011; Gene Expression Mechanism, 2011; 
Cancer and Cancer Genetics, 2011). 

5.1 Basic notions from bioinformatics 

DNA, or deoxyribonucleic acid, carries the hereditary material in humans’ and 
almost all other organisms’ cells. Nearly every cell in a person’s body has the 
same DNA. Most DNA is located in the cell nucleus (where it is called nuclear 
DNA), but a small amount of DNA can also be found in the mitochondria 
(where it is called mitochondrial DNA or mtDNA). Researchers refer to DNA 
found in the cell's nucleus as nuclear DNA. An organism's complete set of 
nuclear DNA is called its genome.  

DNA is made up of four similar chemicals (called bases and abbreviated A 
(adenine), T (thymine), C (cytosine), and G (guanine)) that are repeated over 
and over in pairs. Human DNA consists of about 3 billion bases, and more than 
99 percent of those bases are the same in all people. The order, or sequence, of 
these bases determines the information available for building and maintaining 
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an organism, similar to the way in which letters of the alphabet appear in a 
certain order to form words and sentences. 

DNA bases pair up with each other, A with T and C with G, to form units 
called base pairs. Each base is also attached to a sugar molecule and a phosphate 
molecule. Together, a base, sugar, and phosphate are called a nucleotide. 
Nucleotide is the structural unit of nucleotide chains forming nucleic acids as 
RNA and DNA. Nucleotides are arranged in two long strands that form a spiral 
called a double helix. In this double helix, the sugar and phosphate molecules 
form the vertical sidepieces, and the base pairs form the connecting rungs like in 
a twisted ladder.  

An important property of DNA is that it can replicate, or make copies of 
itself. Each strand of DNA in the double helix can serve as a pattern for 
duplicating the sequence of bases. This is critical when cells divide because each 
new cell needs to have an exact copy of the DNA present in the old cell. 

DNA is found inside a special area of the cell called the nucleus. Because the 
cell is very small, and because organisms have many DNA molecules per cell, 
each DNA molecule must be tightly packaged. This packaged form of the DNA 
is called a chromosome. 

DNA spends a lot of time in its chromosome form. But during cell division, 
DNA unwinds so it can be copied and the copies transferred to new cells. DNA 
also unwinds so that its instructions can be used to make proteins and for other 
biological processes. 

Genes, being made of DNA, serve as coded instructions for making 
functional molecules such as ribonucleic acid (RNA) and proteins, which 
perform the chemical reactions in human bodies. A gene is a distinct portion of 
a cell’s DNA. Human beings have about 25,000 genes. Researchers have 
discovered functions for some of human genes, and have identified those 
associated with disorders (such as cystic fibrosis or Huntington’s disease). 
There are, though, many genes whose functions are still unknown. 

The human genome is a complete copy of the entire set of human gene 
instructions. The Human Genome Project, completed in 2003, identified all the 
human genes in DNA and stored the information in databases so all researchers 
everywhere could use it. 

The particular order of the DNA bases pairs is extremely important in the 
DNA. Sometimes a replication mistake occurs and one of the pairs gets 
switched, dropped, or repeated. This changes the coding for one or more genes. 
This is called genetic mutation. A mutation maybe disease-causing or harmless. 

Another way the DNA code could be changed is by errors in the 
chromosomes. Parts of a chromosome could break off, switch with part of 
another chromosome, or be swapped within the same chromosome. If any of 
these or other mistakes occurs then changes (mutations) happen in the gene 
coding. Sometimes there may be 3 or more copies of a chromosome, or only one 
chromosome, instead of the normal pair.  

Proteins are chains of chemical building blocks called amino acids. A 
protein could contain just a few amino acids in its chain or it could have several 
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thousands. Proteins form the basis for most of what the body does, such as 
digestion, making energy and growing.  

5.2 DNA microarray techniques 

DNA microarray techniques measure the expression level of thousands of genes 
in a single experiment. Gene expression is the process by which information 
from a gene is used in the synthesis of a functional gene product. For 
protein-coding genes this functional product is protein, for non-protein coding 
genes such as rRNA genes or tRNA genes, the product is a functional RNA. A 
DNA microarray (also called gene chip or biochip) is a collection of microscopic 
DNA spots attached to a solid surface. Each DNA spot contains picomoles of a 
specific DNA sequence, known as probes (or reporters), which can be a short 
section of a gene or other DNA element. In gene expression microarray data 
each instance is presented by thousands of genes as features. 

The procedure of obtaining histopathological information for cancer 
diagnostics is following. The tissue is removed, placed in a fixative to prevent 
decay, and then prepared using histology procedures for viewing under a 
microscope. After the tissue processing paraffin will replace the water in the 
tissue, turning soft, moist tissues into a sample miscible with paraffin, so the 
sample can be cut into very thin sections. The slices are thinner than the average 
cell, and are layered on a glass slide for staining. To see the tissue under a 
microscope, the sections are stained with one or more pigments. The aim of 
staining is to reveal cellular components. Counterstains are used to provide 
contrast. For example, antibodies are used to stain specific proteins, lipids and 
carbohydrates. This technique allows to specifically identify categories of cells 
under a microscope. Other advanced techniques include in situ hybridization to 
identify specific DNA or RNA molecules. Digital cameras are increasingly used 
to capture histopathological images. 

Gene sequencing refers to the process of recording the exact sequence of 
nucleotides in the section of an organism's DNA corresponding to a specific 
gene. The complete genetic sequences of humans and many other organisms 
have been determined. Researchers sometimes sequence specific genes of an 
individual with a certain phenotype (such as a disease) in an attempt to 
discover the phenotype's genetic basis. 

A DNA microarray is a collection of microscopic DNA spots attached to a 
solid surface, such as glass, plastic or silicon chip forming an array. The affixed 
DNA segments are known as probes, thousands of which can be used in a single 
DNA microarray. DNA microarrays are used to measure the expression levels 
of large numbers of genes simultaneously. This is relevant to many areas of 
biology and medicine, such as studying treatments, disease and developmental 
stages. Gene expression (also protein expression, or often simply expression) is 
the process by which a gene's information is converted into the structures and 
functions of a cell. 

Each data point produced by a DNA microarray hybridization experiment 
represents the ratio of expression levels of a particular gene under two different 
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experimental conditions. The result, from an experiment with n genes on a 
single chip, is a series of n expression-level ratios. Typically, the numerator of 
each ratio is the expression level of the gene in the varying condition of interest, 
whereas the denominator is the expression level of the gene in some reference 
condition. The data from a series of m such experiments may be represented as 
a gene expression matrix, in which each of the n rows consists of an m-element 
expression vector for a single gene. The expression measurement is positive if 
the gene is induced (turned up) with respect to the reference state and negative 
if it is repressed (turned down). 
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