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ABSTRACT

Tuovinen, Tero
Analysis of Stability of Axially Moving Orthotropic Membranes and Plates with
a Linear Non-homogeneous Tension Profile
Jyväskylä: University of Jyväskylä, 2011, 104 p.
(Jyväskylä Studies in Computing
ISSN 1456-5390; 146)
ISBN 978-951-39-4577-0 (nid.),
ISBN 978-951-39-4578-7 (PDF)
Finnish summary
Diss.

The topic of this thesis relates to the classical problem of the stability of moving
materials. We have studied problems of dynamics and stability of a moving web,
travelling between two rollers at a constant velocity using analytical and numer-
ical approaches. The stability of the plate is investigated with the help of studies
of small out-of-plane vibrations. The influence of linearly distributed in-plane
tension on the characteristics of the web vibrations is studied as well.

Our analysis is based on models of axially moving orthotropic membranes
and plates. The static forms of instability are investigated using numerical meth-
ods, and an estimate for the divergence speed of a membrane is expressed with
the help of in-plane strain and material parameters. The original dynamic plate
problem is reduced to a two-dimensional spectral problem and solved using an-
alytical techniques. As a result, the minimal eigenvalue and the corresponding
buckling mode are found. This study has been extended to consider a linear non-
homogeneous tension profiles as well.The materials based on published articles
have been extended and re-written and new results have been introduced for the
thesis.

The conclusion of this thesis is that the effect that originates from the or-
thotropic material is moderate, while the tension profile plays an important role
in the shaping of the buckling mode. It can be concluded that inhomogeneities
in the applied tension may significantly decrease the critical web velocities, and
even small inhomogeneities in the tension may have a large effect on the diver-
gence forms. In particular, the effect of the localization of transverse displace-
ments in the vicinity of free boundaries is illustrated. The obtained results match
the experimental knowledge; they can be used for an effective estimation of the
critical velocity as a function of mechanical and geometric problem parameters.

Keywords: Stability, Axially Moving Plates, Orthotropic Material, Paper Web,
Critical Velocity
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1 INTRODUCTION

In this thesis, the problems of the dynamics and stability of a moving web are
studied using analytical and numerical approaches. More than a simple case
study, this thesis is a representation of the real-life problems from the paper in-
dustry which can be solved efficiently with the methods of mathematical model-
ing and numerical analysis. The thesis follows the general monograph style. It
offers a more elaborate and extensive review of the previously published articles,
and new results have been drawn from them. The monograph style offers the
reader an easier way to follow the study as an entity. The self-contained structure
of the thesis does not require a particularly comprehensive review of previous re-
search but it introduces the key elements and findings with regard to the moving
web.

The key issue of this thesis is how to form the simplest model possible that
still yields valuable and reliable information of the nature of the problem. The
approaches used are classical and they rely heavily on studies from the 19th cen-
tury.

Our goal during this study have been to combine classical approaches with
the modern numerical methods and to gain a better understanding of even very
complex phenomena from the process industry. The objective of this study, as is
usual in mathematical modeling, is to find the characteristics of the behaviour of
the moving material and to find solutions to practical problems.

1.1 Some remarks about mathematical modeling

Before proceeding to the details of the case, a few words related to mathematical
modeling and numerical analysis in general are necessary. As all the experts in
the field know, mathematical modeling is an art and like in every form of art, the
artist makes the difference. We must combine the ideas from physics and math-
ematics with the knowledge of numerical analysis and mathematical modeling
in a clever way to achieve the best solutions. In addition, we always have to re-
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member the objective and the limitations of the models; some of the limitations
can be quite tricky. Nevertheless, the best property of this field of science is that
mathematical modeling is abstract by its nature and it is possible to use it in many
areas, such as engineering and economy (see, for example [61] and [44]). In prac-
tice, this means that models from physics or chemistry can be used as a source
of ideas for models in economics and vice versa. This abstraction opens up the
possibility that the results of a single case can be useful in many other situations
as well, and for that reason mathematical modeling, including numerical simula-
tions, has become the third basic method along with theoretical and experimental
studies.

It is sometimes hard to remember the limits of mathematical models, espe-
cially nowadays, when we have many popular types of software, which provide
an easy access to the world of numerical simulations. We have to keep in mind
that models are always simplifications of real phenomena, even the most sophis-
ticated or complex ones. Especially, in complex cases where measurements are
not available, many restrictions are easily broken by accident. An expert in the
field must know how to ask the right questions, how to solve models in a reliable
manner, and how to correctly analyze the results.

The field itself has taken a giant leap in the last century. In the past, the
researchers had very limited resources for numerical solutions as everything had
to be done with pen and paper. In the 20th century and especially during its
last decades, we witnessed a technological revolution of an unprecedented scale.
Our computing power and facilities have increased dramatically in a very short
time. Today, everyone has access to very powerful computing machines, and the
computing capacity in total has increased in a nearly unlimited manner. All this
has changed the attitude towards solving problems lightly; a temptation to use
”brute force” methods has increased and wasting computing power has become
usual. An easy example of this is the finite element field, where discretization
is created by meshing the structure. With modern computing power, researchers
use much denser meshes than the precision of the model would support. Careless
researchers do not notice this and, at the same time, they underestimate the value
of decent mathematical modeling principles. It is fortunate that recently attention
has turned to this misbehavior, see e.g. book by Neittaanmäki and Repin [64] and
Ph.D. thesis by Mali [51].

1.2 Motivation by application

In this thesis, a complex industrial problem is defined and divided into small
concrete cases that contain stepwise increasing amounts of information. The idea
has been to develop a restricted package which can be implemented later on as a
tool for process analysis. We have tried to avoid large steps in theory, while some
details have been quite intensively studied. We hope that the readers of this thesis
will contribute to our work and inform us about any errors. Ignoring mistakes
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and avoiding details easily leads to cumulative errors in the whole research field
and corrupts the science.

The impetus for this research came from the industry, more precisely from
Metso Paper, Inc., where the runnability in the paper making process is a highly
relevant problem. The productivity of the paper mill is strongly dependent on
the efficiency and reliability of the running web. The importance of the subject
becomes concrete in the following example:

Example Let us consider a middle-sized LWC (lightweight coated) paper mill
with a production of about 250,000 t/year with a utilization rate of 87%. The
total energy consumption at an LWC paper mill is about 2200 kWh/t. Part
of this energy is used as electric power, and the rest is mainly heat (steam)
and gas. Let us assume that the utilization rate decreases by 1% due to poor
runnability (e.g., the web break rate increases or the quality of paper dete-
riorates excessively). Note that a paper mill cannot stop running during a
web break; instead, it has to continue operating but without any production.
The consequence of this 1% decrease in the utilization rate is a loss of 2900 t
in production. During breaks (see Figure 1), the paper mill uses about 6400
MWh of energy. The industrial energy price is about 7 cents/kWh (electric
power being more expensive and thermal power cheaper). This assumption
means a loss of 448,000 euros / year in wasted energy. The price of LWC pa-
per is approximately 700 euros / t and this means a loss of about 2,030,000
euros in sales. A coarse approximation in the total price of a 1 % decrease
in the utilization rate is thus 2.5 million / year. Moreover, it is noteworthy
that this is the effect in a single paper machine.

At the very beginning of the research project, it was clear that the whole problem
with full details cannot be solved even, by using the methods and computing
power available today. This kind of fluid-structure interaction problem with tur-
bulent flows and a viscoelastic, nearly plastic material is just too complex. The
aim of the research was to create a mathematical model which simplifies the prob-
lem sufficiently while still providing an understanding of the phenomenon, qual-
itatively and quantitatively. A major issue, and a known challenge, was the fact
that the measurements of the system were either highly expensive or, as usual,
impossible. From Figure 2 on the next page and Figure 3 on page 19 one can get
an insight on how complex and large paper machines actually are.

The overall goal of this study is to invent tools for controlling and analyz-
ing such systems and to increase their productivity. From the literature, it can be
seen that travelling flexible strings, membranes, beams, and plates are the most
common models used in such studies. As the main target of this thesis, we chose
to analyze the critical issue of web runnability, i.e. to find the conditions under
which the velocity of the web exceeds the safe value and the vibration of the web
increases without a limit. For this we need to learn more about the stability of
an axially moving web, how disturbances begin, and what the parameters con-
trolling the onset of instability are. This is important because the occurrence of
instability can cause, in particular, damage in a paper web and breakage of trans-
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FIGURE 1 The stability has been lost and the web starts to break. (Courtesy of Metso).

FIGURE 2 The dimensions of a paper machine. The height of the machine is 8 m and
the length is 120 m. (Courtesy of Metso).
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FIGURE 3 A cross-section view of the paper machine. Notice the route of the web
through the system. (Courtesy of Metso).(See page 82, in [37].)
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mission cables. This study concentrates on cases where the surrounding fluid is
neglected; our main focus will be on the in- and out-of-plane tensions and mate-
rial properties of the web. Our group has studied the effects of the surrounding
fluid and that study is briefly described below.

1.3 Background of the research process

In this section, we will present some background of the research process. The re-
search have been done in collaboration with University of Jyväskylä, department
of Mathematical Information Technology and the Institute for Problems in Me-
chanics of the Russian Academy of Sciences. The members of the research team
are Prof. Pekka Neittaanmäki, Prof. Nikolay Banichuk, Juha Jeronen, Tytti Saksa,
Maria Tirronen, Matti Kurki and Tero Tuovinen. Our history as a research team
began in 2007 with the study of the paper web interacting with the surrounding
fluid. Later on, studies have been extended in many ways (see Figure 4 on the
next page). In the figure, blue boxes are studies which are presented in this thesis
and grey boxes represents studies that have been excluded.

We began with an analysis of different instability mechanisms by studying
the problem of the moving paper web, modeled as a one-dimensional panel in-
teracting with a two-dimensional flow of an ideal fluid. It was discovered that
the web may experience both divergence and flutter instability when its speed
exceeds certain critical values. The aerodynamic reaction, i.e., the pressure of the
ideal fluid, was found analytically and was used for formulation of the equations
governing the behavior of the web. An analysis of the steady-state type of insta-
bility and the evaluation of the divergence speed of the moving panel submerged
in the ideal fluid was performed by applying the classical concept of elastic sta-
bility.

The analysis was performed via a time-dependent eigenvalue problem us-
ing an integro-differential equation, describing the instability modes. The so-
lution was derived using complex variable calculus and spectral analysis. The
resulting formulae can be used for calculating the divergence speed of the mov-
ing web. Furthermore, an important relation was derived for the dependence
of the critical divergence speed on the density of the surrounding fluid and the
flow velocity. One main objective of our study was the generalization of clas-
sical studies into a case with arbitrary fluid velocity: the study supports exist-
ing research, confirming that the presence of air reduces eigenfrequencies. In
2008 we extended the study into a non-stationary dynamic analysis of a paper
web travelling between two rollers with constant velocity and interacting with
the surrounding air. Transverse vibrations of the web were also described by
an integro-differential equation that includes a local inertia term, Coriolis and
centrifugal forces, the hydrodynamic reaction of the external medium, and some
perturbation forces. The Galerkin method was applied to transform the original
boundary value problem to a Cauchy problem for a system of coupled ordinary
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FIGURE 4 The outline of this thesis related to the research done in our group. The blue
areas are covered in this study and the grey areas are excluded.
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FIGURE 5 The dynamic response of the plate. The topmost graph illustrates a space-
time plot of the out-of-plane displacements of the web, and the bottommost
graph presents five selected time-steps.

differential equations describing the evolution of the system. An example of the
results has been illustrated in Figure 5 where displacements have been presented
in a space-time plot. For further information, see the following articles and re-
ports [16, 15, 14, 7, 8, 4, 5, 36, 43, 3, 81].

The other direction of our research, reported in detail in this thesis, is a pure
stability analysis of a moving web without considering its interaction with air.
As mentioned before, the most common models used by other researchers be-
fore us studied cases of travelling flexible strings, membranes, beams, and plates.
Previous studies of these models, employing second- and fourth-order differen-
tial equations, focus on the aspect of free vibrations including the nature of wave
propagation in moving media and the effects of axial motion on the frequency
spectrum and eigenfunctions. The first models, mainly developed in the middle
of the last century, were one-dimensional string and beam models. The most pro-
ductive group in the field has been that of Mote et al. and even though not all of
their articles have been mentioned here, it is recommended that the reader make
himself familiar with them. The literature review in this thesis covers only the
most significant papers chosen from many groups. We hope that this helps the
reader to build a picture of the activities in this field. The two-dimensional prob-
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lem of instability analysis of an axially moving elastic plate is formulated and in-
vestigated analytically by Banichuk et al. [6] in the context of an isotropic model.
It was observed that the transverse deflection localizes near the free edges (see,
[80]). This was found to correspond to the eigenfunctions of stationary plates un-
der in-plane compressive load (Gorman, [30]), and the results matched the results
of Lin [46] and Shin [72] for moving plates and membranes mentioned above.

The next step is to generalize the analysis into the case of orthotropic mate-
rial. Figure 6 on the following page illustrates the corner of a of piece of paper
and its orthotropic fiber structure (see the longer fibers in the machine direction1).
The problem of the stability of an axially moving orthotropic elastic plate travel-
ling between two rollers at a constant velocity, and experiencing small transverse
vibrations, is considered in a two-dimensional formulation. The model of a thin,
elastic, orthotropic plate subjected to bending and tension is used to describe the
bending moment and the distribution of the membrane forces. The static form
of instability is investigated and the critical regime is studied as a function of the
geometric parameters and the moduli of orthotropicity. It is shown that for some
values of the problem parameter, the buckling mode becomes localized in the
vicinity of the free boundaries. By using the assumption of Huber the orthotropic
case reduces to an isotropic case. This assumption is not widely used in this the-
sis, but some examples are discussed for the sake of comparison. The results are
presented in the article by Banichuk et al. [2]2.

We have extended our study to the analysis of the dynamic behavior and
elastic instability of a rectangular plate moving axially at a constant velocity un-
der non-homogeneous tension: we have also investigated the dependence of the
solution on the problem parameters. This will provide us with very useful infor-
mation about the behaviour of a moving web, as can be seen in Figure 7 where
the results are compared with actual measurements.

Special attention is given to the analysis of the influence of in-plane ten-
sion on the dynamic behavior of the plate and its stability. In the framework
of a general dynamic approach, a functional expression for the characteristic in-
dex of stability is found in a convenient form that can be effectively used for
frequency evaluation and qualitative analysis of dynamic and static modes of in-
stability. The analytical approach allows for a fast solver, which can then be used
for applications such as statistical uncertainty and sensitivity analysis, real-time
parameter space exploration, and finding optimal values for design parameters.
A static investigation of instability is then performed with the help of a qualita-
tive analysis and numerical techniques. The results are presented in the article by
Banichuk et al. [9]. Under the same topic, but in the longitudinal direction, the
tension variations have been studied in a one-dimensional case. The article by
Banichuk et al. [11] represents the effect of gravitation and validates the simplifi-
cation where the gravitation effect is neglected. A short illustration of the case is
presented in Figure 8 and the resulting buckling modes with respect to the angle

1 This simple experiment can be done at home by tearing normal paper in different directions
and observing the differences between the cuts.

2 Note that the citations referring to the four main articles of this thesis, have been bolded.
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FIGURE 6 This photo represents the fibre structure of the paper sheet. Note the length
of fibers with respect to orientation. A similar experimental study can be
done by tearing normal paper in different directions. As a result, the torn
edges of the paper will look different.

FIGURE 7 The measured tension by web width in a paper machine. Front and back
ends correspond to the free boundaries in our model. The measurements
have been taken far from the rollers. [49]
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to the gravity is presented in Figure 9.

FIGURE 8 The elastic band moving in a non-vertical direction (inclined with respect to
the gravity).

θ = 0

θ = π / 8

θ = π / 4

θ = 3 π / 8

θ = π / 2

FIGURE 9 The buckling modes of the gravity problem, when the direction of motion of
the band is at an angle to the gravity. Graphs of the buckling modes for some
selected cases. The displacement maxima are marked by �.
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FIGURE 10 The buckling modes of the gravity problem. The colour sheet of the buck-
ling mode for values of θ between 0 and π/2.

1.4 Literature review

The dynamic and stability considerations discussed here were first reviewed in
the article by Mote [62]. The effects of axial motion of the web on its frequency
spectrum and eigenfunctions were investigated in the papers by Archibald and
Emslie [1] and by Simpson [73]. It was shown that the natural frequency of each
mode decreases when the transport speed increases, and that the travelling string
and beam both experience divergence instability at a sufficiently high speed. Re-
sponse predictions were made for particular cases where the excitation assumes
special forms, such as a constant transverse point force (see the article by Chonan
[26]) or harmonic support motion (see the article by Miranker [60]). Arbitrary ex-
citations and initial conditions have been analyzed with the help of modal anal-
ysis and a Green function method in the article by Wickert and Mote [88]. As
a result, the associated critical speeds have been explicitly determined. The loss
of stability was studied with an application of dynamic and static approaches in
the article by Wickert [87]. It was shown by means of numerical analysis that
in all cases instability occurs when the frequency is zero and the critical velocity
coincides with the corresponding velocity obtained from static analysis.

Two-dimensional studies have also been performed. It is noteworthy that
among them are the studies made by Lin and Mote who studied an axially mov-
ing membrane in a 2D formulation in their article [47], predicting the equilibrium
displacement and stress distributions under transverse loading. In the article by
Shin et al. [72], out-of-plane vibrations of an axially moving membrane were
studied. They also found by numerical analysis that for a membrane with no-
friction boundary conditions in the lateral direction along the rollers, the mem-
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brane remains dynamically stable until the critical speed, at which static instabil-
ity occurs, is reached. Later on, Lin and Mote extended their study in the article
[48] where they predicted the wrinkling instability and the corresponding wrin-
kled shape of a web with small flexural stiffness. Lin continued the studies of
stability in his article [46] in 1997.

It is necessary to note that the vibration problem for an axially moving con-
tinuum is not the conventional one. Because of the longitudinal continuity of
the material, the equation of motion for transverse vibration contains additional
terms, representing a Coriolis force and a centripetal force acting on the material.
As a consequence, the resonant frequencies are dependent on the longitudinal ve-
locity of the axially moving continuum (see the article by Mujumdar and Douglas
[63]). Another important factor that affects the instability of the axially moving
continuum is the interaction between the elastic continuum and the surround-
ing medium. The interaction between the travelling web and the surrounding
air is known to influence the critical velocity (see the articles by Pramila [68] and
by Frondelius et al. [27]) and the dynamical response of the web (discussed in
the article by Kulachenko et al. [41]), possibly also affecting the buckling shape.
These effects are ignored in the in-vacuum model used in this thesis, but should
be noted here. The simplest approach to taking the interaction into account is
to assume potential flow; that is, the surrounding air is assumed to be incom-
pressible and inviscid, and the flow is assumed to be irrotational (like in their
articles by Niemi and Pramila [65]). Experimental studies and some theoretical
estimations (see, e.g., the article by Pramila[68]) indicate that in the case of nor-
mal vibration, a comparison of experimental and theoretical results shows that
predictions based on the potential flow theory are within approximately 10 % of
the measured results. To solve the external hydrodynamic problem, and to find
the reaction of the surrounding medium, the finite element method has been used
[65]. Note that dynamical properties of moving plates have been studied by Shen,
Sharpe and McGinley [71] and by Shin et al. [72], and the properties of a moving
web have been studied by Kulachenko, Gradin, and Koivurova in both their arti-
cles [40, 41]. Critical regimes and other problems of instability analysis have been
studied by [85] and [75]. From experimental studies and some theoretical esti-
mations (see e.g. the article by Pramila [68]), it can be concluded that mechanical
instability of a travelling paper web can arise at some critical velocities and that
the instability may occur in either dynamic, i.e. flutter, or static, i.e. divergence,
forms. These critical velocities are of both theoretical and practical interest as they
set an upper limit for the running speed of paper machines, and consequently, for
the rate of paper production that can be achieved. Some previous investigations
(see e.g., Lin [46]) show that for an axially moving elastic paper web under a
homogeneous tension profile along the rollers and certain other conditions, the
value of divergence speed Vdiv

0 is less than the value of flutter speed Vfl
0 , i.e.,

Vdiv
0 < Vfl

0 . (1)

Thus, the speed V0 for a reliable, stable movement of the paper web must satisfy
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the condition
V0 < VDiv

0 . (2)

Corresponding results have been obtained also for axially moving beams inter-
acting with external media; see, e.g. the articles by Chang and Morretti [21], and
the articles by N. Banichuk and P. Neittaanmäki [16, 15, 14]. The same authors
with Tero Tuovinen and Juha Jeronen have extended the study in the article [6] to
a two-dimensional model of the web, considered as a moving plate under homo-
geneous tension but without external media.

The mechanical behavior of the paper web under a non-failure condition is
adequately described by the model of an elastic orthotropic plate. The rigidity
coefficients of the plate model that describe the tension and bending of the paper
sheet have been estimated for various types of paper in many publications (see,
for example the articles by Gottsching and Baumgarten [31], by Thorpe [76], by
Skonwronski and Robertson [74] and by Seo [70]). The deformation properties
of a sheet of paper under tensile stress or strain are used in simulation of axial
movement of a paper web. In particular, these properties are important for the
modeling of the instability of the web.

In the article by Hatami et al. [32], the free vibration of a moving orthotropic
rectangular plate is studied at sub- and supercritical speeds, and its flutter and di-
vergence instabilities at supercritical speeds. Their study was limited to simply
supported boundary conditions at all edges. The free vibrations of orthotropic
rectangular plates that are not moving have been studied by Biancolini et al. [18],
including all combinations of simply supported and clamped boundary condi-
tions on the edges. Xing and Liu obtained in the article [89] exact solutions
for free vibrations of stationary rectangular orthotropic plates; they considered
three combinations of simply supported (S) and clamped (C) boundary condi-
tions: SSCC, SCCC, and CCCC. Kshirsagar and Bhaskar [39] studied vibrations
and buckling of loaded stationary orthotropic plates. They found critical loads of
buckling for all combinations of boundary conditions S, C, and F. For the numer-
ical solving of orthotropic moving material, many necessary fundamentals can
be found in the book by Marynowski [55]. In this thesis, we have extended our
previous studies including orthotropic material and non-homogeneous tension.
The numerical results have not been published before. This addition is relevant
for combining all studies for rigorous analysis and conclusions.

It should be noted that when considering a paper material, in order to model
the behavior of a wet paper web, we need to include its viscoelastic properties
in the model. The first study of transverse vibration of travelling viscoelastic
material was carried out by [28] using a string model. Extending their work,
they studied the material damping effect in their later research [29]. Later on,
viscoelastic strings and beams have been studied exceedingly; see the articles
[66, 45], [25], [93], [90, 91, 24], [23], [53, 54, 56, 59, 57, 58]. Our research in that area
continues and its results will be published in the future. The further discussion
of viscoelastic properties is excluded from this thesis. Therefore, the damping
effects resulting from the viscoelastic nature of paper are neglected. This is not a
major problem since the introduction of such damping is not expected to change
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the critical velocity, although it does modify the postdivergence behavior of the
web (see the article by Ulsoy and Mote [82]).

1.5 Highlighted studies, results and related articles

In this thesis, we have studied five cases related to the stability of an axially mov-
ing elastic web. The cases are :

– An isotropic plate with a homogeneous tension profile
– An isotropic plate with a non-homogeneous tension profile
– An orthotropic membrane with a homogeneous tension profile
– An orthotropic plate with a homogeneous tension profile
– An orthotropic plate with a non-homogeneous tension profile.

The described cases will cover this part of the field. The main results of this thesis
are:

1. In all cases, the value of tension does not affect the buckling shape; however,
the tension is the most significant parameter when considering the critical
velocity of a moving web.

2. In the case of the moving material with homogeneous tension, it was proved
that the buckled plate shape is symmetrical, i.e., the antisymmetric shapes
correspond to the higher values of the transport velocity.

3. In the case of the orthotropic moving material, we have noted that by using
the Huber quantity, the qualitative behaviour agrees with the isotropic case,
as expected. In the analysis we found the effect of the Young modulus ratio
E1/E2; the smaller the ratio, the more the shape is localized near the free
edges.

4. In the case of the orthotropic moving material, we have analyzed the effect
of the increasing the ratio G12/GH and we have found that the zone where
the relative strength of localization rapidly increases, shifts to the right to-
wards the larger values of ν12.

5. In the case of the non-homogeneous tension profile, it was seen that inho-
mogeneities may significantly decrease the critical velocities. For up to a
20 % tension inhomogeneity between the midpoint and the edges, the de-
crease in the critical velocity is found to be 10 %.

6. In the same study, the critical velocity is not significantly affected by slight
inhomogeneities in the tension profile. For up to a 1% tension inhomogene-
ity between the midpoint and the edges, the largest decrease in the critical
velocity is found to be less than 0.5%.

7. Again in the same study, it is also seen that the wider the web is, the more
sensitive it is for tension inhomogeneities. Materials with a larger Poisson
ratio tend to exhibit a higher degree of sensitivity to inhomogeneities in the
tension profile.
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8. Finally, we can see that even for the smallest inhomogeneity tested, 1E−6,
the divergence (buckling) mode changes completely for these problem pa-
rameters. Thus, from a practical point of view, although studies of the ho-
mogeneous tension case can relatively accurately predict the critical veloc-
ity. The analysis indicates that the predictions of the divergence shape may
be completely inaccurate.

This thesis is a based on the following published articles by the author3. Note
that the citations referring to these four main articles have been bolded:

– [6] Banichuk, N. Jeronen, J. Neittaanmäki, P. and Tuovinen, T. On the in-
stability of an axially moving elastic plate, International Journal of Solids
and Structures, 2010

– [2] Banichuk, N. Jeronen, J. Kurki, M. Neittaanmäki, P. Saksa, T. and
Tuovinen, T. , On the limit velocity and buckling phenomena of axially mov-
ing orthotropic membranes and plates, International Journal of Solids and
Structures, 2011, pp. 2015–2025

– [9] Banichuk, N. Jeronen, J. Neittaanmäki, P. Tuovinen, T. and Saksa, T.
Theoretical study on travel ling web dynamics and instability under a linear
tension distribution, Reports of the Department of Mathematical Informa-
tion Technology, 2010

– [11] Banichuk, N. Jeronen, J. Saksa, T. and Tuovinen, T. Static instability
analysis of an elastic band travelling in the gravitational field, Journal of
Structural Mechanics, 2011, pp. 172–185

Some additional information has been collected also from the following articles
by the author:

– [7] Banichuk, N. Jeronen, J. Neittaanmäki, P. and Tuovinen, T. Static Insta-
bility Analysis for Travelling Membranes and Plates Interacting with Axi-
ally Moving Ideal Fluid, Journal of Fluids and Structures, 2010, pp. 274–291

– [8] Banichuk, N. Jeronen, J. Neittaanmäki, P., and Tuovinen, T., Dynamic
behaviour of an axially moving plate undergoing small cylindrical deforma-
tion submerged in axially flowing ideal fluid, Journal of Fluids and Struc-
tures, 2011, pp. 986–1005

– [4] Banichuk, N. Jeronen, J. Neittaanmäki, P. and Tuovinen, T. Nonstation-
ary Dynamics of Travelling Membranes and Plates Interacting with Axially
Moving Ideal Fluid. Part I: Theory, Reports of the Department of Mathe-
matical Information Technology, 2008

– [5] Banichuk, N. Jeronen, J. Neittaanmäki, P. and Tuovinen, T. Nonstation-
ary Dynamics of Travelling Membranes and Plates Interacting with Axially
Moving Ideal Fluid. Part II: Numerical Results, Reports of the Department
of Mathematical Information Technology, 2008

3 Note that in the group, we have used the policy of alphabetical order in the list of authors
where possible.
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– [13] Banichuk, N. Kurki, M. Neittaanmäki, P. Saksa, T. and Tuovinen, T.
On Axially Moving Webs Under Fracture and Instability Constraints, Re-
ports of the Department of Mathematical Information Technology, 2011

– [35] Jeronen, J. Saksa, T. Tuovinen, T. Banichuk, N. and Neittaanmäki, P.
On the Moving Web Dynamics Under Stability Considerations Including
Interaction with Surrounding Fluid, Massachusetts Institute of Technology,
2011, pp. 64

– [43] Kurki, M. Jeronen, J. Saksa, T. Tuovinen, T. and Neittaanmäki, P. Li-
ikkuvan paperiradan kriittinen rajanopeus ja stabiilisuusanalyysi paperi- ja
kartonkikoneen eri osaprosesseissa, Paperi ja Puu, 2011

– [61] Mönkölä, S. Airaksinen, T. Makkonen, P. Tuovinen, T. and Neittaan-
mäki, P. Prospectives to tractor cabin design with computational acoustics
tools, ECMI newsletter, 2011, pp. 16–19

– [34] Jeronen, J. Banichuk, N. Neittaanmäki, P. and Tuovinen, T. On The
Effects Of Bending Rigidity On The Stability Of An Axially Moving Or-
thotropic Plate, University of Jyväskylä, 2009, pp. 510–521

– [81] Tuovinen, T. and Mönkölä, S. Two Different Approaches for Fluid-
Structure Interaction (FSI) Based Flutter Problems in Paper Machine, Re-
ports of the Department of Mathematical Information Technology, 2008

1.6 Author’s contributions

The outcome of this thesis is a result of an intensive collaboration between the au-
thor and the FSI group. The main problem for the study comes from the industry,
more precisely from Metso Paper Inc. (see e.g. the licentiate thesis of Matti Kurki
[42]). At the beginning of collaboration, there was an urgent need for modeling
runnability in Metso Paper. The author has advanced and extended the studies
from the literature into the field of moving materials. The author has written the
articles that are the basis of this thesis. The author’s main contributions are:

– Structuring the research, planning the steps at the project level, collecting
the experts, and organizing the methods in use inside the group.

– Preparing the studies and literature, collecting related articles, defining the
cases in the study.

– Developing numerical implementations, partly alone, partly with Juha Jero-
nen and Tytti Saksa.

– Analysing gained results for publication, improving the cases based on this
knowledge, choosing the final cases and results which to publish.

– Publishing the results in international journals.
– Combining and re-writing the published articles, thereby complementing

the material to form a full monograph-style thesis.
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1.7 Structure of the thesis

This thesis is structured as follows. This thesis is divided into four main parts.
In Section 1, we introduce the motivation for this thesis and its background and
describe the research process that began in 2005. The literature review found
in this section and the main results and the articles that have been the basis of
this thesis have been listed shortly. Also the contribution of the author has been
presented in a brief manner. In Section 2, we present the theory of this study in
detail. The numerical results are presented and analyzed in Section 3, and Section
4 brings all the pieces of this dissertation together and presents some future plans.
At the end of this thesis, the reader find a Finnish summary and list of references.



2 MATHEMATICAL MODELING OF WEB
DYNAMICS

In this section we present the theoretical background of the problem, including
derivations of the equations, solution processes, and pieces of proof that are nec-
essary for analyzing the results. We have included the isotropic examples for
the sake of clarity, even though the orthotropic equations also cover the isotropic
special case. The membrane is discussed because many classical studies assume
a membrane -like behaviour. The implementation of the solver follows directly
the structure of this section; therefore, we have avoided using excessively large
steps in this section. It is easy to jump over many ”technical details” and to create
misunderstandings and ”guess-based solutions” for the future. The progress of
the science is very fast today and one should strive for completeness in laying the
foundations for future work.

The preliminary information needed for modeling web dynamics can be
found from classical books such as ”Theory of plates and shells” by Timoshenko
and Woinowsky-Krieger [79], and the book by Timoshenko and Gere, ”Theory of
Elastic Stability” [78]. Furthermore, the book by Bolotin, ”Nonconservative Problems
of the Theory of Elastic Stability” [19] is assumed to be known to the reader. The
basis of the theory presented in this thesis is described in these books.

2.1 Basic relations for transverse vibration of axially moving elas-
tic plates and membranes

We investigate the elastic stability of a band travelling at a constant velocity V0
in the x-direction between two rollers located at x = 0 and x = �. Consider, in a
Cartesian coordinate system, a rectangular part of the web

Ω = {(x, y) | 0 < x < �, −b < y < b} ,

where � and b are prescribed parameters. Domain Ω is considered to be open.
Let us also define that Γ is the boundary related to Ω and the union of Ω and
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FIGURE 11 An axially moving elastic plate, simply supported at both ends, x = 0 and
x = �. The rollers are considered to be unaffected.

Γ is considered to be closed. Additionally, assume that the considered part of
the web is represented as a rectangular elastic plate or membrane. We will need
the following parameters: constant thickness h, the Poisson ratio ν, the Young
modulus E, bending rigidity D, and shear stress G12. In the case of a membrane,
we have zero bending rigidities, and in studies of the orthotropic elastic plate we
have three bending rigidities D1, D2, and D3. Respectively, instead of ν and E,
we have ν12 , ν21 , E1, and E2. The ”1” axis of the orthotropic material is aligned
with the x-direction, also called the machine direction (MD), while the ”2” axis is
aligned with the y-direction, also called the co-machine direction (CD) (see Figure
11).

In the studies, the web is subjected to homogeneous or non-homogeneous
tension T acting in the x-direction and applied at the boundaries x = 0 and x = �.
In-plane distributed forces are defined as

k = k(y) = T0 + ζ(y), (3)

where the constant T0 > 0 and the function ζ(y) are considered given. In the case
of homogeneous tension, ζ(y) = 0 . We have assumed that the sides of the bands

x = 0, −b ≤ y ≤ b, and x = �, −b ≤ y ≤ b (4)

are simply supported, and the sides

y = −b, 0 ≤ x ≤ � and y = b, 0 ≤ x ≤ �

are free of tractions. The tension profiles are illustrated in Figure 12.

2.1.1 Governing equations of transverse out-of-plane vibrations

In this section we represent the governing equations for transverse out-of-plane
vibrations. We begin by considering force balance equations for x−, y− and
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FIGURE 12 An axially moving elastic plate or membrane, simply supported at x =

0 and x = �. Homogeneous and linear non-homogeneous tension forces
applied at x = 0 and x = � have been illustrated qualitatively.
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z-directions. The simplest way is to categorize them into external and internal
forces. External forces are applied by a force on the web. The most important ex-
ternal forces are the pressure force, gravitation, drag, air friction, and mechanical
surface friction. The internal forces are reaction forces that arise in the paper web.
The internal forces are usually self-generated or acceleration forces. Typically, re-
bonding and drying shrinkage of fibres generate negative strains and in-plane
tensions inside of a paper web. Another example of an internal force is bending
stiffness.

In this thesis, we focus on static analysis and static instabilities of the mov-
ing web. As it has been already mentioned, the effects caused by the surrounding
medium are neglected. We have studied this interaction with air and the results
can be found in our paper [7]. We note very briefly the results for our article [10]
that the gravitational effects are minimal in this case and can be excluded from
the studies presented here. Mechanical friction forces are neglected, because we
study an unsupported span. Actually, there is friction in the area where rollers
and the web are connected, but because we are using linear models where de-
coupling between equations of u, v, and w exists, friction can be neglected. Note
that u corresponds to the x-direction, v respectively to the y-direction, and w to
the z-direction. We have also neglected the adhesion forces, mainly for the sake
of simplicity.

First of all, consider the effect of acceleration. The very basic equation for
the acceleration is the familiar dependence between force, mass, and acceleration
given by Newton’s second law,

F = Ma = M
∂2u
∂t2 , (5)

where F is force and M is mass. Here the small u denotes axial displacement.
For the vertical displacement we use the symbol w. We assume that the axial
displacement is local and the vertical displacement is global. In this context, we
consider that ”local” means that the axial displacement of the web ”flows through
the window”, and in vertical displacement ”global” means that the displacement
describes the overall movement. A similar approach has been presented, for ex-
ample, by Thurman and Mote in their studies [77]. For the vertical velocity, we
obtain

dw
dt

=
∂w
∂t

+
du
dt

∂w
∂x

. (6)

We will take a total differential of the equation (6),

dw
dt

=
∂w
∂t

+
∂w
∂x

dx
dt

=
∂w
∂t

+ V0
∂w
∂x

=

(
∂

∂t
+ V0

∂

∂x

)
w, (7)

where V0 is constant. Now, differentiation again gives us the following form:

d2w
dt2 =

(
∂

∂t
+ V0

∂

∂x

)(
∂w
∂t

+ V0
∂w
∂x

)
= (8)

∂2w
∂t2 + 2V0

∂2w
∂x∂t

+ V0
∂2w
∂x2 .
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Similarly, it is possible to derive the equation for a longitudinal wave. In-
stead of using the total mass M we are able to use the basis weight m, which is the
mass per unit area. The basis weight is more usable from the application point
of view. We can present the derivative of tension in the following way (see e.g.
Kurki [42]):

m
d2u
dt2 =

dT
dx

. (9)

We assume that
dx
dt

=
du
dt

. (10)

One must note that u is the displacement in a free longitudinal vibration. We
denote the constant velocity of the web as

V0 =
du
dt

(11)

and as above, we get the equation

d2u
dt2 =

∂2u
∂t2 + 2V0

∂2u
∂x∂t

+ V2
0

∂2u
∂x2 . (12)

We present the differential equation for small transverse vibrations in the follow-
ing form:

m
d2w
dt2 = LM (w)−LB (w) . (13)

Here m is the mass per unit area of the middle surface of the plate. The total
acceleration on the left-hand side of the equation (13) is expressed as

d2w
dt2 =

d
dt

(
∂w
∂t

+ V0
∂w
∂x

)
=

∂2w
∂t2 + 2V0

∂2w
∂x∂t

+ V2
0

∂2w
∂x2 . (14)

The right-hand side in the equation (14) contains three terms, representing local
acceleration, Coriolis acceleration, and centripetal acceleration, respectively. The
membrane operator on the right-hand side of the equation (13) is

LM (w) = Txx
∂2w
∂x2 + 2Txy

∂2w
∂x∂y

+ Tyy
∂2w
∂y2 . (15)

The coefficients Txx, Txy, and Tyy of the linear operator LM are related to the
corresponding in-plane stresses σxx, σxy, and σyy by the expressions

Tij = hσij . (16)

The linear bending operator LB is given by the expression

LB (w) = DΔ2w = D
(

∂4w
∂x4 + 2

∂4w
∂x2∂y2 +

∂4w
∂y4

)
(17)
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in the case of an isotropic elastic plate. Here,

D =
Eh3

12 (1 − ν2)
(18)

is the bending rigidity of the plate, and Δ2 is the biharmonic operator. When we
consider the case of an orthotropic plate, the operator LB depends on the three
constants, i.e. the operator is

LB (w) = D1
∂4w
∂x4 + 2D3

∂4w
∂x2∂y2 + D2

∂4w
∂y4 . (19)

In the case of a membrane, the bending rigidities are neglected and the entire
operator LB is omitted (LB ≡ 0). For the bending rigidities in the equation (19),
we have the expressions (see e.g. Timoshenko and Woinowsky-Krieger [79])

D1 =
h3

12
C11 , D2 =

h3

12
C22 , D3 =

h3

12
(C12 + 2 C66) , (20)

where Cij are the elastic moduli. These can be expressed in terms of the Young
moduli E1, E2, and the Poisson ratios ν12, ν21 as (see, e.g., Kikuchi [38]),

C11 =
E1

1 − ν12ν21
, C22 =

E2

1 − ν12ν21
,

C12 = C21 =
ν12E2

1 − ν12ν21
,

C66 = G12.

. (21)

In the equation (21), E1 is the Young modulus in the x-direction, and ν12 is the
Poisson ratio in the xy plane when the stretching is applied in the x-direction.
Respectively, E2 is the Young modulus in the y-direction, and ν21 is the Poisson
ratio in the xy plane when the stretching is applied in the y-direction. G12 is the
shear modulus in the xy− plane.

We assume that the deflection function w and its partial derivatives are
small, and that they satisfy the boundary conditions. In the case of an orthotropic
plate, the boundary conditions read

(w)x=0,� = 0,
(

∂2w
∂x2

)
x=0,�

= 0 , −b ≤ y ≤ b , (22)

(
∂2w
∂y2 + β1

∂2w
∂x2

)
y=±b

= 0 , 0 ≤ x ≤ � , (23)

(
∂3w
∂y3 + β2

∂3w
∂x2∂y

)
y=±b

= 0, 0 ≤ x ≤ � , (24)
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where β1 and β2 are mechanical parameters defined as

β1 = ν12 ,

β2 = ν12 +
4 G12

E2
(1 − ν12ν21) .

(25)

We note that we use the Kirchhoff boundary conditions for the sake of sim-
plicity. From the physical point of view, it is an important and not trivial question
which types of boundary conditions to select. However, many other scientists
have chosen the same conditions and we have followed their example.

Using the geometric average approximation of G12,

GH ≡
√

E1E2

2 (1 +
√

ν12ν21)
, (26)

also known as the Huber quantity GH (see, Huber [33]), the equations for an or-
thotropic plate reduce to the case of an isotropic plate. It is easy to show that this
property is valid for the time-dependent plate problem, including axial motion,
as well. Because coordinate scaling is only required in the y-direction (see. [79]
for the transformations), the Coriolis term wxt generated by the axial motion of
the plate causes no trouble for this approach. However, in the rest of this study,
unless otherwise noted, it is assumed that G12 is an independent material param-
eter. This generalization comes from the application point of view, where shear
stress generally differs from its geometric average, and can actually be quite vari-
able.

In the case of a membrane, the boundary condition at the rollers reads

(w)x=0, � = 0 , −b ≤ y ≤ b . (27)

On the free edges, the classical membrane theory asserts (see e.g. [69, 86])(
∂w
∂y

)
y=±b

= 0, (0 ≤ x ≤ �) . (28)

Finally, we note that Shin et al. [72] have used a different condition for zero trac-
tion, which does not contain the transverse displacement w. We will see below
that in our case both choices of the boundary condition on the free edges are pos-
sible for a membrane.

2.1.2 In-plane tensions

Our first goal is to describe the stationary representation of in-plane forces, i.e. we
assume that the in-plane tensions do not depend on time t. The in-plane tensions
Txx, Txy, and Tyy are assumed to satisfy the equilibrium equations

∂Txx

∂x
+

∂Txy

∂y
= 0,

∂Txy

∂x
+

∂Tyy

∂y
= 0. (29)
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In the case of a plate, the boundary conditions are

Txx = k(y), Txy = 0 at x = 0, |y| ≤ b and x = �, |y| ≤ b , (30)

Tyy = 0, Txy = 0 at y = ±b, 0 ≤ x ≤ � . (31)

Let us begin with the homogeneous tension fields when k(y) degenerates to
T0. For both the plate and membrane cases, in the equation (29), Txx, Txy and Tyy
the in-plane tensions are related to the corresponding stress tensor components
σxx, σxy and σyy. The reader is reminded of the relations between stresses and
tensions in the equation (16). Taking into account the behavioral equation of the
plane theory of elasticity and the boundary conditions (30) and (31), we have for
the orthotropic band considered the tension field

Txx = T0 , Tyy = Txy = 0 , (x, y) ∈ Ω . (32)

The in-plane displacements u, and v, oriented respectively along the axes x and
y, are related to the stresses by means of the generalized Hooke’s Law:

σxx = C11
∂u
∂x

+ C12
∂v
∂y

, (33)

σxy = C66

(
∂u
∂y

+
∂v
∂x

)
and (34)

σyy = C12
∂u
∂x

+ C22
∂v
∂y

, (35)

where Cij are the elastic moduli; see relations from the equation (21). In the fol-
lowing, we will use Maxwell’s relation

E1ν21 = E2ν12 . (36)

Note that by using equations (29) and (33) – (35), it is possible to show that if
instead of a prescribed tension T0 we have a prescribed displacement u0 at x = �,
the generated tension field has the form (32) and its value is

T0 = h
u0

�

(
C11 − C2

12
C22

)
= h

u0

�
E1 , (37)

because

C11 − C2
12

C22
=

E1

1 − ν12ν21
− ν2

12E2

1 − ν12ν21
= E1. (38)

Therefore, our results are applicable to this case as well.
The boundary conditions used in deriving (37) were (31) and the following:

σxy = 0 at x = 0, �,

u = 0 at x = 0,

u = u0 at x = �.

(39)
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From (21) and (36) the last form in (37) easily follows. We see that the only ma-
terial parameter that affects the homogeneous tension field generated by the pre-
scribed displacement is the Young modulus in the longitudinal direction. Com-
pare (37) with

T0 = h
u0

�
E (40)

for an isotropic material.
For non-homogeneous tension we represent tensions Txx, Tyy, and Txy with

the help of the Airy stress function. The equations are

Txx = hσxx =
∂2Υ
∂y2

Tyy = hσyy =
∂2Υ
∂x2

Txy = hσxy = − ∂2Υ
∂x∂y

.

(41)

The Airy stress function Υ satisfies the biharmonic equation

Δ2Υ ≡ ∂4Υ
∂x4 + 2

∂4Υ
∂x2∂y2 +

∂4Υ
∂y4 = 0 . (42)

The boundary conditions satisfied by Υ, corresponding to (30) and (31), are

(
∂2Υ
∂y2

)
x=0,�

= k(y) ,
(

∂2Υ
∂x∂y

)
x=0,�

= 0 , −b ≤ y ≤ b , (43)

(
∂2Υ
∂x2

)
y=±b

= 0 ,
(

∂2Υ
∂x∂y

)
y=±b

= 0 , 0 ≤ x ≤ � . (44)

Note that the tensions expressed via the stress function Υ in the equation
(41) will satisfy the equilibrium equations in (29) for any function Υ that is suf-
ficiently smooth. The problem (42) – (44), which must be solved, expresses the
condition of compatibility for the tensions (stresses).

In the following we will concentrate on the linear tension distribution, and
use the rigorous solution of the boundary value problem (42) – (44) corresponding
to the case where ζ(y) = αy, i.e., k(y) = T0 + αy. Here, α > 0 is a given constant.
We have

Υ(x, y) = T0
y2

2
+ α

y3

6
+ c1x + c2y + c0, (x, y) ∈ Ω . (45)

The corresponding tensions will be

Txx(x, y) = T0 + αy, Txy(x, y) = 0, Tyy(x, y) = 0, (x, y) ∈ Ω , (46)

where c0, c1 and c2 are arbitrary constants.



42

2.2 Instability analysis of moving membranes and plates

In this section, the focus is on how to analyze the dynamical problems of instabil-
ity. We have followed the method described by Bolotin (see, [19]).

First, for the simplicity, we will use the choice D0 = D1 below. The equation
(13) becomes

∂2w
∂t2 + 2V0

∂2w
∂x∂t

+
(

V2
0 − C2

) ∂2w
∂x2 +

D0

m
L0(w) = 0, C =

√
T0

m
, (47)

where

L0(w) =
D1

D0

∂4w
∂x4 +

2D3

D0

∂4w
∂x2∂y2 +

D2

D0

∂4w
∂y4 . (48)

Note that the boundary value problem considered (47) – (48), with the boundary
conditions (22) – (24), is homogeneous and invariant with respect to the symme-
try operation y → −y and, consequently, all solutions of the problem are either
symmetric or antisymmetric functions of y, i.e.

w(x, y, t) = w(x,−y, t) or w(x, y, t) = −w(x,−y, t) . (49)

Let us represent the solution of our dynamic boundary-value problem (47) – (48)
as

w(x, y, t) = W(x, y)eiωt , (50)

or in the equivalent form

w(x, y, t) = W(x, y)est , (51)

where ω is the frequency of small transverse vibrations and

s = iω (52)

is the complex characteristic parameter:

s = Re s + i Im s = sre + i sim. (53)

If this parameter is a purely imaginary, i.e.,

Re s = 0, Im s �= 0, (54)

and consequently ω is real, the membrane or plate performs harmonic vibrations
of a small amplitude and its motion can be considered stable. If, for some val-
ues of the problem parameters, the real part of the characteristic index becomes
positive, i.e.,

sre = Re s > 0, (55)

the transverse vibrations grow exponentially and consequently the behaviour is
unstable (See Figure 13).
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FIGURE 13 Behavior of the stability index s. Divergence, i.e. critical velocity, can be
found in the origo.

2.3 Dynamic instability of a membrane

In this section, we have considered the instability of a membrane. Membrane
studies are the classical approaches for the problems in moving materials, be-
cause the analytical methods are effective in many cases.

First we define the eigenvalue problem. The homogeneous tension force is
applied on the boundaries x = 0 and x = �; in order to investigate the dynamic
behavior we insert the representation (50) into the equation (47). Because we
are studying a membrane, we have omitted the bending rigidity terms from the
equation (47). We now have the equation

s2W + 2sV0
∂W
∂x

+
(

V2
0 − C2

) ∂2W
∂x2 = 0 (56)

with zero boundary conditions

(W)x=0, � = 0 , −b ≤ y ≤ b . (57)

We multiply the left-hand side of the equation (56) by W and perform integration
over the domain

Ω = (0 < x < �, −b < y < b) (58)

to obtain

s2
ˆ

Ω
W2 dΩ + 2sV0

ˆ
Ω

W
∂W
∂x

dΩ +
(

V2
0 − C2

) ˆ
Ω

W
∂2W
∂x2 dΩ = 0 . (59)
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It is worth noting that the problem (59) is not exactly the variational form of the
original eigenvalue problem (56). This is because in the equation (59) we only test
against W itself, not against an arbitrary test function. However, the eigenvalues
of the problem (59) include the eigenvalues of the problem (56), i.e. we may get
additional solutions. As we are interested in the behavior of the eigenvalues of
the problem (56), it is sufficient to notice they must have the same behavior as the
eigenvalues of the problem (59).

The second and third integrals in the equation (59) are evaluated with inte-
gration by parts and the boundary conditions (57), e.g.,

ˆ
Ω

W
∂W
∂x

dΩ =

ˆ b

−b

ˆ �

0
W

∂W
∂x

dx dy

=

ˆ b

−b

[
W2(�, y)

2
− W2(0, y)

2

]
dy,

= 0

(60)

and, in a similar manner, by performing integration by parts in the third integral
in the equation (59) and again applying the boundary conditions (57), we have

ˆ
Ω

W
∂2W
∂x2 dΩ = −

ˆ
Ω

(
∂W
∂x

)2

dΩ . (61)

Using the equalities (59) – (61) and performing elementary transformations, we
obtain the following expression for the characteristic index:

s2 =
(

V2
0 − C2

)
ˆ

Ω

(
∂W
∂x

)2

dΩ
ˆ

Ω
W2 dΩ

. (62)

If s becomes zero, we have a steady state solution (buckling) with frequency ω =
0 at the velocity V0 = Vdiv

0 . The value of this divergence velocity is estimated as

Vdiv
0 = C =

√
T0

m
=

√
hu0

m�
E1 , (63)

where in the last form the equation (37) has been used.

2.4 Dynamic analysis of small transverse vibrations and elastic in-
stability of an isotropic plate

To investigate the dynamic behavior of the plate, we insert, following the mem-
brane case, the representation (50) into the equation (47). As the object is a plate,
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the bending rigidities cannot be omitted this time. Therefore we have the equa-
tion

s2W + 2sV0
∂W
∂x

+ (V2
0 − C2)

∂2W
∂x2 +

D
m

Δ2W = 0. (64)

Again, following the membrane case, we multiply the left-hand side of the equa-
tion (64) by W and perform integration over the domain Ω to obtain

s2
ˆ

Ω
W2 dΩ + 2sV0

ˆ
Ω

W
∂W
∂x

dΩ + (V2
0 − C2)

ˆ
Ω

W
∂2W
∂x2 dΩ

+
D
m

ˆ
Ω

WΔ2W dΩ = 0 . (65)

The same argument holds for the variational form as in the membrane case.
The equation (65) can be seen as an eigenvalue problem for the pair (s, W) with
the parameter V0, producing a spectrum of complex eigenfrequencies s and eigen-
modes W for the chosen value of V0. Alternatively, (65) can be viewed as an eigen-
value problem for the pair (V0, W) with the parameter s, when s is fixed to any
such value that at least one complex eigenfrequency exists for at least one choice
of V0. For other choices of s, this second eigenvalue problem has no solution.

Previously we have noted the equalities (60) and (61) for the membrane.
Our boundary conditions in this problem are

(W)x=0,� = 0,
(

∂2W
∂x2

)
x=0,�

= 0 , −b ≤ y ≤ b , (66)

(
∂2W
∂y2 + β1

∂2W
∂x2

)
y=±b

= 0 , 0 ≤ x ≤ � , (67)

(
∂3W
∂y3 + β2

∂3W
∂x2∂y

)
y=±b

= 0, 0 ≤ x ≤ �. (68)

The last integral in (65) can be estimated, using Green’s 2nd identity, as
ˆ

Ω
WΔ2W dΩ =

ˆ
Ω
(ΔW)2 dΩ +

ˆ
Γ

(
W

∂

∂n
ΔW − ΔW

∂W
∂n

)
dΓ, (69)

where n is the exterior unit normal to the boundary Γ of the domain Ω.
We divide the boundary Γ into four parts (see Figure 14):

Γ− = {0 ≤ x ≤ �, y = −b}, Γr = {x = �, −b ≤ y ≤ b},

Γ+ = {0 ≤ x ≤ �, y = b}, Γ� = {x = 0, −b ≤ y ≤ b}.

Admitting counterclockwise integration along Γ, we have

I =
ˆ

Γ

(
W

∂

∂n
ΔW − ΔW

∂W
∂n

)
dΓ = I− + Ir + I+ + I�. (70)

Here
Ir = I� = 0 , (71)
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FIGURE 14 Division of the boundary Γ for the investigated contour integral.

I− =

ˆ
Γ−

(
W

∂

∂n
ΔW − ΔW

∂W
∂n

)
dΓ

= −
ˆ �

0

(
W

∂

∂y
ΔW − ΔW

∂W
∂y

)
y=−b

dx , (72)

I+ =

ˆ
Γ+

(
W

∂

∂n
ΔW − ΔW

∂W
∂n

)
dΓ

= −
ˆ 0

�

(
W

∂

∂y
ΔW − ΔW

∂W
∂y

)
y=b

dx

=

ˆ �

0

(
W

∂

∂y
ΔW − ΔW

∂W
∂y

)
y=b

dx . (73)

where we have used the relations

dΓ = dx,
∂

∂n
= − ∂

∂y
for (x, y) ∈ Γ− , (74)

dΓ = −dx,
∂

∂n
=

∂

∂y
for (x, y) ∈ Γ+ , (75)

and
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W = ΔW = 0 for (x, y) ∈ Γ� + Γr . (76)

We obtain

I = I− + I+ =

ˆ �

0

(
Q(W, W)y=b − Q(W, W)y=−b

)
dx , (77)

where
Q(w, v) ≡ v

∂

∂y
Δw − Δw

∂v
∂y

(78)

with the arbitrary functions v and w. Using the boundary conditions for an
isotropic plate, (67) and (68), we find that

Q =

W
∂3W
∂y3(

2 − ν

1 − ν

) +

∂W
∂y

∂2W
∂y2(

ν

1 − ν

) , at y = ±b. (79)

We can see from the equation (79) that the function Q is antisymmetric with re-
spect to the transformation y → −y for symmetric and antisymmetric functions
W, and consequently,

Q(W, W)y=b = −Q(W, W)y=−b . (80)

We observe that

I = 2
ˆ �

0
Q(W, W)y=b dx . (81)

From equations (69) and (81), we obtain
ˆ

Ω
WΔ2W dΩ =

ˆ
Ω
(ΔW)2 dΩ + 2

ˆ �

0
Q(W, W)y=b dx , (82)

and, furthermore, inserting this result in the equation (65), we get the following
representation

ω2 = −s2

=

(C2 − V2
0 )

ˆ
Ω

(
∂W
∂x

)2

dΩ +
D
m

(ˆ
Ω
(ΔW)2 dΩ + 2

ˆ �

0
Qy=b dx

)
ˆ

Ω
W2 dΩ

. (83)

We can now observe from the representation (83) the following equation for the
divergence mode:

(
Vdiv

0

)2
= C2 +

D
m

ˆ
Ω
(ΔW)2dΩ + 2

ˆ �

0
Qy=b dx

ˆ
Ω

(
∂W
∂x

)2

dΩ

. (84)



48

In particular, it follows from the equation (84) that when the bending rigidity of
the plate is negligible, the case reduces to the axially travelling string. This is a
known result (see, e.g., Chang and Moretti [21]). From the result, (see the equa-
tion (63)) we notice that the same value for the critical velocity also applies to
ideal membranes 1. These observations generalize the analogous results by the
author for a cylindrical deformation (see the article by Banichuk et al. [7]), i.e.
a flat panel model of an ideal membrane. The trend of the behavior is that if V0
increases, s becomes real and the displacement grows exponentially with time.
However a rigorous analysis should be completed with the aim of the perturba-
tion analysis, but we have excluded this and studied only the behaviour of the
system in a numerical manner.

2.5 Divergence instability of an isotropic plate

In this section, we concentrate on an isotropic plate. In many cases it is reason-
able to consider equations with this simplification; later in this thesis, we will
show numerically that the effect of orthotropicity on the divergence velocity is
relatively small.

2.5.1 Statement of the eigenvalue problem

In this section, we will study the divergence (buckling) instability of an isotropic
plate. This problem is formulated as the eigenvalue problem of the partial differ-
ential equation

(mV2
0 − T0)

∂2W
∂x2 + D

(
∂4W
∂x4 + 2

∂4W
∂x2∂y2 +

∂4W
∂y4

)
= 0 (85)

with an isotropic version of boundary conditions (66) – (68). Note that time-
dependent components are excluded when compared with the equation (47). In
order to determine the minimal eigenvalue

λ = γ2 =
�2

π2D
(mV2

0 − T0) (86)

of the problem (66) – (68), (85), and the corresponding eigenfunction w = w(x, y),
we apply the following representation:

W = W(x, y) = f
(y

b

)
sin
(πx

�

)
, (87)

where f
( y

b
)

is an unknown function. It follows from the equation (87) that the
desired buckling form w satisfies the boundary condition (66). The solution, a

1 Note that the divergence velocity does not depend on W; thus the theory predicts that any
combination of modes may occur at the critical velocity for the special case of an ideal
membrane under a homogeneous tension.
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half-sine in the longitudinal direction, is well-known (see e.g. the article by Lin
[46]). Using the dimensionless formulation

η =
y
b

, μ =
�

πb
, (88)

and the relations (67) – (68) and (85) – (88), we obtain the following eigenvalue
problem for the unknown function f (η):

μ4 d4 f
dη4 − 2μ2 d2 f

dη2 + (1 − λ) f = 0, −1 ≤ η ≤ 1 (89)

μ2 d2 f
dη2 − ν f = 0, η = ±1 (90)

μ2 d3 f
dη3 − (2 − ν)

d f
dη

= 0, η = ±1. (91)

2.5.2 Solution process for the eigenvalue problem

In this section, we will present the theory of the solution process of this eigen-
value problem. We consider the problem as a spectral boundary value problem;
see the equations (89) – (91). Note that it is an invariant with respect to the sym-
metry operation η → −η, and consequently, all its eigenfunctions can be classi-
fied as

f s(η) = f s(−η), f a(η) = − f a(−η), 0 ≤ η ≤ 1 . (92)

Here f s and f a are, respectively, functions that are symmetric and antisymmetric
(skew-symmetric) with respect to the x-axis. When γ ≤ 1, a divergence mode
symmetric with respect to the x-axis can be presented in the form

W = f s(η) sin
(πx

�

)
(93)

where

f s(η) = As cosh(κ+η) + Bs cosh(κ−η) (94)

and

κ+ =
√

1 + γ , κ− =
√

1 − γ. (95)

The function f s(η) is a symmetric solution of the eigenvalue problem (89), and
As and Bs are arbitrary constants. At first, we concentrate on the symmetric case
and return to the antisymmetric case later.

Using the relations (90) – (94), we can derive the linear algebraic equations
for determining the constants As and Bs :

As(κ2
+ − ν) cosh

(
κ+
μ

)
+ Bs(κ2− − ν) cosh

(
κ−
μ

)
= 0 (96)
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−Asκ+(κ
2− − ν) sinh

(
κ+
μ

)
− Bsκ−(κ2

+ − ν) sinh
(

κ−
μ

)
= 0 . (97)

The condition for a non-trivial solution to exist in the form (93) – (95) is that the
determinant of the system (96) and (97) must vanish. This leads to the transcen-
dental equation

Δs(γ, μ) = κ−(κ2
+ − ν)2 cosh

(
κ+
μ

)
sinh

(
κ−
μ

)
−

κ+(κ
2− − ν)2 sinh

(
κ+
μ

)
cosh

(
κ−
μ

)
= 0, (98)

which determines the eigenvalues λ = γ2 as an implicit function. The equation
(98) can be transformed into a more convenient form

Φ(γ, μ)− Ψ(γ, ν) = 0 , (99)

where

Φ(γ, μ) = tanh
(√

1 − γ

μ

)
coth

(√
1 + γ

μ

)
(100)

and

Ψ(γ, ν) =

√
1 + γ√
1 − γ

(γ + ν − 1)2

(γ − ν + 1)2 . (101)

Let us consider the modes of buckling which are antisymmetric with respect
to the x-axis:

W = f a(η) sin
(πx

�

)
, (102)

where
f a(η) = Aa sinh(κ+η) + Ba sinh(κ−η) (103)

for γ ≤ 1. Here the values κ+, κ− are defined by the expressions (95). Using the
expression (103) for f a and the boundary conditions on the free edges of the plate
(see the equations (90) and (91)), we obtain the following transcendental equation
for determining the quantity γ:

Φ(γ, μ)− Ψ−1(γ, ν) = 0 . (104)

In the equation (104), Φ(γ, μ) and Ψ(γ, ν) are again defined by the formulas (100)
and (101). In the segment 0 ≤ γ ≤ 1 being considered, the equation has two
roots,

γ = γ1 → γ0 < γ1 < 1 (105)

and

γ = γ2 → γ2 = 1, (106)

for the arbitrary values of ν and the parameter μ, which characterizes the elon-
gation of the plate. By using the equations (105) and (106) and some properties
described in the next section, we are able to define

γ∗ < γ1 < γ2 , (107)



51

FIGURE 15 Behavior of the functions Φ and Ψ with respect to the parameter γ in the
isotropic case. The presentation is qualitative.

and the minimal eigenvalue is γ∗. Thus, the critical buckling mode is symmetric
with respect to the x-axis, and corresponds to γ = γ∗, i.e., to the solution of the
equation (99).

2.5.3 Analytical details of the solution for the eigenvalue problem

In this section we investigate the properties of the functions Φ(γ, μ) and Ψ(γ, ν),
expressed by (100) and (101), when 0 ≤ γ ≤ 1. Their schematic illustration is
presented in Figure 15. As γ increases from zero to unity, the function Φ(γ, μ)
decreases continuously and monotonically from 1 to 0, i.e.

1 ≥ Φ(γ, μ) ≥ 0,
∂Φ(γ, μ)

∂γ
< 0, 0 ≤ γ ≤ 1 (108)

and

Φ(0, μ) =

(
tanh

√
1 − γ

μ
coth

√
1 + γ

μ

)
γ=0

= 1 (109)

Φ(1, μ) =

(
tanh

√
1 − γ

μ
coth

√
1 + γ

μ

)
γ=1

= 0. (110)

We note that the proof of the monotonical decrease of the function Φ is per-
formed in section 2.6 and the result is utilized here as a special case. The function
Ψ(γ, ν) decreases from 1 to 0 in the interval 0 < γ < 1 − ν,

1 ≥ Ψ(γ, ν) ≥ 0,
∂Ψ(γ, ν)

∂γ
< 0, 0 < γ < 1 − ν (111)

and

Ψ(0, ν) =

[√
1 + γ√
1 − γ

(γ + ν − 1)2

(γ − ν + 1)2

]
γ=0

= 1 (112)
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FIGURE 16 Plots of Φ (left) and Ψ (right) for different values of the parameters �/2b
and ν.

Ψ(1 − ν, ν) =

[√
1 + γ√
1 − γ

(γ + ν − 1)2

(γ − ν + 1)2

]
γ=1−ν

= 0. (113)

The function Ψ increases monotonically in the interval 1 − ν < γ < 1 and in-
creases without limit as γ → 1, i.e.

0 ≤ Ψ(γ, ν) < ∞,
∂Ψ(γ, ν)

∂γ
> 0, 1 − ν < γ < 1, (114)

where
Ψ(1 − ν, ν) = 0 (115)

and

lim
γ→1

Ψ(γ, ν) = ∞. (116)

Plots of the function Φ(γ, μ) when the geometric aspect ratio �
2b = 0.1, 1,

and 10 are shown in Figure 16 on the left. The functions Ψ(γ, ν) when ν = 0.2,
0.3 and 0.5 are shown on the right.

The value of γ = γ0, for which

Ψ(γ0, ν) = 1, γ0 ∈ [1 − ν, 1] (117)

is of special interest. Solving the corresponding equation, we obtain that

γ2
0 = (1 − ν)(3ν − 1 + 2

√
1 − 2ν(1 − ν)). (118)

The value of γ0 turns out to be close to unity.
Assuming that � 
 b, e.g. a long band span assumption that corresponds to

a large μ, we have the approximate expression

Ψ =

√
1 − γ

1 + γ
(119)
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and the equation (99) has the solution

λe = γ2
e = 1 − ν2 . (120)

This solution corresponds to a narrow strip simply supported at its ends; it leads
to the Euler value of the force for stability loss (buckling)

P = Pe = λe
π2D
�2 = π2 EI

�2 , (121)

where

P = mV2
0 − T0, D =

Eh3

12(1 − ν2)
, I =

h3

12
. (122)

Thus, we find that the case of a narrow strip corresponds to the classical one-
dimensional case.

It follows from the above treatment and the properties of the functions
Φ(γ, μ) and Ψ(γ, ν) that the roots γ = γ∗ of the equation (99) lie in the inter-
val

γe ≤ γ∗ ≤ γ0 (123)

for all 0 < μ < ∞. Note that this is the property that is needed to complete the
analysis of the equation (107).

The corresponding critical velocity of the travelling band is represented as

(V0)
2∗ =

T0

m
+

γ2∗
m

(
π2D
�2

)
. (124)

In the limit of a wide band, we have

γ∗ → γ0 �= 1 for μ → 0 (125)

and therefore the corresponding mode of stability loss from the equations (93) –
(95) does not turn out to be a cylindrical. Thus, the case of a wide band does not
reduce to the classical one-dimensional case as assumed.

The largest difference between the critical parameter γ∗, which leads to the
loss of stability of an infinitely wide band, and the corresponding value obtained
assuming a distribution of the deflections in the form of cylindrical surface, oc-
curs when ν = 0.5 , i.e., in the case of an absolutely incompressible material.

2.6 Divergence instability of an orthotropic plate

In many applications, an assumption for isotropic material properties is valid.
In this section, we will provide a solid foundation for analyzing the theoretical
importance for the orthotropic material in the case of stability of moving plates.
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2.6.1 Formulation of the eigenvalue problem

In this section we will extend the results from section 2.5 for orthotropic materials.
The problem is formulated similarly to the eigenvalue problem, describing the
divergence of orthotropic plate. We have the partial differential equation

(
mV2

0 − T0

) ∂2W
∂x2 + D0L0(w) = 0 (126)

with the boundary conditions (66) – (68). To determine the minimal eigenvalue,

λ = γ2 =
�2

π2D0

(
mV2

0 − T0

)
, (127)

of the problem (66) – (68) and (126). For the corresponding eigenfunction w =
w(x, y) , we apply the same representation as before

W = W(x, y) = f (
y
b
) sin(

πx
�
) . (128)

The fact that the solution is a half-sine in the longitudinal direction is well-known
in the isotropic case. It can be shown that the same form is applicable for the
orthotropic plate. What remains to be determined is the unknown cross-section
f
( y

b
)
.
It follows from the equation (128) that the desired buckling form W satisfies

the boundary condition (66). Using the same dimensionless formulations η and
μ as before (see the equation (88)) and the relations (67), (68) and (126) – (128), we
obtain the following eigenvalue problem for the unknown function f (η):

μ4H2
d4 f
dη4 − 2μ2H3

d2 f
dη2 + (H1 − λ) f = 0 , −1 ≤ η ≤ 1 , (129)

(
μ2 d2 f

dη2 − β1 f

)
= 0 , −1 ≤ η ≤ 1 , (130)

(
μ2 d3 f

dη3 − β2
d f
dη

)
= 0 , −1 ≤ η ≤ 1 , . (131)

We denote

L1( f ) = μ4H2
d4 f
dη4 − 2 μ2H3

d2 f
dη2 + H1 f (132)

where H1,H2 and H3 are dimensionless bending rigidities,

H1 =
D1

D0
, H2 =

D2

D0
, H3 =

D3

D0
, (133)

and D0 is the characteristic bending rigidity.
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2.6.2 Proof of non-negative eigenvalues for the problem

To show that the eigenvalues λ of L1( f ) (see the equation (132)) are non-negative,
we proceed by using general ideas from Chen et al. [22], who proved a similar
result for an isotropic stationary plate. We introduce the bilinear form a( f , g)
that corresponds to the strain energy of a plate (see e.g. p. 377 in the book by
Timoshenko and Woinowsky–Krieger [79]),

a( f , g) =
ˆ 1

−1

[
H1 f ḡ − μ2B1 f

d2 ḡ
dη2 − μ2B1

d2 f
dη2 ḡ

+ μ4H2
d2 f
dη2

d2 ḡ
dη2 + 4μ2B2

d f
dη

dḡ
dη

]
dη , (134)

where

B1 + 2 B2 = H3 . (135)

Performing an integration by parts on the bilinear equation (134) we obtain

a( f , g) =
ˆ 1

−1

[
μ4H2

d4 f
dη4 − 2 μ2H3

d2 f
dη2 + H1 f

]
ḡ dη . (136)

Thus, the form a( f , g) can alternatively be defined as

a( f , g) = (L1( f ), g) , (137)

where the inner product (· , · ) is

(u, v) =

ˆ 1

−1
u v̄ dη (138)

and v̄ denotes the complex conjugate of v. The operator L1( f ) is self-adjoint, and
the form a( f , g) induces a positive semidefinite norm a( f , f )

a( f , f ) =
ˆ 1

−1

[
H1

∥∥∥∥∥ f − μ2ν21
d2 f
dη2

∥∥∥∥∥
2

+ μ4H2(1 − ν12ν21)

∥∥∥∥∥d2 f
dη2

∥∥∥∥∥
2

(139)

+ 4 μ2B2

∥∥∥∥d f
dη

∥∥∥∥
2 ]

dη ≥ 0 .

This implies that the eigenvalues of L1( f ) are non-negative. That is,

λ ≥ 0 , (140)

for all eigenvalues λ of the problem (129) – (131), which governs the cross-sectional
eigenfunctions f (y) and the corresponding eigenvalues of the buckled, moving
orthotropic plate.
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2.6.3 The solution process of the eigenvalue problem in the case of the or-
thotropic plate

The general solutions of the ordinary differential equation (129) have the form

f = Aepη, p =
κ

μ
(141)

where A is an arbitrary constant and κ is a solution of the following biquadratic
algebraic characteristic equation:

H2κ4 − 2H3κ2 + (H1 − λ) = 0 (142)

that is written as

κ2± =
H3

H2

(
1 ±

√
1 − H2(H1 − λ)

H2
3

)
=

H3

H2

(
1 ±

√
1 − H2(1 − λ)

H2
3

)
, (143)

where the upper, and respectively the lower, signs correspond to each other.
The solutions κ± are real-valued if we have the following range for λ:

λmin ≡ 1 − H2
3

H2
≤ λ ≤ 1 ≡ λmax , (144)

corresponding to a real-valued eigenfunction f . The lower limit

λmin < 0 when G12 ≥ GH. (145)

By the equations (140) and (144), we may seek the lowest eigenvalue in the
range 0 ≤ λ ≤ 1 , as was done in the isotropic case in section 2.5.

On the other hand, we can find examples for measurements of G12 < GH
for paper materials (see, e.g. the articles of Mann et al. [52], Seo [70], Yokoyama
and Nakai [92], and Bonnin et al.[20]). In that case,

λmin ≥ 0 when G12<GH. (146)

This will produce complex solutions κ± and complex eigenfunctions if λ is be-
tween zero and λmin. In practice, based on numerical approximations of the so-
lution, it has been observed that this interval contains no solutions.

From the equations (141) and (143) we obtain that the general solution can
be represented in the form

f (η) = A1e
+

κ+
μ η

+ A2e
− κ+

μ η
+ A3e

+
κ−
μ η

+ A4e
− κ−

μ η
(147)

with unknown constants A1, A2, A3 and A4.
The eigenvalue boundary value problem (129) – (131) is an invariant un-

der the symmetry operation η → −η, and consequently the eigenforms can be
classified into functions that are symmetric f s, or antisymmetric f a, based on the
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origin. Using the relations (129) – (131) and (147), we obtain a general represen-
tation for the function f s(η) and linear algebraic equations for determining the
constants As and Bs:

f s(η) = As cosh
κ+η

μ
+ Bs cosh

κ−η

μ
(148)

As
(

κ2
+ − β1

)
cosh

κ+
μ

+ Bs
(

κ2− − β1

)
cosh

κ−
μ

= 0 (149)

Asκ+
(

κ2
+ − β2

)
sinh

κ+
μ

+ Bsκ−
(

κ2− − β2

)
sinh

κ−
μ

= 0 , (150)

where As and Bs are unknown constants. Due to the symmetry or antisymmetry
of the solution f , we have only two independent unknown constants, instead of
the four as in the general representation (147), where the symmetry considera-
tions had not yet been applied.

The conditions for a non-trivial solution to exist in the form of the equa-
tions (148) – (150) reduce to the requirement that the determinant of the homo-
geneous system (149) and (150) vanishes. The zero determinant condition can be
expressed as

Φ(γ, μ, ν12, E1, E2, G12)− Ψ(γ, ν12, E1, E2, G12) = 0 , (151)

where

Φ(γ, μ, ν12, E1, E2, G12) = tanh
κ−
μ

coth
κ+
μ

, (152)

Ψ(γ, ν12, E1, E2, G12) =
κ+(κ2

+ − β2)(κ
2− − β1)

κ−(κ2
+ − β1)(κ

2− − β2)
, (153)

and where

κ+ = κ+(γ, ν12, E1, E2, G12), κ− = κ−(γ, ν12, E1, E2, G12) . (154)

This equation (151) can be used to determine the eigenvalues λ = γ2 correspond-
ing to symmetric eigenfunctions with different values of the parameters μ, ν12,
E1, E2 and G12. Note that there is no dependence on the parameter ν21 since it de-
pends on ν12, E1 and E2 via Maxwell’s relation (36). Similarly, using the relations
(130) and (131), we can obtain a representation for antisymmetric eigenfunctions
f a(η), the equation for determining the corresponding constants Aa and Ba, and
the transcendental equation

Φ − 1
Ψ

= 0 , (155)

where Φ and Ψ are the functions defined in the equations (152) – (153). These
equations can be used for determining the eigenvalues corresponding to anti-
symmetric eigenforms. The representations differ from the equations (148) – (150)
through the replacements

cosh → sinh and sinh → cosh . (156)
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2.6.4 Analytical details of the transcendental and algebraic parts of the eigen-
value problem

In the following section, we will investigate the properties of the functions Φ and
Ψ, when λ is in the range 0 ≤ λ ≤ 1. Unlike in the isotropic case described in
section 2.5.3, the decoupling between the geometric and material parameters is
very minimal. The function Ψ does not depend on the aspect ratio μ (geometry),
but both Φ and Ψ depend on all the independent material parameters (ν12, E1, E2
and G12).

We start our examination by noting that (by direct calculation)

Φ(λmin) = 1 (157)
Ψ(λmin) = 1 (158)

and

Φ(1) = 0 (159)

regardless of the problem parameters. We defer the evaluation of the

lim Ψ(λ → λmax) (160)

to the subsection on the algebraic part below. It is trivial to see that Ψ has a
singularity

lim
λ→λmax

κ− → 0+ (161)

and in order to deduce its signs we need to know the sign of each of the terms
in the equation (153). Let us assume values of ν12, E1, E2 and G12 to be given
and that they correspond to some orthotropic material. The qualitative behavior
of the functions Φ and Ψ is illustrated in Figure 17. One can compare the differ-
ence between orthotropic and isotropic plates by looking at Figure 15 on page 51.
The range for γ, which is defined in the equation (127), is obtained by taking
the square root of the equation (144). Note that the x-axis of the figure starts at
γmin. In the isotropic case, we had γmin = 0, which does not hold for the general
orthotropic case.

Figure 18 shows some examples of Φ and Ψ plotted for some typical or-
thotropic materials. Note that, as discussed above, only Φ depends on the aspect
ratio �/2b. We see that the case G12 = GH behaves like the isotropic case, as ex-
pected (compare to section 2.5.3). When the value of G12 deviates from the Huber
quantity, it is seen that when G12 < GH, the curvature of Φ becomes more pro-
nounced, especially for a large aspect ratio (i.e. a long, narrow strip). If G12 > GH,
the value of both functions at

γ = max(0, γmin) (162)

decreases, again especially for a large aspect ratio in the case of Φ.
When γ increases

γmin → γmax (163)



59

FIGURE 17 Behavior of Φ and Ψ as a function of γ when the parameters D1, D2, D3,
μ, β1 and β2 are fixed. This is a qualitative drawing. The main difference
between this figure and Figure 15 on page 51 is that in the x-axis, graphs
begin at γmin instead of 0 and γz is the minimal value of the function Ψ,
instead of ν.

the function Φ(γ, μ) decreases continuously and monotonically from 1 to 0, i.e.

1 ≥ Φ(γ, μ) ≥ 0,
∂Φ(γ, μ)

∂γ
< 0, γmin ≤ γ ≤ γmax . (164)

The critical values of the function Φ in that interval are

Φ(γmin, μ) =

(
tanh

κ−
μ

coth
κ+
μ

)
γ=γmin

= 1 (165)

and

Φ(γmax, μ) =

(
tanh

κ−
μ

coth
κ+
μ

)
γ=γmax

= 0. (166)

The function Ψ(γ) decreases monotonically from 1 to 0 in the interval γmin < γ <
γz, i.e.,

1 ≥ Ψ(γ) ≥ 0,
∂Ψ(γ)

∂γ
< 0, γmin < γ < γz. (167)

The critical values of the function Ψ in that interval are

Ψ(γmin) = 1 (168)

and
Ψ(γz) = 0. (169)

The function Ψ increases monotonically in the interval γz < γ < γmax and it
increases without limit when γ → γmax, i.e.

0 ≤ Ψ(γ) < ∞,
∂Ψ(γ)

∂γ
> 0, γz < γ < 1. (170)
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FIGURE 18 Behavior of the functions Φ and Ψ for some orthotropic materials, at differ-
ent aspect ratios �/2b and different values for the in-plane shear modulus
G12. For all cases, the other material parameters are E1 = 6.8 GPa, E2 =

3.4 GPa and ν12 = 0.2, ν21 = 0.1. Note that only Φ depends on the as-
pect ratio. Upper left: G12 = 0.85 GH (note the scale for γ). Upper right:
G12 = GH. Lower left: G12 = 1.15 GH, where GH is the value given by
the Huber quantity. The range of γ is max(0, γmin) ≤ γ ≤ γmax, based
on the equations (127), (140) and (144), and evaluated separately for each
subfigure.
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The values of Ψ are thus
Ψ(γz) = 0,

and

lim
γ→γmax

Ψ(γ) = ∞ .

The function touches zero at the point

γz =
√

β2
j H2 − 2β jH3 + H1 , (171)

where j = 1, 2. It will be shown below that γz is unique. Thus both choices for j
result in the same γz.

Because
0 ≤ Φ ≤ 1 ∀ γmin ≤ γ ≤ γmax (172)

the symmetric solution in the equation (151) is only possible in the range where
Ψ ≤ 1. Likewise, the antisymmetric solution in the equation (155) is only possible
in the range where

1/Ψ ≤ 1 ⇔ Ψ ≥ 1. (173)

Note that the value of γ = γ0 for which Ψ = 1, is of special interest; at this point
we also have Ψ = 1/Ψ, and thus

Φ − Ψ = Φ − 1
Ψ

. (174)

The functions defined by the left-hand sides of the equations (151) and (155) will
therefore cross at the value γ = γ0.

Note that the equation (167), combined with the consideration in the pre-
vious paragraph, implies that the eigenvalue γ∗ corresponding to the symmetric
solution is always lower than the eigenvalues γ1 and γ2 corresponding to the
antisymmetric solution. Additionally, since

Φ(γmax, μ) = 0 and lim
γ→γmax

Ψ(γ) = ∞, (175)

the second antisymmetric eigenvalue is γ2 = γmax. For the various values of γ

defined above, we have the ordering

γmin < γz < γ∗ < γ0 < γ1 < γ2 = γmax. (176)

An analytical expression for γ0 can be found by using the definitions (152)
and (153) and solving Ψ2(γ) = 1 for γ. Let us define the auxiliary expression

α ≡
√

8 β1 H2 H3 +
(

β1
2 − 6 β1 β2 + β2

2
)

H2
2 . (177)

Then, for the root γ0 that interests us, the following expression holds:

γ2
0 =

1
2

(
(β2 − β1) α + 2 H1 −

(
β1

2 − 4 β1 β2 + β2
2
)

H2 − 4 β1 H3

)
. (178)

Using the theory presented, it is possible, by first solving γ∗ from the equa-
tion (151), to find the critical velocity numerically from the equation (127) and the
corresponding buckling form; see the equations (128), (143), and (148) – (150).
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2.6.5 Analytical considerations of the behaviour of the transcendental equation

Let us show that the transcendental part Φ is monotonically decreasing in the
open interval (λmin, λmax). First, we define

g(λ) ≡
√

1 − H2(H1 − λ)

H2
3

, (179)

i.e. the square root expression in κ2± in the equation (143). We see that g(λmin) = 0
and g(λmax) = 1. Between these extreme values, g(λ) increases monotonously as
λ increases.

We write the equation (143) in the form

κ2± =
1

cH3

(
1 ±

√
1 − c(1 − λ)

)
, (180)

where we have defined the auxiliary constant

c ≡ H2/H2
3 .

Differentiating the equation (180), we have

∂(κ2±)
∂λ

=
±1

2H3
√

1 − c(1 − λ)
, (181)

where the upper and lower signs correspond to each other. Note that the square
root expression in the denominator is g(λ) in the equation (179), and as discussed
above, it takes values in the range (0, 1) as λ ∈ (λmin, λmax), and especially is
positive in our range of interest. Thus, the equation (181) is always positive for
κ2
+ and always negative for κ2−.

On the other hand, by the rules of differentiation,

∂(κ2±)
∂λ

= 2κ±
∂κ±
∂λ

, (182)

and thus
∂κ±
∂λ

=
∂(κ2±)

∂λ
/2κ± . (183)

Noting that κ± > 0, we can conclude that the signs match:

sign
∂κ±
∂λ

= sign
∂(κ2±)

∂λ
. (184)

In the special case of λ = λmax, we have κ− = 0, but this point is not in our
open interval. Now we turn our attention to the function Φ. Differentiating the
definition in the equation (152) with respect to λ, we have

∂Φ
∂λ

=
∂

∂λ

(
tanh

κ−
μ

)
coth

κ+
μ

+

(
tanh

κ−
μ

)
∂

∂λ

(
coth

κ+
μ

)

=
1

cosh2 κ−
μ

· 1
μ
· ∂κ−

∂λ
coth

κ+
μ

+ tanh
κ−
μ

(
− 1

sinh2 κ+
μ

)
· 1

μ
· ∂κ+

∂λ
. (185)
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In the first term on the right-hand side,

∂κ−
∂λ

< 0, (186)

by the equations (181) and (184), while the other factors are all positive, and in
the second term,

−1
sinh2 κ+

μ

< 0 (187)

while all the other factors are positive. Thus, both terms on the right side are
negative and we conclude that

∂Φ
∂λ

< 0 ∀ λ ∈ (λmin, λmax) . (188)

2.6.6 Analytical considerations of the behaviour of the algebraic equation

The second part is the algebraic function Ψ. We prove the following results:

1. The function Ψ has exactly one zero at λz.
2. The function Ψ has exactly one singularity located at λ = λmax, and its sign

is positive:
lim

λ→λmax
Ψ(λ) = +∞.

3. If the root λz ∈ (λmin, λmax), then the function Ψ is monotonically decreas-
ing in the interval λ ∈ (λmin, λz), and monotonically increasing in the inter-
val λ ∈ (λz, λmax).

Again, we begin with the equation (143). We note that the coefficient in front of
the expression can be written as

H3

H2
=

D3

D2
= ν12 + 2

G12

E2
(1 − ν12ν21) . (189)

By defining the constants

A ≡ H3

H2
= ν12 + 2

G12

E2
(1 − ν12ν21) , B ≡ 2

G12

E2
(1 − ν12ν21) , (190)

we see that
β1 = A − B , β2 = A + B . (191)

Using equations (190) and (179), the definition (143) reduces to a more convenient
form,

κ2± = A(1 ± g(λ)) . (192)

Inserting the equations (191) and (192) into the definition (153), we have

Ψ =

√
A(1 + g(λ))(A g(λ)− B)2√
A(1 − g(λ))(A g(λ) + B)2

. (193)
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All factors in the representation (193) are always positive, except the second one
in the numerator. Thus, the function can only have one zero, which is located at
such λz that

Ag(λz)− B = 0. (194)

The first result is therefore established.
To prove the second result, we note that there is exactly one singularity,

caused by the first term in the denominator as g(λ) → 1, i.e. as λ → λmax. The
function Ψ is continuous outside its singularities. Furthermore, from the equation
(193) we have that Ψ ≥ 0 for all λ for which the function is nonsingular. Because
Ψ is continuous, the singularity must have a positive sign.

To prove the last result we consider the derivative of the function Ψ with
regard to λ. We assume that

λz ∈ (λmin, λmax). (195)

We obtain from the equation (193)

∂Ψ
∂λ

= (196)

∂g
∂λ

(B − A g(λ))
(B + A g(λ))

√
A(1 − g(λ))√
A(1 + g(λ))

(
B2 − A2g(λ)2 + 4 A B(g(λ)2 − 1)

)
(1 − g(λ)2)

.

Note that the special case A = B does not happen as long as ν12 �= 0 and ν21 �= 0.
This assumption holds for nearly all reasonable materials except cork. Because
all other terms are positive, we have for the sign of the derivative the expression

sign
∂Ψ
∂λ

= sign
[
(B − A g(λ))

(
B2 − A2g(λ)2 + 4 A B(g(λ)2 − 1)

)]
. (197)

Because g(λ) is monotonically increasing and therefore ∂g/∂λ > 0, and the zero
of the function Ψ is located at A g(λz) = B, we see that

sign [A g(λ)− B] = sign [λ − λz] , (198)

i.e. the sign of the expression A g(λ)− B corresponds to whether λ is smaller or
larger than λz.

We can write the expression on the right-hand side of the equation (197) as

(B − A g(λ))
[
(B − A g(λ)) (B + A g(λ)) + 4 A B

(
g(λ)2 − 1

)]
. (199)

If
B − A g(λ) < 0 ⇐⇒ λ > λz, (200)

the expression in the parenthesis on the right is negative. The last term is always
negative because g(λ) < 1. In this case we have

∂Ψ
∂λ

|λ>λz > 0 . (201)
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The other case,

B − A g(λ) > 0 ⇐⇒ λ < λz, (202)

is trickier because then the expression in the parenthesis on the right in the equa-
tion (199) will have one positive and one negative term. The expression repre-
sents a parabola with the variable g(λ), and has zeroes at

g(λ) = ±
√

4AB − B2

4AB − A2 ≡ g±0 . (203)

Because g(λ) > 0, we may discard the negative solution g−0 in the equation (203).
The expression is negative until g(λ) becomes larger than the positive solution
g+0 .

The last question remaining is whether this solution lies within our range.
We calculate (numerator) − (denominator) from the right side of the equation
(203), looking again at the definitions (190), and recall that ν12 > 0:

(4AB − B2)− (4AB − A2) = A2 − B2 > 0 ,

i.e. the numerator is always larger than the denominator. Thus g+0 > 1 and the
parabola remains negative in our entire range. The total sign is negative and thus

∂Ψ
∂λ

|λ<λz < 0 .

This completes the proof.

2.7 Divergence instability of an isotropic plate with a non-homo-
geneous tension profile

From a practical point of view, the tension profile is one of the major causes for
the runnability problems of a paper web. The profile can be adjusted with various
rollers, moisture content, mass concentration etc. The connections between out-
of-plane displacement and stability and, for example, crack propagation, have
not so far been studied. In this section we have presented the fundamentals of
divergence instability in the case of a linear non-homogeneous tension profile.
Combining this study with the crack propagation models is subject to ongoing
research in our group and the results are excluded from this thesis.

2.7.1 Dynamic analysis

To investigate the dynamic behavior of the isotropic plate with a non-homogeneous
tension profile, we insert (as in the previous sections 2.3 and 2.4) the representa-
tion (50) into the equation (47). We now take into account the non-homogeneous
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tension profile from the equation (3):

s2W + 2sV0
∂W
∂x

+
(

V2
0 − C2

) ∂2W
∂x2 − α

m
y

∂2W
∂x2 +

D
m

Δ2W = 0 . (204)

We multiply the left-hand side of the equation (204) by W and perform integration
over the domain Ω to obtain

s2
ˆ

Ω
W2 dΩ + 2sV0

ˆ
Ω

W
∂W
∂x

dΩ + (V2
0 − C2)

ˆ
Ω

W
∂2W
∂x2 dΩ

− α

m
y
ˆ

Ω
W

∂2W
∂x2 dΩ +

D
m

ˆ
Ω

WΔ2W dΩ = 0. . (205)

Using the boundary conditions for the isotropic plate (66) – (68) and perform-
ing integration by parts as before, we find the equations (60) and (61) and the
following representation for the non-homogeneous tension-related integral

ˆ
Ω

yW
∂2W
∂x2 dΩ = −

ˆ
Ω

y
(

∂W
∂x

)2

dΩ, (206)

We get the form

s2
ˆ

Ω
W2 dΩ + (C2 − V2

0 )

ˆ
Ω

(
∂W
∂x

)2

dΩ+

+
α

m

ˆ
Ω

y
(

∂W
∂x

)2

dΩ +
D
m

ˆ
Ω

WΔ2W dΩ = 0 (207)

For any such W �≡ 0 that satisfies the equation (207), we have

ω2 = −s2 =

(C2 − V2
0 )

ˆ
Ω

(
∂W
∂x

)2

dΩ +
α

m

ˆ
Ω

y
(

∂W
∂x

)2

dΩ +
D
m

ˆ
Ω

W Δ2W dΩ
ˆ

Ω
W2 dΩ

(208)

All quantities on the right side of the equation (208) are real-valued; thus
s2 is always real, and s is either pure imaginary, pure real, or zero. Consider the
situation at an arbitrary fixed value of V0. Choose W as one of the eigenmodes of
the equation (207) for this V0. The characteristic parameter s is continuous with
respect to small changes of V0 and W around the original solution point (V0, W).
Because this holds for any V0, we conclude that s may only change between imag-
inary and real values by passing through the origin; see route of the arrows in
Figure 13 on page 43. As a conclusion, if the system in the equation (207) has any
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FIGURE 19 The definition of αmax

instabilities, i.e. velocities V0 where Re s becomes positive, they must be of the
static type (Im s = 0), and can be captured by a static analysis.

According to the above considerations, all eigenvalues of the equation (207)
exhibit this behavior. This holds especially for the critical, i.e. the lowest, instabil-
ity. We must note that the equation (205) correctly describes the physical system
only up to the critical instability; after that point, non-linear considerations be-
come necessary. This is known to occur for a family of related problems; see, e.g.,
the book by Paidoussis [67]. Thus, this analysis does not rule out dynamic insta-
bility behaviour of the physical system at post-critical velocities, but it is sufficient
for conclusions about the critical instability.

This general argument cannot predict the stability of the system at V0 = 0
because the signs of the last two integrals in the numerator of the equation (208)
are not known in the general case. Therefore, we conclude that for the problem
of an axially moving elastic plate, simply supported at two opposite edges and
free at the other two, with homogeneous or linearly distributed in-plane tension,
the critical instability (if any) is of the static type.

Let us consider a special case, where the bending rigidity of the axially mov-
ing plate is negligibly small, and the in-plane tension in the x-direction is posi-
tive. For this assumption we will avoid the consideration of compression and
wrinkling. The setup for the parameters is illustrated in Figure 12 on page 35 and
Figure 19.
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That is, we assume that

D = 0 , T0 > α b , (209)

where the latter condition follows from the constraints

Txx(x, y) = T0 + α y > 0 (210)

and y ≥ −b. In this case, the characteristic parameter s is evaluated as

ω2 = −s2 =

(C2 − V2
0 )

ˆ
Ω

(
∂W
∂x

)2

dΩ +
α

m

ˆ
Ω

y
(

∂W
∂x

)2

dΩ
ˆ

Ω
W2 dΩ

(211)

We obtain the steady-state solution (divergence) at a velocity

(
Vdiv

0

)2
= C2 +

α

m

ˆ
Ω

y
(

∂W
∂x

)2

dΩ

ˆ
Ω

(
∂W
∂x

)2

dΩ

. (212)

Taking into account the expression in the equation (212) and the inequalities in
(209), we estimate the divergence velocity as(

Vdiv
0

)2 ≥ C2 − αb
m

=
T0 − αb

m
. (213)

We see from the equation (213) that as long as the condition for T0 in the statement
(209) is fulfilled, we have

(Vdiv
0 )2 ≥ 0, (214)

and therefore the value of Vdiv
0 is physically meaningful.

By applying again the same estimate for the second integral in the numera-
tor of the equation (211), and using the conditions (209), we see that s is initially
(V0 = 0) purely imaginary. As V0 is increased, the numerator decreases and, at
some point, the numerator vanishes and the characteristic parameter s becomes
zero.

2.7.2 Transformation into an ordinary differential equation

The stationary eigenvalue problem of elastic instability consists of finding a non-
trivial solution (mode) and the corresponding minimal eigenvalue of the follow-
ing boundary-value problem. Consider the static equation corresponding to the
original problem in the equation (204),

(V2
0 − C2)

∂2W
∂x2 − αy

m
∂2W
∂x2 +

+
D
m

(
∂4W
∂x4 + 2

∂4W
∂x2∂y2 +

∂4W
∂y4

)
= 0 , (x, y) ∈ Ω (215)
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with the boundary conditions for W that follow from the equations (66) – (68).
From the latter condition in the equation (209), we obtain a constraint for α:

α < T0/b . (216)

To determine the minimal eigenvalue λ (see the equation (86) on page 48) of the
problem (66) – (68) and (215), and the corresponding eigenfunction, we apply the
same representation as before:

W = W(x, y) = f
(y

b

)
sin
(πx

�

)
, (217)

where f
( y

b
)

is an unknown function.
It follows from the equation (217) that the desired divergence form W sat-

isfies the boundary conditions (66). Using dimensionless variables, η and μ, de-
fined in the equation (88) on page 49, and the free-of-traction boundary condi-
tions (67) and (68) on page 45, with relations (86), (215) and (217), we obtain the
following eigenvalue problem for the unknown function f (η):

μ4 d4 f
dη4 − 2μ2 d2 f

dη2 + (1 − λ + α̃η) f = 0, −1 ≤ η ≤ 1 , (218)

where

α̃ =
b�2

π2D
α =

b3μ2

D
α . (219)

The equation (218) is considered with the boundary conditions

μ2 d2 f
dη2 − ν f = 0, η = ±1 and (220)

μ2 d3 f
dη3 − (2 − ν)

d f
dη

= 0, η = ±1 . (221)

The equation (218) with the boundary conditions (220) and (221) constitutes a
linear eigenvalue problem for f with polynomial coefficients.

2.8 Divergence instability of an orthotropic plate with a non-homo-
geneous tension profile

The last study of this thesis combines all information described before and pro-
duces the equations for handling the onset of instability of an axially moving
orthotropic plate with a non-homogeneous tension profile. The process follows
the procedure in the previous sections directly; the equations are presented here
briefly as reminders for the reader. One must also note that it is possible to ex-
tend the previous results to orthotropic materials in a more straightforward way
by using the Huber quantities. However, in this study we assume that the Huber
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quantity is not used because several shear moduli are observed in the application
area.

We have the following partial differential equation:

(
mV2

0 − T0

) ∂2W
∂x2 − αy

m
∂2W
∂x2 + D0L0(w) = 0 (222)

The boundary conditions for W, which follow from the equations (66) – (68),
are from the latter condition in the equation (209). We obtain a constraint for α:

α < T0/b . (223)

To determine the minimal eigenvalue λ (see the equation (86)) of the prob-
lem (215), (66) – (68), and the corresponding eigenfunction, we apply the same
representation as before:

W = W(x, y) = f
(y

b

)
sin
(πx

�

)
, (224)

where f
( y

b
)

is an unknown function.
It follows from the equation (217) that the desired divergence form W sat-

isfies the boundary conditions (66). Using dimensionless variables η and μ de-
fined by the formula (88) and the free-of-traction boundary conditions (67) and
(68) (68), with relations (86), (215), and (217), we obtain the following eigenvalue
problem for the unknown function f (η):

μ4H2
∂4 f
∂η4 − 2μ2H3

∂2 f
∂η2 + (H1 − λ − ᾱη) f = 0, (225)

where

ᾱ =
αμ2b
D0

. (226)

The solution of the equation (225) is subjected to the boundary conditions (220)
and (221). The equation (225) with the boundary conditions (220) and (221) con-
stitutes the linear eigenvalue problem in f with polynomial coefficients.



3 NUMERICAL SOLUTIONS FOR THE WEB MODELS

In this section, we present numerical solutions based on the models developed
above. While the theory predicts a certain general behavior, many characteristics
must be numerically computed. The implementation of the solution process is
one of the key factors in numerical analysis; on the other hand, a reliable analysis
requires a solid numerical basis. We note that in the following computations, we
use E1, E2 and ν12 as independent parameters and calculate ν21 from the equation
(36).

3.1 The numerical solution process for the problem of instability
of a moving orthotropic plate

In this section we present the solution process for the case of a moving orthotropic
plate. The analysis of the isotropic plate was performed previously by the author
(see Banichuk et al. [6]) in order to avoid redundancy we have presented only the
general approach.

The root γ = γ∗ of the equation (151) was searched numerically in the in-
terval

[γmin + ε1, γmax − ε2] where ε j, j = 1, 2. (227)

This interval (227) was used to avoid singularities; the values of ε were small and
determined adaptively based on the sign of Φ − Ψ. The values were initialized as
ε j = 10−8 for both j = 1, 2, and each parameter ε j was halved until the sign
of Φ − Ψ was positive at the left end, and negative at the right end. Then a
bisection search was used to locate the root. It was found that this search for
a suitable ε j’s was necessary, especially in the cases where G12 < GH, because a
fixed-size epsilon would skip over the root in some parts of the parameter space,
particularly when the ratio of the Young’s modulus and ν12 were both small.

When G12 < GH, it was verified that no roots existed in the tested cases in
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the interval γ ∈ [0, γmin). This was done by minimizing

|| f (λ)||2 = f (λ) · f (λ) , (228)

where
f (λ) = Φ(λ)− Ψ(λ) . (229)

Here z denotes the complex conjugate of z. Local minima larger than ε were
discarded, as were also any duplicates, and any solutions γ ≥ γmin. Note that
γ = γmin is always a root, corresponding to the trivial solution.

The critical value γ0 was evaluated from the analytical expression (178), and
the root corresponding to the antisymmetric case, γ = γ1, was found numerically
from the equation (155) using the interval (227). Once the eigenvalue γ∗ of the
symmetric case was found, the corresponding eigenfunction was constructed by
inserting the eigenvalue into the equations (143), (149) and (150). It is possible to
eliminate either As or Bs from one of the equations of the system. Either equation,
(149) or (150), can be chosen. Note that the other equation is implicitly used by
the zero determinant condition (see the equation (151)).

A numerically stable approach for choosing the constant to be eliminated is
to test both possibilities, assigning As = 1 and calculating Bs from the equation
system. Respectively, choosing Bs = 1 and calculate As. The choice that gives a
result that is smaller than or equal to 1 is then kept. This is necessary because,
depending on the problem parameters and this choice, the other constant may be
very large, which affects numerical accuracy.

We evaluated ws(x, y) using this choice, and normalized the final result by
scaling the maximum value of ws to unity.

3.2 The numerical solution process for the non-homogeneous ten-
sion profile case

We will proceed to the numerical solution to the problem (218), (220) – (221).
Note that the boundary conditions (220) and (221) are not natural in the sense
that they are not generated by deriving the variational form of the equation (218)
and applying integration by parts.

We discretized the strong form of the equations (218), (220) – (221) directly,
with classical central differences of second-order asymptotic accuracy. To account
for the boundary conditions, we used the method of virtual points.

As the problem is linear in f , the discretization leads to a standard discrete
linear eigenvalue problem presented in the equation (218):

A f = λ f . (230)

The boundary conditions (220) – (221) have not been applied so far. Because the
boundary conditions are homogeneous, it is possible to add them to the discrete
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system by rewriting the original discrete problem (230) as a generalized linear
eigenvalue problem

A f = λB f , (231)

where B is an identity matrix with the first two and the last two rows zeroed
out. In the equation (231), the first two and the last two rows of A contain the
discretized boundary conditions.

To sum up, in order to solve the original problem, we compute the solution
of the equation (231), discard eigenvalues of an infinite magnitude, and then ex-
tract the smallest eigenvalue and its corresponding eigenvector. Note that the first
two and the last two components of the eigenvector should be discarded because
they represent the function values at virtual points that were generated from the
boundary conditions. Finally, the divergence mode W(x, y) is constructed by the
equation (217).

3.3 Numerical results for the web models

In this section, the numerical results are presented. We have divided the studies
into two categories with respect to the tension profile. At first, we present the
isotropic and orthotropic studies on homogeneous tension. After that, the non-
homogeneous tension profile in both the isotropic and orthotropic cases, is in
focus. The parameters in use have been chosen for the sake of illustration, and
have not been measured in practice. However, the basic values are close to the
real values of paper.

3.3.1 Homogeneous tension profile studies

In this section, the homogeneous tension profile studies are presented. They are
arranged as follows: In Figure 20 on page 76 we present the case of one isotropic
material similar to those presented in Banichuk et al. [6], and including some
orthotropic variants based on the Huber quantity (see the parameter values in
Table 1 ). The left part of Figure 20 on page 76 shows the complete buckling
shape, while the right part displays a slice of the shape at the center of the open
draw that corresponds to the bold line on the left side of the figure. It is observed
that when the Huber quantity is used, the qualitative behaviour agrees with the
isotropic case as expected. Quantitatively, we see the effect of the Young modulus
ratio E1/E2. The smaller the ratio, the more the shape is localized near the free
edges.

Figure 21 on page 77 shows the effect of the in-plane shear modulus G12
for general orthotropic materials. In this case, the shear modulus is represented
as a fraction of the Huber quantity (see detailed parameters in Table 2 on page 75).
The left column displays complete buckling shapes, while the right column shows
the strength of the localization effect that was discussed in Banichuk et al. [6]. We
see that according to the numerical tests the ratio of the Young moduli E1 and
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TABLE 1 The parameter values for the study presented in Figure 20.

Parameter Case 1 Case 2 (Isotropic) Case 3 Case 4
E 5 GPa
E1 5 GPa 5 GPa 5 GPa
E2 10 GPa 7.5 GPa 2.5 GPa
ν 0.2

ν12 0.2 0.2 0.2
ν21 0.4 0.13 0.10
�/2b 0.01 0.01 0.01 0.01

h 10−4 m 10−4 m 10−4 m 10−4 m
m 0.08 kg/m2 0.08 kg/m2 0.08 kg/m2 0.08 kg/m2

� 0.1 m 0.1 m 0.1 m 0.1 m
T0 500 N/m 500 N/m 500 N/m 500 N/m

G12 GH GH GH GH

E2 is the significant factor affecting the buckling shape, regardless of the abso-
lute magnitudes of E1 and E2. Note that when the material parameters E1, E2,
and ν12 are given, the other Poisson ratio ν21 can be found from the compatibil-
ity condition (the Maxwell relation (36)). In addition to the material parameters,
we have one geometric parameter, �/2b, which describes the ratio of the plate’s
length to its width. The effect of the problem geometry on the displacement lo-
calization phenomenon was investigated in the same article [6] . It was observed
that when the plate is short and wide (i.e., when �/2b is small), the localization is
more pronounced, that is, most of the displacement occurs near the free edges.

Briefly, the degree of localization represents the variation of the displace-
ment in the width (y) direction. When the localization is high (in the relative
sense), the maximal displacement and strains occur near the free edges. When
the localization approaches zero, so does the y dependence, and the displacement
profile approaches a cylindrical one. The degree of localization is computed from
a numerical approximation of the integral

ˆ b

−b
[1 − f (y)] dy , (232)

where f (y) is the cross-section. As a conclusion, the problem parameters affecting
the localization effect are the aspect ratio �/2b, the Young modulus ratio E1/E2,
the Poisson ratio ν12, and the in-plane shear modulus G12.

As can be seen in Figure 21 on page 77, the result qualitatively matches the
earlier one from the isotropic case, in that the degree of localization increases as
the Poisson ratios increase and therefore incompressibility increases. As a new
result, we see that the zone where the relative strength of localization rapidly
increases shifts to the right towards the larger values of ν12 when the ratio G12/GH
is increased.

By solving the equation (127) for V0 and inserting these values, we obtain
V0 ≈ 79.11 m/s. We solved two different isotropic limit cases, with E = 8 GPa
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TABLE 2 The parameter values for the study presented in Figure 21.

Parameter Case 1 Case 2 Case 3
E1 6.8 GPa 6.8 GPa 6.8 GPa
E2 3.4 GPa 3.4 GPa 3.4 GPa
ν12 0.2 0.2 0.2
ν21 0.1 0.1 0.1
�/2b 0.01 0.01 0.01

h 10−4 m 10−4 m 10−4 m
m 0.08 kg/m2 0.08 kg/m2 0.08 kg/m2

� 0.1 m 0.1 m 0.1 m
T0 500 N/m 500 N/m 500 N/m

G12 0.7 GH GH 1.3 GH

TABLE 3 The parameter values and the results for the study of critical velocity V0 .

Parameter Case 1 Case 2 Case 3
E1 8 GPa 8 GPa 0.8 GPa
E2 0.8 GPa 8 GPa 0.8 GPa
ν12 0.8 0.4 0.4
ν21 0.08 0.4 0.4
m 0.08 kg/m2 0.08 kg/m2 0.08 kg/m2

� 0.1 m 0.1 m 0.1 m
b 0.5 m 0.05 m 0.05 m

�/2b 0.1 0.01 0.01
T0 500 N/m 500 N/m 500 N/m
h 10−4 m 10−4 m 10−4 m

V0 ≈ 79.11 m/s ≈ 79.12 m/s ≈ 79.06 m/s
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Displacement at x = �/2; ν12 = 0.2

E1/E2 = 0.5, ν
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FIGURE 20 Left: The symmetric buckling shape for the isotropic material, E = 5 GPa
and ν = 0.2. The aspect ratio �/2b = 0.01. Right: The shape of the pro-
file on the bold line of the left picture. The solid line corresponds to the
picture on the left. The dotted lines show the shape of the resulting profile
if the isotropic material is replaced with an orthotropic one, while keeping
E1 = 5 GPa and ν12 = 0.2. The other Poisson ratio ν21 is calculated from
Maxwell’s relation (36), and for G12 the Huber quantity is used. All param-
eters of this study are collected in Table 1.

and E = 0.8 GPa. The other parameters were kept the same (see Table 3 on
the previous page), and for the Poisson ratio the geometric average ν = ν =√

ν12ν21 = 0.4 was used. The critical velocities were for the first case V0 ≈ 79.12
m/s, and for the second case, V0 ≈ 79.06 m/s.
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FIGURE 21 The studied case. The effect of the in-plane shear modulus G12. The Poisson
ratio ν21 is calculated from Maxwell’s relation (36). Case 1, the top row;
Case 2, the middle row; and Case 3, the bottom row. The left column: the
symmetric buckling shape. The right column: the relative strength of the
localization effect as a function of the Young modulus ratio E1/E2 and the
Poisson ratio ν12. The effect has been plotted in the area where

√
ν12ν21 ≤

0.5. The maximum localization value is normalized to 1 for each subfigure
separately, and the reference value GH is evaluated separately for each point
in each plot. For the detailed parameter values, see Table 2 on page 75.
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3.3.2 Non-homogeneous tension profile studies

In this section, the studies where tension is considered non-homogeneous, are
presented. In the case of the isotropic non-linear tension profile, the numerical
results were computed for some practically interesting choices of problem pa-
rameters (see Table 4).

In the study of critical divergence shapes, various values of the Poisson ratio
ν and the tension profile skew parameter α̃ were considered. Note that when we
consider the ratio α/αmax, this ratio is the same as α̃/α̃max. Thus, tildes can be
omitted below in the cases where this ratio is considered. Note also that the ratio
α/αmax (or α̃/α̃max) directly gives the relative deflection of the average tension T0
at the edges y = ±b (see Figure 22 on the facing page). For the Poisson ratio, the
values 0, 0.1, 0.3 and 0.5 were used (see all the parameters in Table 4). The values
of α/αmax (or α̃/α̃max) were 0, 10−6, 10−4 and 10−2, where αmax corresponds to
the upper limit imposed by the constraint (216) and

α̃max =
�3

π3D
αmax = μ

�2T0

π2D
. (233)

Note that α̃max depends on ν, via D. In Table 5 on the facing page, the critical
divergence velocities are presented for these cases. We see that the analytical
solution for α̃ = 0 for the same geometric and material parameters matches the
values in the first column of the table.

TABLE 4 The parameters of the study of divergence velocity of the non-linear tension
profile. Results can be observed in Table 5.

Case 1 Case 2 Case 3 Case 4
E 1 GPa 1 GPa 1 GPa 1 GPa
ν 0 0.1 0.3 0.5

T0 |y=0 500 N/m 500 N/m 500 N/m 500 N/m
h 10−4 m 10−4 m 10−4 m 10−4 m
m 0.08 kg/m2 0.08 kg/m2 0.08 kg/m2 0.08 kg/m2

� 0.1 m 0.1 m 0.1 m 0.1 m
b 0.5 m 0.5 m 0.5 m 0.5 m

�/2b 0.1 0.1 0.1 0.1
≈ α̃max 387, 02 383, 12 352, 19 290, 26
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TABLE 5 Critical divergence velocities Vdiv
0 for the cases studied. Note that α̃max is dif-

ferent for each value of ν. See the approximated values in Table 4 on the
preceding page.

ν \ α̃ 0 10−6α̃max 10−4α̃max 10−2α̃max

Case 1 0 79.0634 79.0634 79.0604 78.6891
Case 2 0.1 79.0635 79.0635 79.0605 78.6885
Case 3 0.3 79.0640 79.0640 79.0608 78.6876
Case 4 0.5 79.0652 79.0652 79.0618 78.6869

FIGURE 22 The critical web velocity with respect to the tension profile skew parameter
α and half a web width b. Note the logarithmic scale of b. The web length
is constant (� = 0.1 m).

In the study of critical (divergence) velocities, the values of α/αmax were
0− 0.25 (in the equation (216)) and the values of b (half a web width) were 0.1− 10
m. Thus, the web width was 0.2 − 20 m. The web length was again � = 0.1 m.
The results for the critical velocities with respect to the relative tension profile
skew parameters α/αmax and b are shown in Figure 22.

The results for the transverse displacement are shown in Figures 24 – 26 on
page 84. In each figure, ν is fixed. Figure 24 on page 82 is divided into two parts.
Both parts of the figure are further divided into four subfigures. Each subfigure
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shows the results for a different value of the skew parameter α̃. In the upper
four subfigures, f (η) is plotted, showing a slice of the out-of-plane displacement
from one free edge to the other at x = �/2. The tension increases towards a
positive η. The total out-of-plane displacement in the whole domain Ω = [0, �]×
[−b, b], from the equation (217), is shown in the lower four subfigures. Note the
orientation of the axes. In Figures 25 on page 83 and 26 on page 84, the four
subfigures show the slices of the out-of-plane displacement at x = �/2 for the
limiting cases ν = 0 and ν = 0.5, in an analogous order.

In the following, we have computed critical divergence velocities for the
non-homogeneous tension profile in isotropic materials. The results were com-
puted for some practically interesting choices of problem parameters. Detailed
parameter values are listed in Table 4 on page 78. These parameter values ap-
proximately correspond to some paper materials, within the limitations of the
isotropic model.

From Figures 22 – 26 on page 84 and Table 5 on the previous page, four
apparent conclusions can be drawn. First of all, in the study of critical veloc-
ities, it was seen that inhomogeneities in the tension profile may significantly
decrease the critical velocities. For up to a 20 % tension inhomogeneity between
the midpoint and the edges, the decrease in the critical velocity is found to be
10 %. Secondly, it is also seen that the wider the web is, the more sensitive it is
for tension inhomogeneities. Thirdly, by comparing Figures 24 on page 82, 25
on page 83 and 26 on page 84, we conclude that materials with a larger Poisson
ratio tend to exhibit a higher degree of sensitivity to inhomogeneities in the ten-
sion profile. Lastly, we can draw the conclusion that in all the cases investigated,
the critical velocity is not significantly affected by slight inhomogeneities in the
tension profile.

Various values of the Poisson ratio ν and the tension profile skew parameter
α̃ were considered. For the Poisson ratio the values 0, 0.1, 0.3, and 0.5 were used.
The values of α̃ were 0, 10−6α̃max, 10−4α̃max, and 10−2α̃max, where α̃max corre-
sponds to the upper limit imposed by the constraint (216). From the formulation
(233) we can see that the α̃max depends on ν, via D. In Table 5, critical divergence
velocities are presented for these cases. We can see that the analytical solution for
α̃ = 0 with the same geometric and material parameters (see Banichuk et al. [6]:
note that �/2b = 0.1) matches the values in the first result column of the table.
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FIGURE 23 The out-of-plane displacement of an axially travelling pinned-free plate
with dimensions L = 0.1 m, 2b = 1 m, h = 10−4 m. The Poisson ratio
ν = 0.3. The tension profile skew parameter α̃ = 0, 10−6α̃max, 10−4α̃max,
and 10−2α̃max.
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FIGURE 24 The out-of-plane displacement of an axially travelling pinned-free plate
with dimensions L = 0.1 m, 2b = 1 m, h = 10−4 m. The Poisson ratio
ν = 0.3. The tension profile skew parameter α̃ = 0, 10−6α̃max, 10−4α̃max,
and 10−2α̃max.
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FIGURE 25 The out-of-plane displacement of an axially travelling pinned-free plate at
x = �/2 with dimensions L = 0.1 m, 2b = 1 m, h = 10−4 m. The Poisson
ratio ν = 0. The tension profile skew parameter α̃ = 0, 10−6α̃max, 10−4α̃max,
and 10−2α̃max.
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FIGURE 26 The out-of-plane displacement of an axially travelling pinned-free plate at
x = �/2 with dimensions L = 0.1 m, 2b = 1 m, h = 10−4 m. Poisson ratio
ν = 0.5. Tension profile skew parameter α̃ = 0, 10−6α̃max, 10−4α̃max, and
10−2α̃max.
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FIGURE 27 The out-of-plane displacement of an axially travelling pinned-free plate at
x = �/2 with dimensions L = 0.1 m, 2b = 1 m, h = 10−4 m. The Poisson
ratio ν = 0.3. The tension profile skew parameter α̃ = 10−6α̃max. Midpoint
tension T0 = 5, 50, 500, and 5000 N/m.

We can see that even for the smallest inhomogeneity tested, one part in 106,
the divergence (buckling) mode changes completely for these problem parame-
ters. Thus, from a practical point of view, although studies of the homogeneous
tension case can relatively accurately predict the critical velocity, the analysis in-
dicates that the predictions of the divergence shape may be completely inaccu-
rate.

The sensitivity for the inhomogeneity was found to be affected also by the
tension at the midpoint T0. The higher the tension, the more sensitive the system
is for small inhomogeneities. This effect is shown in Figure 27. The subfigure
on the bottom left of Figure 27 corresponds to the subfigure at the top right of
Figure 24 on page 82. We can see that with ν = 0.3, α̃ = 10−6α̃max, and the values
of the other parameters fixed to those given at the beginning of this section, the
sensitivity is very high already at T0 = 500 N/m, which is realistic in paper
production.
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It should be noted that as far as geometric parameters are concerned, the
divergence shape is a function of not only the aspect ratio �/2b but also of the
overall scale. Even for the same aspect ratio, scaling � (and also b to keep the same
aspect ratio) changes the divergence shape. This effect occurs even if h is scaled
by the same amount as � and b. Thus, it should be emphasized that the results
in Figures 23–27 only represent the specific case of plates with the dimensions
�× 2b × h = 0.1 m × 1 m × 10−4 m.

The last case in the study is concerned with the stability of the moving or-
thotropic plate with the non-homogeneous tension profile. We have chosen a set
of parameters (see Table 6 and Table 7 on page 88), which differ from each other
in the orientation of the orthotropicity. As assumed, the main results are the same
as in the previous studies: the value of the tension does not affect the shape, the
orthotropicity has a slight effect and it increases the localization on the edges and
the skewness in the tension profile is very important from the critical velocity
point of view in major changes between the edges. The reader can compare the
results in Figure 28 on the next page and 29 on page 88 to the subfigure 3 in Fig-
ure 24 on page 82 and conclude that there are no dramatic differences between
the illustrations. We noticed that the curvature has been increased slightly for the
sake of orthotropicity; the orientation of the orthotropicity has only a minimal
effect on the critical velocity.

TABLE 6 The parameter values of Figures 28 and 29.

Case 1 Case 2 Case 3 Case 4
E1 0.5 GPa 0.5 GPa 0.5 GPa 0.5 GPa
E2 1 GPa 1 GPa 1 GPa 1 GPa
ν12 0.3 0.3 0.3 0.3

G12 Rate 0.7 0.7 0.7 0.7
T0 |y=0 500 N/m 500 N/m 500 N/m 500 N/m

h 10−4 m 10−4 m 10−4 m 10−4 m
m 0.08 kg/m2 0.08 kg/m2 0.08 kg/m2 0.08 kg/m2

� 0.1 m 0.1 m 0.1 m 0.1 m
b 0.5 m 0.5 m 0.5 m 0.5 m

�/2b 0.1 0.1 0.1 0.1
α 1e − 6 · amax 1e − 4 · amax 0.1 · amax 0.2 · amax

V0 Crit 79.0608 m/s 79.05765 m/s 75.1112 m/s 70.90514 m/s
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FIGURE 28 The out-of-plane displacement in the orthotropic plate with the non-linear
tension profile. The effect of skewness on the tension (see the parameters
from Table 6 on the facing page).
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FIGURE 29 The out-of-plane displacement in the orthotropic plate with the non-linear
tension profile. The effect of skewness on the tension (see the parameters
from Table 6 on page 86).

TABLE 7 The parameter values of Figures 30 and 31.

Case 1 Case 2 Case 3 Case 4
E1 1 GPa 1 GPa 1 GPa 1 GPa
E2 0.5 GPa 0.5 GPa 0.5 GPa 0.5 GPa
ν12 0.3 0.3 0.3 0.3

G12 Rate 0.7 0.7 0.7 0.7
T0 |y=0 500 N/m 500 N/m 500 N/m 500 N/m

h 10−4 m 10−4 m 10−4 m 10−4 m
m 0.08 kg/m2 0.08 kg/m2 0.08 kg/m2 0.08 kg/m2

� 0.1 m 0.1 m 0.1 m 0.1 m
b 0.5 m 0.5 m 0.5 m 0.5 m

�/2b 0.1 0.1 0.1 0.1
α 1e − 6 · amax 1e − 4 · amax 0.1 · amax 0.2 · amax

V0 Crit 79.06372 m/s 79.060578 m/s 75.104355 m/s 70.88857 m/s
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FIGURE 30 The out-of-plane displacement in the orthotropic plate with the non-linear
tension profile. The effect of skewness on the tension (see the parameters
from Table 7 on the facing page).
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FIGURE 31 The out-of-plane displacement in the orthotropic plate with the non-linear
tension profile. The effect of skewness on the tension (see the parameters
from Table 7 on page 88).



4 CONCLUSIONS AND NOTES CONCERNING
FUTURE PLANS AND DIRECTIONS FOR THE
RESEARCH RELATED TO MOVING MATERIALS

In this section, we draw conclusions from the studies in this thesis. The reader
will note that this thesis is a part of a more extensive research project related to
moving materials and web handling. We have chosen a rather general approach
because, by looking at the mathematical basis of the behavior of materials, it is
possible to gain a better understanding of complex processes and to focus the
future studies on appropriate subjects. The main result of this thesis is that the
non-homogenenous tension profile of moving webs is a critical parameter when
analyzing their stability.

4.1 Conclusions

We studied the model of an axially moving thin elastic plate subjected to in-
plane loads (tensions) and out-of-plane actions (centrifugal forces and bending
moments). A general dynamic analysis of small out-of-plane vibrations was per-
formed, and some qualitative results describing the onset of instability were ob-
tained. In particular, it was shown that under certain constraints the loss of stabil-
ity of an axially moving elastic plate can be expressed in the static form. Equali-
ties and inequalities for the critical velocities, in terms of the problem parameters,
were derived and discussed.

The loss of the stability of axially moving plates was investigated in a two-
dimensional formulation, taking into account their bending resistance and in-
plane tension. The studies were mainly based on an analytical approach, and
the basic relation characterizing the behavior of the plate at the onset of instabil-
ity was found in an analytical form. A detailed analysis was performed for the
static modes of instability. The critical divergence velocity and the corresponding
buckling shapes were studied as functions of geometric and mechanical problem
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parameters. It was proved that the buckled plate shape is symmetrical, i.e., the
antisymmetric shapes correspond to higher values of the transport velocity. It
was shown that the meaningful elastic deflections become localized in the vicin-
ity of the free edges of the plate, and that the degree of localization depends only
on the Poisson and aspect ratios of the plate.

It is necessary to note that for some buckling problems of plates with a large
ratio of width to length, b/�, a one-dimensional panel model is used. In this
model, the critical parameter is equal to one (γ∗ = 1). However, as was seen in
our studies of the two-dimensional buckling problem, the limit of γ∗ as the

b
�
→ ∞ (234)

(this is the panel limit), the behaviour depends on the Poisson ratio and γ∗ < 1.
For any meaningful Poisson ratio (ν > 0), this difference is small but significant.
The largest difference is obtained when the Poisson ratio is equal to 0.5 and the
material is fully compressible. This unusual conclusion is important for rigorous
estimation.

The analytical solution originally developed for isotropic axially moving
plates, as reported in the article by Banichuk et al. [6], was extended to the gen-
eral orthotropic case. The case was general in the sense that the in-plane shear
modulus G12 was assumed to be an independent material parameter. The ana-
lytical approach allows for a fast solver, which can then be used for applications
such as statistical uncertainty and sensitivity analysis, real-time parameter space
exploration, and finding optimal values for design parameters.

As a result of applying the analytical approach developed, an explicit ex-
pression for the limit velocity of stable axial motion was found, and the limit
velocity was computed for an example case. The critical regime was studied as a
function of the moduli of orthotropicity. Localized modes of the instability of the
axially moving orthotropic plate were found for a range of the problem param-
eters, and the localization effect was demonstrated with the help of numerical
examples. It was shown analytically that the eigenvalues of the problem deter-
mining the shape of the buckled cross-section are non-negative. The transcen-
dental and algebraic parts of the analytical solution were analyzed in detail, and
certain properties were shown to hold. These properties apply not only to the
general orthotropic case but also to the earlier isotropic one. Thus, the present
study adds details to the analysis in the article by Banichuk et al. [6].

It was shown that in the limit of the isotropic case, the present results reduce
to the earlier ones presented in the above article. It was seen that the orthotrop-
icity of the plate causes a quantitative change in the buckling behaviour, and it
increases the critical velocity only slightly. The buckling shapes were found to de-
pend significantly on the in-plane shear modulus G12. It was observed that if the
ratio G12/GH, where GH is the geometric average shear modulus, is increased, the
degree of localization of the deformation close to the free boundaries decreases.
However, the orthotropicity of the material was found to have a negligible effect
on the estimation of the critical velocity. Thus, if one only aims at estimating the
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critical velocity, the isotropic model is sufficiently accurate. The orthotropic and
isotropic buckling shapes were confirmed to be qualitatively similar. The main
difference was found in the expressions of the condition that the boundary con-
ditions are fulfilled.

The effects of problem parameters on the critical divergence mode were in-
vestigated by a numerical analysis. It was found that inhomogeneities in the ten-
sion profile may significantly decrease the critical velocities, and that even slight
inhomogeneities have a very dramatic effect on the divergence shapes. Specifi-
cally, an inhomogeneity of one part in a million is sufficient to create a significant
effect, and the divergence will have changed completely by the time a 1% inho-
mogeneity is reached. As no tension profile is completely homogeneous in prac-
tice, these results suggest that in order to predict the divergence shape accurately,
tension inhomogeneities must be accounted for.

Note that we only considered linear distributions of the applied boundary
tensions in this thesis. Other distributions of boundary tensions, such as piece-
wise linear or parabolic distributions, can also be considered in the framework of
the described approach by means of a generalization of the solution for a more
complex in-plane stress function. The analytical investigation was performed for
the case of an isotropic elastic web, modelled as an isotropic membrane or an
isotropic elastic plate. We have studied small vibrations and instability modes
of orthotropic membranes and plates moving axially with constant velocities in
the same manner. It is very important to realize this because many materials —
especially in papermaking processes — are orthotropic.

Two further assumptions were used in this thesis. First of all, it was as-
sumed that there are no gravity forces or forces from the interaction of the web
with external media. In many applications, the gravity effects are indeed neg-
ligible as we have shown in our article [11]. However, for the interaction of
the moving elastic web with surrounding fluid, corresponding studies are very
important. These effects have been shown to be significant in published stud-
ies (see e.g., Banichuk et al., Kulachenko et al., Frondelius et al. and Pramila
[4, 5, 7, 40, 68, 27, 8]). Secondly, in many conditions, such as the dynamics of a
wet paper web, the plate must be considered as viscoelastic. However, the field
of viscoelastic studies is very broad and requires special attention and another
thesis to complete. Finally, some brief observations were made. It was noted that
although a prescribed tension value was assumed, the analysis easily generalizes
to the case where the x-direction displacement at one of the rollers is prescribed
instead. It was also briefly stated that the classical reduction technique, i.e. bring-
ing the equations to an isotropic form in the case where the geometric average
in-plane shear modulus is used, works also for the dynamic case of an axially
moving orthotropic plate, despite the Coriolis effect present in this setting.

In conclusion, we note that the investigation of ideal models provides a
solid foundation for more complex multiphysics problems and a thorough un-
derstanding of certain technological processes.
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4.2 Notes

In this section, we present some future plans and extensions discussed in the
group about the topic of this thesis. The main direction of the future research is
to concentrate on more efficient and more realistic models for moving materials.
There are three branches where studies have already begun:

– Efficient methods for solving fluid flow around the web.
– Uncertainty of the models and parameters, crack propagation and fatigue

analysis of the paper web.
– Viscoelastic models for moving webs.

Why the following directions? At first, it is known that fluid-structure problems
involving slender structures lead to very non-linear and time-consuming numeri-
cal solutions in practical situations. In this thesis, we have simplified the problem
in many ways, mainly by excluding the fluid from the equations. In the future,
our aim is to form more realistic models and simulations. First of all, we plan to
take the effect of fluid flow into account. The first results in that area have already
been published in the articles by Banichuk et al. [7] and [8]. The next step is to try
to improve the efficiency of the used numerical methods by including a hybrid
meshless approach.

Our literature survey shows that the meshless methods are becoming a po-
tential numerical technique for the analysis of this application. Traditionally, one
difficulty with meshless methods has been their lack of efficiency compared to
traditional mesh methods. One way to take advantage of both mesh and meshless
methods is to hybridize them. In the article by Ma [50], hybrid mesh/meshless
methods are shown to be accurate, flexible, and efficient. Compared with the
pure meshless methods, the efficiency of the hybrid methods is improved to the
level of mesh methods when the most part of the computational flow domain is
covered with grid cells. Moreover, the hybrid methods are still flexible in deal-
ing with complex configurations, as clouds of points are used to cover the region
close to the aerodynamical geometries. Promising results have been obtained in
solving two dimensional Euler equations with hybrid methods (see e.g. the article
by Wang et al. [84]). A fast dynamic cloud method named Delaunay Graph Map-
ping has been introduced to ensure that clouds of points can automatically follow
the moving rigid boundaries (see e.g. the article by Wang et al. [83]). It makes use
of algebraic mapping principles, and therefore points can be accurately redis-
tributed in the flow field without any iteration. In this way, the structure of the
meshless clouds is not necessarily changed and therefore it avoids regenerations
of the cloud during the movement of the aerodynamic geometry.

Moreover, ongoing research aims at investigating Euler and Navier-Stokes
flows using hybrid mesh/meshless methods. In the future, we plan to consider a
field method to simulate the movement of the membrane and the plate according
to the external speed of the moving web, allowing more realistic modeling of
the fluid/structure interaction problem. Introducing the meshless methods can
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be advantageous for accuracy since they have demonstrated great flexibility in
controlling the cloud node distribution in the vicinity of the moving obstacle.

The second approach of the future research looks at the imperfections of
the paper web. We have done some preliminary work on modeling the effect of
cracking of the moving paper web by using the linear fracture mechanics. By
combining the results with the critical tension and velocity, we are able to opti-
mize the productivity with respect to line breaks. Some of the methods that will
be used are described in the book by Banichuk and Neittaanmäki [17] and we
have already published the articles [13] and [12] as a preliminary steps of this re-
search. The reader should note that the process, driven by the tension of the web,
competes directly for the safety and fracture of the material. The solution derived
from the process in use has been low tension on the edges and higher, nearly ho-
mogeneous tension in the middle of the web. The main question is: What is the
optimal profile with respect to sensibility and production? We are also interested
in other uncertainties of the models from a statical point of view.

The third and last area for the future visions is the viscoelastic properties
of paper. The known fact is that paper as a material changes completely in the
process. At the very beginning, the paper is in almost a liquid form, characterized
by a high moisture level and fiber content. During the process, the paper will
dry and acquire all its elastic properties, and at the very end it looks and feels
like solid material. In our group, we have introduced a new model for taking
the viscoelastic properties of the paper web into account and this model will be
combined with our numerical analysis codes. From mathematical and numerical
points of view, there are still many interesting problems that have not yet been
addressed.



YHTEENVETO (FINNISH SUMMARY)

Tässä väitöskirjassa, jonka otsikko on: Liikkuvan ortotrooppisen kalvon ja laatan sta-
biilisuusanalyysi lineaarisen ja epähomogeenisenjännitysprofiilin tukemana, tutkitaan,
liikkuvan materiaalin stabiilisuutta sekä ominaismuotoja kriittisessä nopeudessa.
Tutkimuksessa käytetään kalvo- ja laattateoriaa iso- ja ortotrooppiselle materiaa-
limallille. Lisäksi tutkitaan sekä homogeenisen että epähomogeenisen jännitys-
profiilin vaikutusta kriittiseen nopeuteen. Motivaatio tutkimukselle tulee pape-
rin tuotannosta, erityisesti ajettavuudesta paperikoneissa. Paperi on viskoelasti-
nen, melkein plastinen materiaali, jota tuotetaan paperikoneissa yli 1800 m/min.
Suuri ajonopeus on keskeinen vaikuttaja mitattaessa paperikoneen tuottavuutta,
mutta samalla se vaatii suurempia jännityksiä, että rata pysyy stabiilina. Kokeelli-
nen mittaaminen paperikoneissa on hankalaa ja kallista, usein jopa mahdotonta,
joten matemaattisen mallintamisen ja numeerisen analyysin avulla tästä moni-
mutkaisesta ilmiöstä pyritään havaitsemaan keskeiset radan käytökseen vaikut-
tavat komponentit.

Tavoitteena tutkimuksessa on määrittää suurin mahdollinen rainan nopeus,
jolla teoreettisesti rataa voidaan ajaa. Todellisuudessa tämä raja on luonnollisesti
huomattavasti matalampi, johtuen mm. ilmavirtauksien vaikutuksesta ja materi-
aalin ominaisuuksista. Mallintamalla saavutettua tietoa radan käyttäytymisestä
ja kriittisistä nopeuksista pystytään hyödyntämään esimerkiksi radan jännitys-
profiilin säätämisessä. Yhdistämällä säröteoria jännitysprofiilin käyttäytymisestä
saatuun tietoon mahdollistetaan ajettavuuden ja tuotannon optimointi suhtees-
sa ratakatkojen herkkyyteen. Tässä väitöskirjassa luodaan perusta esitellylle op-
timointitehtävälle, mutta yhdistäminen säröteoriaan ei kuitenkaan kuulu tässä
väitöskirjassa käsiteltäviin aihealueisiin.

Väitöskirjassa tutkitaan lineaarisen ja epähomogeenisen jännitysprofiilin vai-
kutusta sekä isotrooppiseen että ortotrooppiseen materiaaliin sen liikkuessa eteen-
päin. Analyysissa sovelletaan Bolotinin esittelemää menetelmää, jossa klassisista
liikkuvan laatan (ja kalvon) yhtälöistä muodostetaan ominaisarvotehtävä, josta
ratkaistaan alimmat ominaisarvot ja -muodot. Menetelmällä voidaan tutkia vain
staattisia epästabiiliustiloja, joten tutkimus ei ota kantaa dynaamisiin epästabiili-
suuksiin.

Väitöskirjan keskeinen tulos on, että jopa äärimmäisen pienet muutokset
jännitysprofiilissa vaikuttavat liikkuvan laatan ominaismuotoihin ja suuremmil-
la muutoksilla on merkittävä vaikutus myös liikkuvan laatan kriittiseen nopeu-
teen. Lisäksi tutkimuksesta havaitaan, että ortotrooppisen materiaalimallin vai-
kutus laatan stabiilisuusanalyysissä on heikko. Stabiilisuusanalyysi on suoritettu
numeerisesti ja teoreettiset yksityiskohdat käydään läpi tässä väitöstyössä. Väi-
töskirjassa ei ole huomioitu ilman vaikutusta liikkuvaan laattaan, paperin vis-
koelastisuutta, adheesiovoimia tai kontaktia teloihin.
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