
134
J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

$������
�������$����$�������	�
%�$���	����&��������������'
������&����

%
��������
����
�(�����)�����*������+
�����

Tuukka Puranen

JYVÄSKYLÄ STUDIES IN COMPUTING 134

Tuukka Puranen

UNIVERSITY OF

JYVÄSKYLÄ 2011

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen Lea Pulkkisen salissa

marraskuun 4. päivänä 2011 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

in the building Agora, Lea Pulkkinen hall, on November 4, 2011 at 12 o'clock noon.

JYVÄSKYLÄ

 Architecture for Route Optimization Systems

Metaheuristics Meet Metamodels
A Modeling Language and a Product Line

Metaheuristics Meet Metamodels
A Modeling Language and a Product Line

 Architecture for Route Optimization Systems

JYVÄSKYLÄ STUDIES IN COMPUTING 134

JYVÄSKYLÄ 2011

Metaheuristics Meet Metamodels
A Modeling Language and a Product Line

UNIVERSITY OF JYVÄSKYLÄ

Tuukka Puranen

 Architecture for Route Optimization Systems

Copyright © , by University of Jyväskylä

URN:ISBN:978-951-39-4441-4
ISBN 978-951-39-4441-4 (PDF)

ISBN 978-951-39-4440-7 (nid.)
ISSN 1456-5390

2011

Jyväskylä University Printing House, Jyväskylä 2011

Cover picture by Tuukka Puranen, based on figure on p. 152

Editors
Timo Männikkö
Department of Mathematical Information Technology, University of Jyväskylä
Pekka Olsbo, Ville Korkiakangas
Publishing Unit, University Library of Jyväskylä

ABSTRACT

Puranen, Tuukka
Metaheuristics Meet Metamodels. A Modeling Language and a Product Line
Architecture for Route Optimization Systems.
Jyväskylä: University of Jyväskylä, 2011, 270 p.
(Jyväskylä Studies in Computing
ISSN 1456-5390; 134)
ISBN 978-951-39-4440-7 (nid.)
ISBN 978-951-39-4441-4 (PDF)
Finnish summary
Diss.

Transportation is an important human activity, and moving goods, information,
and people is crucial to the functioning of our society. Computer-aided planning
of these operations is being applied into practice and its benefits are evident.
However, we do not yet fully know how to make software that can be applied
cost effectively to solve today’s heterogeneous set of routing problems. More
specifically, we do not know how to manage the complexity of addressing the
relevant aspects in logistic planning and solving the variety of different problem
types arising in real-world routing. This inhibits the application of the latest re-
sults in operations research to real-world practice, which in turn prevents logistic
operators benefiting from the most recent advances in computer-aided planning.

This thesis presents one approach for unifying routing problems and exam-
ines techniques for managing the inherent complexity of the domain. We suggest
the construction of a higher-level model of vehicle routing and the application of
model-driven software engineering practices for achieving an effective and sys-
tematic engineering approach for implementing vehicle routing systems.

In this thesis, we construct one higher-level model and present an imple-
mentation of such a model and the adjoining combinatorial optimization system.
We argue that this approach allows a structured, unified view on vehicle rout-
ing models and metaheuristic optimization methods as well as decreases the ef-
fort needed in adapting the optimization system to different situations within the
heterogeneous domain of vehicle routing. To validate our approach, a theoretical
examination of the properties of the developed higher-level model is presented.
The model is shown to be compatible with the state-of-the-art solution methodol-
ogy. In addition, a number of routing problems from real-life cases and scientific
benchmarks are modeled and solved using the developed system.

Keywords: vehicle routing problem, metaheuristic, metamodel, software archi-
tecture, product line, model-driven

Author Tuukka Puranen
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Supervisors Professor Tommi Kärkkäinen
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Professor Timo Tiihonen
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Professor Pekka Neittaanmäki
Department of Mathematical Information Technology
University of Jyväskylä
Finland

Reviewers Research Director, PhD Geir Hasle
Department of Optimisation
SINTEF
Norway

Professor Victor Zakharov
Faculty of Applied Mathematics and Control Processes
Saint-Petersburg State University
Russia

Opponent Associate Professor, Dr. Wout Dullaert
Institute of Transport and Maritime Management
University of Antwerpen
Belgium

PREFACE

This thesis represents a culmination of research work conducted during 2009–
2011 in a series of research projects. A new and young research group was formed
at the University of Jyväskylä few years earlier, and we began working as a group
on two simultaneous projects. The research behind this thesis sparked from these
two projects where a number of differing vehicle routing cases needed to be mod-
eled and solved. In addition, in one of the cases, an industry-strength implemen-
tation was required.

To cope with the requirements of the projects, we set out to solve the prob-
lems with as much reusable elements as possible. I was entrusted with the over-
all architecture of these systems and it quickly became apparent that a systematic
approach to reuse was needed. We began building a product line of routing sys-
tems and, after some problems, typical in software engineering, completed them
successfully.

The work of a software architect involves finding a balance between gen-
erality and specificity. The question is how to find the commonalities between
different situations to avoid doing the same things more than once, and to accom-
plish this so that the applicability to individual situations is not compromised.

The question of generality versus specificity in software has been an interest
of mine for quite some time, and I am grateful that I was offered the opportunity
to work on the issue in my PhD. In many respects, the product line approach is an
embodiment of this question, and the routing domain is a rewarding application
area for testing the potential answers.

The generality versus specificity question will perhaps never be completely
settled, but this work has made a young scientist realize something — and I be-
lieve there are researchers who agree with me. This realization might be the sole
factor that led to the realization of this work as it exists today. It may well be, I
observed, that sometimes it is beneficial to consider the larger context, to gener-
alize, a bit too far; to refine the concepts too fine, only then, by necessity, to retract
to the practical level. This level may, in the end, lie farther than was originally
thought possible.

Indeed, local search may take us deep into the search space — but only to a
certain depth. Sometimes what one needs is a metaheuristic.

ACKNOWLEDGEMENTS

This work has been supported by Tekes (The Finnish Funding Agency for Tech-
nology and Innovation) via TRANS-OPT and SCOPE projects, Ellen ja Artturi
Nyyssösen säätiö, and COMAS graduate school. The work could not have been
completed without the generous help of these entities, and this support is ac-
knowledged with great gratitude.

It is a pleasure to thank the people who have made this work possible. I am
grateful for the guidance given by my supervisors, Professors Tommi Kärkkäi-
nen, Timo Tiihonen and Pekka Neittaanmäki. I cannot even begin to express
how much I learned during the process, not only from research and writing, but
also from supervising and teaching. It has been a pleasure to work with you
all. I thank Professor Olli Bräysy for offering me the opportunity to work in the
academia and especially in operations research. It has been a life-changing expe-
rience.

My special thanks go to the reviewers of this thesis, Research Director Geir
Hasle and Professor Victor Zakharov for their careful examination and evaluation
of my work. I am also grateful to Associate Professor Wout Dullaert for agreeing
to be my opponent at the defense.

I emphasize that the usage of pronoun “we” in this work is intentional;
I could not have completed this thesis without my fellow undergraduate and
graduate students. I am grateful to Joni Brigatti, Antti Hallamäki, Pekka Ho-
tokka, Antoine Kalmbach, Jukka Kemppainen, Antti Laitamäki, Jere Moilanen,
and Jussi Rasku, who, among many other things, read drafts of this thesis, pro-
vided numerous fruitful discussions, and pointed out many of my embarrassing
mistakes. I also wish to thank Jonathan Nussbaumer with whom I worked closely
on the subject during his internship. A special mention must go to Jouko Niemi-
nen who has taught me a lot during the short period we have worked together.
His support in organizing the research activities made my thesis work possible.

I am thankful for the encouraging words from Professors Kaisa Miettinen
and Tuomo Rossi. Also, a special mention should go to Antti-Juhani Kaijanaho
whose invaluable comments made the Z-notation much more understandable. I
also thank Doctor Yury Nikulin for his keen observations and suggestions.

I would like to express my gratitude to Professor Jean-François Cordeau
with whom I worked during my PhD studies. I am grateful for the introduction
to operations research and the guidance I received. And thank you for welcoming
me to Montreal; the visit left a lasting impression on a young graduate student.

Finally, I am thankful to all my family and friends — you know who you
are — sorry that I could not spend more time with you during this period. For
my parents — who raised me, loved me, and supported me in everything I chose
to do — I love you both. Pasi and Kaisa, this work is dedicated to you.

Jyväskylä, September 2011
Tuukka Puranen

LIST OF FIGURES

FIGURE 1 The structure of this dissertation... 28
FIGURE 2 An elementary classification of optimization problems. 53
FIGURE 3 The relationship of model accuracy and solution methodology

performance. .. 55
FIGURE 4 A vehicle routing problem instance with 13 customers and

four vehicles. .. 58
FIGURE 5 Different options for a comparative evaluation of an obtained

solution.. 65
FIGURE 6 Two conflicting criteria in designing metaheuristic search: in-

tensification and diversification. ... 68
FIGURE 7 A relocate operator moving node 5. .. 71
FIGURE 8 A 2-opt operator replacing edges (1,5) and (2,6) with (1,2) and

(5,6). .. 71
FIGURE 9 Processes and resulting products in software product line en-

gineering.. 91
FIGURE 10 The effort for developing n systems compared to product line

engineering .. 94
FIGURE 11 A closed metamodeling architecture. 97
FIGURE 12 Basic concepts of model transformation. 98
FIGURE 13 An overview of the elements of the domain model visible to

the model transformation engine. ... 107
FIGURE 14 An example of an acceptable mapping forming three routes

within an Ansatz of a mapping and ordering problem. 114
FIGURE 15 An example of the results of two resource delta functions,

travel time and distance, for usage on transitional projections. .. 117
FIGURE 16 An example of a PDP instance with two pickups and deliver-

ies on one route... 124
FIGURE 17 An example of computing values for two capabilities and two

resources on a route. ... 130
FIGURE 18 An example of checking constraints on the route length and

time spent on a vehicle. ... 135
FIGURE 19 Modeling activity-specific time windows with zero capability

and capability parents. .. 136
FIGURE 20 Modeling decision-dependent time windows with zero capa-

bility value and capability parents. ... 137
FIGURE 21 Modeling capability-dependent travel time. 139
FIGURE 22 An example of capability dependent transformations: a trailer

affects the traveling speed of a vehicle. 143
FIGURE 23 Examples of groups of activities within an Ansatz. 144
FIGURE 24 Examples of different types of grouping constraints within a

proper Ansatz. .. 147

FIGURE 25 An example of two resources, travel time and distance, and a
profit value on a route. .. 148

FIGURE 26 A subset of modeling elements and their relationships in the
modeling framework... 152

FIGURE 27 The modeling process and the two different metamodeling
stacks within the framework. ... 154

FIGURE 28 A simplified domain model for CVRPs, PDPs, and VRPBs. 159
FIGURE 29 An example of a VRP model instance. 161
FIGURE 30 An example of a PDP model instance. 162
FIGURE 31 An example of a VRPB model instance modeled as a PDP with

additional constraints. ... 164
FIGURE 32 An example of a relocate operation. .. 169
FIGURE 33 An example of a 3-opt operation... 170
FIGURE 34 Lexicographic search — the first step. 173
FIGURE 35 Lexicographic search — the second step. 174
FIGURE 36 Lexicographic search — the third step. 174
FIGURE 37 Concatenation of segments in constant time. 177
FIGURE 38 Layers within the product line architecture.............................. 194
FIGURE 39 The module structure of the system. 195
FIGURE 40 Submodule level structures of the domain layer and an exam-

ple application layer realization.. 197
FIGURE 41 A simplified sequence of operations within the module struc-

ture.. 198
FIGURE 42 The major elements of the VRP solver module. 200
FIGURE 43 A simplified sequence of operations within the PopulateData

operation while providing geocoding and the shortest paths
on the application layer. .. 204

FIGURE 44 A simplified sequence of operations within the PopulateData
operation while employing optional road modules. 205

FIGURE 45 Modeling precedence constraints within a PDP instance. 207
FIGURE 46 Modeling two alternative deliveries within a PDP instance. 208
FIGURE 47 Modeling vehicle start and end activities. 213
FIGURE 48 Modeling driver, vehicle, equipment, and task compatibilities. . 213
FIGURE 49 Modeling contamination rules.. 216
FIGURE 50 Modeling trailer pickup and drop-off activities. 217
FIGURE 51 Modeling driver-task compatibilities. 218
FIGURE 52 Modeling multiple uses of vehicles. .. 218
FIGURE 53 Modeling breaks with predefined locations. 219
FIGURE 54 Modeling breaks with undefined locations. 219
FIGURE 55 Modeling breaks according to the UK legislation. 220
FIGURE 56 Modeling compartments with compatibilities within a PDP

instance.. 221
FIGURE 57 Modeling compartments in trailers within a PDP instance. 222
FIGURE 58 Modeling compartments within a heterogeneous fleet. 223
FIGURE 59 Modeling a locked sequence in the middle of a route................ 224

FIGURE 60 An example of situations during continuous planning.............. 224
FIGURE 61 A result of compressing the route start sequence after activity

3 has been confirmed... 225

LIST OF ALGORITHMS

ALGORITHM 1 Template of single solution metaheuristic. 69
ALGORITHM 2 Template of population metaheuristic. 69
ALGORITHM 3 Local search. .. 70
ALGORITHM 4 Simulated annealing. .. 72
ALGORITHM 5 Tabu search. ... 73
ALGORITHM 6 Iterated local search. ... 73
ALGORITHM 7 Guided local search. ... 74
ALGORITHM 8 Variable neighborhood descent. 75
ALGORITHM 9 Generating capacitated VRP model instance. 160
ALGORITHM 10 Generating capacity array. ... 160
ALGORITHM 11 Generating distance matrix.. 161
ALGORITHM 12 Generating PDP model instance..................................... 162
ALGORITHM 13 Generating VRPB model instance................................... 163
ALGORITHM 14 Generating time window... 180
ALGORITHM 15 Generating PDP benchmark instance.............................. 181
ALGORITHM 16 Generating HVRPTW instance....................................... 183
ALGORITHM 17 Generating two-phase distribution problem instance. 185
ALGORITHM 18 Generating ship routing instance. 186
ALGORITHM 19 Generating multiple capacities on PDP model instance. ... 207
ALGORITHM 20 Generating alternative deliveries on PDP model instance. 208
ALGORITHM 21 Generating time windows on PDP model instance........... 209
ALGORITHM 22 Generating restriction on time on vehicle. 210
ALGORITHM 23 Generating route length constraint. 210
ALGORITHM 24 Generating heterogeneous fleet of vehicles...................... 212
ALGORITHM 25 Generating compatibilities within heterogeneous fleet. 214
ALGORITHM 26 Generating contamination restrictions. 215
ALGORITHM 27 Generating trailers affecting costs and travel times. 216

LIST OF SYMBOLS

Spaces
� set of values {0, 1}
� space of values of decisions on mapping
� set of natural numbers {0, 1, . . . }
� space of values of decision on ordering
� set of real numbers
� search space
�̂ feasible region of search space

Functions
C(·) cost function
F (·) resource extension function
N (·) neighborhood function
R(·) constraint function

Sets and Tuples
A set of compartments
C set of customers
Cb set of backhaul customers
Cd set of delivery locations
Cl set of linehaul customers
C− set of destinations of task
C+ set of origins of task
Cp set of pickup locations
D set of depots
E set of edges in graph
G graph
K set of vehicles
L set of locations
O set of vehicle start and end locations
O+ set of vehicle starting locations
O− set of vehicle ending locations
P path of vertices in graph
R set of transportation requests
U set of incompatibilities between orders and compartments
V set of vertices in graph
Y set of incompatibilities between orders

Variables
u decision variable for compartment loading
v decision variable for serving task
w decision variable for service start time

x decision variable for travel between locations
y decision variable for number of stops
z decision variable for load of vehicle

Constants
α resource window lower bound
ατ time window start at location
β resource window upper bound
βτ time window end at location
δ demand at customer
η profit of visit
Γ resource vector
γ resource
φ vehicle capacity
ψ cost of travel between locations
σ fixed costs of vehicle
τ travel time between locations

Z Notation
� actor end activity
⊥ actor start activity
(, ,) tuple of elements
{ , , } set of elements
〈 , , 〉 sequence of elements
(λ •) lambda expression: from schema to result of expression
(μ •) mu expression: unique value of expression from schema
(let == •) local definition of variables
∀ • universal quantification
∃ • existential quantification
F finite set
P power set
↔ set of relations between sets
→ set of functions between sets
→
 set of partial functions between sets

ran range of relation
dom domain of relation
∼ inverse of relation

Z set of integers
N set of natural numbers {0, 1, . . . }
seq finite sequence of elements
seq1 non-empty finite sequence of elements
number of members in finite set
first first component of ordered pair
second second component of ordered pair⋃

generalized union over set of sets

⊕ overriding members of set with members of another set
� � range of relation restricted to domain of another
� concatenation of segments
� extracting set from sequence based on set of indices
� sequential composition of schemas
>> piping result of schema into another

LIST OF ACRONYMS

ACO ant colony optimization
AMPL a mathematical programming language
AOSD aspect-oriented software development
API application programming interface
BB branch-and-bound
CARP capacitated arc routing problem
COP context-oriented programming
CP constraint programming
CVRP capacitated vehicle routing problem
DARP dial-a-ride problem
EA evolutionary algorithm
ESPPRC elementary shortest path problem with resource constraints
FSM fleet size and mix problem
GA genetic algorithm
GAMS general algebraic modeling system
GDP gross domestic product
GLS guided local search
GPDP general pickup and delivery problem
GUI graphical user interface
HVRP heterogeneous vehicle routing problem
ILS iterative local search
IRP inventory routing problem
LNS large neighborhood search
LP linear programming
LS local search
MCPDP multi-commodity pickup and delivery problem
MDA model-driven architecture
MDE model-driven engineering
MDSPL model-driven software product line
MDVRP multi-depot vehicle routing problem
MOF meta object facility
MVRPB mixed vehicle routing problem with backhauls
OMG object management group
OVRP open vehicle routing problem
OVRPPD open vehicle routing problem with pickups and deliveries
PDP pickup and delivery problem
PDPTW pickup and delivery problem with time windows
PIM platform independent model
PLA product line architecture
PSM platform-specific model
PVRP periodic vehicle routing problem
RCP resource-constrained path

REF resource extension function
SA simulated annealing
SCPDP single-commodity pickup and delivery problem
SDVRP site-dependent vehicle routing problem
SPL software product line
SPPRC shortest path problem with resource constraints
SS scatter search
SWCPP shortest weight-constrained path problem
TCO total cost of ownership
TS tabu search
TSP traveling salesperson problem
UML unified modeling language
VND variable neighborhood descent
VNS variable neighborhood search
VP variation point
VRP vehicle routing problem
VRPB vehicle routing problem with backhauls
VRPC vehicle routing problem with compartments
VRPPD vehicle routing problem with pickups and deliveries
VRPSD vehicle routing problem with split deliveries
VRPTW vehicle routing problem with time windows

CONTENTS

ABSTRACT
PREFACE
ACKNOWLEDGEMENTS
LIST OF FIGURES
LIST OF ALGORITHMS
LIST OF SYMBOLS
LIST OF ACRONYMS
CONTENTS

1 INTRODUCTION .. 21
1.1 Background and Research Environment 21
1.2 Objectives and Scope .. 24
1.3 Research Approach... 25
1.4 Contribution and Dissertation Structure 26

2 VEHICLE ROUTING PROBLEMS ... 30
2.1 Formulating Optimization Problems .. 30
2.2 Vehicle Routing Problem Variants .. 33

2.2.1 Traveling Salesperson Problem 33
2.2.2 Vehicle Routing Problem .. 34
2.2.3 Vehicle Routing Problem with Backhauls 36
2.2.4 Multi-depot Vehicle Routing Problem 37
2.2.5 Pickup and Delivery Problem ... 38
2.2.6 General Pickup and Delivery Problem 39

2.3 Vehicle Routing Problem Extensions... 41
2.3.1 Time Windows and Quality of Service Constraints............ 41
2.3.2 Open Routing.. 43
2.3.3 Fleet Selection ... 44
2.3.4 Compartments .. 45
2.3.5 Multiple Uses of Vehicles.. 47
2.3.6 Complex Cost Structures and Dynamic Travel Times 47
2.3.7 Drivers, Trailers, Equipment, and Compatibilities 48
2.3.8 Periodic Routing.. 50
2.3.9 Further Extensions... 50

2.4 Modeling Optimization Problems .. 52
2.4.1 Modeling and Optimization Process 52
2.4.2 Design Considerations in Model Encodings 56
2.4.3 Graph Encodings for Routing Problems 57
2.4.4 Constraint Satisfaction Models for Routing Problems........ 60

2.5 Summary of Routing Problem Models .. 61

3 VEHICLE ROUTING SOLUTION METHODOLOGY 63
3.1 Problem Complexity and Method Evaluation.............................. 63

3.2 Exact Methods.. 65
3.3 Heuristic Methods .. 67
3.4 Metaheuristic Methods ... 68

3.4.1 Principles of Metaheuristic Search 68
3.4.2 Local Search .. 70
3.4.3 Other Single Solution Metaheuristics 72
3.4.4 Population Metaheuristics .. 75

3.5 Unifying Elements in Solving Routing Problems 76

4 IMPLEMENTABILITY IN ROUTING SYSTEMS 79
4.1 Synthesis on Vehicle Routing Research 79
4.2 Routing Systems from Software Quality Viewpoint 82
4.3 Software Reuse... 86
4.4 Large-scale Software Reuse Techniques 87

4.4.1 Software Frameworks .. 88
4.4.2 Software Product Lines .. 89
4.4.3 Product Line Architectures ... 91
4.4.4 Model-driven Engineering.. 95
4.4.5 Aspect and Context Oriented Techniques......................... 100

4.5 Summary of Implementability Aspects of Routing Systems 101

5 MODELING FRAMEWORK ... 104
5.1 Overview... 104
5.2 Domain Model ... 106
5.3 Routing Metamodel .. 108

5.3.1 Classification of Constraints ... 109
5.3.2 Decision Variables ... 113
5.3.3 Resources.. 117
5.3.4 Capabilities ... 122
5.3.5 Partial Resources ... 129
5.3.6 Stack Resources ... 138
5.3.7 Activity Groups... 144
5.3.8 Implemented Model .. 147

5.4 Model Transformation .. 151
5.4.1 Introduction .. 151
5.4.2 Transformation Interface .. 153
5.4.3 Usage ... 158

5.5 Summary of Approach.. 164

6 OPTIMIZATION IN THE FRAMEWORK ... 165
6.1 Optimization Process .. 165

6.1.1 Expressing Local Search ... 165
6.1.2 Complexity of Evaluation ... 171

6.2 Preliminary Results .. 179
6.2.1 State of Implementation ... 179
6.2.2 Benchmark Instances ... 180

6.2.3 Real-life Instances .. 183
6.3 Implications of Model Characteristics ... 187

6.3.1 Effects of Problem Structure.. 187
6.3.2 Adequacy of Local Search Operators 189

7 PRODUCT LINE OF ROUTING SYSTEMS ... 192
7.1 System Design.. 192

7.1.1 Objectives and Approach ... 193
7.1.2 Overall Structure ... 194
7.1.3 Submodule Structure ... 195
7.1.4 VRP Solver Module ... 199
7.1.5 Variation ... 201

7.2 Model Variation ... 206
7.2.1 Elementary Constraints .. 206
7.2.2 Time Windows and Quality of Service 209
7.2.3 Situation-dependent Travel and Costs 210
7.2.4 Fleet, Crew, and Equipment Selection 211
7.2.5 Drivers and Legislation .. 217
7.2.6 Compartment Loading Decisions 221
7.2.7 Notes on Interactive Optimization................................... 222
7.2.8 Contrast to Existing Modeling Approaches 225

7.3 Quality Attributes .. 226

8 CONCLUSION AND DISCUSSION ... 229
8.1 Conclusions ... 229
8.2 Applicability of Proposed Approach .. 230
8.3 Implications of Unifying Modeling Framework 233
8.4 Further Research .. 238

YHTEENVETO (FINNISH SUMMARY) ... 242

REFERENCES.. 243

APPENDIX 1 TYPE INDEX .. 261
APPENDIX 2 THE Z NOTATION: A PRIMER .. 264
APPENDIX 3 GENERIC STACK IN Z NOTATION 269
APPENDIX 4 DETAILED COMPUTATIONAL RESULTS 270

1 INTRODUCTION

This work is a combination of two disciplines, operations research and software
engineering, more specifically combinatorial optimization and software architec-
ture. More precisely, we consider vehicle routing and model-driven software
product lines. A common thread linking the different disciplines and the differ-
ent viewpoints is the notion of implementability; the ability to provide a concept
that is both a suitable solution to the problem (vehicle routing) and efficiently
realizable in practice (product line). This “dualism” poses challenges1, but also
provides opportunities for combining the recent advances in both fields. The au-
thor’s background is in software engineering and this is reflected heavily in this
thesis, despite the fact that its contributions remain primarily in the domain of
operations research.

1.1 Background and Research Environment

The volume of logistic operations is substantial today, and a considerable amount
of effort is put into its design. The reasons are apparent; in Finland alone, the total
annual cost of logistic operations equals 34,7 billion euros [189], which translates
on average 14,2% of turnover of Finnish companies, and forms 19% of Finnish
gross domestic product (GDP). Similar figures of 10%–17% of GDP in other in-
dustrialized countries are also present. The Finnish Ministry of Transport and
Communications concludes in their 2009 report on Finnish logistics that lower-
ing the costs of logistic operations is the single most important target for devel-
opment.

The planning of logistics is being centralized, and computer-aided design
is being employed for achieving efficient operation. A notable amount of work
is still being done by hand: computer systems do not generally automate the

1 Not the least of which is, clearly, the extent of the material needed to provide a clear view of
both domains. Although an attempt was made to keep the work concise, this fact translated
to a slightly long thesis.

22

planning itself; they provide the designers with additional tools for accessing the
necessary data. Recently, however, attention has been shifting towards more or
less automated planning. In these cases a computer system would, somewhat in-
dependently of the user involvement, plan the logistic operations in some level of
detail [163]. Implementation of these systems has been made possible by achieve-
ments in operations research, more specifically, in linear and combinatorial opti-
mization [95].

A well-known and widely studied combinatorial optimization problem, the
vehicle routing problem (VRP), is at the core of designing effective transporta-
tion. In VRP, a set of vehicles is to be optimally routed to visit a set of customers
with known demands subject to capacity constraints on the vehicles. VRP has
a number of extensions that consider for instance constraints on delivery times
or vehicles of different sizes. Recently attention has been devoted to complex
variants of VRP that comprise of several of these extensions. These problems are
sometimes named “rich” VRPs.

Solving rich VRPs with optimization has proved to be a viable approach
for real-life decision making in routing. The theoretical routing models have a
strong connection to the practical design of logistic operations and their results
can usually be applied into practice with moderate effort. The optimization ap-
proach also provides a possibility to surpass the human cognition in this design
process: computers are beginning to handle a number of integrated decisions on
magnitudes overwhelming the human designer, and optimization methods can
arrive in efficient but unintuitive solutions typically not achievable by humans.
In addition, the automated planning is especially suitable to dynamic situations
where changes to plans must be made rapidly.

In general, solving rich vehicle routing problems has given promising re-
sults in improving the effectiveness of the logistic planning. Vehicle routing has
been studied for decades but the amount of scientific attention is still growing.
For example, Irnich [109] estimates that several hundred papers are being pub-
lished under this topic annually. In these papers, researchers describe a wide
variety of different cases and solution methods. They also list a number of ben-
efits, which usually fall into one of the following categories: cost savings, more
effective operations, environmental benefits, improvements in quality of service,
and easier planning. Not surprisingly, these benefits have gotten attention from
software industry. In February 2010, OR/MS Today [163] surveyed sixteen soft-
ware vendors providing 22 products for vehicle routing optimization. The cur-
rent software packages offer automated planning for variety of cases and claim
to be able to solve practical problems of 1000 customers and 50 vehicles in less
than ten minutes2.

Recent advances in vehicle routing are, however, hardly a silver bullet [32].
There are a number of factors that inhibit the diffusion of optimization technolo-
gies into practice. In as early as 1995, one operations researcher experienced on
the subject, Marshall Fisher [72], asked that if these algorithms are so effective,
why are they not used by more companies. The answer at that time seemed to be

2 The survey does not, however, discuss the quality of the solutions.

23

the lack of robustness; implementation was hard to transfer from one company to
another and solution methods produced obviously unreasonable results in some
occasions. Fisher predicted that exact optimization algorithms would offer the
best promise for achieving robustness.

In the last fifteen years, despite the increase in computational power, exact
algorithms have not improved enough to be able to solve problems within the
magnitude of those found in real-life situations; and despite a number of new
heuristic and metaheuristic solution methods developed during these years, the
required robustness has not been widely achieved. The algorithm implementa-
tions are still hard to transfer from one environment to another, methods continue
to produce unreasonable results from time to time, and they can be sensitive to
nuances in parameters or data. In addition, insufficient modeling of the prob-
lem yields unusable results; the optimization models still omit elements present
in practical situations, or include only those specifically needed at the moment.
Models expressive enough for a wide variety of cases simply do not exist. This
has a practical implication; the heterogeneity of the cases makes the implemen-
tation tedious and heavy customization a necessity as different cases have to be
modeled and solved individually.

As producers of routing systems, Sörensen et al. [191] observe that “im-
plementation of a commercial routing package typically requires a lot of man-
ual work to be done”. They note that since the set of problems addressed by
the single software is quite heterogeneous, especially the optimization methodol-
ogy requires a lot of manual tuning, and that [one of the challenges is] “inability
to develop completely new methods each time a new problem is encountered
. . . [which] would generally require rewriting large portions of the code base of the
algorithms used [emphasis added]”. This imposes a requirement on the opti-
mization methodology: it has to be flexible to allow customization. Currently,
only a few approaches meet this criteria and software vendors have almost unan-
imously resorted to these algorithms. However, these methods do not represent
the state of the art in performance and solution quality, and this makes the cus-
tomization of the system an attractive alternative, and although modularization
provides some possibilities for adapting the software to different cases, software
vendors have not really been able to address the heterogeneity in the domain sys-
tematically and efficiently. Mass customization still has to give in for case-by-case
customization.

To address these issues, there has been an effort to unify the research [109],
and several approaches have taken place to achieve different objectives. We have
witnessed a shift towards real-life applications with intricate properties, and this
has brought on a unifying effort in modeling of complex side constraints, using,
e.g., techniques from constraint programming and column generation. In addi-
tion, common concepts from solution methodology are being formulated both
in metaheuristics [89], which has provided tools for optimization in large scale
problems usually present in real-life applications, and on local search [80], which
is a central component in vehicle routing algorithms. Adaptation mechanisms are
being implemented in an effort to cope with the heterogeneity of the cases [174].

24

Parallelization and distribution of computing are some of the techniques used to
enhance scalability. Due to recent advances, there seems to be a consensus on
that the operations research community is able to solve the “basic situation” of
vehicle routing routinely. Unfortunately, this is not yet quite enough.

1.2 Objectives and Scope

Within the domain of combinatorial optimization, we focus on vehicle routing for
three reasons. First of all, the heterogeneity of the domain offers an interesting
challenge and an opportunity for generalization. Secondly, the domain is con-
ceptually relatively compact, well-defined, and understood in theory but has not
been widely addressed from an implementation viewpoint. Thirdly, as combina-
torial optimization in general requires tailoring of the search operators for solving
the problem — unlike, e.g., in mixed integer programming — the management of
the variation occurring in both models and algorithms is essential. These aspects
make routing an interesting subdomain. While the results from this study should
be applicable to other areas of combinatorial optimization, the approach does
indeed attempt to exploit the particular characteristics of the routing domain. In-
creasing the scope may thus deteriorate the effectiveness of the approach, and
because of this, in this work, we focus on this well-defined subdomain.

Our overall objective is to provide cost-efficient means for solving the de-
sign problems in routing and scheduling of both vehicles and crew. We argue that
this can be achieved by constructing an optimization system capable of handling
a wide variety of different types of routing problems and capable of adjusting its
operations according to the particular problem instance under consideration. A
key element in achieving this is the ability to manage the complexity arising in the
heterogeneous domain of vehicle routing and scheduling. There are two devices we
necessitate for attaining such a goal: a way to describe the different problems in
a generic way, and machinery that is able to utilize this general description. In
order to understand the requirements for such description, we need to examine
the current state of vehicle routing research; and in order to build the machin-
ery, we need to both examine the solution approaches from VRP domain and to
employ the recent advances in software engineering. The generic description is
realized by a modeling language, a metamodel, and a modeling framework of
vehicle routing problems. The machinery is a software product line utilizing
these constructs. These devices enable the system to be adapted, and in the fu-
ture, to adapt, to different situations and problem types commonly encountered
in route optimization. Furthermore, employing a software product line enables
the reuse of, for instance, modeling and solution methodology and minimizes the
need to rewrite the code base each time a new problem is encountered.

A central component of the software product line is the generic description
of vehicle routing problems. This enables the system to vary modeling and solu-
tion constructs independently of each other thereby greatly increasing possibili-

25

ties for reuse. To construct this description, we envisioned a modeling framework
with the following properties: I) a domain model or routing problems should be
translatable to the generic optimization model; II) the generic model should be
able to express most of the common variants of VRP and their extensions; III) the
constructed optimization model should be solvable; and IV) the modeling sys-
tem should support interactive optimization seamlessly. In order to be solvable,
the model should not render the previous knowledge of solution methodology
useless, and thus be able to utilize the existing optimization algorithms. In ad-
dition, the framework should have a structure that supports parallelization and
distribution of the computing to enhance scalability of the system in the future.

In order to achieve adequately extensive reuse, we attempted to capture the
deterministic VRP variants and extensions that tend to occur in practice. The
“wide” set of problems addressed in this work includes, but is not limited to, ve-
hicle routing, routing with pickups and deliveries, operations with multiple de-
pots or backhauls, several quality of service limitations including time windows,
driver properties and regulations, fleet selection, trailers and special equipment,
service restrictions, preferences, multidimensional capacity, compartment load-
ing decisions, complex cost structures, time dependent operation times, and in-
teractive optimization extensions. These constructs will be discussed first as ap-
proached in the literature, and secondly in the context of the proposed modeling
framework.

In contrast to much of the recent work in vehicle routing, in this dissertation
we do not provide sufficient methodology for solving the introduced problems.
Such a work would be far too extensive for a single thesis. However, as many
of the specific variants have been solved in the literature individually, we outline
a generic strategy for including the solution capabilities of these heterogeneous
solution methods into the developed system. We demonstrate that the existing
solution methodology is compatible with the presented approach, which should
convince the reader that the presented approach is a viable option when address-
ing a heterogeneous set of problems or especially complex problem variants.

1.3 Research Approach

To address the issue of managing complexity in routing domain, we first ana-
lyzed prior VRP research from both modeling and solution methodology point
of view, and subsequently framed the objectives listed in the previous section.
We examined relevant techniques from software engineering and built a proto-
type of a software product line for attaining the objectives. To test our approach,
we implemented several routing models and some well-known VRP algorithms,
and performed an assessment of the viability of the product line approach by em-
ploying it in two research projects. Finally, we tested the optimization system on
real-life problems and benchmark instances. During the course of the research we
formulated the propositions we test in this thesis. The hypotheses are as follows:

26

I) it is possible to define a single modeling system capable of expressing a
wide variety of VRP variants and extension without modifying the under-
lying neighborhood exploration system or algorithm implementations,

II) such a system can utilize the existing knowledge from the current state of
the art algorithms and metaheuristics,

III) such a system can be embedded into a software product line in order to
achieve reusability in both optimization models and optimization method-
ology, and

IV) within this product line, a single architectural variation point is able to ex-
press the modeled case.

The hypotheses are tested by I) defining a formal model and describing sev-
eral rich VRP models motivated by real-life examples to verify expressiveness of
the system, II) expressing the atomic building blocks of local-search algorithms
within the defined framework and analyzing the computational complexity of
the methods to verify applicability of the system, III) presenting a system with
well-defined variation points in optimization models, solution methodology, and
model representation to verify implementability of the system, and IV) express-
ing a number of routing problems by changing the variability object associated
with the model variation point to verify modifiability of the system.

1.4 Contribution and Dissertation Structure

The main contributions of this thesis reside within the domain of vehicle routing,
but a substantial contribution was also given to the domain of software engi-
neering during the course of this research. The domain of vehicle routing is an
interesting case study on the applicability and benefits of model-driven software
product lines due to its inherent requirement of modeling and heterogeneity of
the problem domain.

In this dissertation, we give the following contributions.

1. A metamodel and a modeling language for describing rich vehicle rout-
ing problems.

To employ a single modeling system capable of expressing a variety of VRP vari-
ants and extension without modifying algorithm implementations, we need a
higher level model on which the algorithms can operate independently of the
case-specific details. This metamodel and an adjoining modeling language forms
the first contribution of this dissertation, This is, in fact, the first metamodel de-
veloped for routing problems the author is aware of. This metamodel attempts to
capture the commonalities of the most common vehicle routing problems, and is
shown to be compatible with recent unifying efforts in VRP research. In addition,

27

we analyze different aspects and elements found in rich vehicle routing problems.
We argue that analyzing and categorizing the aspects of the developed model in a
structured manner will broaden our knowledge of vehicle routing problem, pro-
vide us with better ways to include real-life aspects into vehicle routing problems,
and provide a base for future solution methodology suitable for highly variable
and complex routing problems. Moreover, the developed modeling language en-
ables flexible usage of the developed approach, and is shown to be simple enough
to be embedded into a working implementation. In fact, this is the first attempt
to examine an implementation of a unified model of routing problems.

2. A model-driven software product line architecture for vehicle routing
systems.

The second contribution of this dissertation is the application of the recent ad-
vances from software engineering into the context of routing systems. A model-
driven software product line architecture is developed and is shown to enable
reuse at multiple places in the architectural level as well as to simplify the incor-
poration of case-specific details into an implementation of routing systems. This
is, as far as the author is aware, the first model-driven product line approach
to routing systems. Moreover, the presented implementation provides, to the
best of our knowledge, the first practical demonstration of application of a model
transformation as an architectural variation point. In this work, we describe the
implemented optimization system, and analyze its structure from product line
architecture and variability management viewpoints. We also discuss software
quality attributes in the context of vehicle routing software systems. It is note-
worthy that from the viewpoint of system design and software architecture, the
analysis of generalization of vehicle routing problems has largely been neglected
in the previous work.

3. A formal specification of optimization models and processes in vehicle
routing.

The third contribution of this thesis is a formal specification of optimization mod-
els and solution processes in vehicle routing. A formal specification language is
used to describe the developed metamodel, but this specification can also be used
to define the routing variants describable by the metamodel. A relatively exten-
sive set of routing variants is described formally in this thesis, along with basic
operations of the most commonly used solution methods. These formalizations
provide a basis for complexity analysis of different models, reasoning about their
properties, and proving their correctness from implementation viewpoint. As
far as we know, this is the first description of structures within an optimization
system in a formal specification language.

In addition to the primary contributions in this dissertation, a set of minor
contributions is also given. Firstly, a minor contribution of this work is an attempt
to form an overview of vehicle routing research from the viewpoint of software
engineering and to provide a useful prediction on what will be the next chal-
lenges especially from the implementation perspective. In addition — although

28

the aim of this work was not the development of optimization algorithms — we
provide some initial numerical results from existing scientific benchmarks. More-
over, for validating the full system against the requirements we used a number of
real-life cases, including newspaper distribution and oil product transportation.
The cases were modeled and solved using the developed system. Some remarks
on findings from these cases are given.

As we will observe, optimization can be divided into three main aspects,
modeling, solving, and implementation. Mathematical modeling provides a de-
scription, optimization algorithms provide solution methods, and software im-
plementation enables practical use. This tripartite structure is reflected also in
the structure of this dissertation and illustrated in Figure 1. The vertical axis cov-

Chapter 1

Chapter 2

Chapter 5

Chapter 3

Chapter 6

Chapter 4

Chapter 7

Chapter 8

Modeling Solving Implementation

FIGURE 1 The structure of this dissertation.

ers the dimension of theoretical and constructive content. As usual, we proceed
with providing context and theoretical background in the chapters at the top,
and later construct our contributions on that basis in the chapters at the bottom.
On the horizontal axis we see the three aspects. The chapters on the left con-
sider primarily the aspects of modeling, the chapters in the middle, the solution
methodology, and the chapters on the right, the implementation.

The structure of this dissertation, in detail, is as follows: first in Chap-
ter 2, we briefly introduce the basic concepts in vehicle routing, and review in
necessary detail the current variants of vehicle routing models and their exten-
sions. Although mathematical programming formulations are given, this chapter
is more illustrative than definitive. Chapter 3 provides an overview of both exact
and approximate methodology in solving vehicle routing problems. Chapter 4
summarizes the research on vehicle routing and subsequently brings the routing
problems and solution methodology to the context of implementation by exam-
ining the related work in the field of software engineering. This chapter presents
more definitive conceptualizations than the previous two, and provides a basis
for formal representations of both the modeling constructs and system design in
subsequent chapters. In Chapter 5, we attempt to capture the synthesis formu-
lated in the previous chapter, and present two formal models and a modeling
framework for describing vehicle routing problems. Furthermore, we discuss the
elements found in VRP models and analyze their properties. In Chapter 6, we ex-
amine the optimization process within the developed modeling framework, and

29

Chapter 7 provides details of the implementation of such a framework. In ad-
dition, we analyze the developed system from the quality attribute viewpoint.
Chapter 8 draws conclusions on the proposed approach, discusses the wider im-
plications of the approach on vehicle routing research, and provides topics for
further studies.

As this work is a combination of operations research and software engi-
neering, different parts of this thesis may attract different audiences. For a reader
with a background in operations research and an interest in modeling of rout-
ing problems, we recommend concentrating on Chapters 2, 5, and 6. For a reader
with more interest in software engineering and architecture, we propose glancing
through the end of Chapter 2 and reading Chapters 4, 5, and 7.

2 VEHICLE ROUTING PROBLEMS

“Looking back, I think it was more difficult to see what
the problems were than to solve them.”

— CHARLES DARWIN

In this chapter, we review the current state of the modeling of vehicle rout-
ing problems by providing an overview on several subtopics. The overview is
given by highlighting some of the first papers on the subject, some recent devel-
opments, and where possible, by providing a pointer to a more comprehensive
survey. This chapter is structured as follows: in Section 2.1 we introduce the ba-
sic concepts of formulating combinatorial optimization problems, in Section 2.2
describe several of the key variants of vehicle routing problems, and in Section
2.3 we review the work done on more complex routing problems with additional
constraints, decisions, and properties. In Section 2.4, we discuss the practicalities
of modeling the optimization problems, which is essential for enabling efficient
solving of the problems; and finally in Section 2.5, we provide a brief summary.

2.1 Formulating Optimization Problems

Optimization is a tool for decision making. Many of these decisions involve de-
signing structures or processes, and as we deal with increasingly complex prob-
lems still wanting to approach them with analytical means, optimization has be-
come more widespread in many fields of engineering, management, and science.
The classical process of decision making consists of three steps: stating the prob-
lem, solving the problem, and applying the solution into practice. When employing
an optimization approach, the problem statement can further be divided into two
phases: formulating the problem and modeling the problem.

Formulating the problem involves identifying the design questions of the
problem, determining the criteria of the design on which to evaluate different
solutions, and expressing the rules of an acceptable solution. Formulating the

31

problem may be done in varying degrees of formalism, depending on the case-
specific requirements. Inexact formulations may be as simple as prose specifica-
tions of the goals and rules of the problem. In contrast, an example of an exact and
definitive description is the formulation by mathematical programming, a technique
for expressing analytical problems using algebraic formalism. The programming
consists of mathematical relationships, which include, for instance, equations, in-
equalities, and logical dependencies [211]. Essential concepts in this formulation
are decision variables, objective function, and constraints. These concepts correspond
to the real-life questions we attempt to answer, the criteria on which to evaluate
a solution, and the rules of an acceptable solution, respectively.

Formulation of a problem in exact mathematical terms may be a complex
undertaking, and, as noted in [211], some have in fact questioned the applica-
bility of optimization in decision making. This is an especially acute question in
real-life operations, where multiple conflicting criteria, uncertainty about every
aspect of the reality, inaccuracies in available data, aspects which are difficult or
impossible to quantify, and dynamism during the actual operations should nev-
ertheless be taken into account while making robust decisions (which are itself
often ill-defined) for the long-term good of the decision maker (which is even
more often ill-defined).

These decisions must be made with or without the help of the available
tools. As mentioned, optimization is one such tool, and can be seen as a device
for providing one or many suggestions for a solution. The results should usually
not be taken as a final and complete solution to the problem, and the human de-
cision maker should be kept in the process to provide both the needed accuracy
and to enhance robustness of the planning. In practice, this can be achieved by,
e.g., incorporating an interactive interface for manipulating and examining the
models and the results of the optimization during the decision making. The soft
nature of the decision making can be considered by, e.g., increasing the complex-
ity of the objective(s) of the optimization. In this work we (partially) address these
aspects by incorporating some of the interactivity requirements and modeling of
soft constraints. This work needs to be continued towards multi-criteria opti-
mization in the future. Although we consider here only deterministic problems,
some aspects of uncertainty can also be addressed with these types of systems.
Decreasing sensitivity to stochastic elements may be done through manipulation
of data: for example, defining loose enough time windows can enhance robust-
ness and this can — again — be left for the user of the optimization tool. As
to the criticism on the unquantifiable data, Williams [211] notes that “many de-
cisions concerning unquantifiable concepts, however they are made, involve an
implicit quantification which cannot be avoided. Making such a quantification in
a mathematical model seems more honest as well as scientific”. This sentiment
seems indeed reasonable.

Even with all the aforementioned aspects included, an optimization formu-
lation (or in fact any other model) cannot capture all the aspects relevant to the
decision maker. In practice the formulation of the problem begins by taking into
account only the most relevant of its aspects. In routing, these include the distri-

32

bution of tasks to vehicles to form efficient tours that adhere to the most relevant
constraints (e.g., vehicle load capacities, service time windows). As formulations
gradually become more complex, they (hopefully) model the reality accurately
enough.

With these remarks, we invite the discussion on the limitations of analytical
approaches to decision making and, more broadly, those of operations research.
In this work we limit ourselves to note that despite the shortcomings of the math-
ematical idealizations often used, mathematical modeling and optimization do
have an impressive record on enhancing various operations, including routing.

To provide a solid base for discussing more complex problems, we begin
by formulating a number of idealized routing problems frequently dealt with in
scientific literature. In Sections 2.2–2.3, we present a number of problem formu-
lations using mathematical programming. Such formulations take the following
general form:

min C(s) (1)

s.t.
s ∈ �̂ ⊆ �, (2)

where � is the set of all solutions, s ∈ � a solution instance, C : � → � the objec-
tive function that maps each solution s to a real value, and �̂ is the set of feasible
solutions described by the problem constraints. The task is to find the values of
decision variables occurring in both the objective and constraints, such that the
objective value is minimized1 and the equations, inequalities, and logical depen-
dencies in constraints are respected.

As said, these sections discuss the problems formally for communicating
the exact meaning of different variants, thus addressing the phase of formulating
the problem. In Section 2.4, we discuss the modeling of optimization problems
in more detail. Thus, we consider here only the problem statement in a mathe-
matical form. Although we are aware that, for instance, the traveling salesperson
problem (TSP) has several representations, for example the permutation encoding
[195], we employ a unified approach: the problem statement is intended to be
generalized from TSP into a general pickup and delivery problem (GPDP) to il-
lustrate the differences and commonalities between the problems. One of the
most used representations in the literature is the mixed integer linear program-
ming formulation, and although many constraints presented here are of the linear
form, we do not limit ourselves to linear representations. In fact, when solving
routing problems, often the problem formulation is given in a linear form, but
the metaheuristic solution methodology operates on a nonlinear graph represen-
tation. We discuss also the different representations in detail in Section 2.4.

Where possible, the following conventions are used: first, the objective func-
tion is formulated, followed by completeness and consistency constraints, gov-
erning, e.g., proper visits and properties of routes. Next we introduce the flow
constraints governing the traversal between locations, and finally present the re-
strictions on values of decision variables.
1 We may assume, without loss of generality, a minimization problem.

33

2.2 Vehicle Routing Problem Variants

Vehicle routing problem has been applied to numerous different cases, which
vary slightly on their assumptions of the problem characteristics. We have se-
lected some of the VRP variants based on their structure. The choice is not arbi-
trary, but nevertheless is not meant to be an exact classification, and indeed, many
other variants can be defined. The sampling is illustrative rather than definitive,
and covers the most distinguishable problem types.

2.2.1 Traveling Salesperson Problem

The most fundamental routing problem is the classic TSP, in which a salesperson
must visit a set of locations exactly once and return to his original location. In this
problem the objective is to minimize the total distance traveled. Despite its simple
formulation, the TSP is still a relevant problem in many areas, including logistic
planning. When designing routes for, e.g, individual couriers or for finding an
optimal route in predefined distribution areas, the TSP still plays a role due to
the effective solution methods [3] developed.

Although strictly speaking the TSP is not usually considered a VRP variant,
its definition forms a basis for the VRP formulation. Note that since we employ
semantics of VRP, the representation of the TSP is a bit unconventional. For in-
stance, the flow constraints and decisions on sequence numbers are not typically
used in a TSP formulation. Moreover, in these formulations, two locations can
have travel costs of zero (denoting a distance of zero). Formally, the TSP is de-
fined using a set of locations L = {0, . . . , n}. The model contains two sets of
decision variables, xij which have value 1 if and only if the salesperson travels
from location i ∈ L to location j ∈ L and 0 otherwise; and yi which have value
indicating the sequence number of location i at the route. Moreover, traveling
from i to j has a cost ψij ≥ 0 associated to it. Finally, let � denote the set of val-
ues {0, 1}. It is notable that in the formulations used in Sections 2.2 and 2.3, we
assume that it is possible to travel between any pair of locations. This means that the
resulting graph is a full graph. Using this notation, the problem can be stated as

min ∑
i∈L

∑
j∈L

ψijxij (3)

s.t.
∑
j∈L

xij = 1, ∀ i ∈ L, (4)

∑
i∈L

xij − ∑
i∈L

xji = 0, ∀ j ∈ L, (5)

xij(yi + 1 − yj) = 0, ∀ i ∈ L, ∀ j ∈ L \ {0}, (6)

y0 = 0, (7)

xij ∈ �, ∀ i ∈ L, ∀ j ∈ L, (8)

34

yi ∈ �, ∀ i ∈ L. (9)

The objective function (3) minimizes the total costs of travel. TConstraint
set (4) states that each customer has to be visited exactly once, and constraint
set (5) states that the salesperson leaves a customer if and only if it entered it.
Constraint set (6) ensures that the sequence numbers on the route are consistent.
It also follows from this constraint that subtours are not allowed. Constraint (7)
states that the sequence number of the first2 node is zero. Constraint set (8) is a set
of integrality constraints, and constraint set (9) states that the sequence numbers
are natural numbers.

Note that the subtour elimination constraints are non-linear. Although the
discussion of linearity is of importance, we do not present the linearized form
of these constraints here as our aim is not to solve the problems using (mixed
integer) linear programming solvers. Instead we refer to, for example, work by
Cordeau et al. [43]. In general, this linearization can be achieved by introducing
an exponential number of linear constraints.

Mathematically, the traveling salesperson problem is related to the question
of a Hamiltonian circuit in a graph. This question goes back to Kirkman and
Hamilton in 1856. The actual mathematical roots of the traveling salesperson
problem are obscure, but references to an informal definition can be found as
early as 1832 [186]. A number of other variants have since been studied, and
these include, for instance, a precedence-constrained TSP, e.g., in [10], a TSP with
backhauls, e.g., in [87], and a TSP with pickups and deliveries, e.g., in [65].

Some of the most effective heuristic methods for solving the TSP include
the well-known Lin–Kernighan algorithm [136] and its subsequent modifications.
For an in-depth view on a state-of-the-art TSP solution methodology we refer to
book by Applegate et al. [3].

2.2.2 Vehicle Routing Problem

The vehicle routing problem, or the capacitated vehicle routing problem (CVRP),
is probably the most studied combinatorial optimization problem. The VRP gen-
eralizes the TSP and can be characterized as h traveling salesperson problem,
where h > 1. Thus we define a set of salespersons, or vehicles, K where |K| = h,
and note that each vehicle k ∈ K is identical having a capacity limit of φ.

The VRP has a wide range of applications. Usual examples include man-
agement of distribution of consumer goods such as dairy products, scheduling
shipments, planning courier services, and routing of postal distribution. Other
examples include school bus routing, planning of maintenance routes, designing
operations within warehouses, and designing forestry inspection tours. In fact,
almost any problem where a group of people has to perform spatially distributed
tasks, is a candidate for a vehicle routing problem.

Similarly to the TSP, the VRP can be formulated using a set of locations,
where each vehicle starts and ends at the same location, often called depot and

2 We may assume, without loss of generality, that the route starts at node 0.

35

denoted here as d. In the VRP, we define a set of customers C = {1, . . . , n}, and
set L = C ∪ {d}. Moreover, each customer i ∈ C has a demand δi associated with
it. As in the traveling salesperson problem, we have two decision variables xk

ij,
now indexed also with k ∈ K having value 1 if and only if vehicle k travels from
location i to location j and 0 otherwise; and yk

i denoting the sequence number of
location i at the route of vehicle k. The problem can be stated as

min ∑
k∈K

∑
i∈L

∑
j∈L

ψijx
k
ij (10)

s.t.
∑
k∈K

∑
j∈L

xk
ij = 1, ∀ i ∈ C, (11)

∑
i∈C

δi ∑
j∈L

xk
ij ≤ φ, ∀ k ∈ K, (12)

∑
j∈L

xk
dj = 1, ∀ k ∈ K, (13)

∑
i∈L

xk
ij − ∑

i∈L
xk

ji = 0, ∀ j ∈ L, ∀ k ∈ K, (14)

∑
i∈L

xk
id = 1, ∀ k ∈ K, (15)

xk
ij(y

k
i + 1 − yk

j) = 0, ∀ i ∈ L, ∀ j ∈ L, ∀ k ∈ K, (16)

yk
d = 0, ∀ k ∈ K, (17)

xk
ij ∈ �, ∀ i ∈ L, ∀ j ∈ L, ∀ k ∈ K. (18)

yk
i ∈ �, ∀ i ∈ L, ∀ k ∈ K. (19)

The objective function (10) minimizes the total costs generated by all the vehicles.
Constraint sets (11), (14), (16), (17), (18), and (19) have an additional index for
each vehicle k ∈ K in the problem and correspond to constraint sets (4), (5), (6),
(7), (8), and (9), respectively. In addition, we define a constraint set (12) which
states that each vehicle should not exceed its capacity, and constraint sets (13)
and (15) which state that each vehicle should start its route from the depot and
end their route at it, respectively.

The described formulation requires each location to be visited. If there are a
limited number of vehicles at the depot, a feasible solution may not exist. Alter-
natively to assuming an unlimited fleet, we may relax the problem by modifying
constraint set (11) and the objective function (10) to allow but penalize unvisited
locations. In this context, it may be more natural to formulate a maximization
problem, where each visit has a profit associated to it. We may formulate a maxi-
mization problem by observing that min f = max−f , for any function f . Let ηi be
the profit of visiting a location i ∈ L. The problem can be stated as constraint sets
(12)–(19), constraint set (21), and objective function (20).

max ∑
k∈K

∑
i∈L

∑
j∈L

ηix
k
ij − ∑

k∈K
∑
i∈L

∑
j∈L

ψijx
k
ij. (20)

36

∑
k∈K

∑
j∈L

xk
ij ≤ 1, ∀ i ∈ C. (21)

The objective function (20) maximizes the profits collected by visiting the differ-
ent locations. By constraint set (21) one vehicle at most visits each location. Note
also that this formulation allows prioritization of customers by introducing dif-
ferent profits to different locations according to their priority.

The vehicle routing problem was first formulated in 1959 by Dantzig and
Ramser [54] as the “truck dispatching problem”. During the following 50 years
of study, a significant amount of work has been devoted to the subject, and one
could argue that the VRP has grown to a class of problems [130]. For a more in-
depth view on the VRP research, we refer to books by Toth and Vigo [202] and
Golden et al. [95], and a recent taxonomic review by Eksioglu et al. [66].

2.2.3 Vehicle Routing Problem with Backhauls

While the capacitated vehicle routing problem models either the distribution or
collection of goods, in many cases both of these operations are performed by the
same operator. For instance, a company distributing beverages to grocery stores
is in fact many times responsible for collecting the empty bottles for refilling or
recycling. The distribution part of the operation is referred to as linehauling and
the collection part as backhauling. In practice, however, these operations cannot
be freely mixed; many of the trucks used in transportation are rear-loaded, and in
these types of vehicles, a simultaneous loading and unloading of goods is slow,
unpractical, or impossible. Also, it is more likely that the linehaul customers
prefer an early delivery, and the backhaul customers, a late pickup. Thus, in a
vehicle routing problem with backhauls (VRPB), we divide the problem into two
parts: linehauls and backhauls, where all the linehauls must occur before any of
the backhauls. In addition, a route is not allowed to consist only of backhaul cus-
tomers. Note, however, that when the precedence restriction does not apply and
the linehauls and backhauls can be freely mixed, we need additional modeling
constructs. We introduce this variant, the pickup and delivery problem (PDP), in
Section 2.2.5.

The VRPB is a generalization of the VRP with additional constraints for
precedence. While the VRPB could be considered as two separate routing prob-
lems, solving the integrated problem can yield additional savings. This is best il-
lustrated by considering the fact that starting the backhauls from the last linehaul
customer is likely to be a good approach, but this cannot be taken into account
in the formulation of the second routing problem in any way; all trucks are as-
sumed to start from the central depot in both phases. However, when applicable,
integration of backhauls and linehauls is a standard practice in the industry and
the need for an integrated model is apparent.

Formally, let C be the set of customers and L the set of locations. We define a
set of linehaul customers Cl ⊆ C and a set of backhaul customers Cb ⊂ C such that
Cl ∪ Cb = C and Cl ∩ Cb = ∅. Note that if both linehaul and backhaul operation
are required at the same place, this is modeled as two customers in C with travel

37

costs of zero between them. The model consists of the objective (10), constraint
sets (11)–(19), and constraint sets (22)–(23) described below.

yk
i − yk

j ≤ 0, ∀ i ∈ Cl, ∀ j ∈ Cb, ∀ k ∈ K, (22)

yk
i > 1, ∀ i ∈ Cb, ∀ k ∈ K. (23)

Constraint set (22) states that each linehaul must occur before any backhaul. Con-
straint set (23) ensures that at least one linehaul customer is served before serving
any backhaul customers.

Deif and Bodin [57] appear to have been among the first to formulate the
integrated VRPB in 1984, and the problem has since been addressed a number of
times, for example, in Toth and Vigo [201]. Recent research includes that of Ropke
and Pisinger [175] who consider a number of VRPB variants simultaneously, and
apply a unified heuristic for all the problem variants presented in their work; and
Brandão [26] who applies a metaheuristic search scheme to the problem. For a
more in depth view on the VRPB we refer to the recent survey by Parragh et al.
[161].

2.2.4 Multi-depot Vehicle Routing Problem

When a company operates on a geographically broad area or whenever the size
of the fleet increases, the number of terminals (depots) tends to increase. And
the larger the operator, the larger the potential in integrated planning. This in-
creases the need to consider a number of vehicle terminals simultaneously and
to coordinate operations between them. Although in the VRP all vehicles are
considered identical, they may yet reside in different sites, and selecting the de-
pot each customer is served from is a relevant design problem. The multi-depot
vehicle routing problem (MDVRP) addresses this issue by splitting the fleet into
several parts, or by assuming an unlimited fleet in every depot and choosing the
appropriate set of vehicles.

The MDVRP formulation is rather simple, and does not take into account
inter-depot transportation nor pickups at multiple depots. The problem is di-
vided into several subproblems that interact only by an assignment of a customer
from a depot to another — in other words, assigning a customer from one vehicle
to another whenever those vehicles reside at different depots. For several pickups
at multiple sites, such as some customers requiring picking up newspapers from
two different printing plants before distributing them, one needs yet again con-
structs from the PDP introduced in Section 2.2.5. For inter-depot transportation,
one needs both the PDP formulation and additional precedence and dependency
constraints.

To define the MDVRP formally, instead of a single depot d, we introduce a
set of depots D = {d1, . . . , dm}. We assume an unlimited number of vehicles at
each depot. We now set L = C∪D. The MDVRP consists of the objective function
(10) and constraint sets (11), (12), (14), and (16)–(19), as well as constraint sets

38

(24)–(26) given below.
∑

d∈D
∑
i∈C

xk
di = 1, ∀ k ∈ K (24)

∑
d∈D

∑
i∈C

xk
id = 1, ∀ k ∈ K (25)

∑
i∈C

xk
di − ∑

j∈C
xk

jd = 0, ∀ k ∈ K, ∀ d ∈ D (26)

Constraint sets (24) and (25) state that each vehicle must start at a single depot
and end its route to a single depot, respectively. Constraint set (26) ensures that
each vehicle returns to the depot it started at.

The MDVRP was first considered by Tillman [198], Tillman and Hering
[199], and Cassidy and Bennet [35]. The MDVRP has been studied, e.g., by Re-
naud et al. [170] and Cordeau et al. [46] who both use a metaheuristic solution
approach. Crevier et al. [50] studied an interesting variant where vehicles are
allowed to replenish at intermediate depots during their route. Cordeau et al.
[44], and, more recently, Vidal et al. [206] considered periodic multi-depot vehicle
routing problems.

2.2.5 Pickup and Delivery Problem

Designing transportation for delivery and collection is only one aspect of logis-
tics design. In the previous sections we highlighted some of the variants of de-
livery and collection problems, but almost as important is the family of problems
usually referred to as the pickup and delivery problem (PDP). These kinds of
problems where the task is to transport goods or passengers between given ori-
gins and destinations, differ from the previously discussed variants in that the
goods or passengers do not reside in any central location. These problems arise
naturally in dial-a-ride or courier services, and door-to-door transportation, for
example, in the municipal school bus service.

We distinguish three types of pickup and delivery problems that have been
covered in the literature (see, for instance, Cordeau et al. [47]). One is the single-
commodity pickup and delivery problem (SCPDP) in which one type of goods
is either picked at or delivered to each customer. A typical example of this is
transportation of cash between bank offices. The second variant considered is
the mixed vehicle routing problem with backhauls (MVRPB), where no restric-
tions on mixing linehaul and backhaul customers are defined. A standard VRPB
can therefore be seen as a special case of PDP. The third variant is the multi-
commodity pickup and delivery problem (MCPDP) in which a unique commod-
ity has to be picked at each pickup location and transported to a delivery location.
If the distinction to the three cases is made, the third variant, which is the most
general of these, is often referred to as the vehicle routing problem with pickups
and deliveries (VRPPD).

Note that the function describing the load of a vehicle is no longer mono-
tonic since a route involves a number of pickups and deliveries. A vehicle can
— in the absence of other constraints — therefore serve any number of requests.

39

However, ensuring the vehicle load on every location requires introduction of an-
other decision variable zk

i which denotes the load of vehicle k ∈ K after location
i. In addition we define a set of pickup customer locations Cp ⊂ C and a set of
delivery customer locations Cd ⊂ C, such that Cp ∪ Cd = C and Cp ∩ Cd = ∅.
Let Cp = {1, . . . , n}, and Cd = {n + 1, . . . , 2n}. Each task is then associated
with a pickup location i and a corresponding delivery location i + n. Finally,
let δi = −δn+i ∀ i ∈ C.

The VRPPD model consists of the objective function (10), constraint set (11),
constraint sets (13)–(15), constraint set (18), as well as constraint sets (27)–(31)
defined below.

∑
i∈C

xk
ij − ∑

i∈C
xk

n+i,j = 0, ∀ j ∈ Cp, ∀ k ∈ K (27)

xk
ij(z

k
i + δj − zk

j) = 0, ∀ i ∈ C, ∀ j ∈ C, ∀ k ∈ K (28)

zk
i ≤ φ, ∀ i ∈ L, ∀ k ∈ K (29)

zk
d = 0, ∀ k ∈ K (30)

zk
i ∈ � ≥ 0, ∀ i ∈ L, ∀ k ∈ K (31)

Constraint set (27) states that each delivery location is visited by the same vehicle
visiting the corresponding pickup location, constraint set (28) ensures consistency
of vehicle load variables, constraint sets (29) states that maximum capacity of
a vehicle cannot be exceeded, and constraint sets (30) and (31) ensure that the
vehicle load has proper initial and intermediate values, respectively.

Additional VRPPD variants have been introduced, for example, by Maciek
et al. in [156] where the authors consider a problem with the possibility of split-
ting the loads such that the delivery of a certain order is completed in multiple
trips. For a recent survey on PDPs, we refer to that of Parragh et al. [162].

2.2.6 General Pickup and Delivery Problem

The general pickup and delivery problem was introduced by Savelsbergh and
Sol [180]. The authors introduced a more general variant of VRPPD to deal with
practical issues arising in vehicle routing. This was partly motivated by their
observation of the fact that although the pickup and delivery problem is theo-
retically at least as interesting and in practice as important as the vehicle routing
problem, it had received far less attention. Fifteen years from their observation,
the situation seems to prevail. It may be that the classic CVRP attracts more re-
search due its simple yet elusive nature. The PDP is just — some could say — an
annoyingly complex version of the former.

Two major differences separate the GPDP from the VRPPD. First of all, in
the former, each vehicle starts and ends its route at an arbitrary, but predefined,
point. This variant arises naturally in situations where there are multiple depots,
an additional external fleet that can be hired, and most importantly, whenever
dynamic planning occurs. Dynamic planning is necessary if situation, that is, the
routing problem, changes while vehicles are on route. This can happen for a num-
ber of reasons; a transportation request may become available in real-time, or a

40

sudden delay or a breakdown may require redesign of the plan. In this situation,
the problem has to be solved without any notion of depot, since all vehicles are
scattered over the planning area. The second difference is the fact that each trans-
portation request may consist of more than one part. In this situation, either a
number of pickups has to be made to collect a set of goods and transport them to
a destination or vice versa. This situation can arise, for example, in construction
industry, where each construction site requires a number of raw-materials from
different factories and warehouses.

Formally, for each transportation request r ∈ R, a total load of δr has to
be transported from a set of origins C+

r ⊂ C to a set of destinations C−
r ⊂ C,

such that C+ =
⋃

r∈R C+
r , C− =

⋃
r∈R C−

r , and C− ∪ C+ = C, where R is the
set of transportation requests. Each load is divided as follows: δr = ∑i∈C+

r
δi =

−∑i∈C−
r

δi. Moreover, each vehicle k ∈ K has a starting location o+k , and an ending
location o−k . Let O+ = {o+k | k ∈ K}, O− = {o−k | k ∈ K}, and O = O+ ∪ O−. Let
L = O ∪ C. Finally, let vk

r be a decision variable equal to 1 if and only if request
r ∈ R is assigned to vehicle k ∈ K and 0 otherwise. The problem consists of the
objective function (10), constraint sets (14), (18), (28), (29), and (31), as well as
constraint sets (32)–(37) given below.

∑
k∈K

vk
r = 1, ∀ r ∈ R, (32)

∑
j∈L

xk
ij = ∑

j∈L
xk

ji = vk
r , ∀ r ∈ R, i ∈ C+

r ∪ C−
r , k ∈ K, (33)

∑
i∈L\{o+k }

xk
o+k i = 1, ∀ k ∈ K, (34)

∑
i∈L\{o−k }

xk
io−k

= 1, ∀ k ∈ K, (35)

zo+k
= 0, ∀ k ∈ K, (36)

vk
r ∈ �, ∀ r ∈ R, ∀ k ∈ K. (37)

Constraint set (32) ensures each transportation request is assigned to exactly one
vehicle. Constraint set (33) states that a vehicle must visit a location if it is an ori-
gin or a destination of a request assigned to that particular vehicle. By constraint
sets (34) and (35) each vehicle starts and ends at the correct location. Constraint
set (36) ensures a proper vehicle load value at the starting location and (37) is a
set of integrality constraints.

It is evident that the GPDP is the most general of the formulations given
in this chapter so far. In fact, each variant presented here can be expressed as a
special case of GPDP. Savelsbergh and Sol [180] described three problem variants
in terms of their formulation: the pickup and delivery problem, the dial-a-ride
problem (DARP) and the vehicle routing problem. We will mention the DARP in
Section 2.3.1, when we discuss time window and quality of service constraints.
Other variants can be characterized as follows:

41

The pickup and delivery problem can be defined using the GPDP by setting
|O| = 1 and |C+

r | = |C−
r | = 1 ∀ r ∈ R. In addition, we let r+ be the unique

element of C+
r , r− be the unique element of C−

r , and o the unique element of O.
The mixed vehicle routing problem with backhauls can be formulated by

setting |O| = 1, |C+
r | = |C−

r | = 1 ∀ r ∈ R, and (r+ = o ∧ r− �= o) ∨ (r+ �= o ∧ r− =
o) ∀ r ∈ R. If mixing of linehauls and backhauls is prohibited, we need to impose

the precedence constraints (22)–(23).
The multi-depot vehicle routing problem can be formulated by setting |O| >

1, |C+
r | = |C−

r | = 1 ∀ r ∈ R, and C+ = O or C− = O.
The capacitated vehicle routing problem can be formulated by setting |O| =

1, |C+
r | = |C−

r | = 1 ∀ r ∈ R, and C+ = O or C− = O.
The traveling salesperson problem can be formulated by setting |O| = 1,

|C+
r | = |C−

r | = 1 ∀ r ∈ R, C+ = O or C− = O, and |K| = 1.
Although the GPDP can be used to express a wide variety of problems, lift-

ing assumptions naturally yields more difficult problems. The general pickup
and delivery problem, and to most extent VRPPDs, are more difficult to solve
than VRPs partly due to their lack of concept of location closeness. In the VRP, if
locations are geographically close to each other, they are likely to be served by the
same vehicle. In PDPs, this is not certain. This has also a direct consequence to
solution evaluation: in the CVRP — and the TSP for that matter — solutions can
be evaluated by looking at their geographical structure, but an optimal solution
to a PDP may look incomprehensible to the human eye.

2.3 Vehicle Routing Problem Extensions

In the previous section, we introduced a set of routing problem variants which
differ by their structural properties, number of constraints, and decision vari-
ables. In this section, we discuss a set of extensions. From our point of view,
extensions differ from variants in that each variant is usually dealt in literature
as such, and additional extensions are in many cases added to the problem. This
distinction is not exact, since, for instance, backhauls could be interpreted as an
extension for the VRP — or, in fact, for the TSP or the PDP. We will address this
distinction between different types of problems in the subsequent chapters when
we utilize our unified model, which allows us to analyze the differences on the
structural level.

2.3.1 Time Windows and Quality of Service Constraints

Capacitated vehicle routing is inherently a spatial problem. However, it is appar-
ent that the nature of logistic operations requires a temporal dimension. Vehicles
and drivers have schedules, customers have to be served at specific time, and
there are limitations on how long goods or passengers are allowed to stay on a
vehicle (quality of service). Well-known examples of these kinds of problems in-

42

clude postal services, courier services, meal transportation, school bus routing,
and in general, situations in which the receiver of the order has to be present at
the delivery. Nontrivial quality of service constraints arise naturally especially in
school bus routing where each schoolchild should not stay on the vehicle more
than a predefined amount of time typically depending on the total distance be-
tween home and school.

One notable problem that has been dealt with in the literature as a separate
variant is the dial-a-ride problem. In the DARP each pickup and delivery consists
of one or more passengers traveling together, and thus every order has a demand
equal to the capacity of the vehicle. In these problems, and to some extend in the
PDP in general, time windows and quality of service restrictions tend also to be
tight. This is due to the fact that when serving individual passengers, waiting
and being late are not tolerated. These characteristics make the case different,
although modeling the problem is quite straightforward.

To deal with the temporal aspects of routing problems, the notion of time
was introduced along with adjoining constraints. Time constrained problems,
especially the vehicle routing problem with time windows (VRPTW), are often
considered a separate variant, but since it can be combined with almost every
other problem type, we chose to refer to it as an extension. It can be considered
one of the most important ones, and the amount of study devoted to this exten-
sion matches its importance.

To extend the problems formally, we define an additional set of decision
variables. We denote the service start time for vehicle k at location i with wk

i . Let
ατ

i and βτ
i be the time window start and end times for location i, respectively. Fi-

nally, let τij denote the travel time between locations i and j, including any service
(stop) time at location i. The VRPTW can be defined by the objective function
(10), constraint sets (11)–(15), (18), and constraint sets (38)–(41):

xk
ij(w

k
i + τij − wk

j) = 0, ∀ i ∈ L, ∀ j ∈ L, ∀ k ∈ K, (38)

ατ
i ≤ wk

i ≤ βτ
i , ∀ i ∈ L, ∀ k ∈ K, (39)

wk
d = 0, ∀ k ∈ K, (40)

wk
i ∈ � ≥ 0, ∀ i ∈ L, ∀ k ∈ K. (41)

Constraint set (38) ensures consistency of the service time decision variable, by
constraint set (39) the time windows are respected at each location, and constraint
sets (40) and (41) ensure proper initial and intermediate values for the service
time decision variables.

Time windows have been combined with practically every problem variant,
including the VRPB and the PDP. We note that in the mathematical program-
ming formulations presented, the decision variable y becomes redundant in the
VRPB and the PDP when we introduce time windows. In fact, more generally,
any precedence constraint can be stated using constraints on the starting time at
locations, and this practice is widely used.

Among the first to work on temporally oriented problems were Dantzig
and Fulkerson [55] in 1954, who considered a scheduling problem of oil tankers.

43

These aspects were later applied to vehicle routing, and among the most notable
work has been that of Solomon [190]. More recently, Azi et al. [6] and Moccia et
al. [145] considered time windowed variants and applied exact and metaheuris-
tic approaches to the problems, respectively. Interestingly, Cordeau et al. [44]
note that they applied methodology not specifically developed for temporally
oriented problems and achieved good results. This highlights the fact that time
windows are a natural extension to the base problems. The pickup and delivery
problem with time windows (PDPTW) was considered among the first by Dumas
et al. [64].

One recent and notable extension to time windowed problems is the routing
with multiple time windows, where there are a number of alternative time win-
dows in which a customer can be served or a vehicle used. This has been dealt, for
example, by Xu et al. [216], who considered a pickup and delivery problem with
several real-life aspects, including multiple time windows. Furthermore, a more
general case was considered by Ibaraki et al. [107], who solved a problem where
time windows could be violated by a certain cost. This extension is usually re-
ferred to as the problem with soft time windows. For a more extensive overview
of time constrained routing and scheduling we refer to work of Desaulniers et al.
[59].

2.3.2 Open Routing

In every variant from the vehicle routing problem to the pickup and delivery
problem, each vehicle has had predefined starting and ending points. There are
cases, however, where the routes start from predefined locations, but do not have
an explicit end. This is often referred to as the open vehicle routing problem
(OVRP). There are two notable cases where this setting is appropriate: if, after
serving each customer, the vehicle has to return to the depot using exactly the
same route it traveled, the route can be considered from the depot to the last
customer; and in case of an external fleet that has to be rented to, for instance,
compensate fluctuating demand, the vehicles are typically charged by the kilo-
meters driven, starting from the first stop (depot) and ending at the last (the last
customer of the route). The OVRP has, therefore, a practical relevance, despite its
apparent similarity to the VRP.

From the modeling perspective, the OVRP and the VRP are almost identical.
The only difference is that we do not consider costs for returning to the depot in
the objective function. The problem can be defined by the objective function (10),
constraint sets (11)–(18), and setting ψk

id = 0, ∀ i ∈ C, ∀ k ∈ K in (10).
We are not aware of any comprehensive review on open routing; in fact

only a handful of papers have been published, and most of them quite recently.
Brandão [25] mentions that the first to consider open vehicle routing problem
was Schrage [185], and the first to solve Bodin et al. [21] in 1981 and 1983, respec-
tively. After that, Sariklis and Powell [179], and Brandão [25] applied heuristic
and metaheuristic solution methods to the problem, respectively. It should also
be noted that Pisinger and Ropke [164] considered OVRP among others in their

44

general solution framework. More recently, the OVRP has attracted attention at
least by Panagiotis et al. [172], Fleszar et al. [73], and Zachariadis and Kiranoudis
[217]. These papers apply different types of metaheuristic search to the problem.
For a list of articles on the OVRP, we refer to the literature review section in the
recent paper by Repoussis et al. [171].

The conducted studies indicate that even though the OVRP is very similar
to the VRP in terms of modeling, the solution methodology has to be adapted, or
at least have some adaptation mechanisms, to solve the problem most effectively.
This highlights the reason the routing problem variants are typically considered
separately. In addition, we note that we are not aware of any articles consider-
ing the open vehicle routing problem with pickups and deliveries (OVRPPD). In
these problems one would have to serve a set of customers involving both pickup
and delivery, but not to return to a central depot.

2.3.3 Fleet Selection

So far we have assumed a fleet that consists of identical vehicles — an assump-
tion not valid on every article already referred. In practice, a typical fleet consists
of a heterogeneous set of vehicles, fit to serve different purposes. The problem
is to design both the routes and select the fleet to serve the customers with. Typ-
ically, the vehicles differ in capacity, cost, speed, and availability. Examples of
reasons to utilize a non-homogeneous fleet include the need for special equip-
ment in some vehicles, the cost effectiveness of large vehicles with restrictions for
service locations for instance due to their size, and the flexibility of allocation of
capacity due to fluctuating demands.

In the literature, the combined design problem of fleet and routes is referred
to as the fleet size and mix problem (FSM) and the heterogeneous vehicle routing
problem (HVRP) [11], depending on whether an unlimited or a limited number
of vehicles is considered, respectively. Moreover, the models may or may not
consider fixed costs for vehicles and individual travel costs. In the general case,
the fleet consists of a set of vehicles, where each vehicle k ∈ K has a specific cost
structure with fixed costs σk for using and variable costs ψk for traveling with
the vehicle, and a loading capacity φk. Note that a similar indexing with time
windows can be done for heterogeneous vehicle routing with time constraints
(FSMTW and HVRPTW). The HVRP with fixed and vehicle dependent travel
costs can be defined by the objective function (42), constraint sets (11), (13)–(18),
and constraint set (43):

min ∑
k∈K

σk ∑
i∈C

xk
di + ∑

k∈K
∑
i∈L

∑
j∈L

ψk
ijx

k
ij, (42)

∑
i∈C

δi ∑
j∈L

xk
ij ≤ φk, ∀ k ∈ K. (43)

The objective function (42) minimizes the fixed and variable costs by all vehicles.
Constraint set (43) ensures that vehicles do not exceed their maximum capacity.

45

According to Bräysy et. al [29], among the first to study the FSM were
Golden et al. [94], who considered both fixed and variable costs of vehicles. The
time windowed variant was recently formulated by Liu and Shen [137] and fur-
ther studied, e.g., by Bräysy et. al [29]. More recently, for example, Brandão [27]
and Euchi and Chabchoub [68] have applied a metaheuristic search scheme to
the FSM. For a more comprehensive review on routing a heterogeneous fleet of
vehicles, we refer to work by Baldacci et al. [11].

2.3.4 Compartments

The variants and extensions considered so far have assumed a single capacity
limit type and a uniform space within the vehicles. In many cases, in addition to
assigning the delivered goods to vehicles, there is a need to consider the actual
loading of the trucks that have separate sections, or compartments, for different
types of goods. Derigs et al. [58] give a definition for a vehicle routing prob-
lem with compartments (VRPC), which extends the capacitated vehicle routing
problem in several ways: firstly, it considers demand for multiple inhomoge-
neous products rather than a homogeneous product; secondly, a vehicle consists
of multiple compartments rather than one; thirdly, all goods delivered on a tour
must be assigned to a compartment; fourthly, certain product pairs must not be
loaded together into the same compartments; and fifthly, certain products may
not be loaded into certain compartments.

These types of considerations are commonplace, for example, in oil trans-
portation with oil tankers, modern waste collection, grocery distribution, and
chemical transportation. In oil tankers, a number of compartments have to be
used, since multiple different products are transported simultaneously and can-
not be freely mixed. In addition, in some cases there are complex rules of contam-
ination and compatibility between the products and they have to be considered
separately for each compartment. Maritime transportation is, however, an ex-
tensive topic by itself and we do not consider it further here; instead we refer
to a comprehensive survey on maritime routing by Christiansen et al. [38]. In
waste collection, a number of different waste products, such as biowaste, glass,
and metal, have to be transported separately, but perhaps within a single vehi-
cle. When frozen goods are mixed with regular ones within a shipment, there is
a need to consider the capacity of the cold-storage separately. Chemical trans-
portations are somewhat similar to oil transportations, both of which can also be
transported on road by tank lorries.

If we are allowed to split orders of different products into multiple deliv-
eries at a customer, we may still assume without loss of generality that each
customer orders a single product: multiple orders for a single customer can be
modeled by multiple customer nodes with a zero distance between them. For-
mally, let uk

ai be the decision variable for loading an order for customer i ∈ C to
compartment a ∈ A with a capacity of φa at vehicle k ∈ K where A is the set of
compartments available at each (identical) vehicle. Furthermore, let U ⊆ C × A
be the set of incompatibilities between orders and compartments, and Y ⊆ C × C

46

the set of incompatibilities between orders. The VRPC can be defined by the ob-
jective function (10), constraint sets (11)–(19), and constraint sets (44)–(49) below:

∑
i∈C

uk
aiδi ≤ φa, ∀ a ∈ A, k ∈ K, (44)

∑
k∈K

∑
a∈A

uk
ai = 1, ∀ i ∈ C, (45)

∑
i∈L

∑
j∈C

xk
ij − ∑

a∈A
∑
j∈C

uk
aj = 0, ∀ k ∈ K, (46)

uk
ai = 0, ∀(i, a) ∈ U, k ∈ K, (47)

uk
ai + uk

aj ≤ 1, ∀(i, j) ∈ Y, k ∈ K, (48)

uk
ai ∈ �, ∀ a ∈ A, k ∈ K, i ∈ C. (49)

Constraint set (44) ensures that the load at each compartment does not exceed
its capacity and constraint set (45) makes sure that each order is assigned to only
one compartment. By constraint set (46) each order is assigned to a compartment
of a vehicle that visits the corresponding customer. Constraint sets (47) and (48)
impose restrictions on incompatible pairs of compartments and customers, and
customers and customers, respectively. Finally, (49) is the set of integrality con-
straints.

Note that this formulation allows definition of incompatibilities between
individual orders (customers) instead of products. This situation may arise if
orders for different customers may not be mixed, even though they represent the
same product. These constraints can be present for instance in oil tanker routing
due to inaccuracies in measuring amounts loaded and unloaded at the harbors.
We assumed in this formulation that the different products ordered by a customer
can be split into multiple deliveries, but if this is not the case, we may define sets
of delivery locations Cg ⊆ C that represent a single customer g requesting set of
orders. These can be grouped to be served consecutively by a single vehicle by
imposing constraints (50) and (51) below:

∑
j∈Cg

xk
ij = |Cg|, ∀ k ∈ K, ∀ i ∈ L. (50)

|yi − yj| ≤ |Cg|, ∀ i, j ∈ Cg. (51)

Constraint set (50) ensures that orders in a group are served by the same vehicle
and constraint set (51) ensures that orders in a group reside successively on a
route.

Compartments have received far less attention than many other vehicle
routing extensions. Recent research on routing with compartments includes that
of El Fallahi et al. [69] and Muyldermans and Pang [149], who considered ve-
hicles of several compartments dedicated to one product and compared single-
compartment waste collection to a multi-compartment version, respectively. For
a recent review on the vehicle routing problem with compartments we refer to
work by Derigs et al. [58], who also gave the VRPC a general formulation and
designed a metaheuristic solution methodology to solve the problem.

47

2.3.5 Multiple Uses of Vehicles

Whenever operations are planned, there is a time span in which the planning oc-
curs. The notion of planning horizon refers to the time from the first activity that
is planned to the last activity that is planned. These can be, for example, the de-
parture of the first vehicle from the depot and the arrival of the last vehicle to it,
respectively. However, sometimes the given fleet cannot serve all the customers
within the planning horizon using a single tour for each vehicle due to limited ca-
pacity. On the other hand, customers may have time windows that permit some
of the vehicles to serve the remaining after a refill or emptying at the depot. This
situation can be considered as a vehicle routing problem with multiple trips and
can arise especially in operations where the loads at the customers are consider-
able compared to the capacity of vehicles.

We observe that the cases involving multiple trips often include constraints
for total route lengths, additional breaks for drivers, and complex cost structures
in the objective function. We will examine these issues in detail in the subsequent
sections.

There are a limited number of studies devoted to multi-trip routing. Recent
work involving multi-trip planning include those of Brandão and Mercer [28],
[24], who considered legal limits on the drivers’ schedules, determined distances
in the road network, and included into the objective the costs of drivers, fuel,
fleet maintenance and hired vehicles. More recently, Ren et al. [169] examined
and solved a case involving multiple shifts and overtime considerations. They
had to extend the multi-trip model since their trips occur in a single shift, and
overtime had to be considered only for the last trip of a vehicle. We are not aware
of a comprehensive review on multi-trip vehicle routing problems.

2.3.6 Complex Cost Structures and Dynamic Travel Times

Many of the variants described assume a fairly simple objective function. These
functions are usually defined by the distances, the travel times, or the travel costs
of the problem. In addition, sometimes a fixed cost on vehicles is applied. In
practice, the cost structure is more complex. These types of situations arise es-
pecially when employing a (partially) rented fleet where the wages depend on
multiple factors. In general, the most common costs relate to that of travel, that
of route structure, and the selection of customers.

The cost of travel may vary significantly between vehicles. Vehicles may
have an hourly wage plus a cost from mileage, and both of these rates can vary
according to the time of day. This applies especially when the wages of drivers
are considered. A typical example includes the different wages for overtime. In
addition, the cost of travel may also be affected by the existence of other pay-
ments; tolls, for example, may have a considerable effect on the cost structure of
a routing, especially when these payments are set according to the time of the day
(e.g., due to rush hours). Finally, the special equipment and usage of trailers may
impact the cost of travel.

48

The structure of the solution may affect the total costs in several ways. For
instance, we may need to impose a lower limit on shift length (for example four
hours). Such a limit dictates the minimum that must be paid regardless of the ac-
tual length. In addition, the balance between route lengths is important in prac-
tical routing. This affects especially long term planning: no driver hired to work
full days would want to work only for five hours repeatedly. Typically, this is
solved by penalizing the imbalance on route lengths. Note also that the soft time
windows mentioned in Section 2.3.1 are implemented within the objective func-
tion since they penalize too early or late an arrival with an additional cost.

Finally, if customer selection is part of the problem, that is, the fleet is not
large enough to serve all the customers and some has to be left unserved, one ap-
proach is to add a profit for each customer according to its priority and maximize
the total earnings. This is also included in the objective function of the problem
and increases the complexity of the problem.

In some areas, traffic can be a major aspect affecting the design of vehicle
based logistics. This is natural due to changes in travel times because of, for
example, distinct rush hours. Although these phenomena can relatively easily
be taken into account by a human dispatcher, modeling them for optimization
has been tedious [110]. Rush hours are, however, not the only factor affecting
the length of the operations. In some postal distribution tasks, the time of the day
considerably affects the service times at customers: it is faster to handle packets in
daylight than in nighttime. Furthermore, to accommodate river transportation in
some cities, not all the bridges remain open around the clock. All of these aspects
cause changes in the problem structure within the planning horizon and result in
dynamic properties for the problem. In practice, in these types of problems there
are decisions that affect the validity of other decisions, and these feedback loops
make the problem more difficult to solve.

Examples of studies involving complex cost structures arising especially in
crew scheduling include those of Vance et al. [204] and Gamache et al. [82]. Mod-
eling rush hours themselves is complex, and has been subject to studies also out-
side the vehicle routing research. Dynamic travel times have been recently stud-
ied, for example, by Van Woensel et al. [212] and Lecluyse et al. [134]. We are not
aware of work reviewing VRP research involving complex objective functions.

2.3.7 Drivers, Trailers, Equipment, and Compatibilities

In reality, different drivers have different properties, such as constraints on han-
dling different equipment, a license to drive a given vehicle, or knowledge on
how to serve a certain customer. The inclusion of the mapping of vehicles on
drivers creates additional design decisions. Moreover, different drivers may have
differing availability according to rest regulations. Planning schedules for drivers
is in practice more complex than designing their routes during the day. A number
of legislative regulations on driver shifts, breaks, and competency requirements
exist, and they must be conformed to. Typical examples include two breaks and a
lunch during a workday, ensuring enough sleep in long-range cargo transporta-

49

tion, and a number of rest days during a given two-week period. These regula-
tions also govern, e.g., the amount of allowed overtime.

Brandão and Mercer [28] note that in the UK “a driver cannot drive for more
than 4.5 hours consecutively without having a break of 45 min. This break can
be taken in a single period, two periods (one of 30 min and another of 15 min)
or three periods of 15 min.” As they note, this constraint is conceptually easy
to consider, but very complicated to implement. They considered the breaks by
increasing the traveling time to accommodate the breaks in the final solution. In
contrast, Rochart and Semet [173] considered the situation in Switzerland where
“after 5.5 hours of uninterrupted work, or 4 hours of uninterrupted driving time,
the driver must take at least a one-hour break” and considered two breaks by day,
one 30-minute break in the morning and one 60-minute break at lunch time by
introducing additional fictitious customers. More recently, Goel [93] introduced
a model conforming to the recent regulations introduced by the European Union.
The model considers the maximum daily driving time between two rest periods,
the maximum driving between two breaks or rest periods, the time required for
daily rest, the time required for breaks, the maximum time after the end of a
rest period until which driver shall have taken a new rest, the maximum weekly
driving time between two weekly rest periods, and the maximum time after the
end of weekly rest until which a new weekly rest period shall start.

Another design dimension emerges when the fleet includes a set of addi-
tional equipment, the most common being trailers. Designing from where to get
or where to leave the trailers may be part of the problem. In addition, some
customers may not be served while driving with a trailer unit, due to space re-
strictions. Driving with a trailer may also affect the speed of the vehicle as well
as the service times needed at customers. At some customer sites, other special
equipment may be required which may not be available on all vehicles, such as
in the ready-mixed concrete delivery problem described by Schmid et al. [184],
where a special pump or a conveyor belt was attached to some of the vehicles.
General compatibilities between customer sites and vehicles are considered in
a problem variant often referred to as the site-dependent vehicle routing prob-
lem (SDVRP) where, unlike in the HVRP, a set of heterogeneous vehicles but
with identical costs have to be routed so that customer-vehicle incompatibilities
are respected. A recent example of a case considering multiple complex aspects
simultaneously, a case study by Ceselli et al. [36], includes constraints for multi-
ple capacities; time windows; incompatibilities between goods, depots, vehicles,
and customers; the maximum route length and duration; the upper limit on con-
secutive driving hours; compulsory breaks; an optional delivery replaced by an
outside courier; splitting deliveries; and a possibility for open routing. Moreover,
they consider an objective function which considers a system of fees on route
which depend on the locations visited, the distance traveled, the load of the ve-
hicle, and the number of stops along the route. Indeed, their work highlights the
complexity of real-life routing.

The different side constraints in the vehicle routing models are very hetero-
geneous and appear frequently in case studies, which, quite naturally, describe

50

several additional real-life inspired rules. Due to the richness of the case studies,
a conceptual review on different aspects would be difficult, and we are not aware
of such work.

2.3.8 Periodic Routing

In periodic routing, the task is to design a set of routes over a planning period of
several days. In classical vehicle routing, the planning horizon consists of a single
day in this sense, whereas the periodic vehicle routing problem (PVRP) considers
schedules that have dependencies between the days. In practice, this means that
each customer needs to be visited periodically, for example every three days, and
thus the time of the previous visit constrains the point of time in which the next
can be done. Moreover, each customer may have a different frequency, that is, a
visit pattern. Typical examples include visit patterns of twice a week, every second
day, and Monday, Wednesday, Saturday. Periodic routing can also be seen as a
special case of multiple time windows, where each time window consists of a
single day, and additional constraints are defined on the visits to ensure proper
visit patterns. Cordeau et al. [46] observed interestingly that the multi-depot
vehicle routing problem is equivalent to the periodic vehicle routing problem
under certain assumptions.

Applications of periodic routing arise naturally in waste collection; different
replenish tasks, such as filling ATMs and vending machines; maintenance routes,
such as elevator repairs; and different forms of security services. In practice,
the routes can be designed using classical vehicle routing problem models by
fixing the delivery schedules manually before solving the resulting set of routing
problems. But as also in many other cases, solving the integrated problem yields
larger potential for improvement.

According to [77] the PVRP was first formulated by Beltrami and Bodin
[16] in 1974, who applied periodic routing to waste collection. Later, Cordeau et
al. [46] and Drummond et al. [63] applied metaheuristic solution algorithms to
the problem. For a more comprehensive view on periodic routing and its recent
advances we refer to a survey by Francis et al. [77].

2.3.9 Further Extensions

There are a number of variants and extensions we do not consider in this work,
but we mention some of the notable ones. These include arc routing, vehicle rout-
ing with split deliveries, inventory routing, stochastic routing, routing with inter-tour
dependencies, and multi-objective routing.

In arc routing, instead of visiting a set of nodes in a network, the goal is
to visit a set of arcs. The CVRP counterpart of arc routing is the capacitated arc
routing problem (CARP), in which the problem is to service a set of streets in a
street network using fleet of capacity constrained vehicles located at the central
depot. Examples of applications of arc routing include street sweeping, snow-
plowing, spreading salt or sand in the winter, and collection of waste. In general,

51

any CVRP instance in which a number of tasks reside within the same street is an
attractive candidate for the CARP. For a recent review on capacitated arc routing
problem we refer to a survey by Wøhlk [213].

The vehicle routing problem with split deliveries (VRPSD), unlike classi-
cal vehicle routing problems, allows each customer to be visited by more than one
vehicle, that is, splitting the deliveries. Early work on the VRPSD was motivated
by the fact that additional savings can be achieved by allowing delivery in mul-
tiple parts. Moreover, these kinds of instances arise naturally when the demand
at customers is larger than the capacity of the vehicles available. For a survey on
the split delivery vehicle routing we refer to that of Archetti and Speranza [4].

Inventory routing is a complex extension of vehicle routing. In this variant,
not only routing of vehicles but also inventory control decisions have to be made.
In the inventory routing problem (IRP), given a set of customers that have an
inventory and a fleet of capacitated vehicles, the problem is to decide when and
how much to deliver to each customer and which routing to use. The objective is
to minimize the total costs resulting from transportation and inventory holding,
so that the inventories do not deplete. In many cases, there is a trade-off between
inventory holding costs and delivery costs; larger deliveries cost less to transport,
but more to store and vice versa. Finding the balance between the two is the
key design decision considered by the IRP. For a more detailed introduction to
inventory routing we refer to the recent work by Bertazzi et al. [18].

Stochastic elements may occur in every aspect of vehicle routing. The de-
mands may be subject to uncertainty, which occurs, for instance, in refilling gas
stations and transporting home heating oil. Travel and service times may also
change unexpectedly due to traffic conditions as described recently by Lecluyse
et al. [134]. One other major area of uncertainty is the arrival of new orders, and
this is known as the dynamic vehicle routing problem where planning occurs
while the vehicles are on route. An introduction and a review on recent research
on dynamic routing is given by Larsen et al. [132]. Typically, the dial-a-ride prob-
lems also belong in this category. Furthermore, in many cases, frequent customers
are routed a priori, that is, before exact deliveries are known, which means that
customers on the route may or may not receive an order that day. This variant is
sometimes referred to as an a priori routing problem. A priori routing is reviewed
by Campbell and Thomas in [34].

Inter-tour dependencies arise when two or more vehicles have to coordi-
nate their operations jointly. In practice, restrictions on loading stations or lim-
ited availability of processing capability at the return depot can lead to a situation
where feasibility of a route depends on the arrival time and load of each vehicle.
These instances can be modeled using inter-tour constraints. Recent work ad-
dressing this issue includes that of Hempsch and Irnich [104] who use a giant
tour representation for the routing problem. In this representation, each individ-
ual route is considered a part of a single “giant” route, and inter-tour resources,
such as processing capability, are considered as a global resource. Moreover, they
used a resource-constrained path formulation, which we discuss in the subse-
quent sections.

52

Multi-objective routing is concerned with multiple conflicting criteria (ob-
jectives) on which to evaluate the routes. Many of the problems encountered in
the industry are multi-objective in nature and exhibit this directly in the cost func-
tion. But in addition to the different cost factors, minimization of aspects such as
waiting time, walking distance, the perceived risk, the total route length, and the
number of constraint violations may be present and need to be taken into account.
For a recent review on multi-objective routing we refer to that of Jozefowiez et al.
[119].

2.4 Modeling Optimization Problems

The previous sections presented a number of problem formulations. Now, for-
mulation of a problem is a prerequisite for modeling it, and while we could use
the given mathematical programming formulations also as models, this is usually
not the best approach for routing problems as we will observe in Chapter 3. This
section discusses the modeling aspect of vehicle routing in more detail and builds
the bridge towards solving VRPs.

2.4.1 Modeling and Optimization Process

Where formulating the problem consists of identifying the problem in reality, that
is, stating the questions that need answers from the decision maker, modeling
involves transforming the required aspects of reality into a mathematical abstrac-
tion that can be operated on by algorithmic means. The mathematical abstraction, or
model, can originate from a similar problem described in the literature, can be de-
scribed using well known techniques, or in some cases can be described by a new
modeling technique. Usually it is the case that existing models will suffice and
the problem is described formally, for example, by using an algebraic modeling
language such as a mathematical programming language (AMPL) or a general
algebraic modeling system (GAMS) [120].

Different taxonomies have been proposed for optimization models, and one
classification is to divide them into the following four categories: mathematical
programming models, combinatorial optimization models, constraint satisfaction
models, and nonanalytic models (see, e.g., Talbi [195]). Vehicle routing problems
are a subset of combinatorial optimization problems, which have their roots in
combinatorial analysis. The definition of combinatorial analysis is best given by
Lawler [133] as the mathematical study of the arrangement, grouping, ordering, or selec-
tion of discrete objects, usually finite in number. Therefore, combinatorial optimization
can be characterized as the act of searching the best of such arrangement, group-
ing, ordering, or selection. In this work, we are concerned with certain types of
combinatorial optimization problems. To illustrate this, an elementary and some-
what simplified classification of optimization problems is depicted in Figure 2.

Optimization problems can first be divided into deterministic and stochas-

53

Optimization
problems

Stochastic
problems

Deterministic
problems

Discrete
problems

Continuous
problems

Allocation
problems

Mapping and
sequencing

. . .

FIGURE 2 An elementary classification of optimization problems.

tic. Stochastic problems involve some form of uncertainty in the objective, con-
straints, or decision variables. This stochasticity does not, however, refer to ran-
dom elements in the solution methodology; this classification is based solely on
problem characteristics. In contrast, deterministic problems contain no elements
of uncertainty. The second major criterion is the division into continuous and
discrete problems. Whereas continuous problems may contain real-valued deci-
sion variables in the objective, constraints, or both, discrete problems have strictly
discrete values3, which, as we have observed, leads in many cases into enumera-
tive solution approaches. Discrete problems are then further divided into differ-
ent types, including, for instance, combinatorial optimization problems such as
allocation problems, sequencing problems [211], and especially those involving
decisions of both mapping and ordering4. In these problems, all the decisions are
encoded into mapping a set of discrete elements to another set of discrete ele-
ments, and forming an ordering of the former for each of the latter. This class of
deterministic, discrete mapping and ordering problems is our primary concern
in this work.

Note that scheduling problems are also clearly in this class of mapping and
ordering problems. They contain inherent differences in the problem structure;
most notably lacking a spatial dimension, and because of this typically attract dif-
ferent solution methods. There is, however, no reason from the modeling view-
point to differentiate between routing and scheduling problems in a generic set-
ting.

The requirement that a model must be operable by algorithms distinguishes

3 Constraint and objective functions may still be continuous, linear or nonlinear.
4 The term mapping is used here interchangeably with allocation, and the term ordering,

with sequencing.

54

models from formulations. When modeling the problem, we need to consider
additional aspects and it is, generally, not enough to build a naive, albeit exact,
mathematical statement of the problem5. As the elementary classification sug-
gested, a class of combinatorial optimization problems can be seen as decisions
to map and order discrete elements. This abstract description of a combinatorial
optimization problem does not yet consider the two central issues of modeling:
encoding and data.

On one hand, collecting and eliciting the data describing the real-life situ-
ation subject to optimization is crucial to the quality of the solution. Although
input data is not considered a part of the model, gathering, sanitizing, and pro-
cessing data for the model can be seen as a part of the modeling process. Missing
or invalid data mischaracterizes the problem and optimization may result in a
solution to the wrong problem. On the other hand, encoding, or problem rep-
resentation, is needed to describe how the problem is seen by the algorithms. A
problem formulation has a number of alternative encodings, typically divided
into two main classes: linear encodings such as binary, permutation, or mixed in-
teger; and nonlinear encodings, such as trees and graphs. Not all encodings are
equally good, however. There are at least three characteristics required from a
problem representation: completeness, connectivity, and efficiency [195]. Firstly, the
encoding must be complete, i.e., able to represent all the possible solutions to the
problem. Secondly, the representation must yield a search path for the search
algorithms between any two solutions, which ensures the possibility of finding
an optimal solution. Finally, the representation must be efficient, that is, easily
manipulatable by the search operators. These properties greatly affect the third
phase of decision making — solving the formulated problem.

Solving combinatorial optimization problems is done by traversing the set
�. The set � is defined by the values of decision variables of the problem. The
objective is, therefore, to find optimal values for the decision variables by evalu-
ating the value of their combinations. More specifically, we must find s∗ ∈ �̂ s.t.
C(s∗) ≤ C(s) ∀ s ∈ �̂. When the solution is obtained, the encoding has to be
decoded into a concrete solution to the problem. In vehicle routing, this means
constructing the actual routes within the road network from the obtained result.

Decoding of a solution to an optimization problem is made possible by pro-
viding a mapping between the decoded and encoded solutions. Such a mapping
can be classified according to its cardinality; a mapping can be one-to-one, one-
to-many or many-to-one, depending on how many instances correspond to each
other in both representations. One-to-one mapping is the most used, since it is
straightforward to translate the encoded solution back to the original. Sometimes,
however, such a mapping cannot be constructed and one-to-many or many-to-
one mapping has to be used. In one-to-many mapping, the same solution can be
represented by several encodings, and this redundancy increases the size of the
search space. In contrast, in many-to-one mappings, several solutions are rep-
resented by the same encoding, meaning that some information on the solution

5 This is an idealized process; in practice, formulation and modeling processes may be inter-
leaved in an iterative fashion.

55

Questionable
Utility

Automated Planning
Possible

Manual Planning
More Efficient

M
et

ho
d

ol
og

y
Pe

rf
or

m
an

ce

In
su

ffi
ci

en
t

Su
ffi

ci
en

t

Model Accuracy
Insufficient Sufficient

FIGURE 3 The relationship of model accuracy and solution methodology performance.

is excluded from the encoding. This decreases the size of the search space, but
the decoding of such solutions requires more effort. [195] An example of one-to-
many encoding is the vehicle routing problem where vehicles are identical: no
matter which vehicle actually serves which route within the problem encoding,
the solution remains the same. In contrast, an example of many-to-one encod-
ing is the TSP, due to its rotational invariance: one encoding represents multiple
solutions, each starting at a different location.

The final step of the decision making process involves applying the ob-
tained solution into practice. In an ideal world, the constructed model would
contain all the necessary information of the real-world problem, and the result
of the optimization would be directly applicable to practice. However, usually
many of the details have to be omitted, for example, due to the computational
complexity of solving the problem. Thus, the decision making using optimiza-
tion involves finding a balance between the model accuracy and the optimization
solution methodology performance. Typically, the improvements in one degrade
the quality of the other. This relationship between modeling and solving is de-
picted in Figure 3. When the modeling is sufficient in a sense that the result of
the optimization can be applied to practice with little or no modifications, the op-
timization system describes the reality with enough accuracy. The performance
and the robustness of the solution methodology can be regarded sufficient when
they outperform the human decision maker in quality. Both of these criteria need
to be met for the system to be useful. Although the exact problem statement and
correct data are prerequisites for a correct problem description, in this work we
are especially interested in describing the problem to algorithms in an efficient
way. It is often the design of the encoding that plays the key role in defining both
the modeling accuracy and the solution methodology performance.

56

2.4.2 Design Considerations in Model Encodings

Encoding is the element connecting the solution process into the problem formu-
lation: on one hand, we must be able to express the problem accurately enough,
and on the other hand be able to efficiently operate on the problem algorithmi-
cally. The aim is to find somehow “meaningful” constructs in both the modeling
and solving points of view. From the algorithm perspective, the search for mean-
ingful constructs is concerned with the efficiency of traversing the search space.
Now, the design of search algorithms is concerned primarily with designing the
moves (the set of possible moves of an algorithm defines its search neighborhood)
in the search space. In contrast, the design of encoding is concerned with the
evaluation of the constraints and the objective function as computationally efficiently as
possible to make these moves “easy”. These two aspects largely define the effi-
ciency of traversal of the search space.

The traversal of the search space is performed by altering the values of the
decision variables. It is, however, noteworthy that a single decision variable is
typically limited by only a subset of constraints of the problem. This implies that
given a search operator that alters the values of a (possibly small) subset of the
decision variables at a time, only a subset of constraints have to be evaluated
when moving in the search space. This partial evaluation makes the traversal
of the search space efficient in terms of computational complexity, and, in fact, in
many cases the complexity of the constraint evaluation defines the computational
complexity of the whole solution process itself.

As the values of the decision variables form the search space of the problem,
it is essentially a product space of the ranges of those variables. Constraints, on
the other hand, are evaluated by computing the values of the constraint functions
in the point of the search space, thus forming a transformation from the search
space into another space. In this context, this co-domain is referred to as a con-
straint space. In order to examine the structure of the constraints, it is useful to
think of them as consisting of two parts: firstly, from the constraint function from
the search space into the constraint space, and secondly, from a set of dependen-
cies governing the permissible values of these functions, i.e., rules. These rules
define the feasible region in the constraint space. As the objective is also a func-
tion in its own right, we may form a dimension for its values in the constraint
space. This dimension is not restricted by the rules, but instead is used to mea-
sure the value of the current point in the search space. This generalization is
also useful from a practical point of view; the evaluation of the objective function
may be equally important to the performance of the system as the evaluation of
constraints, and this way we do not have to consider the objective separately.

The number of constraints, their nature, and interconnectedness define the
computational complexity of evaluating the feasibility of a move. Typically, the
more global the constraint — that is, more decision variables constrained — the
more computationally demanding the evaluation. The constraints are evaluated
by calculating the values of the constraint functions in the point in the search
space, and evaluating their results against the rules defined on these values. As

57

mentioned, these rules can be equations, inequalities, and logical dependencies.
Consequently, the efficiency of constraint evaluation depends on the assumptions
that can be made of the structure of the constraints.

In addition to regular constraints, there may also be functions whose sole
purpose is to enhance the efficiency of the constraint evaluation. That is, func-
tions that do not alter the feasible region in the search space, but instead change
the topology of the constraint space in a useful way. An introduction of the no-
tion of slack on time and capacity is an example of such functions. These functions
compute the distance to the “edge” of the feasible region and introduce additional
dimensions to the constraint space. These dimensions may be traversed easily to
check whether we would leave the feasible region by applying a given move.

As mentioned, in addition to the efficiency of constraint and objective eval-
uation, there is another side to the performance of the solution process from the
encoding point of view: the design of search neighborhoods and the resulting
convergence rate of search algorithms. Both of these aspects have to be taken into
consideration. The search neighborhoods of algorithms are defined on the search
space, whereas constraint evaluation is determined by the structure of the con-
straint space. These two influence each other profoundly; the type of constraints
influences the optimal size and type of the search neighborhood by defining the
rate at which the search can be executed, and the search neighborhood defines the
number and type of constraint evaluations that is required during the search. One
could argue that this interaction between the traversal in the search space and the
traversal in the constraint space is central to the design of suitable encodings.

2.4.3 Graph Encodings for Routing Problems

From a solution methodology point of view, perhaps the most suitable encodings
for the VRP are based on graphs. This is due to the fact that one of the most
used solution method components, local search, often operates on neighborhoods
defined on nodes or arcs of a graph (see Chapter 3 for more details). A graph
encoding can be constructed as follows. Let a simple graph G = (V, E), where V
is the set of nodes, and E = V × V is a set of arcs connecting the nodes. A path
P = 〈p1, . . . , pq〉, where p1, pq ∈ V, is a finite sequence of nodes in G, and eij ∈ E an
arc connecting the nodes pi, pj ∈ V. For convenience, we denote here e ∈ P and
p ∈ P for both arcs and nodes on the path, respectively. Moreover, let C : E → �
be the function describing the cost of traversing edge e ∈ E. Note that that we
consider a directed graph G, thus in general C(eij) = C(eji) does not hold.

These constructs can be used for two distinct approaches in graph-based
modeling: partitioning to multiple tours and forming a giant tour. In the former,
each vehicle k ∈ K is associated with a path Pk, whereas in the latter all paths are
concatenated into a single path P on G.

For the sake of illustration, consider a simple VRPTW. Recall that the ob-
jective is to visit a scattered set of customers from a central depot using a set of
vehicles in a way that each customer is served, any vehicle does not exceed its
capacity, the time windows are respected at each customer, and the total distance

58

traveled by all the vehicles is as short as possible. An example of such a vehicle
routing instance solved by using four vehicles is depicted in Figure 4.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

FIGURE 4 A vehicle routing problem instance with 13 customers and four vehicles.

The partitioning-based encoding relies on the notion of Hamiltonian cy-
cles. The nodes of the graph are partitioned by forming multiple Hamiltonian
cycles, each corresponding to a route of a vehicle. Each node must be part of
some cycle, and the depot node is the only one allowed to occur in more than one
cycle. In fact, each path must contain the depot node as its first node. For clar-
ity, we may also define that a valid route is a path starting from the depot node
and ending at it. Thus in the illustration in Figure 4, the paths are 〈0, 7, 3, 4, 12, 0〉,
〈0, 9, 11, 8, 0〉, 〈0, 13, 10, 6, 0〉, and 〈0, 1, 2, 5, 0〉.

Let pi be the ith node in a path. Following the notation used in mathematical
programming formulations, zpi is then the load at pi, and similarly, wpi the time
when the vehicle starts its service at that node. Furthermore, let zp1 = 0 and
wp1 = 0 for each path. Now zpi+1 = zpi + δpi+1 and wpi+1 = max(ατ

pi+1
, τpi,pi+1 +wpi),

∀ i ∈ {1, . . . , q − 1} where q is the length of the path. Thus a path is feasible when
ατ

p ≤ wp ≤ βτ
p ∀ p ∈ Pk, ∀ k ∈ K, and zp ≤ φ ∀ p ∈ Pk, ∀ k ∈ K. Note that similarly

to (12), due to the monotonicity of capacity in the VRPTW, it is enough to check
zpq ≤ φ on every path Pk = 〈. . . , pq−1, pq〉, k ∈ K. Finally, the objective is to
minimize the total sum of costs on each path, i.e., min ∑k∈K ∑e∈Pk

C(e).
In contrast, the so-called giant tour encoding represents the whole solu-

tion as a single Hamiltonian cycle [80]. Each vehicle is associated to distinct ori-
gin and destination nodes, similarly to the GPDP. Let 0+k denote the start node
and 0−k the end node of vehicle k. The solution to the example is given by path
〈0+1 , 7, 3, 4, 12, 0−1 , 0+2 , 9, 11, 8, 0−2 , 0+3 , 13, 10, 6, 0−3 , 0+4 , 1, 2, 5, 0−4 , 0+1 〉. Note that the
end nodes of vehicles are connected to the start nodes of the subsequent vehi-
cle. Traversing these special arcs reset the capacity and time collected along the
path, but not the total costs, thus resulting in similar conditions on feasibility, i.e.,
ατ

p ≤ wp ≤ βτ
p ∀ p ∈ P, and zp ≤ φ ∀ p ∈ P, with the objective function ∑e∈P C(e).

Now, the question is how to encode the variants and extensions formulated

59

in Sections 2.2–2.3. We notice that there are similarities in the formulation of
consistency constraints (28) and (38). This is natural due to the nature of the con-
straints — for instance, (29) and (39) — imposed on the decision variables: they
state upper and lower bounds on each node accumulated that far, and in fact, are
not that much decision variables themselves. They are instead highly dependent
on the main decision variables x and y. Moreover, observing the flow constraints
(13)–(15) has a straightforward interpretation on networks: traversing a path. It
is, therefore, quite natural to model the whole problem as accumulated values
over the path traveled by the vehicle and check each node for the feasibility and
objective value.

A suitable construct for modeling constrained traversal on a path does, in
fact, exist: resource-constrained paths (RCPs). The RCPs have been examined in
detail in the context of routing by, e.g., Irnich [110]. Finding optimal RCPs is re-
lated to solving another problem, the so-called shortest weight-constrained path
problem (SWCPP). In the SWCPP, in addition to length, each edge has a weight
associated to it, and the task is to find the shortest path between two nodes so
that the sum of the weights does not exceed a predefined value. By generalizing
the SWCPP to multiple resources and both a lower and an upper bound on ac-
cumulated values, we obtain the shortest path problem with resource constraints
(SPPRC); and furthermore, if the paths in the SPPRC must be simple6, we obtain
the elementary shortest path problem with resource constraints (ESPPRC). Solv-
ing the ESPPRC occurs in column generation approaches as a subproblem (see,
e.g., Ceselli et al. [36]). In fact, the usage of resource constrained paths also in
heuristic methods may bridge the gap between exact and heuristic approaches in
solving routing problems under constraints.

Resource-constrained paths can be formulated as follows. Let resource vec-
tor Γ = (Γ1, . . . , Γγ̄) ∈ �γ̄, where γ̄ is the number of resources. We define that

Γ ≤ Γ̂ ⇔ Γγ ≤ Γ̂γ, ∀ γ ∈ {1, . . . , γ̄}. (52)

For two resource vectors α and β, the interval [α, β] is defined as the set {Γ ∈
�

γ̄ : α ≤ Γ ≤ β}. Resource windows associated with a node i are denoted by
[αi, βi] with [αi, βi] ⊂ �

γ̄, α ≤ β.
The changes in resource values at each edge (i, j) ∈ E are given by resource

extension functions (REFs), which are defined as

Fij = (Fijγ)γ∈{1,...,γ̄} : �γ̄ → �. (53)

A resource constrained path is a path which is constrained by a set of resource
windows. A path is resource feasible when all the accumulated values fall within
the given resource windows, that is, path P is resource feasible when for each
consecutive vertex pi and pj on P = 〈. . . , pi, pj, . . . 〉

∃ Γpi ∈ [αpi , βpi], (54)

6 A path is simple if no node appears more than once in the path.

60

s.t.
Fpi,pj(Γ

pi) ≤ Γpj . (55)

Resource extension functions have properties that affect the efficiency of the
local search operations within a problem defined by them. The most important
properties are those that enable a constant time feasibility and objective evalua-
tion. For example, the notion of availability of slack on a route has been success-
fully exploited in local search schemes in the VRP since first introduced by Savels-
bergh [181]. In the context of time windows, the idea is to compute the maximum
amount of time by which service at a customer can be postponed without any
time window violations along the route. This enables a constant time local feasi-
bility check of an edge or a node-exchange operation. This can be generalized to
all resources (not just capacity and time) collected along the route. Many classi-
cal constraints can be modeled with resource extension functions that meet these
properties, and each of those resources can therefore be checked for feasibility
in constant time. Furthermore, classical REFs include the objective function of
most vehicle routing variants, and this enables constant time objective function
evaluation in local search.

Both of the encodings presented here can employ RCPs, and especially the
giant tour encoding has gotten attention recently, due to its natural way of de-
scribing some of the inter-route dependencies. RCPs and REFs have been applied
to the VRP setting quite recently by Irnich et al. in [113] where the concept of se-
quential search to vehicle-routing problems using resource extension functions
was applied, and in [109] where a unified modeling and solution framework for
vehicle routing and local search-based metaheuristics was formulated. Resource
extension functions can also be used to model a number of VRP variants and
extension. This has been examined in [110], where a formulation for (multiple
and soft) time windows, multiple capacities, load-dependent costs, pickups and
deliveries, limited waiting times, time dependent travel times, and complex cost
functions are provided. More recently, Irnich et al. applied resource constrained
paths to eliminate arcs from routing problems in [112]. RCPs have, however, lim-
itations: they cannot express, for instance, compartment loading decisions with-
out additional constructs. Modeling constructs are discussed when we introduce
the modeling approach developed in this work — similarly based on RCPs —
later in Chapter 5, and the different techniques for local search are examined in
more detail in Chapter 6.

2.4.4 Constraint Satisfaction Models for Routing Problems

A somewhat different strategy for modeling routing problems is to build so-
called constraint satisfaction models. The constraint satisfaction models are opti-
mization models based on constraint satisfaction and propagation. These models
are constructed and solved using constraint programming (CP), which has its
roots in the research of artificial intelligence. Constraint programming has been
applied into more constrained vehicle routing problems as metaheuristics seem
to work better on loosely constrained problems. This may be due to the fact that

61

they traverse according to the objective function and their movement is restricted
by the feasible region. Constraint programming, however, has the opposite, com-
plementary, strategy. The search is guided by constraints and reasoning about
them. CP also has quite a rich and natural way of declaratively describing con-
straints, which may be tedious in integer programming models. Also, mathe-
matical programming models rarely communicate constraints in a form where
they can be used to direct the search. Examples of constraints in CP models in-
clude not only those of classical inequalities but also more verbose ones, such as
all different(x1, x2, . . . , xn), which requires that all variables x1, x2, . . . , xn have
distinct values; and sort(x1, . . . , xn; y1, . . . , yn), which expresses that the n-tuple
(y1, . . . , yn) is obtained from the n-tuple (x1, . . . , xn) by sorting the elements in
nondecreasing order [20]. Due to scope limitations, we cannot describe in detail
the constraint satisfaction models for routing problems, but refer to a VRPTW
model described by Kilby et al. [124].

Constraint programming has been used to solve combinatorial optimization
problems, and broadly speaking, CP may be well suited for scheduling prob-
lems, especially resource constrained ones, or other highly combinatorial prob-
lems, e.g., problems involving disjunctions, for which the integer programming
model tends to be too large or have a weak continuous relaxation [20]. Also, inter-
estingly, resource-constrained paths are not unlike, e.g, the path constraints used
in the CP approach by Backer et al. [8]. Vehicle scheduling and routing problems
are, therefore, one interesting candidate for constraint programming techniques.

As also noted by other authors working on the VRP and CP, Gendreau [86]
highlights two major advantages of constraint programming: expressiveness and
flexibility. CP allows introduction of complex side constraints with less effort than
mathematical programming models. We will discuss the results obtained from
optimizing constraint satisfaction models in Chapter 3 when examining the usage
of exact methods in vehicle routing.

For a more comprehensive review and an introduction of applying con-
straint programming to vehicle routing, we refer to the work of Kilby and Shaw
[123], and to constraint programming in general, that of Bockmayr and Hooker
[20].

2.5 Summary of Routing Problem Models

The vehicle routing problem is a decades old combinatorial optimization prob-
lem that considers a fleet of vehicles and a set of geographically distributed cus-
tomers, each of which have to be visited. During the years, the problem has
been studied intensively and gradually refined into a more accurate description
of problems occurring in real-life design of operations.

Mathematical programming techniques were used in this chapter to com-
municate the different problem variants and their subsequent extensions devel-
oped and formulated in the literature. These variants included those involving

62

multiple depots, backhaul operations, mixing pickups and deliveries. The ex-
tensions considered, for example, time windows, heterogeneous fleet, and other
more complex constraints and cost structures. The downside of more accurate
models is their increased computational complexity, and this has to be consid-
ered when formulating a routing problem.

The problem formulation is, however, just a statement of the problem, and
does not necessarily provide a suitable foundation for solving the problem. Thus,
we discussed in this chapter the design of efficient encodings along with a num-
ber of algorithmically operable encodings for routing problems.

Based on the discussion, we observe tension in two respects. First of all, we
note that the models in routing problems are often described as linear integer pro-
gramming formulations, but solved within nonlinear encodings. Secondly, the
encoding that is suitable for algorithmic manipulation, may not be a very fitting
representation of the domain in which the routing occurs. That is, even though we
raised the abstraction from the mathematical statements into the problem encod-
ings, we are still missing a connection to the entities that we typically operate on
when designing the logistic operations.

There is a need for conceptual models, or in software engineering terms,
domain models, that describe the problem at a suitable level of abstraction from
the logistic designer perspective. However, before we move from encodings into
domain models, we need to review the algorithms operating on the encoding
level. This is the subject of the next chapter, where we provide an overview on
the approaches used in solving the vehicle routing problem and its variants. This
provides a solid base for developing a suitable modeling approach also from the
solution methodology perspective.

3 VEHICLE ROUTING SOLUTION METHODOLOGY

“The significant problems we face cannot be solved at
the same level of thinking we were at when we created
them.”

— ALBERT EINSTEIN

In this chapter, we provide an overview of both exact and heuristic solu-
tion methodology in solving vehicle routing problems. The literature on these
methods is far too extensive for an in-depth analysis in this work, but we aim
to highlight the general trends and to provide an overview on different algorith-
mic approaches in combinatorial optimization as well as to point to recent results
from applying them into vehicle routing. This chapter is structured as follows. In
Section 3.1, we briefly talk about computational complexity and algorithm eval-
uation. In Sections 3.2 and 3.3 we review some of the recent work on applying
exact and heuristic solution methods to vehicle routing, respectively. Section 3.4
discusses metaheuristic search, and reviews different metaheuristics applied into
routing problems in scientific literature. Finally, Section 3.5 concludes by attempt-
ing to form a more generic view on current solution methodology for providing
a base for discussion on future directions.

3.1 Problem Complexity and Method Evaluation

Computational complexity refers to the inherent difficulty of solving a problem
algorithmically [83]. The computational burden of solving a given problem in-
creases along with the problem size, and the function describing the number of
algorithmic operations needed for a given size is referred to as a time complexity
function. The time complexity function is used to denote the efficiency of an al-
gorithm, and when the increase in number operations needed is too rapid, the
computation of anything but small problem instances becomes intractable. In
many cases, the most difficult problems encountered in practical applications are

64

much larger than can be solved by an arbitrary complex algorithm. Thus, we are
interested in finding the best possible algorithm for a given problem.

Computational problems can be classified according to the complexity of the
algorithms that can be used to solve them exactly1. An algorithm is polynomial-
time-bounded if, in the worst case, the number of algorithmic operations increases
only polynomially with the problem input size. The set of problems on which
such an algorithm exists (is known to exist) is called P . In contrast, an algo-
rithm is nondeterministic polynomial-time-bounded if, in the worst case, the number
of algorithmic operations increases only polynomially with the problem input
size with a machine capable of computing any number of steps in parallel. The set of
problems on which such an algorithm exists is called NP . The problems that
are at least as hard as the hardest problem in NP , are called NP-hard, and any
NP-hard problem that is also in NP , is called NP-complete [83]. As there is no
physical computer that can perform an arbitrary number of operations in paral-
lel, problems that are NP-hard or NP-complete take an exceedingly long time
to solve exactly.

The traveling salesperson problem is known to be NP-hard [83]. The de-
cision problem of the TSP on the other hand is NP-complete. Since the vehicle
routing problem generalizes the traveling salesperson problem, it is, along with
all its variants, also NP-hard. Finding the optimal RCPs is known to be NP-
complete, and solving the ESPPRC, as proven by Dror [62], NP-hard. No poly-
nomially bounded exact algorithm for the VRP is, therefore, known to exist. This
makes solving the vehicle routing problem computationally difficult. Typically,
if the size of a routing problem increases beyond 100 customer points, one has to
rely on approximate methodology. In the subsequent sections, we briefly review
different solution approaches, both exact and approximate.

Since we are interested in finding the best algorithm for a given problem2,
an appropriate evaluation criterion must be established. The evaluation of so-
lution methods is typically done according to a number of criteria, including
efficiency (in terms of both time and space versus the quality of solutions), ro-
bustness, and simplicity. While theoretical complexity analysis gives an estimate
on the real performance of an algorithm in terms of the time and space used, em-
pirical analysis is required to evaluate the method in terms of solution quality.
This includes statistical analysis on different types of problems and on different
problem characteristics and comparison of the results with solutions obtained
by different methods on the same instances. A commonly used practice in the
VRP research is to compare solutions within a well-established set of public test
problems. The relationship between different points of evaluation is depicted in
Figure 5. When assessing the solution quality, a theoretical estimate of a lower
bound may be used to estimate the distance to the optimal solution, which, in
general, is not known. The best known solution is not usually the optimal so-
lution, but the gap between the best known and obtained solution is often used
in vehicle routing when assessing the quality of the new solution methodology.

1 That is, by ensuring that the best solution is found.
2 In general, not specifically in this thesis.

65

Gap to optimize

Objective
function

Lower bound Optimal solution Best known solution Solution found Requirement

Improvement

FIGURE 5 Different options for a comparative evaluation of an obtained solution [195].

The found solution, although not optimal, may still provide some improvement
to the current situation or the required result.

Robustness of a method is defined as its ability to tolerate small changes in
problem data and structure without losing its efficiency [195]. Method simplicity
can be measured, for example, by the ease of the implementation, and flexibility
(when contrasted to robustness) by the effort needed to adapt the methodology
to different situations. In general, three families of solution approaches exist for
the VRP, all differing in their qualities. These are exact methods, heuristic methods,
and metaheuristic methods.

3.2 Exact Methods

By exact methods we refer to a class of optimization methods that, given an un-
limited time, are guaranteed to find the optimal solution to a given problem if
one exists. Two classes of exact methods have been applied into vehicle routing:
mathematical programming and constraint programming.

Mathematical programming approaches can be classified into three cat-
egories: enumerative, relaxation and decomposition, and cutting plane and pricing
[195]. Enumerative algorithms include those of the branch-and-bound (BB) fam-
ily, which are essentially tree-search approaches based on the idea of dividing the
problem into subproblems and solving each individually. Relaxation and decom-
position techniques include, for instance, Lagrangian relaxation which removes
some constraints and penalizes them in the objective function, and Bender’s de-
composition which fixes a set of variables and solves the resulting problem iter-
atively. Cutting plane techniques attempt to prune the search space by introduc-
ing additional constraints. These methods are often combined to strengthen the
branch and bound approach.

Solving the vehicle routing problem with exact methods has been widely
studied, and many of the approaches are based on linear programming (LP)
solvers. LP solvers utilize, for instance, the well-known simplex-based branch-
and-bound methods [200]. It has been noted, however, that in most VRP cases
these methods are able to solve only small problem instances due to the fact that

66

the LP relaxation of the problem provides a weak lower bound [48]. This may
be explained by the nature of vehicle routing problems; the linear parts of the
problem, namely travel costs, are highly sensitive to the binary decision vari-
ables which are responsible for the combinatorial nature of the problem. These
make linear programming solvers inefficient for solving the VRP directly, and
this has increased interest in more powerful relaxation and mathematical compo-
sition techniques.

The two common variants of the VRP, the capacitated vehicle routing prob-
lem and vehicle routing problem with time windows, have been studied inten-
sively [202], and in general, we observe that the following exact solution tech-
niques have been the most successful. For the CVRP, the branch-and-bound tech-
nique has been relaxed by dropping for example the vehicle load constraints, and
by forming different spanning tree based relaxations. In addition, the branch-
and-cut method — a combination of the branch-and-bound and cutting plane
— has been shown to outperform the branch-and-bound [48]. For the VRPTW,
Lagrangian relaxation techniques, column generation — such as Dantzig-Wolfe
decomposition, and the branch-and-cut have been used successfully [48]. In gen-
eral, it must be pointed out that many of these methods typically rely on some
assumptions on the structure of the given problem, which undermines their ro-
bustness and makes them less useful in practice.

Constraint programming models are solved, like LPs, by specific solvers
which traverse the program search tree. In contrast to search-based methods, CP
traverses the search space using constraints and is therefore able to exploit the
structure of the problem in a way the mathematical programming approach can-
not. CP, however, does not benefit from the continuous relaxation often available
to mathematical programming algorithms [20]. A constraint program is traversed
by fixing a subset of variables at each step so that constraints are not violated.
The search tree can also be pruned using consistency checking and constraint
propagation. They attempt to detect inconsistencies as soon as possible to avoid
running into a dead end in the search tree. Optimization of a constraint program
involves typically a branch-and-bound scheme, where the objective function is
evaluated at each step and its value is used to prune the search if suboptimal
branches are detected [176].

Recent reported results from exact methods indicate that mathematical pro-
gramming algorithms can solve CVRP instances with up to 135 customers. See,
for example, Fukasawa et al. [79], Baldacci et al. [12], Augerat et al. [5], and
Ralphs et al. (up to 100 customers) [167]. Similar numbers are reported about the
VRPTW; for instance, Bard et al. [13] reported solving all the 50 customer and a
subset of the 100 customer benchmark instances by Solomon [190] to optimality.
Interestingly, the TSP with pickups and deliveries has been relative difficult to
solve exactly: an instance of 35 pickups has been solved to optimality only re-
cently [65]. Constraint programming has not been applied to vehicle routing as
widely as mathematical programming, but some effort has been devoted to the
subject. Backer et al. [8] combined local search operators and constraint program-
ming to solve the vehicle routing problem, and used path constraints in modeling

67

the capacity constraints. They noted that modeling of other constraints, such as
time, weight, volume, and distance would be straightforward. They reported
solving 100–200 customer instances to within 10% of the best known solution in
a few seconds. A similar approach was taken by Shaw [188] who in contrast used
larger neighborhoods. Constraint programming was used as a component within
a broader solution methodology, e.g., by Backer et al. [9], Rousseau et al. [177],
and Kilby et al. [124]. Kilby et al. report that adding additional side constraints
decreases the performance of the conventional techniques, but does not affect the
efficiency of the CP-based methods. More recently, Berbeglia et al. [17] addressed
a dynamic dial-a-ride problem using a solution approach with a constraint pro-
gramming component.

Given that the size of VRPs solvable in a reasonable time by exact methods
is rather limited, in practice, we have to resort to inexact solution methodology.
Thus, for the remainder of this thesis, we concentrate on the two main classes of
approximate methods: heuristics and metaheuristics.

3.3 Heuristic Methods

Heuristic methods are a subclass of approximate methods, and do not guarantee
optimality, or, in fact, any qualitative property of the solution, but instead tend to
produce, rather fast, solutions that satisfy the given requirements for the solution
quality. Heuristic methods are also typically reasonably easy to implement.

Heuristic methods employ problem-specific knowledge for generating so-
lutions from other solutions. In vehicle routing, heuristic methods can be classi-
fied into two main categories: route construction and two-phase heuristics. Route
construction heuristics typically start from an empty solution and build the routes
step by step by inserting customers until all the customers have been assigned on
a route. One of the classical route construction heuristics is the Clarke and Wright
algorithm [39], where each customer is initially served by a separate vehicle and
these routes are then combined according to savings obtained by the combina-
tion. Another generic construction approach is to gradually assign customers to
routes according to an insertion cost (the so-called cheapest-insertion approach)
[131]. In contrast, in the two-phase approach the customers are first partitioned
into clusters and each cluster is then sequenced individually. The first two-phase
approach was the sweep algorithm of Wren and Holliday [215]. The algorithm
performed the insertion of the customers according to their polar angle from a
central depot. Whenever a customer could not be inserted on a route, a new route
was instantiated. Finally, each route was sequenced using a TSP algorithm. For
a more thorough view on classical and modern heuristics for the vehicle routing
problem, we refer to an article by Laporte et al. [131].

In general, these approaches are too simplistic for achieving high-quality
solutions by today’s standards, and are rarely used alone. Heuristic methods are
instead employed as a part in more sophisticated solution approaches, such as

68

metaheuristics.

3.4 Metaheuristic Methods

By far the most successful approach to solving vehicle routing problems has been
the use of metaheuristics. Metaheuristics are also approximate methods, thus
yielding good solutions in an acceptable time, but without the guarantee of op-
timality. Metaheuristic methods include local search (LS), other single solution
metaheuristics often based on LS, and population metaheuristics, which employ
more than one solution at a time. We start, however, by briefly discussing the
general principles of metaheuristic search.

3.4.1 Principles of Metaheuristic Search

The main principle of metaheuristic search is that it guides the problem-specific
search operators at a generic level providing a template for traversing the search
space. A common concept in the search space traversal is that of search neighbor-
hood. A neighborhood is defined by a neighborhood function, which is a mapping
N : � → 2� that assigns to each solution s ∈ � a set of solutions N (s) = �s ⊂ �
[195]. A solution in the neighborhood is called a neighbor, and this neighbor is
generated from the solution by a move operator that alters the solution slightly.

Since the search space is too large for exhaustive traversal, only some re-
gions should be subject to inspection. The question of how intensively to study
a certain area for better solution versus how diverse areas to explore is a central
one in metaheuristic search. This is often referred to as the diversification versus
intensification problem, and much of the design around metaheuristics involves
balancing between these two conflicting criteria. The diversification versus in-
tensification is depicted in Figure 6. There are also other aspects differentiating
metaheuristics, including how they recognize promising areas and how fast they
can inspect a given region.

Diversification Design space of metaheuristics Intensification

Random search Population-based
metaheuristics

Single-solution
metaheuristics Local search

FIGURE 6 Two conflicting criteria in designing metaheuristic search: intensification
and diversification [195].

On one end of the spectrum is local search which concentrates the search on
a very narrow region, and on the other, a random traversal of the search space.
Single solution metaheuristics attempt to diversify the local search by provid-
ing additional guidance, and population metaheuristics try to cover more of the

69

search space by introducing a number of solutions that are considered simultane-
ously. A general scheme for single solution metaheuristics is given in Algorithm
1 [195].

Algorithm 1 Template of single solution metaheuristic.

Require: s0
i ← 0
s ← s0
repeat
�si ← GenerateCandidates(si)
si+1 ← Select(�si)
if C(s) > C(si+1) then

s ← si+1
end if
i ← i + 1

until stopping criteria satisfied
return s

In single solution metaheuristics, an initial solution is first generated. Then
a set of candidates is generated from the current solution iteratively. In each
iteration, a single candidate is selected as the next solution, and if it is better than
the best found, it is stored. This process is repeated until the stopping criteria is
satisfied, for instance, a certain number of iterations has passed.

In contrast, population metaheuristics generate a population of solutions
and based on that, select a new one by combining the current and previous pop-
ulation using different techniques. A general scheme for population metaheuris-
tics is outlined in Algorithm 2 [195].

Algorithm 2 Template of population metaheuristic.

i ← 0
�i ← GenerateInitialPopulation()
s ← SelectBest(�i)
repeat
�
′
i ← GeneratePopulation()
�i+1 ← SelectPopulation(�i ∪ �

′
i)

if C(s) > C(SelectBest(�i+1)) then
s ← SelectBest(�i+1)

end if
i ← i + 1

until stopping criteria satisfied
return s

For a brief but recent overview on TSP and VRP solution methodology, we
refer to a paper by Laporte [129]. For more general overview on metaheuristics
we refer to an article by Gendreau and Potvin [89], and for an in-depth view, a
book by Talbi [195].

70

3.4.2 Local Search

LS3 is probably the oldest and simplest metaheuristic. Dantzig was perhaps the
first to apply local search to optimization with the introduction of the simplex
algorithm which can be seen as a local search for linear programming problems.
We take here a closer view on LS due to its wide application to vehicle routing,
and its usage as a base for many subsequent metaheuristics.

An initial solution is first generated by using a heuristic method, and is then
replaced by LS iteratively by one in its neighborhood if that solution improves the
objective function. The process is continued iteratively until no improving move
is found and the method has found a local optimum. Since enumerating all the
candidate solutions takes far too long, LS speeds up the search by concentrating
on a more narrow, local neighborhood thus restricting the search to reasonable
areas of the search space. The local search scheme is illustrated in Algorithm 3. s
is the current solution to the problem and �s the search neighborhood defined by
the search operator used.

Algorithm 3 Local search.

s ← GenerateInitialSolution()
while not termination criterion holds do
�s ← GenerateCandidateNeighbors(s)
if no better neighbor exists then

return s
end if
s ← SelectBest(�s)

end while
return s

The type of neighborhood greatly impacts the performance and quality of
local search. The larger the neighborhood, the typically better the quality, and
the greater the search effort. Much of the work in applying local search involves
designing good search operators and from that, neighborhoods. The two most
used neighborhood types in vehicle routing have been the so-called node neigh-
borhood and edge neighborhood. In node neighborhoods, a set of nodes of the graph
is moved, added, or removed, and the possible moves form the neighborhood.
An example of an operator defining a node neighborhood is the relocate opera-
tor, which removes a single node from its place and inserts it at another location
on a route. An intra-route variant of relocate is depicted in Figure 7.

An edge neighborhood is defined by removing and adding a set of edges
within a solution. An example of an operator defining an edge neighborhood
is the classical 2-opt operator, which removes two edges and adds two different
edges to reconnect the parts as depicted in Figure 8.

The local search operators that has been proposed for the VRP are numer-
ous. These include those of k-opt family, see, e.g. Croes [51], most typically 2-opt

3 Also known as, for example, hill climbing.

71

1 2

3

4
5

6

1 2

3

4
5

6

FIGURE 7 A relocate operator moving node 5.

1 2

3

4
5

6

1 2

3

4
5

6

FIGURE 8 A 2-opt operator replacing edges (1,5) and (2,6) with (1,2) and (5,6).

and 3-opt; k-opt* by Potvin [166] (according to [80]); Or-opt by Or [159]; CROSS-
exchange by Taillard et al. [194]; GENI-exchange by Gendreau et al., see, e.g., [88];
Lin-Kernighan by Lin and Kernighan [136]; and λ-interchange by Osman [160].
Also, a large neighborhood search (LNS) involving larger numbers of routes si-
multaneously have been proposed, including ejection chains, cyclic transfers, and
different partial destruction and construction neighborhoods (see, e.g, [80] for de-
tails). Still, the main weakness of local search is that it stops immediately when
it cannot find a better move, which makes it highly vulnerable to converging to
a local optima. For overcoming this problem, a number of approaches have been
proposed. We review the most important ones in the subsequent section where
we discuss more sophisticated single solution metaheuristics.

Due to its importance to the VRP, a substantial amount of research has been
devoted to LS, and in addition to designing search operators, theoretical study
has also been conducted. A conceptual integration of LS was outlined by Funke et
al. [80] who analyzed the structures of different neighborhoods. Irnich et al. [113]
applied sequential search to speed up local search in a vehicle routing setting. Se-
quential search explores a local neighborhood more efficiently by decomposing
the local search operators and pruning the search based on a partial evaluation.
More recently, Zachariadis and Kiranoudis [218] introduced a strategy for reduc-
ing the computational complexity of local search by storing static descriptors of
all the possible local search moves and updating the non-static data (costs) every
time the solution is modified. This method trades memory for execution speed
by keeping the tentative data precalculated and sorted according to the costs. The
speedup is gained by fewer evaluations required in exploring the search space.

For a more detailed view on construction and LS in the context of routing
with time windows, we refer to a survey by Bräysy and Gendreau [30].

72

3.4.3 Other Single Solution Metaheuristics

Four different strategies for overcoming the main weakness of local search have
emerged. These are acceptance of non-improving moves, such as in tabu search (TS)
and simulated annealing (SA); usage of different neighborhoods, such as in variable
neighborhood search (VNS); changing of objective function, such as in guided local
search (GLS); and iteration with different solution, such as in iterative local search
(ILS).

Simulated annealing is based on principles of statistical mechanics, more
particularly the formation of crystalline structure in metal substances achieved
by a careful annealing process involving attaining a thermal equilibrium at each
temperature. The process was developed in the 1950s and the main idea was
first applied to optimization by simulation in 1983 and 1985 by Kirkpatrick et al.
[126] and Černý [205], respectively. Simulated annealing is a stochastic algorithm
which allows degrading of the solution under certain conditions, which enables
the search to escape local optima. SA proceeds iteratively by selecting a random
neighbor at each iteration. A non-improving move is accepted depending on the
temperature ϕ and the change in solution quality ΔE. When an equilibrium is
achieved, that is, a fixed or an adaptive number of iterations has passed, the tem-
perature is decreased. The gradual decrease in temperature ensures convergence
of the method. A description of simulated annealing is given in Algorithm 4.

Algorithm 4 Simulated annealing.

Require: Cooling schedule S
s ← GenerateInitialSolution()
ϕ ← ϕmax
repeat

repeat
s′ ← GenerateRandomNeighbor()
ΔE = C(s)− C(s′)
if ΔE ≤ 0 then

s ← s′

else if Random() < e−
ΔE
ϕ then

s ← s′

end if
until equilibrium condition
ϕ = S(ϕ)

until ϕ < ϕmin
return s

A Tabu search algorithm for combinatorial optimization was suggested by
Glover [91]. TS explores the search space in a similar manner to LS, but escapes
local optima by allowing non-improving moves when improving moves are not
found. To prevent cycling between two adjacent solutions, a search memory is
employed which prohibits the search from visiting a set of recently explored so-

73

lutions. This short-term memory is referred to as the tabu list. Moreover, addi-
tional advanced mechanisms have been used in both diversification and inten-
sification of the tabu search scheme. Intensification, or medium-term memory,
stores the best solutions found during the search and guides the search according
to the attributes of these solutions. Diversification, or long-term memory, on the
other hand uses knowledge of the visited solutions to direct the search towards
unexplored areas of the search space. An overview of tabu search is given in
Algorithm 5.

Algorithm 5 Tabu search.

s ← GenerateInitialSolution()
InitializeMemories()
repeat
�s ← GenerateCandidateNeighbors(s)
s ← SelectBestAdmissible(�s)
UpdateMemories()
if intensification criterion holds then

PerformIntensification()
end if
if diversification criterion holds then

PerformDiversification()
end if

until stopping criteria satisfied
return s

To diversify the search, iterative local search applies the local search scheme
iteratively by restarting the search from a solution related to the current local
optimum. This strategy was first proposed by Martin et al. [139]. When a local
optimum is reached, a perturbation operation is carried out, in which parts of the
solution are discarded. An overview of ILS is given in Algorithm 6.

Algorithm 6 Iterated local search.

s ← GenerateInitialSolution()
s ← PerformLocalSearch(s)
repeat

s′ ← Perturb(s, search history)
s′′ ← PerformLocalSearch(s′)
s ← Accept(s, s′′, search memory)

until stopping criteria satisfied

Guided local search, proposed first by Voudouris and Tsang [209], escapes
local optima by changing the objective function. Each solution has a structure,
and features of that structure, for example, the existence of especially short routes,
can be analyzed. Whenever a local optimum is reached, the objective function is
altered by penalizing the features that occur in the generated local optima. This is

74

done by defining a set of features with an associated cost and a penalty indicating
its importance. Furthermore, a utility is defined for each feature, and the feature
with the highest utility will be penalized. This will intensify the search in promis-
ing regions and diversify the search in the vicinity of a local optimum. One of the
most successful approaches for the capacitated vehicle routing problem and the
vehicle routing problem with time windows is the guided search described by
Mester and Bräysy in [142] and [141], respectively. An overview of guided local
search is given in Algorithm 7.

Algorithm 7 Guided local search.

s ← GenerateInitialSolution()
InitializePenalties();
repeat

s′ ← PerformLocalSearch(s)
for all feature i of s′ do

ComputePenalty(i)
end for
SelectHighestUtility()
AdjustObjective()
s ← s′

until stopping criteria satisfied
return s

Variable neighborhood search was proposed by Mladenovic and Hansen
[144]. Instead of a single neighborhood, VNS explores different neighborhoods
to escape from the local optima. This is possible due to the fact that different
neighborhoods may generate different local optima. VNS has several variants
of which the variable neighborhood descent (VND) is a deterministic version of
a more general variable neighborhood search scheme. The VND uses succes-
sive neighborhoods in descent to a local optimum. Whenever a local optimum is
reached, the neighborhood structure is changed to the next in succession, and if
an improvement to the solution is found, the first neighborhood is reselected. An
overview of the variable neighborhood descent is given in Algorithm 8.

The illustrated metaheuristics have been applied to different vehicle routing
problems numerous times, and the obtained results generally indicate that prob-
lem sizes up to a few thousand customers can be solved in reasonable computa-
tional times. More advanced techniques are still being developed. An example
of this is the inclusion of learning methodologies, such as in the work by Ropke
and Pisinger [174], who introduced an adaptive large neighborhood search for
the pickup and delivery problem with time windows. For a more detailed view
on metaheuristics in the context of the vehicle routing problem with time win-
dows, we refer to the second part of the survey by Bräysy and Gendreau [31].
For a categorized bibliography on recent application of metaheuristics to vehicle
routing we refer to work of Gendreau et al. [90].

As of today, single solution metaheuristics outperform exact methods by an

75

Algorithm 8 Variable neighborhood descent.

Require: �l, l = {1, . . . , lmax}
s ← GenerateInitialSolution()
l = 1
while l ≤ lmax do
�

l
s ← GenerateCandidateNeighbors(�l, s)

s′ ← SelectBest(�l
s)

if C(s’) < C(s) then
s ← s′

l ← 1
else

l ← l + 1
end if

end while
return s

order of magnitude. Exact methods, however, are able to provide more robust ap-
proach to small instances, since they guarantee an optimal solution provided they
are able to solve the problem. On the other hand, for most practical purposes, the
solution quality obtained by single solution metaheuristics is sufficient, and they
are currently the primary tool in real-world routing.

3.4.4 Population Metaheuristics

Population-based metaheuristics operate on multiple solution candidates rather
than one. The search procedure is carried out by generating a new population of
solutions and integrating this to the existing one. During the integration phase, a
selection process is executed, which guides the search. Three main categories of
population metaheuristics are evolutionary algorithms (EAs), scatter search (SS),
and swarm intelligence methods [195]. Evolutionary algorithms were outlined by
Holland [105] in 1962 and the scatter search approach was first used by Glover
[92] in 1977. Ant colony optimization (ACO), the most prominent of the swarm
intelligence methods, was introduced by Dorigo in 1992 [61].

Genetic algorithms (GAs) are perhaps the most used of EAs, and they mimic
the natural selection process witnessed in living organisms. In GAs, solutions are
encoded into a chromosome representation and operated on by different muta-
tion and crossover operators in the generation of a new population. A selection is
then done according to the fitness of each individual solution, defined by the fit-
ness function. Another EA, scatter search, uses a reference set, that is, a collection
of good representative solutions of the population. Solutions in the reference set
are combined to provide starting solutions for single solution metaheuristics, and
after applying the search, both the reference set and solution population are up-
dated according to the given intensification and diversification criteria. In a way,
SS combines single solution and population metaheuristics. Ant colony optimiza-

76

tion, on the other hand, is based on an idea of collective memory and independent
cooperating agents. In ACO, each agent (or ant) moves towards attractive areas
in the search space and leaves trails of itself, which again attract other agents to
promising regions. The collective behavior thus converges towards an optimum.

Population-based metaheuristics have not yet been applied to vehicle rout-
ing as widely as single solution metaheuristics, but they have, quite recently,
emerged as a viable option. However, some shortcuts may have to be taken due
to the complexities in the problems. In particular, the encoding of solutions into
chromosomes is either completely ignored by working directly on the solutions
or specifically designed for specialized operators [89]. This is primarily due to
the complexity of combining solution instances into a feasible offspring instance
as is often needed in population metaheuristics. The constraints that are present
in routing problems are perhaps less suitable for these operations than in other
types of combinatorial optimization problems.

In EA methodology, one promising approach to the VRP has been a GA-type
method by Nagata [150], in which the author applied an edge assembly crossover
operator for the capacitated vehicle routing problem, and further, based on this,
introduced strategies for limiting local search in [151]. Moreover, a memetic ap-
proach, combining EAs and LS, was introduced in [152] and [153]. Swarm intel-
ligence has been applied to the VRP in, for instance, Reimann et al. who applied
an ACO-based approach in [168]. Their D-Ants strategy decomposes the prob-
lems into smaller instances and uses the information gained from the solution
process of these smaller problems to update the global memory. This is then used
to aid in the search for solutions to the original problem instance. Tarantilis ap-
plied an adaptive memory methodology [196] where the algorithm keeps track
of the best components of the solutions visited during the search and combines
these components into a new solution. The solution is further intensified by local
search. More recently, Gajpal and Abad [81] used a multi-ant colony system for
solving the vehicle routing problem with backhauls. They employ two different
types of ants and the search is based on the two-phase heuristic. Many of the
early applications of population metaheuristics report solutions of good quality
in reasonable running time.

3.5 Unifying Elements in Solving Routing Problems

During the fifty years of research on routing, we have witnessed a development
of an impressive number of techniques and approaches for solving the problems.
Exact methods, mathematical programming and constraint programming, have
provided the theoretical foundation on these problems, and first the heuristic
methods and then metaheuristics have resulted in practical applications. In this
section, we discuss some of the recent developments in solving the vehicle rout-
ing problems from a more generic perspective.

The general trend seems to be from simple to more sophisticated in a sense

77

that new elements are being added to the existing approaches, and composite
techniques of different kinds begin to emerge. Many of the metaheuristics pre-
sented in the previous sections have existed for quite a while now, and their
central ideas are being employed over and over again in different combinations.
Some also suggest [195] that hybridization of different approaches, for instance
metaheuristics and mathematical programming, may result in better methods.
One of the most interesting lines of development is, as noted before, the research
on metaheuristics, due to their wide applicability and performance. Moreover,
the key criterion for applying recent advances into a practical setting seems to
be the flexibility in modeling, solution methods, and system design. Thus, even
though a single method outperforms others in one area, in general-purpose tools
needed in the industry, a robust and modifiable approach is selected instead.

To provide a modifiable and robust approach from metaheuristics, a uni-
fied view on the ideas behind the different metaheuristics needs to be formed.
And although metaheuristics illustrated in Sections 3.4.2–3.4.4 seem to differ in
their approach, Gendreau and Potvin [89] have, indeed, identified a common set
of elements within these methods. They concluded that the research on meta-
heuristics for solving combinatorial optimization problems converges towards a
general framework and identified several central elements from the methodol-
ogy. These elements are the building blocks of metaheuristic solution methods
and correspond to different phases of the solution process. The common phases
identified are construction, recombination, random modification, improvement,
memory update, and parameter and neighborhood update.

In the construction phase, the metaheuristic algorithm creates an initial solu-
tion, or initial solutions in case of population metaheuristics. In the recombination
phase new solutions are generated from current ones through a recombination
process. The random modification phase is used to modify the current solution
through perturbation. The improvement phase is used to improve the current so-
lution explicitly, for instance, by selecting the best solution in the neighborhood,
by applying a local descent, or by projecting the solution to a feasible region. The
memory update phase is needed by the methods storing search history or subsets of
solutions. Finally, the parameter/neighborhood update phase adjusts the parameter
values or modifies neighborhood structures in a reactive manner.

All metaheuristics adhere to this general scheme, albeit some omit certain
phases. For instance, scatter search can be described as construction → recombina-
tion → improvement → memory update → recombination →, variable neighborhood
search as construction → random modification → improvement → neighborhood update
→ random modification →, and ant colony optimization as construction → memory
update → construction →. This means that only a few general elements are needed
for representing the concepts employed in metaheuristic search. This may open
up a possibility for implementing a general metaheuristic search framework that
would offer the balance between intensification and diversification by analyzing
the problem structure a priori, or by adjusting the search by selecting the appro-
priate elements reactively.

In addition to the intensification versus diversification problem discussed

78

earlier, Gendreau and Potvin identified a number of common issues and trends.
These include reactivity, that is, automatic and dynamic adjustment of parame-
ters before or during the search to ease the manual tuning of parameters often
required due to the heterogeneity of the cases; implementation of memories which
guide the search according to the previously seen solutions; and traversal of large-
scale neighborhoods but in a way that the methods concentrate on promising can-
didates.

As we observe from the literature, much of the research on vehicle routing
is concentrated on one or few vehicle routing variants and solution methods at
a time. This is reasonable, since we need to establish knowledge on the solu-
tion methods appropriate to different classes of problems. At times, however, a
synthesis is formed from the obtained results. Currently, the interest is shifting
towards solving a more heterogeneous set of problems with a generic solution
methodology. In fact, these common trends can be seen as a way to adapt to the
situation, which is indeed a desired property. And, as we discuss later when ex-
amining the realization of a practical system, the ability to adapt may turn out to
be a necessity for the future methodology.

4 IMPLEMENTABILITY IN ROUTING SYSTEMS

“All problems in computer science can be solved by
another level of indirection.”

— DAVID WHEELER

In this chapter, we bring the routing problems and solution methodology
towards the context of implementation. While academic research has been suc-
cessful in defining, analyzing, and solving these problems, far less attention has
been paid to the realization of systems capable of handling the particularities of
the domain. There are two major challenges in implementing a routing system:
how to manage the complexity of the domain, and how to balance between dif-
ferent conflicting requirements in building these systems. This chapter discusses
these challenges in implementation and examines some promising approaches
for overcoming these difficulties from both vehicle routing and software engi-
neering point of view. Furthermore, this analysis provides a rationale for our
approach described in the subsequent chapters.

This chapter is divided into five sections: first in Section 4.1, we form a
synthesis of the observations made thus far, and based on this, in Section 4.2,
we address the relevant quality attributes of an optimization system capable of
addressing the current issues in the routing domain. In Section 4.3 we discuss
one of the primary techniques used in overcoming the challenges in technical
issues and the implementation effort in large systems: software reuse. Section 4.4
then further examines large-scale reuse techniques relevant to the VRP domain.
Finally in Section 4.5, we summarize the implementability aspects discussed in
this chapter.

4.1 Synthesis on Vehicle Routing Research

As our aim is to construct a system which would be applicable to a wide range of
routing problems, we need to begin by forming an overview of the topics exam-

80

ined so far. Chapter 2 discussed the different routing problems and their model-
ing, and in Chapter 3 we examined the means for solving these problems. The re-
cent developments can be characterized along the two sides of the VRP research:
modeling and solution methodology. Perhaps the single most prevailing trend in
the vehicle routing research is the progress towards rich VRP models. New real-
life aspects are constantly being incorporated into the models and an impressive
suite of solution methods has been developed to solve the resulting cases. De-
velopments in solution methodology include moving from heuristic methods to
metaheuristics and, especially recently, population metaheuristics. Thus, these
two chapters may perhaps be summarized by the general trends (with the em-
phasis on recent developments) illustrated below.

Models: simple → rich → unified → generic → composite
Methods: simple → complex → adjusting → adapting → learning

The simple models covered the capacitated and time constrained vehicle
routing problems and several of their subsequent extensions, for instance, back-
hauls, and pickups and deliveries. The solution methods were simple heuristics
and local search which formed the theoretical base for understanding search in
routing problems. The application of metaheuristics moved the solution method-
ology towards more complex algorithms and especially the recent combination
of the elements from multiple metaheuristics increased the overall complexity of
the solution methods. Gradually, rich models were formulated, and the introduc-
tion of intricate side constraints — usually in an ad hoc manner — increased the
expressiveness of routing models. Quite recently, as we noted, efforts to unify
the models have taken place. Self-adjusting methods are beginning to emerge,
attempting to reactively modify their parameters according to the behavior they
observe. This is also highlighted in the scientific literature by the trend of re-
porting explicit avoidance of heavy adjustment of optimization parameters be-
fore running the benchmark tests. The current research seems to point towards
generic optimization models and more adaptive algorithms where the methods
employ mechanisms selecting an appropriate set of algorithms for the particu-
lar problem. This is a necessary development in the solution algorithms if the
models become more general: an increase in applicability requires an increase in
robustness.

The shift towards generic models and adaptive methods is visible, but its
usefulness has yet to be critically examined. This work has merely begun and
our contribution is a step towards that direction. The next step in optimization
methods could be a learning algorithm that would analyze the problem struc-
ture, classify and identify it, measure its properties and select a suitable set of
components of metaheuristics and applicable local search methods, and set all
the parameters of the optimization accordingly, as well as apply this approach
during optimization. Models could be composed from the relevant aspects as
needed by the characteristics of the case, and perhaps models at multiple differ-
ent fidelity levels could be generated, solved separately, and combined to guide
the search. In this light, these techniques provide a plausible research topic, and

81

they will be brought up again in more detail in the subsequent chapters, espe-
cially when addressing the topics for further research.

There has, indeed, been advances in solution methodology performance
and expressiveness in modeling. To conclude this synthesis, we would like to
point to some specific instances within the larger developments in order to high-
light the aspects we consider especially interesting.

First, we note that Pisinger and Ropke [164] introduced a general heuris-
tic for several vehicle routing problem variants simultaneously by utilizing an
adaptation mechanism that selects an appropriate set of algorithms for the prob-
lem at hand. Derigs et al. [58] developed a richer VRP model for compartment
considerations, and conclude that adding additional constraints to existing VRP
algorithms instead of developing whole new ones is a promising approach. This
is, interestingly, in contrast with the conclusions from the open routing research.

Some have addressed the issue of implementability in vehicle routing sys-
tems, and software engineering topics have been discussed, more or less indi-
rectly however, in the vehicle routing literature. A notable exception is the work
of Hasle and Kloster [103], who examine some of the design decisions behind a
commercial realization of a SPIDER VRP solver. The solver was based on a sin-
gle, rich, generic VRP model and a unified algorithmic approach to reduce the
development and maintenance efforts. They also employed a metaheuristic so-
lution approach for achieving flexibility and robustness. In addition, Hasle [101]
describes a GreenTrip Generic Toolkit developed in an EU project “GREENTRIP”
(global reactive efficient and environment-friendly transportation logistics)1 un-
dertaken in 1996–1999. The toolkit employs an approach which achieves an easy
configuration of a VRP solver using a specific configuration generation tool for
developers and end users. Other recent developments include the work of Groër
et al. [98] who developed an object-oriented library for local search operators
and heuristics for solving vehicle routing problems. They published their work
along its source for academic use. We note that the development of standard-
ized elements indicates a certain maturity of the methodology, and these kinds of
initiatives are required for addressing the challenges posed by the inherent het-
erogeneity of the domain. Furthermore, the object-oriented approach described
in the framework indicates that separating algorithms from the solution structure
is beneficial for achieving a looser coupling. This underlines the fact that general
reusable frameworks have emerged and are becoming more widespread.

On the theoretical level, the emergence of frameworks can be seen in the
work by Gendreau and Potvin [89], who proposed a general framework for meta-
heuristics, and Funke et al. [80] who introduced a conceptual integration of lo-
cal search operators. The application of constraint programming to the VRP for
achieving flexibility was studied by Backer et al. [9] and Kilby et al. [124], and on
a similar motivation, Irnich et al. [109], [110], [104] proposed a unifying approach
for modeling the VRP using a giant tour and resource-constrained paths. Despite
the number of available algorithms, and as noted by Sörensen [191], the variable
neighborhood search approach with tabu search or a simulated annealing scheme

1 http://cordis.europa.eu/esprit/src/20603.htm

82

is widely used in commercial settings due to their simplicity and flexibility. Sim-
ilar note was also made by Cordeau et al. [45]: there is need for powerful and
robust but simple algorithms. Furthermore, an interesting analysis by Wolpert
and Macready [214] illustrates that in optimization, it is impossible to construct
a single algorithm that performs best in all problems. Also this suggests that a
number of methods may be needed in a problem space as heterogeneous as vehi-
cle routing.

As Chapter 2 discussed the formulation and modeling of routing problems,
and Chapter 3 the state of the art in solving these problems, this Chapter pro-
gresses towards the next step, applying the solutions into practice. This step has,
however, a number of obstacles including for instance the integration of the op-
timization system to the everyday process of the logistic operator. But in this
work, we are especially concerned with the general applicability of these results. In
other words, we need to consider what can be done to enable the utilization of
the recent academic advances in the industry in general. Implementing a system
that can be employed by a substantial subset of logistic operators is still a major
technical challenge — even if we assumed that the current solution methodology
and modeling techniques are sufficient for a relevant subset of routing problems.

There are several reasons for the challenges faced in implementation of
routing systems. Firstly, as we observed, models and methods are becoming
more complex to manage, and generic approaches are emerging. Complexity and
generality pose a challenge in providing a system without losing performance
and without requiring insurmountable efforts in implementation. Secondly, as
Sörensen et al. [191] pointed out, real-life vehicle routing problems are not stan-
dalone problems, but have an impact on other decisions in a company’s opera-
tions, resulting in more complex design problems that perhaps do not adhere to
the boundaries of the theoretical routing problem at all. And thirdly, even the
well-defined subset of the VRP domain is extremely difficult to address by a sin-
gle system, yet it cannot be tackled with an introduction of a new system for each
particular case. Thus, something “in between” these two extremes is needed. We
argue that central factors in overcoming the challenges are adaptation and reuse.
These aspects, in turn, are realized by building a system which is both flexible
and reusable. Flexibility and reusability are, however, only some of the quality
attributes [210] required from a general optimization system. In fact, as with any
system, several key attributes define the overall quality of an optimization sys-
tem. Thus, to understand and analyze the trade-offs involved in implementing
such a system, we need to take a software quality viewpoint on routing software
and discuss these attributes in more detail.

4.2 Routing Systems from Software Quality Viewpoint

As we discussed the performance of methods and the accuracy of models in the
previous parts of this thesis, we deliberately overlooked a number of essential

83

attributes relevant to the implementors and users of automated routing systems.
In this work, we consider not only the low-level implementation, especially solu-
tion methodology, that has gained attention in recent work on the VRP, but also
the overall structure of the system. Examining a software system from this kind
of top-down point of view requires us to consider — in addition to functional re-
quirements — the nonfunctional requirements, or the quality attributes, of such a
system. Whereas the functional requirements state what the system should do,
the nonfunctional express the criteria that can be used to assess the operation of
the system, i.e., how it behaves under different situations2 [210].

The IEEE standard on software quality metrics methodology [108] defines
the software quality as “the degree to which software possesses a desired combi-
nation of attributes”. The standard then states that “this desired combination of
attributes shall be clearly defined; otherwise, assessment of quality is left to in-
tuition”. As we have discussed different quality attributes in this work, we have
not really clearly stated what is required of the system from the nonfunctional
viewpoint. Furthermore, the set of required quality attributes varies from system
to system [210], and we are not aware of any work addressing software quality
attributes in the context of vehicle routing systems. Therefore, to evaluate the
trade-offs involved in designing an architecture for such a system, we define the
quality attributes referred to in this work. Note that although a number of other
attributes are relevant to a routing system as a whole, our primary focus is on the
attributes relevant from the optimization process point of view. The discussion here
is concerned with the quality criteria of such a system, and leaves the question of
the evaluation of the system according to these criteria untouched. In essence, this
section attempts to characterize the nonfunctional requirements of routing sys-
tems and to provide a base for heuristic qualitative analysis of the architectural
structure of these systems in general.

We can identify three types of quality attributes that are relevant from the
optimization point of view: computation related attributes, application related at-
tributes, and implementation related attributes. The computation related attributes
refer to the attributes governing the costs of performing the optimization, the
application related to the costs of applying the results in practice, and the im-
plementation related attributes to governing the costs of implementing the sys-
tem. The computation and application related attributes are especially relevant
from the end-user viewpoint, whereas the implementation related attributes are
mostly a concern for the producers of the software. These costs form the total
cost of ownership (TCO) [67] of the optimization process, and the ability to bal-
ance between these costs is a key element in utilizing the system cost-efficiently
in varying contexts.

The computation related attributes include the performance and scalability
of the system. As discussed in Chapter 3, algorithms vary in their performance,
and theoretical complexity analysis gives an estimate on the performance of an
algorithm in terms of the time and space used, whereas empirical analysis is re-

2 Quality attributes are not necessarily related to functional requirements — for instance,
maintainability considers how good the structure of the system is for maintenance activities.

84

quired to evaluate the method in terms of the solution quality. In terms of the
performance of the system itself, it can be seen as the performance of the algo-
rithms utilized for each problem. If there are multiple alternative algorithms for
solving the problem, we define the performance of the system as the best of those
algorithms. The performance of an optimization system is, therefore, defined in
terms of the amount of computational time and space needed by the system to
produce high quality solutions using any algorithm available within the system.
The notion of a high quality solution refers here to a solution meeting a case-by-
case defined criterion. Scalability, on the other hand, is required for the system
to be able to address the problems in the magnitude required in real-life routing,
i.e., to maintain performance while the size of the computational tasks increases.

The application related attributes include the robustness, fidelity, and accu-
racy of the system. The robustness of an algorithm is often defined as its ability
to tolerate small changes in problem data and structure without losing its per-
formance. Likewise, the robustness of an optimization system is its ability to
withstand changes from the algorithm and optimization model points of view:
the ability of the system to tolerate changes in the problem definition, data, and
model without losing its performance. From the modeling point of view, instead
of discussing model accuracy alone, we describe here two different quality at-
tributes: fidelity and accuracy. Fidelity concerns the modeling constructs avail-
able for describing the real-life situation, and the accuracy of data used within
these constructs. The fidelity of an optimization system is defined in terms of
the degree of how well the optimization model describes the real-life situation
it models. That is, how much manual adjustments are needed in applying the
obtained solutions into practice. While fidelity is concerned with the ability to
describe a given situation, accuracy is the measure of the exact usage of that de-
scription. The accuracy of an optimization system is its ability to understand and
store data required to describe the real-life situations. The accuracy of the system
is decreased when, for example, the system cannot utilize all relevant data from
a road network, or all dynamic travel time data available cannot be employed by
the system, for instance, due to memory or other data processing limitations. This
is not exactly the same as model fidelity as the model may have the capability to
express the problem, but the system is unable to construct an exact instance of
that model. It is not the same as quality of data either as although data may well
be free of errors, the system is still unable to fully utilize it. Note, however, that
accuracy is still in this context limited by the quality of data available.

The computation and application related attributes constitute a usable opti-
mization system. The system should describe the problem in high fidelity and
accuracy and be able to perform optimization to the problem at hand with the
given time and space resources regardless of minor changes in the problem struc-
ture or attributes. In short, an optimization system is usable when it provides
correct and high quality results to a given problem in a timely manner. Thus, the
usability of an optimization system can be seen as a combination of performance,
robustness, fidelity, and accuracy. Note that this discussion considers usability
as a direct result of the optimization process of the system. In practice, other at-

85

tributes need to be considered as a part of usability. For instance, the learnability
of the user interface is the main component of the usability of the system as a
whole. But as mentioned, we restrict ourselves here to the attributes related to
the optimization process.

The implementation related attributes are directly relevant to the scope of
this work. Four major implementation related attributes are applicability, sim-
plicity, flexibility, and reusability. The attributes are interconnected, as, for exam-
ple, an increase in reusability often increases simplicity and vice versa, and an
increase in flexibility tends to increase applicability.

The question of whether the system is applicable to a given situation is es-
pecially relevant when addressing a set of heterogeneous problems. The applica-
bility of the system describes how well it is suited to solve the problems within a
domain, in other words, how wide an array of problems can be addressed by it.
Applicability differs from performance in that without applicability, performance
is not relevant as the system is not able to provide solutions in the first place (due,
e.g., to an inability to define the objective correctly or to search the whole search
space). On the other hand, with applicability to a given problem but with a low
performance, the system can find solutions but this would require an excessive
time or space. In a sense, applicability expands the problem space covered. This
in turn results in increased requirements for robustness for the system to be use-
ful.

The simplicity of the optimization system includes that of the optimization
methodology and describes the effortlessness of realizing such a system: it is
the negative of the cost of the implementation effort needed in constructing the
system. The simplicity (or the lack of it) is one of the key attributes behind the cost
of implementation partly due to the fact that simplicity is required for achieving
reusability: complex elements and systems are difficult or impossible to reuse.

The flexibility of a system describes its ability to respond to changes. This
can be measured by the effort needed to change the system to accommodate new
requirements. It is the negative of the average effort needed when adding a fea-
ture to problem definition or solution methods to address a new problem. Flexi-
bility is similar to applicability, and these attributes often reinforce each other, but
while applicability can be seen as an attribute defining the size of the set of ad-
dressable problems, flexibility defines the effort needed in adding new elements
to that set.

As we mentioned in the beginning of this chapter, we argue that resource
reuse is essential to overcoming the challenges in implementing a generic op-
timization system, and perhaps the most critical resource in this context is the
system itself. Reusability defines the likelihood of a part of the system to be use-
ful in other contexts, i.e., the probability of an element of a system to be usable in
a different context with minor or no modifications.

Finally, using the terminology given, we may define another composite at-
tribute to clarify the discussion and to provide meaning to the central theme of
this work: implementability. While implementability is generally related to sim-
plicity, in the context of routing systems we also accommodate the notion of ap-

86

plicability as we consider it as the ability to implement a suitable, or applicable,
solution. In addition, as we deal with a heterogeneous domain, flexibility is a
central element for adapting the system to different cases, and reusability for
performing this with reasonable effort. A system is, therefore, implementable if
it is a suitable solution to a given problem and simple to realize in an efficient
manner in varying situations. We argue that in routing systems, achieving im-
plementability in a generic setting is especially dependent on the reusability: one
cannot address each case by an introduction of a new system: most elements of
the existing system have to be used also in the new context. The research on
software reuse and software reusability considers techniques and processes for
achieving a higher reusability within the pieces of software, and in the subse-
quent sections, we examine the recent advances on this topic as approached in
the software engineering literature.

4.3 Software Reuse

As long as there has been interest in the use of software, the practitioners of soft-
ware development have also taken an interest in its reuse. Reuse, using the same
artifact3 in multiple places after its initial usage, is a direct consequence of striv-
ing for cost-efficiency. Software, unlike physical goods, can be multiplied to in-
finite instances, and once realized, a piece of software can be used any number
of times. In theory that is. Possibilities for software reuse are bounded by the
possibilities of its use, and a particular piece of software can be used if it is suit-
able to the given context. In general, pieces of software are tailored to a certain
situation, but as reusability in parts of the system typically lowers the costs of the
system as a whole, at some point it becomes beneficial to deliberately increase the
possibilities for reuse up-front to achieve savings later.

Techniques for software reuse have been developed since the 1960s, and
this has resulted in a transition from ad hoc reuse to systematic procedures [155].
Initial techniques included forming subroutines from commonly used sets of in-
structions, which eventually evolved into modules of common subroutines. The
next major event was coupling of data and operations, which resulted in the con-
cept of objects. Later, these objects were combined into components, and the
component-based approach provided possibilities for larger-scale reuse. Simi-
larly, frameworks provided a generic collection of components and objects, and
were designed to be used in multiple places. Decoupling the functionality of the
components and objects from their exact location resulted into reusable services,
which provided a transparent way to systematically reuse existing functionality.
Finally, most recently, software product lines evolved to provide possibilities for
more fine-grained reuse on an architectural level by designing the overall struc-
ture of the systems around reusable components and services.

3 A software artifact refers to any result of design or development during realization of a
system; e.g., requirements, design documents, code, tests, and documentation.

87

Reuse is generally regarded desirable due to, e.g., cost savings, increased
quality, and reduced maintaining efforts [14], but the difficulty of utilizing it in-
creases as the scale of reuse increases. Reuse of subroutines and modules may
be considered a solved problem, but reuse at a larger scale remains to be chal-
lenging. For instance, realizing a product line architecture is still a demanding
and nontrivial process [14]. It has been observed that reuse at this scale is best
achievable when addressing a family of related systems, and thus the attempts
to tackle reuse have recently concentrated on a more narrow context. For exam-
ple, systems built within a single domain are in many cases more or less slightly
different variants of each other [76]. This insight has resulted in a shift in focus
from frameworks and components to architecture-level reuse: services and soft-
ware product lines.

In this work, we discuss the architecture-level reuse, especially techniques
that are relevant to building a family of systems. These techniques include soft-
ware frameworks, software product line architectures, and model-driven architectures.
We also briefly examine some of the new developments in this area for a discus-
sion on future research.

4.4 Large-scale Software Reuse Techniques

In general, architecture-level reuse is concerned not only with the pieces of soft-
ware themselves, but also all the other artifacts resulting from the software en-
gineering process. However, as we deal with a family of related systems, there
are two types of artifacts that we are especially interested in: the architectural de-
sign itself, and the implemented system elements. Reusing the architecture makes
the family of systems possible by providing a common structure to build on,
and reusing the functional elements of the system reduces the effort needed to
construct the individual systems within the family. Therefore, in this work, we
concentrate on techniques that both impact the architectural design decisions and
enable the reuse of the software elements in the implementation level. In other
words, we examine the properties of the high-level design of the system and at-
tempt to achieve reuse in the lower levels. Since the architectural structure of the
system is in a major role in defining the quality attributes of the overall system,
shifting focus to the architecture-level allows us to manage and balance between
these different quality attributes and the TCO of the resulting system. Note that,
although reuse is a primary goal in these techniques and useful in itself, employ-
ing systematic reuse often results in improvements in other quality attributes,
such as flexibility and simplicity.

From the implementation viewpoint, the central elements in this work are
software architecture and software product lines. For a general introduction to
software architectures we refer to a book by Bass et al. [14], for an introduction to
software product lines, a book by Clements and Northrop [41], and for product
line engineering in general, a book by Pohl et al. [165].

88

4.4.1 Software Frameworks

A major element in the reuse landscape is the concept of software framework. An
object-oriented framework is a set of classes that embodies an abstract design for
solutions to a family of related problems, and supports reuse at a larger granu-
larity than individual classes [118]. Although their usage has not been widely
regarded as the solution to the reuse problem itself, software frameworks pro-
vide a useful theoretical and practical base for examining large scale reuse. We
introduce the main concepts of object-oriented software frameworks in order to
examine their usage within combinatorial optimization. A software framework
is a specific type of software library; it provides abstractions of implementation
wrapped into an interface. Also, as with libraries, frameworks are specific to a
set of related functionality.

The features that separate software frameworks from libraries and other ap-
plications are typically the following: I) inversion of control, II) default behav-
ior, III) extensibility, and IV) non-modifiability. Unlike in libraries, the control
flow of the program is often controlled by the framework (property I), and this is
achieved by the so-called inversion of control mechanisms (for an introduction,
see, for instance, Fowler [74]). Inversion of control offers locations for extending
the default behavior (property II) typically offered by a framework. This exten-
sibility (property III) is the sole approach for customizing a framework as it does
not allow itself to be modified (property IV). A framework addresses typically a
single functional area, such as providing a graphical user interface (GUI) or dis-
tribution of system elements. As noted by Fayad and Schmidt [70], frameworks
decouple the abstract functionality from the concrete behavior of the application,
and this separation of responsibilities is the key to reuse: the abstract functional-
ity forms the reusable part of the framework.

Naturally, frameworks and reuse are not a solution to all the problems in
large scale software development, and also this approach comes with a cost:
Fayad and Schmidt [70] list a number of weaknesses in framework-based devel-
opment, and present the following main challenges. First of all, developing high
quality, extensible, and reusable frameworks for complex application domains
is difficult, and learning to use an application framework effectively requires
considerable effort. Secondly, the application development will be increasingly
based on the integration of multiple frameworks, but many earlier generation
frameworks were not designed for this. Thirdly, as frameworks evolve, the ap-
plications that use them must evolve with them and a deep understanding of
the framework components and their interrelationships is essential to perform
framework maintenance successfully — in some cases, the application develop-
ers must rely entirely on framework developers. Finally, generic components are
typically harder to validate and the inversion of control causes the control flow to
oscillate between the application-independent framework infrastructure and the
application-specific method callbacks, which decreases performance and makes
defect removal and maintenance activities more tedious.

Despite the challenges in framework development, a number of optimiza-

89

tion frameworks have been implemented and are in use today (see, for instance, a
book by Voß and Woodruff [208]), but they address a larger domain of optimiza-
tion and metaheuristics. In combinatorial optimization, it is essential that the
search operators are tailored to the problem and problem representation. This is
in contrast, for instance, to linear programming solvers, where the search opera-
tors are well-defined. While it is possible to utilize a metaheuristics framework
for vehicle routing, the framework itself considers only the metaheuristic search
aspect of the solution process and leaves the question of the representation of the
problem untouched. And as mentioned, the inherent heterogeneity of the vehicle
routing domain makes the implementation tedious and heavy customization a
necessity. It is, therefore, unlikely that any single framework solution will suffice:
building an optimization system for each unique case, even by using a frame-
work, renders itself infeasible. The sheer number of problem variants, modeled
aspects, solution methods, and case-specific requirements calls for a systematic
approach on a higher level of abstraction for managing this variability within the
VRP domain. To achieve this, we need to shift our focus to the architecture-level.

4.4.2 Software Product Lines

While software frameworks increased the possibilities for reuse by providing a
strong separation of the abstract and the specific behavior of the system, pro-
viding this separation on the architectural level requires building a “framework
for architectures”, that is, a generic architecture on which other architectures are
built. This implies a need to build several systems with common elements. One
well-known technique for building this kind of family of systems is the software
product line (SPL)4. It is defined as a set of software-intensive systems sharing
a common, managed set of features that satisfies the specific needs of a particu-
lar market segment or mission and that is developed from a common set of core
assets in a prescribed way [14]. The SPL is essentially a technique for achieving
reuse on the level of the whole system. It yields a larger reuse potential than
frameworks by systematically identifying commonalities and explicitly defining
the allowed variation within the family of systems. This results in a structure that
has (depending on the domain) large parts of the common elements abstracted
to a general platform. Software product lines also typically consider only a spe-
cific domain which eases the building of the common platform. Software product
lines enable strategic reuse of core assets, the common platform and all adjoining
artifacts that can be shared across the product line.

Software product lines have some properties in common with frameworks,
but they are not exactly similar; SPLs tend to be larger scale systems than frame-
works, and can, in fact, employ one or more frameworks as part of their core
system or a variable subsystem. The most important similarity is the fact that

4 The term software product family is also used interchangeably with product line, although
some suggest that a product line may or may not consider a family of products, the former
being more suitable for product line approach. In this work we use the term product family
interchangeably with product line, but prefer the latter.

90

both contain so-called “cold spots” (property IV) and “hot spots” (property III).
These are referred to as core assets and variability in SPLs. Cold spots are unmod-
ifiable parts of the framework or the SPL, and hot spots are places where custom
behavior can be inserted. Frameworks often capture the exact process according
to which the system operates, and this requires inversion of control, that is, the
framework controls the program flow (property I). The user of the framework ad-
justs the details or parts of the process as needed, but the overall flow cannot usu-
ally be modified. In software product lines, the control may be inverted in some
parts as the SPL may contain modules that are similar to individual frameworks,
but the overall process can also be controlled by the elements in variation points;
this enables more control on the process in SPLs. SPLs also allow modifications to
core assets if a commonality is identified within all systems. It is not unlikely that
the SPL evolves heavily during its lifetime. This is related to property II, which in
frameworks indicates that the framework should be self-sufficient and provide
a useful default behavior, whereas in SPLs the core assets may not function by
themselves. Finally, while frameworks are specific to a given set of functionality,
SPLs are specific to a particular domain. From a broader viewpoint, the scale and
the systematic strategic reuse differentiates SPLs from frameworks, and often re-
quires utilization of two separate development processes: one for building the
generic reusable parts, and another for realizing the application-specific imple-
mentations.

In software product line engineering, the two subprocesses of development
are referred to as domain engineering process and application engineering process.
These processes produce the domain and application layers of the software prod-
uct line, respectively. The domain layer serves as the core platform for building
specific application instances in the application layer. The division into two pro-
cesses is illustrated in Figure 9. The processes result in a number of artifacts
and employ the typical software engineering subprocesses, i.e, requirements en-
gineering, design, implementation, and testing. Domain engineering results in
a set of domain artifacts, including requirements, design documents, implemen-
tation, and tests. These domain artifacts, or phase products, are then utilized in
one or more application engineering processes, which in turn produce individ-
ual applications. Moreover, a variability model is produced for the domain layer
and for each application in the application layer. The variability model describes
the designed variability on the domain level and the realized variability on the
application level.

The rationale behind the separation of processes is the different nature of
the activities in them. The aim of the domain engineering process is to define and
realize the commonality and the variability of the product line, and of the ap-
plication engineering, to derive specific applications by exploiting the variability
of the product line [165]. Modifiability within the domain platform is, therefore,
achieved by a systematic introduction of variability. Identifying this variability
requires first identifying the commonalities between the systems. This is often
challenging and requires deep domain knowledge. After the common elements
have been identified, a plan for systematic exploitation of variation has to be de-

91

Domain artifacts
including variability model

Application 1
artifacts

incl. variab. model

Application 2
artifacts

incl. variab. model

Application n
artifacts

incl. variab. model
. . .

Domain
engineering

Application
engineering

FIGURE 9 Processes and resulting products in software product line engineering.

signed. One approach for achieving this is the introduction of a product line
architecture.

4.4.3 Product Line Architectures

Within the software product line, perhaps the most central asset is the reference ar-
chitecture. It is the architectural structure resulting from the domain engineering
process and provides a base for application-specific architectures. The reference
architecture, with its variability model, forms the so-called product line architec-
ture (PLA). In this work, we concentrate on defining commonalities and case-
specific variations on the architectural structure, thus concentrating on PLAs,
even though we note the fact that every artifact within the SPL can be exploited
in similar fashion.

Broadly speaking, variability represents the system’s capability to change
or adapt, that is, its ability to facilitate modifications. As noted by Becker [15],
such a change or adaptation can affect both the behavior of the system as well as
its qualities. From the implementation point of view, variability allows delaying
certain design decisions to a later point in the development [99]. Product line
architectures attempt to capture this variation explicitly and exploit it systemati-
cally.

The systematic exploitation of variation is not a straightforward activity and
requires effort in the management of design, implementation, documentation,
and testing. In common language use, the term variability refers to the ability
or the tendency to change. In the context of product line architectures, we are
interested not in variability occurring by chance but in one that is brought about
deliberately. To formulate this kind of variability, we need to define two concepts:
variability subject and variability object. The former is an answer to the question on
what varies, and the latter, how it varies. According to Pohl et al. [165], a variabil-
ity subject is, therefore, a variable item of the real world or a variable property of
such an item, and a variability object, a particular instance of a variability subject.
Variability subjects and the corresponding variability objects are present in the
context of the PLA, and to continue using the terminology by Pohl et al., a varia-
tion point (VP) is a representation of a variability subject within domain artifacts
enriched by contextual information. They define a variant as a representation of

92

a variability object within the domain artifacts, but as noted by Clements and
Northrop [41], Jacobson et al. [115] define the different types of variation more
broadly to include also variants residing on the application layer. These include,
e.g., introduction of new subclasses into the application layer. A similar approach
is also taken by Gomaa and Webber [96] in their variation point model, and thus
also we refer to both the domain and application layer artifacts representing a variability
object as variants. Variation points are at the heart of product line architectures.
A variation point is, in a sense, a place in the architecture that one can point to
capture a variation within the family of systems. Capturing variation has to be
addressed at least from three different viewpoints: designing, documenting, and
managing the variation within the PLA, and these activities have received scien-
tific attention for two decades.

The design of variability includes both designing VPs along with their ac-
ceptable variants. These variants may also have complex dependencies; a variant
may require another variant to be present and prohibit a number of others from
being selected to the realized application. Another issue in designing VPs is to
plan the exact point in time at which the delayed design decision has to be made,
i.e., what is the binding time of the variation point. In the software engineering
context, the binding time refers to the point in time in which a variable receives
its type. Traditionally, two types of binding times are distinguished; early bind-
ing, that is, at compile time where a compiler assigns a type; and late binding
where the type of a variable is inferred at runtime, as is the case with, e.g., poly-
morphism in object-oriented languages. In product line architectures, binding
time refers to the point at which a specific variant within its variation point gets
assigned — and one technique for achieving, e.g., runtime binding is, indeed,
utilization of object oriented polymorphism. From this perspective, domain en-
gineering can be seen as the process of designing variation points by identifying
the commonalities between the systems and implementing shared artifacts while
preserving the required variability by deferring the binding time as late as possi-
ble; and application engineering, the process of binding the selected variants to
their variation points.

To effectively utilize product line architectures, one has to document the
variability of the software development artifacts. Two basic strategies exist. One
is to define variability as an integral part of the artifacts, and the other, to introduce
a separate variability model. Researchers have suggested the integration of variabil-
ity in traditional software development diagrams or models, such as use cases,
feature models, and class diagrams. For instance, Kang et al. [121] use feature
models, whereas Halmans et al. [100] capture variability in use case models. But
as pointed out by Pohl et al. [165], modeling variability using the traditional
software development models has significant shortcomings. Variability infor-
mation spread across different models is almost impossible to keep consistent,
tracking dependencies between variants is difficult, the already complex design
documents get even more complex with the addition of variability, and getting an
overview across different elements and representing variation unambiguously is
tedious.

93

To address the issues in variability documentation, a separate model, of-
ten referred to as the orthogonal variability model, has been introduced [165]. This
model describes variation points, variants, and their relationships. Variability
modeling was studied, for example, by Bachmann et al. [7] and Jaring and Bosch
[116] who presented a metamodel for variability in a product line context, and an-
alyzed modeling dependencies between variable elements, respectively. A meta-
model was also introduced by Becker [15] who outlined a modeling language
for specifying variability in product line core assets. More recently, the issue of
variability modeling was addressed by Niu et al. [154] who proposed a modeling
technique based on lattice ordering. Their technique is capable of handling and
resolving inconsistent variability requirements.

In variability management, the key question is what to design for reuse
and what not. On one hand, if the emphasis is too much on reuse, product dif-
ferentiation suffers and the time required to produce a product or new function-
ality is increased due to the additional effort required in making each element
reusable. On the other hand, if the emphasis is too much on differentiation, the
benefits of reuse start to decline and maintaining the product portfolio becomes
cumbersome. Finding the balance between the commonality and the variability,
reuse and differentiation, involves evaluation of both the technical and business
aspects of the product line.

The variability management has been studied intensively as it is one of the
most challenging aspects in employing a product line. For an overview on the
issues in variability management, we refer to the work of Bosch et al. [22] who
identified challenges in both the domain engineering and the application engi-
neering processes. More recently, Jha and O’Brien [117] conducted a survey to
investigate how software reuse is adopted in product lines and identified some
prevailing issues and concerns. Savolainen et al. [182] proposed a three-level
product line in which the application layer is split into a differentiation layer and
a reuse layer to overcome the challenges in balancing between reuse and differ-
entiation. For a recent review on variability management, we refer to the work of
Chen et al. [37].

Despite the technical challenges and the required up-front investments, soft-
ware product lines have been successfully used to reduce the total effort in build-
ing a set of related systems. This is best illustrated by Figure 10, where the ac-
cumulated effort of developing a single system versus the effort of developing a
product line is depicted. The recent research indicates that the break-even point
is around three distinct systems, but for especially technically challenging tasks,
such as combinatorial optimization systems, there may be benefits in using a soft-
ware product line approach in a two-system environment due to the effort needed
in producing the specialized functionality of such a system.

Software product lines have been used to enable large-scale reuse success-
fully for two decades. Classical examples of applying software product lines in-
clude the case of Boeing described by Sharp [187], where an initiative of building
a software product line for avionics systems led to a reusable architecture for a
number of subsystems, and resulted in reduced costs of avionics software. An-

94

Up-Front
Investment

Break-Even
Point

Approx. 3 Systems
Number of

Different Systems

Accumulated
Costs

Lower Costs
per System

Single Systems
System Family

FIGURE 10 The effort for developing n systems compared to product line engineering
[165].

other example is that of CelsiusTech Systems AB, a Swedish naval defense con-
tractor, who adopted a product line approach to provide command-and-control
systems for navy vessels. The results reported by Brownsword and Clements
[33] state that code reuse on new systems averages almost 80%, resulting in Cel-
siusTech inverting its software to hardware cost ratio from 65:35 to 20:80. Nokia
was reported to increase its production of new mobile phone models from 4 to
25–30 annually [14], and a number of other successful cases, including the devel-
opment of a gateway system by Ericsson Software Technology, the implementa-
tion of the Mozilla web browser, and the development of the Symbian Operating
System are described by Svahnberg et al. [193].

Despite the successes in other industries, we are not aware of any PLA ap-
proach for vehicle routing software, although some highly modular implementa-
tions do exist. Moreover, we are not aware of any scientific work addressing the
software product line engineering in the context of vehicle routing. This may be
due to the relatively recent advances in generalizing the vehicle routing problem
and unifying the routing domain. Also, building a combinatorial optimization
system for vehicle routing is itself a challenging task, which discourages software
vendors from adopting techniques that pose additional technical risks.

Vehicle routing software is, however, a prime candidate for the software
product line approach. Vehicle routing software has several areas that need to
vary from case to case, including the optimization model, and from the system
design and software architecture points of view, these areas are attracting contes-
tants for variation points.

Since the optimization model is a VP, we need a system that supports vary-
ing the model from case to case. The issue is, however, that the optimization

95

methodology is directly dependent on the optimization model, which limits the
reuse of optimization algorithms in differing cases. Furthermore, building an
optimization model and the adjoining algorithms equals, effectively, building an
optimization system for the case. To address the issue of varying the optimiza-
tion model, we propose the construction of a metamodel on which the solution
methodology can operate. By using a model transformation to transform a do-
main model into an optimization model conforming to the metamodel, we can
remove the dependency. To provide a theoretical base for this kind of modeling
approach, we need to discuss modeling and metamodeling in more detail.

4.4.4 Model-driven Engineering

Model-driven architecture (MDA) can be seen as a software development frame-
work5 which has been put forward by the object management group (OMG) in
2001. The framework builds on a series of specifications, including the MDA
Guide [143], which introduces the concepts of the MDA. The MDA relies on two
principles: firstly, it utilizes models and modeling techniques in developing soft-
ware systems, and secondly it requires separation of system specification from
the implementation of the system. These techniques have been used in computer
science and other disciplines, but the emphasis on modeling in all phases of the
software development process distinguishes the approach from traditional soft-
ware engineering practices.

Model-driven architecture attempts to solve portability-related problems.
The rationale is that if software needs a concrete platform to run on, and this
platform is subject to continuous change due to emerging new technologies, we
need to abstract away the platform-specific details and concentrate the develop-
ment effort on abstract models from which the platform-specific implementation
can be generated as needed. Kleppe et al. [127] list the problems addressed by
the MDA as follows: productivity, portability, interoperability, and maintenance.
Productivity in implementation and maintenance is increased by shifting activ-
ities from low-level implementation to high-level specification. The increase in
portability and interoperability, that is, the ability to use the same artifacts in dif-
ferent platforms and to integrate elements produced using different technologies,
are achieved by abstracting the implementation details from the development
process.

To advance the quality attributes, the MDA distinguishes two types of mod-
els: platform independent models (PIMs) and platform-specific models (PSMs).
In this context, according to the MDA Guide [143], a platform is any “set of sub-
systems and technologies that provide a coherent set of functionality through
interfaces and specified usage patterns, which any application supported by that
platform can use without concern for the details of how the functionality pro-
vided by the platform is implemented”. This platform independence serves a
similar purpose as the introduction of the abstract domain layer in software prod-
uct line engineering: reuse. Thus, from this perspective, model-driven architec-

5 Not to be confused with software framework.

96

tures and software product lines can be seen as complementary strategies for
achieving possibilities for reuse.

The central concept in model-driven architecture is model. The term has nu-
merous definitions ([128], [127], [143]) and some disagreement of the exact defi-
nition of a model in model-driven techniques still lingers, but in general, a model
can be seen as a representation of a part of reality for gaining insight into some as-
pects of it by providing a useful abstraction. In software engineering, a model is
often a symbolic representation and expressed using a modeling language. A mod-
eling language is an artificial language used to express systems using a structure
defined by a consistent set of rules.

While a model describes a system in the real world, a metamodel6 describes a
model. The prefix meta- indicates that the concept is an abstraction of the concept.
In essence, a metamodel is a model of a model, or in other words, a model of the
modeling language used to describe the original model. A model is, therefore, an
instance that can be said to conform to a metamodel if the metamodel describes
the language used to describe the model.

The process of metamodeling can be applied iteratively to metamodels. This
results in a potentially infinite stack of metamodels describing other metamodels.
Such a construction is referred to as a metamodeling architecture7 It is, however,
not necessarily meaningful to continue this process to infinity as is done in the
so-called open metamodeling architectures. A closed metamodeling architecture
can be introduced by applying the modeling capabilities at a certain level to that
level itself. A well-known closed metamodeling architecture is the meta object
facility (MOF) architecture described by the OMG. The MOF can be used to model
modeling languages and it has been applied to describe, for instance, the unified
modeling language (UML) [157]. An example of a MOF-based metamodeling
architecture is illustrated in Figure 11.

In the depicted MOF-based architecture, the lowest level M0 contains the
runtime instances of the real system. The M1 level describes the first modeling
level on which the user-defined UML models are described. The third level, M2,
is the familiar UML metamodel, which describes how UML models should be
constructed. The fourth level is the meta object facility level M3, a metametamodel
describing a model for constructing modeling languages. Since the MOF is a
modeling language, it can be used to describe itself. The MOF is widely used by
the OMG in order to unify the modeling effort [143]. Any new language intro-
duced must be expressed by constructs in the MOF.

Models are useful in understanding the problem domain and analyzing can-
didate solutions, but model-driven engineering also attempts to achieve a higher
productivity, to ensure compatibility between systems, and to yield simpler de-
sign processes by systematically manipulating the models [143]. This manipula-
tion is done by applying a series of transformations to convert models into other

6 This should not be confused with meta-modeling, which is used, for example, in optimiza-
tion involving expensive objective function evaluations [195]. In such cases, the metamodel
is a simplified representation of the actual model, and is also referred to as a surrogate model.

7 Also referred to as metamodeling stack and metamodeling framework.

97

An instance

A model

A metamodel

A metametamodel

M0

M1

M2

M3

Information level

Modeling level

Metamodeling level

Metametamodeling level

FIGURE 11 A closed metamodeling architecture.

models. This process can be applied until actual executable code is generated.
This is made possible by introducing another essential concept of MDA: model
transformation. The basic process of transforming a model is straightforward. A
model transformation is performed by a transformation engine, which executes a
model transformation definition. The definition refers to two metamodels, and effec-
tively describes how the elements in the source metamodel are transformed into
the elements of the target metamodel. The source model, conforming to the source
metamodel, is read by the transformation engine and, according to the transforma-
tion rules, written as the target model. The basic process of model transformation
is illustrated in Figure 12.

Model transformations can be classified according to their source and tar-
get metamodels and their approach for manipulating the models. Different tax-
onomies have been proposed, but we use a classification from Mens et al. [140]
and Czarnecki and Helsen [53], and refer to their work for a detailed analysis.

If the source and target models refer to the same metamodel, the transforma-
tion is endogenous, and if they refer to different metamodels, the transformation
is exogenous. If the level of abstraction changes in the transformation, the trans-
formation is vertical, and if the level of abstraction remains the same, it is horizon-
tal. A model-to-model transformation can be direct-manipulation, relational, graph-
based, structure-driven, or hybrid. A direct manipulation transformation offers an
internal model representation and an application programming interface (API)
for manipulating the model. These transformations are usually implemented
within an object-oriented framework, and the users of such frameworks imple-

98

Source
metamodel

Transformation
definition

Target
metamodel

Source
model

Transformation
engine

Target
model

conforms toconforms to

writesreads

executes

refers torefers to

FIGURE 12 Basic concepts of model transformation.

ment transformation rules mostly from scratch using a general purpose program-
ming language. Relational transformations operate on mathematical relations
and use constraints to specify the type of the relations between different source
and target elements. The definition is non-executable but can be given execution
semantics using logic programming, or more specifically, a constraint program-
ming approach. Graph-based transformations employ the theoretical work on
graph transformations and operate on typed, attributed, labeled graphs specifi-
cally designed to represent UML-like models. Structure-driven transformations
have two distinct phases: the first phase creates a hierarchical structure of the
target model and the second sets the attributes and references in the target. The
idea is to copy model elements from the source to the target, which then can
be adapted for the desired transformation. This categorization can be divided
into two basic approaches: direct-manipulation transformations are imperative,
whereas relational, graph-transformation, and structure-driven are declarative in
nature. Hybrid transformations mix the two types. Finally, transformations can
be bidirectional or unidirectional, where they can be applied from one metamodel
to another and vice versa, or only from one metamodel to another, respectively.

A model transformation is expressed in a model transformation language.
The language is used to define the transformation rules, and the rules may be
written in any executable language. Both general-purpose and domain-specific
languages have been used for this. As noted by Bezivin et al. [19], transformations
can also be seen as models, and in fact, the OMG also specified that transforma-
tion languages in the MDA must be defined as MOF metamodels, and thus any
transformation definition written with such a language is a M1-level model.

Models, metamodels, and transformations are the basic building blocks of
model-driven architectures, but the MDA itself does not concern the process of
applying a model-driven approach. A more general concept, model-driven engi-
neering (MDE) was first considered by Kent [122], who articulated requirements
for both the processes and the adjoining tools for realizing the MDE in practice.

99

Kent argued that the development process should guide both the process of con-
structing the individual models and coordinating the efforts related to different
models, e.g., which models should be built first. Kent also stated that tooling is es-
sential to maximize the benefits of the MDE. However, Mohagheghi and Dehlen
[146] reviewed experiences in applying model-driven engineering in the software
industry. They found that in most cases the maturity of development tools is still
perceived as unsatisfactory for large-scale industrial adoption. They listed re-
ports of improvements in software quality and of both productivity gains and
losses, but the results were primarily from small-scale studies, and concluded
that there is too little evidence to allow generalization of the findings. However,
despite the lack of available tooling, model-driven techniques can be applied to
enhance other software engineering approaches as well.

The model-driven approach has a natural connection to software product
lines, where the separation of abstract behavior and product-specific functional-
ity is rather similar to the distinction between the platform-independent layer of
the design (models) and the resulting platform-dependent realization (implemen-
tation). Note that the SPL refines the concept of model into two types, depending
on the process that generated it. Therefore, in the context of software product
line architectures, we distinguish two types of metamodeling architectures: do-
main metamodeling architecture and application metamodeling architecture, describing
model constructs in the domain layer and the application layer of the software
product line, respectively. This is especially relevant in the M1 layer; an application
model is often refined from a more generic domain model. Note that, for instance,
metamodels in M2 may also be refined in a similar fashion, but within the con-
text of this work, we focus on model-level variation. Model-driven engineering
can be utilized for managing and implementing variability in SPLs; for instance,
model transformations can be applied to domain models to produce application
models; models may represent VPs, which in turn result in different application
level implementations; and transformations may be varied as needed. Model-
driven SPLs, thus, employ one or more of the MDA concepts, but not necessarily
to their full extent.

The recent attraction to model-driven techniques in software product lines
is a direct result of the increasing amount of variability in SPLs. According to
Bosch et al. [23], there are two reasons for this: firstly, there is a tendency to move
variability from hardware to software, thus increasing the flexibility of the system
configuration and decreasing the cost of variance; and secondly, design decisions
are usually delayed as much as possible during the software development pro-
cess, and often, variability is fully resolved at the moment the software system
is installed. This would suggest that to maximize the flexibility of the overall
system, binding time is being pushed towards runtime binding in all elements.
This flexibility increases the applicability and decreases the costs of modifying
the system. Moreover, model-driven development opens the possibility for au-
tomating parts of the software product line processes by using transformations to
generate applications from the domain layer. This process is often referred to as
automatic product derivation, and the adjoining SPL a configurable product line. Due

100

to these developments, a considerable effort has been made in developing a theo-
retical understanding of the techniques in model-driven SPLs and implementing
the necessary tool support for utilizing the alleged benefits.

The model-driven software product line (MDSPL) is not an entirely new
concept: for instance, Muthig and Atkinson [148], Deelstra et al. [56] and Czar-
necki et al. [52] considered the prospect of combining the abstraction capability of
the MDE and the variability management capability of SPLs. González-Baixauli
et al. [97] applied model-driven techniques to variability management, and San-
tos et al. [178] and Oliveira et al. [158] explored automatic product derivation
from the SPL using the MDE. More recently, Tawhid and Petriu [197] proposed
a technique for integrating a performance analysis to the model-driven prod-
uct line development and Schaefer [183] introduced a variability formalization
based on Δ-models which can be employed on every level of modeling, and are
preserved under model transformations. Schaefer separates the core model and
adjoining Δ-models representing changes to core assets to incorporate product
features. These models are transformed independently to obtain a more detailed
view of the MDSPL.

Although the varying of model transformations is a well-established sce-
nario in model-driven engineering, we are aware of only one work addressing a
model transformation as a variability subject in a product line architecture context,
namely that of Trujillo et al. [203]. They do not provide a concrete application
of such an approach but contemplate with the idea that metamodels and model
transformations should be considered as candidates for variability subjects. They
conclude that a shift is needed in research attention, from the variability of mod-
els to variability of metamodels and model transformations. Another interesting
approach to variability management is to view SPL features as transformations
that take a program as an input and produce another program with that feature
included. Since models in the MDA can be executable models, this is compatible
with the concept of model transformation. An example of such a technique is
given, for instance, by Freeman et al. [78].

4.4.5 Aspect and Context Oriented Techniques

Naturally, model-driven engineering is not the only approach used in managing
variability in software product lines. One general concern which is not addressed
by the MDE alone, is the so-called cross-cutting functionality. A cross-cutting
functionality is a certain type of functionality that affects several, or all, parts
of the systems. A typical example of this is logging, which is typically needed
by almost all elements. Changing a logging mechanism scattered to all parts of
the system can be tedious. To cope with these kinds of situations, the so-called
aspect-oriented software development (AOSD) has been introduced [71]. The
main idea is to separate the cross-cutting functionality, the so-called aspects, and
to automatically generate them into the parts needed by marking the required el-
ements a priori or by inferring the generation requirement from other rules. This
kind of generation is often referred to as weaving. In software product lines, this

101

technique has been used to manage variability scattered to different parts of the
architecture, especially by weaving variability into models and metamodels. This
technique has been recently demonstrated, for instance, by Morin et al. [147] who
apply aspect-oriented techniques to perform product line derivation by weaving
variability into domain metamodels; and Voelter and Groher [207], who achieve
modularization of variability on different levels by separating the features of dif-
ferent models and composing them by aspect-oriented techniques. Schaefer [183]
also noted that their Δ-models can be implemented using aspect-weaving.

The exact variants of an application in a software product line are usually
bound before the system is run. However, if the application is required to resolve
a variant at runtime, that is, to be runtime adaptable, or especially if the system
itself needs to be capable of adapting its runtime behavior according to the con-
text it perceives, that is, to be self-adaptive, more sophisticated techniques may be
required. Some initial work has been done on the so-called context-oriented and
self-adapting software product lines, where the variability may be resolved by
the system itself according to its environment at runtime. According to Costanza
[49], context-oriented programming (COP) has been defined as an approach that
focuses on programming constructs which enable grouping, referencing, and ac-
tivating and deactivating layers of behavioral variation. This approach has its
roots in the research of context acquisition and reasoning. Some researchers have
addressed the issue of runtime variation. Costanza describes the current state of
the COP and their implementation, which is arguably the most mature realization
of the COP concepts. Classen et al. [40] discuss the issues in SPLs when address-
ing self-adaptive and dynamic systems. Alves et al. [2] give a review on variabil-
ity management in software product lines and runtime adaptable systems, and
Hubaux and Heymans [106] discuss configuration techniques in product lines,
including those taking place at runtime.

Creation of hybrid methods, such as the model-driven aspect-oriented soft-
ware product line, attempts to alleviate the weaknesses of any single approach.
The challenge is the growing complexity of the methodology, and again as also
noted by Kent [122], proper tool support is essential for achieving full-fledged
wide-spread utilization of these techniques.

Nevertheless, the emergence of these sophisticated approaches would sug-
gest the potential for further utilization of software engineering methodology in
the implementation of decision support systems such as route optimization soft-
ware. As we will observe, the possibility of automatic adaptation and product
derivation is an interesting venue for further research also in the routing domain.

4.5 Summary of Implementability Aspects of Routing Systems

The VRP domain is complex and heterogeneous: optimization models are in-
creasingly intricate and solution methods need to be efficient, robust, adaptive
and, if possible, simple. Despite these challenges, utilizing automated routing is

102

an alluring option: creating an efficient automatic planning system results in ef-
fective logistic operations, which is the aim of many, if not all, operators perform-
ing these activities. Such a system has, however, a number of requirements to be
useful. We consider some of them in this work, and achieving the two central
ones, usability and implementability, is by no means straightforward. Managing
the complexity of implementing the system is critical, and to mitigate the risks in
implementation of these complex systems, research on software engineering has
resulted in systematic techniques that aid in this task.

Software engineering techniques, such as software product line architec-
tures, attempt to manage the complexity by providing a systematic approach for
reuse and variability management. The key for complexity management is the
development of abstractions [42]. Software architecture, software product lines,
and model-driven engineering are, at their core, techniques for abstracting de-
tails, and in order to deal with the growing complexity of software, more het-
erogeneous domains, and the increasing need for customization, we argue that
there is a need to identify and systematically utilize the general structures and
their properties of the systems at hand. Moreover, proper architectural design
enables us to break the dependencies between models, search operators, meta-
heuristics, and solution presentation by introducing generic interfaces through
which the different elements can interact. In other words, such an approach pro-
motes a separation of concerns in the varying elements and decreases the effort
of building the system by simplifying the implementation and providing means
for introducing flexibility into the structure.

The task of building a single system capable of addressing all the problems
in the routing domain is likely to be unattainable, and as noted by other authors,
building a system for each individual case is not an option from the practical
point of view [191]. Building a software product line for a family of related sys-
tems, is, however, a viable option for the VRP domain. Generalizing the common-
alities of the routing problems at the domain level yields reusable components
and lowers the overall effort of building the system, and varying at the applica-
tion level enables the system to reasonably adapt to the particularities of the case.
Note that the SPL is, indeed, a proper extension of the two extreme alternatives:
if a system for a particular case can be constructed entirely from existing reused
components, we get one extreme, and if all components need to be built from
ground up at the application level, we have the other extreme. A direct result
is that this approach allows us to control and manage the costs and the quality
attributes of the resulting system. For instance, if higher performance is required,
more customization can be made at the expense of reusability. These considera-
tions are relevant from the practical point of view of both the organization that
constructs the system and the one utilizing it.

While the discussion in Chapter 2 concerned, from the software quality
viewpoint, the fidelity of a VRP system, and in Chapter 3 performance and ro-
bustness, the focus in this chapter was in applicability, flexibility and simplic-
ity. These aspects have not been widely discussed in the context of usability
and implementability in the current literature, and especially, the needed com-

103

ponent, reuse, has been missing from the discourse. We would like to emphasize
the importance of managing the complexity during implementation, and we ar-
gue that this can be achieved by constructing generic elements and employing
a decoupling of concerns. As noted, applying research into practice is challeng-
ing and requires techniques for coping with the needed variability. Fortunately,
software engineering practices for solving these problems have been proposed,
and indeed, these recent efforts address the needed applicability, flexibility, and
simplicity. This work attempts to bring these aspects into the domain of vehicle
routing. Fidelity and accuracy are further increased by an introduction of a more
generic model. Performance, that is, developing better methods, was not in the
scope this study, and we address the issue of robustness when, again, discussing
directions for future research.

We are at the verge of building generic and adapting routing systems, but
we are not yet certain of the most suitable approach. However, we argue that
utilizing knowledge from software engineering will be essential, and this work
presents our proposals. Here they are.

5 MODELING FRAMEWORK

“There are only two hard problems in computer
science: cache invalidation and naming things.”

— PHIL KARLTON

In this chapter, we describe the modeling framework developed in our re-
search. This framework forms the main contribution of this thesis and addresses
the heterogeneity and the fragmented nature of the VRP research. It should be
noted that this theoretical system has its roots in a practical need of a more gen-
eral way of describing and solving vehicle routing problems in a software system.
There are a number of properties that will be discussed using formal definitions,
but many — although not all — features have also been implemented and tested
in practice. We discuss the specifics of implementation in the subsequent chap-
ters.

The chapter is structured as follows. In Section 5.1, we provide an overview
of the framework and an insight into the application domain in which we attempt
to operate. In Section 5.2, we present a simplified model of this domain, and in
Section 5.3, a metamodel for routing problems. In Section 5.4, we then describe
a model transformation from the domain model to the models described by this
metamodel. Finally, we briefly summarize this chapter in Section 5.5.

5.1 Overview

The modeling framework consists of a domain model of routing problems, a routing
metamodel for algorithmic manipulation and a model transformation with an adjoining
transformation language. A central element of the developed framework is the
routing metamodel which is used to describe the actual optimization models. The
metamodel is described here by giving a set of invariants on the structure of the
optimization models conforming to the metamodel. These invariants also give
an unambiguous description of the process of solving the problems described

105

by the models. The model transformation is used to produce these case-specific
optimization models from the domain model. In practice, the domain model is
an object-oriented representation of the relevant parts of the domain of routing
problems. As the domain model is conceptually relatively simple, it is presented
here primarily to provide a common understanding of the problem domain.

An overview of the problem domain can be given with the following exam-
ple. Consider a case where a logistic operator performs the design of operations
involving a transportation of perishable goods (such as food supplies) from a
number of warehouses to small stores in an urban area. Moreover, some stores
produce goods (such as empty bottles) that need to be transported from the store
to a collection center.

The resources the operator can employ consist of a fleet of vehicles and a
set of drivers for these vehicles. The vehicles reside on two depots near the city
center, and for flexible utilization, there are three types of vehicles with differing
sizes and costs. Some of the transported goods need special equipment, such as
a cold storage, and a subset of vehicles has this capability. Furthermore, a set of
trailers can be assigned to some of the vehicles to provide extra capacity with an
additional cost. Not all customers, however, can be served with large vehicles or
with trailers as some of the shops are in small alleys.

Other requirements for the plans include that the drivers have differing abil-
ities; some, for instance, do not have licenses for operating all the vehicles or driv-
ing with trailers. The legislation also requires that each driver must have breaks
of 15 and 30 minutes during the nine hour day. Furthermore, the transported
goods should not remain in the vehicle for exceedingly long periods, some goods
should not be transported together in the same compartment, and the goods
should arrive at the shops during designated time windows.

Given the problem definition, the task of the operator is to choose which
drivers employ which vehicles and which vehicles visit which stores. In addi-
tion, the goods should be assigned to a suitable compartment. As the plan is
being executed, new orders may be placed and the plan needs to be adjusted to
accommodate these changes. The objective is to minimize the total costs to the
operator.

In the subsequent sections, we go through modeling tools that are capable
of expressing these elements of routing problems. The choice of assigning the
deliveries to drivers and sequencing them to concrete drive plans requires map-
ping the tasks to the drivers. This forms the basis of these types of problems.
The modeling elements for these decisions are examined in Section 5.3.2. As, e.g.,
the time used during the operation is central in many of the requirements stated
for the operator, we examine accumulation of these types of resources in Section
5.3.3 under the name “resource projection”. In addition, the operator needs to
consider different types of capabilities for performing the tasks; for instance, de-
pending on the choice of vehicle, the driver may be able to employ a trailer or
serve a specific store. The dynamics of capabilities are captured by “capability
projection” examined in Section 5.3.4. These two concepts are combined under
the element “partial resource projection” in Section 5.3.5. This combination al-

106

lows specification of more detailed requirements. For example, the orders can be
tracked individually, which allows the expression of the maximum allowed time
on a vehicle for each order. As the usage of a trailer increases the travel times and
costs, a mechanism named “stack resource projection” is introduced to model
these types of situations. Section 5.3.6 introduces such a concept for expressing
the changes in the delta of resources or costs due to different capabilities. Finally,
Section 5.3.7 presents a mechanism for expressing a set of mutually exclusive de-
cisions. This can be used to model, for example, the loading decisions of the
goods and the decisions for the breaks of the drivers. The different mechanisms
are composed of different modeling elements, which are introduced throughout
this chapter.

5.2 Domain Model

The domain model within the system is the representation of the problem do-
main in object-oriented terms. We present here the part of the domain model that
is visible to the model transformation engine; thus, for instance, classes repre-
senting the domain data in a more human-readable form are omitted. Examples
include entities such as schedules, routes, and depots. The core domain model
is depicted in Figure 13 and illustrates the base structure of the model which can
then be extended case by case within the product line architecture. The over-
all schema is somewhat simplified, but does communicate the relevant elements
required in modeling rich routing problems in a coherent way. The figure illus-
trates the domain elements and their relationships. The domain elements given
are enumerated below.

Plan is the root object of the structure and represents the collection of all
the drivers, the equipment for the vehicles, and the tasks in the problem. It also
keeps track of unassigned tasks — that is, tasks that have not been given to any
vehicle.

Driver represents a driver of a vehicle. Each driver corresponds to a poten-
tial route on the problem as they are needed for performing the tasks. In cases
where the drivers are not relevant to the problem, vehicles and their properties
may be used instead when specifying the properties of the empty routes. In both
cases, each driver is eventually given a vehicle whose list of tasks indicates the
tasks that are performed by the driver. In addition, Driver inherits the Locatable
entity as each driver may have a predefined start and end location and time win-
dows indicating availability.

Vehicle represents either a potential route, or the start and end locations of
the vehicle, depending on the specifics of the case. Each Driver may have one
designated vehicle whose properties are given to the route, or, if fleet selection
has to be made, the assignment of vehicles to drivers may be left for the opti-
mizations. A vehicle has a list of tasks that have been assigned to be performed
using the vehicle. Vehicle inherits the Locatable entity as each vehicle may have

107

Vehicle

Location

TimeWindow TaskEvent

TaskDriver

Compartment

Equipment

Trailer

Plan

Locatable

�0..10..*

� 1
2

�0..1

0..*

� 1

2

� 1

1

�11� 1 2

� 1 1..*

� 1 0..*

�0..1

0..* �

1

1..*

�0..1 0..1

�� 0..1 0..*

��0..1

0..*

FIGURE 13 An overview of the elements of the domain model visible to the model
transformation engine.

108

a predefined location and time windows indicating availability.
Task represents an abstract task on a route. As the domain model is based

on pickup and delivery problems, a task typically consists of two parts: pickup
and delivery, or the start and end TaskEvent of a task. Properties of tasks include,
e.g., capacity and compatibility requirements.

TaskEvent represents a half of a task; pickup or delivery. Each task event
has properties describing the task itself, such as location, time windows, compat-
ibilities, requirements, and duration of the task.

Locatable is an abstract entity representing an entity with two locations,
start and end, and adjoining time windows. This entity is extended by Equipment,
Vehicle, and Driver.

Location represents an instance within, e.g., the distance matrix. Each ve-
hicle, piece of equipment, driver, and task has two locations: start and end.

TimeWindow represents an interval in time and is used to represent, for in-
stance, deadlines for tasks and availability of vehicles.

Compartment represents a capacitated container capable of providing mul-
tidimensional capacity for completing tasks of corresponding capacity. In multi-
compartment routing, each compartment corresponds to a decision by itself. In
cases where the loading decisions are not part of the problem, the total capacity
of compartments is used as the capacity of the vehicle.

Equipment represents a piece of equipment that may be needed for perform-
ing certain tasks. In some problems, these properties are generated to the vehi-
cles, but if there is a need to include them as decisions, they may be generated
as decisions on the route. Properties of these entities include compatibilities with
drivers and vehicles and the capabilities they add for performing tasks.

Trailer represents a special piece of equipment that holds additional com-
partments. If trailers are needed as decisions within the problem, they can be
included as decisions on the route; otherwise they may be generated within the
properties of the vehicle or driver they are used by.

The schema here is not a complete representation of the domain model, and
is intended to be more illustrative than definitive. This is the generic domain the
optimization is applied on. We examine the properties of these entities in more
detail when we discuss the transformations within different cases. The proper-
ties of these entities are not listed here, and they are discussed solely from the
optimization model viewpoint. That is, we examine only the parts used in the
problem generation process.

5.3 Routing Metamodel

In this section, we formally define the elements of the developed conceptual mod-
eling framework1. First, in Section 5.3.1, we locate the elements of our modeling
framework within the broader picture and provide an overview of their structure.

1 As opposed to a software framework.

109

In Sections 5.3.2–5.3.8, we formulate the model elements and gradually build a
complete modeling approach. The overview is discussed using generic algebraic
formalizations, and the remaining sections — to provide bridge to implementa-
tion — in Z notation [114], a formal specification language. For an introduction
and an informative description of the language, we refer to the Z notation refer-
ence manual by Spivey [192].

5.3.1 Classification of Constraints

Combinatorial optimization is defined as the act of choosing, partitioning, and
ordering a finite set of elements. Now, solving routing problems, defined by
choosing, ordering, and assigning a set of tasks to a set of vehicles, can be seen
more generally as an act of mapping and ordering a (possibly sub-) set of given
activities to a given set of actors performing these activities.

In this chapter, we design a graph encoding for routing problems. The en-
coding is partitioning-based and builds on resource constrained paths along with
some additional constructs. As discussed in Chapter 2, we form paths on the
graph of the problem, and each such path is a sequence of operations performed
by the entity assigned to operate on that path. Each decision on which operations
are performed by whom is a decision on mapping, and each decision on the exact
sequence, that of ordering.

The decisions on mapping and ordering are subject to constraints. Gener-
ally, a constraint function is any function R : �× � → �

n, n ∈ �, where � is
the space defined by the values of the decision variables on mapping, and �, the
space defined by the values of the decision variables on ordering. The feasible
region is defined by a set of inequalities for the values of the function in �n. As
the structure of these constraint functions largely defines the computational com-
plexity of the solution process, it is useful to identify classes of functions that are
expressive enough for describing routing problems, but efficient enough for an
optimization process. In particular, we are interested in the properties that affect
the computational complexity of their evaluation. In this section, we identify a set of
such key properties for analyzing the optimization in the developed framework
later in Chapter 6.

We identified a class of constraint functions in Chapter 2 that is particularly
suitable for routing. Resource extension functions are a special case of a class of
constraints we denote here as mapping-ordering constraints. These type of con-
straints depend on both decisions on mapping and ordering. Other such classes
are then constraints on mapping and constraints on ordering, which can be com-
puted solely from the values of the decision variables on mapping, and those on
ordering, respectively.

Constraints on mapping are functions of type R : � → �
n, n ∈ �. These

types of functions are useful for stating restrictions between the entities the map-
ping is done to. The computation of these functions does not require traversal
of the sequences resulting from the decisions on ordering, and this makes the
computation of these functions solely dependent on the number of changing vari-

110

ables involved. In practice, computing global mapping constraints can be tedious
as they may affect structures in different parts of the solution (e.g., decisions on
different routes). Constraints on mapping can be used, for example, to require a
balance in the number of activities between routes, to define mutually exclusive
activities, and to state incompatibilities between activities and actors. One type
of mapping constraints will be examined within the developed framework.

In contrast, constraints on ordering are functions of type R : � → �
n, n ∈

�. Constraints on ordering are less useful in routing problems as the decision
on mapping is central to the design of the routes, but these types of constraints
could be used to state that, for example, the third node of each route should adhere
to some restriction regardless of the actual route and the nodes preceding it2. As
all of the typical constraints in routing problems depend on some decisions on
the mapping of activities, these types of constraints are not employed within the
developed framework.

Constraint functions of mapping-ordering type, that is, R : � × � →
�

n, n ∈ � can be divided into several subclasses according to their compu-
tational properties. The most interesting class of constraints in the context of
routing problems is the constraints based on resource extension functions. In the
broader class of constraint functions, the characteristic of these functions is that
they can be computed incrementally along a path. These can be defined as fol-
lows. Let pi be the ith node on path P. Given a constraint function R, constraints
based on generic resource extension functions can be expressed by stating that

R = Fpq−1,pq(Fpq−2,pq−1(. . .Fp2,p3(Fp1,p2(∅)) . . .)), (56)

where q ∈ � is the length of the path, Fij : �γ̄ → �
γ̄ is the resource function

describing the change from i ∈ P to j ∈ P, and γ̄ is the number of resources in the
problem.

The given generic definition does not yet communicate much structure on
resource extension functions. There are four properties that largely define the
structure of these types of constraints, that is, their

• monotonicity,

• sources of dependency,

• types of dependencies, and

• boundedness.

Monotonicity refers to the monotonicity of the constraint function that results
from the composition of a set of resource extension functions. The constraint
function can either describe a change that is non-negative (or non-positive) at
each transition, i.e., be monotonic, or allow both types of values, i.e., be non-
monotonic. This property affects some solution approaches, but is not directly

2 We do not know the preceding node unless we know which route we are on.

111

relevant in the context of the developed framework as it stands now. This prop-
erty is included mainly for completeness.

Sources of dependencies refer to those resources whose values are needed
in computing the value of the resource in question. The trivial case occurs when
no dependency is present, but this case is degenerated as the value cannot accumu-
late if there is no dependency on the previous value of the resource. The typical
case is one where the resource is dependent on itself. A resource can also be de-
pendent on other resources, or both its previous value and that of other resources.
These dependencies affect the order of computation that must occur in the eval-
uation of the constraint functions, and if a resource is dependent on another re-
source which is computationally expensive to evaluate, also the evaluation of the
resource in question becomes expensive in this sense.

Types of dependencies refer to the types of the functions needed in com-
puting the change in a resource while traversing the path. There are two base
types of dependencies: rule dependency and value dependency. A resource is rule-
dependent on another resource if its value not only depends on the value of the
other resource but also becomes irrelevant with respect to the rules on the allowed
values. In a sense, these types of resources can be seen as subresources of a given
resource. Value dependency, on the other hand, can further be divided into three
distinct classes. The generic case is given in Equation (56), and named here as
undefined dependency. The name refers to the fact that we cannot determine the
exact change in resource values unless we have evaluated the situation at the pre-
vious node on the path. These types of functions are, therefore, here referred to
as situation dependent. A special case of the generic case is transitional dependency
which allows us to evaluate each resource extension function as a component of
the sum along the traversed path. These types of functions can be written in the
form

R = Fp1,p2 +Fp2,p3 + · · ·+Fpq−1,pq . (57)

A further special case of transitional functions are the so-called fixed functions
whose value depends only on the nodes on the path, not the traversed edges.
These types of functions can be written in the form of

R = Fp1 +Fp2 + · · ·+Fpn . (58)

These two types of constraint functions are much easier to evaluate when per-
forming small changes to the decision variables as they can be decomposed into
independent components. This will be examined in more detail in the subsequent
chapter.

Boundedness refers to the property which defines whether the function can
be bounded after each resource extension evaluation. A function is free when it
has not been bounded, and bounded, if it is, for example in a transitional case, of
the form

Fpi,pjγ(x) = max{α
γ
pi,pj

, x + Δ
γ
pi,pj

}, (59)

where α
γ
pi,pj

is the lower bound and Δ
γ
pi,pj

is the change in value for resource γ

when traversing from pi to pj.

112

Within these classes of constraint functions, we may identify, for example,
the generic resource extension function. They can be classified as non-monotonic,
bounded, and value-dependent (undefined) on both their values and those of
other resources. The classical resource extension function [110] can be character-
ized as monotonic, bounded, and value-dependent (transitional) on itself.

In the following sections, we construct a modeling approach using the dif-
ferent classes of constraints, and introduce, for example, a set of different types
of projections on different types of resources. These mechanisms introduce a set of
computation rules for these resources. The sections are named according to the
primary element computed by the projection in the given section. As a whole,
this mechanism for computing with the modeling elements in question defines
a set of constraint functions. These functions consist of a set of resources, their
types, dependencies between the resources, a definition of the accumulation of
these resources, and the adjoining rules determining the allowed range of the re-
sulting values. For convenience, we list all the schema types in this specification
in an index in Appendix 1.

We follow a set of conventions in introducing the elements of the frame-
work. Whenever applicable, the following outline is used. First, we introduce
the mechanism and provide an illustrative example. Then the input to the mech-
anism is discussed. This is followed by an introduction to the basic types and a
definition of a binding schema that binds the new variables introduced to the
existing ones. To differentiate between constraints and rules, we refer to the
schemas computing the values of the constraint functions as projections as they
can be thought to “project” the values of the decisions into the constraint space.
The schema specifies the declarations needed in the mechanism and the predi-
cates used to describe their relation to the existing declarations. Subsequently,
we introduce a more detailed schema, which is used to describe the predicates
needed in computing with the mechanism. The names of these two types of
schemas are suffixed with -Binding and -Restriction, respectively. These schemas
are then combined into a complete mechanism, and a comment on its location in
the given taxonomy is given. This is followed by an introduction to the necessary
rules, also in two parts. Finally, any possible additional related schemas are in-
troduced, and the section is completed by a summary in which we combine the
newly introduced schema into the larger schema type being developed.

When we discuss resources within the projections of different types, we
need to distinguish two distinct types: those that are resources in a classical sense,
and those used here as an abstract type. While resource projection introduces a
set of resources that corresponds one to one with classical resources, the subse-
quent mechanisms introduce more complex cases. Capabilities, for instance, can
be seen as a pair of classical resources, and thus when we discuss the classification of
the elements of these mechanisms, we explicitly refer to classical resources where
needed. Otherwise, the resources refer to the types defined in the given schemas.

Before we move to examine the different constraint-based constructs of rout-
ing problems, we begin the definition of the modeling framework by formalizing
the needed decisions.

113

5.3.2 Decision Variables

Mapping and ordering decisions are encoded into the structure of the routes by
assigning the activities to actors and constructing sequences from these activities.
This section specifies the formal structure used in this modeling framework for
capturing the exact meaning of these two decisions. The modeling concepts are
expressed in Z notation, and for a reader unfamiliar with Z, an introduction to
the notation is given in Appendix 2.

We begin by formalizing the basic concepts of activity and actor.

[Activity]

Actor
start : Activity
end : Activity

Actors have starting and ending activities, which must be found on the route
of that activity. These activities equip actors with properties which any regular
activity might have.

Next we define the schema of the Ansatz itself. First, however, we introduce
a concept of paths, defining a (non-empty) sequence of elements related to an
actor.

paths X == { f : Actor ↔ seq1 X }

Now the Ansatz can be defined as follows.

Ansatz
actors : FActor
activities : FActivity
routes : paths Activity
assigned : FActivity
unassigned : FActivity

dom routes = actors
assigned =

⋃
{ route ∈ ran routes • ran route }

assigned ∪ unassigned = activities
assigned ∩ unassigned = ∅

∀ actor ∈ actors • ∀ route ∈ routes�{actor}� •
actor.start = head route ∧
actor.end = last route

In the described schema, actors is the set of actors associated with the problem the
Ansatz corresponds to, activities the set of activities defined within the problem,
and routes a relation mapping a set of activities to actors and ordering them into
sequences. Furthermore, we denote the set of activities that have been mapped to

114

�3 ⊥3

�2 ⊥2

�1 ⊥1

1 2 3 4

5

FIGURE 14 An example of an acceptable mapping forming three routes within an
Ansatz of a mapping and ordering problem.

an actor by a collection of activities named assigned, and those that have not been
mapped to an actor, unassigned.

The defined properties of the Ansatz state the allowed values of each vari-
able. First, we require that the domain of the relation mapping the sequences of
activities to actors is the set of activities within the problem. Second, the set of as-
signed activities is exactly those activities mapped by relation routes. In addition,
the activities within the problem are either on the set assigned or the set unassigned.
Finally, we state that each sequence of activities must contain the start and end
activities of its actor as its first and last element.

When the values of all the decision variables within the problem can be eval-
uated unambiguously from the mapping and ordering of activities, the problems
described by the given schema correspond to those given in Chapter 2. However,
for this we must assume that it is never optimal to wait at an activity if it is not
specifically required, that is, leaving later will never, e.g., lower the costs or result
in an earlier arrival. This issue is examined in more detail when discussing the
usage of resource extension functions within this modeling framework.

An example of an Ansatz with five activities assigned to three actors forming
three routes is depicted in Figure 14. The following convention is used in the
figures of this chapter: the actor start for the actor number3 i is denoted with
the symbol �i, and the actor end, with ⊥i. Each activity is denoted with a plain
number. In the example, actor 3 has been assigned activities 1, 2, 3, and 4, whereas
actor 1 has only one activity. Actor 2 has an empty route. Note that an empty
route is formed by a set containing only a starting activity and an ending activity.
As such, this construct is analogous to the partitioning mapping in the graph-
based encoding described in Chapter 2, but with each vehicle having a unique
start and end.

As mapping and ordering the activities to actors results in sequences and in
order to compute changes in the state of these paths as we traverse them, we will
establish a set of computation rules for this purpose. To do this conveniently, we

3 Strictly speaking, we do not identify actors with an id, but the reader may assume an injec-
tion from natural numbers to all the actors of the problem for this purpose.

115

define operators for expressing the traversal between the activities along these
sequences.

[X]
next : (seq X × X)
→ X
prev : (seq X × X)
→ X

∀ s : seq1 X; x ∈ ran front s •
next(s, x) = μ n : N | s(n) = x • s(n + 1)

∀ s : seq1 X; x ∈ ran tail s •
prev(s, x) = μ n : N | s(n) = x • s(n − 1)

The next operator for an element of a given sequence identifies at most one other
element from that sequence. That element is the immediate successor to the for-
mer. Similarly, the prev operator for an element of a route identifies at most one
other element from that route. That element is the immediate predecessor to the
former.

Note that both of these functions are well-defined for every activity that has
been assigned to an actor as these activities are guaranteed to have at least the
actor start activity occurring before it and the actor end activity occurring after it.
The results of these functions are left unspecified if the next or previous element
does not exist.

Our definition of mapping and ordering problems did not specify how the
mapping and ordering should be done. In this context, we refer to mapping and
ordering problems with three additional assumptions; that is,

• each actor has a unique route,

• the routes are disjoint, and

• each activity occurs at most once on a route,

and denote such problems as proper mapping and ordering problems.
Although we could include the assumptions into the schema of the Ansatz,

we present each assumption individually as we would like to keep the base
schema as generic as possible for further revision and a possible relaxation of
some of these assumptions. It is also more straightforward to discuss each as-
sumption individually, and this allows us to highlight the differences between
the generic and the proper mapping and ordering problems as these assumptions
are somewhat strong and central to our modeling approach.

To identify actors with routes, we define that

Uniqueness
routes : paths Activity

routes ⊆ { f : Actor
→ seq Activity }

116

which gives each actor in the Ansatz at most one route. This means that, for in-
stance, periodic problems must be modeled as additional visits to a depot instead
of actual multiple sequences of activities. When the activities are not assigned on
multiple routes and the constraints refer to a single actor, the constraint evalua-
tion is simplified: the changes in a route of one actor do not require evaluation of
the feasibility and objective on other routes.

To define that activities must reside on at most one route at a time, we may
state that the routes must be disjoint. Stating disjointness is a matter of enumer-
ating all actors and their activities and using the actors as an index set for the
operator disjoint.

Disjointness
routes : paths Activity

disjoint { actor : dom routes • actor
→ ran routes�{actor}� }

If we assume disjointness, depots and other shared locations have to be modeled
by generating distinct activities for each potential visit to them. This has naturally
the downside that it usually results in a larger problem.

As we discussed in the preceding section, resource extension functions are
computed by traversing a path. Now, if we assume that each activity occurs
at most once at a sequence, we are able to define a unique value of a resource
extension function for each pair of activities. Thus, we define that

Injectivity
routes : paths Activity

routes ⊆ { f : Actor ↔ iseq Activity }

which results in injectivity on the ordering function; and since each activity can
now appear on a route at most once, this results in that each task, for instance, at
a single customer, has to be modeled as an individual activity.

Using the schemas given above, we may now define the proper Ansatz for
mapping and ordering problems as

ProperAnsatz =̂ Ansatz ∧
Uniqueness ∧
Disjointness ∧
Injectivity.

The resulting model is similar to the GPDP where each vehicle starts from
and ends at an arbitrary point, and each task may have multiple parts. In the
subsequent sections, we further expand the model for expressing a determinis-
tic, discrete general pickup and delivery problem with complex constraint, deci-
sion, and objective extensions modeled by resource constrained paths, resource
extension functions, mutually exclusive and optional points, and specific label-
ing mechanisms for modeling dependencies between different resource extension

117

�1

t = 0
d = 0

⊥1

t = 13
d = 8

t: 5
d: 3

t: 2
d: 1

t: 6
d: 4

1

t = 0
d = 0

3

t = 5
d = 3

4

t = 7
d = 4

2

t = 13
d = 8

FIGURE 15 An example of the results of two resource delta functions, travel time and
distance, for usage on transitional projections.

functions. However, within the framework, we do not assume that each problem
is of the PDP type: as we will see, these constructs are able to express, for instance,
a simple CVRP.

5.3.3 Resources

The resources accumulated along a route have certain limits which correspond to
constraints for defining an acceptable path. In this section, we define a relatively
simple resource projection mechanism for tracking accumulated numeric values
during the traversal of the route and defining the acceptable ranges of the result-
ing values. The two basic elements of such a mechanism are deltas and values. The
former are used to describe the change at a given point during the traversal, and
the latter, the result of the accumulation.

The basic principle of resource projection can be illustrated as in Figure 15.
The deltas of two functions are depicted above the paths, and the resulting values
of the accumulated resources are listed underneath each activity. The set of all re-
sources within the problem is denoted by the set resources. In the given example,
resources = {t, d}. Now, traversing, e.g., from activity 1 to activity 3, increases
the time traveled (“t”) by 5 units, and the distance traveled (“d”) by 3 units, and
these are computed in a similar fashion between all the activities on the route.
The accumulated values are stored for each activity and denoted here as resource-
Values. Notice that, in this case, traveling from the route start activity and to the
route end activity has zero effect on these two resources.

Resource projection is given a set of resources and, for each such resource,
a delta function that describes its change whenever a traversal between two con-
secutive activities occurs on a path. As the deltas are functions from the Cartesian
product of activities to real values, they can also be represented as matrices. The
often needed time and distance matrices are, in fact, encoded into these transi-
tional functions.

As we need to restrict the allowed values, the mechanism can be given func-
tions defining both upper and lower bounds on the accumulated values. The
upper bounds are used to state a maximum on the accumulated values, and the
lower, a minimum. However, the lower bounds may be used in two ways: we
may require that the accumulated value is strictly within the resource window, or

118

we may allow automatic accumulation — “waiting” — such that the lower bound
is met. Bounds on resources with the possibility of waiting are later used to de-
fine, e.g., regular time windows on activities. Both of these bounds are encoded
into the projection, and the distinction between these two modeling elements is
done according to their effect on the computation. Any element affecting the
result is defined within a projection, and any constraint on these values is intro-
duced within a rule. Therefore, as the lower bounds may affect the result of the
projection due to a possibility of waiting, they are defined within projections. The
upper bounds — asymmetrically — appear only in rules.

We begin formalizing the resource projection mechanism by defining its
basic building blocks. First, as we traverse the defined path, we compute the
changes in the value of the resource and for this we employ a transitional pro-
jection as discussed in the model element taxonomy. A resource delta function is
such a projection: a function from two activities to a numeric value.

ResourceDelta == (Activity × Activity)
→ Z

As we have mentioned, there may be several resources in a problem, and
we introduce an abstract type for identifying these different resources.

[Resource]

Applying these computations results in a set of resource-specific numeric
values. The function mapping each resource to its value is used in this specifica-
tion.

ResourceValue == Resource
→ Z

Using the building blocks given, we may now define the first projection in
detail. For resource projection, we introduce the elements given in the schema
below.

ResourceBinding
activities : FActivity
assigned : FActivity
resources : FResource
resourceDeltas : Resource
→ ResourceDelta
resourceLowerBounds : (Activity × Resource)
→ Z
strictLowerBoundResources : FResource
resourceValues : Activity
→ ResourceValue

dom resourceDeltas = resources
∀ f ∈ ran resourceDeltas • dom f = activities × activities
dom resourceLowerBounds = activities × resources
strictLowerBoundResources ⊆ resources
dom resourceValues = assigned
∀ f ∈ ran resourceValues • dom f = resources

119

First, a finite set of resources is defined for the problem. The resource delta func-
tions are defined on each of these resources, describing the change of value for
that particular resource while traversing the given path. As the path consists of
activities defined in the problem, each such resource delta function is defined
on the Cartesian product of these activities. The lower bounds on resources are
defined using a function from a resource-activity pair to a numeric value. In addi-
tion, we define a set of resources whose accumulated values must remain strictly
within the resource windows, that is, allow no waiting. This set is a subset of all
resources on the problem. The resource value type stores a numeric accumulated
value for each resource, and as we need an accumulated value for each activity
on the path, the set of resource values is a function from all the assigned activities
of the problem to such a resource value. These resource value functions describe
values for the set of resources defined.

Computing with resources is defined in the following schema.

ResourceRestriction
routes : paths Activity
resources : FResource
resourceDeltas : Resource
→ ResourceDelta
resourceLowerBounds : (Activity × Resource)
→ Z
strictLowerBoundResources : FResource
resourceValues : Activity
→ ResourceValue
waitingAt : (Activity × Resource)
→ Z

∀ a, b : Activity; r : Resource • resourceDeltas(r)(a, b) ≥ 0
∀ route ∈ ran routes; r ∈ strictLowerBoundResources •

(∀ a ∈ ran route • waitingAt(a, r) = 0)
∀ route ∈ ran routes; r ∈ resources \ strictLowerBoundResources •

(waitingAt(head route, r) =
resourceLowerBounds(head route, r)) ∧

(∀ a ∈ ran tail route • waitingAt(a, r) = max{0,
resourceLowerBounds(a, r)−

(resourceValues(prev(route, a))(r) +
resourceDeltas(r)(prev(route, a), a))})

∀ route ∈ ran routes; r ∈ resources •
(resourceValues(head route)(r) = waitingAt(head route, r)) ∧
(∀ a ∈ ran tail route • resourceValues(a)(r) =

resourceValues(prev(route, a))(r) +
resourceDeltas(r)(prev(route, a), a) +
waitingAt(a, r))

First, we require that the result of resource delta functions is nonnegative. This
assumption simplifies the computation with resources and makes the projection
monotonic. To compute the projected values, we first need to define the computa-
tion of waiting. This is performed as follows. For each resource with a strict lower
bound requirement, the length of waiting is always zero. For all other resources,

120

at the route start the length of waiting is the value of the corresponding lower
bound, and at the subsequent activities, it is the difference between the value at
the previous plus a delta and the lower bound. The values can now be computed
by stating that the value at the route start is the length of waiting at that point,
and that each subsequent value is equal to the value at the previous activity plus
a delta plus the waiting at the current activity.

We combine the two schemas into a complete resource projection schema as
follows.

ResourceProjection =̂ ResourceBinding ∧
ResourceRestriction

The mechanism presented in this section defines a set of mapping-ordering
type of constraint functions which are monotonic, bounded, and have a transi-
tional value-dependency on themselves. Thus we assume here that the resources
defined in this mechanism are independent of each other. The upper bounds are
defined on the corresponding rule as they do not alter the result of the projection.

The resource rule states that each accumulated value on an activity must fall
on a certain range. Defining the rule introduces the following elements:

ResourceRuleBinding
activities : FActivity
resources : FResource
resourceUpperBounds : (Activity × Resource)
→ Z

dom resourceUpperBounds = activities × resources

The rule is given a set of upper bounds on each activity-resource pair. The upper
bound is defined on the Cartesian product of the activities and resources of the
problem.

The rule imposes a property described by the following schema:

ResourceRuleRestriction
routes : paths Activity
resources : FResource
resourceValues : Activity
→ ResourceValue
resourceLowerBounds : (Activity × Resource)
→ Z
resourceUpperBounds : (Activity × Resource)
→ Z

∀ route ∈ ran routes; r ∈ resources • (∀ a ∈ ran route •
resourceValues(a)(r) ≥ resourceLowerBounds(a, r) ∧
resourceValues(a)(r) ≤ resourceUpperBounds(a, r))

For all resources, the resource values at each activity of each route must be greater
than or equal to the corresponding lower bound and less than or equal to the up-
per bound on that activity. Note that if a resource does not require zero waiting,
it conforms to the first part of this rule by definition.

121

We combine the two schemas into a complete resource rule as follows:

ResourceRule =̂ ResourceRuleBinding ∧
ResourceRuleRestriction

In this REF based approach, it is easy to see the reason for assuming that
the decisions are encoded into the mapping and ordering of tasks. In the for-
mulations given in Chapter 2, the arrival times, for instance, were considered
decisions, but were in fact directly dependent on the decisions of travel. The for-
mulations in that chapter exhibit a problem structure where unnecessary waiting
always increases the costs or at least does not lower them. In the formulation
given here, the accumulated values are by definition a direct and unambiguous
result of the resulting paths; for instance, departure times can be computed from
the departure time at the previous activity and any adjoining constraining time
windows. This enables us to consider the decisions on activities as the sole deci-
sion variable.

As we noted, some constraint functions can be optional in a sense that they
do not alter the feasible region in the search space, but change the structure of the
constraint space so that evaluating feasibility and the objective can be performed
with less computation. An example of such a function is the resource slack function.
A slack function is similar to the corresponding regular constraint function, but it
introduces additional dimensions to the constraint space. These dimensions de-
note the allowed change of value in different variables so that the Ansatz remains
in the feasible region, and this information can be used to efficiently compute fea-
sibility of a potential move as the optimization is performed. The slack functions
have no corresponding rules as they are computed only in a feasible situation
defined by the regular constraint functions.

The slack function for resources introduces the following elements.

ResourceSlackBinding
assigned : FActivity
resources : FResource
resourceSlackValues : Activity
→ ResourceValue

dom resourceSlackValues = assigned
∀ f ∈ ran resourceSlackValues • dom f = resources

Resource slack values is a partial function from activities to partial functions from
resource to a numeric value. The function is defined on the currently assigned ac-
tivities of the problem and the resulting functions on the resources of the problem.

This function can be computed without additional input data, except a suf-
ficiently large number M, and it results in slack values on each activity on the
problem.

122

ResourceSlackRestriction
routes : paths Activity
resources : FResource
resourceValues : Activity
→ ResourceValue
resourceUpperBounds : (Activity × Resource)
→ Z
resourceSlackValues : Activity
→ ResourceValue
M : Z

∀ route ∈ ran routes; r ∈ resources •
(resourceSlackValues(last route)(r) = M) ∧
(∀ a ∈ ran front route •

resourceSlackValues(a)(r) =
min{resourceSlackValues(next(route, a))(r),

resourceUpperBounds(a, r)− resourceValues(a)(r)})

A sufficiently large number M is given as a starting slack at the last activity of each
sequence. At all other activities on the sequence, the slack value is the smaller of
the slack value at the next activity and the upper bound on the activity minus the
projected resource value.

We combine the two schemas into a complete resource slack function as
follows:

ResourceSlackProjection =̂ ResourceSlackBinding ∧
ResourceSlackRestriction

Finally, the resource constrained routing problem can be defined by com-
bining the given schemas with the proper Ansatz defined earlier:

ResourceConstrainedProblem =̂ ProperAnsatz ∧
ResourceProjection ∧
ResourceRule ∧
ResourceSlackProjection

The defined schema is, however, not used for defining constraints in the final
formulation of the routing metamodel. Instead, we employ the mechanism as a
component of other mechanisms, and more importantly, use it for defining the
objective function of the optimization problem. This is discussed in more detail in
Section 5.3.8.

5.3.4 Capabilities

The mechanism for computing capabilities is a central element in the developed
routing metamodel. It is used to describe the dynamics of the capability of an
actor to perform tasks. An active capability denotes an ability to perform activ-
ities, such as serving a customer or picking up a trailer at a given time. Some
activities increase the capabilities of the actor, some require, or consume, them.
At all times, we should hold enough of each capability to enter an activity that

123

consumes those capabilities. This section will formally define this mechanism
and illustrate its usage in various situations in different routing and scheduling
variants and extensions.

The underlying motivation to employ capabilities comes from two primary
sources. Firstly, the product line architecture, for which the modeling framework
has been constructed, relies on a unified metamodel of routing problems, and this
mechanism can be used, with the aid of other mechanisms, to generate different
variants in a unified manner. Secondly, the structure of complex routing variants
is particularly suitable for resources modeled as capabilities: there is a broad class
of constraints that are relevant only at a subset of the route of an actor. These
constraints are, in this sense, local. This structure effectively defines a “state”
at each activity, and, based on the currently active capabilities on the route, we
can track that state while we traverse the route. This state captures the relevant
constraints at a given time. In other words, we attempt to model the state of an
actor at various points in time. Indeed, this approach bears some resemblance
to computing with state machines. This accumulated state can then be used to
define different aspects of different routing variants and extensions.

The accumulated states defined by the mechanism computing the capabil-
ities tackle two distinctive classes of use cases: consumed capabilities and non-
consumed capabilities. Consumed capabilities can be used to model non-monotonic
resources such as capacity in PDP cases, tying together different parts of tasks,
imposing ordering on activities, setting bounds on completing tasks that con-
sist of multiple parts, and so on. Non-consumed capabilities may be used to
express requirements for certain capabilities, such as special equipment which is
not consumed when it is being used, and other activity-specific constraints, such
as time windows. In this section, however, we do not yet consider bounds on
other resources, such as time; this is addressed in the subsequent section where
we combine the principle of resource projection with capabilities.

In practice, capabilities are defined in terms of identifiers and their changes
in activities. Each capability at an activity is identified with an identifier, or label,
and a value it changes at the activity. The figures present the capabilities of activ-
ities above the depicted routes and the corresponding accumulated values below
them. In general, we employ the following convention in notation of capabilities.
The semantics of “x +n” are that we acquire n units of capability “x”, and sim-
ilarly, “x −n”, we consume n units of the same “x”. In other words, the prefix
denotes whether we require (“−”) capability or acquire (“+”) it, and the number,
how much. Moreover, the value “x 0” is used to denote activation of “x”, but no
change in its value. In addition, we use “x ∃” (“x �”), for which — we give the
exact definition shortly, but for the time being — the semantics can be expressed
as a requirement (prohibition) for capability “x” without altering its value.

For illustration, consider a pickup and delivery instance where a vehicle has
to perform three pickups on a route ensuring that each pickup is delivered with
the same vehicle. In addition, one pickup and delivery task (pair 3–4) can only
be served by a certain vehicle, and two of the deliveries cannot be transported
simultaneously (pairs 1–2 and 5–6). This instance is depicted in Figure 16. The il-

124

a +1
c +10

�1

a = 1
c = 10

z �
x +1
c −2

1

a = 1
c = 8
x = 1

a ∃
y +1
c −4

3

a = 1
c = 4
x = 1
y = 1

y −1
c +4

4

a = 1
c = 8
x = 1
y = 0

x −1
c +2

2

a = 1
c = 10
x = 0

x �
z +1
c −7

5

a = 1
c = 3
z = 1

z −1
c +7

6

a = 1
c = 10
z = 0

a −1
c −10

⊥1

a = 0
c = 0

FIGURE 16 An example of a PDP instance with two pickups and deliveries on one
route.

lustration is interpreted as follows. We begin the route at the start activity, where
we obtain one unit of capability “a” and ten units of capability “c”. The former
denotes the used vehicle, and the latter, one-dimensional capacity. Upon entering
activity 1 we make our first pickup losing two units of capacity, and obtain capa-
bility “x” denoting the ability to perform the corresponding delivery. We also
ensure that the incompatible delivery (“z”) is not in the vehicle. Entering activity
3 consumes four units of capacity and acquires, likewise, the ability to perform
the corresponding delivery activity. As the current vehicle is the only capable of
performing this task, we require capability “a” to be present. Subsequently, activ-
ity 4 is a delivery activity, and in it not only do we gain four units of free capacity,
but also cede our cargo identified with “y”. In activity 2, a similar operation is
performed. Note how capability “y” is no longer relevant after it decreased to
zero in the previous activity and was deactivated. The same operation occurs for
“x” in the next activity, and this enables us to perform pickup for the last task as
a prohibition for this capability is present at that activity. This task is completed
at activity 6 and the route end activity removes the capability of the vehicle along
its free capacity.

In practice, capability projection is given a set of capabilities (identifiers).
Each activity is given a subset of these capabilities and an adjoining delta value
which describes the changes in capability values at that activity. Using specific
computation mechanics, the capabilities then specify the state of the actor during
the traversal of the route of the actor.

Analogously to resource projection, we first introduce the basic building
blocks of this projection to formally define it. The type describing the function
used in computing the capability changes during the traversal of the path is a
function from a single activity.

CapabilityDelta == Activity
→ Z

As with resources, we need to differentiate between different capabilities
using a capability type.

[Capability]

125

The resulting values are numeric values for different capabilities.

CapabilityValue == Capability
→ Z

Using the types defined, we may give the basic declarations and predicates
of capability projection. The projection introduces the following elements:

CapabilityBinding
activities : FActivity
assigned : FActivity
capabilities : FCapability
capabilityDeltas : Capability
→ CapabilityDelta
capabilityValues : Activity
→ CapabilityValue

dom capabilityDeltas = capabilities
∀ c ∈ capabilities • dom capabilityDeltas(c) ⊆ activities
dom capabilityValues = assigned
∀ a ∈ activities • dom capabilityValues(a) ⊆ capabilities

First we introduce a finite set of capabilities to the problem. A capability delta
function describes the capability change for each capability in the problem, and
the domain of each function in the range of the delta function is a subset of the ac-
tivities in the problem. This means that the activities of the problem have a subset
of the capabilities defined on them. Each such capability is said to be active on
that activity. Note that this is different from the activeness of the projected value;
the capability is active on an activity on a path, if its capability value exists, and
active on the activity, if its capability delta value exists. The projected values are
given by a function which maps a capability value for each currently assigned ac-
tivity on the problem. Each capability in the domain of the range of this function
is a subset of all capabilities in the problem. This defines, as mentioned, that not
all capabilities are active on the activities on the path.

Capabilities are projected into constraint space much like resources, but
with the distinctive difference that all the capabilities are not relevant at every
activity of the problem. We effectively define a sparse constraint matrix and keep
track of the relevant parts of that matrix at each activity. The changes to the state
are computed by a specific capability arithmetic within the mechanism. These rules
for computing the capability values from activity to another define four different
cases: simple accumulation, both activation and deactivation of capabilities, and
requiring existence without consuming. Simple accumulation either increases
(“+”), decreases (“−”), or keeps the value of a capability the same (zero or an
inactive capability). Activation occurs whenever an inactive capability is first in-
creased above zero. Deactivation, on the other hand, occurs whenever an inactive
capability is added into a zero capability.

To define the capability arithmetic described, we need to specify active-
ness status of different capabilities formally. To do this, we employ the behav-
ior of functions in Z: that is, partial functions may be defined on a subset of their

126

domain of declaration and left undefined in other parts. In this specification, we
state that the value of capability c is active in activity a, if it is in the domain of
capabilityValues(a). To make the semantics of capability projection explicit, we in-
troduce functions for defining the activeness and value of capability values, as
well as obtaining the actual value or zero (in case of inactive capability) from a
capability value function.

The functions used in the capability arithmetic and the subsequent schemas
can now be given as in the following schema:

isActive : P(Activity
→ CapabilityValue × Activity × Capability)
isZero : P(Activity
→ CapabilityValue × Activity × Capability)
valueOrZero : (Activity
→ CapabilityValue × Activity × Capability)
→ Z

∀ f : Activity
→ CapabilityValue; a : Activity; c : Capability •
(isActive(f , a, c) ⇔ (a ∈ dom f ∧ c ∈ dom f (a))) ∧
(isZero(f , a, c) ⇔ (isActive(f , a, c) ∧ f (a)(c) = 0)) ∧

∀ f : Activity
→ CapabilityValue; a : Activity; c : Capability •
(valueOrZero(f , a, c) =

((isActive(f , a, c) ⇒ f (c)(a)) ∧ (¬ isActive(f , a, c) ⇒ 0)))

Using these definitions4, the capability computation can be expressed as
follows:

CapabilityRestriction
routes : paths Activity
capabilities : FCapability
capabilityDeltas : Capability
→ CapabilityDelta
capabilityValues : Activity
→ CapabilityValue

∀ route ∈ ran routes •
(∀ c ∈ capabilities | head route ∈ dom capabilityDeltas(c) •

capabilityValues(head route)(c) =
capabilityDeltas(c)(head route)) ∧

(∀ a ∈ ran tail route •
capabilityValues(a) = (capabilityValues(prev(routes, a))⊕
{ c ∈ capabilities | a ∈ dom capabilityDeltas(c) •

c
→ valueOrZero(capabilityValues, prev(routes, a), c) +
capabilityDeltas(c)(a) }) \

{ c
→ v ∈ dom capabilityValues(prev(routes, a)) | v = 0 }))

The first activity on each sequence has all its capability values equal to the ca-
pability delta values of that activity. All the subsequent activities are computed

4 Note that, although strictly speaking they are required, we have omitted the formal relation
definitions of these axioms, e.g., “relation(isActive)”. Adding these formalizations
is a straightforward task if there is need, for instance, for automated verification of the
specification.

127

by adding the capability values to their predecessor on the sequence. This is
performed by stating that the capability values of the current activity are those
present at the previous activity, plus overriding values of those capabilities that
have deltas on the current activity. The value is computed by adding the delta to
the present value, or zero in case of inactive capability (activation of a capability).
In addition, we remove those capabilities that have zero value at the previous
activity (deactivation of capability).

We combine the two schemas into a complete capability projection schema
as follows:

CapabilityProjection =̂ CapabilityBinding ∧
CapabilityRestriction

The defined mechanism introduces, in the classical sense, two resources for
each capability: the value of the capability and its activeness status. The value
resource is a fixed free non-monotonic resource with a rule-dependency on the
activeness resource of that resource. The activeness resource is also a fixed free
non-monotonic resource that has been limited to two values. The distinctive fea-
ture of these resources is the defined algebra for the value changes. It allows the
activation and deactivation of the capabilities during the traversal.

Capability projection is used to govern an ability to perform tasks, and these
values are, quite naturally, subject to rules. There are four rules governing the fea-
sibility of capabilities on a route. As one might infer from the examples given so
far, all active accumulated values must be non-negative (the non-negativity rule)
and sum to zero at the end (the completeness rule). Furthermore, as we men-
tioned, capabilities are used to state requirements for existence and nonexistence
of other capabilities, effectively either requiring that a capability is present, or
preventing it. Thus we define the four rules of capability projection as in the
following.

Completeness of capabilities is defined as follows:

CapabilityCompletenessRule
routes : paths Activity
capabilities : FCapability
capabilityValues : Activity
→ CapabilityValue

∀ route ∈ ran routes • (∀ c ∈ dom capabilityValues(last route) •
capabilityValues(last route)(c) = 0)

The completeness rule states that each route end activity must have numeric val-
ues of zero for every active capability.

The non-negativity of capabilities is defined as follows:

128

NonnegativeCapabilityRule
routes : paths Activity
capabilities : FCapability
capabilityValues : Activity
→ CapabilityValue

∀ route ∈ ran routes • (∀ a ∈ ran route •
(∀ c ∈ dom capabilityValues(a) • capabilityValues(a)(c) ≥ 0))

The non-negativity rule states that all activities must have their active capability
values nonnegative at every activity.

The existence rule introduces the following element:

CapabilityExistenceRuleBinding
activities : FActivity
capabilities : FCapability
capabilityExistence : Activity
→ FCapability

dom capabilityExistence = activities
∀ p ∈ ran capabilityExistence • p ⊆ capabilities

The function defining the requirement for the existence of capabilities is defined
on the activities of the problem, and each such set of capabilities is a subset of all
the capabilities of the problem.

The existence rule is defined as follows:

CapabilityExistenceRuleRestriction
routes : paths Activity
capabilityExistence : Activity
→ FCapability

∀ route ∈ ran routes • (∀ a ∈ ran route •
∀ c ∈ capabilityExistence(a) • c ∈ capabilityValues(a))

The rule states simply that each capability for which existence is required, is
found in the capability values of the activity in question.

The Non-existence rule introduces the following element:

CapabilityNonexistenceRuleBinding
activities : FActivity
capabilities : FCapability
capabilityNonexistence : Activity
→ FCapability

dom capabilityNonexistence = activities
∀ p ∈ ran capabilityNonexistence • p ⊆ capabilities

The function defining the prohibition of the existence of capabilities is defined on
the activities of the problem, and each such set of capabilities is a subset of all the
capabilities of the problem.

129

The non-existence rule is defined as follows:

CapabilityNonexistenceRuleRestriction
routes : paths Activity
capabilityNonexistence : Activity
→ FCapability

∀ route ∈ ran routes • (∀ a ∈ ran route •
∀ c ∈ capabilityNonexistence(a) • c �∈ capabilityValues(a))

The rule states that no capability for which nonexistence is required can be in the
capability values of the given activity.

To conclude this section, we define, for completeness, the schema for capa-
bility problems as an extension to the proper Ansatz as follows:

CapabilityProblem =̂ ProperAnsatz ∧
CapabilityProjection ∧
CapabilityCompletenessRule ∧
NonnegativeCapabilityRule ∧
CapabilityExistenceRule ∧
CapabilityNonexistenceRule

Next, however, we examine the combination of the two constructs discussed
so far — resource projection and capability projection — and finally approach a
more complete set of modeling tools.

5.3.5 Partial Resources

In almost any practical routing problem we need both accumulated resources and
capabilities. Partial resources attempt to combine these two in order to track the
accumulation for all the values necessary for modeling complex routing prob-
lems. As with the capabilities, some of the resource values are relevant only on a
part of the route. With this motivation, we introduce the combined mechanism.
This mechanism allows us to compute, if necessary, the accumulated resource
values for each individual capability, and these can be used to state dynamic in-
tricate relationships between activities and to define more complicated rules on
resource bounds. Similarly to resource projection, we begin by formalizing the
basic computation and introducing the necessary rules. The system is then ex-
tended to utilize a parent system to be able to define both activity-specific and
capability-specific bounds in a unified manner. This section also presents the first
practical illustrations on how the developed modeling constructs can be used to
formulate reasonably complete routing models.

In practice, partial resources are built on capabilities and use their activation
and deactivation mechanism to keep track of the relevant values. When resource
projection is associated with each capability, we obtain a system where each active
capability has its own vector of resource values, which enables us, e.g., to track
the resource values of each individual pickup and delivery task. This can be illus-
trated by Figure 17 where we compute the values of two capabilities and two re-
sources. In this example, activity 1 has one active capability with resource values

130

�1 ⊥1

t: 5
d: 3

t: 2
d: 1

t: 6
d: 4

a +1

1

a = 1
t = 0
d = 0

x +1

3

a = 1
t = 5
d = 3

x = 1
t = 0
d = 0

x −1

4

a = 1
t = 7
d = 4

x = 0
t = 2
d = 1

a −1

2

a = 0
t = 13
d = 8

FIGURE 17 An example of computing values for two capabilities and two resources on
a route.

of zero. Upon entering activity 3, the resource values of “a” have increased ac-
cording to the transitional resource delta functions. Notice how any newly active
capability obtains resource values of zero. Traversing to activity 4 increases the
values of resources in both active capabilities, and this results in different accu-
mulated values due to the differing number of activities on which the capabilities
have been active. Notice that computing the values of resources is necessary as
long as the capability is active, even though its value has decreased to zero (as in
activity 2). As the capability is no longer active in the actor end activity, the values
of its resources are also irrelevant at that point. Observe how there are multiple
values of resources present at the activities; for instance, at activity 4, the value
of accumulated time “t” is 7 for capability “a” and 2 for capability “x”. If there
are lower bounds on both values of “t”, the computation of the most restricting
lower bound has to be performed and its contribution to the travel time must be
included in all the values of “t”. This is in contrast with resource projection where
each resource had a single value at each activity.

Partial resource projection computes, much like resource projection, the re-
source values at each activity on each sequence. Each resource value is, however,
computed per capability, and only the resources for active capabilities are consid-
ered. Partial resource projection is thus given a set of lower and upper bounds on
pairs of capabilities and resources. The partial resource deltas are effectively the
same as in resource projection.

Analogously to resource and capability projections, we first introduce the
basic building blocks of partial resource projection. Partial resource delta is the
same type as the resource delta as the inner mechanism is exactly the same.

PartialResourceDelta == ResourceDelta

The resulting values are, in contrast, stored over the Cartesian product of
resources and capabilities.

PartialResourceValue == (Capability × Resource)
→ Z

Using the given definitions, we may now formulate the basic declarations

131

and predicates of the mechanism for computing the partial resources. The mech-
anism introduces the following elements:

PartialResourceBinding
activities : FActivity
assigned : FActivity
resources : FResource
capabilities : FCapability
partialResourceDeltas : Resource
→ PartialResourceDelta
partialResourceLowerBounds : (Capability × Resource)
→ Z
strictLowerBoundResources : FResource
partialResourceValues : Activity
→ PartialResourceValue
partialValueAt : (Activity × Capability × Resource)
→ Z
activeWaitingAt : (Activity × Resource)
→ Z

dom partialResourceDeltas = resources
∀ f ∈ ran partialResourceDeltas • dom f = activities × activities
dom partialResourceLowerBounds = capabilities × resources
strictLowerBoundResources ⊆ resources
dom partialResourceValues = assigned
∀ f ∈ ran partialResourceValues • dom f = capabilities × resources
dom partialValueAt = assigned × capabilities × resources
dom activeWaitingAt = assigned × resources

The partial resource mechanism is defined in terms of resources and capabilities.
The functions describing the partial resource deltas are defined on the resources
of the problem, and each such delta function is defined on the Cartesian product
on the activities of the problem. The functions describing the lower bounds are
defined on the Cartesian product of the capabilities and resources of the problem.
This means that the bounds are specified per capability rather than per activity.
In addition, the resources that allow no waiting are introduced, and this set is a
subset of the resources defined for the problem. The results of the computation,
the functions describing the partial resource values, are defined for each assigned
activity of the problem, and each such function is defined on the Cartesian prod-
uct of the capabilities and resources of the problem. The function partialValueAt is
used to obtain the accumulated value at each activity, and is defined on the Carte-
sian product of the currently assigned activities, the capabilities of the problem,
and the resources of the problem.

In the defined mechanism, multiple lower bounds on the same resource may
be present at an activity. To accommodate this option, we need to obtain the most
restricting resource from the lower bounds, the so-called active waiting value.
Computing the active waiting is possible even when different lower bounds are
imposed on the same resource. Computing with multiple lower bounds on dif-
ferent resources (with waiting allowed) is, however, not supported. In order to
accommodate also this option, one would have to provide transformation func-
tions for “the cost of waiting” on the start of the resource window for each other

132

resource. Fortunately, this is not a common scenario as time is usually the only
resource with lower bounds and waiting allowed.

The computation of partial resources is defined in the following schema:

PartialResourceRestriction
routes : paths Activity
resources : FResource
capabilities : FCapability
capabilityValues : Activity
→ CapabilityValue
partialResourceDeltas : Resource
→ PartialResourceDelta
partialResourceLowerBounds : (Capability × Resource)
→ Z
strictLowerBoundResources : FResource
partialResourceValues : Activity
→ PartialResourceValue
partialValueAt : (Activity × Capability × Resource)
→ Z
activeWaitingAt : (Activity × Resource)
→ Z

∀ a, b : Activity; r : Resource • partialResourceDeltas(r)(a, b) ≥ 0
∀ route ∈ ran routes; r ∈ strictLowerBoundResources •

(∀ a ∈ ran route • activeWaitingAt(a, r) = 0)
∀ route ∈ ran routes; r ∈ resources \ strictLowerBoundResources •

(activeWaitingAt(head route, r) = max{0, ran
(λ c ∈ dom capabilityValues(head route) |

isZero(capabilityValues(head route, c)) •
partialResourceLowerBounds(c, r))}) ∧

(∀ a ∈ ran tail route • (activeWaitingAt(a, r) =
max{ran(λ c ∈ dom capabilityValues(a) |

isZero(capabilityValues(a, c)) •
max{0, partialResourceLowerBounds(c, r)−

partialResourceValues(prev(route, a))(c, r) +
partialResourceDeltas(r)(prev(route, a), a)})}))

∀ route ∈ ran routes; c ∈ capabilities; r ∈ resources •
(isActive(capabilityValues, head route, c) ⇒

(partialResourceValues(head route)(c, r) =
activeWaitingAt(head route, r))) ∧

(∀ a ∈ tail route •
(isActive(capabilityValues, a, c) ⇒

partialResourceValues(a)(c, r) =
partialValueAt(prev(route, a), c, r) +
partialResourceDeltas(r)(prev(route, a), a) +
activeWaitingAt(a, r)))

The active waiting denotes the “waiting” needed to conform to the lower bounds
on an activity. We have defined a function for denoting this waiting value at each
assigned activity in the problem. As in resource projection, for each resource with
a strict lower bound requirement, the length of waiting is always zero. For other
resources, each route start activity is given an active waiting value that is the

133

maximum of the lower bounds for active zero capabilities at that activity. Each
subsequent active waiting value is computed by finding the largest nonnegative
difference between a lower bound that is being imposed by zero-valued capabil-
ities, and the value of the bounded resource.

Apart from the values of waiting, the projection is computed similarly to
resource projection. Each start of a route has each of its resource values initial-
ized to the value of active waiting, and each subsequent activity has its resources
computed as accumulated value from the previous value plus a result of a given
delta function and the waiting at that activity.

We combine the schemas into that of partial resource projection as follows:

PartialResourceProjection =̂ PartialResourceBinding ∧
PartialResourceRestriction

Note that we left details of partialValueAt unspecified for possible further
refinement. In the elementary case, we return the actual partial value computed
for the previous activity.

IdentityPartialResourceValues
activities : FActivity
resources : FResource
partialResourceValues : Activity
→ PartialResourceValue
partialValueAt : (Activity × Capability × Resource)
→ Z

∀ a ∈ activities; c ∈ capabilities; r ∈ resources •
partialValueAt(a, c, r) = partialResourceValues(a)(c, r)

According to these definitions, the computed partial resource values must
have their values greater than the corresponding lower bound on that particular
resource and the given capability on those activities where the capability values
go to zero. This is in contrast with resource projection where the values were
restricted on an activity basis. This makes the constraints effectively a tuple of
lower bound, upper bound, capability, and resource, or in terms of the schemas
used, functions from a pair of capability and resource to a numeric value for both
the lower and upper bound.

By combining the schema with that of the partial resource projection, we
obtain the complete schema for computing partial resources:

IdentityPartialResourceProjection =̂ PartialResourceProjection ∧
IdentityPartialResourceValues

The specification given here defines the mechanism so that it introduces n
new classical resources for each capability, where n is the number of resources
in the problem. Each classical resource introduced by a capability has a rule de-
pendency on the activeness of the corresponding capability. This highlights the
reason for not needing to compute the values of the resources if the capability has

134

been deactivated. Otherwise the classical resources in the mechanism behave as
in resource and capability projections.

Similarly to the previously discussed mechanics, we define rules for accept-
able values for partial resource projections. As in resource projection, we define
that the values must not fall outside the predefined bounds. The rule for express-
ing this introduces the following element:

PartialResourceRuleBinding
resources : FResource
capabilities : FCapability
partialResourceUpperBounds : (Capability × Resource)
→ Z

dom partialResourceUpperBounds = capabilities × resources

The function describing the upper bounds on partial resource values is defined
on the Cartesian product of the capabilities and resources of the problem.

The partial resource rule is defined by the following schema:

PartialResourceRuleRestriction
routes : paths Activity
resources : FResource
capabilities : FCapability
capabilityValues : Activity
→ CapabilityValue
partialResourceLowerBounds : (Capability × Resource)
→ Z
partialResourceUpperBounds : (Capability × Resource)
→ Z
partialValueAt : (Activity × Capability × Resource)
→ Z

∀ route ∈ ran routes; r ∈ resources; c ∈ capabilities •
(∀ a ∈ ran route • isZero(capabilityValues, a, c) ⇒

partialValueAt(a, c, r) ≥ partialResourceLowerBounds(c, r) ∧
partialValueAt(a, c, r) ≤ partialResourceUpperBounds(c, r))

The resource values at each activity must be greater than or equal to the corre-
sponding lower bound and less than or equal to the upper bound of each capa-
bility and resource if the capability value is deactivating at that activity.

By combining the schemas, we obtain the one for the partial resource rule:

PartialResourceRule =̂ PartialResourceRuleBinding ∧
PartialResourceRuleRestriction

Consider, for illustration, a DARP case where we need to restrict the length
of a driver’s shift and ensure that any customer does not spend more than a cer-
tain amount of kilometers on the vehicle, for instance, due to the maximum al-
lowed deviation from the shortest available distance. If “a” is the label used in
activities denoting the vehicle, and “x” for the customer, we set, for example,

partialResourceUpperBounds(a, t) = 15
partialResourceUpperBounds(x, d) = 3.

135

�1 ⊥1

t: 5
d: 3

t: 2
d: 1

t: 6
d: 4

a +1

1

a = 1
t = 0
d = 0

x +1

3

a = 1
t = 5
d = 3

x = 1
t = 0
d = 0

x −1

4

a = 1
t = 7
d = 4

x = 0
t = 2
d = 1

a −1

2

a = 0
t = 13
d = 8

FIGURE 18 An example of checking constraints on the route length and time spent on
a vehicle.

The resulting required checks on feasibility are illustrated in Figure 18. The con-
strained resource values are those whose corresponding capability value is deac-
tivating; in this case, activities 4 and 2, for resources “d” and “t”, respectively.

The illustrated constraints are defined on the capabilities of the problem and
as such work well whenever we need to restrict, e.g., the length of a given opera-
tion. Often, however, there is a need to restrict the values on a given activity. This is
the case with, for example, time windows. To model these two cases in a unified
manner, we introduce a mechanism for substituting the initial values of resources on
a capability with those of another capability. This enables us to specify, for example,
activity-specific constraints by giving the activity a unique capability and stating
the constraint in terms of this capability. This relationship is an elementary hi-
erarchy of capabilities, and is here referred to as a capability parent system. A
capability may, then, have another capability as its parent capability from which it
obtains its resource values when activating.

In order to employ the parent capability values, we need to redefine the
partialValueAt. This is done as defined in the following schema:

ParentPartialResourceValues
activities : FActivity
resources : FResource
capabilities : FCapability
capabilityParents : Capability
→ Capability
partialResourceValues : Activity
→ PartialResourceValue
partialValueAt : (Activity × Capability × Resource)
→ Z

dom capabilityParents ⊆ capabilities
ran capabilityParents ⊆ capabilities
∀ a ∈ activities; c ∈ capabilities; r ∈ resources •

(c ∈ dom capabilityParents ⇒ partialValueAt(a, c, r)
= partialResourceValues(a)(capabilityParents(c), r)) ∧

(c �∈ dom capabilityParents ⇒ partialValueAt(a, c, r)
= partialResourceValues(a)(c, r))

136

t +1

�1

t = 1
t′ = 0

a +1

1

t = 1
t′ = 0

a = 1
t′ = 0

t’: 2

x +1
h 0

3

t = 1
t′ = 2

a = 1
t′ = 2

x = 1
t′ = 0

h = 0
t′ = 2

t’: 1

x −1
k 0

4

t = 1
t′ = 3

a = 1
t′ = 3

x = 0
t′ = 1

k = 0
t′ = 3

t’: 3

a −1

2

t = 1
t′ = 6

a = 0
t′ = 6

t −1

⊥1

t = 0
t′ = 6

FIGURE 19 Modeling activity-specific time windows with zero capability and capabil-
ity parents.

The function specifying the capability parents is defined on a subset of the capa-
bilities of the problem, and each capability parent is also a capability in a subset
of the capabilities. To compute the projection, we first find the active capabili-
ties of the given activity. We then define the function partialValueAt such that if
a capability parent is given, its resource values are used instead of the current
capability. Otherwise, we proceed as defined earlier.

As we simply redefine the function describing the value at each activity,
there is no need to introduce additional rules. We may thus combine parent value
projection with partial resource projection to obtain the schema for computing
partial resources with parents.

ParentPartialResourceProjection =̂ PartialResourceProjection ∧
ParentPartialResourceValues

The usage of the parent system can be illustrated with an example of regular
time windows. As we discussed, zero capability deactivates immediately, and if
it has a parent, we use the projected resource values of that parent in evaluation
of bounds. Consider an example where we set

partialResourceLowerBounds(h, t′) = 1
partialResourceUpperBounds(h, t′) = 4
partialResourceLowerBounds(k, t′) = 3
partialResourceUpperBounds(k, t′) = 7,

and

capabilityParents = {k
→ t, h
→ t}.

We may now model individual time windows as depicted in Figure 19. Note
how capabilities “h” and “k” are zero, but their values with respect to “t’” reflect
that of accumulated from the beginning of the route and equal the corresponding

137

t +1

�1

t = 1
t′ = 0

t’: 15

a +1

1

t = 1
t′ = 15

a = 1
t′ = 0

t’: 7

h 0

4

t = 1
t′ = 22

a = 1
t′ = 7

h = 0
t′ = 7

t’: 3

a −1

2

t = 1
t′ = 25

a = 0
t′ = 10

t −1

⊥1

t = 0
t′ = 25

FIGURE 20 Modeling decision-dependent time windows with zero capability value
and capability parents.

value of capability “t”. The depicted case remains feasible as

partialResourceLowerBounds(h, t′) ≤ partialValueAt(3, h, t′) ∧
partialValueAt(3, h, t′) ≤ partialResourceUpperBounds(h, t′) ∧
partialResourceLowerBounds(k, t′) ≤ partialValueAt(4, k, t′) ∧
partialValueAt(4, k, t′) ≤ partialResourceUpperBounds(k, t′).

A different variant of this case is the so-called decision dependent time win-
dow, where we do not use a capability of universal time for every actor (the “t”
in the previous example) but use some other active label instead. Consider an
example where we need to have a break after a given time from the beginning of
a driver’s shift, but such that the exact start time of the route is also a decision
and cannot be determined a priori. In this example we set

partialResourceLowerBounds(h, t′) = 5
partialResourceUpperBounds(h, t′) = 10

and

capabilityParents = {h
→ a}.

This case may be modeled as illustrated in Figure 20. In this case, note how the
resource “t’” for capability “h” obtains its value from capability “a”, instead of
“t” as in the previous example. Also this case remains feasible as

partialResourceLowerBounds(h, t′) ≤ partialValueAt(4, h, t′) ∧
partialValueAt(4, h, t′) ≤ partialResourceUpperBounds(h, t′).

These examples illustrate the usage of the partial resource mechanism. Al-
though we did introduce the notion of slack projections on resources and the
approach is also useful in partial projections, we omit the actual schemas in
this mechanism as the principle is basically the same. The main difference is
that we may have several upper bounds on the same resource, and we must
find the active upper bound, that is, the most constraining value on the slack of

138

that resource. The procedure is an enumeration of the possible bounds over the
capability-resource pairs resulting from all the values further along the sequence.

To conclude, we combine the schema of partial resource projection with that
of the capability problem to form the schema for the partial resource problem as
follows:

PartialResourceProblem =̂ CapabilityProblem ∧
ParentPartialResourceProjection ∧
PartialResourceRule

The resulting schema is able to express all the necessary elements for representing
a variety of constraints commonly defined in routing problems, but, for example,
the notion of objective has not yet been introduced. Before discussing the projec-
tion for the objective, however, we introduce, in the next sections, two additional
constructs. In the next section, we aim to increase the flexibility of the resource
(and objective) computation by introducing yet one level of indirection. We de-
fine a mechanism for computing with capability-dependent resources.

5.3.6 Stack Resources

Stack resources are used in a mechanism attempting to address some of the inflex-
ibility present in the other mechanisms of computing the accumulated resource
values. Often, the exact delta function is dependent on dynamic factors, such
as vehicle type, equipment, or current cargo; that is, the resource delta is de-
pendent on active capabilities. This is due to the inherent dependencies between
resources, and this section presents a mechanism for altering the resource accu-
mulation accordingly. The formalization introduces an additional projection, but
no new rules are needed as we only alter the delta functions.

In practice, the stack resources keep track of the currently active resource
delta function by associating capabilities with functions that should be activated
when the capability itself is activated. As the name suggests, we employ stack
semantics in this mechanism. Note that there is no definition for a data structure
with stack semantics in the Z notation. Thus we define one in Appendix 3.

Consider, for illustration, a case where the travel time between locations is
given by function f . If, however, we perform a particular task, say collecting a
large machine which needs to be towed by the vehicle, our speed slows down
considerably. This affects the travel time and is given by function g during the
task. This can be illustrated as in Figure 21. In the example, the function f is
activated with capability “a” and is used from the beginning of the route until g
is activated through capability “b”. This is where we perform the pickup of the
machine. The function g is used to compute the travel times until activity 2, at
which the function f is again employed. Here the machine is delivered. Observe
how the functions are placed on a stack and the currently topmost is used to
compute the traversal.

While in the mechanism for computing the partial resources we provided
the functions describing the change in resource values, the key idea in stack re-

139

a +1

�1

t = 〈f 〉

3

t = 〈f 〉

4

t = 〈f 〉

b +1

1

t = 〈f , g〉

5

t = 〈f , g〉

6

t = 〈f , g〉

b −1

2

t = 〈f 〉

a −1

⊥1

t = 〈〉

FIGURE 21 Modeling capability-dependent travel time.

sources is to replace these deltas with a stack mechanism. The input to this mech-
anism is a set of functions from capability-resource pairs to partial resource delta
functions. The capability-resource pair is used to indicate that the correspond-
ing partial resource delta function should be used to compute the change in the
resource value from the point the given capability is activated, to the point it
is deactivated. The set of functions from capability-resource pairs to the delta
functions which activate from the given capability is denoted here as activating
functions.

First, to track the stacks of partial resource delta functions at each activity,
we define a partial function from resources to stacks of these functions. These
sets of resource delta stacks are defined for each activity to track the state of the
stacks during the traversal.

ResourceDeltaStacks == Resource
→ Stack[PartialResourceDelta]

We may now introduce the elements used in stack resource projection.

StackResourceBinding
activities : FActivity
assigned : FActivity
resources : FResource
capabilities : FCapability
activatingDeltas : (Capability × Resource)
→ PartialResourceDelta
resourceDeltaStacks : Activity
→ ResourceDeltaStacks
activatingCapabilities : (seq Activity × Activity)
→ FCapability
deactivatingCapabilities : Activity
→ FCapability

dom activatingDeltas ⊆ capabilities × resources
dom resourceDeltaStacks = assigned
∀ f ∈ ran resourceDeltaStacks • dom f = resources
∀ s ∈ ran ran resourceDeltaStacks •

dom ran s.elements = activities × activities
dom activatingCapabilities = seq assigned × assigned
ran activatingCapabilities = F capabilities
dom deactivatingCapabilities = assigned
ran deactivatingCapabilities = F capabilities

140

The function activatingDeltas is defined on a subset of the Cartesian product of
the capabilities and resources of the problem. The stacks of resource delta func-
tions are defined on the assigned activities of the problem as we need to track
the accumulated stack at each activity on the defined paths. Each function map-
ping the resources to the stacks is defined on the resources of the problem, and
the elements in the stack, the delta functions, are functions from the resources
of the problem to functions from the Cartesian product of the activities of the
problem to a numeric value. The function activatingCapabilities denotes the capa-
bilities within the problem that are activating at the given activity, and is defined
on the Cartesian product of the sequences of activities and the activities currently
assigned in the problem. Likewise, the function deactivatingCapabilities denotes
those capabilities within the problem that are deactivating on a given activity.
These functions are also defined on the set of assigned activities of the problem.

Before specifying the detailed computation within stack resource projection,
we introduce functions for conveniently checking activation and deactivation of
capabilities as these define the change in the stack values during the traversal of
the route. This is expressed formally in the following schema:

StackResourceProjectionUtilities
routes : paths Activity
resources : FResource
capabilityValues : Activity
→ CapabilityValue
partialResourceDeltas : Resource
→ PartialResourceDelta
activatingDeltas : (Capability × Resource)
→ PartialResourceDelta
activatingCapabilities : (seq Activity × Activity)
→ FCapability
deactivatingCapabilities : Activity
→ FCapability

∀ route ∈ ran routes; a ∈ activities; r ∈ resources •
activatingCapabilities(route, a) = { c ∈ dom capabilityValues(a) |

¬ isActive(capabilityValues, prev(route, a), c) ∧
isActive(capabilityValues, a, c) ∧
(c, r) ∈ dom activatingDeltas }

∀ a ∈ activities; r ∈ resources •
deactivatingCapabilities(a) = { c ∈ dom capabilityValues(a) |

isZero(capabilityValues, a, c) ∧
(c, r) ∈ dom activatingDeltas }

If a capability, for which an activating function exists, is active at a given activity,
but was not active at the preceding one, it is said to be in the set of activating ca-
pabilities for that activity. Similarly, capabilities which are zero at a given activity
are said to be in the set of deactivating capabilities for that activity.

For notational convenience, we introduce a function for selecting the single
value from a set of size one as follows:

141

[X]
single : FX
→ X

dom single = { S : FX | #S = 1 }
∀ S ∈ dom single • single(S) = (μ x : X | x ∈ S)

Using the given definitions, the computation within the structure is now
captured by the following schema. The key idea is that, by treating partialRe-
sourceDeltas as a part of the problem definition, we introduce a different element
as an input to the partialResourceDeltas: the activatingDeltas. This function de-
scribes the association of capabilities with the actual resource delta functions used
in computation, and must now be defined as a part of the problem data. The
stack resource mechanism keeps track of the currently active resource delta func-
tion by a stack structure, and the partialResourceDeltas is defined as the current
top element of that stack at each activity on a route. If the stack is empty, a zero
value is assumed.

StackResourceRestriction
activities : FActivity
routes : paths Activity
resources : FResource
partialResourceDeltas : Resource
→ PartialResourceDelta
resourceDeltaStacks : Activity
→ ResourceDeltaStacks
activatingCapabilities : (seq Activity × Activity)
→ FCapability
deactivatingCapabilities : Activity
→ FCapability

∀ r ∈ resources •
(∀ a, b ∈ activities • (let s == resourceDeltaStacks(a)(r) •

(#s.elements > 0 ⇒
partialResourceDeltas(r)(a, b) = peek(s)(a, b)) ∧

(#s.elements = 0 ⇒ partialResourceDeltas(r)(a, b) = 0))) ∧
(∀ route ∈ ran routes •

(let activating == activatingCapabilities(route, head route) •
(#activating = 1 ⇒

resourceDeltaStacks(head route)(r).elements =
〈activatingDeltas(single(activating), r)〉) ∧

(∀ a ∈ ran tail route • (let cs == resourceDeltaStacks(a)(r);
ps == resourceDeltaStacks(prev(route, a))(r);
activating == activatingCapabilities(route, a);
deactivating == deactivatingCapabilities(a) •
(#activating = 1 ⇒ cs = push(ps, single(activating))) ∧
(#deactivating = 1 ⇒ cs = first pop(ps) ∧

second pop(ps) = single(deactivating)) ∧
(#activating �= 1 ∧ #deactivating �= 1 ⇒ cs = ps)))))

Each resource has its own resource delta function stack, and the stack is initial-
ized with a resource delta function defined by a unique activating capability at

142

the start of the route. Each subsequent activity either adds an element to the
stack or removes one from it if the set activatingDeltas contains a function for a
capability-resource pair found at that activity. If the capability at the activity is
deactivating, the corresponding resource delta function is removed from the top
of the stack, and if the capability at the activity is activating, the corresponding
resource delta function is added to the stack as the new top. Otherwise, the stack
remains unaltered. Currently activating capabilities are defined as those whose
activeness has changed from zero to one when traversing from the previous ac-
tivity to the current, and that are in the set defined by activatingDeltas. Currently
deactivating capabilities are those whose value is zero and which are, likewise,
in the set given by the same function. The informal idea of the activation and
deactivation of capabilities conforms to that presented here, without, however,
the requirement of the capability residing in the set activatingDeltas. Note also
that from the definition we can see that removing from the stack does require
removal of the function associated with the deactivating capability. That is, on a
feasible route, the activities removed from the stack must occur in the reverse of
the order they were added.

Note that the stack resources can model dependencies from a single capa-
bility at a time. A more general case is the one where a combination — that is,
a set — of active capabilities defines the function used to compute the resource
accumulation. These types of projections are situation dependent, and we examine
them in the subsequent sections.

We combine the three schemas into partial resource projection as follows:

StackResourceProjection =̂ StackResourceBinding ∧
StackResourceProjectionUtilities ∧
StackResourceRestriction

Stack resource projection is a mechanism that introduces one classical re-
source for each new delta function introduced. This resource tracks the location
of the corresponding activation capability in the stack. In addition, it introduces
new dependencies between the classical resources: the stack state resource has
a fixed value dependency on the activeness of the activation capability; this is
how the stack is controlled. The resources of the problem also become value-
dependent of the stack state resource. These types of dependencies have the po-
tential to make the computation excessively complex, but fortunately, the defined
mechanism does not typically introduce a large number of different values on the
stack state resource.

To illustrate the defined mechanism, assume that we have the option to at-
tach trailers to vehicles. This results in additional available capacity, but affects
the speed of the vehicle negatively. Design decisions of this kind may be present
in real-life VRP cases involving complex fleet management. We may construct an
example of this type by setting

activatingDeltas = {(t, a)
→ f , (t, b)
→ g, (d, a)
→ h},

where t is an identifier for time, d for distance, a for the vehicle, b, for the trailer,
and f , g, and h are transformation functions for describing travel time without a

143

a +1
m +1
c +10

�1

t = 〈f 〉
d = 〈h〉

x +1
c −6

3

t = 〈f 〉
d = 〈h〉

x −1
c +6

4

t = 〈f 〉
d = 〈h〉

b +1
m −1
c +5

1

t = 〈f , g〉
d = 〈h〉

y +1
c −13

5

t = 〈f , g〉
d = 〈h〉

y −1
c +13

6

t = 〈f , g〉
d = 〈h〉

b −1
m +1
c −5

2

t = 〈f 〉
d = 〈h〉

a −1
m −1
c −10

⊥1

t = 〈〉
d = 〈〉

FIGURE 22 An example of capability dependent transformations: a trailer affects the
traveling speed of a vehicle.

trailer, travel time with a trailer, and travel distance, respectively. The resulting
computation is depicted in Figure 22. For brevity, we have omitted the values of
the active function transformations between activities. In the example, we begin
the route by acquiring the capability “a”. This results in inclusion of transforma-
tion f in the transformation set of resource “time”, and inclusion of transforma-
tion h in the transformation set of resource “distance”. Note that we also obtain
label “m”, indicating that we are able to pick up a trailer. We then perform a
pickup and a delivery of “x” traversing by using the resource delta functions
f and h. In activity 1, we pick up a trailer and acquire five units of additional
capacity. We also consume the ability to pick up a trailer “m” as well as acti-
vate capability “b”, resulting in a change in the set of transformations of resource
“time”: the transformation g is added into the stack. Note how distance is not
affected by the change, since we defined that the trailer only affects the speed5 of
the vehicle. As we traverse the path, the resources of all labels are accumulated
according to the latest activated function (recall from the example in Figure 17
that each capability has their set of values). We then perform another task in ac-
tivities 5 and 6 traversing by using functions g and h. At activity 2, we leave the
trailer, which deactivates the capability “b” and results in removal of transforma-
tion g from the distance transformation set, effectively reseting the travel speed
again to that of the vehicle. Notice how after dropping off the trailer at activ-
ity 2, the vehicle might pick up another trailer if needed. Leaving the vehicle at
the end of the route deactivates the capability “a”, which removes the remaining
transformations from the stacks.

To conclude this section, we define the corresponding problem in terms of
this projection as follows:

StackResourceProblem =̂ PartialResourceProblem ∧
StackResourceProjection

The defined problem is able to express the necessary mapping-ordering con-
straint functions needed within this modeling framework. The next section will

5 Travel distance could also be modified if traveling with a trailer affects the available routes
in the road network, e.g., due to restrictions on driving with a trailer in certain road seg-
ments.

144

�1 ⊥11 2

3

4

5

6

7

FIGURE 23 Examples of groups of activities within an Ansatz.

define a constraint function on mapping for addressing also that aspect of routing
problems.

5.3.7 Activity Groups

As we discussed in the taxonomy, there are a number of possibilities for mapping
constraint constructs. We chose to implement only the simplest yet sufficient ones
for expressing structures arising in some of the most common variants. Group-
ing is a mapping constraint from decision-independent sets of activities. Using
this projection, we can define a set of topological rules which can be used in both
communicating the structure of the problem to algorithms and providing a mech-
anism for constructing additional logical dependencies between activities. More
specifically, we can mimic an exclusive logical disjunction (XOR) operator, which
is useful in, e.g., modeling compartments and breaks.

Consider, for illustration, an example where we need to choose between
two alternative pickup locations, and three alternative corresponding delivery
locations for a certain task. This is depicted in Figure 23. In the example, activi-
ties 2 and 3 are the alternative pickup locations, and activities 4–6 the alternative
delivery locations6. The dashed lines denote the groups of activities for which we
impose a rule that only one activity from that group can be in the set of assigned
activities in a feasible Ansatz. The depicted route is feasible as we visit only the
activities 2 and 4 of those groups.

To formally define grouping projection, we first define grouping as a finite
set of finite sets of given elements, that is, a set of groups. This type is defined as
follows:

grouping X == F(FX)

Using the grouping type, we may now give the basic declarations and pred-
icates of the projection. The projection introduces the following elements:

6 We have omitted the capabilities and resources from the figure for clarity.

145

GroupingBinding
activities : FActivity
groups : grouping Activity
groupValues : grouping Activity

∀ g ∈ groups • g ⊆ activities
∀ g ∈ groupValues • g ⊆ activities

Groups are the sets of activities which define the groups within the problem.
Group values contain the projected values of those groups. Both sets of groups
contain groups that consist of a subset of the activities in the problem.

The details of grouping projection can now be specified as follows:

GroupingRestriction
assigned : FActivity
groups : grouping Activity
groupValues : grouping Activity

groupValues = { g ∈ groups • g ∩ assigned }

Each group in group values contains exactly the groups of the problem so that
only the assigned activities are in the projected groups.

We combine the two schemas into a complete grouping projection schema
as follows.

GroupingProjection =̂ GroupingBinding ∧
GroupingRestriction

As we can see, GroupingProjection is a constraint function on mapping: we
require that each group is a subset of the activities in the problem, and groupVal-
ues are computed from those groups by including the activities that have been
assigned to an actor.

Next, we define rules for feasible groupings. To simplify notation, we in-
troduce concepts of interval, which may be used to define inclusive or exclusive
intervals, and bounds, which can be used to limit the number of elements in a set.

Interval
lower : N
upper : N

lower ≤ upper

bounds X == FX
→ Interval

Using the definitions, we may now specify the basic declarations and pred-
icates of the grouping rule. The rule introduces the following elements:

146

GroupingRuleBinding
groupValues : grouping Activity
groupBounds : bounds Activity

dom groupBounds ∈ groupValues

Group bounds is a set of functions specifying intervals for groups. The function
is defined on the group values of the projection, that is, specifying a limit on the
size of each projected group.

The grouping rule can be defined as follows:

GroupingRuleRestriction
groupValues : grouping Activity
groupBounds : bounds Activity

∀ g ∈ groupValues •
groupBounds(g).lower ≤ #g ∧ groupBounds(g).upper ≥ #g

Each projected group must have the number of elements in the inclusive interval
defined to the group.

Constraints on mapping may or may not span over multiple actors. How-
ever, if we want to ensure that grouping constraints affect only a single actor, we
may set the upper bound of the corresponding rule to one, limiting the number
of the elements in the sets in the constraint space. This can be expressed with the
following schema:

SimpleGrouping
groupBounds : bounds Activity

∀ g ∈ groupValues •
groupBounds(g).lower = 0 ∧ groupBounds(g).upper = 1

SimpleGrouping prevents modeling inter-route dependencies. If there are no con-
straints that propagate from a route of an actor to another, it is possible to par-
tition the problem along the routes. A multi-threaded implementation, for ex-
ample, could benefit from such a partition: modifications in more than one route
can be made simultaneously. Both simple and generic grouping constraints are
illustrated in Figure 24. In the example, each route has one activity assigned on
it: route 1, activity 4; route 2, activity 3; and route 3, activity 1. In addition, two
constraints defining groups of three activities have been introduced. Firstly, we
restrict the number of activities simultaneously assignable to any of the routes
to 0 or 1 for the group of activities 4–6, and secondly, similarly, restrict the num-
ber of simultaneously assignable activities to 2 or less for the group of activities
1–3. The depicted example illustrates a feasible mapping according to these con-
straints. This also illustrates the difference between simple grouping and generic
grouping: in the latter, feasibility checks can propagate from one route to another.

147

�3 ⊥3

�2 ⊥2

�1 ⊥1

1

2

3

4

5

6

≤ 1

≤ 2

FIGURE 24 Examples of different types of grouping constraints within a proper Ansatz.

To summarize, we define a routing problem with grouping constraints as
follows:

GroupingProblem =̂ ProperAnsatz ∧
GroupingProjection ∧
GroupingRule ∧
SimpleGrouping

In the next section, we conclude the definition of the developed metamodel
by adding a few missing elements, such as the objective function, and by exam-
ining the developed model as a whole.

5.3.8 Implemented Model

Using the definitions given in the preceding sections, we are now able to construct
the full, formal definition of feasibility and objective values within the model. As
we have seen, many of the constructs are heavily based on resource extension
functions, but we have introduced them in a more fine-grained manner. This
approach is justified when we introduce the modeling language employing the
constructs defined here. The modeling language then provides a systematic way
of expressing different routing problem variants and their extensions.

We have largely concentrated on constraints in this discourse, and the one
element lacking a formal definition is the objective of the problem. As mentioned,
profit can be seen as a special resource accumulated along the route, and the value
of the objective of the optimization problem is then the sum of all profits collected
on all routes. In a typical case, the profit delta function is identical to the resource
delta, that is,

ProfitDelta == (Activity × Activity)
→ Z.

The profit is considered separately and assumed to be present in every prob-
lem. It differs from other resources in that it is capability invariant. That is, for

148

�1 ⊥1

p = 34

p: 10

t: 5
d: 3
p: 7

t: 2
d: 1
p: 9

t: 6
d: 4
p: 6

a +1

1

a = 1
t = 0
d = 0

p = 10

x +1

3

a = 1
t = 5
d = 3

x = 1
t = 0
d = 0

p = 17

x −1

4

a = 1
t = 7
d = 4

x = 0
t = 2
d = 1

p = 28

a −1

2

a = 0
t = 13
d = 8

p = 34

FIGURE 25 An example of two resources, travel time and distance, and a profit value
on a route.

each activity of the route, there is a single value of profit collected that far, and
no capability-specific profits are computed. In other words, profit employs resource
projection instead of partial resource projection within the stack resource mecha-
nism. The difference between computing a capability invariant resource — profit
— and capability variant resources — time and distance — is illustrated in Figure
25. As we traverse to the activity 1, we obtain 10 units of profit, and likewise 7
when entering activity 3, and so on. In this example, the profit collected is 10 − d,
that is, the so-called base profit minus the expenses. This example demonstrates
the usage of profit maximization in cases such as the classical VRP where the
distance is minimized.

To summarize, we revisit the schemas defined in the preceding sections.
The generic routing problem modeled with mutually exclusive and optional ac-
tivities, resources, capabilities, and additional dependency mechanisms can be
described as in the following schema:

GenericRoutingProblem =̂ ProperAnsatz ∧
CapabilityProjection ∧
CapabilityCompletenessRule ∧
NonnegativeCapabilityRule ∧
CapabilityExistenceRule ∧
CapabilityNonexistenceRule ∧
ParentPartialResourceProjection ∧
PartialResourceRule ∧
PartialResourceSlackProjection7 ∧
PartialResourceSlackRule7 ∧
StackResourceProjection ∧
StackProfitProjection7 ∧
GroupingProjection ∧
GroupingRule ∧
SimpleGrouping

7 Schema omitted.

149

We begin with the Ansatz, and add the properties of uniqueness, disjointness and
injectivity. Capability projection is included, as is partial resource projection with
the parent system. Stack projection is included for resources and profit. Finally,
we include simple grouping. Note that we have omitted some schema defini-
tions. The structure of the omitted schemas is similar to those already defined,
and were thus not defined explicitly. For instance, slack projections for partial
resources are quite the same as for resources. Profit projection is based on stack
projection used in conjunction with resource projection, and it employs a profit
function of type ProfitDelta.

In the context of this schema, we would like to note that these definitions
do not incorporate the possibility to perform search on the infeasible region, even
though this is sometimes desirable for, e.g., allowing local search to escape local
optima. We have defined here the feasibility as a property of the problem schema,
and as such it cannot be violated. Thus, to introduce feasibility violations, one
would have to add additional schemas in where the feasible region is redefined,
using proper rules and disjunctions, along with the modifications on objective
projection to penalize these violations. This is a potential area for further research.

A close examination of the schemas also reveals an order in which the pro-
jections need to be performed. Capabilities on a given activity must be computed
first, and, based on their activeness, the corresponding resources are computed.
Finally, the profit projection is computed for the activity based on the accumu-
lated values of capabilities and resources.

The taxonomy of modeling elements identified three types of value depen-
dencies: undefined, transitional, and fixed. The capability mechanism is fixed
and the partial resource mechanism, transitional. In addition, we introduced the
stack resources to accommodate some special cases of the dependencies between
resources. Nevertheless, we are not able to model all the types of dynamic situ-
ations; for instance, the resources that are freely dependent on other resources
cannot be expressed by transitional projections. Situation dependent functions,
however, can express these types of situations. These situations include depen-
dencies between resources (e.g., time dependent profit, as in soft time windows),
dependencies within resources (e.g. time dependent time, as in modeling of rush
hours), and capability dependent resources (e.g., capacity dependent time, as in
load dependent travel times). The computation with these types of functions is
not as efficient as with transitional, but as they are indeed more generic, they can
express a wider variety of cases.

To express cases with complex dependencies between resources we may in-
troduce new types of delta functions that are otherwise similar to those already
defined, but include an additional parameter that describes the accumulated sit-
uation on the path at that point. The accumulated situation is a set of partial
resource values, and thus the type definition of such function is the following:

DependentResourceDelta ==
(FPartialResourceValue × Activity × Activity)
→ Z.

150

Similarly, the generic case of profit function can be defined as the following type:

DependentProfitDelta ==
(FPartialResourceValue × Activity × Activity)
→ Z.

The schemas employing these types of functions have been omitted as they are
similar to those defined for transitional delta functions. When we introduce the
language for describing the optimization models, we assume that both types of
projections are available.

We should also note that we have omitted some minor details from the over-
all schema to make the basic principles clearer. One interesting case for capabili-
ties in this schema is the non-monotonic capacities in PDP cases where the plan-
ning continues over the planning horizon. In these cases, there is a need to be able
to specify that certain capabilities may not need to be zero at the end, relaxing the
CapabilityCompletenessRule. This is due to the fact that in continuous planning,
the state of the actor, in terms of capability, may be different in the beginning of
the route than in the end. Thus, in the subsequent section, we assume that we
may relax the completeness rule on a given subset of capabilities. Formally this
could be defined as a disjunction of the completeness rule and an additional rule
stating that the capability belongs to this subset. However, we do not present the
schema for this as it is a straightforward extension.

To conclude this discussion on the developed model, we point out that
while defining the schemas, we left some parts of some of the functions uncon-
strained by the schema predicates. These unconstrained elements from the indi-
vidual schemas define the inputs required for defining a complete routing prob-
lem. If we go through the schemas, we see that a routing problem, as defined
here, consists of the following data:

• actors, a set of actors;

• activities, a set of activities;

• resources, a set of resources;

• capabilities, a set of capabilities;

• strictLowerBoundResources, a set of resources that allow no waiting;

• domain and range of capabilityDeltas, a set of capabilities and their values
for given activities;

• range of capabilityExistence, a set of capabilities which are required to be on
the situation of the previous activity;

• range of capabilityNonexistence, a set of capabilities which are not allowed
on the situation of the previous activity;

• range of partialResourceLowerBounds, numeric values limiting the accumu-
lated values from below;

151

• range of partialResourceUpperBounds, numeric values limiting the accumu-
lated values from above;

• domain and range of capabilityParents, a set of capabilities for given capabil-
ities;

• domain and range of activatingDeltas, resource delta functions for given ac-
tivation resource-capability pairs;

• domain and range of activatingProfitDeltas8, profit functions for a given ac-
tivation capability; and

• groups, a set of sets of activities that are not allowed to be assigned simulta-
neously.

As we have illustrated, for example, time windows can be defined using specific
capabilities, resources, activatingDeltas, partialResourceLowerBounds, and partialRe-
sourceUpperBounds. Now, defining these elements and their dependencies forms
the base for generating the different model variants and their extensions. This is
the subject of the next section, where we tie together the domain and optimization
models using a model transformation.

5.4 Model Transformation

As we discussed in Chapter 4, our approach for addressing a heterogeneous set
of problems and managing the resulting complexity is to introduce variability
into the product line architecture in a systematic way. Model-driven approaches
employ both models and especially model transformations, and in this section we
construct and illustrate a modeling language for transforming the UML-based
concepts described in Section 5.2 into optimization model constructs described in
Section 5.3.

5.4.1 Introduction

The constructs of the modeling framework can be divided into four layers. The
elements of the domain model form the first layer, and we may locate the model
transformation on the second layer. The third layer is used through the transfor-
mation and consists of the elements defining the data in the metamodel. These
in turn reside in the elements of the fourth layer. This division is illustrated in
Figure 26, where a subset of the elements of the framework is depicted. The over-
arching idea is to map different elements in the domain model into those in the
metamodel in order to transform the data into a form that is suitable for optimiza-
tion. The arrows between the elements denote the flow of data from one layer to
another.
8 Schema omitted.

152

Domain Model Transformation Routing Metamodel

Plan

Vehicle

Driver

Task

Compartment

TimeWindow

CreateActor

CreateActivity

CreateResource

AddCapability

AddBounds

actors

activities

resources

capabilities

partialResourceLowerBounds

partialResourceUpperBounds

ProperAnsatz

CapabilityProjection

PartialResourceProjection

PartialResourceRule

FIGURE 26 A subset of modeling elements and their relationships in the modeling
framework.

153

Now, the metamodel layers address solely the modeling aspects within the
system. The different modeling elements are not yet associated with any element
of the implementation, more specifically, with any variation point or architectural
element of a product line. The variation on the optimization model is introduced
through the choice of mapping the elements from the first layer to those on the
second. That is, the case-specific usage of the model transformation defines the
optimization model variant. We give some illustrative examples in Section 5.4.3,
but a more detailed list of model variants is given in Chapter 7 where we examine
the usage of the transformation for expressing model variation within a product
line. The list also provides an explanation on how to use the transformation in
different cases.

In practice, the transformation used within the modeling framework is a
horizontal exogenous transformation, since we transform between models con-
forming to two different metamodels and the abstraction level of the model in-
creases during the transformation. This is clear due to the fact that several differ-
ent constructs in the domain model are transformed into the same constructs in
the optimization model. The implementation of the transformation is of a direct-
manipulation type, and we have defined an API for this purpose. Finally, we note
that the transformation itself is unidirectional, and applying the changes made to
the optimization model instance during optimization are transferred back to the
source model instance by mapping and storing the corresponding elements on
each model instance during the transformation process and then using this map-
ping to resolve the original entities on the source model when needed.

Conceptually, we may locate the model generation on the M1-level of the
metamodeling architecture. The layer on which the model generation process
takes places in the metamodeling stack as well as the relations between differ-
ent modeling levels within this modeling framework are depicted in Figure 27.
As illustrated earlier in Chapter 4, the transformation definition refers to two
metamodels, here, UML and routing metamodels, and the transformation engine
reads one model conforming to the source metamodel, here the domain model,
and writes another model conforming to the target metamodel, here the opti-
mization model. The optimization model is then generated from the domain
model. The domain instance is used to populate the solution instance with the
appropriate starting solution depending on the state of the domain instance. Af-
ter the optimization has been performed, the changes in the solution instance
are resolved into the domain instance based on the mapping of different model
elements done in the generation phase.

5.4.2 Transformation Interface

The model transformation is executed by reading the domain model element by
element and generating the corresponding elements in the optimization model.
The model generation takes place within the model transformation engine, and
the domain model elements are used to generate the appropriate optimization
model elements. The transformation is case-specific and employs an API through

154

Solution instance

Optimization model

Routing metamodel

Z metametamodel

Domain instance

Domain model

UML metamodel

MOF metametamodel

resolving

populating

mapping

generating

FIGURE 27 The modeling process and the two different metamodeling stacks within
the framework.

which the optimization model elements are created. The operations are described
here using Z schemas.

CreateActor— Creates a new actor with given start and end activities and
adds the actor to the problem.

CreateActor
ΔGenericRoutingProblem
start? : Activity
end? : Activity
actor : Actor

actors′ = actors ∪ {actor}
actor.start = start?
actor.end = end?

CreateActivity — Creates a new activity and adds it to the problem and
assigns a unique activity identifier to it.

CreateActivity
ΔGenericRoutingProblem
act : Activity
a! : Activity

activities′ = activities ∪ {act}
a! = act

155

CreateResource— Creates a new resource and adds it to the problem and
assigns a unique resource identifier to it.

CreateResource
ΔGenericRoutingProblem
res : Resource
r! : Resource

resources′ = resources ∪ {res}
r! = res

CreateCapability — Creates a new capability and adds it to the problem
and assigns a unique capability identifier to it.

CreateCapability
ΔGenericRoutingProblem
cap : Capability
c! : Capability

capabilities′ = capabilities ∪ {cap}
c! = cap

SetStrictLowerBound — Sets a requirement for a strict lower bound for a
given resource.

SetStrictLowerBound
ΔGenericRoutingProblem
r? : Resource

strictLowerBoundResouces′ = strictLowerBoundResouces ∪ {r?}

SetParent— Sets a given capability as a parent to another given capability.

SetParent
ΔGenericRoutingProblem
c? : Capability
parent? : Capability

capabilityParents′ = capabilityParents ⊕ {c?
→ parent?}

SetAllowNonempty — Relaxes the capability completeness rule for a given
capability.

SetAllowNonempty
ΔGenericRoutingProblem
c? : Capability

This schema has been omitted.

156

AddCapability— Adds a capability with a given value to an activity with
a given identifier.

AddCapability
ΔGenericRoutingProblem
a? : Activity
c? : Capability
value? : Z

capabilityDeltas′ = capabilityDeltas ⊕ {c?
→ a?
→ value?}

AddCapabilityRequirement — Adds a capability requirement for a given
capability to an activity with a given identifier.

AddCapabilityRequirement
ΔGenericRoutingProblem
a? : Activity
c? : Capability

capabilityExistence′ = capabilityExistence ⊕
{a?
→ capabilityExistence(a?) ∪ {c?}}

AddCapabilityProhibition — Adds a capability prohibition for a given
capability to an activity with a given identifier.

AddCapabilityProhibition
ΔGenericRoutingProblem
a? : Activity
c? : Capability

capabilityNonexistence′ = capabilityNonexistence ⊕
{a?
→ capabilityNonexistence(a?) ∪ {c?}}

AddActivityGroup — Adds a new simple group of activities from a given
set of activity identifiers.

AddActivityGroup
ΔGenericRoutingProblem
g? : FActivity

groups′ = groups ∪ {g?}

AddBounds — Adds both a lower and upper bound on a given capability-
resource pair.

157

AddBounds
ΔGenericRoutingProblem
c? : Capability
r? : Resource
lower? : Z
upper? : Z

partialResourceLowerBounds′ = partialResourceLowerBounds ⊕
{(c?, r?)
→ lower?}

partialResourceUpperBounds′ = partialResourceUpperBounds ⊕
{(c?, r?)
→ upper?}

AddTransitionalResourceFunction — Adds the specified transitional re-
source delta function to the problem for a given resource and an activation capa-
bility.

AddTransitionalResourceFunction
ΔGenericRoutingProblem
c? : Capability
r? : Resource
f ? : PartialResourceDelta

activatingDeltas′ = activatingDeltas ⊕
{activatingDeltas(c?, r?)
→ f ?}

AddSituationDependentResourceFunction— Adds the specified situation
dependent resource delta function to the problem for a given resource and an
activation capability.

AddSituationDependentResourceFunction
ΔGenericRoutingProblem
c? : Capability
r? : Resource
f ? : DependentResourceDelta

This schema has been omitted.

AddTransitionalProfitFunction— Adds the specified transitional profit
function to the problem for a given activation capability.

AddTransitionalProfitFunction
ΔGenericRoutingProblem
c? : Capability
r? : Resource
f ? : ProfitDelta

This schema has been omitted.

158

AddSituationDependentProfitFunction — Adds the specified situation
dependent profit function to the problem for a given activation capability.

AddSituationDependentProfitFunction
ΔGenericRoutingProblem
c? : Capability
r? : Resource
f ? : DependentProfitDelta

This schema has been omitted.

Using this relatively simple interface we are able to generate the problem
input for the routing metamodel described. To illustrate the usage of the model
transformation, we examine here the definition of some variants of the routing
problem. The expressiveness of the framework as a whole is analyzed when we
address the issues of variability in the subsequent chapters.

For completeness, we conclude by defining the initialization of a new in-
stance of a routing problem. This schema illustrates the state in which the gener-
ation of metamodel elements is started.

InitRoutingProblem
GenericRoutingProblem

actors = ∅

activities = ∅

resources = ∅

capabilities = ∅

strictLowerBoundResources = ∅

capabilityDeltas = ∅

capabilityParents = ∅

activatingDeltas = ∅

activatingProfitDeltas = ∅

groups = ∅

ran capabilityExistence = ∅

ran capabilityNonexistence = ∅

ran partialResourceLowerBounds = ∅

ran partialResourceUpperBounds = ∅

All the input sets of the problem are initially empty.

5.4.3 Usage

As we have examined the structure of the system, we have referred to a case-
specific transformation definition that controls the generation of the optimization
models. In practice, these definitions are simple algorithms that employ the
model generation API presented in the previous section.

159

Vehicle

Location TaskEvent

Task

Plan

Locatable

� 1
2

� 1 2 �11

� 1 0..*

� 0..1
0..*

�0..1

0..*

FIGURE 28 A simplified domain model for CVRPs, PDPs, and VRPBs.

The given API provides the means for generating the optimization model,
but to provide a mapping from the optimization model elements to the domain
model, that is, to enable the decoding of the solution attempt, we need to specify
each domain object from which each activity was generated. This process is not
explicit in the subsequent transformation definitions. Still, we assume that the
mapped elements are available through a set of decoding methods. For exam-
ple, method GetTaskEvent returns the TaskEvent object mapped to an activity, and
GetVehicle, the corresponding vehicle.

As we go through the example transformations in this and the subsequent
section, we follow the following conventions. The variable names of the capabil-
ities and resources correspond to those in the adjoining illustrations where possi-
ble, that is, they are usually abbreviated to single characters. The domain objects
are referred to with their full names. In addition, the properties of the objects
are referred to as in vehicle.Capacity. Arrays and dictionary types are denoted
with square brackets, distances[a,b]; and methods, with the typical parentheses,
AddResource(). In all the model transformations, the domain model is accessed
through a plan instance supplied as a parameter.

To illustrate the usage of the transformation, we employ different types of
variants. There are basically two archetypes of problems in routing: the vehicle
routing problem, and the pickup and delivery problem. These two differ pro-
foundly in structure, and other variants and extensions can largely be discussed
within the context of these two base structures. We also discuss a more com-
plicated example of vehicle routing with backhauls as an illustration of a more
complex problem structure. The domain model used in the three cases is illus-
trated in Figure 28. The illustration is a subset of the larger domain model given
earlier and serves as a basis for the model transformations presented here.

The capacitated vehicle routing problem model consists of a single capabil-
ity (as we need at least one), and a resource for capacity (in addition to the profit
resource which is assumed to exist at every instance). We denote the capability

160

here as “v” for “vehicle”, and the resource “c” for “capacity used”. Each vehicle
in the plan corresponds to an actor, and each task to an activity. The generation of
VRP instances is defined in Algorithm 9. We begin the model generation by gen-

Algorithm 9 Generating capacitated VRP model instance.

v ← CreateCapability()
c ← CreateResource()
for all Vehicle vehicle in plan do

start ← CreateActivity()
end ← CreateActivity()
CreateActor(start, end)
AddCapability(start, v, +1)
AddCapability(end, v, −1)

end for
for all Task task in plan do

CreateActivity()
end for
AddBounds(v, c, 0, plan.Vehicles.Any().Capacity)
AddTransitionalResourceFunction(v, c, (a, b) → capacity[b])
AddTransitionalProfitFunction(v, (a, b) → M−distance[a,b])

erating the capability for the vehicle and the resource for capacity. Each vehicle
within the plan on the domain model is then transformed into a pair of activities
which are in turn used to define an actor. These activities are given the capability
“v” as this ensures that the capability is present during the whole route. A single
activity is then generated from each task. In addition, a constraint on the value
of the capacity is set as the vehicle capacity and assumed to be identical between
vehicles.

Finally, we generate the necessary functions. A transitional resource delta
function is bound to the capability “v” and the resource “c”. The function returns
the capacity of the given activity. In practice, the capacities of different activities
are assumed to be generated into an array for efficient retrieval. This approach
is followed also in the examples to simplify the transformation definitions. The
definitions assume implicitly that the computation of the capacities is performed
after all the activities have been created. This process is depicted in Algorithm
10.

Algorithm 10 Generating capacity array.

for all Activity a in this do
capacity[a] ← GetTaskEvent(a).Capacity

end for

Similarly to the capacity function, the profit is defined as a function from
a pair of activities into M−distance, where M is a sufficiently large value and
distance is a matrix which is computed using the pseudocode given in Algorithm

161

Algorithm 11 Generating distance matrix.

for all Activity a in this do
for all Activity b in this do

distance[a,b] ← GetTaskEvent(a).Location.GetDistanceTo(
GetTaskEvent(b).Location)

end for
end for

v +1

�1
p: 5

c: 2

1
p: 4

c: 2

2
p: 7

c: 5

3
p: 1

c: 3

4
p: 6

c: 6

5
p: 2

c: 5

6
p: 3

v −1

⊥1

FIGURE 29 An example of a VRP model instance.

11. We assume here that the distances between locations have been computed by
whichever approach needed by the case. The different approaches for obtaining
these values in different cases are discussed in more detail in Chapter 7.

An example of a part of the resulting VRP instance is given in Figure 29.
In general, we illustrate the results of the transformations with examples of the
resulting routes of one or a few actors. The figures are not complete in a sense that
they contain only those elements relevant to the transformation in question. Each
activity accumulates both the profit (denoted here as “p”) and the used vehicle
capacity (“v”) along the route. The capacity constraint is checked at the end of
the route as the vehicle capability (“v”) deactivates.

The pickup and delivery problem differs from the VRP within this frame-
work in that we do not employ a resource for expressing the vehicle capacity.
Instead, a capability is defined for this purpose as the vehicle capacity function is
non-monotonic in the pickup and delivery problem. Moreover, each task consists
of two parts, both of which are generated into an activity. The generation of PDP
instances is illustrated in Algorithm 12. We begin by generating the capability
denoting the vehicle capacity “c”. Each actor start is then given the amount of
vehicle capacity available, and each actor end, the same as negative. Each task is
both given the vehicle capacity as negative in the pickup part and an additional
precedence capability as positive, and vice versa for each delivery activity. Fi-
nally, the profit function is defined as in the VRP case. An example of the resulting
instance is depicted in Figure 30. In contrast to the VRP, each activity consumes
the capability of the actor and is linked to another activity by a unique capability,
which could be interpreted as “the capability to deliver the goods picked up”. As
we observed, a PDP model is capable of expressing VRP problems by locating all
the pickups (or all the deliveries) on the central depot. This approach can also
be used in the model transformation, and while this is not typically an efficient
representation of the problem, it may sometimes be useful to be able to employ
algorithms for PDP problems in a VRP setting.

162

Algorithm 12 Generating PDP model instance.

c ← CreateCapability()
for all Vehicle vehicle in plan do

start ← CreateActivity()
end ← CreateActivity()
CreateActor(start, end)
AddCapability(start, c, +vehicle.Capacity)
AddCapability(end, c, −vehicle.Capacity)

end for
for all Task task in plan do

pdp ← CreateCapability()
pickup ← CreateActivity()
AddCapability(pickup, c, −task.Pickup.Capacity)
AddCapability(pickup, pdp, +1)
delivery ← CreateActivity()
AddCapability(delivery, c, +task.Delivery.Capacity)
AddCapability(delivery, pdp, −1)

end for
AddTransitionalProfitFunction(c, (a, b) → M− distances[a,b])

c +15

�1
p: 5

c −8
x +1

1
p: 4

c −3
y +1

3
p: 7

c +3
y −1

4
p: 1

c +8
x −1

2
p: 6

c −7
z +1

5
p: 2

c +7
z −1

6
p: 3

c −15

⊥1

FIGURE 30 An example of a PDP model instance.

163

The vehicle routing problem with backhauls is an interesting intermediate
of the two base types. In this case, we need to track the state of the actor on a
route: whether linehauls or backhauls are being collected at each point. This state
defines the tasks that can be served at that point on the route. Recall that there
are two restrictions in the VRPB: each linehaul must occur before any backhaul,
and a route cannot consist only of backhauls.

The routing problem with backhauls can be modeled similarly to the VRP
by employing resources for capacity, but by keeping track of two different ca-
pacities: one for linehauls and another for backhauls. As the generation of these
constraints is somewhat complex, we do not present this approach here. Instead
we model the case using the PDP approach given in Algorithm 12 and illustrate
only the generation of the additional constraints. The generation of these con-
straints in a VRPB instance is illustrated in Algorithm 13. To state the restrictions

Algorithm 13 Generating VRPB model instance.

lhd ← CreateCapability()
bhp ← CreateCapability()
for all Task task in plan do

if task.IsLinehaul then
AddCapability(delivery, lhd, +1)
AddCapabilityProhibition(delivery, bhp)

else
AddCapability(pickup, bhp, +1)
AddCapabilityRequirement(pickup, lhd)

end if
end for
SetAllowNonempy(lhd)
SetAllowNonempy(bhp)

to the problem structure, we introduce two capabilities that serve as status flags to
indicate which types of tasks have been performed by the vehicle. Each linehaul
delivery has capability to indicate that linehauls have been served on this route
(“linehaul delivered” or “lhd”) and a prohibition for backhauls as they all must
appear after all linehaul operations. Each backhaul pickup, in contrast, has a ca-
pability to indicate that backhauls have been picked during the route (“backhaul
picked” or “bhp”) and a requirement for linehaul delivery as the route cannot
consist entirely of backhaul customers. Finally, we state that both of the flag ca-
pabilities can have a non-empty value at the end of the route as the routes may
contain any number of these activities. An example of the resulting instance is
depicted in Figure 31. As we can see, the two types of tasks differ in their capa-
bilities as described in the algorithm.

164

c +10

�1

c −3
x +1

1

lhd +1
bhp �
c +3
x −1

2

c −8
y +1

3

lhd +1
bhp �
c +8
y −1

4

lhd ∃
bhp +1
c −5
z +1

5

c +5
z −1

6

c −10

⊥1

FIGURE 31 An example of a VRPB model instance modeled as a PDP with additional
constraints.

5.5 Summary of Approach

There is a need for a unified modeling approach to rich problems. Such an ap-
proach would enable a single system to address a wider variety of cases of the
heterogeneous domain of vehicle routing. Resource constrained paths provide
one mechanism for modeling rich interactions and more complex resource calcu-
lations than previously possible. Using this as a starting point, we attempted to
increase the expressiveness of resource accumulation mechanisms. We aimed to
do this by introducing, in a structured way, new constructs which could, together
with different mechanisms for computing resources, be used in expressing much
of the real-life inspired constraints now beginning to appear in a variety of VRP
cases.

We introduced a domain model of routing problems, a routing metamodel,
and a model transformation from the domain model into routing models. The
routing metamodel was used to provide building blocks for modeling different
variants and extensions. The set of tools should provide means for describing a
variety of routing problems within a software product line.

It is notable that while the modeling framework does make it easier to define
a routing variant, considerable knowledge of both models and solution methods
is still needed to utilize the system. The proposed approach does not remove the
operations researcher from the process, although, arguably, makes her life a bit
easier by offering an expressive toolkit.

A hint of the expressiveness of the system was provided by the examples
of different cases throughout this chapter. As we went through the illustrations,
we encountered increasingly complex problem instances. It is evident that the
combinations of these cases are even more complex, and combining all the prob-
lem extensions mentioned in the preceding chapters would probably render the
problem too complex to be solved currently, even if some of the modeling ele-
ments overlap. Fortunately, as we will see in the next chapter, most of the routing
variants and extensions do not introduce an exponential number of resources (in-
cluding capabilities) as the problem size increases, and this helps to control the
dimensionality of the problem. It is, nevertheless, an open question how to solve
the most complex combinations of these constructs. With this in mind, we now
move back to the solution part of the process. In the next chapter, we examine the
solution process within the developed framework.

6 OPTIMIZATION IN THE FRAMEWORK

As we now have the knowledge of the structure of the routing metamodel and
are able to express different problem variants, in this chapter, we examine the
optimization process within the developed framework. This examination focuses
on local search as it is the central component in most of the solution methods
applied to routing.

The structure of this chapter is the following. In Section 6.1, we describe
the structure of the metamodel implementation and discuss the usage of solution
methodology within the metamodel. Furthermore, an analysis of different mod-
eling constructs and resulting search neighborhoods is given by examining the
locality of feasibility checks and objective evaluation. In Section 6.3, we discuss
the elements found in VRP models and analyze their effect on local search as well
as analyze the local search operators necessary for traversing the search space
defined by the routing metamodel. Finally, in Section 6.2, we provide some pre-
liminary results from applying the system into practice in both benchmark and
real-life cases.

6.1 Optimization Process

This section has two purposes: firstly, we aim to express the basic building blocks
of the currently used local search operators in a formal way to ensure that we
may, indeed, employ most of the existing solution methodology also within our
modeling framework. Secondly, we address the issue of computational complex-
ity within the metamodel to analyze the implications of the modeling framework
to the performance of an optimization system.

6.1.1 Expressing Local Search

To express the basic building blocks of local search operators in the context of
the developed metamodel, we define schemas for altering the state of the Ansatz.

166

Z notation offers tools for these types of definitions and as the Ansatz has been
defined formally in the preceding chapter, we employ this notation here as well.

Local search consists mainly of manipulation of the sequences of activities
mapped to actors. There are two ways of expressing the basic building blocks of
these manipulation operations: per activity and per sequence. Per activity ma-
nipulation would describe the modification one activity at a time, but as a single
activity is a special case of a sequence, we utilize here a more general approach,
and express modifying the Ansätze one segment at a time. The basis of this ma-
nipulation is the ability to add and remove sequences. A third primitive is possible,
but not mandatory; we employ here also a reverse operation for a clearer descrip-
tion of the search operators.

If we are able to express adding and removing sequences (and for conve-
nience, reversing), we can build local search operators by combining these prim-
itives. Next, we express these three operations formally. For completeness, how-
ever, we begin by stating the state of an Ansatz before the optimization start. The
state of an Ansatz can be reset using the following schema:

ResetRoutingProblem
ΔGenericRoutingProblem

∀ actor ∈ actors • routes′(actor) = 〈actor.start, actor.end〉

After the operation, each route consists only of the corresponding actor start and
end activities.

Adding sequences to routes is done by specifying an activity after which
the new sequence is to be added. To express this operation without additional
parameters, we first introduce a function for determining the current actor of a
given activity. This is expressed as follows:

actorOf : paths Activity × Activity
→ Actor

∀ paths : paths Activity; a : Activity •
actorOf (paths, a) = (μ actor ∈ dom paths | a ∈ ran paths(actor))

As we manipulate the sequences, it would be convenient to be able to extract
a subsequence from a sequence based on its start and end elements. For this, we
introduce the following operator:

[X]
to ∼ : X × X × seq X → seq X

∀ x, y : X; s : seq X •
x to y ∼ s = s∼(x) . . s∼(y) � s

The operator, given two elements and a sequence these two elements are on, ex-
tracts the subsequence defined by the elements in between these two (including
the elements themselves).

167

Using the given definitions, expressing insertion of a sequence into a given
location is straightforward. The schema for performing this operation is given
below.

Add
ΔGenericRoutingProblem
prev? : Activity
toAdd? : iseq1 Activity

prev? ∈ assigned \ { actor ∈ actors • actor.end }
∀ a ∈ ran toAdd? • a ∈ unassigned
(let actor == actorOf (routes, prev?) •

(let route == routes(actor) •
routes′ = routes ⊕ { actor
→

(head route to prev? ∼ route)�

toAdd?�

(next(routes, prev?) to last route ∼ route) }))

Firstly, we require that the activity after which we insert the sequence, prev?, is
assigned to a route and is not any of the actor end activities. This is due to the re-
striction that algorithms should not move actor start and end activities. Secondly,
we require that each activity on the inserted sequence is currently unassigned.
The insertion is performed by overriding the route of the corresponding actor
by concatenation of sequences; first we include the route from start to the inser-
tion point defined by prev?, then we include the sequence to add, and finally, the
remaining sequence to the end of the route.

However, manipulation of the sequences is not enough. We also need to
ensure that the projected values are consistent with the changes made. We use
resources here as an illustration of this operation. The following schema describes
the update operation, given the changed sequence, for example, the one added.

UpdateResources
ΔGenericRoutingProblem
toUpdate : iseq1 Activity

(let route == routes(actorOf (routes, head toUpdate));
first == head toUpdate • (∀ r ∈ resources •

resourceValues′(first)(r) = max{
resourceLowerBounds(first, r),
resourceValues(prev(routes, first))(r) +
resourceDeltas(r)(prev(routes, first), first)} ∧

∀ a ∈ (next(routes, start) to last route ∼ route) •
resourceValues′(a)(r) = max{

resourceLowerBounds(a, r),
resourceValues′(prev(routes, a))(r) +
resourceDeltas(r)(prev(routes, a), a)}))

168

The update is performed on the affected route and over all resource of the prob-
lem. The first activity, the head of the sequence toUpdate, is given its resource
values from the original values of the preceding activity. The subsequent activi-
ties on the whole route have their values computed from the new values (denoted
here as resourceValues′) at the preceding activity exactly as in the corresponding
projection.

As updating the values of different projections repeats much of the com-
putation already defined in the previous chapter, we omit the detailed schemas
for updating the rest of the projections. The full update operation for a given
primitive operation is given by the following schema:

Update =̂ UpdateCapabilities1 ∧
UpdatePartialResources1 ∧
UpdateStackResources1 ∧
UpdateGroups1

Each element of the schema corresponds to a projection given in the preceding
chapter.

The removal of sequences of activities is similar to the insertion. The follow-
ing schema defines the operation for removing a given sequence from a route.

Remove
ΔGenericRoutingProblem
toRemove? : iseq1 Activity
removed! : iseq1 Activity

∃ actor ∈ actors • toRemove? in routes(actor)
(let actor == actorOf (routes, prev?) •

(let route == routes(actor) •
routes′ = routes ⊕ { actor
→

(head route to prev(routes, head toRemove?) ∼ route)�

(next(routes, last toRemove?) to last route ∼ route) }))
removed! = toRemove?

First, we require that the sequence we are removing is a proper sequence on some
route. The actual removal is performed simply by concatenating the sequences
around the removed sequence. In addition, we return the removed sequence for
further use using removed!; this is useful in composing the operations, and we
will give examples of this shortly.

Reversing subsequences could be achieved by per activity manipulation,
but as this is a frequent component of local search, we introduce it here as a
primitive operation. The reversal of a subsequence in a route is defined by the
following schema:

1 Schema omitted.

169

�1 1 2 ⊥1

�2 3

4

5 ⊥2

/

/ /

FIGURE 32 An example of a relocate operation.

Reverse
ΔGenericRoutingProblem
toReverse? : iseq1 Activity

∃ actor ∈ actors • toReverse? in routes(actor)
(let actor == actorOf (routes, prev?) •

(let route == routes(actor) •
routes′ = routes ⊕ { actor
→

(head route to prev(routes, head toReverse?) ∼ route)�

rev toReverse?�

(next(routes, last toReverse?) to last route ∼ route) }))

Similarly to removal, we require that the sequence to reverse is, indeed, a proper
subsequence of some route. The reversal is done by concatenation of the begin-
ning of the route into the reversed sequence, and the reversed sequence, to the
end of the route.

These three basic primitives can now be used to express the local search
operator in the defined routing metamodel. We illustrate this by giving examples
of such operations. Firstly, we define a single relocation operation from a route
to another, and secondly, a 3-opt move within a route. The formal descriptions
of search operator building blocks can be used to describe the exact operation of
different algorithms in a formal way. The algorithm designers may utilize this
formalization as a way to define and examine search algorithms.

The relocation operator moves a single activity, or a sequence of one, from a
route to another. A single step within the relocate algorithm is depicted in Figure
32. In the example, the activity 4 is moved from route 2 to route 1. This is done
by replacing the arcs (1,2), (3,4), and (4,5) with (1,4), (4,2), and (3,5), and can be
expressed formally as

(Remove � Update[toRemove?/toUpdate?])>>
(Add[removed?/toAdd?] � Update[removed?/toUpdate?])

170

�1

⊥1

1 2

3

45

6

/

/

/

FIGURE 33 An example of a 3-opt operation.

where

toRemove? = 〈4〉,
prev? = 1.

In other words, we remove the activity 4 (within “toRemove?” as a parameter
of Remove) and update its previous route without the activity. The result of this
operation is then given to the operation which adds the given sequence after the
activity 1 (in “prev?” as a parameter of Add) and updates the new route.

A more complex example is one defined in an arc neighborhood. The 3-opt
operator removes three arcs and replaces them with three different ones. A single
step in this algorithm can take the following form: remove a subsequence from
the route, reverse it, and reinsert it to some other location. Such an operation is
depicted in Figure 33. In the example, the original route is 〈�1, 1, 2, 3, 4, 5, 6,⊥1〉,
and we remove the subsequence 〈4, 5, 6〉, reverse it, and reinsert it after the actor
start. This results in replacement of the arcs (�1,1), (3,4), and (6,⊥1) with (�1,6),
(4,1), and (3,⊥1). This can be expressed formally as

(Remove � Update[toRemove?/toUpdate?])>>
(Add[removed?/toAdd?] � Reverse[removed?/toReverse?]�

Update[removed?/toUpdate?]),

where

toRemove? = 〈4, 5, 6〉,
prev? = �1.

In other words, we remove the given sequence and update the route, then reinsert
the removed sequence and reverse it, and update the route again. In this formal-
ization, the route is updated twice as we defined that only the subsequence from
the first modification to the end of the route is updated, and we do not know
which of the two updates is redundant. In practice, there is no need to update the
changed sequence twice.

These examples illustrate the usage of the basic building blocks of local
search. The Add, Remove and Reverse operations capture the operations needed

171

in traversing arc neighborhoods typically used in routing. These operations are
the primary tools for algorithms to traverse the search space. As we are not aware
of any widely used local search operator for the VRP that cannot be expressed us-
ing sequence manipulation, we are now able to perform search in the context of
the developed model. Next, we address the issue of computational complexity of
this search, and evaluate the applicability of the developed modeling approach
in practice.

6.1.2 Complexity of Evaluation

The previous section demonstrated that we are able to perform the necessary
computations with the metamodel. However, more interestingly, given a possi-
ble update operation, the key question is how easily we can determine whether
we result on a feasible or infeasible region in the constraint space, that is, whether
the predicates of the schemas would remain true after an update. Answering this
question determines the computational complexity of the search and needs to
be evaluated in order to be able to determine the suitability of the developed
approach. Fortunately, there are some strong results and general frameworks
against which we may analyze our approach. This analysis is done for the build-
ing blocks of the developed metamodel, thus removing the need to analyze dif-
ferent optimization models separately. The modeling elements used in each case
determine the computational complexity of operating with the corresponding
model.

Three generic approaches in employing local search have been fairly re-
cently introduced in the literature: lexicographic search, segment concatenation, and
sequential search. Lexicographic search was first introduced by Kindervater and
Savelsbergh [125] (according to [109]), and it employs slack variables and main-
tains a set of global variables for achieving constant time complexity in feasi-
bility and objective evaluation in search operators based on both node and arc
neighborhoods. This approach is in use in the current implementation of the de-
veloped system, and will be described formally below. Segment concatenation
with resource extension functions was introduced by Irnich in [110] as a strat-
egy for achieving constant time evaluation of the result of concatenation of two
arbitrary segments. This approach should be applicable in the context of the de-
veloped metamodel, but due to scope limitations we only briefly illustrate the
approach and present a strategy for employing this approach in the future. Fi-
nally, sequential search was introduced by Irnich et al. [113]. It is an exact2 search
space reduction method that was shown to speed up typical local search oper-
ations considerably by discarding non-improving moves as soon as they can be
detected. This approach is briefly discussed, but its applicability to the developed
metamodel is left for future research.

Lexicographic search is largely based on slack projections. These projec-
tions allow constant time feasibility and objective evaluation for neighborhoods

2 By exact, we mean one that guarantees that the (local) optimum can be reached even if the
search space is reduced.

172

that consider a single activity at a time. As an example of this approach, we for-
mulate the evaluation of feasibility in constant time in the resource case (as we
defined slack projections in terms of this mechanism). The following schema can
be used to determine whether insertion of an activity at a given location results
in a feasible Ansatz:

TryInsertActivity
ΞGenericRoutingProblem
prev? : Activity
activity? : Activity
feasibility! : N

feasibility = 1 ⇔
∀ r ∈ resources •

max{resourceLowerBounds(activity?, r),
resourceValues(prev?)(r)+
resourceDeltas(r)(prev?, activity?)}+

resourceDeltas(r)(activity?, next(routes, prev?))−
resourceValues(prev?)(r) ≤
resourceSlackValues(next(routes, prev?))(r)

To compute whether an activity can be inserted on a route, we need to compute
the increase in the resource values caused by the insertion. This is computed
similarly to the resource projection; a lower bound or the value at the previous
activity plus the delta between the previous and the current is selected as the
value at the current activity. A delta to the next activity is then added to the value
and from this the effective increase is computed by subtracting the value at the
preceding activity. If the increase in the resource does not exceed the slack value,
the situation remains feasible after the insertion. As we can see, the feasibility is
computed in O(#resources), which is constant and small in most VRP variants.

As mentioned, the technique of Kindervater and Savelsbergh can also con-
sider arc neighborhoods. The search neighborhood of an algorithm that splits the
route into k segments (by removing k arcs) and concatenates them into a different
sequence (by adding k arcs) is of size nk, where n is the number of activities on the
route. As the segments considered in this neighborhood have arbitrary lengths,
naively checking the feasibility of these segments in an arbitrary order requires
traversing the segment at each step. However, if the computation is performed
so that the different segments are checked in an order that progresses the route
gradually and the intermediate values are stored, all the required computations
can be performed in nk steps. This can be achieved by introducing a set of grad-
ually computed global variables: by adding one activity at a time to a sequence
whose state is kept in the global variables, at each step the number of operations
is independent of the segment length.

The lexicographic search technique is illustrated by the following example.
The illustration is given in the context of partial resources. The target route con-
sists of two activities, 1 and 2, and the route start and end activities have the

173

t +1

�1

t = 1
t′ = 0

t′ ≤ 3

t −1

⊥2

t = 0
t′ = 8

t′ ≤ M

1

t = 1
t′ = 1

t′ ≤ 4

h 0

2

t = 1
t′ = 7

h = 0
t′ = 7

t′ ≤ 10

/
t’: 1 t’: 6 t’: 1

3

t = 1
t′ = 3

4 5

t’: 2 t’: 5

FIGURE 34 Lexicographic search — the first step.

capability “t” denoting time. In addition, activity 2 has a time window associated
using capability h. The time window is imposed by setting

partialResourceUpperBounds(h, t′) = 10

and

capabilityParents = {h
→ t}.

We attempt to check whether sequences can be inserted between activities 1 and
2.

The insertion of sequence of one activity is depicted in Figure 34. First we
note that the activities have their maximum allowed values for resources3 illus-
trated in the figure. As the route end activity has no time window defined, its
maximum allowed value for the resource “t’” is given here a sufficiently large M.
In contrast, as the activity 2 has an upper bound of 10 imposed for the resource
“t’”, its maximum value is set to 10, and depicted in the figure as t′ ≤ 10. Conse-
quently, the maximum value at activity 1 equals 4 as the delta between activities
1 and 2 is 6 for “t’”.

At the first step, we insert activity 3 between activities 1 and 2. The value
at that activity for (t, t′) now equals 3, and as the delta between 3 and 2 is 5 and
the maximum value at 2 is 10, the insertion can be made. This can be verified in
O(#resources).

In the second step, we take advantage of the already computed values,
which are stored as global variables similarly to the approach by Kindervater
and Savelsbergh. The next activity, 4, has a capability “k”, and a time window
defined by

partialResourceLowerBounds(h, t′) = 6

and

capabilityParents = {k
→ t}.

3 For clarity, we depict the maximum values instead of slack. The corresponding slack can
be computed from the maximum value and the current value at that activity.

174

t +1

�1

t = 1
t′ = 0

t′ ≤ 3

t −1

⊥2

t = 0
t′ = 8

t′ ≤ M

1

t = 1
t′ = 1

t′ ≤ 4

h 0

2

t = 1
t′ = 7

h = 0
t′ = 7

t′ ≤ 10

/
t’: 1 t’: 6 t’: 1

3

t = 1
t′ = 3

k 0

4

t = 1
t′ = 6

k = 0
t′ = 6

5

t’: 2

t’: 2

t’: 3

FIGURE 35 Lexicographic search — the second step.

t +1

�1

t = 1
t′ = 0

t′ ≤ 3

t −1

⊥2

t = 0
t′ = 8

t′ ≤ M

1

t = 1
t′ = 1

t′ ≤ 4

h 0

2

t = 1
t′ = 7

h = 0
t′ = 7

t′ ≤ 10

/
t’: 1 t’: 6 t’: 1

3

t = 1
t′ = 3

k 0

4

t = 1
t′ = 6

k = 0
t′ = 6

5

t = 1
t′ = 8

t’: 2

t’: 2 t’: 2

t’: 2

FIGURE 36 Lexicographic search — the third step.

Using these values, the second step of the search can be illustrated as in Figure
35. We now attempt to insert the sequence 〈3, 4〉 between the activities 1 and
2. The key here is that the values at activity 4 can be computed based on those
already computed for activity 3. Due to the lower bound on “t’”, the resulting
value equals 6 (5 plus 1 for the waiting), and as the delta between 4 and 2 equals
3, the insertion can be made. This can be verified in O(#resources), which is inde-
pendent of the sequence length.

Similarly to step two, the third step inserts the sequence 〈3, 4, 5〉 and com-
putes the values at activity 5 based on those already computed. This is illustrated
in Figure 36. It can be seen that also this insertion can be checked for feasibil-
ity in constant time. This example illustrates the usage in a simplified scenario.
In practice there is need to keep track of the changes on the source route as well
(in case of segment relocation, for instance). The process is similar and thus not
illustrated here.

Note also that in this context, the reverse operation is not exactly meaning-
ful as sequences are constructed one activity at a time, but reversal can effectively
be performed simply by inserting the activities one by one in a reverse order.

175

Moreover, interestingly, lexicographic search can also be used in insertion at mul-
tiple subsequent places if changes are made at multiple locations, that is, if we,
for example, insert a pickup activity somewhere in the route and search for the
location of the delivery, we may keep track of the already computed sequence
between the two activities to avoid computing the same values repeatedly.

As we illustrated, the feasibility of resources can be computed in constant
time. Moreover, capabilities can also be regarded as resources and their minimum
required and maximum allowed values can also be computed. This would, in
essence, provide us with information of the required capabilities on an activity
such that the situation is feasible from that activity onward. Adding capabilities
is a matter of computing these bounds and enumerating their active values in
the feasibility check. It was shown by Irnich and Desaulniers [111] that different
compatibility, incompatibility and precedence constraints can be modeled so that
their resource feasibility can be checked in constant time.

Partial resources can, consequently, also be computed in constant time, even
though computing with only one capability was illustrated in the example. In
the case of partial resources, some care has to be taken in the computation of the
lower bounds as we need to find the active value at each activity.

Stack resources are relatively simple to consider in lexicographic search —
with one pitfall. In the typical case, one needs to compute with the current active
delta function at the preceding activity to be able to evaluate the actual effects
of a removal or insertion. However, if an activation or deactivation occurs in
the newly added segment, one has to compute the effects of this change until
the deactivation of that delta function to measure the exact effect. Now, it must
be noted that perhaps the most usual use case is different cost structures in a
heterogeneous fleet. In this case, the activation and deactivation occur in the actor
start and end activities, which cannot be moved by the search operators. This
makes the usage of stack resources in the usual cases a constant time operation: at
each step we simply evaluate the change in values using the active delta function
at each route.

Grouping constraints increase the computational burden, but not in the same
sense as resources. While resource-based mechanisms introduce resources to
evaluate, grouping constraints increase the number of potential local search oper-
ations. The number of potential local search operations is multiplied by the num-
ber of elements in the group under consideration. This is, however, more a mat-
ter of the actual search operations (neighborhoods) implemented rather than the
implementation of feasibility checks. The design and evaluation of these neigh-
borhoods is left largely for future research.

We have thus far limited our discussion to feasibility checks, but as profit
can be regarded as a resource, the same computational complexity applies to its
evaluation. In practice, the objective evaluation can be accomplished by consid-
ering the removed and newly added arcs and their contribution to the profit.

To summarize the feasibility and objective evaluation using lexicographic
search, given a single search operation, the following computational complexity
classes for different mechanisms in the metamodel can be stated:

176

• resources: O(#resources),

• capabilities4: O(#active capabilities),

• partial resources: O(#resources · #active capabilities), and

• stack resources5: O(1).

This indicates a reasonable computational burden for local search, one that in-
creases according to the properties of the case model and, primarily, not its size.
However, as mentioned, the mechanism operating with stack resources is not
fully compatible with lexicographic search. Moreover, we must note that, cur-
rently, constant time feasibility checks are not fully implemented for capabilities
in the mechanism of partial resources in the lexicographic search scheme. This is
due to the fact that we plan to employ a more powerful approach, concatenation of
segments in constant time, in the next implementation of the metamodel. We will
present a preliminary evaluation of this approach.

Segment — or sequence — concatenation with resource extension func-
tions was applied to routing by Irnich [110]. In the paper, they introduced a
technique for achieving a constant time evaluation of concatenating any two seg-
ments. This is made possible by computing additional data for each possible
sequence currently in the Ansatz. More specifically, we need to store an increase
of the value of each resource for each segment. Moreover, as there are bounds
on the resources, the increase is dependent of the values at the preceding activity
and thus is not directly computable. Despite of this, the evaluation of the in-
crease can be achieved in constant time under some conditions. We do not use
the conditions stated in [110] here to prove that these requirements are met in the
developed metamodel, but leave this for further research.

The example given in the context of lexicographic search can be reformu-
lated into that of segment concatenation as illustrated in Figure 37. In the ex-
ample, we again insert the sequence 〈3, 4, 5〉 after activity 1. We have predeter-
mined the length of the sequence with respect to “t’” (the combined arcs have
a length of 4), and a cut point before which additional waiting occurs (at time
4). The cut point is computed from the lower bounds on the activities on the
sequence and conceding, at each activity, the value after which waiting occurs.
This is computed progressively backwards on the sequence by subtracting the
delta from the lower bound. In this case, activity 4 has a lower bound of 6, which
results in a cut point of 4 when the delta from 4 to 3 is subtracted. Given a start
time start at which the sequence is started (here 3, the value at activity 1 plus
the delta from activity 1 to 3), the increase in the resource “t’” can now be com-
puted by length(t′) + max{0, cut(t′)− start}, which in this example, results in 5.
When added to the value at activity 1 and the adjoining delta, this results in the
value of 8 at activity 5. This is exactly the result obtained in the case with lexico-
graphic search. Thus, we have computed the effective increase in resources when

4 Not implemented.
5 Assuming no activation and deactivation on the moved sequence.

177

t +1

�1

t = 1
t′ = 0

t′ ≤ 3

t −1

⊥2

t = 0
t′ = 8

t′ ≤ M

1

t = 1
t′ = 1

t′ ≤ 4

h 0

2

t = 1
t′ = 7

h = 0
t′ = 7

t′ ≤ 10

/
t’: 1 t’: 6 t’: 1

3

k 0

4 5

t’: 2

t’: 2 t’: 2

t’: 2

length(t′): 4
cut(t′): 4

FIGURE 37 Concatenation of segments in constant time.

inserting the sequence after activity 1, making the constant time feasibility check
possible also when using partial resources. It is worth pointing out that the op-
tion for reversing the sequences requires the data to be computed twice for each
sequence — once for both directions.

Similarly, the mechanism using stack resources can be employed by com-
puting the increase in each resource using each delta function defined to the prob-
lem. When inserting a sequence, the increase in resources is computed using the
currently active resource. If deactivation of the delta function occurs within the
sequence, the precomputed value can take this into account by calculating the
traversal of each part of the sequences by a different delta function. Similarly,
if activation occurs, the values at the sequence following the inserted can be ob-
tained so that they have been computed with the newly activated delta function.
This is possible as also these values have been precomputed. This indicates a
constant time feasibility checks for the stack resources and the overhead for com-
puting this additional data should remain reasonable in most routing cases.

The utilization of constant time segment concatenation is, indeed, promis-
ing for the developed metamodel, and the following generic strategy can be used
to include the mechanism to the developed metamodel. In practice, the meta-
model needs to be expanded by introducing additional slack projections that in-
clude the necessary data for checking feasibility and objective evaluation in con-
stant time for concatenation of two arbitrary sequences. The utilization of this
data is done by introducing schemas for the search operators using segment con-
catenation. The core schemas are somewhat independent of the search strategy,
but the slack projections are highly strategy-specific. It is conceivable that the
metamodel will be refined in terms of these additional projections in the future.
The relative stability of the core schemas against changes in the search strategy
would suggest that the description is somewhat stable.

Sequential search — a complementary strategy for segment concatenation
— has recently gained attention in local search based methodology. This tech-
nique restricts the search space by evaluating partial moves and discarding those
moves that cannot produce improving moves. The approach was discovered in

178

the 1970s and was applied to the TSP and the graph partitioning problem, but
has only recently been applied to constrained problems, such as the VRP [109].

The technique is based on the decomposition of moves and their partial
evaluation. The requirement is that each partial move is cost-independent and
that the sum of partial moves is the value of the whole move. If the partial moves
are ordered according to their partial profits, it has been shown that one only
needs to consider the p ∈ {1, . . . , n} first partial moves where the partial profit
is greater than p(P/n), where P is the lower bound for the overall profit and n is
the number of partial moves the move is composed of [113]. Note that the con-
catenation of arbitrary sequences is a requirement for the sequential search as the
partial moves cannot be considered in the order of their profit in the lexicographic
search strategy. The sequential search strategy should be applicable to a subset of
problems described by the metamodel. The requirement for cost-independence
restricts the applicability of the technique in some cases. For instance in the con-
text of stack resources, the partial moves must be considered as long as there is
at least one delta function yielding a potentially improving move. A detailed
analysis of this technique is, however, left for further research.

The presented analysis of computational complexity assumed transitional
resource and profit functions. But as discussed in the previous chapter, transi-
tional projections are not able to model all types of dynamic situations. Situation-
dependent projections are able to express, e.g., soft time windows, rush hours,
capacity-dependent travel time, and overtime fees. Unfortunately, we also noted
that the computation with these types of projections is not as efficient as with
transitional projections. Most notably, the sequential search strategy cannot be
applied in situations where the effect of each partial move cannot be evaluated
independently. This is clearly the case with situation-dependent projections.

As we still need to express soft time windows, rush hours, and overtime
fees, we currently employ a simple mechanism for computing with these types of
problems. In these cases, we evaluate the whole changed route from the point of
the change onwards. It is an open question whether there exists some other rel-
evant intermediate approaches which are not transitional, but can be computed
with less burden than traversing the whole route.

As the situation-dependent projections increase the computation beyond
constant time, it is plausible that a multi-staged approach to the objective and fea-
sibility evaluation would be beneficial. Such an approach would check, in con-
stant time, the resources that can be evaluated this way, and subsequently, only
if necessary, check the remaining resources (including profit). Furthermore, if the
resource evaluation is especially complicated, an approximation could be used to
discard those moves that are not likely to result in a feasible improving move. Ide-
ally, the system would automatically recognize from the properties of the model
which approach should be used. These topics are left for future research.

From the analysis given in this section, we conclude that reasonably efficient
search techniques are applicable in the context of the developed metamodel. It
is evident that the developed approach does induce some overhead through the
corresponding implementation, but the brief theoretical analysis of complexity

179

indicates a constant overhead that should be reasonable in most VRP cases.

6.2 Preliminary Results

In this section, we examine the operation of the developed framework in practice.
We first discuss the current state of the implementation, and subsequently aim to
demonstrate that the implementation of the metamodel is, indeed, possible by
solving both a set of commonly used standard benchmark instances and more
complex real-life problems. As the evaluation of real-life instances is problematic,
we limit the (brief) analysis to the benchmark instances.

6.2.1 State of Implementation

The implementation of the metamodel and the core parts of the product line was
done using C#, and as it stands now, the total source code line count is in the
order of 25 000. The total count which accounts for the optional modules of the
product line and the currently implemented application-layer realizations, is in
the order of 100 000 lines6.

As the development of optimization methods was not the aim of this work,
we do not present exhaustive testing in the context of the metamodel. How-
ever, some preliminary results from standard benchmarks will be presented as a
way to verify the implementability of the approach. That said, we note that the
first implementation of the metamodel is, indeed, partial. More specifically, the
capabilities have not yet been included into the constant time feasibility check,
and objective evaluation is performed as if the objective functions are situation-
dependent in all cases. The feasibility checks are thus performed first on the local
environment and only feasible moves are evaluated for the objective. Fortunately,
the effects of this expensive objective evaluation are smaller in PDP instances as
there are less feasible moves than in simple VRPs. Nevertheless, these short-
comings in the current implementation affect negatively the performance of the
system.

Note that in the search techniques used within the context of the developed
metamodel, there is, in fact, no need to store resource values for each capability la-
bel defined in the problem. Only those capabilities that have bounds defined on
them can be violated in terms of resources, and, although we have illustrated
a full Cartesian product on these values, not all values have to be stored and
computed in practice. Effectively, this leads to a sparse data structure in the im-
plementation. Now, the sparse data structure is often less efficient as a simple ar-
ray lookup, which is possible in most VRP cases, and the currently implemented
structure uses no sophisticated memory management for allocation and realloca-
tion of these data structures. This causes a slight (constant) overhead.

6 Including both production and test code

180

6.2.2 Benchmark Instances

We first tested the system with a set of benchmark instances from the literature.
The instances were pickup and delivery problems with time windows.

As we go through the different models used in testing the system, we ob-
serve common elements. One such element is the time window, and to express
the cases conveniently, we define the steps needed for generating them. Time
windows, as mentioned, are generated by creating a capability for the window
with a value of zero at the given activity and setting a parent for that capabil-
ity. The capability is then constrained according to a resource and bounds. The
algorithm is defined in Algorithm 14. The full model transformation used for

Algorithm 14 Generating time window.

Require: activity, parent, resource, window
tw ← CreateCapability()
AddCapability(activity, tw, 0)
SetParent(tw, parent)
AddBounds(tw, resource, window.Start, window.End)

generating the problem instances is given in Algorithm 15. We begin the model
transformation by generating a resource for time as we deal with a time win-
dowed problem. Vehicle capacity and clock are needed as capabilities and both
of these are given for all the vehicles in the problem. The capacity of the corre-
sponding vehicle is used as the value of the capability for capacity. Each task is
generated in two parts and they are given both capacities and time windows. A
resource function is needed for accumulating the time used during the traversal,
and a profit function employing the distance matrix is finally added.

The benchmark problems were solved with the developed system, and de-
spite the apparent deficiencies in the current implementation, we obtained some-
what reasonable results using a fairly simple metaheuristic search procedure. The
solution methodology used was a variable neighborhood descent with a multi-
start cheapest-insertion type construction heuristic discussed in Chapter 3. The
construction heuristic varied its parameter which controls the size of the neigh-
borhood the method considers when building routes. The construction heuristic
attempted to build routes by first considering activities near each other. The best
of the initial solutions were used in the subsequent intensification and diversifi-
cation phases iteratively. The intensification components of the VND used were

• 2-opt,

• intra-route relocate modified for PDP type of problems,

• inter-route relocate modified for PDP type of problems,

• Or-opt with additional option for segment reversion included, and

• 2-opt*.

181

Algorithm 15 Generating PDP benchmark instance.

time ← CreateResource()
capacity ← CreateCapability()
clock ← CreateCapability()
for all Vehicle vehicle in plan do

start ← CreateActivity()
end ← CreateActivity()
AddCapability(start, clock, +1)
AddCapability(end, clock, −1)
AddCapability(start, capacity, +vehicle.Capacity)
AddCapability(end, capacity, −vehicle.Capacity)

end for
for all Task task in plan do

pdp ← CreateCapability()
pickup ← CreateActivity()
AddCapability(pickup, capacity, −task.Pickup.Capacity)
AddCapability(pickup, pdp, +1)
CreateTimeWindow(pickup, clock, time, task.Pickup.TimeWindow)
delivery ← CreateActivity()
AddCapability(delivery, capacity, +task.Delivery.Capacity)
AddCapability(delivery, pdp, −1)
CreateTimeWindow(delivery, clock, time, task.Delivery.TimeWindow)

end for
AddTransitionalResourceFunction(clock, time, (a, b) → travelTime[a,b])
AddTransitionalProfitFunction(capacity, (a, b) → M−distance[a,b])

182

The diversification components were three types of route destruction operations
that considered different types of routes for partial or complete destruction and
merging into other routes.

We used a commonly used PDP benchmark set of 400 customers by Li and
Lim [135], which was available at the Sintef web-page7 along with the best known
results reported. The set contains 60 instances of varying parameters in both
the strictness of constraints (time windows, capacities) and the physical distribu-
tion of customers. The instances prefixed with “lc” have a clustered distribution
of customers, “lr” a uniform random distribution, and “lrc” mixed distribution.
The subsequent number indicates whether the constraints are tight (“1”) or loose
(“2”). The second number indicates the size of the problem (here 4), and the last
the number of the instance from 1 to 10.

The described solution methodology was employed and allowed to run up
to 600 seconds. The instances were solved on a desktop PC with Intel Core2 Duo
CPU E8400 @ 3.00GHz, and 3.21 GB of 2.99 GHz RAM, on Windows XP Profes-
sional SP3. The implementation was compiled on .NET 3.5 SP1 with Microsoft
Visual Studio 2008 Express SP1. Two instances of the solver were run in parallel,
that is, one on both cores. The optimization was executed to the time limit, after
which the best found solution was returned along with the elapsed time at the
finding of the best found solution.

The best reported solutions are evaluated using a lexicographic objective,
that is, first, the number of vehicles is considered, and second, the total traveled
distance. This can be modeled by setting a large enough travel cost from all route
start activities, except for the direct traversal to the route end. The results were
that when measured using the sum over all the 60 instances and compared to the
best solutions reported, we obtained solutions approximately 13.04% worse in
the number of vehicles and 17.80% in the traveled distance. Individually, on av-
erage, each case was 25.42% worse in the number of vehicles than the best known,
and 15.00% in the traveled distance. From this we can see that if the orders can
be served with a small number of vehicles in a given instance, the relative devi-
ation from the best known is larger. This could be explained by the difficulty of
removing long routes with the current set of algorithms. The standard deviation
was 19.5 percentage units for the number of vehicles and 12.0 for the distance
traveled. The best found solutions were obtained, on average, in approximately
6 minutes. Detailed results are given in Appendix 4. In addition, we examined
briefly, in a separate measurement, the stability of the methodology when ran-
domization elements were used in the diversification components. In this case,
we solved all the 60 instances ten times and examined the standard deviation on
both the number of vehicles and the length of the routes. Both values were, on
average, in the order of 1.2% between different runs on the same instance, which
would suggest that the method does perform consistently.

When compared to the simplicity of the metaheuristic used, the results are
reasonable in quality, but perhaps surprisingly weak in robustness. It is difficult
to evaluate the effect of the metamodel on the running time of the algorithms, but

7 http://www.sintef.no/projectweb/top

183

the main contribution to the relative slowness of the execution (when comparing
the running time to the obtained results) is most likely due to the somewhat par-
tial implementation of potential slack projections for capabilities and simplistic
memory management in the implementation. The inability to find better solu-
tions than the given results (notice that there were only few instances that re-
ported best known solutions close to the time limit) is most likely due to the sim-
plicity of the solution algorithm: e.g., no non-improving moves were allowed in
the intensification phase, which affects the effectiveness of the local searches neg-
atively when compared to the state-of-the-art metaheuristics typically employed.

6.2.3 Real-life Instances

As we have argued, the modeling framework supports expressing different types
of problems relatively flexibly. In this section, we examine a few real-life routing
problems that were modeled and, to some degree, solved with the developed
system. The problems originate from practical needs of logistic operators.

The first task was to distribute free papers with different types of trucks
with a different capacity, costs, and speed. The case was modeled as a routing
problem with a heterogeneous fleet and time windows. The model transforma-
tion for this case is given in Algorithm 16. The base case is similar to the VRP

Algorithm 16 Generating HVRPTW instance.

capacity ← CreateResource()
time ← CreateResource()
clock ← CreateCapability()
for all Vehicle vehicle in plan do

v ← CreateCapability()
start ← CreateActivity()
end ← CreateActivity()
AddCapability(start, v, +1)
AddCapability(end, v, −1)
AddCapability(start, clock, +1)
AddCapability(end, clock, −1)
AddBounds(v, capacity, 0, vehicle.Capacity)
CreateTimeWindow(start, clock, time, vehicle.StartTimeWindow)
CreateTimeWindow(end, clock, time, vehicle.EndTimeWindow)
AddTransitionalResourceFunction(v, time,(a, b) → travelTime[v,a,b])
AddTransitionalProfitFunction(v, (a, b) → M−cost[v,a,b])

end for
for all Task task in plan do

delivery ← CreateActivity()
CreateTimeWindow(delivery, clock, time, task.Delivery.TimeWindow)

end for
AddTransitionalResourceFunction(clock, capacity, (a, b) → capacity[b])

184

transformation described in the preceding chapter. We begin the model transfor-
mation by generating resources for time and capacity, and a capability for clock.
Each actor is given a unique capability, bounds on the accumulated load, time
windows, and functions for time and profit which are bound to the unique capa-
bility of the vehicle. Moreover, each task is given a time window, and a resource
function describing the load accumulation is added to the model.

The second task was to design newspaper delivery in bundles for subse-
quent distribution by individual deliverers. The case was not constrained by the
capacity of individual vehicles but the schedule limits on the print and on the
routes of the deliverers. The bundles were obtained from the print at a certain
point in time, and each deliverer should have completed her route by a given
point in time. The distribution was divided into two phases where the bundles
were first transported to deliverers, and as they began their route, the second
phase was started in the bundle delivery. Each individual distributor had a sec-
ond location to where the second bundle was delivered, and the delay between
these two deliveries were not supposed to exceed the length of the route of the
individual deliverer. The case was modeled as a multi-trip routing problem with
time windows and dependency between the tasks on the two trips. The model
transformation for this case is given in Algorithm 17. In contrast to the cases dis-
cussed so far, in this case we create three activities for each actor: start, end, and
a middle task for dividing the route into two trips. The activities of the actors are
constrained using two capabilities dictating the order in which they have to be
performed. Each task is then given two activities which are required to be per-
formed in a correct relation to the middle activity using capability requirements.
The dependency between the two phases of the task is established using a capa-
bility “phaseLink” which is constrained in time by the maximum delay between
the two phases of the task. Other elements of the transformation are similar to
those illustrated earlier.

The third instance was a case of oil product transportation with tankers.
The case involved pickup and delivery of products between harbors, and the
operations are limited by both time constraints and multidimensional capacity
of the tankers (both weight and volume). In addition, incompatibilities between
ships and harbors may be present. The case also involved service events but these
have been omitted for clarity. The objective function included travel costs, soft
time windows, costs on contamination, costs for changing the plan near the start
of the planning horizon, and relatively complex computation of costs and profits
during harbor visits. The detailed structure of the objective function itself is not
visible in the model transformation, but the transformation for generating the
constraints of the case is defined in Algorithm 18. The distinct feature of this case
is the situation-dependent profit function which is used to compute the relatively
complex cost structure of the case. The transformation combines the base PDP
model with a heterogeneous fleet. Each vehicle is given a unique capability which
is then used in the situation-dependent profit function for identifying the vehicle
in question. The capacities in this case are given in two dimensions, for both
vehicles and tasks. A set of incompatibilities between the vehicles and the tasks

185

Algorithm 17 Generating two-phase distribution problem instance.

time ← CreateResource()
clock ← CreateCapability()
firstPhase ← CreateCapability()
secondPhase ← CreateCapability()
for all Vehicle vehicle in plan do

start ← CreateActivity()
middle ← CreateActivity()
end ← CreateActivity()
CreateActor(start, end)
AddCapability(start, firstPhase, +1)
AddCapability(middle, firstPhase, −1)
AddCapability(middle, secondPhase, +1)
AddCapability(end, secondPhase, −1)
CreateTimeWindow(start, clock, time, vehicle.StartTimeWindow)
CreateTimeWindow(middle, clock, time, vehicle.MiddleTimeWindow)

end for
for all Task firstTask in plan.FirstPhaseTasks do

secondTask ← firstTask.SecondPhase
first ← CreateActivity()
second ← CreateActivity()
phaseLink ← CreateCapability()
AddCapability(first, phaseLink, +1)
AddCapability(second, phaseLink, −1)
AddCapabilityRequirement(first, firstPhase)
AddCapabilityRequirement(second, secondPhase)
CreateTimeWindow(first, clock, time, firstTask.TimeWindow)
AddBounds(phaseLink, time, 0, secondTask.MaxDelay)

end for
AddTransitionalResourceFunction(clock, time, (a, b) → travelTime[a,b])
AddTransitionalProfitFunction(clock, (a, b) → M−distance[a,b])

186

Algorithm 18 Generating ship routing instance.

time ← CreateResource()
weight ← CreateCapability()
volume ← CreateCapability()
clock ← CreateCapability()
for all Vehicle vehicle in plan do

v ← CreateCapability()
capabilities[vehicle] ← v
start ← CreateActivity()
end ← CreateActivity()
AddCapability(start, v, +1)
AddCapability(start, clock, +1)
AddCapability(start, weight, +vehicle.MaxWeight)
AddCapability(start, volume, +vehicle.Volume)
AddCapability(end, v, −1)
AddCapability(end, clock, −1)
AddCapability(end, weight, −vehicle.MaxWeight)
AddCapability(end, volume, −vehicle.Volume)
CreateTimeWindow(start, clock, time, vehicle.StartTimeWindow)
CreateTimeWindow(end, clock, time, vehicle.EndTimeWindow)

end for
for all Task task in plan do

pdp ← CreateCapability()
pickup ← CreateActivity()
AddCapability(pickup, weight, −task.Pickup.Weight)
AddCapability(pickup, volume, −task.Pickup.Volume)
AddCapability(pickup, pdp, +1)
CreateTimeWindow(pickup, clock, time, task.Pickup.TimeWindow)
delivery ← CreateActivity()
AddCapability(delivery, weight, +task.Delivery.Weight)
AddCapability(delivery, volume, +task.Delivery.Volume)
AddCapability(delivery, pdp, −1)
CreateTimeWindow(delivery, clock, time, task.Delivery.TimeWindow)
for all Vehicle vehicle in task.IncompatibleVehicles do

AddCapabilityProhibition(task.Pickup, capabilities[vehicle])
end for

end for
AddTransitionalResourceFunction(clock, time, (a, b) → travelTime[a,b])
AddSituationDependentProfitFunction(clock, (s, a, b) →GetProfit(s, a, b))

187

is also defined using capability prohibition.
The first case illustrates generation of a somewhat typical routing problem,

whereas the second case presents a slightly more unconventional structure. The
third case illustrates the simplicity of employing multiple capacities and compat-
ibility rules, but as noted, the objective function structures are quite implicit in
the metamodel. The usage of the stacked resource extension instead of the par-
tial resource extension with situation-dependent functions, if this can be done in
the given case, mitigates this somewhat. Overall, we might conclude from the
presented cases that fairly large differences in cases can be implemented on the
metamodel level with relatively small changes.

These cases illustrate the heterogeneity of the problem domain, and as men-
tioned, the different characteristics of the problems most likely affect the suit-
able solution methodology. It would be interesting to analyze the modeling con-
structs, e.g., the effect on the constraints such as the link between the phases in the
second example, but this work is left for future research due to scope limitations.

6.3 Implications of Model Characteristics

In the preceding sections, we examined in detail the algorithmic manipulation
of the Ansatz. However, we did not answer the question of selecting the set of
appropriate algorithms. Now, as there is considerable variation within the mod-
els described by the routing metamodel, it is conceivable that any single solution
approach cannot address the heterogeneity of the domain sufficiently. In this sec-
tion, we discuss the apparent implications of the characteristics of the models to
the solution methodology. We abstain from studying the computational effects of
model characteristics, but note that this is an interesting topic for further research.

6.3.1 Effects of Problem Structure

The structure of the optimization model affects the solution algorithms in three
major ways. The base problem variant changes the nature of the search neighbor-
hoods; capability and resource constraints alter especially the effectiveness of the
algorithms by modifying the structure of the feasible region; and grouping con-
straints introduce an additional dimension to the search space, which complicates
the search.

From the algorithm perspective, the problem variant refers to the natural
base operation required from the algorithm. We can identify a hierarchy of de-
cision variables according to the structure of the search neighborhoods defined.
There are three major structures we observe from the defined metamodel. These
are

• single-activity structures (e.g., the VRP),

• two-activity structures (e.g., the PDP), and

188

• multi-activity structures (e.g., the GPDP).

Single-activity structures correspond to search neighborhoods where the primary
operation concerns moving a single activity at a time. We examined an example
of such an optimization model in the preceding chapter when we generated a
VRP model. Two-activity structures, in contrast, correspond to neighborhoods
where the primary operation is to move two activities simultaneously. A natural
example is the PDP type, where each pickup and delivery activity has to move,
for example, from a route to another at the same time. Finally, multi-activity
structures define more than two of these activities, which complicates the search
further. These structures arise when the problem is of the GPDP type where, e.g.,
a set of pickups has to be performed for each delivery.

Note that while these structure types clearly affect node-neighborhoods,
they also have implications on search operators defined on arc-neighborhoods.
If, for instance, a segment is moved from one route to another, to make a valid
move, one has to ensure that in two-activity structured problem each pair of ac-
tivities resides either on the moved segment or on the remaining route.

Perhaps the most straightforward elements to address are the capability
and resource constraints. These constructs do not alter the search space itself,
only the feasible region. As we will observe in the subsequent chapter, the def-
inition of the feasible region is transparent to the solution methodology. These
constraints may also form a hierarchy, but its structure is less clear, and we do
not analyze these structures in detail.

There is a hierarchy of grouping constraints, however, but as we restricted
the current metamodel to simple groupings, this is the sole type of grouping con-
straints we examine for now. Other grouping constraints would introduce less
strict bounds on the size of the group. In a sense, grouping constraints have the
potential to introduce new decisions to the problem. These decision extensions
alter the structure of the model perhaps most radically of the constraints. As we
have discussed, decision extensions include decisions on loading compartments,
fleet selection, driver legislation modeling, and equipment selection. The model-
ing of decision extensions is based in many cases — in addition to activity groups
— on capabilities. These capabilities are, in fact, responsible for the dynamic na-
ture of these mapping constraints: one break defines the need to take another,
loading to one compartment prevents another pickup from being performed and
so on.

Implementation of search operators has to take into consideration espe-
cially the structure type of the problem and the possible mapping constraints in-
troduced. This remains true, despite the fact that the specifics of the optimization
model have been abstracted behind the metamodel.

The problem with different structure types is the fact that algorithms need to
perform different types of operations depending on the problem structure. There
are essentially three strategies for addressing this issue. We may

• let the algorithms query their assumptions (or more specifically, form their
assumption by querying) and adjust their operation accordingly,

189

• let the coordinating algorithms (such as metaheuristics) utilize their knowl-
edge of the problem and select the appropriate algorithms (such as local
search operators), or

• utilize some combination of the two.

Fortunately, the system structure as a product line is flexible in the sense that we
may employ the third option as needed. Where there are requirements for reuse,
we may let the algorithms adjust their operation as necessary, and where we
emphasize the case-specific properties, we may provide customized algorithms.
Thus, whichever approach is more beneficial at each case can be used. In this
work, we do not provide a definitive answer for when each alternative should be
used, but we advise erring on the side of reusability first, and customizing later
if needed.

The grouping constraints pose a problem similar to the structure types. On
one hand, if the algorithms are aware of the groups, they may exploit their exis-
tence in modifying the search space as needed, but they need to query their pres-
ence, which complicates the implementation and decreases their performance.
On the other hand, if algorithms are unaware of the grouping structures, they
are provided in a transparent and reusable way, but the algorithms may fail to
perform the search operations needed for exploring the feasible region. For in-
stance, inserting an activity to a route may require simultaneous substitution of
one activity on the same route with its alternative to provide more space on the
compartment. To the best of our knowledge, this operation is not yet part of
any established local search algorithm. We also note that the structure of the
problem can be deduced from the capabilities, groups, and resources. Deduction
can be performed, e.g, from the fact that some capabilities do not sum to zero
over all activities, which indicates that the problem must contain mutually exclu-
sive activities with respect to that capability. However, in order to “understand”
the structure (the dynamics) of the grouping, for example, it may be necessary
to traverse the dependencies between the different sets of alternative activities
through the capabilities. This is a subject for further research and is part of the
effort needed in constructing generic local search operators in rich problems. We
address this issue in the section where we discuss topics for further research and
mention problem structure analysis.

Based on this discussion, we next inspect the suitability of different local
search operators in complex routing problem variants and attempt to identify
different levels of adequacy for these operators.

6.3.2 Adequacy of Local Search Operators

We are interested in whether a given algorithm is applicable to a given situation,
that is, a given optimization model, the case instance, and its characteristics. To
analyze the cases, we provide here a simple taxonomy based on the suitability of
the local search operators.

The suitability of a search operator is directly dependent on the problem

190

structure, and, from the discussion in the preceding section, we see perhaps two
types of structures emerging:

• those typically easy to include transparently, such as compatibilities and
multiple dimensions on resources; and

• those requiring more sophistication in solution methods: for example, ad-
ditional decisions, such as loading and equipment selection, and complex
dependencies, such as tasks of multiple parts.

These differences are in some sense syntactic as they require the solution meth-
ods to understand the “syntax” in which the problem is described. In addition,
although the structural elements that, for example, define breaks, optional drop-
off points, and multiple compartments are the same (simple grouping constraints
and capabilities), it cannot be assumed that the methods that solve one of them
solves them all equally efficiently. This is due to the fact that the constraints gen-
erated on different situations differ semantically. This is a natural consequence of
the different kinds of decisions that have to be made in reality. Furthermore, even
if the real-life decisions are the same, the specific overall configuration (the number
of vehicles and tasks, for instance) of the given problem instance places different
kinds of requirements on the solution methods. This difference is, naturally, also
a feature of the existing methodology in vehicle routing research.

To summarize, we may distinguish four types of algorithms: those which are

• inapplicable,

• syntactically applicable,

• semantically applicable, and

• configurationally applicable

to the given problem.
Inapplicable algorithms do not understand the structure of the model or

some part of it, and because of this fail to traverse the search space in a reason-
able manner. In essence, activation of a model element may thus exclude a subset
of local search operators from use. These algorithms may, for example, fail to
provide a feasible initial solution as they are unable to deduce the dependencies
between different model constructs. For example, consider a case where com-
partment loading decisions are essential for constructing feasible routes. In this
framework, this type of problem cannot be solved by local search operators that
do not consider alternative activities a part of their core search operation. The
operator would most likely need to perform moves and consider alternative ac-
tivities simultaneously to be able to find feasible routes.

Syntactically applicable algorithms, in contrast, understand the problem
structure but may not utilize the semantic structures behind the modeling ele-
ments. The applicability from the syntactic viewpoint can be analyzed from the
problem structure: the set of modeling elements used dictates the algorithms that

191

can be applied. Examples of syntactically applicable algorithms to the VRP in-
clude the typical relocation of a single activity, and to the PDP, the relocation
of two activities. In fact, many standard search operators belong to this class of
algorithms in the context of most routing variants.

Semantically applicable algorithms employ the knowledge of the meaning
of the decisions, and these algorithms are tailored to solve some specific problem
type. The specifics of the problem can be inferred from domain knowledge, and
this information may result in hints to the solution process. The usage of addi-
tional information is potentially useful but not necessary for the solution process.
Examples of semantically applicable algorithms include those, for instance, re-
stricting their search according to pickup-delivery sequence patterns known to
be beneficial; in, e.g., some ship scheduling cases, the special structure of the pre-
ferred visit sequence can be utilized in this way. Another example is an algorithm
specifically designed to order tasks in compartments to reduce the overall load
required during the route.

Configurationally applicable algorithms are tailored to a certain problem
instance type, and can employ instance-specific knowledge, which is often nu-
meric data computed from the characteristics of the problem instance. These al-
gorithms are typically applied to address very specific problems. Examples of
configurationally applicable algorithms include construction heuristics that em-
ploy knowledge of, e.g., the degree of clusterization in the instance.

Observe that the possibilities for reuse decrease — or the requirements for
adaptation capabilities increase — as we move from the former types to the lat-
ter. Customization typically increases the need for semantic knowledge in the
algorithms. It is an open question how to model and transfer this knowledge
to the solution process. In addition, we note that the distinction between con-
figurationally and semantically applicable algorithms is not clear; it is perhaps
the degree of inference that is required to employ the characteristics of the case
which separates these two classes. The meaningfulness of this distinction should
be critically examined in the future.

This discussion underlines an essential feature of the system: one cannot
assume that after modeling the problem within the framework and developing a
necessary set of operators for finding a feasible solution, the problem is yet solv-
able to an acceptable degree. This is of course a property of any optimization
system, but may be present here more acutely. The requirements for robustness
in a generic system are perhaps more difficult to satisfy than in a case-specific
system. The basic level of robustness of an optimization system is achieved by
algorithms that can exploit the features of the problem. For this reason, in combi-
natorial optimization in general, the operators are tailored to the problem at hand.
However, as the potential problem set expands, the case-specific algorithms fail to
provide solutions in all cases. To address this, the system should be able to adapt
to the problem instance under consideration at a given moment. This might sug-
gest that more automation in the areas of analysis of the problem and selection
of methodology could be beneficial. We have identified this as a major topic for
further research, and it will be addressed in more detail in Chapter 8.

7 PRODUCT LINE OF ROUTING SYSTEMS

“What I cannot create, I do not understand.”

— RICHARD FEYNMAN

In this chapter, we apply the modeling framework described in Chapter 5
into practice. A model-driven software product line incorporating the domain
model, routing metamodel and model transformation engine will be described.
Moreover, we demonstrate the utilization of the variation mechanisms for de-
scribing different optimization models, varying the solution methodology, al-
tering the domain processes, and changing interface presentations. When dis-
cussing the domain model, we also address the derivation of application models
and their relation to the model transformation process.

This chapter is structured as follows. In Section 7.1, we take a look at the
overall structure of the software product line, describe the reference architecture
of this SPL, and present the variation mechanisms used within the developed
product line. In Section 7.2, we demonstrate the utilization of the central variation
point within the system: we give a set of transformation examples to describe
different routing variants and their extensions. Finally, we perform a heuristic
qualitative analysis of architectural structure of the developed system in Section
7.3.

7.1 System Design

This section discusses the structure of the developed optimization system as a
whole and addresses the design philosophy behind its structure. We will briefly
restate the objectives set and the approach used, present the overall structure of
the system, and discuss its architectural quality attributes in the context laid out
in Chapter 4. We then proceed to discuss the detailed structure of the system
and the phases required from the solution process. Within this context, we also
examine the variation mechanisms available within the developed architecture.

193

7.1.1 Objectives and Approach

In the context of this work, the objective is to provide an optimization system
which is reusable across different types of routing and scheduling cases and still
provides the needed solution quality and robustness without sacrificing the per-
formance of the system. This could lower the amortized amount of resources
needed in the building of a system for each case as large parts of the system would
already exist. This approach has been used in the last decade or two in the field
of general software engineering, and we would like to translate this approach to
optimization systems. Now, while we analyze the technical aspects of realizing
a product line architecture for a vehicle routing system and provide a general ra-
tionale for software product lines in this context, consideration of building such a
system from a business point of view — e.g., portfolio management, market anal-
ysis, product-life cycle management, organizational issues — is largely outside
the scope of this work. That said, the technical discussion presented here is not
limited to a commercial setting; in fact, the approach is most suitable to research
use in many respects. This point is emphasized especially when we contemplate
the applicability of the framework and the system in general.

The architecture of a software system is, among other things, an articula-
tion of quality goals, or more specifically, a statement of the desired balance
between conflicting attributes [14]. In Chapter 4, we defined several attributes
which may have not been addressed sufficiently in the context of optimization
systems. These were fidelity, accuracy, performance, scalability, and robustness
of the system, which together, as we defined, constituted for a usable system; and
applicability, simplicity, flexibility, and reusability, which largely define the im-
plementability of the system. Usability and implementability then determine the
cost-efficiency of providing a system that is suitable for a given problem.

Chapter 5 addressed the applicability, fidelity, and accuracy aspects of the
system by introducing a more detailed, generic description of routing problems;
performance, scalability, and robustness are discussed in Chapter 8 when we ex-
amine the topics for further research. In this chapter, therefore, we concentrate
on the simplicity, flexibility, and reusability of the developed system.

As the implemented model-driven approach was analyzed, it became ap-
parent that the tool support is not adequate for a full-fledged model-driven en-
gineering process in this particular problem domain. Much of the modeling and
model transformation framework has been built from scratch, and this cannot be
described as a full realization of the model-driven engineering paradigm. More
specifically, we do not utilize all the automation techniques developed for gen-
erating models and executable artifacts as described in the literature (see, e.g.,
[138]). Instead, we concentrate especially on how model-driven techniques can
be used to assist in managing variability.

The employment of a model-driven product line architecture described in
this chapter provides the research contributions to the field of software engineer-
ing. To the best of our knowledge, this is the first application of model-driven
architecture to the vehicle routing domain for building a software product line.

194

Domain
Layer

Application
Layer

Solver
Layer

Model
Layer

Presentation
Layer

FIGURE 38 Layers within the product line architecture1.

Moreover, this is the first work, as far as we are aware of, presenting a concrete
study on a model transformation as a variation point in a software product line.

7.1.2 Overall Structure

A software product line consists of two separate layers. In this section, we de-
scribe the overall structure of both the domain layer and the application layer of
the product line. This provides the basis for analyzing the introduction of varia-
tion as well as serves as an introduction to the functional modules required from
optimization systems in general.

As we developed the system, we identified three distinct functional layers
in the system, corresponding to presentation, model, and solver functionality.
Now, as the product line approach divides the structure into two structural lay-
ers, the overall structure can be seen as a six- layer structure. This is illustrated
in Figure 38. The responsibilities of each layer can be characterized as follows.
The solver layer handles everything needed for solving the optimization prob-
lem: problem encoding functionality, routing metamodel, and the necessary al-
gorithms and data structures. The model layer both controls the overall process
of the system and contains the object-oriented domain representation of the prob-
lem. The domain representation offers a clean interface to the UI for manipulating
the problem data by allowing adding, removing, and editing the data. The layer
also includes, for instance, persistence and data connectivity functionality as well
as functions for defining, tracking, and storing alternative scenarios of the given
case instance. The presentation layer, on the other hand, raises the abstraction
level of the domain representation and provides commonly needed services and
components for realizing the user interface implementations.

The domain layer of the solver layer contains the optimization system it-
self, whereas on the application layer, for instance, a set of application-specific
algorithms can be introduced. The domain layer of the model layer contains the

1 The arrows in this and the subsequent figures denote dependencies between different ele-
ments. An arrow from element A to element B denotes the fact that A depends on (uses)
B.

195

VRP Solver
Module

Model
Module

UI
Module

Application
Alg. Module

Application
Model Module

Application
UI Module

FIGURE 39 The module structure of the system.

abstract representation of the problems, such as the domain model described in
Chapter 5, whereas the application layer of this layer may expand the function-
ality of the abstract domain model as needed by the cases. Finally, the domain
layer of the presentation layer contains, for example, basic UI components devel-
oped for visualizing the data on the model layer, whereas the application layer of
this layer usually contains the concrete, case-specific, user interface implementa-
tion. The variants and their combinations within the system have the potential to
create relatively complex structures, and the structure on this level has been kept
conceptually simple to avoid introducing unnecessary complexity.

Within this layer structure we can divide different layers into one or more
modules. First, on the application layer, each module belongs to exactly one ap-
plication. If a module is needed by more than one application derived from the
product line, it is included into the domain layer as an optional core asset. For in-
stance, the VRP Solver Modulemay be accompanied by a SPP Solver Module if
needed by the case. We examine the optional modules in the subsequent sections
when discussing variability in more detail. Note that the dependencies between
modules follow those defined by the layers, that is, the modules on the presen-
tation layer depend on those on the model layer which then depend on those on
the solver layer. Furthermore, the modules on the application layer depend on
those on the domain layer. The module structure is illustrated in Figure 39. In the
example, there are three application level realizations. One of the applications,
for example, extends the solution methodology by introducing additional case-
specific algorithms on the solver layer. The domain layer contains optional mod-
ules which are not shared by all application level realizations. These modules are
marked with a dashed line. These optional modules provide one variation mech-
anism, but in order to examine more fine-grained variation, we need to examine
the structure of the system on the submodule level.

7.1.3 Submodule Structure

In order to understand the modeling and optimization process within the system,
we need to examine a number of major components within each module. These

196

elements are here referred to as submodules. Each submodule is responsible for
one or more major aspect of the module. For example, a transformation submod-
ule is responsible for the model transformation in the model module, and a core
algorithm submodule, the set of basic algorithms in the VRP solver module.

When we examine the three necessary modules on the domain layer, the
VRP Solver Module, Model Module, and UI Module, along with an example real-
ization of an application with corresponding three modules, we obtain a situation
such as the one illustrated in Figure 40. In the example, the boundaries of the six
modules are marked, and the figure presents the major subcomponents of those
modules.

The six modules and their submodules govern the overall process of the op-
timization, including actions performed before and after the actual traversal of
the search space. The process is first initiated from the UI Submodule by im-
porting data from a data source using the Data Connection Submodule. The
obtained data is translated into the object-oriented domain model presented in
Chapter 5. This is performed in the Model Submodule and the Domain Model
Submodule. Then, the transformation process is initiated through the Control
Submodule. The Transformation Submodule then utilizes the Transformation
Definition Submodule which is case-specific and holds the model transforma-
tion definition. This definition uses the model transformation presented in Chap-
ter 5 for generating the case-specific optimization model which conforms to the
developed routing metamodel. This optimization model is then fed into the
Optimization Submodule, which, using the Core Algorithm Submodule and the
Algorithm Submodule, solves the optimization problem. The solution is decoded
by adjusting the instance of the domain model in the Domain Model Submodule
according to the changes made in the optimization model instance. The prob-
lem and the solution are then visualized with the aid of the Presentation Model
Submodule and UI Component Submodule.

The described process is illustrated in Figure 41. In the illustration, we first
read the problem data using the application level model module, and generate
the domain model from this data. In addition, we set the proper model trans-
formation definition in place as given in the problem. In the second phase, we
create the optimization model by using the transformation, and store the result-
ing model into the routing metamodel implementation in the solver layer mod-
ule. The third phase performs the optimization where we may also employ case-
specific algorithms from the application layer. The result is then translated back
to the model layer. We discuss this translation process in more detail in Section
7.1.4. Finally, the results are presented to the user through UI modules.

The central elements of the system — the routing metamodel and the model
transformation — can be seen in both figures. In the submodule structure, the
Transformation Definition Submodule sends the Transformation Submodule
data over the domain–application boundary of the product line. The model trans-
formation definitions reside in the former, and the API defined in Chapter 5 is
provided by the latter. This is visible also in the sequence diagram. In the first
phase, the given transformation definition is given to the transformation engine

197

Algorithm
Submodule

Transformation
Definition

Submodule

Control
Submodule

UI
Submodule

Model
Submodule

Data
Connection
Submodule

Core
Algorithm
Submodule

Transformation
Submodule

UI Component
Submodule

Optimization
Submodule

Domain
Model

Submodule

Presentation
Model

Submodule

Oper. DB

Input DB

FIGURE 40 Submodule level structures of the domain layer and an example application
layer realization.

198

App. UI UI
App.

Model
Dom.
Model

App.
Solver

VRP
Solver

ReadData

data

CreateModel

PopulateData

SetTransform

status

status

status

CreateOptimizationModel

Transform

model

StoreOptimizationModel

state

state

state

state

Optimize

Optimize

Execute

result

result

result

result

result

FIGURE 41 A simplified sequence of operations within the module structure.

199

in the Transformation Submodule by the SetTransform operation; and in the
second phase, the operation Transform is performed using this definition. The
transformation definition on the application layer of the model layer acts as a
variation point controlling the actual optimization model used, enabling chang-
ing the model case by case. The routing metamodel is implemented in the domain
layer of the solver layer, where the case-specific optimization model is stored us-
ing the StoreOptimizationModel operation in the second phase of the sequence
diagram. The algorithms then operate on the metamodel in the third phase.

7.1.4 VRP Solver Module

One of the main modules of the system is the solver module. The VRP Solver
Module has three major roles. Firstly, it attempts to remove the algorithms’ de-
pendency on the optimization models but in a way that the existing VRP algo-
rithms can be used. Secondly, it attempts to provide a solution methodology that
is comprehensive enough for a variety of problems. Thirdly, it attempts to act as
the target for the model generation process with a transformation definition as a
variation point for the needed modeling flexibility.

While the removal of the algorithms’ dependency from the optimization
models is conceptually simple, we quickly run into trouble with reuse as there
is a many-to-many relationship between VRP cases and suitable solution algo-
rithms, that is, one algorithm may be required in solving several cases, and one
case is solved by a method which is a combination of several algorithms. To make
the system flexibly adjustable (not to mention self-adjusting), we would have to
be able to change both the underlying model and the solution methods indepen-
dently of each other.

To remove the dependency, we structured the solver module as illustrated in
Figure 42. The Transformation Engine from Transformation Submodule gen-
erates the actual model instance conforming to the routing metamodel defined
within the Routing Metamodel element. The model generation is directed by the
Transformation Definition Submodule in which the case-specific model trans-
formation algorithm is defined. The metamodel is then accessed by the solution
algorithms through a solution space explorer (SSE), which provides the route ma-
nipulation and feasibility check operations defined in Chapter 6.

Typically, the algorithm operates on the case, e.g., the VRPTW. In the devel-
oped structure, both the individual models and the solution methods are instead de-
pendent on the metamodel. This enables the algorithms to operate without having
to concern themselves with the particularities of the case. Our approach is in
contrast to the most straightforward implementation of combinatorial optimiza-
tion algorithms. In the simplest approach, the algorithms operate directly on the
data structures of the optimization model. Although there is overhead from our
approach, we argue, based on the analysis in the subsequent sections, that this
trade-off is justifiable.

In addition to the removal of the dependency, we are able to separate the
algorithms, metaheuristics, search space and its feasible region, and problem

200

Routing
Metamodel

Transformation
Engine

SSE

Algorithm Controller

2-Opt VNS

VRPTW

Optimization Submodule

Core Algorithm Submodule

Transformation Subm.

Transf. Def. Subm.

FIGURE 42 The major elements of the VRP solver module.

201

structure from each other. The introduction of the solution space explorer decou-
ples the search space from the metamodel, which allows, for instance, adjusting
the search space independently from the optimization model and solution algo-
rithms.

The solution methodology within the module is divided into two hierar-
chies: algorithms and controllers. The former represent individual search oper-
ators and the latter metaheuristics or higher-level constructs. This allows both
types of methods to be reused individually. The solution process is controlled
from the application layer of the model layer of the system, which, as mentioned,
also enables the utilization of case-specific information. After the algorithm ob-
jects have been created, they can be initialized using additional information gath-
ered from the generated model (such as specific labels of different types, e.g., ca-
pacity) which can then be used within the algorithms during execution as needed.

The model generation process follows the one discussed in Chapter 5: the
Transformation Engine generates the activities, resources, bounds, and so on.
The Transformation Submodule also performs the decoding of the solution and
offers mapping functionality from the generated model elements of the routing
metamodel to the elements of the domain model. After the completion of the
optimization, each activity, for example, is traced back into its corresponding do-
main model instance and the properties of this instance are adjusted according to
the status of that activity.

7.1.5 Variation

Using the given system structure and process description, we may now discuss
variability within the system. In this section, we list the relevant variation points,
discuss some of the variants, and, for illustration, present a concrete example of
varying one of the processes in the system.

As discussed in Chapter 4, a variation point is a representation of a vari-
ability subject — what varies — within domain artifacts enriched by contextual
information, and a variant is used to denote a representation of a variability object
— how it varies — within the domain and application artifacts.

One can identify at least seven major areas in which variation occurs within
a routing system. These are

• the optimization model,

• the solution methodology,

• the domain model,

• the presentation model,

• data connections,

• dispatching, reporting, and tracking functionality, and

• the task generation process.

202

A number of minor areas of variation also exist within the system, especially on
the presentation layer. We concentrate here on the model and solver layers as
they are more relevant to the contributions of this work.

One of the major variation points is the optimization model realized in
the routing metamodel within the Optimization Submodule. This variation is
controlled indirectly through the model transformation definition residing in the
Transformation Submodule, and variants of this variation point are the con-
crete transformation definitions given in the application-specific Transformation
Definition Submodule. The variation is realized through object-oriented tech-
niques, more specifically, a combination of inheritance and delegation.

Solution methodology refers to the variation point defining the algorithms
and metaheuristics utilized within the system. The variation point resides in the
Optimization Submodulewhich employs this methodology. There are two com-
plementary techniques through which the variants of this VP can be defined: the
Control Submodule may select and adjust the existing algorithms and their pa-
rameters, and the Algorithm Submodule may extend the available methodology
in the Core Algorithm Submodule by introducing a case-specific algorithm or
redefining functionality on the existing algorithms.

As we will observe in Section 7.2, the domain model presented in Chap-
ter 5 does not contain all the case-specific classes and properties employed when
expressing different model variants. We can consider the generic domain model
in the Domain Model Submodule as a variation point, and we may indeed intro-
duce application-specific variants of the domain model by selecting or introduc-
ing completely new child classes in the Model Submodule. Note that this refined
domain model is visible to the case-specific model transformation, as seen in Sec-
tion 7.1.3, and thus the transformation is able to employ the refined objects as
needed. For example, the abstract type of vehicle can be extended into a concrete
type of ship or a truck, depending on the case.

As with the domain model, the presentation model in the Presentation
Model Submodule can be subject to variation case by case. The mechanism is also
similar: the variants are selected and defined by inheriting the base classes and
selecting existing child components in the UI Submodule.

Data connections for import and export are dependent on the external data
definitions and the type of the storage. The abstract definition of the needed data
connections resides in the Domain Model Submodule as it defines the data sources
needed for the system: resources, tasks, geographical information, etc. There
are optional variants for handling map data, for example, but some of the data
sources are needed; the source of tasks and their properties, for instance, cannot
be left undefined. The variants are defined primarily in the application-specific
Data Connection Submodule as sources of data are often heterogeneous.

The Domain Model Submodule defines a set of optional dispatching, report-
ing, and tracking functions, and their variants such as the real-time tracking
of vehicles, sending orders directly to portable devices on the vehicles, printing
driving instructions, and providing or updating order or route data while the
vehicle is on a route.

203

The task generation process is a composite of several variation points: e.g.,
creating locations, geocoding, and computing shortest paths. These VPs are de-
fined in the Domain Model Submodule. Basic variants reside in the optional mod-
ules of the domain layer, but new variants can also be defined in parts of the
process. We conclude this section by providing an illustrative description of the
process in two application-level realizations. The example also illustrates the us-
age of different variants in the context of routing systems, and perhaps highlights
the suitability of the product line approach to routing systems in general.

The abstract task generation process can be described as follows. After the
data has been read and the domain instances created, we need to create the location
objects representing the locations of each task, vehicle, driver, and piece of equip-
ment. The locations are typically given as a string of characters, which we need
to parse and perhaps reference against an existing address database as there may
be errors in the data. The system then performs a geocoding process, in which the
addresses are given relation to each other, either by identifying a location on a
set of locations or connecting them as new nodes on a network. Using this data,
we need to compute the shortest distances between the locations, and finally hook
up a resource function for this matrix of distances to the transformation definition
of the problem. The abstract process is the same for every case, and is therefore
provided by the domain layer of the product line. The variations of this process
can be illustrated by examining and comparing two canonical application layer
realizations: one for ship scheduling and one for routing on a road network.

In a ship scheduling case, we do not always route on a complex network
structure. The distances between all pairs of relevant harbors can often be stored
into a database, and in the following example, we illustrate the usage of the ap-
plication layer on the task generation process in this type of situation. This case is
depicted in Figure 43. In this example, the task generation process is completed
as follows. We first create the location objects, but the parsing of the harbor does
not need to contain an actual operation. The geocoding is done by mapping the
input data into domain objects by a simple identification, and solving the short-
est path problem is a matter of table lookup for each pair of harbors. This table
is provided by the application layer as a part of the input to the system. Finally,
we construct a distance matrix based on the results and create an appropriate
resource function to be set to the optimization model.

When routing on a road network, the problem definition is often impartial.
For instance, routes between all possible locations can seldom be given as a part
of the problem definition. Tasks and depots have addresses, but optimizing the
routes requires knowledge of the distances between these locations. Some system
has to offer services for constructing the data required by the optimization. In the
following example, two optional modules are employed by the application layer
of the product line for this purpose. The SPP Solver Module contains services
for computing the shortest paths in the networks, and the Road Model Module,
for instance, services for address correction, geocoding on the road network, and
modeling the road traversal by extending the domain objects with road network
specific properties. The abstract process is realized in this situation as illustrated

204

App
Model

Model
Road

Model
SPP

Solver
CreateLocations

Parse

addresses

Geocode

locations

SolveSPP

distances

SetResourceFunc

status

status

FIGURE 43 A simplified sequence of operations within the PopulateData operation
while providing geocoding and the shortest paths on the application layer.

205

App
Model

Model
Road

Model
SPP

Solver
CreateLocations

Parse

addresses

Geocode

locations

SolveSPP

distances

SetResourceFunc

status

status

FIGURE 44 A simplified sequence of operations within the PopulateData operation
while employing optional road modules.

in Figure 44. The task generation process is controlled by the Application Model
module, which hooks the services of the Road Model and SPP Solver to the ab-
stract process before the process is initiated. The task generation process is now
completed as follows. First, we create the location objects and then parse the
addresses of the locations and reference them against the address database. Sub-
sequently, a geocoding process is performed by connecting the addresses as new
nodes on the road network. Using this data, we then find the shortest paths be-
tween each pair of locations by utilizing the shortest path solver provided by
the SPP Solver. The rest of the process is completed as in the ship scheduling
case. The function may also be more complex than a simple distance matrix.
For instance, another optional module might be used to provide data for time-
dependent travel, that is, such that models the effects of congestion. Also these
variants can relatively easily be implemented within the illustrated product line.

The previous example covers the practical routing in a real-life road net-
work, but in scientific benchmarks, this aspect is often omitted. In benchmark
cases, the process is considerably simpler as the distances are typically computed
by calculating the Euclidean distance between each location. This alternative can
also be defined in terms of the abstract process described, but we omit this variant
as its process is relatively simple.

This section discussed the alternatives to variability definition including,
e.g., optional modules. These variation points provide flexibility to the system

206

functionality. Two of the most relevant variation points within the system are
the optimization model and solution methodology. The next section examines in
detail the definition of variants for the variation point of the optimization model.

7.2 Model Variation

This section demonstrates in detail the usage of the API given in Chapter 5 by
presenting transformation definitions for a relevant subset of problem variants
and their extensions. It will provide insight into how the model elements can be
combined into structures within real-life routing problems, and it serves as a base
for evaluating the expressiveness of the framework.

As we give the transformation definitions, we assume a set of properties from
the domain objects as needed by the case. These have not been formally defined
as a part of the domain model, but as the extensions to the domain model are
also variants of the system, we may vary their details as needed. Listing the case-
specific properties explicitly would be tedious, and we discuss them here only
as a part of the transformation definitions. In addition, the given transformation
algorithms do not present full transformations; instead, they assume as their base the
PDP model given in Chapter 5. A subset of these definitions can also be adapted
into a simple VRP setting with minor changes, but these are not discussed in
detail.

7.2.1 Elementary Constraints

Perhaps the simplest and most common constraints, some of which have already
been discussed within the base examples given, are those of capabilities. These
include simple precedence constraints and vehicle capacities. Among the map-
ping constraints, however, maybe the simplest constraint is one defining two or
more alternative activities. We begin this overview to modeling of routing prob-
lem extensions by examining some of these constructs.

Capacity constraints have been discussed throughout the preceding chap-
ters, and as demonstrated in the real-life case examples, we may utilize multiple
dimensions in a relatively straightforward manner: we may freely add additional
resources and capabilities. In the PDP case, we can create the required capabili-
ties as illustrated in Algorithm 19. The case illustrates the usage of both weight
and volume of the vehicle.

Precedence constraints can be used to dictate ordering which often occurs
in feasible solutions. We have already seen precedence in PDP cases where the
pickups must occur before the corresponding deliveries, but more elaborate con-
structs are possible. If, for example, we wish to impose a constraint stating that
the task of activities 1 and 2 must be completed before the task of activities 5 and
6 as in Figure 45, we may add an additional capability for stating this. Here the
capability “a” now imposes an ordering for the delivery of the first task and the

207

Algorithm 19 Generating multiple capacities on PDP model instance.

weightCapacity ← CreateCapability()
volumeCapacity ← CreateCapability()
for all Vehicle vehicle in plan do

AddCapability(start, weightCapacity, +vehicle.WeightCapacity)
AddCapability(start, volumeCapacity, +vehicle.VolumeCapacity)
AddCapability(end, weightCapacity, −vehicle.WeightCapacity)
AddCapability(end, volumeCapacity, −vehicle.VolumeCapacity)

end for
for all Task task in plan do

AddCapability(pickup, weightCapacity, −task.Pickup.Weight)
AddCapability(pickup, volumeCapacity, −task.Pickup.Volume)
AddCapability(delivery, weightCapacity, +task.Delivery.Weight)
AddCapability(delivery, volumeCapacity, +task.Delivery.Volume)

end for

c +15

�1
p: 5

c −8
x +1

1
p: 4

c −3
y +1

3
p: 7

c +3
y −1

4
p: 1

a +1
c +8
x −1

2
p: 6

a −1
c −7
z +1

5
p: 2

c +7
z −1

6
p: 3

c −15

⊥1

FIGURE 45 Modeling precedence constraints within a PDP instance.

208

c +10

�1

a +1
c −4

1

a −1
c +4

2

a −1
c +4

3

c −10

⊥1

FIGURE 46 Modeling two alternative deliveries within a PDP instance.

pickup of the second. In conjunction with the other capabilities, this ensures that
the tasks are completed in a proper order. Note that the same technique can be
applied to multiple activities, that is, any number of activities may be required to
be completed before a given activity. Furthermore, it is possible that tasks consist
of more than two distinct activities, for example, two pickups and one delivery.
In this case, we can generate the capabilities as “a +1”, “a +1”, “a −2” for the
pickups and the delivery, respectively.

Alternative activities may occur when we need to decide, for example, be-
tween two alternative delivery locations. Sometimes, especially in school bus
routing and scheduling, the pickup location may be fixed but the delivery lo-
cation must be chosen between the target school and an intermediate bus stop
where the child continues with a regular bus for the rest of the journey. Such
cases can be modeled with grouping constraints, which effectively prevent feasi-
ble solutions from containing both of the activities at the same time. Generation
of alternative delivery locations is illustrated in Algorithm 20. Here we assume

Algorithm 20 Generating alternative deliveries on PDP model instance.

for all Task task in plan do
for all TaskEvent event in task.PossibleDeliveries do

delivery ← CreateActivity()
AddCapability(delivery, capacity, +event.Capacity)
AddCapability(delivery, pdp, −1)
activities.Add(delivery)

end for
AddActivityGroup(activities)

end for

that the task contains a list of possible delivery events that can take place, and that
the variable “activities” is a list of activities. We generate an activity for each al-
ternative delivery location and add the task-specific “pdp” capability along with
the necessary capacity to the activity. The resulting model is depicted in Figure
46. As we can see from the figure, strictly speaking, the grouping constraint is
not necessary in this particular case for feasibility as the precedence capability is

209

unique to each task. However, the grouping constraints offer additional structure
to the problem and their presence may be used to aid the algorithmic search.

7.2.2 Time Windows and Quality of Service

While capacities and capabilities were central to the base models of different
problem variants, the most common extension to the problem is time windows.
In addition to time window constraints, we have already introduced other con-
straints related to time and the quality of service, such as restrictions on time on
a vehicle and the total route length. We now examine these constraints from a
model generation viewpoint.

Time window constraints can be imposed on drivers, fleet, equipment, or
facilities, but most often they constraint the arrival on a pickup or a delivery of a
task. The presence of time windows adds a necessary resource to the model, and
introduces a new data matrix: travel times. At this point, we cover the simple
hard time window on pickups and deliveries. This is illustrated in Algorithm 21.
We first introduce a capability for tracking the clock2, and a resource “time” for

Algorithm 21 Generating time windows on PDP model instance.

clock ← CreateCapability()
time ← CreateResource()
for all Vehicle vehicle in plan do

AddCapability(start, clock, +1)
AddCapability(end, clock, −1)

end for
for all Task task in plan do

ptw ← CreateCapability()
AddCapability(pickup, ptw, 0)
SetParent(ptw, clock)
window ← task.Pickup.TimeWindow
AddBounds(ptw, time, window.Start, window.End)
dtw ← CreateCapability()
AddCapability(delivery, dtw, 0)
SetParent(dtw, clock)
window ← task.Delivery.TimeWindow
AddBounds(dtw, time, window.Start, window.End)

end for
AddTransitionalResourceFunction(time, clock, (a, b) → travelTime[a,b])

accumulating elapsed time. Each route start and end is given the clock so that
each route shares the same capability. Each pickup and delivery is then given a
constraint as follows: first, a unique capability is created for the activity, and then
a zero value is set to the activity for that capability, which is subsequently given a

2 Although in the elementary PDP model the same can be achieved with the capability “v”,
we use “clock” here for brevity and compatibility with the subsequent models.

210

parent “clock”, and a constraint is then generated from the time window values.
Finally, a transitional resource delta function describing increase in “time” for
“clock” is added to the model.

The illustrated model covers the case of a single hard time window, but
other variants are also possible. Multiple time windows can be expressed using
alternative activities with capabilities with different lower and upper bounds,
similarly to the example on alternative deliveries depicted earlier. Disallowing
waiting on activities can be enforced by stating that the resource denoting time
has strict lower bounds. Soft time windows, on the other hand, can be modeled
using profit functions. A situation-dependent profit function is needed for this
purpose: the arrival time can be extracted from the accumulated resource “time”,
which can then be used to compute the deviation from the desired arrival time
and to adjust the yielded profit accordingly.

Restrictions on time on a vehicle apply especially to dial-a-ride problems,
but such constraints may also be present in other types of routing problems. In
PDP problems, each task is identified with a unique capability, and this capability
can be used to impose task-specific restrictions on the time between the parts of
that task. This is illustrated in Algorithm 22. To restrict the time a passenger or

Algorithm 22 Generating restriction on time on vehicle.

for all Task task in plan do
AddBounds(pdp, time, 0, task.MaxTimeOnVehicle)

end for

cargo stays on the vehicle, we simply need to constraint the resource “time” on
the “pdp” of the task of transporting that particular passenger or cargo.

Restricting the length or the duration of a route can be done similarly to
the restriction on time on a vehicle. In this case, the constraint is defined on
the vehicle-specific capability (or in the elementary case, the common capability
“v”). The elementary case is depicted in Algorithm 23. In order to impose the

Algorithm 23 Generating route length constraint.

for all Vehicle vehicle in plan do
AddBounds(v, distance, 0, plan.MaxRouteLength)

end for

route length constraint, we simply set a suitable upper bound on the resource
“distance” on the capability “v”.

7.2.3 Situation-dependent Travel and Costs

A situation, as we have referred to it, is an informal term for the set of resource
and capability values at a given activity, accumulated that far along the route be-
fore that activity. Situation dependency on resources means that the accumulated
values define more subtle changes to the resource value than simple addition.

211

In fact, situation dependent functions are in most cases non-monotonic and usu-
ally difficult to approximate during local search. Despite these problems, they
are every so often needed in modeling of resource accumulation. Sometimes
the resources depend on the active capabilities, such as equipment or current
cargo, and at other times, on other resources, such as time. We address capabil-
ity dependent resources in the subsequent sections as we discuss, e.g., the fleet,
drivers, and equipment, but cover the resource-dependent resources (including
profit) here. Resource-dependent resources arise, for example, when modeling
overtimes (profit depending on time), traffic (time and distance depending on
time), effects of cargo on travel (time depending on capacity), changes in service
times due lighting conditions, i.e., slower at night (time dependent on time), or
cost of waiting (profit depending on time).

Overtime costs can be modeled by a situation-dependent profit function
using, for example, a piecewise linear function from travel time to profit, where,
after a certain time value, e.g., 8 hours, the coefficient of the costs changes to an
overtime salary.

Waiting time costs can be modeled by a situation-dependent profit function
that considers the time of arrival and the beginning of the corresponding time
window and includes an additional penalty if the former is less than the latter.

Effects of traffic can be modeled using a situation-dependent resource delta
function using the accumulated time as the input on function mapping start time,
source, and destination to expected travel time. The same can be applied to dis-
tance, although this resource changes perhaps less in practice. The effects of traf-
fic include modeling the fact that traveling is usually faster at night when there is
less traffic in general.

Effects of cargo are captured by using a situation-dependent resource delta
function which employs the accumulated capacity value as an additional input to
the function mapping the capacity and source and destination to travel time (or
distance, if after a certain weight, the truck needs to avoid certain road segments,
such as bridges).

7.2.4 Fleet, Crew, and Equipment Selection

Fleet management extends the routing and scheduling problems into a new di-
mension. The decisions in fleet management include choice of vehicles with dif-
ferent capacities, availability, costs, speed, and compatibility; various equipment
with compatibilities with tasks and vehicles; and management of trailers with
differing capacity, availability, costs, speed and compatibility with tasks and ve-
hicles, and which may need to be dropped off before, during, or after completing
a route.

Vehicle selection involves also deciding which kinds of vehicles perform
the designated tasks. This can be done by introducing additional activities. In
these cases, capacities are not generated to the route start and end, but instead to
the vehicle start and end activities. These activities are then used as part of the
routes as any other activity, and thus become decisions themselves, effectively

212

resulting in a routing problem with a heterogeneous fleet. These activities may
have differing capabilities depending on the vehicle they correspond to. This en-
ables changes, e.g., in capacity and speed between the vehicles. Generation of a
fleet of heterogeneous vehicles is depicted in Algorithm 24. Instead of generat-

Algorithm 24 Generating heterogeneous fleet of vehicles.

for all Vehicle vehicle in plan do
v ← CreateCapability()
vstart ← CreateActivity()
stw ← CreateCapability()
AddCapability(vstart, d, −1)
AddCapability(vstart, v, +1)
AddCapability(vstart, c, +vehicle.Capacity)
AddCapability(vstart, stw, 0)
SetParent(stw, clock)
window ← vehicle.Start.TimeWindow
AddBounds(stw, time, window.Start, window.End)
vend ← CreateActivity()
etw ← CreateCapability()
AddCapability(vend, d, +1)
AddCapability(vend, v, −1)
AddCapability(vend, c, −vehicle.Capacity)
AddCapability(vend, etw, 0)
SetParent(etw, clock)
window ← vehicle.End.TimeWindow
AddBounds(etw, time, window.Start, window.End)
AddTransitionalResourceFunction(time, v, (a, b) → travelTime[v,a,b])
AddTransitionalProfitFunction(v, (a, b) → M−travelTime[v,a,b])

end for

ing a single capability “v”, we generate an individual capability for each vehicle.
We then proceed, much like in the example of time windows, to generate the
start and end activities with time windows, capacities, and a precedence require-
ment. In addition, we need to generate a requirement for “d” (“driver”), which
ensures that no driver employs two or more vehicles simultaneously. A similar
procedure is performed to the vehicle end activity, but with opposite capability
values. Finally, we add the vehicle-specific speed and cost matrices to the prob-
lem. Note that these are bound to activate on a capability unique to each vehicle.
This enables individual distance and cost matrices potentially for each vehicle in
the problem. The generation of vehicle activities is illustrated in Figure 47. In the
example, capability “d” denotes the driver, “c” capacity, “v” vehicle, and “stw”
and “etw” start and end time window constraints, respectively.

Compatibilities between crew, vehicles, equipment, tasks, and combina-
tions of these may be present at a problem. These can be modeled with capabili-
ties such that each requirement of a vehicle, or equipment, is present as negative

213

d +1

�1

d −1
c +10
v +1
stw 0

1

d +1
c −10
v −1
etw 0

2

d −1

⊥1

FIGURE 47 Modeling vehicle start and end activities.

d +1

�1

a +1
d −1
c +10
v +1

1

a −1
b +1

3

b ∃
x +1
c −3

5

x −1
c +3

6

a +1
b −1

4

a −1
d +1
c −10
v −1

2

d −1

⊥1

FIGURE 48 Modeling driver, vehicle, equipment, and task compatibilities.

capability in the pickup, and positive in the delivery; and each capability offered
in the reverse order. This is depicted in Algorithm 25, where a driver has a ca-
pability to use a vehicle, and a vehicle enables usage of special equipment which
is in turn required to perform a task. We assume here that we have created the
start and end activities and the corresponding actors for each driver. First, we
generate all the capabilities offered by the drivers, store them into table “capa-
bilities”, and add them to the corresponding actor start and end activities. Then,
after generating the vehicles, we generate any requirements they might impose
on the drivers, and any additional capabilities the vehicles themselves offer. Ex-
actly the same process is done to the available equipment after a pair of activities
has been generated for its start and end locations. Finally, each task is given its
requirements. Note that capabilities from drivers, vehicles, or equipment may
contribute to all the elements further down the route sequences; e.g., a special
capability of a driver can be required for obtaining a piece of equipment or per-
forming a given task. It is also possible to generate capabilities offered by tasks
to perform other tasks, but we omit this for clarity as the action of picking up
and returning a piece of equipment can be seen as such a task. An example of
driver, vehicle, equipment, and task compatibilities is illustrated in Figure 48. In
the example, “d” denotes the driver, “v” the vehicle, and “c” its capacity. The
vehicle in question has a capability “a”, for example, “is able to tow machinery”.
This capability is then consumed in activity 3 as the machine in question prevents
other machines from being attached to the vehicle simultaneously. The capability
of this machine “b” is then required at activity 5.

Incompatibilities between different types of activities can be modeled us-
ing the capability prohibition in the way discussed earlier when illustrating the
capability extension in general. For instance, an incompatibility between a ve-
hicle and an activity, say a ship and a harbor, can simply be stated by adding

214

Algorithm 25 Generating compatibilities within heterogeneous fleet.

for all Driver driver in plan do
for all Capability capability in driver.Capabilities do

capabilities[capability] ← GenerateCapability()
AddCapability(start, capabilities[capability], +1)
AddCapability(end, capabilities[capability], −1)

end for
end for
for all Vehicle vehicle in plan do

for all Capability capability in vehicle.Requirements do
AddCapability(vstart, capabilities[capability], −1)
AddCapability(vend, capabilities[capability], +1)

end for
for all Capability capability in v.Capabilities do

capabilities[capability] ← GenerateCapability()
AddCapability(vstart, capabilities[capability], +1)
AddCapability(vend, capabilities[capability], −1)

end for
end for
for all Equipment equipment in plan do

for all Capability capability in equipment.Requirements do
AddCapability(estart, capabilities[capability], −1)
AddCapability(eend, capabilities[capability], +1)

end for
for all Capability capability in equipment.Capabilities do

capabilities[capability] ← GenerateCapability()
AddCapability(estart, capabilities[capability], +1)
AddCapability(eend, capabilities[capability], −1)

end for
end for
for all Task task in plan do

for all Capability capability in task.Requirements do
AddCapabilityRequirement(pickup, capabilities[capability])

end for
end for

215

a capability prohibition for the capability of the ship to the activity in question.
Dynamic incompatibilities, that is, contamination, can be modeled with suitable
resource and lower bounds. Contamination is an incompatibility caused by a
task. This incompatibility is in effect for a given duration and during this pe-
riod it prevents some tasks from being performed. Generation of contamination
rules and the adjoining restrictions is illustrated in Algorithm 26. Each task has

Algorithm 26 Generating contamination restrictions.

d ← CreateResource()
SetStrictLowerBound(d)
for all Task task in plan do

pickup ← CreateActivity()
delivery ← CreateActivity()
for all Contamination contamination in task.Contaminations do

c ← CreateCapability()
contaminations[contamination] = c
pickups[task] = pickup
AddCapability(delivery, c, +1)
SetAllowNonempty(c)

end for
end for
for all Task task in plan do

for all Restriction restriction in task.Restrictions do
r ← CreateCapability()
AddCapability(pickups[task], r, 0)
SetParent(r, contaminations[contamination])
AddBounds(r, d, restriction.Length, M)

end for
end for

a list of unique contaminations it causes and these are generated as capabilities
activating at the activity of that task. The delivery of the task activates the con-
tamination caused by the task. Each task has also a list of restrictions for the
contaminations, that is, which contaminations in fact prohibit the loading of the
task and for how long. In this example, the restriction is a window to the resource
“d” (“deliveries”) and the lower bound equals to the length of the contamination.
The restrictions are generated for the pickups of each task to ensure that there is
indeed a sufficient number of task deliveries between the delivery of the contam-
inating task and pickup of the sensitive task. Note that to prevent simultaneous
loading of incompatible tasks, one needs to impose also capability prohibition for
the capabilities of the tasks. Furthermore, to enable the sensitive tasks to be ser-
viced before any contaminating, one needs to add the restrictions to route start
activities (both of these details have been omitted from the algorithm).

Figure 49 presents an example of modeling contamination. In the example,
the task “x” contaminates the vehicle so that the task “z” cannot be performed

216

r +1

�1

x +1

1

c +1
x −1

2

y +1

3

y −1

4

r 0
z +1

5

z −1

6 ⊥1
d: 2 d: 1 d: 0 d: 1 d: 0 d: 1 d: 0

FIGURE 49 Modeling contamination rules.

unless one other task is performed completely in between. The resource “d” is
accumulated by one every time a delivery is performed. Note that the number
of deliveries must be sufficiently large when starting the route to ensure that the
lower bounds are met even if no contaminating task has been performed. In
the example, this is ensured by increasing the number of deliveries by 2 when
leaving the start activity. The restriction “r” has a strict lower bound of 1 on
the resource “d” and uses “x” as its parent. This makes it infeasible to visit the
activity 5 immediately after the activity 2 as the value of “d” would be zero at
that point. We must point out, however, that modeling contaminations using this
approach is not suitable for problems in which a large fraction of the tasks cause
contamination. Each contaminating task introduces two new capabilities and this
can result in excessively large models in such cases.

Trailers can be seen as special equipment with capacity. Trailers — as well
as other pieces of equipment — can alter also the costs and speed of traversal, and
they may have individual time windows. A single trailer is typically attached to
a vehicle and it adds to the capacity of that vehicle. Generating this type of case
is illustrated in Algorithm 27, where the trailer increases the capacity of the ve-
hicle but affects its cost and speed. The changes in resource and profit functions
are introduced as in the nominal case, but the stacked resource extension mech-
anism is employed internally as soon as the capability “trailer” is activated. It is

Algorithm 27 Generating trailers affecting costs and travel times.

for all Trailer trailer in plan do
t ← CreateCapability()
tstart ← CreateActivity()
AddCapability(tstart, h, −1)
AddCapability(tstart, t, +1)
AddCapability(tstart, c, +trailer.Capacity)
tend ← CreateActivity()
AddCapability(tend, h, +1)
AddCapability(tend, t, −1)
AddCapability(tend, c, −trailer.Capacity)
AddTransitionalResourceFunction(time, t, (a, b) → travelTime[t,a,b])
AddTransitionalProfitFunction(t, (a, b) → M−travelTime[t,a,b])

end for

assumed that vehicles capable of picking up trailers have capability “h” (“hitch”)

217

d +1

�1

h +1
d −1
c +10
v +1

1

h −1
c +8
t +1

3

h +1
c −8
t −1

4

h −1
d +1
c −10
v −1

2

d −1

⊥1

FIGURE 50 Modeling trailer pickup and drop-off activities.

which is consumed at trailer pickup. In addition, each trailer adds additional ca-
pacity to the capacity of the vehicle. Otherwise the trailer generation follows that
of equipment. Equipment, especially trailers, may also have alternative drop-off
locations, and these are modeled similarly to the approach discussed earlier. An
example of modeling trailer pickup and drop-off activities is illustrated in Figure
50. In the example, vehicles have a single hitch “h”, which enables usage of a
single trailer at a time. The trailer then consumes this capability, and increases
the capacity “c” of the vehicle. Note also that it is, naturally, possible to generate
trailer pickup and drop-off activities without generating the vehicle start and end
activities, if the fleet and the set of drivers are otherwise homogeneous.

Service events refer to maintenance tasks or other activities during which
the vehicle cannot be on active use, that is, no cargo can be on the vehicle. These
types of activities can take place, however, anywhere during the route. The
emptiness of the vehicle can be ensured by generating a task which consumes
all the capacity available within the vehicle.

7.2.5 Drivers and Legislation

Several real-life restrictions manifest themselves in constraints on drivers. An in-
dividual driver may be incompatible with a given task, a given vehicle, or given
equipment, such as a trailer. Drivers may also be allowed to complete multi-
ple routes during the planning horizon, provided that certain criteria are met.
Moreover, break legislation may introduce several different types of constraints
on route structure.

Driver compatibilities may restrict the ability of the driver to perform tasks
or use a vehicle or equipment. We covered much of the compatibility issues in
the previous section. Many of these compatibilities are due to some regulatory
measures, such as licenses to drive different classes of vehicles and permissions
to operate different types of machinery. In some cases, the drivers may also be
assigned to a certain set of tasks, for example, by previously used routines; each
task may be located in some area which is familiar to some drivers and unfamil-
iar to others. In these cases, the operation times are lower when an accustomed
driver visits a task. Sometimes the design of routes has to conform to these cus-
toms of zoning the operations, and these too can be modeled with compatibilities.
An example of a driver-task compatibility is given in Figure 51. The driver is sim-
ply given a capability “familiarity” at the route start activity, and this capability
is subsequently required by a subset of task activities.

218

f +1

�1

f ∃

1 2

f ∃

3 4

f −1

⊥1

FIGURE 51 Modeling driver-task compatibilities.

c +10
a +2

�1

c −2
x +1

1

c +2
x −1

2

c −10
a −1
k +1

3

c +10
k −1

4

c −3
y +1

5

c +3
y −1

6

c −10
a −1

⊥1

FIGURE 52 Modeling multiple uses of vehicles.

Multiple uses of vehicles refer to property of a problem that allows refilling
(or emptying) vehicles at the depot during the planning horizon to serve more
customers than would otherwise be possible due to capacity restrictions. These
cases can be modeled exactly as the service events described earlier. These service
events require the vehicle to be empty while visiting the depot. This leads to a
situation where several independent routes are constructed between the service
events. In fact, using this technique we may model a planning horizon of several
days by introducing service events of, e.g., 16 hours to separate the workdays.
Modeling multiple uses of vehicles within a PDP problem is depicted in Figure
52. In the example, each service event is modeled as two activities, first, activity
3, which consumes all the capacity of the corresponding vehicle, and second,
activity 4, which restores it. The pickups performed thus have to be delivered
before the next stop at the depot. Notice how we introduce “a +2” in the route
start activity, and “a −1” at each stop at the depot (including the last). This means
that in this case we need to visit the depot for an additional time during the
complete route, effectively creating two routes — both of which may of course
remain empty.

Breaks add additional tasks for the drivers: lunches and coffee breaks for in-
stance. These activities, however, differ from the other typical tasks. Breaks have
more complex rules on time windows: their exact location may not be defined
and there may be several available options for taking breaks.

Breaks with defined locations are relatively simple to model by introducing
additional tasks acting as breaks. In a case where two compulsory breaks have to
be taken, we may use the technique discussed earlier: decision-dependent time
windows. If we assume that the first break, “b”, has to be taken after 4 hours
of driving, and the second, “b’”, after no more than 4 hours has passed from
the first break, we may define that the lower bound on time to the latter “b’” is
less than 4 hours. This is illustrated in Figure 53. In these types of cases, at the
route start, we require that we take the first break, and when the first break is
taken, we subsequently require the second. The time windows are set to these

219

b +1

�1 1

b +1
b’ +1

2 3 4

b’ −1

5 6 ⊥1

FIGURE 53 Modeling breaks with predefined locations.

b +1

�1

x +1

1

x +1
b −1

2

x −1

3

x −1
b −1

4

y +1
b −1

6

y +1

5

y −1

7

y −1
b −1

8

⊥1

FIGURE 54 Modeling breaks with undefined locations.

two capabilities accordingly.
In contrast to breaks with defined locations, ones with undefined locations

are not represented by additional tasks by themselves. As we do not know where
the break is taken, the decision becomes “during which task is the break taken”.
Alternative activities can be generated to model this situation. Each task during
which a break can be taken is duplicated and the duplicate is given almost the
same properties along with the same location as the original task. The break-
specific capabilities are different as well as the duration of the task. This rep-
resents the time required to complete the task and perform the break. This is
illustrated in Figure 54. In the example, each pickup and delivery (the odd num-
bers) has an adjoining activity (the even numbers), and we require that exactly
one of the even numbered is visited during the route by the capability “b”. The
service times at activities 2, 4, 6, and 8 are equal to the duration of the break plus
the service time in activities 1, 3, 5, and 7, respectively.

We now revisit the two examples considered in the literature and discussed
in Chapter 2. The cases were defined as follows. In the UK, “a driver cannot drive
for more than 4.5 hours consecutively without having a break of 45 min. This
break can be taken in a single period, two periods (one of 30 min and another
of 15 min) or three periods of 15 min”, and in Switzerland, “after 5.5 hours of
uninterrupted work, or 4 hours of uninterrupted driving time, the driver must
take at least a one-hour break”. For illustration, we assume that in the former
case, the locations of the breaks are not defined, and in the latter, they are given.

The Switzerland case with defined locations can be modeled as in Figure 53
given earlier, but with two resources: “travel time” and “work time”. These two

220

b +45

�1 1

b −15

2

b −30

3

b −45

4

5

b −15

6

b −30

7

b −45

8

9

b −15

10

b −30

11

b −45

12

13

b −15

14

b −30

15

b −45

16

⊥1

FIGURE 55 Modeling breaks according to the UK legislation.

are accumulated so that driving between locations increases both according to the
time required to travel between the locations, but service times at each location
increase only the resource “work time”. The breaks are then given upper bounds
of 5.5 hours for the “work time” and 4 hours for the “travel time”. Whichever
bound is first met dictates the time when the break has to be taken.

The UK case can be modeled similarly to the generic case with undefined
locations. In this case, we have several alternative ways of taking the breaks and
thus we introduce an additional activity for each of these alternatives. This is de-
picted in Figure 55. We begin the route by stating that 45 minutes of break has to
be taken during the route, and introduce capability “b” with an appropriate value
at the route start. Each activity corresponding to a task with no adjoining break,
that is, activities 1, 5, 9, and 13 is then given three alternative activities. Activities
2, 6, 10, and 14 denote task and an adjoining 15 minute break; activities 3, 7, 11,
and 15, that of 30; and activities 4, 8, 12, and 16; of 45 minutes. The route consists
of two activities with no adjoining break, 1, and 9; an activity with a 30-minute
break, 7; and an activity with a 15-minute break, 14. This combination consumes
the required amount of break time, and the decisions involved are semantically
the same as in the problem definition. Note that, although capabilities are here
used to track the break time taken, the service times still have to be generated as
usual: the original service times plus the duration of the break for each activity
with an adjoining break.

Finally, we note that there is an inconsistency in the feasibility of empty
routes in the figures of this section. Not all examples are feasible when the route
is empty. The illustrated cases do, then, require an additional optional activity for
allowing the empty route case. This activity has, however, been omitted from the
figures for brevity. Ensuring that empty routes are allowed can be done by intro-

221

c +10
c’ +10

�1

c −8
x +1

1

c’ −8
x +1

2

c’ −4
y +1

5

c +8
x −1

3

c’ +8
x −1

4

c’ +4
y −1

6

c’ −3
z +1

7

c −4
z +1

8

c’ +3
z −1

9

c +4
z −1

10

c −10
c’ −10

⊥1

FIGURE 56 Modeling compartments with compatibilities within a PDP instance.

ducing an activity with appropriate capabilities, and a time window of zero. This
effectively prevents the activity to be on the route if other activities are present,
but assigning this activity to the empty route makes also the empty case feasible.
The additional activity can then be interpreted as the task of completing the route
without the breaks as they were not needed.

7.2.6 Compartment Loading Decisions

Some routing and scheduling problems include decisions on how to load the ve-
hicles. Some problems even address the physical arrangement within the cargo
space, but in this context we consider only the decisions on which compartment
each object should be loaded. The compartments may vary with their compatibil-
ity and size, and some compartments may be included as optional, such as those
in trailers. Moreover, each vehicle may contain a different set of compartments,
that is, the fleet may be heterogeneous in this regard.

Compartments can be modeled using alternative activities denoting the al-
ternative compartments to which the cargo can be loaded. Multiple types of com-
partments may exist as each compartment may be compatible with a subset of
tasks, their size may vary, and also their capacity constrains may be defined in
multiple dimensions. When modeling compartments, each compartment is in-
troduced by giving an individual capacity to the actor. Each of the alternative
activities then consumes one of these capacities. Additional dimensions on the
capacities would introduce a new capability for each compartment, and each al-
ternative activity would consume the capacity on each dimension. Introducing
compatibilities between compartments and activities is in the simplest case a mat-
ter of dropping the alternative of loading the task in the incompatible compart-
ment. A case with two compartments of equal size in a vehicle, and an incom-
patibility between a compartment and a task is illustrated in Figure 56. In the
depicted case, the vehicle is given two compartments, “c” and “c’”. The first task
consists of transporting cargo denoted with capability “x”, which can be loaded
on either of the compartments. Both alternatives consume 8 units of the selected
capacity. In the example, the compartment “c” is selected. The task denoted with

222

h +1
c +10
c’ +10

�1

h −1
t +1
c” +8

1

c” −6
x +1

3

c” +6
x −1

4

h +1
t −1
c” −8

2

h −1
c −10
c’ −10

⊥1

FIGURE 57 Modeling compartments in trailers within a PDP instance.

“y”, in contrast, is compatible only with the compartment “c’”, and is, therefore,
modeled as a single pair of activities, 5 and 6. Finally, the task of transporting “z”
illustrates the fact that the alternative activities do not have to be exactly similar.
Perhaps some compartments are designed to hold certain cargo and contain ap-
propriate methods for storing these objects, while other compartments do not. In
these cases, the actual amount of capacity consumed differs from one compart-
ment to another. In the example, we choose the compartment “c’” as storing the
cargo there consumes less capacity.

Compartments within trailers can be modeled either as simple compart-
ments, if we assume that each vehicle has one; or as optional trailers introducing
an additional capacity instead of increasing the overall capacity of the vehicle. In
fact, the nominal case described earlier can also be interpreted as a loading de-
cision between the vehicle and its trailer. A case where the optional trailer can
be introduced, however, is depicted in Figure 57. In the example, the vehicle has
two compartments, “c” and “c’”, and the trailer introduces a third compartment,
“c””. A task compatible with only the newly introduced compartment within the
trailer is then picked up to the trailer and delivered before the trailer is released in
activity 2. After activity 2, the corresponding compartment is no longer available.

Combining compartments with fleet selection can introduce vehicle com-
partments in a way that each vehicle contains a subset of the compartment types
within the problem. The alternative activities must therefore be introduced for
each compatible compartment. Moreover, the compartments may be of different
size between different vehicles. A case with three different types of compartments
in two vehicles is depicted in Figure 58. In the example, vehicle 1 has compart-
ments of type “c” and “c’”, and vehicle 2 of types “c’” and “c””. The task of
transporting “x” is generated as three distinct alternative activities as there are a
total of three different types of compartments in the problem. As usual, the tasks
compatible only with a certain type of compartment are generated using only the
activities using the capability.

7.2.7 Notes on Interactive Optimization

In many cases, the planning of operations is an interactive task. This means that
there can be changes occurring in the problem data as the planning takes place
and some parts of the problem may need to be fixed as they may have already
occurred. Moreover, the operator herself might want to restrict the structure man-
ually. In addition to the constraints already discussed, there are also constructs

223

c’ +10
c” +5

�2

c” −2
y +1

7

c” +2
y −1

8

c’ −10
c” −5

⊥2

c +10
c’ +15

�1

c −3
x +1

1

c’ −3
x +1

2

c” −3
x +1

3

c +3
x −1

4

c’ +3
x −1

5

c” +3
x +1

6

c −10
c’ −15

⊥1

FIGURE 58 Modeling compartments within a heterogeneous fleet.

especially helpful in aiding in interactive planning. Restricting the route struc-
ture by locking tasks to given routes is useful when the operator wishes to aid,
guide, or restrict the algorithmic search. Similarly, constructing routes from pre-
defined sequences of activities, the operator may employ information which is
not available to the algorithms.

Restricting the route structure can be done by employing capability con-
straints similarly to the techniques discussed in the preceding sections. Activities
can be locked to a specific route simply by introducing a zero value for the unique
capability of the corresponding actor. Forming predefined sequences of activi-
ties, however, requires a more complex construct. First, we need to introduce a
resource, the so-called discrete resource which measures the activities visited by
considering all the distances between different activities to be exactly one. We
then introduce capability values of +1 and −1 at the ends of the locked sequence,
add a child capability of that capability of a zero value at every activity in be-
tween, and require existence of the capability in each intermediate activity. In
addition, we restrict each activity on the sequence by an upper bound on the dis-
crete resource so that the first child activity is given an upper bound of 1, the
second 2, and so on. Finally, we set the upper bound of the parent capability
as n − 1, where n is the length of the sequence. These bounds prevent activities
from being inserted within the sequence. The capabilities of this mechanism are
depicted in Figure 59. In this case, we lock the sequence from activity 2 to activity
5. The capability “a’” has an upper bound of 1 on the discrete resource, “a””,
upper bound of 2, and as the length of the sequence is four activities, “a” has an

224

�1 1

a +1

2

a’ 0
a ∃

3

a” 0
a ∃

4

a −1

5 6 ⊥1

FIGURE 59 Modeling a locked sequence in the middle of a route.

t +1

�1

t = 1
t′ = 0

t’: 2

a +1

1

t = 1
t′ = 2

a = 1
t′ = 0

t’: 3

b +1

3

t = 1
t′ = 5

a = 1
t′ = 3

b = 1
t′ = 0

t’: 6

b −1

4

t = 1
t′ = 11

a = 1
t′ = 9

b = 0
t′ = 6

t’: 7

c +1

5

t = 1
t′ = 18

a = 1
t′ = 16

c = 1
t′ = 0

t’: 1

a −1

2

t = 1
t′ = 21

a = 0
t′ = 17

c = 1
t′ = 1

t’: 5

c −1

6

t = 1
t′ = 26

c = 0
t′ = 6

t’: 4

t −1

⊥1

t = 0
t′ = 30

FIGURE 60 An example of situations during continuous planning.

upper bound of 3.
Continuous planning introduces a requirement to lock the start of the route

similarly to the locking of an arbitrary sequence as there are some activities on the
sequence that cannot be moved or removed (they have already taken place). The
activities cannot simply be removed as the situation on the vehicle, for instance,
has to be taken into consideration. The partially completed tasks have to be de-
livered and so on. However, we may avoid introduction of additional constraints
as we did with the arbitrary sequences3. We may compress the route start into a
single activity by storing the exact accumulated values to the route start activity.
Strictly speaking, compressing the route start is not defined as a part of the model
transformation; the operation instead skips the generation of confirmed activities
and alters the data matrices and internal value fields accordingly as a preprocess-
ing step; but for completeness, the technique is discussed here as it is available as
a part of the process at runtime.

Figure 60 presents an example of a regular route and its accumulated val-
ues. In the example, three PDP tasks have been defined and their projected values
have been computed. Now, a message arrives to the system indicating that the
vehicle in question has completed activity 3. If there is a need to perform op-
timization after the fact, we may relax the problem by removing the activities
preceding activity 3 and change the route start activity accordingly. This is illus-
trated in Figure 61. The resulting problem contains activity 3 as a starting activity.
Note that the activity cannot be moved as it is now the first activity on the route.
This approach captures the situation exactly and is transparent to the optimiza-

3 Arbitrary sequences cannot be freely compressed into a single activity unless we assume
some properties of the resource and objective functions; for instance, situation dependency
prevents the computation of the total deltas of these sequences a priori.

225

b +1

3

t = 1
t′ = 5

a = 1
t′ = 3

b = 1
t′ = 0

t’: 6

b −1

4

t = 1
t′ = 11

a = 1
t′ = 9

b = 0
t′ = 6

t’: 7

c +1

5

t = 1
t′ = 18

a = 1
t′ = 16

c = 1
t′ = 0

t’: 1

a −1

2

t = 1
t′ = 21

a = 0
t′ = 17

c = 1
t′ = 1

t’: 5

c −1

6

t = 1
t′ = 26

c = 0
t′ = 6

t’: 4

t −1

⊥1

t = 0
t′ = 30

FIGURE 61 A result of compressing the route start sequence after activity 3 has been
confirmed.

tion system. Moreover, note how tasks “a” and “b” have been completed only
partially. They are stored into the values of activity 3 even though the pickup
activities are no longer on the route. The corresponding deliveries can, therefore,
no longer be removed from the route. In contrast, the task “c” can be moved
freely. Observe also how the values of time, “t’”, remain unaltered at the tail of
the route.

7.2.8 Contrast to Existing Modeling Approaches

The examples presented in this section demonstrate the expressiveness of the de-
veloped modeling approach. The approach is only one among the recent attempts
to unify the modeling and solving problems in routing and scheduling. Some of
the prominent steps in unifying these problems have been taken in mathematical
and constraint programming. Unified mixed-integer programming formulations
for routing and scheduling with time windows were given by Desrosiers et al. [60]
and later by Desaulniers et al. [59]. These frameworks are primarily intended to
be used in exact solution procedures such as column generation and Lagrangian
relaxation [109].

Perhaps the most comprehensive modeling and solution framework for lo-
cal search has been provided by Irnich in [109] where an impressive number of
variants and extensions are modeled using resource extension functions. They
presented the low-level mechanisms needed in employing efficient local search
in rich routing problems and formulated the necessary conditions for achieving
constant time feasibility checks and objective evaluation in different situations.
We examined explicitly the dynamics of different resources (resources and capa-
bilities), accommodated the dimension of implementation, and refined the mod-
eling approach to suit these aspects.

The framework proposed in [109] is based on giant tour encoding and is
more naturally suitable for modeling inter-route constraints. They also examine pe-
riodic routing, which we omitted from this work, although we note that it should
be compatible with our approach. In our classification, the work of Irnich is fo-

226

cused on mapping-ordering constraints, whereas we included also mapping in
the form of activity groups. In many respects, the achieved expressiveness in our
model is similar to that of Irnich, but we captured also some of the properties not
directly compatible with their proposed framework: compartment loading deci-
sions are not part of the framework, and soft time windows and time-dependent
travel, for example, are not compatible with the sequential search used. The de-
liberate generality of our approach in this respect is reflected in the modeling lan-
guage where the situation-dependent projections are considered “first class citi-
zens” and their structure is explicitly defined. In fact, we have made the structure
of the problem more explicit in general, which allows us to analyze it separately.
Overall, we argue that the connection to the conceptual models is clearer in our
approach. However, to be fair, as we did not intend to provide comprehensive
solution methodology, our attempt is still limited in this sense.

From the implementation viewpoint, our approach, in fact, has introduced
a simple domain-specific language [75] for the routing domain. The simplicity is
perhaps due to the role of the language: it defines flexibly the different routing
variants through a compact model transformation. The developed language sup-
ports the usage of the software product line in this domain by decoupling the
solver from the domain representation. The simplicity keeps the coupling rela-
tively loose, which is, indeed, a desirable property.

7.3 Quality Attributes

In this chapter, we began to analyze the simplicity, flexibility, and reusability of an
optimization system built on a model-driven software product line and employ-
ing a generic optimization framework and a metamodeling approach. The ex-
amples presented in this chapter illustrate the flexibility of the system, albeit not
simplicity per se. Reusability has been achieved in multiple locations on the over-
all architecture, as expected from the discussion earlier in the context of software
product line architectures in general. In this section, we examine these three ma-
jor quality attributes critically, and discuss their implications on the performance
of the system.

Simplicity, as we defined in Chapter 4, refers to the negative of the effort
needed in constructing the system. The heavy machinery of the product line ap-
proach and the design effort that has to be performed up-front certainly does
not stand out as simple. But when examining each individual case, we require a
considerably smaller amount of effort than building a complete system for each
case, even from existing modules. The difference to a typical modular structure
is the granularity at which reuse and systematic customization can be achieved.
There are several aspects that illustrate the simplicity of the system. The major
ones are listed here. First, we observed in Section 7.1.4 the simplicity of introduc-
ing new algorithms to the system, either as a core asset or a customization to an
application. The algorithms, e.g., do not have to consider case-specific proper-

227

ties, unless specifically required. In Section 7.2, we described a number of model
definitions, which demonstrates the simplicity of altering an existing or provid-
ing a new optimization model into the system. The transformation definitions
communicate only the relevant aspects of the optimization problem using the
constructs defined in the routing metamodel. Overall, the structure described in
Section 7.1.2 simplifies the separation of different cases. The common elements
can be included on the domain layer and in optional modules, keeping the case-
specific implementations separate. This also highlights a common property of
software product lines: the customization of each case is relatively simple. More-
over, we note that the object-oriented approach to domain modeling presented in
Chapter 5 keeps the manipulation and presentation of the problem data relatively
straightforward.

Flexibility refers to the amount of effort needed compared to the degree of
change required when altering the system to different situations. The existence of
a variation point does not automatically yield flexibility, although having explicit
variation points is certainly helpful. The key to flexibility is in the simplicity of
changing a variant or providing a new one. As we demonstrated in Section 7.2,
we can flexibly alter the optimization model without altering other parts of the
system. The metamodel hides the specifics of the optimization model by proving
a layer of abstraction. Now, as we discussed in Chapter 6, the system may not
perform equally well in every case, thus effectively requiring additional changes
on the solution methodology parts of the system. This is true with every opti-
mization system. However, in Sections 7.1.3–7.1.4, we examined the structure of
the system and its variation. The structure shows that we can change and alter the
used metaheuristics and algorithms flexibly. This can also be done on runtime.
Thus, the system should be flexible enough to be adapted to different problems.
From a broader perspective, the product line approach should be suitable to rout-
ing systems in general. For example, varying the task generation process as pre-
sented in Section 7.1.5 is a case where the product line approach offers flexibility
with a relatively minor increase in complexity; employing optional or custom ser-
vices from both domain and application layers can be performed as needed case
by case. The product line approach also allows extending the problem domain
and providing the necessary data connections, and dispatching, reporting, and
tracking functionality. In general, the arguments in favor of product lines apply
as the routing domain is, indeed, heterogeneous also from this viewpoint.

Reusability was defined as the probability of an element of a system to be
usable in different contexts with minor or no modifications. The removal of al-
gorithms’ dependency from the optimization models discussed in Section 7.1.4 is
perhaps the clearest example of reuse in this context. This allows the algorithms
to be used without modifications in differing cases. As noted, they might need to
be adapted, but this is not necessarily a major modification. The overall structure
described in Section 7.1.2 provides a clear separation of concerns between the pre-
sentation functionality, the domain modeling functionality, and the optimization
functionality. This structure enables reuse on several layers; e.g., generic reusable
UI components can be developed and tailored for the VRP domain. The example

228

of varying the task generation process as presented in Section 7.1.5, the necessary
data connections, and dispatching, reporting, and tracking functions can also be
considered from the reuse viewpoint: also these variability points enable reuse
of their variants in several application level realizations. Finally, we would like
to highlight the fact that the reference architecture described in this chapter is re-
garded as a core asset, and thus a reusable artifact.

As we observed in Chapter 6, the performance of the system, especially
in our prototype implementation, suffers from the included flexibility and gen-
erality. Moreover, we cannot yet be certain of the scalability of the system due
to a lack of exhaustive testing with the best known solution methods and large-
scale problem instances. However, it must be noted that it is difficult to compare
methodology and models to existing implementations as they are not capable
of expressing all the aspects presented in this work. Moreover, we demonstrated
that existing solution methodology can be used within the framework developed,
and theoretical analysis indicates only a constant computational overhead. If we
manage to keep the overhead independent of the problem size, it is (at least in the-
ory) possible to construct the system in a way that that overhead is covered by the
increases in availability of computational power (e.g., by distributing and paral-
lelizising computation). It remains to be seen whether the performance overhead
prevents the large scale use of this approach. We note, again, that some practical
cases were, indeed, solved successfully by this approach during the course of the
research, and overall, the initial findings are promising. This is arguably not the
one and only answer to the flexibility versus performance question in optimiza-
tion systems, but can be considered as one possible approach worth pursuing.

From this discussion and the examples given in Chapters 5 and 6, it should
be plausible that the system meets the quality requirements defined within the
context of this work. We stated requirements for implementability, more specif-
ically, simplicity, flexibility, and reusability, and these requirements have been
assessed against the implementation. The main objectives were to be able to
reuse several key elements in the structure, alter optimization models and so-
lution methodologies flexibly, and keep the system relatively simple for defining
individual problem variants. We constrained the design with the performance
requirement that the system should be able to utilize existing solution methodol-
ogy, and with the fidelity requirement that the system should be able to express
the most common complex routing variants. We hope to have sufficiently demon-
strated also these properties.

8 CONCLUSION AND DISCUSSION

In this chapter, we establish conclusions on the proposed approach, provide a
broader view on the research conducted, and contemplate its possibilities and
effects, as well as suggest new research topics for the future. While the discus-
sion in Chapter 7 was concerned of the developed system in its currents state,
this chapter will broaden the view also into future. The chapter is structured as
follows. We begin by drawing conclusions on the overall work in Section 8.1,
and further analyze the applicability of the developed approach into practice in
Section 8.2. We continue by discussing the implications of a unifying modeling
framework in Section 8.3 where we consider the possibilities of this approach,
and provide some comments on the state of the art of the current VRP research.
In Section 8.4, we suggest concrete directions for further studies in the areas of
combinatorial optimization and software engineering.

8.1 Conclusions

As we have argued, we do not yet fully know how to make software that can
be applied to solve today’s heterogeneous set of routing problems. This disser-
tation presented one approach for addressing the complexities of implementing
routing systems. We suggested the construction of a metamodel of vehicle rout-
ing problems and the application of model-driven software engineering practices
for achieving an effective and systematic engineering approach for implementing
these systems.

Our overall objective was to provide means for solving, cost efficiently, the
design problems in routing and scheduling. We argued that this can be achieved
by constructing an optimization system that is capable of handling a wide variety
of different types of routing problems and can easily be adjusted according to
the particular problem instance under consideration. We asserted that the key
elements in this approach were a way to describe the different problems in a
generic way and machinery that is able to utilize this general description.

230

To achieve our objectives, we provided a metamodel and a modeling lan-
guage for describing rich vehicle routing problems, and a model-driven software
product line architecture for vehicle routing systems. In addition we provided a
formal specification of optimization models and processes in vehicle routing.

We described several rich VRP models motivated by real-life examples to
demonstrate that it is possible to define a single modeling system capable of ex-
pressing a wide variety of VRP variants and extension without modifying the
underlying neighborhood exploration system or algorithm implementations.

We expressed the atomic building blocks of local search algorithms within
the defined framework and analyzed the computational complexity of the meth-
ods to show that such a system is able to utilize the existing knowledge from the
current state-of-the-art algorithms and metaheuristics.

In addition, we presented a system with well-defined variation points in
optimization models, solution methodology, and model representation, and ex-
pressed a number of routing problems by changing the variability object asso-
ciated with the model variation point. This demonstrated that the developed
framework can be embedded into a software product line in order to achieve
reusability in both models and optimization methodology, and within this prod-
uct line, a single variation point is able to express the modeled case.

From the analysis made, we conclude that the contributions of this disser-
tation enhance our abilities to manage the complexity of logistic planning and
solving a variety of different problems arising in real-world routing. If the pro-
posed approach can be applied into practice, it should decrease the effort needed
in adapting routing systems to different situations within the heterogeneous do-
main of vehicle routing, which in turn should result in a faster application of the
latest results in operations research to real-world operations and allow the logis-
tic operators to benefit from the recent advances in automated decision making.

8.2 Applicability of Proposed Approach

As we have examined the developed system in Chapters 5–7, the implicit as-
sumption has been that this approach is viable and applicable to practice. In-
deed, we have argued that the problems identified and the requirements stated
in Chapter 4 have been addressed by the system, but we have not yet critically ex-
amined the applicability of the presented approach into practice. In this section,
we intend to analyze the applicability of the system from the implementation,
modeling, and solving viewpoints.

The proposed framework and optimization system should be applicable to
an academic setting from the implementation viewpoint especially when there
is a need to produce a diverse set of experimental systems quickly. The general
approach is applicable to a subset of current VRP research, and may be helpful
when a unifying view on the implementation side of the solution methods and
optimization models is needed. However, the approach may not be suitable in

231

situations where considerable up-front investments cannot be made, or when the
software engineering knowledge required to build a product line is not available.

From the industry perspective, the approach can best be applied into a het-
erogeneous and possibly fragmented set of operators. The approach may be
suitable for mid-sized operators who have not been able to afford custom made
software packages, but require more customization than the current off-the-shelf
software typically offers. The approach was tested in a set of real-life optimiza-
tion cases, and the flexibility of the system allowed agile development of the case
models and optimization algorithms, which is often necessary when tailoring a
system into a new environment. Moreover, the approach may shorten the time
required for methodology diffusion from academia to industry, making the ap-
proach applicable to situations where relatively new knowledge is required in
solving the problem. Similarly to academia, the approach may not be suitable
in situations where considerable up-front investments cannot be made, or the
knowledge required to build a product line is not available.

In general, a product line approach has the potential of greatly reducing the
effort needed in developing a solver for a new case through the systematic reuse
of assets. Furthermore, as noted before, Cordeau et al. [45] conclude that there is a
greater need for simplicity in solution methods. Now, if simplicity, effectiveness,
and robustness are extremely difficult to achieve using a single method, perhaps
multiple simple ones are better suited to the problem. A software product line
should also make it less tedious to use a multitude of methods.

Modeling within a unified framework provides academics with a formal
approach for understanding the domain on a higher level of abstraction. Further-
more, if fidelity, and the resulting relevance to real-life practice, is a requirement,
the approach may provide more detailed optimization models than are currently
widely employed. A unifying approach also provides opportunities for mea-
suring and comparing effects of different aspects in optimization problems in a
more or less commensurable way. Simultaneous applicability to a wider set of
problems encourages research on robustness and adaptive methods, and enables
more complex problems to be solved within a single system. In addition, the
wide applicability may make the modeling framework, by itself, a useful tool for
formal comparison of different VRP models. In contrast, the approach does not
function as effectively if the optimization problem cannot be expressed using the
modeling framework. In these situations, a considerable amount of work may be
needed in modeling and implementation to expand the metamodel to accommo-
date the new requirements.

From the industry perspective, the unified modeling approach is probably
best suited to a situation where the optimization problem is more complex than
the current standard problem variants. For example, the developed framework
was used to build an industry-strength optimization system with a relatively
complex model, and was successfully deployed into operational use. This might
suggest that the approach is applicable to practice. In contrast, it is notable that
the approach may not be suitable in a situation where the modeling framework
is unable to express all the necessary constraints. Furthermore, another situation

232

is perhaps one where the optimization problem is relatively large and needs ex-
tensive approximation. In these types of cases, the expressiveness of the model
does not yield considerable advantages.

In general, the modeling approach requires more up-front investments than
more straightforward approaches. Indeed, our model formulation is relatively
complicated when compared with other routing models individually, but when
considering the number of variants expressible, the trade-off may be justifiable.
As we noted, some commercial applications use a flexible metaheuristic instead
of the most powerful one and thereby trade performance for simplicity; and sim-
ilarly, we sacrifice some performance for flexibility in order to efficiently study
problem variants, and to apply methods and models into practice with less in-
vestments. We have argued that this trade-off is also justifiable. Nevertheless, it
cannot be ignored that the resulting general model formulation is neither as el-
egant nor compact as the mathematical programming formulations presented in
Chapter 2.

The main disadvantage of a unified modeling framework is, however, at its
core: any framework, by definition, restricts itself to a subset of the problem do-
main. The optimization models are, then, restricted to the developed metamodel,
and adding completely new constructs may be conceptually difficult and require
modifications to the existing models. Furthermore, implementing functionality
to the domain layer of the product line can require more technical expertise from
the implementors of the system than in more conventional approaches. In addi-
tion, the framework approach has its limits. When incorporating new modeling
constructs to a framework, at some point the complexity of the system increases
more than the benefit from adding the model into a unified framework. As noted,
the product line approach works best for a family of related systems, and if the
relation becomes too weak, other methods may be needed.

The approach may be interesting from the solution process viewpoint in an
academic context. The developed model may be viewed as a new, relevant opti-
mization problem which needs to be solved robustly. This opens up possibilities
for examining the robustness of existing methods in a heterogeneous problem
setting and should be a suitable research platform for highly adaptive optimiza-
tion systems. However, the performance overhead induced by, e.g., the flexibility
of the system may prevent the framework from serving as a tool for developing
and comparing case-specific methods in the highly contested “benchmark race”
currently taking place within the VRP research.

Similarly to the modeling viewpoint, from the industry perspective, espe-
cially relatively simple cases may not benefit from the developed approach. In
this case, the model fidelity is, again, not appropriate, and the solution meth-
ods operate on too much detail. However, in more complex cases the solution
methodology may be flexibly adjusted to the case under consideration. For ex-
ample, the ship scheduling case benefited considerably from case-specific con-
struction heuristics and a set of custom-made search operators which considered
larger neighborhoods than the standard operators. Adding these algorithms to
the existing framework was a straightforward task.

233

To summarize, the unifying modeling framework and the software product
line approach into modeling and solving optimization problems and implement-
ing optimization systems, could be considered useful when

• one needs to address multiple different problems simultaneously due to
research or practical reasons,

• the case is a complex combination of different variants and extensions and
may need refinement in an agile manner during the development of the
system, or

• high fidelity is a requirement and extensive approximations are not needed
or cannot be made.

But then again, the approach may not be useful when

• the case is relatively simple and well-researched,

• performance of the system is the primary concern, or

• the case cannot be described by the modeling framework with enough fi-
delity.

From the discussion presented in this section, we conclude that the approach
and methodology presented here should be applicable and relevant to a range of
problems in both industry and academia.

8.3 Implications of Unifying Modeling Framework

In this section, we consider the implications of the developed modeling frame-
work, and begin to contemplate its future developments. However, concrete fu-
ture research topics are discussed in detail in the subsequent section. First of all,
we address the adaptation capabilities of a system based on a unified modeling
framework, and secondly, we discuss the broader possible future developments
of an optimization system in the context of software product lines. In this light,
we also comment on the current research within the VRP domain. Perhaps here
we begin to see how this work may be a beginning of a broader research effort
into understanding the complexities of implementing optimization systems.

The generic process in the decision making — that is, stating the problem,
modeling the problem, solving the problem, and applying the solution into prac-
tice — is currently performed largely by an operations researcher. She captures
the essentials of the problem and formulates a model from this. After this, she
makes the appropriate assumptions on the problem and selects, perhaps itera-
tively, the solution methodology, and sets, again usually iteratively, the param-
eters of those methods. Finally, the obtained solution is analyzed together with
domain experts and end users, and the process is repeated until a satisfying result
is robustly obtained.

234

In the context of this process, we would like to emphasize a long-term de-
velopment of expert systems, a category into which, clearly, a routing system also
falls. If the system could replace the operations researcher at least in some phases
of the process, not only would we decrease the overall costs of that process, but
could also perform better at it. Of the phases in the process, we have already
solved the problem solving part to some degree. The next candidate for automa-
tion could be the phase of adjusting the parameters, which, indeed, we have seen
some promising results on. Automatically adjusting algorithms are beginning to
perform this task. The next phase, however, is more complex: selection of suit-
able solution approach. We have witnessed only few steps into this direction.
Recently, Garrido et al. [84] applied to the CVRP a hyperheuristic approach which
chooses the suitable set of algorithmic components during the optimization. They
subsequently used a similar approach in the VRP with continuous planning [85].
They note the adaptation capabilities of their approach and the sustained robust-
ness over different problem configurations.

As we noted, Gendreau and Potvin [89] observed that the most effective so-
lution methods combine elements from multiple simpler ones, and that many
metaheuristics seem to converge towards a unifying framework made of few
algorithmic components. They also noted that even though metaheuristics can
quite easily handle the complicating constraints found in real-life applications,
significant knowledge about the problem is required in developing a successful
metaheuristic implementation. Now, it may turn out that this impressive number
of solution methods, heuristics, metaheuristics, even hyperheuristics, and their
parameters as well as the number of different cases of the VRP and their exten-
sions begins to overwhelm the operations research experts. This means — no
more than — that the computers may start to perform better in the task of se-
lecting the appropriate solution methods and their parameters. This means, ef-
fectively, that the operations researcher may be replaced in some phases of the
process by a learning optimization system.

The prospect of a learning system is interesting, but in order to gain enough
advantage from adaptation, the system has to be able to represent the problems
it should adapt to. The solution methods cannot adapt to different types of sit-
uations unless the different types can be described to them. In other words, the
need for robustness is limited by the applicability of the system. It turns out that
a generic framework is a suitable platform for an adaptive system. Moreover, the
formal structure defined by the constructs in the metamodel can serve as a basis
for techniques attempting to understand the problem instance and adapt accord-
ingly. A number of machine learning and artificial intelligence techniques, such as
statistical classification and prediction are potential approaches for accomplish-
ing this task.

Adapting to the structure of the problem is, however, possibly difficult if
there is little understanding of the dynamics of the formal structure of the opti-
mization model. There has been a mismatch in the current modeling and solu-
tion methodology in the VRP research: the models are often described as mixed
integer linear programming formulations, but solved using nonlinear graph en-

235

codings in a metaheuristic approach. This highlights an interesting feature: the
corresponding problem structure has not been presented using a formalization
that could be analyzed separately very well. Examples of ways to analyze and
exploit the structure of the model include determining the type of local search op-
erators needed in exploring the alternative activities in a given problem instance or
analyzing dependencies between capabilities to find hubs of dependencies (e.g.,
vehicles and equipment), and using this information for diversification in the so-
lution process.

We began providing understanding on the dynamics of the problem struc-
ture in this thesis by making the structure of the models explicit and by presenting
a taxonomy of more abstract modeling constructs. These constructs capture the
requirements for syntactically applicable algorithms. Now, we may hypothesize
that much of the taxonomical work on instance characteristics, such as whether we
are routing within a city, in an urban region, perishable goods or freight and so
on, can be reduced into feature descriptors of different problem instances. These
descriptors could then be employed by learning mechanisms which adjust them-
selves into the given situation, thus diminishing the need for a taxonomy for case
characteristics from the algorithm point of view. This, in essence, is a method
which composes semantically applicable algorithms from syntactically applica-
ble algorithm components. Likewise, the same can be done to configurationally
applicable algorithms.

As we noted earlier, one can measure and compare the applicability and ro-
bustness of different solution methods in multiple cases simultaneously within
the system. This has not been done in a large scale, and it would be interesting
to see whether there are patterns in applicability of different methods to differ-
ent optimization problems. This work is, in fact, a prerequisite, for instance, for
statistically learning algorithms, which would need to analyze data from the per-
formance of different methods on problems with different characteristics. It is,
therefore, an essential observation that the identified trend of unification does
not mean that the case-specific research will be less important. On the contrary,
systematic knowledge of which problems are best attacked by which methods is
essential for the system to be robust in a generic setting.

The next phase we might attempt to remove the operations researcher from
is the modeling phase. In this case, the system would not only select the solution
approach, but also deduce the best way to describe the problem to the system.
This would require determination of the criteria by which to choose the models,
and touches the issue of model reduction in which one would search for the most
suitable representation of sufficient fidelity. Formulating this problem in detail is
outside the scope of this work, but in practical terms, in these situations the sys-
tem would construct a model from available modeling elements and optimize its
structure for efficient algorithmic manipulation. This approaches also the com-
posite modeling contemplated in Chapter 4.

Finally, if we consider the metamodeling stack presented in Chapter 4, we
observe that we have discussed instances, models, and metamodels in this work.
There has been work on taxonomies on the instance level in the scientific litera-

236

ture, and here we concentrated on the model level by classifying and analyzing
elements defined in the metamodel. Now, it is also possible to analyze languages
for describing metamodels and to build a taxonomy of their structure. This opens
up a possibility for building a system which selects the best metamodel for de-
scribing the optimization problems from a number of alternative elements. How-
ever, we note that the benefits of such an approach are yet unknown.

From the implementation perspective, we would like to emphasize the pre-
vailing theme of this work: implementability and analysis of the structure of opti-
mization systems. There are two lines of advances taking place in vehicle rout-
ing: academic and practical. Although many would argue this is the case in every
field, we claim that in this field there is an additional gap due to the complexi-
ties involved in implementation. The academic research on how to implement
industry-strength software for this particular domain is missing. This may sug-
gest that the future research should provide insight into the implementation of
optimization systems in general.

Our contributions included not only the — relatively obvious — idea of ap-
plying product line architectures into vehicle routing, but also the description of
how to construct one. This approach is promising, and we may be able to achieve
a system capable of automatically addressing a broad set of problems. This de-
velopment implies that we might see a trend where research is pushed towards
metamodeling of optimization problems. The product line approach has also a
possibility to grow into a collection of models, algorithms, metaheuristics, and
hyperheuristics; and as the product line evolves, its set of tools becomes larger,
thus further decreasing the effort needed in modeling and solving new problem
variants. We argue that it is also easier to construct a learning optimization sys-
tem within a product line due to its systematic approach to variability modeling.
In software engineering, these types of product lines are often referred to as “dy-
namic” or “self-adaptive” product lines, or described as “context-oriented”. Such
a systematic approach to software engineering may benefit the research also in
the field of operations research.

As to the discussion on solution methods and their implementation in the
context of a heterogeneous set of optimization models, we do not yet know which
is the best approach. As mentioned, there are two primary strategies: a single
method capable of adapting itself altogether into a given situation, and a multitude
of methods from which we choose the most suitable ones. In the former approach,
the algorithm itself must have enough intelligence to query the properties of the
problem and this may increase the complexity of the method. On the other hand,
selecting the best algorithm may not be trivial. Fortunately, this choice is not
limited by our approach to implementation; either technique can be employed
within a product line. We also note that if a hyperheuristic solution methodology
based, e.g., on machine learning can be constructed, these two approaches begin
to converge. Thus, we assume that the first step will be a multitude of methods,
and the second step will later combine these under a smaller set of hyperheuristic
approaches.

As the last point we observe that a major shift in the world of computation

237

has been taking place during the last couple of years, and this move towards in-
creasingly parallel computing will change the landscape also in combinatorial op-
timization. The parallelization of algorithms will become a necessity if we wish to
continue taking advantage of the increasing computational power. In this work,
however, we settle for a brief comment on parallelization of solution methods
within the developed modeling framework. The partition-based encoding pro-
vides possibilities for parallelizing also on the Ansatz level, which means that the
possibility for running several algorithms simultaneously on a single Ansatz has
been taken into consideration in the structure of the system. This allows paral-
lelization of the solution process on several levels. Unfortunately, a more detailed
analysis of parallelization of the optimization system is outside the scope of this
work.

When contrasting our approach to previous work, especially the focus on
reusability and easiness of configuration on a generic framework differentiates
the prior approaches from that of ours. A clear exception is the mentioned work
on the “GREENTRIP” project [101] in which a similar (albeit simpler) metamodel
for routing problems was developed. The project resulted in a generic toolkit for
configuring applications, but its commercialization was deemed to be too expen-
sive [102] and its details have not been published. The generic toolkit has simi-
larities to the product line approach, but product lines often take a more compre-
hensive view on the development. A configurable architecture is one (although
important) asset in the product line. In this respect, our approach included, e.g.,
the definition of a domain-specific modeling language for additional flexibility in
model definition. The novel approach of employing a model transformation as
a variation point is a key difference to earlier approaches. Our approach allows
the expression of complex dependencies between the model elements, including
dependencies which often cannot easily be expressed using a tool. In addition, in
SPLs the ability to implement and integrate completely new components within
the application development process enhances the flexibility of our approach.

To conclude, we note that combining software engineering with operations
research in this way has not been — to this extent at least — attempted before.
There are at least two possible explanations. Either, for some reason, the combi-
nation of these topics has required advances in both fields and has just recently
become realizable, or the approach is not well suited to this area, e.g., due to ex-
cessive overhead and strict performance requirements in solving the problems in
practice. Either way, we are faced with a difficult task of implementing a perfor-
mance sensitive expert system in a heterogeneous problem domain, and if we fail
to provide definitive evidence of the suitability of this approach in the future in all
cases, we hope to provide a relevant approach at least for a subset of the domain.
Moreover, the prospect of a learning system capable of adapting to the problem
at hand, almost by definition, requires a way to represent the different problems
in a unified way, and we may even have opened a new problem area which may
be worth examining. We hope that this research at least invites the possibility
and pushes the boundary of routing and scheduling research in theory, if not in
practice.

238

Having said all this, we are excited about the results thus far. In a sense, we
have introduced a new problem, a complex and dynamic VRP variant. We may
not be able to solve the problem completely yet, but there are no obvious reasons
for not continuing the research on the subject. In fact, based on the discussion
here and in this work as a whole, our prediction for the future of VRP research is
that metaheuristic (and later hyperheuristic) solution methods continue to dom-
inate pure exact methods1 in both solution quality and the computational time
needed, and the robustness will be achieved by applying machine learning and
statistics on a common platform to a collection of algorithms, heuristic and meta-
heuristic, in a distributed and parallel environment. We will also continue to
develop more complicated and integrated models and solve larger instances by
splitting and distributing computing. In this light, the product line approach and
a generic modeling framework provide, arguably, a reasonable base for future
research.

8.4 Further Research

Although we attempted to sufficiently cover relevant subsets of two fields, there
are, naturally, several exceedingly important areas we omitted from this work.
Furthermore, during the course of this research, we raised a few new questions
altogether. This section aims to address both of these topics by discussing con-
crete suggestions for further studies in the areas of combinatorial optimization
and software engineering, and, especially, their intersection.

The topics for future research may be divided into five major areas. Firstly,
we address the question of suitable solution methodology and its usage in the
context of a generic modeling framework. Secondly, we examine some of the new
possibilities for employing the modeling tools in practice. Thirdly, we list areas
for future research on implementation, especially from the software engineering
point of view. Fourthly, we comment on the possibility of further studying and
developing the metamodel and metamodeling in general. And finally, we con-
cretize the research topics for the adaptive and learning optimization systems
discussed in the preceding section.

Perhaps the most pressing open question is the issue of solution methodol-
ogy implementation in the context of reuse and — perhaps in the future — adap-
tation. The three strategies discussed in the context of problem structure were,
in essence, points on a scale between reusability and performance. Some initial
work has been done on the subject, and we hope to discuss experiences from
implementing generic adaptive operators in the future. One of the potential ap-
proaches is a separation of the search neighborhood from the search operator.
Although counter-intuitive, the approach may be able to differentiate between
the scope of the neighborhood and its logic of traversal. The former would be dic-
tated by the problem variant, and the latter by the search operator. This approach

1 As opposed to metaheuristics with, e.g., exact methods as components.

239

may enable considerable reuse on the search operator level. Another relevant
research topic from the solution methodology viewpoint is, as mentioned, the
evaluation of existing advanced strategies for implementing local search: usage
of, for example, segment concatenation and sequential search in the context of the
developed metamodel. In addition, one interesting area is that of algorithm per-
formance on a generic optimization model; we should evaluate different meta-
heuristics and local search operations in a common platform to study the effects
of different problem characteristics (such as constraint types and tightness) on the
solution method performance. Moreover, we should investigate how to incorpo-
rate allowing infeasibilities during the search within a modeling framework. In
addition, in this context, one promising topic worth examining is the usage of
population metaheuristics. Key issues here include how to combine two or more
feasible Ansätze into a new feasible Ansatz. The performance of also these meth-
ods should be evaluated in a generic setting.

From the modeling perspective, we should first investigate the limits of the
modeling framework and attempt to model more complex variants overlooked in
this work, such as the periodic routing problem. Also, the prospect of includ-
ing job scheduling might be worth investigating. The framework should be able
to represent scheduling problems without modifications but this should be veri-
fied. To generalize further, we might be interested in the applicability of a generic
modeling framework in combinatorial optimization in general. If the automated
adaptation of the system can be driven far enough, there should be no theoretical
limit for the applicability of the system in the domain of combinatorial optimiza-
tion. At which point the implementation issues of such a system will prevent
further developments in this area is an open question. In addition, a major area
of research is the modeling of stochasticity within the framework. Modeling un-
certainty has the potential of describing the problem instances more realistically,
as the real life is, indeed, uncertain. Finally, the option for multiple criteria opti-
mization will most likely be relevant also in the context of route optimization, and
even though the topic was completely neglected in this work, a generic frame-
work should provide a suitable platform also in this perspective.

From the software engineering point of view, there are two major areas
which would benefit from further studies. Firstly, the product line approach could
be refined using, e.g, the aspect-oriented approach, and studied further; and sec-
ondly, further research on the solver layer, e.g., in the form of parallelization should
be investigated.

To begin with, the further research on the product line approach could make
the model transformation more aspect-oriented. This may aid in achieving more
flexibility and reuse at the model transformation level, making it easier to config-
ure the model at runtime by enabling selection of a given set of relevant features.
This, in turn, enables interactive adjustment of the model fidelity, which then can
be used, for example, to obtain useful approximations during the optimization
process. More control over the aspects of the model may also assist in evalu-
ating and comparing different scenarios, and in performing sensitivity analysis
over the features of the model. Another area on the product line approach are

240

the effects of variation. Variation can affect the qualities of the software, and this
is an especially relevant concern in routing systems where many attributes are
sensitive to changes in variants. There has been some work on systematic evalu-
ation of the effects of variability on quality attributes, but none in the context of
optimization systems.

On the solver layer, parallelization in the context of a generic model frame-
work may be worth examining, addressing especially strategies for obtaining
the needed robustness by, e.g., running different optimization algorithms against
each other. There are also possibilities for improvement in the memory manage-
ment within the sparse constraint matrices. In this work, we used a relatively sim-
ple approach, and the system could benefit from refinement in this area. Finally,
we note that one unexplored area is the usage of so-called hybrid metaheuristics,
which employ linear or constraint programming solvers within the metaheuristic
search. As the context is a framework capable of representing problems with rela-
tively complex combinations of constraints, combining the strengths of constraint
programming and metaheuristic search may be worth investigating.

The metamodeling approach to routing could benefit from a detailed exami-
nation of different model representations from a theoretical perspective. It should
be interesting to examine, for example, how to prove two or more models of the
same metamodel equivalent. Altering the optimization model without chang-
ing its expressiveness is a requirement for the system to be able to construct and
compare optimization models and search for the best problem representation for
a given problem. In other words, the system would adapt its encoding to the prob-
lem automatically. From a more practical viewpoint, the developed metamodel
should be subject to further refinement. Inter-route constraints, for instance, are
prime candidates for future development. In addition, increasing the expressive-
ness of the grouping constraints by dropping the simple grouping rules may allow
more complex relationships to be modeled. The taxonomy of the modeling el-
ements discussed should be able to classify these new elements in a relatively
straightforward way. A concrete topic for research could then be defining a pro-
cess for expanding the metamodel, that is, constructing a framework for meta-
model development. These enhancements are, however, likely to make solving
of the problem more complex computationally. In this context, the main question
in expanding the metamodel is perhaps the issue of necessity: at which point
adding complexity to a model stops increasing the value of optimization result
through model fidelity in the cases of practical routing occurring today. In other
words, is there a point at which, for instance, modeling cost structures in more
detail does not yield any more applicable optimization results and thus realized
savings in practice? A system with the flexibility to adjust these variables easily
will hopefully allow us to examine this issue in more detail than has previously
been possible.

To conclude, we highlight some research topics from the discussion in the
preceding section. Adaptation capabilities should continue to be investigated,
and especially statistical classification and prediction techniques may provide
the mathematical foundation for such methods. A concrete step in developing a

241

learning algorithm would be identifying the characteristics of the problems that
affect the suitable algorithms and searching for patterns in the behavior of these
methods. Moreover, investigation of automatic parameter selection may begin
from simple methods such as construction heuristics and continue to selection of
local search operators and later metaheuristics. These types of methods may be
able to adapt to a wider variety of situations than has previously been possible.
Indeed, the prospect of such a system has lead us to formulate a generic goal
for a learning routing system: to be able to feed the system any benchmark instance
in routing (CVRP, VRPTW, VRPC, PDP, OVRP, TSPPD, etc.) defined in the scientific
literature and get good results in a reasonable time without any adjustments needed in pa-
rameters, algorithms, or any other aspect of the system. Although somewhat vaguely
defined, the prospect of such a system is exciting, and the research on these areas
should provide interesting challenges for both fields of combinatorial optimiza-
tion and software engineering also in the future.

YHTEENVETO (FINNISH SUMMARY)

Tässä väitöskirjassa tarkastellaan menetelmiä joustavien reitinoptimointijärjes-
telmien toteuttamiseksi kustannustehokkaasti. Väitöskirjan suomenkielinen ot-
sikko on “Metamallit ja metaheuristiikat — mallinnuskieli ja ohjelmistoarkkiteh-
tuurituotantolinja reitinoptimointijärjestelmille”.

Useat logistiset suunnitteluongelmat voidaan mallintaa reitinoptimointion-
gelmina ja ratkaista algoritmisesti. Esimerkiksi postinjakelun, koulukuljetusten,
jätehuollon ja raaka-aineiden laivausten toiminnan tehokkuutta on pyritty paran-
tamaan mallintamalla ongelma tietokoneelle ja hyödyntämällä optimointialgorit-
meja.

Reitinoptimointiongelma on kombinatorinen optimointiongelma ja lasken-
nallisesti vaativa erityisesti reaalimaailmassa esiintyvien ongelmien kokoluokas-
sa. Tyypillisesti näitä ongelmia ei voida ratkoa tarkasti vaan on käytettävä niin
sanottuja heuristisia menetelmiä.

Reitinoptimointiongelmia on useita eri tyyppejä ja ne eroavat toisistaan vai-
htelevissa määrin. Perinteisesti eri ongelmavariantteja on ratkaistu kuhunkin
tilanteeseen räätälöidyillä optimointisovelluksilla sekä heuristisilla ratkaisume-
netelmillä, mikä nostaa ongelman ratkaisemisen kokonaiskustannuksia.

Tämän työn tavoitteena oli toteuttaa reitinoptimointijärjestelmä, joka sovel-
tuu samanaikaisesti useammantyyppisten optimointiongelmien kuvaamiseen ja
ratkaisemiseen mahdollisimman vähin muutoksin. Työssä esitellään metamalli
erityyppisten reitinoptimointiongelmien mallien kuvaamiseen ja kuvataan ke-
hitetty ohjelmistoarkkitehtuurituotantolinja, jonka avulla merkittävä osa toteu-
tuksesta voidaan uudelleenkäyttää pienin muutoksin.

Kehitettyä metamallia arvioidaan sen ilmaisuvoiman näkökulmasta ja sen
todetaan soveltuvan erityyppisten käytännössä esiintyvien monimutkaisten rei-
tinoptimointiongelmien kuvaamiseen. Lisäksi metamallin implementaatio arvi-
oitiin teoreettisesti laskennallisesti tehokkaaksi olemassa olevien ratkaisualgorit-
mien puitteissa. Toteutettua tuotantolinjaa tarkastellaan arkkitehtuurin laatuatt-
ribuuttien näkökulmasta ja sen voidaan perustellusti sanoa olevan rakenteeltaan
joustava ja uudelleenkäytettävä. Alustavat numeeriset testit viittaavat siihen,
että kehitetty lähestymistapa tuo laskentaan jonkin verran kiinteitä kustannuk-
sia, mutta tätä pystyttäneen tulevaisuudessa vähentämään tehokkaammalla im-
plementaatiolla.

Saavutettu järjestelmän kokonaisrakenne mahdollistaa menetelmien riip-
pumattomuuden käytetystä mallista, luo mahdollisuuden aikaisempaa laajem-
malle uudelleenkäytölle ja vähentää työtä, joka vaaditaan optimointijärjestelmän
soveltamisessa uusiin ongelmiin. Kehitetty lähestymistapa on huomionarvoinen
vaihtoehto, kun tarvitaan erityisesti joustavia optimointijärjestelmiä. Lähesty-
mistapaa voitaneen tulevaisuudessa täydentää automaattisilla oppimismekanis-
meilla, jotka säätävät järjestelmää itsenäisesti kulloiseenkin tilanteeseen sopivak-
si.

REFERENCES

[1] J.-R. Abrial, S. A. Schuman and B. Meyer, A Specification Language, in A. M.
Macnaghten and R. M. McKeag (eds.), On the Construction of Programs, pp.
343–410, Cambridge University Press, Cambridge, UK, 1980, ISBN 0-521-
23090-X

[2] V. Alves, D. Schneider, M. Becker and N. Bencomo, Comparative Study of
Variability Management in Software Product Lines and Runtime Adaptable Sys-
tems, in Proceedings of the 3rd International workshop on Variability Modelling
of Software-Intensive Systems, Online proceedings, 2009

[3] D. L. Applegate, R. E. Bixby, V. Chvatal and W. J. Cook, The Traveling Sales-
man Problem: A Computational Study (Princeton Series in Applied Mathematics),
Princeton University Press, Princeton, NJ, USA, 2007, ISBN 0691129932,
9780691129938

[4] C. Archetti and M. G. Speranza, The Split Delivery Vehicle Routing Problem:
A Survey, in The Vehicle Routing Problem: Latest Advances and New Challenges,
Operations Research/Computer Science Interfaces Series, volume 43, pp. 103–
122, Springer US, 2008, ISBN 978-0-387-77777-1

[5] P. Augerat, J. M. Belenguer, E. Benavent, A. Corberán and D. Naddef, Sepa-
rating Capacity Constraints in the CVRP Using Tabu Search, in European Journal
of Operational Research, volume 106(2–3), pp. 546–557, 1998, ISSN 0377-2217

[6] N. Azi, M. Gendreau and J.-Y. Potvin, An Exact Algorithm for a Vehicle Rout-
ing Problem with Time Windows and Multiple Use of Vehicles, in European Jour-
nal of Operational Research, volume 202(3), pp. 756–763, 2010, ISSN 0377-2217

[7] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl, B. Ramesh and A. Vil-
big, A Meta-model for Representing Variability in Product Family Development,
in Software Product-Family Engineering, Lecture Notes in Computer Science,
volume 3014, pp. 66–80, Springer Berlin / Heidelberg, 2004, ISSN 0302-
9743

[8] B. D. Backer, V. Furnon, P. Kilby, P. Prosser and P. Shaw, Local Search in Con-
straint Programming: Application to the Vehicle Routing Problem, in Proceedings
of CP-97 Workshop on Industrial Constraint-Directed Scheduling, pp. 1–15, On-
line proceedings, Schloss Hagenberg, Austria, 1997

[9] B. D. Backer, V. Furnon, P. Shaw, P. Kilby and P. Prosser, Solving Vehicle
Routing Problems Using Constraint Programming and Metaheuristics, in Journal
of Heuristics, volume 6(4), pp. 501–523, 2000, ISSN 1381-1231

[10] E. Balas, M. Fischetti and W. R. Pulleyblank, The Precedence-constrained
Asymmetric Traveling Salesman Polytope, in Mathematical Programming, vol-
ume 68(3), pp. 241–265, 1995, ISSN 0025-5610

244

[11] R. Baldacci, M. Battarra and D. Vigo, Routing a Heterogeneous Fleet of Vehicles,
in The Vehicle Routing Problem: Latest Advances and New Challenges, Computer
Science Interfaces, volume 43, pp. 3–27, Springer US, 2008, ISBN 978-0-387-
77777-1

[12] R. Baldacci, N. Christofides and A. Mingozzi, An Exact Algorithm for the Ve-
hicle Routing Problem Based on the Set Partitioning Formulation with Additional
Cuts, in Mathematical Programming, volume 115(2), pp. 351–385, 2008, ISSN
0025-5610

[13] J. F. Bard, G. Kontoravdis and G. Yu, A Branch-and-Cut Procedure for the
Vehicle Routing Problem with Time Windows, in Transportation Science, vol-
ume 36(2), pp. 250–269, 2002, ISSN 1526-5447

[14] L. Bass, P. Clements and R. Kazman, Software Architecture in Practice,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003,
ISBN 0321154959

[15] M. Becker, Towards a General Model of Variability in Product Families, in Pro-
ceedings of the First Workshop on Software Variability Management, Online pro-
ceedings, Groningen, The Netherlands, 2003

[16] E. J. Beltrami and L. D. Bodin, Networks and Vehicle Routing for Municipal
Waste Collection, in Networks, volume 4(1), pp. 65–94, 1974

[17] G. Berbeglia, J.-F. Cordeau and G. Laporte, A Hybrid Tabu Search and Con-
straint Programming Algorithm for the Dynamic Dial-a-Ride Problem, submit-
ted to INFORMS Journal on Computing

[18] L. Bertazzi, M. Savelsbergh and M. G. Speranza, Inventory Routing, in The
Vehicle Routing Problem: Latest Advances and New Challenges, Operations Re-
search/Computer Science Interfaces Series, volume 43, pp. 49–72, Springer US,
2008, ISBN 978-0-387-77777-1

[19] J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev and A. Lindow,
Model Transformations? Transformation Models!, in Model Driven Engineering
Languages and Systems, Lecture Notes in Computer Science, volume 4199, pp.
440–453, Springer Berlin / Heidelberg, 2006, ISBN 978-3-540-45772-5, ISSN
0302-9743

[20] A. Bockmayr and J. N. Hooker, Constraint Programming, in K. Aardal,
G. Nemhauser and R. Weismantel (eds.), Discrete Optimization, Handbooks
in Operations Research and Management Science, volume 12, pp. 559–600, El-
sevier, 2005

[21] L. Bodin, B. Golden, A. Assad and M. Ball, Routing and Scheduling of Ve-
hicles and Crews — The State of the Art, in Computers & Operations Research,
volume 10(2), pp. 63–212, 6 1983

245

[22] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. H. Obbink and K. Pohl,
Variability Issues in Software Product Lines, in PFE ’01: Revised Papers from the
4th International Workshop on Software Product-Family Engineering, pp. 13–21,
Springer-Verlag, London, UK, 2002, ISBN 3-540-43659-6

[23] J. Bosch, H. Obbink and A. Maccari, Research Topics and Future Trends, in
Software Product-Family Engineering, Lecture Notes in Computer Science, vol-
ume 3014, pp. 1–5, Springer Berlin / Heidelberg, 2004, ISBN 978-3-540-
21941-5, ISSN 0302-9743

[24] J. Brandão and A. Mercer, The Multi-Trip Vehicle Routing Problem, in The Jour-
nal of the Operational Research Society, volume 49(8), pp. 799–805, 1998, ISSN
01605682

[25] J. Brandão, A Tabu Search Algorithm for the Open Vehicle Routing Problem, in
European Journal of Operational Research, volume 157(3), pp. 552–564, 2004,
ISSN 0377-2217

[26] J. Brandão, A New Tabu Search Algorithm for the Vehicle Routing Problem with
Backhauls, in European Journal of Operational Research, volume 173(2), pp.
540–555, 2006, ISSN 0377-2217

[27] J. Brandão, A Deterministic Tabu Search Algorithm for the Fleet Size and Mix
Vehicle Routing Problem, in European Journal of Operational Research, volume
195(3), pp. 716–728, 2009, ISSN 0377-2217

[28] J. Brandão and A. Mercer, A Tabu Search Algorithm for the Multi-trip Vehicle
Routing and Scheduling Problem, in European Journal of Operational Research,
volume 100(1), pp. 180–191, 1997, ISSN 0377-2217

[29] O. Bräysy, W. Dullaert, G. Hasle, D. Mester and M. Gendreau, An Effective
Multirestart Deterministic Annealing Metaheuristic for the Fleet Size and Mix
Vehicle-Routing Problem with Time Windows, in Transportation Science, vol-
ume 42(3), pp. 371–386, 2008, ISSN 1526-5447

[30] O. Bräysy and M. Gendreau, Vehicle Routing Problem with Time Windows,
Part I: Route Construction and Local Search Algorithms, in Transportation Sci-
ence, volume 39(1), pp. 104–118, 2005, ISSN 1526-5447

[31] O. Bräysy and M. Gendreau, Vehicle Routing Problem with Time Windows,
Part II: Metaheuristics, in Transportation Science, volume 39(1), pp. 119–139,
2005, ISSN 1526-5447

[32] F. P. Brooks, No Silver Bullet — Essence and Accident in Software Engineering,
in Proceedings of IFIP Tenth World Computing Conference, pp. 1069–1076, 1986

[33] L. Brownsword and P. Clements, A Case Study in Successful Product Line De-
velopment, Technical report, Software Engineering Institute, Carnegie Mel-
lon University, Pittsburgh, Pennsylvania, 1996

246

[34] A. M. Campbell and B. W. Thomas, Challenges and Advances in A Priori Rout-
ing, in The Vehicle Routing Problem: Latest Advances and New Challenges, Op-
erations Research/Computer Science Interfaces Series, volume 43, pp. 123–142,
Springer US, 2008, ISBN 978-0-387-77777-1

[35] P. J. Cassidy and H. S. Bennett, TRAMP — A Multi-Depot Vehicle Scheduling
System, in Operational Research Quarterly (1970-1977), volume 23(2), pp. 151–
163, 1972, ISSN 00303623

[36] A. Ceselli, G. Righini and M. Salani, A Column Generation Algorithm for a
Rich Vehicle-Routing Problem, in Transportation Science, volume 43(1), pp. 56–
69, 2009

[37] L. Chen, M. Ali Babar and N. Ali, Variability Management in Software Prod-
uct Lines: A Systematic Review, in SPLC ’09: Proceedings of the 13th Interna-
tional Software Product Line Conference, pp. 81–90, Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA, 2009

[38] M. Christiansen, K. Fagerholt, B. Nygreen and D. Ronen, Chapter 4 Mar-
itime Transportation, in C. Barnhart and G. Laporte (eds.), Transportation,
Handbooks in Operations Research and Management Science, volume 14, pp.
189–284, Elsevier, 2007

[39] G. Clarke and J. W. Wright, Scheduling of Vehicles from a Central Depot to a
Number of Delivery Points, in Operations Research, volume 12(4), pp. 568–581,
1964, ISSN 0030364X

[40] A. Classen, A. Hubaux, F. Sanen, E. Truyen, J. Vallejos, P. Costanza,
W. De Meuter, P. Heymans and W. Joosen, Modelling Variability in Self-
Adaptive Systems: Towards a Research Agenda, in Proceedings of Interna-
tional Workshop on Modularization, Composition and Generative Techniques for
Product-Line Engineering, pp. 19–26, Online proceedings, 2008

[41] P. Clements and L. Northrop, Software Product Lines: Practices and Patterns,
Addison-Wesley Professional, 3rd edition, August 2001, ISBN 0201703327

[42] T. Colburn and G. Shute, Abstraction in Computer Science, in Minds and Ma-
chines, volume 17(2), pp. 169–184, 2007, ISSN 0924-6495

[43] J.-F. Cordeau, G. Desaulniers, J. Desrosiers, M. M. Solomon and F. Soumis,
VRP with Time Windows, in P. Toth and D. Vigo (eds.), The Vehicle Rout-
ing Problem, pp. 157–193, Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2001, ISBN 0-89871-498-2

[44] J.-F. Cordeau, G. Laporte and A. Mercier, A Unified Tabu Search Heuristic for
Vehicle Routing Problems with Time Windows, in The Journal of the Operational
Research Society, volume 52(8), pp. 928–936, 2001, ISSN 01605682

247

[45] J.-F. Cordeau, M. Gendreau, A. Hertz, G. Laporte and J.-S. Sormany, New
Heuristics for the Vehicle Routing Problem, in Logistics Systems: Design and
Optimization, pp. 279–297, Springer US, 2005, ISBN 978-0-387-24971-1

[46] J.-F. Cordeau, M. Gendreau and G. Laporte, A Tabu Search Heuristic for Peri-
odic and Multi-depot Vehicle Routing Problems, in Networks, volume 30(2), pp.
105–119, 1997

[47] J.-F. Cordeau, G. Laporte, J.-Y. Potvin and M. W. Savelsbergh, Chapter 7
Transportation on Demand, in C. Barnhart and G. Laporte (eds.), Transporta-
tion, Handbooks in Operations Research and Management Science, volume 14,
pp. 429–466, Elsevier, 2007

[48] J.-F. Cordeau, G. Laporte, M. W. Savelsbergh and D. Vigo, Chapter 6 Vehicle
Routing, in C. Barnhart and G. Laporte (eds.), Transportation, Handbooks in
Operations Research and Management Science, volume 14, pp. 367–428, Else-
vier, 2007

[49] P. Costanza, Context-Oriented Programming in ContextL: State of the Art, in
LISP50: Celebrating the 50th Anniversary of Lisp, pp. 1–5, ACM, New York,
NY, USA, 2008, ISBN 978-1-60558-383-9

[50] B. Crevier, J.-F. Cordeau and G. Laporte, The Multi-Depot Vehicle Routing
Problem with Inter-Depot Routes, in European Journal of Operational Research,
volume 176(2), pp. 756–773, 2007, ISSN 0377-2217

[51] G. A. Croes, A Method for Solving Traveling-Salesman Problems, in Operations
Research, volume 6(6), pp. 791–812, 1958

[52] K. Czarnecki, M. Antkiewicz, C. H. P. Kim, S. Lau and K. Pietroszek, Model-
Driven Software Product Lines, in OOPSLA ’05: Companion to the 20th An-
nual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp. 126–127, ACM, New York, NY, USA, 2005,
ISBN 1-59593-193-7

[53] K. Czarnecki and S. Helsen, Classification of Model Transformation Approaches,
2003, unpublished

[54] G. B. Dantzig and J. H. Ramser, The Truck Dispatching Problem, in Manage-
ment Science, volume 6(1), pp. 80–91, 1959, ISSN 00251909

[55] G. Dantzig and D. Fulkerson, Minimizing the Number of Tankers to Meet a
Fixed Sschedule, in Naval Research Logistics Quarterly, volume 1, pp. 217–222,
1954

[56] S. Deelstra, M. Sinnema, J. V. Gurp and J. Bosch, Model Driven Architecture
as Approach to Manage Variability in Software Product Families, in Proceedings
of the Workshop on Model Driven Architectures: Foundations and Applications,
pp. 109–114, Springer, 2003

248

[57] I. Deif and L. Bodin, Extension of the Clarke and Wright Algorithm for Solving
the Vehicle Routing Problem with Backhauling, in K. A (ed.), Proceedings of the
Babson Conference on Software on Uses in Transportation and Logistic Manage-
ment, pp. 75–96, Babson Park, 1984

[58] U. Derigs, J. Gottlieb, J. Kalkoff, M. Piesche, F. Rothlauf and U. Vogel, Vehi-
cle Routing with Compartments: Applications, Modelling and Heuristics, in OR
Spectrum, February 2010, ISSN 0171-6468

[59] G. Desaulniers, J. Desrosiers, I. Ioachim, M. M. Solomon, F. Soumis and
D. Villeneuve, A Unified Framework for Deterministic Time Constrained Vehicle
Routing and Crew Scheduling Problems, in T. G. Crainic and G. Laporte (eds.),
Fleet Management and Logistics, pp. 57–94, Springer-Verlag, New York, 1998,
ISBN 0792381610

[60] J. Desrosiers, Y. Dumas, M. M. Solomon and F. Soumis, Time Constrained
Routing and Scheduling, in C. M. G. N. M.O. Ball, T.L. Magnanti (ed.), Hand-
books in Operations Research and Management Science, 8, pp. 35–139, Elsevier
Science Publishers, 1995

[61] M. Dorigo, Optimization, Learning and Natural Algorithms, Ph.D. thesis, Po-
litecnico di Milano, Italy, 1992

[62] M. Dror, Note on the Complexity of the Shortest Path Models for Column Gener-
ation in VRPTW, in Operations Research, volume 42(5), pp. 977–978, 1994

[63] L. M. A. Drummond, L. S. Ochi and D. S. Vianna, An Asynchronous Paral-
lel Metaheuristic for the Period Vehicle Routing Problem, in Future Generation
Computer Systems, volume 17(4), pp. 379–386, 2001, ISSN 0167-739X

[64] Y. Dumas, J. Desrosiers and F. Soumis, The Pickup and Delivery Problem with
Time Windows, in European Journal of Operational Research, volume 54(1), pp.
7–22, 1991

[65] I. Dumitrescu, S. Ropke, J.-F. Cordeau and G. Laporte, The Traveling Sales-
man Problem with Pickup and Delivery: Polyhedral Results and a Branch-and-Cut
Algorithm, in Mathematical Programming, volume 121(2), pp. 269–305, 2009,
ISSN 0025-5610

[66] B. Eksioglu, A. V. Vural and A. Reisman, The Vehicle Routing Problem: A
Taxonomic Review, in Computers & Industrial Engineering, volume 57(4), pp.
1472–1483, 2009

[67] L. M. Ellram and S. P. Siferd, Total Cost of Ownership: A Key Concept in Strate-
gic Cost Management Decisions, in Journal of Business Logistics, volume 19(1),
pp. 55–84, 1998

[68] J. Euchi and H. Chabchoub, A Hybrid Tabu Search to Solve the Heterogeneous
Fixed Fleet Vehicle Routing Problem, in Logistics Research, April 2010, ISSN
1865-035X

249

[69] A. E. Fallahi, C. Prins and R. W. Calvo, A Memetic Algorithm and a Tabu
Search for the Multi-compartment Vehicle Routing Problem, in Computers & Op-
erations Research, volume 35(5), pp. 1725–1741, 2008, ISSN 0305-0548

[70] M. Fayad and D. C. Schmidt, Object-Oriented Application Frameworks, in
Communications of the ACM, volume 40(10), pp. 32–38, 1997, ISSN 0001-0782

[71] R. E. Filman, T. Elrad, S. Clarke and M. Akşit (eds.), Aspect-Oriented Software
Development, Addison-Wesley, 2004, ISBN 0-321-21976-7

[72] M. Fisher, Chapter 1 Vehicle Routing, in M. Ball, T. Magnanti, C. Monma and
G. Nemhauser (eds.), Network Routing, Handbooks in Operations Research and
Management Science, volume 8, pp. 1–33, Elsevier, 1995

[73] K. Fleszar, I. H. Osman and K. S. Hindi, A Variable Neighbourhood Search
Algorithm for the Open Vehicle Routing Problem, in European Journal of Opera-
tional Research, volume 195(3), pp. 803–809, 2009, ISSN 0377-2217

[74] M. Fowler, Inversion of Control Containers and the Dependency Injection pat-
tern, January 2004, http://www.itu.dk/courses/VOP/E2005/VOP2005E/8_
injection.pdf

[75] M. Fowler, Domain-Specific Languages, Addison-Wesley, 2010, ISBN 0-321-
71294-3

[76] W. B. Frakes and K. Kang, Software Reuse Research: Status and Future, in IEEE
Transactions on Software Engineering, volume 31, pp. 529–536, 2005

[77] P. M. Francis, K. R. Smilowitz and M. Tzur, The Period Vehicle Routing Prob-
lem and its Extensions, in The Vehicle Routing Problem: Latest Advances and
New Challenges, Operations Research/Computer Science Interfaces Series, vol-
ume 43, pp. 73–102, Springer US, 2008, ISBN 978-0-387-77777-1

[78] G. Freeman, D. Batory and G. Lavender, Lifting Transformational Models of
Product Lines: A Case Study, in Theory and Practice of Model Transformations,
Lecture Notes in Computer Science, volume 5063, pp. 16–30, Springer Berlin /
Heidelberg, 2008, ISBN 978-3-540-69926-2, ISSN 0302-9743

[79] R. Fukasawa, H. Longo, J. Lysgaard, M. P. d. Aragão, M. Reis, E. Uchoa
and R. F. Werneck, Robust Branch-and-Cut-and-Price for the Capacitated Vehicle
Routing Problem, in Mathematical Programming, volume 106(3), pp. 491–511,
2006, ISSN 0025-5610

[80] B. Funke, T. Grünert and S. Irnich, Local Search for Vehicle Routing and
Scheduling Problems: Review and Conceptual Integration, in Journal of Heuris-
tics, volume 11(4), pp. 267–306, 2005, ISSN 1381-1231

[81] Y. Gajpal and P. Abad, Multi-ant Colony System (MACS) for a Vehicle Routing
Problem with Backhauls, in European Journal of Operational Research, volume
196(1), pp. 102–117, 2009, ISSN 0377-2217

250

[82] M. Gamache, F. Soumis, G. Marquis and J. Desrosiers, A Column Generation
Approach for Large-Scale Aircrew Rostering Problems, in Operations Research,
volume 47(2), pp. 247–263, 1999

[83] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness (Series of Books in the Mathematical Sciences), W. H.
Freeman & Co Ltd, January 1979, ISBN 0716710455

[84] P. Garrido and C. Castro, Stable Solving of CVRPs Using Hyperheuristics, in
Proceedings of the 11th Annual Conference on Genetic and Evolutionary Com-
putation, GECCO ’09, pp. 255–262, ACM, New York, NY, USA, 2009, ISBN
978-1-60558-325-9

[85] P. Garrido and M. Riff, DVRP: a Hard Dynamic Combinatorial Optimisation
Problem Tackled by an Evolutionary Hyper-Heuristic, in Journal of Heuristics,
volume 16, pp. 795–834, 2010, ISSN 1381-1231

[86] M. Gendreau, Constraint Programming and Operations Research: Comments
from an Operations Researcher, in Journal of Heuristics, volume 8(1), pp. 19–24,
2002, ISSN 1381-1231

[87] M. Gendreau, A. Hertz and G. Laporte, The Traveling Salesman Problem with
Backhauls, in Computers & Operations Research, volume 23(5), pp. 501–508,
1996, ISSN 0305-0548

[88] M. Gendreau, A. Hertz, G. Laporte and M. Stan, A Generalized Insertion
Heuristic for the Traveling Salesman Problem with Time Windows, in Operations
Research, volume 46(3), pp. 330–335, 1998

[89] M. Gendreau and J.-Y. Potvin, Metaheuristics in Combinatorial Optimization,
in Annals of Operations Research, volume 140(1), pp. 189–213, 2005

[90] M. Gendreau, J.-Y. Potvin, O. Bräysy, G. Hasle and A. Løkketangen, Meta-
heuristics for the Vehicle Routing Problem and Its Extensions: A Categorized Bib-
liography, in The Vehicle Routing Problem: Latest Advances and New Challenges,
Operations Research/Computer Science Interfaces Series, volume 43, pp. 143–
169, Springer US, 2008, ISBN 978-0-387-77777-1

[91] F. Glover, Tabu search — Part I, in ORSA Journal on Computing, volume 1, pp.
190–206, 1989

[92] F. Glover, Heuristics for Integer Programming Using Surrogate Constraints, in
Decision Sciences, volume 8(1), pp. 156–166, 1977

[93] A. Goel, Vehicle Scheduling and Routing with Drivers’ Working Hours, in Trans-
portation Science, volume 43(1), pp. 17–26, 2009, ISSN 1526-5447

[94] B. Golden, A. Assad, L. Levy and F. Gheysens, The Fleet Size and Mix Vehicle
Routing Problem, in Computers & Operations Research, volume 11(1), pp. 49–
66, 1984, ISSN 0305-0548

251

[95] B. L. Golden, S. Raghavan and E. A. Wasil (eds.), The Vehicle Routing Prob-
lem: Latest Advances and New Challenges, Springer, New York, 2008, ISBN
978-0-387-77777-1

[96] H. Gomaa and D. L. Webber, Modeling Adaptive and Evolvable Software Prod-
uct Lines Using the Variation Point Model, in Proceedings of the 37th Annual
Hawaii International Conference on System Sciences, 2004

[97] B. González-Baixauli, M. A. Laguna and Y. Crespo, Product Lines, Features,
and MDD, in Proceedings of EWMT Workshop, Online proceedings, 2005

[98] C. Groër, B. Golden and E. Wasil, A Library of Local Search Heuristics for
the Vehicle Routing Problem, in Mathematical Programming Computation, vol-
ume 2, pp. 79–101, 2010, ISSN 1867-2949

[99] J. V. Gurp, J. Bosch and M. Svahnberg, On the Notion of Variability in Software
Product Lines, in WICSA ’01: Proceedings of the Working IEEE/IFIP Conference
on Software Architecture, p. 45, IEEE Computer Society, Washington, DC,
USA, 2001, ISBN 0-7695-1360-3

[100] G. Halmans and K. Pohl, Communicating the Variability of a Software-Product
Family to Customers, in Software and Systems Modeling, volume 2(1), pp. 15–
36, 2003, ISSN 1619-1366

[101] G. Hasle, Transportation Management in Distributed Enterprises, in Human
Systems Management, volume 18, pp. 203–212, ISSN 0167-2533

[102] G. Hasle, 2011, SINTEF ICT, Oslo, Norway, personal communications

[103] G. Hasle and O. Kloster, Industrial Vehicle Routing, in G. Hasle, K.-A. Lie and
E. Quak (eds.), Geometric Modelling, Numerical Simulation, and Optimization,
pp. 397–435, Springer Berlin Heidelberg, 2007, ISBN 978-3-540-68783-2

[104] C. Hempsch and S. Irnich, Vehicle Routing Problems with Inter-Tour Resource
Constraints, in The Vehicle Routing Problem: Latest Advances and New Chal-
lenges, Operations Research/Computer Science Interfaces Series, volume 43, pp.
421–444, Springer US, 2008, ISBN 978-0-387-77777-1

[105] J. H. Holland, Outline for a Logical Theory of Adaptive Systems, in Journal of the
ACM, volume 9(3), pp. 297–314, 1962

[106] A. Hubaux and P. Heymans, On the Evaluation and Improvement of Feature-
Based Configuration Techniques in Software Product Lines, in 31st International
Conference on Software Engineering — Companion Volume, IEEE, 2009, ISBN
978-1-4244-3495-4

[107] T. Ibaraki, S. Imahori, M. Kubo, T. Masuda, T. Uno and M. Yagiura, Effec-
tive Local Search Algorithms for Routing and Scheduling Problems with General
Time-Window Constraints, in Transportation Science, volume 39(2), pp. 206–
232, 2005, ISSN 1526-5447

252

[108] IEEE standard 1061-1998 for a Software Quality Metrics Methodology, Technical
report, 1998

[109] S. Irnich, A Unified Modeling and Solution Framework for Vehicle Routing and
Local Search-Based Metaheuristics, in INFORMS Journal on Computing, vol-
ume 20(2), pp. 270–287, 2008

[110] S. Irnich, Resource Extension Functions: Properties, Inversion, and Generaliza-
tion to Segments, in OR Spectrum, volume 30, pp. 133–148, 2008

[111] S. Irnich and G. Desaulniers, Shortest Path Problems with Resource Con-
straints, in G. Desaulniers, J. Desrosiers and M. M. Solomon (eds.), Column
Generation, pp. 33–65, Springer US, 2005, ISBN 978-0-387-25486-9

[112] S. Irnich, G. Desaulniers, J. Desrosiers and A. Hadjar, Path-Reduced Costs for
Eliminating Arcs in Routing and Scheduling, in INFORMS Journal on Comput-
ing, volume 22(2), pp. 297–313, 2010

[113] S. Irnich, B. Funke and T. Grünert, Sequential Search and its Application to
Vehicle-routing Problems, in Comput. Oper. Res., volume 33(8), pp. 2405–2429,
2006, ISSN 0305-0548

[114] ISO/IEC 13568:2002(E) Information Technology — Z Formal Specification Nota-
tion — Syntax, Type System and Semantics, Technical report, 2002

[115] I. Jacobson, M. Griss and P. Jonsson, Software Reuse: Architecture, Process and
Organization for Business Success, ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 1997, ISBN 0-201-92476-5

[116] M. Jaring and J. Bosch, Variability Dependencies in Product Family Engineer-
ing, in Software Product-Family Engineering, Lecture Notes in Computer Science,
volume 3014, pp. 81–97, Springer Berlin / Heidelberg, 2004, ISBN 978-3-
540-21941-5

[117] M. Jha and L. O’Brien, Identifying Issues and Concerns in Software Reuse in
Software Product Lines, in ICSR ’09: Proceedings of the 11th International Con-
ference on Software Reuse, pp. 181–190, Springer-Verlag, Berlin, Heidelberg,
2009, ISBN 978-3-642-04210-2

[118] R. E. Johnson and B. Foote, Designing Reusable Classes, in Journal of Object-
Oriented Programming, volume 1(2), pp. 22–35, 1988

[119] N. Jozefowiez, F. Semet and E.-G. Talbi, Multi-Objective Vehicle Routing Prob-
lems, in European Journal of Operational Research, volume 189(2), pp. 293–309,
2008, ISSN 0377-2217

[120] J. Kallrath, Modeling Languages in Mathematical Optimization, Kluwer Aca-
demic Publishers, Norwell, MA, USA, 2004, ISBN 1402075472

253

[121] K. C. Kang, J. Lee and P. Donohoe, Feature-Oriented Product Line Engineering,
in IEEE Software, volume 19, pp. 58–65, 2002, ISSN 0740-7459

[122] S. Kent, Model Driven Engineering, in Integrated Formal Methods, Lecture Notes
in Computer Science, volume 2335, pp. 286–298, Springer Berlin / Heidel-
berg, 2002, ISBN 978-3-540-43703-1, ISSN 0302-9743

[123] P. Kilby and P. Shaw, Vehicle Routing, in F. Rossi, P. V. Beek and T. Walsh
(eds.), Handbook of Constraint Programming, pp. 801–836, Elsevier B.V., Am-
sterdam, The Netherlands, 2006, ISBN 978-0444527264

[124] P. Kilby, P. Prosser and P. Shaw, A Comparison of Traditional and Constraint-
based Heuristic Methods on Vehicle Routing Problems with Side Constraints, in
Constraints, volume 5, pp. 389–414, 2000

[125] G. A. P. Kindervater and M. W. P. Savelsbergh, Chapter 10 Vehicle routing:
Handling Edge Exchanges, in J. K. L. E. H. Aarts (ed.), Local Search in Com-
binatorial Optimization, pp. 337–360, John Wiley, & Sons Ltd., 1997, ISBN
978-0-471-94822-3

[126] S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi, Optimization by Simulated
Annealing, in Science, volume 220, pp. 671–680, 1983

[127] A. G. Kleppe, J. Warmer and W. Bast, MDA Explained: The Model Driven Ar-
chitecture: Practice and Promise, Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2003, ISBN 032119442X

[128] I. Kurtev, Adaptability of model transformations, Ph.D. thesis, University of
Twente, Enschede, 2005

[129] G. Laporte, The Traveling Salesman Problem, the Vehicle Routing Problem, and
Their Impact on Combinatorial Optimization, in International Journal of Strategic
Decision Sciences, volume 1(2), pp. 82–92, 2010

[130] G. Laporte, Fifty Years of Vehicle Routing, in Transportation Science, vol-
ume 43(4), pp. 408–416, 2009, ISSN 1526-5447

[131] G. Laporte, M. Gendreau, J.-Y. Potvin and F. Semet, Classical and Modern
Heuristics for the Vehicle Routing Problem, in International Transactions in Op-
erational Research, volume 7(4–5), pp. 285–300, 2000, ISSN 0969-6016

[132] A. Larsen, O. B. Madsen and M. M. Solomon, Recent Developments in Dy-
namic Vehicle Routing Systems, in The Vehicle Routing Problem: Latest Advances
and New Challenges, Operations Research/Computer Science Interfaces Series,
volume 43, pp. 199–218, Springer US, 2008, ISBN 978-0-387-77777-1

[133] E. Lawler, Combinatorial Optimization, Networks and Matroids, Holt, Rinehart
and Winston, 1976

254

[134] C. Lecluyse, T. V. Woensel and H. Peremans, Vehicle Routing with Stochastic
Time-dependent Travel Times, in 4OR: A Quarterly Journal of Operations Re-
search, volume 7(4), pp. 363–377, 2009, ISSN 1619-4500

[135] H. Li and A. Lim, A Metaheuristic for the Pickup and Delivery Problem with
Time Windows, 2001, Department of Computer Science, National University
of Singapore

[136] S. Lin and B. W. Kernighan, An Effective Heuristic Algorithm for the Traveling-
Salesman Problem, in Operations Research, volume 21(2), pp. 498–516, 1973

[137] F.-H. Liu and S.-Y. Shen, The Fleet Size and Mix Vehicle Routing Problem with
Time Windows, in The Journal of the Operational Research Society, volume 50(7),
pp. 721–732, 1999, ISSN 01605682

[138] F. Marschall and P. Braun, Model Transformations for the MDA with BOTL, in
In Proceedings of the Workshop on Model Driven Architectures: Foundations and
Applications, pp. 25–36, Springer, 2003

[139] O. Martin, S. W. Otto and E. W. Felten, Large-Step Markov Chains for the Trav-
eling Salesman Problem, in Complex Systems, volume 5, pp. 299–326, 1991

[140] T. Mens, K. Czarnecki and P. V. Gorp, A Taxonomy of Model Transformations,
in J. Bezivin and R. Heckel (eds.), Language Engineering for Model-Driven
Software Development, number 04101 in Dagstuhl Seminar Proceedings, In-
ternationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Dagstuhl, Germany, 2005, ISSN 1862-4405

[141] D. Mester and O. Bräysy, Active Guided Evolution Strategies for Large-scale
Vehicle Routing Problems with Time Windows, in Computers & Operations Re-
search, volume 32(6), pp. 1593–1614, 2005, ISSN 0305-0548

[142] D. Mester and O. Bräysy, Active-guided Evolution Strategies for Large-scale Ca-
pacitated Vehicle Routing Problems, in Computers & Operations Research, vol-
ume 34(10), pp. 2964–2975, 2007, ISSN 0305-0548

[143] J. Miller and J. Mukerji (eds.), MDA Guide version 1.0.1 omg/2003-06-01, Ob-
ject Management Group, 2003

[144] N. Mladenovic and P. Hansen, Variable Neighborhood Search, in Computers &
Operations Research, volume 24(11), pp. 1097–1100, 1997

[145] L. Moccia, J.-F. Cordeau and G. Laporte, An Incremental Tabu Search Heuristic
for the Generalized Vehicle Routing Problem with Time Windows, in Journal of the
Operational Research Society, 2011

[146] P. Mohagheghi and V. Dehlen, Where Is the Proof? - A Review of Experiences
from Applying MDE in Industry, in Model Driven Architecture — Foundations
and Applications, Lecture Notes in Computer Science, volume 5095, pp. 432–
443, Springer Berlin / Heidelberg, 2010, ISBN 978-3-540-69095-5

255

[147] B. Morin, G. Perrouin, P. Lahire, O. Barais, G. Vanwormhoudt and J.-M.
Jézéquel, Weaving Variability into Domain Metamodels, in MODELS ’09: Pro-
ceedings of the 12th International Conference on Model Driven Engineering Lan-
guages and Systems, pp. 690–705, Springer-Verlag, Berlin, Heidelberg, 2009,
ISBN 978-3-642-04424-3

[148] D. Muthig and C. Atkinson, Model-Driven Product Line Architectures, in
SPLC 2: Proceedings of the Second International Conference on Software Product
Lines, pp. 110–129, Springer-Verlag, London, UK, 2002, ISBN 3-540-43985-4

[149] L. Muyldermans and G. Pang, On the Benefits of Co-collection: Experiments
with a Multi-compartment Vehicle Routing Algorithm, in European Journal of
Operational Research, volume 206(1), pp. 93–103, 2010

[150] Y. Nagata, Edge Assembly Crossover for the Capacitated Vehicle Routing Prob-
lem, in EvoCOP’07: Proceedings of the 7th European Conference on Evolution-
ary Computation in Combinatorial Optimization, pp. 142–153, Springer-Verlag,
Berlin, Heidelberg, 2007, ISBN 978-3-540-71614-3

[151] Y. Nagata and O. Bräysy, Efficient Local Search Limitation Strategies for Vehicle
Routing Problems, in EvoCOP’08: Proceedings of the 8th European Conference on
Evolutionary Computation in Combinatorial Optimization, pp. 48–60, Springer-
Verlag, Berlin, Heidelberg, 2008, ISBN 3-540-78603-1, 978-3-540-78603-0

[152] Y. Nagata and O. Bräysy, Edge Assembly-based Memetic Algorithm for the Ca-
pacitated Vehicle Routing Problem, in Networks, volume 54(4), pp. 205–215,
2009, ISSN 0028-3045

[153] Y. Nagata, O. Bräysy and W. Dullaert, A Penalty-based Edge Assembly
Memetic Algorithm for the Vehicle Routing Problem with Time Windows, in Com-
puters & Operations Research, volume 37(4), pp. 724–737, 2010, ISSN 0305-
0548

[154] N. Niu, J. Savolainen and Y. Yu, Variability Modeling for Product Line View-
points Integration, in 34th Annual IEEE Computer Software and Applications
Conference, July/Summer 2010

[155] L. Northrop, Software Product Lines Essentials, 2008, Software Engineering
Institute, Carnegie Mellon University

[156] M. Nowak, O. Ergun and I. White, Chelsea C., Pickup and Delivery with Split
Loads, in Transportation Science, volume 42(1), pp. 32–43, 2008

[157] Object Management Group Unified Modeling Language Infrastructure Version
2.3, 2010

[158] T. Oliveira, P. Alencar, D. Cowan, I. Filho and C. Lucena, Enabling Model
Driven Product Line Architectures, in D. Akehurst (ed.), Proceedings of Second
European Workshop on MDA, Computing Laboratory, University of Kent,
Canterbury, UK, 2004

256

[159] I. Or, Traveling Salesman-Type Problems and their Relation to the Logistics of
Regional Blood Banking, Ph.D. thesis, Department of Industrial Engineering
and Management Sciences. Northwestern University, Evanston, IL, 1976

[160] I. H. Osman, Metastrategy Simulated Annealing and Tabu Search Algorithms for
the Vehicle Routing Problem, in Annals of Operations Research, volume 41(4),
pp. 421–451, 1993, ISSN 0254-5330

[161] S. Parragh, K. Doerner and R. Hartl, A Survey on Pickup and Delivery Prob-
lems: Part I: Transportation Between Customers and Depot, in Journal für Be-
triebswirtschaft, volume 58, pp. 21–51, 2008

[162] S. Parragh, K. Doerner and R. Hartl, A Survey on Pickup and Delivery Prob-
lems: Part II: Transportation Between Pickup and Delivery Locations, in Journal
für Betriebswirtschaft, volume 58, pp. 81–117, 2008

[163] J. Partyka and R. Hall, On the Road to Connectivity, in OR/MS Today, vol-
ume 37(1), pp. 42–49, 2010

[164] D. Pisinger and S. Ropke, A General Heuristic for Vehicle Routing Problems, in
Computers & Operations Research, volume 34, pp. 2403–2435, 2007

[165] K. Pohl, G. Böckle and F. J. van der Linden, Software Product Line Engineer-
ing: Foundations, Principles and Techniques, Springer, 2005, ISBN 3540243720

[166] J. Potvin, G. Lapalme and J. Rousseau, A Generalized k-opt Exchange Pro-
cedure for the MTSP, in Information Systems and Operations Research, vol-
ume 27(4), pp. 474–481, 1989

[167] T. Ralphs, L. Kopman, W. Pulleyblank and L. Trotter, On the Capacitated
Vehicle Routing Problem, in Mathematical Programming, volume 94, pp. 343–
359, 2003, ISSN 0025-5610

[168] M. Reimann, K. Doerner and R. F. Hartl, D-Ants: Savings Based Ants Divide
and Conquer the Vehicle Routing Problem, in Computers & Operations Research,
volume 31(4), pp. 563–591, 2004, ISSN 0305-0548

[169] Y. Ren, M. Dessouky and F. Ordó nez, The Multi-shift Vehicle Routing Problem
with Overtime, in Computers & Operations Research, volume 37(11), pp. 1987–
1998, 2010, ISSN 0305-0548

[170] J. Renaud, G. Laporte and F. F. Boctor, A Tabu Search Heuristic for the
Multi-depot Vehicle Routing Problem, in Computers & Operations Research, vol-
ume 23(3), pp. 229–235, 1996, ISSN 0305-0548

[171] P. P. Repoussis, C. D. Tarantilis, O. Bräysy and G. Ioannou, A Hybrid Evolu-
tion Strategy for the Open Vehicle Routing Problem, in Computers & Operations
Research, volume 37(3), pp. 443–455, 2010, ISSN 0305-0548

257

[172] P. P. Repoussis, C. D. Tarantilis and G. Ioannou, An Evolutionary Algorithm
for the Open Vehicle Routing Problem with Time Windows, in F. B. Pereira and
J. Tavares (eds.), Bio-inspired Algorithms for the Vehicle Routing Problem, Stud-
ies in Computational Intelligence, volume 161, pp. 55–75, Springer Berlin /
Heidelberg, 2009, ISBN 978-3-540-85151-6

[173] Y. Rochat and F. Semet, A Tabu Search Approach for Delivering Pet Food and
Flour in Switzerland, in The Journal of the Operational Research Society, vol-
ume 45(11), pp. 1233–1246, 1994

[174] S. Ropke and D. Pisinger, An Adaptive Large Neighborhood Search Heuristic for
the Pickup and Delivery Problem with Time Windows, in Transportation Science,
volume 40(4), pp. 455–472, 2006, ISSN 1526-5447

[175] S. Ropke and D. Pisinger, A Unified Heuristic for a Large Class of Vehicle Rout-
ing Problems with Backhauls, in European Journal of Operational Research, vol-
ume 171(3), pp. 750–775, June 2006

[176] F. Rossi, P. v. Beek and T. Walsh, Handbook of Constraint Programming, Else-
vier Science Inc., New York, NY, USA, 2006, ISBN 0444527265

[177] L.-M. Rousseau, M. Gendreau and G. Pesant, Using Constraint-Based Op-
erators to Solve the Vehicle Routing Problem with Time Windows, in Journal of
Heuristics, volume 8(1), pp. 43–58, 2002, ISSN 1381-1231

[178] A. L. Santos, K. Koskimies and A. Lopes, A Model-Driven Approach to Vari-
ability Management in Product-Line Engineering, in Nordic Journal of Comput-
ing, volume 13(3), pp. 196–213, 2006, ISSN 1236-6064

[179] D. Sariklis and S. Powell, A Heuristic Method for the Open Vehicle Routing
Problem, in The Journal of the Operational Research Society, volume 51(5), pp.
564–573, 2000, ISSN 01605682

[180] M. W. P. Savelsbergh and M. Sol, The General Pickup and Delivery Problem, in
Transportation Science, volume 29, pp. 17–29, 1995

[181] M. W. P. Savelsbergh, The Vehicle Routing Problem with Time Windows: Mini-
mizing Route Duration, in INFORMS Journal on Computing, volume 4(2), pp.
146–154, 1992

[182] J. Savolainen, J. Kuusela, M. Mannion and T. Vehkomäki, Combining Differ-
ent Product Line Models to Balance Needs of Product Differentiation and Reuse,
in ICSR ’08: Proceedings of the 10th International Conference on Software Reuse,
pp. 116–129, Springer-Verlag, Berlin, Heidelberg, 2008, ISBN 978-3-540-
68062-8

[183] I. Schaefer, Variability Modelling for Model-Driven Development of Software
Product Lines, in Fourth International Workshop on Variability Modelling of
Software-intensive Systems (VaMoS 2010), 2009

258

[184] V. Schmid, K. F. Doerner, R. F. Hartl, M. W. P. Savelsbergh and W. Stoecher,
A Hybrid Solution Approach for Ready-Mixed Concrete Delivery, in Transporta-
tion Science, volume 43(1), pp. 70–85, 2009

[185] L. Schrage, Formulation and Structure of More Complex/Realistic Routing and
Scheduling Problems, in Networks, volume 11(2), pp. 229–232, 1981

[186] A. Schrijver, On the History of Combinatorial Optimization (Till 1960), in G. N.
K. Aardal and R. Weismantel (eds.), Discrete Optimization, Handbooks in Op-
erations Research and Management Science, volume 12, pp. 1–68, Elsevier, 2005

[187] D. C. Sharp, Component-Based Product Line Development of Avionics Software,
in Proceedings of the First Conference on Software Product Lines : Experience
and Research Directions, pp. 353–370, Kluwer Academic Publishers, Norwell,
MA, USA, 2000, ISBN 0-79237-940-3

[188] P. Shaw, Using Constraint Programming and Local Search Methods to Solve Ve-
hicle Routing Problems, in Lecture Notes in Computer Science, pp. 417–431,
Springer-Verlag, 1998

[189] T. Solakivi, L. Ojala, J. Töyli, H.-M. Hälinen, H. Lorentz, K. Rantasila and
T. Naula, Finland State of Logistics, 2009, Finnish Ministry of Transport and
Communications, Helsinki

[190] M. M. Solomon, Algorithms for the Vehicle Routing and Scheduling Problems
with Time Window Constraints, in Operations Research, volume 35(2), pp. 254–
265, 1987, ISSN 0030364X

[191] K. Sörensen, M. Sevaux and P. Schittekat, ”Multiple Neighbourhood” Search in
Commercial VRP Packages: Evolving Towards Self-Adaptive Methods, in Adap-
tive and Multilevel Metaheuristics, pp. 239–253, Springer US, 2008

[192] J. M. Spivey, The Z notation: A Reference Manual, Oriel College, Oxford, Eng-
land, 2001

[193] M. Svahnberg, J. van Gurp and J. Bosch, A Taxonomy of Variability Realiza-
tion Techniques: Research Articles, in Software — Practice and Experience, vol-
ume 35(8), pp. 705–754, 2005, ISSN 0038-0644

[194] E. Taillard, P. Badeau, M. Gendreau, F. Guertin and J.-Y. Potvin, A Tabu
Search Heuristic for the Vehicle Routing Problem with Soft Time Windows, in
Transportation Science, volume 31(2), pp. 170–186, 1997

[195] E.-G. Talbi, Metaheuristics: From Design to Implementation, Wiley Publishing,
2009, ISBN 0470278587, 9780470278581

[196] C. D. Tarantilis, Solving the Vehicle Routing Problem with Adaptive Memory
Programming Methodology, in Computers & Operations Research, volume 32(9),
pp. 2309–2327, 2005, ISSN 0305-0548

259

[197] R. Tawhid and D. Petriu, Integrating Performance Analysis in the Model Driven
Development of Software Product Lines, in Model Driven Engineering Languages
and Systems, Lecture Notes in Computer Science, volume 5301, pp. 490–504,
Springer Berlin / Heidelberg, 2010, ISBN 978-3-540-87874-2, ISSN 0302-
9743

[198] F. A. Tillman, The Multiple Terminal Delivery Problem with Probabilistic De-
mands, in Transportation Science, volume 3, pp. 192–204, 1969

[199] F. A. Tillman and R. W. Hering, A Study of a Look-ahead Procedure for Solving
the Multiterminal Delivery Problem, in Transportation Research, volume 5, pp.
225–229, 1971

[200] P. Toth and D. Vigo, Branch-and-bound Algorithms for the Capacitated VRP,
pp. 29–51, 2001, ISBN 0-89871-498-2

[201] P. Toth and D. Vigo, A Heuristic Algorithm for the Symmetric and Asymmetric
Vehicle Routing Problems with Backhauls, in European Journal of Operational
Research, volume 113(3), pp. 528–543, 1999, ISSN 0377-2217

[202] P. Toth and D. Vigo (eds.), The Vehicle Routing Problem, Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2001, ISBN 0-89871-498-
2

[203] S. Trujillo, A. Zubizarreta, J. De Sosa and X. Mendialdua, Is Model Vari-
ability Enough?, in Proceedings of the 1st International Workshop on Model-
Driven Product Line Engineering, pp. 43–48, Online proceedings, Twente, The
Netherlands, 2009

[204] P. H. Vance, C. Barnhart, E. L. Johnson and G. L. Nemhauser, Airline Crew
Scheduling: A New Formulation and Decomposition Algorithm, in Operations
Research, volume 45(2), pp. 188–200, 1997

[205] V. Černý, Thermodynamical Approach to the Traveling Salesman Problem: An
Efficient Simulation Algorithm, in Journal of Optimization Theory and Applica-
tions, volume 45(1), pp. 41–51, January 1985

[206] T. Vidal, T. G. Crainic, M. Gendreau, N. Lahrichi and W. Rei, A Hybrid Ge-
netic Algorithm for Multi-Depot and Periodic Vehicle Routing Problems, Techni-
cal Report 34, CIRRELT, 2010

[207] M. Voelter and I. Groher, Product Line Implementation using Aspect-Oriented
and Model-Driven Software Development, in SPLC ’07: Proceedings of the 11th
International Software Product Line Conference, pp. 233–242, IEEE Computer
Society, Washington, DC, USA, 2007, ISBN 0-7695-2888-0

[208] S. Voß and D. L. Woodruff, Optimization Software Class Libraries, in Opti-
mization Software Class Libraries, Operations Research/Computer Science Inter-
faces Series, volume 18, pp. 1–24, Springer US, 2002, ISBN 978-1-4020-7002-0,
ISSN 1387-666X

260

[209] C. Voudouris and E. Tsang, Guided Local Search, Technical report, University
of Essex, UK, 1995

[210] K. E. Wiegers, Software Requirements, Second Edition, Microsoft Press, 2003,
ISBN 0735618798

[211] H. P. Williams, Model Building in Mathematical Programming, Wiley, 4th edi-
tion, 1999, ISBN 0471997889

[212] T. V. Woensel, L. Kerbache, H. Peremans and N. Vandaele, Vehicle Routing
with Dynamic Travel Times: A Queueing Approach, in European Journal of Op-
erational Research, volume 186(3), pp. 990–1007, 2008

[213] S. Wøhlk, A Decade of Capacitated Arc Routing, in The Vehicle Routing Problem:
Latest Advances and New Challenges, Operations Research/Computer Science In-
terfaces Series, volume 43, pp. 29–48, Springer US, 2008, ISBN 978-0-387-
77777-1

[214] D. H. Wolpert and W. G. Macready, No Free Lunch Theorems for Optimization,
in IEEE Transactions on Evolutionary Computation, volume 1(1), pp. 67–82,
1997

[215] A. Wren and A. Holliday, Computer Scheduling of Vehicles from One or More
Depots to a Number of Delivery Points, in Operational Research Quarterly (1970-
1977), volume 23(3), pp. 333–344, 1972, ISSN 00303623

[216] H. Xu, Z.-L. Chen, S. Rajagopal and S. Arunapuram, Solving a Practical
Pickup and Delivery Problem, in Transportation Science, volume 37(3), pp. 347–
364, 2003, ISSN 1526-5447

[217] E. E. Zachariadis and C. T. Kiranoudis, An Open Vehicle Routing Problem
Metaheuristic for Examining Wide Solution Neighborhoods, in Computers & Op-
erations Research, volume 37(4), pp. 712–723, 2010, ISSN 0305-0548

[218] E. E. Zachariadis and C. T. Kiranoudis, A Strategy for Reducing the Compu-
tational Complexity of Local Search-based Methods for the Vehicle Routing Prob-
lem, in Computers & Operations Research, volume 37(12), pp. 2089–2105, 2010,
ISSN 0305-0548

APPENDIX 1 TYPE INDEX

activatingCapabilities : (seq Activity × Activity)
→ FCapability 139

activatingDeltas : (Capability × Resource)
→ PartialResourceDelta 139

activeWaitingAt : (Activity × Resource)
→ Z 131

activities : FActivity 113

Activity 113

actorOf : paths Activity × Activity
→ Actor 166

actors : FActor 113

Add 167

AddActivityGroup 156

AddBounds 157

AddCapability 156

AddCapabilityProhibition 156

AddCapabilityRequirement 156

AddTransitionalResourceFunction 157

Ansatz 113

assigned : FActivity 113

bounds X == FX
→ Interval 145

capabilities : FCapability 125

Capability 124

CapabilityBinding 125

CapabilityCompletenessRule 127

CapabilityDelta == Activity
→ Z 124

capabilityDeltas : Capability
→ CapabilityDelta 125

capabilityExistence : Activity
→ FCapability 128

CapabilityExistenceRuleBinding 128

CapabilityExistenceRuleRestriction 128

capabilityNonexistence : Activity
→ FCapability 128

CapabilityNonexistenceRuleBinding 128

CapabilityNonexistenceRuleRestriction 129

capabilityParents : Capability
→ Capability 135

CapabilityProblem 129

CapabilityProjection 127

CapabilityRestriction 126

CapabilityValue == Capability
→ Z 125

capabilityValues : Activity
→ CapabilityValue 125

CreateActivity 154

CreateActor 154

CreateCapability 155

CreateResource 155

deactivatingCapabilities : Activity
→ FCapability 139

DependentProfitDelta == (FPartialResourceValue × Activity × Activity)
→ Z 150

DependentResourceDelta == (FPartialResourceValue × Activity × Activity)
→ Z 149

Disjointness 116

262

end : Activity 113

GenericRoutingProblem 148

groupBounds : bounds Activity 146

grouping X == F(FX) 144

GroupingBinding 145

GroupingProblem 147

GroupingProjection 145

GroupingRestriction 145

GroupingRuleBinding 146

GroupingRuleRestriction 146

groups : grouping Activity 145

groupValues : grouping Activity 145

IdentityPartialResourceProjection 133

IdentityPartialResourceValues 133

InitRoutingProblem 158

Injectivity 116

Interval 145

isActive : P(Activity
→ CapabilityValue × Activity × Capability) 126

isZero : P(Activity
→ CapabilityValue × Activity × Capability) 126

M : Z 122

next : (seq X × X)
→ X 115

NonnegativeCapabilityRule 128

ParentPartialResourceProjection 136

ParentPartialResourceValues 135

PartialResourceBinding 131

PartialResourceDelta == ResourceDelta 130

partialResourceDeltas : Resource
→ PartialResourceDelta 131

partialResourceLowerBounds : (Capability × Resource)
→ Z 131

PartialResourceProblem 138

PartialResourceProjection 133

PartialResourceRestriction 132

PartialResourceRule 134

PartialResourceRuleBinding 134

PartialResourceRuleRestriction 134

partialResourceUpperBounds : (Capability × Resource)
→ Z 134

PartialResourceValue == (Capability × Resource)
→ Z 130

partialResourceValues : Activity
→ PartialResourceValue 131

partialValueAt : (Activity × Capability × Resource)
→ Z 131

paths X == { f : Actor ↔ seq1 X } 113

prev : (seq X × X)
→ X 115

ProfitDelta == (Activity × Activity)
→ Z 147

ProperAnsatz 116

Remove 168

ResetRoutingProblem 166

Resource 118

263

ResourceBinding 118

ResourceConstrainedProblem 122

ResourceDelta == (Activity × Activity)
→ Z 118

resourceDeltas : Resource
→ ResourceDelta 118

resourceDeltaStacks : Activity
→ ResourceDeltaStacks 139

ResourceDeltaStacks == Resource
→ Stack[PartialResourceDelta] 139

resourceLowerBounds : (Activity × Resource)
→ Z 118

ResourceProjection 120

ResourceRestriction 119

ResourceRule 121

ResourceRuleBinding 120

ResourceRuleRestriction 120

resources : FResource 118

ResourceSlackBinding 121

ResourceSlackProjection 122

ResourceSlackRestriction 122

resourceSlackValues : Activity
→ ResourceValue 121

resourceUpperBounds : (Activity × Resource)
→ Z 120

ResourceValue == Resource
→ Z 118

resourceValues : Activity
→ ResourceValue 118

Reverse 169

routes : paths Activity 113

SetParent 155

SetStrictLowerBound 155

SimpleGrouping 146

single : FX
→ X 141

StackResourceBinding 139

StackResourceProblem 143

StackResourceProjection 142

StackResourceProjectionUtilities 140

StackResourceRestriction 141

start : Activity 113

strictLowerBoundResources : FResource 118

to ∼ : X × X × seq X → seq X 166

TryInsertActivity 172

unassigned : FActivity 113

Uniqueness 115

Update 168

UpdateResources 167

valueOrZero : (Activity
→ CapabilityValue × Activity × Capability)
→ Z 126

APPENDIX 2 THE Z NOTATION: A PRIMER

This appendix is for a reader uninitiated to the Z notation. In this short intro-
duction, we go through the principles and central elements of the language, and
illustrate the basic usage of notation. This introduction is largely based on the Z
reference manual by Spivey [192].

The Z notation is a formal specification language. Formal specifications use
mathematical notation to describe in a precise way the properties an information
system must have without specifying exactly how these properties are achieved.
They, then, state what the system must do without expressing how it has to be
done. Expressing these properties has been subject to research, and formal ap-
proaches emerged from a mathematical theory: Z has its roots in formal set the-
ory and typed expressions. An early version of this language was given by Abrial
et al. [1] in 1980, where they note a need for exhaustive and unambiguous lan-
guage for communicating central ideas of a design without sacrificing the details.
We note that this principle of abstraction prevails in the usage of Z today; a formal
specification can be given without getting bogged down to details of implemen-
tation and without dragging through the heavy rigor of algebraic formalization.

As with every typed system, the concept of type is defined. In Z, there are
three kinds of basic types: set types, Cartesian product types, and schema types. These
types can be composed into more complex types by defining new types by giving
them members of the basic types or other composed types.

Sets and set types are the basic building block of the type system of Z. Any
set of objects of the same type t is itself an object in the set type P t. Two sets of
the same type P t are equal exactly if they have the same members. Sets can be
written, for example, by listing their elements, as in { 2, 4, 6, 8, 10 }. This list has
the type PZ, a set of integers.

Tuples and Cartesian product types can be illustrated with the following
example. If x, y, and z are three objects of types t, u, and v, respectively, then the
ordered triple (x, y, z) is an object of type t × u × v.

Binary relations and functions, some of the most important mathematical
objects in Z, are modeled by their graphs. The graph of a binary relation is the
set of ordered pairs for which it holds: for example the graph of a relation <

on integers contains the pairs (0, 1), (0, 2), (−5, 15), but not (5, 5) or (85, 6). The
notation X ↔ Y, meaning the set of binary relations between the sets X and Y, is
defined as a synonym for the set P(X × Y) of subsets of the set X × Y of ordered
pairs. A function is a special kind of relation: the set X → Y relates each member
of X, the domain, to exactly one member of Y, the range. The notation f (x) can be
used to express this unique element of Y. It is notable that relations and functions
have the same type P(X × Y).

A variable is simple arbitrary name. A signature is a collection of variables,
each with a type. Signatures are created with declarations and they provide means
for making mathematical statements, expressed by predicates. For example, the
declaration x, y : Z creates a signature of two variables x and y, both of type Z. In
this signature, a predicate x < y can be used to express the property that the value

265

of x is less than the value of y. Note that two different predicates may express the
same property. A schema is a signature together with a set of properties over the
signature. For instance, the given example can be written as a schema as

A
x : Z
y : Z

x < y

This schema defines the type A. The first part above the horizontal line of the
schema corresponds to the signature, and the second part to the properties of the
schema. Here x and y are the components of A. The properties of a schema express
facts that must remain true under every value, or binding, of the variables of that
schema. These properties are similar to assertions in some programming lan-
guages. Although they must be true at all times, it is essential to realize that they
cannot ensure correctness of the system: ensuring completeness and correctness
of the invariants is naturally left up to the writer of the specification.

Many mathematical constructions are independent of the elements from
which the construction starts: for example, sequences of numbers and characters
are both same kinds of objects. Z notation offers a generic construct for these sit-
uations. The constructions allow us to specify families of concepts independently
of their concrete realizations. A generic schema is defined as follows:

G[X]
S : FX

#S < 4

The given example defines a schema with a set of some yet undefined elements
with the restriction that there must be less than four of these elements in the set.
We may now provide a type for the generic schema to obtain a concrete schema,
for example, as follows:

H =̂ G[Z]

This definition results in the following schema:

H
S : FZ

#S < 4

A generic definition provides means for constructing generic operations,
such as the following example where the last operator is defined for generic non-
empty finite sequences.

266

[X]
last : seq1 X → X

∀ s : seq1 X • last s = s(#s)

New types can also be created by combining existing schemas by schema
calculus. Given a schema of type B as

B
x : Z

x > 5

we may create a new schema C, by horizontal schema definition, as follows:

C =̂ A ∧ B

This schema is the logical conjunction of the schemas A and B. It can be written
in a regular schema format as follows:

C
x : Z
y : Z

x < y ∧
x > 5

This resulting schema combines the two schemas by combining their signatures
and expressing the predicate as a conjunction of the predicates of both schemas.
Note that two schemas cannot be combined if they contain a signature with dif-
fering types of variables of the same name.

So far the only variables which have appeared in the predicate part have
been components of the schema. However, Z contains also global variables — vari-
ables declared outside1 any schema. These global variables can be constructed by
axiomatic definitions. In fact, symbols such as < are really just global variables
defined in the Z toolkit.

For illustration, consider an example where we wish to denote a number
range with two numbers and the symbol “. .” between them. This can be done by
axiomatic definition as follows:

. . : Z× Z → PZ

∀ a, b : Z •
a . . b = { k : Z | a ≤ k ≤ b }

In this schema, we define that the number range contains all the numbers be-
tween the two given points.

1 For a more thorough view on scoping on Z, we refer to the Z reference manual.

267

This definition can now be used in any schema requiring number ranges,
for example as in the following:

[X]
tail : seq1 X → seq X

∀ s : seq1 X •
tail s = (λ n : 1 . . #s − 1 • s(n + 1))

The generic schema defines an operation for obtaining all the elements of a se-
quence except the first. The operation selects the elements of that sequence by
iterating n from 1 (using the defined operator) up to the number of elements in
the sequence minus one, and returning the element at position n + 1 at each step.

Abbreviation definition may be used to define a new global constant, in
which the identifier on the left becomes a global constant; its value is given by
the expression on the right and its type is the same as the type of the expression.
For example, the definition

complex == (Z× Z)

introduces a type for complex numbers that is effectively a pair of integers.
Sequential systems introduce one additional use case for formal definitions.

Using the schemas describing sequential execution, we may introduce the notion
of state to the formalizations. This enables us to express operations against the
system specification.

A schema that expresses change in values of a given schema are introduced
using delta convention. An example of such a schema is given below. Recall that
the schema C defined two integers, x, and y.

IncreaseValues
ΔC
step? : Z
result!

x′ = x + step?
y′ = y + step?
result! = y′

The schema defines an operation on the schema C and denotes with the delta
(Δ) that it alters the values of the C. The inputs to this operation are decorated
with the symbol “?”, and its outputs with the symbol “!”. The predicates of the
schema define that both x and y of the C are increased by the input “step?”. The
values after the operation are decorated using the symbol “’”. Similarly to delta
convention, xi convention (Ξ) can be used to signal operation that does not alter
the values of the target schema.

Operations described by schemas can be combined using sequential com-
position and piping. The following operation is defined as increase in values

268

twice using composition.

IncreaseTwice =̂ IncreaseValues � IncreaseValues

The following operation uses the result of the first increase as an input to the
second using piping.

IncreaseWithResult =̂ IncreaseValues>>IncreaseValues[result?/step?]

Note that the name of the input in the second operation is changed to match the
output of the first operation using renaming.

APPENDIX 3 GENERIC STACK IN Z NOTATION

This appendix defines a data structure with stack semantics as the Z specification
[114] does not contain one.

A stack is a sequence of a given type of elements.

Stack[X]
elements : seq X

Adding to a stack is done through push operation, given by the following schema:

[X]
push : (Stack[X]× X) → Stack[X]

∀ s : Stack[X]; x : X •
push(s, x) = { s′ : Stack[X] |

s′.elements = s.elements ∪ {#s.elements + 1
→ x} •
(s, x)
→ s′ }

Removing from a stack is done through pop operation, given by the following
schema:

[X]
pop : Stack[X] → (Stack[X]× X)

∀ s : Stack[X] •
pop(s) = { s′ : Stack[X]; x : X |

x = last s.elements ∧
s.′elements = s.elements \ {#s.elements
→ last s.elements} •
s
→ (s′, x) }

Acquiring the topmost element from a stack without removing it is done through
peek operation, given by the following schema:

[X]
peek : Stack[X] → X

∀ s : Stack[X] • peek(s) = last s.elements

APPENDIX 4 DETAILED COMPUTATIONAL RESULTS

instance veh. dist. time (s) instance veh. dist. time (s)
lc1 4 1 40 7152.06 10.78 lr2 4 1 12 11923.18 219.02
lc1 4 2 40 7151.26 57.43 lr2 4 2 10 10297.37 321.20
lc1 4 3 38 7452.90 80.28 lr2 4 3 9 10166.35 596.97
lc1 4 4 33 7463.41 482.60 lr2 4 4 7 7704.60 590.45
lc1 4 5 41 7345.60 383.66 lr2 4 5 8 9588.95 535.14
lc1 4 6 41 7260.40 96.42 lr2 4 6 7 9592.63 486.29
lc1 4 7 40 7151.56 13.52 lr2 4 7 7 8440.87 590.57
lc1 4 8 40 7362.17 417.02 lr2 4 8 7 7291.66 591.84
lc1 4 9 39 8336.17 409.31 lr2 4 9 7 9753.11 519.23
lc1 4 10 40 7962.45 490.41 lr2 4 10 8 9278.40 581.14
lc2 4 1 14 4751.24 96.85 lrc1 4 1 40 9647.17 536.48
lc2 4 2 14 5557.73 82.73 lrc1 4 2 38 8766.44 65.84
lc2 4 3 14 6615.17 295.84 lrc1 4 3 32 8195.80 77.64
lc2 4 4 13 5313.72 397.84 lrc1 4 4 24 6477.63 144.14
lc2 4 5 14 5458.98 100.76 lrc1 4 5 38 9822.61 72.38
lc2 4 6 13 4525.08 498.74 lrc1 4 6 36 8718.08 308.29
lc2 4 7 13 4848.46 268.74 lrc1 4 7 35 8748.45 489.86
lc2 4 8 13 4714.27 559.92 lrc1 4 8 32 8406.59 282.27
lc2 4 9 14 4989.09 143.51 lrc1 4 9 32 8777.39 582.85
lc2 4 10 14 5325.62 109.63 lrc1 4 10 28 7656.10 182.80
lr1 4 1 46 12894.84 406.72 lrc2 4 1 17 9022.69 177.82
lr1 4 2 36 10233.53 329.36 lrc2 4 2 13 7634.34 384.48
lr1 4 3 29 8838.07 333.69 lrc2 4 3 12 7385.16 599.37
lr1 4 4 21 7051.70 187.25 lrc2 4 4 9 6567.90 591.01
lr1 4 5 33 10747.34 425.09 lrc2 4 5 13 7546.18 323.63
lr1 4 6 34 10058.57 187.70 lrc2 4 6 12 7473.18 302.94
lr1 4 7 27 8578.75 455.18 lrc2 4 7 12 7521.35 436.17
lr1 4 8 19 6788.92 523.98 lrc2 4 8 12 7406.35 356.02
lr1 4 9 29 10233.20 130.44 lrc2 4 9 11 6281.48 598.71
lr1 4 10 25 8555.04 364.15 lrc2 4 10 8 7390.19 575.91

� � � � � � � � � 	 �
 � �
 � � 	
 � 	 � � � � �

 � �

� ���������	
�����	�
������	����	����������	�
�
������
���	����������	���	���������
�������� 	!"#	� 	$%����&��
	�	� 	�'''

! ()*+,��	-+,.�,�	���������	��������
�	
�
������&�	/�//�0	��
�� 	��1	� 	$%����&��
	�	�
�'''

# (���.���	2�3����	4��&���	�������05
�
���/
����&�	���
�����
�	���%�
�
�0	���

���������
���	�%���� 	!66	� 	$%����&��

#	� 	!111

7 (��(,����	
)��,�	���
�����	���������
%0�����8�	����
��	�
�	�
������	�����������
'9	� 	:!;1	� <	$%����&��
	�	� 	!111

; �,�.��,�+,�	.����,�	�0��%�
��=���
�	���	/����
������	��
�������	��	>-+�	�0����� 		�
�0���
�
����	?�	�
���	����������@������0
>-+�	?@�?������@��@ 	��!	� 	$%����&��
	�	�
!111

6 3�,.,����	+,(��	+��%��������	�
�������	
�
�
������&���������&�	%���	�������� 	!1	�
:�19	� <	$%����&��
	�	� 	!111

" (��(,����	+,����	��
����	�����
�������
>
��������	�
������
��	���	���������
� 	!�#
� 	$%����&��
	�	� 	!111

9 �+�3,���(,�	��.���	���������	�
������	
�
��
������	�����������	��
�� 	�1'	� 	$%����&��

�	� 	!11�

' ��2���	��*+)��	,��
�����
�	���%�
�
�0
����
����	���%�
�
�0	��������	��
���� 	�
����������	����	����0	
�	%��%����%	�����������
#""	� 	$%����&��
	#	� 	!11�

�1 A�+,��	B3�-,�3�B	B �	.%�	��
����	
�	��������
������ 	.%�	����	
�	��������	�
/���	�����%
�0
�	����������	��%���@�����	��
����� 	.������
��������	�
����
&����

�	�������&����
�������%��������������� 	�1"	� 	:!19	� <
$%����&��
	�	� 	!11�

�� �C,BC�,�.��	.����	�	������/����	����
��%
�
	��&��
����	������
���	�
������
����������	��	�%�	
�����=���
� 	�'1	�
$%����&��
	�	� 	!11�

�! 2C((,����	��((,�	-������	������������
�	���
�&������
�	
�	������	����	����0���
��&��
����� 	!!'	� 	$%����&��
	�	� 	!11�

�# 2,�B�����	()33��B��	.
�����	/�����
����
0����	�����	������&�	�
���
�	
�	��/
��
�
���	
�	��	���������� 	��9	� 	$%����&��
	7	�
!11�

�7 +�
�B��	(,��,�	������=���
��/����	���%��D���
�
�	�����	����
����
� 	!"	� 	:�7!	� <
$%����&��
	�	� 	!11�

�; ����,����	(��,�	����	���������	�����������
/����	�
���
�	�0����	�
�	�%���
����%������
�������� 	97	� 	:�96	� <	$%����&��
	�	� 	!11�

�6 A����33�	+��(��	,���
&���	�
��
����	�����
��	�
������	��&��
����� 		�6'	� 		$%����&��

�	� 	!11!

�" B,�.�����	��)3,�	����
���==0	�8����	�0�����
��	���������	���	�
���
�	�����������
!7;	� 	$%����&��
	�	� 	!11!

�9 (�B�3�,����	+,((��	>
������	��������

�����=���
���	���
�0	�
�	��
����	�
���
�

+
&���	>�>4	�������%	��
�	��	����	�
	�
��
���� 	;"	� 	:�76	� <	$%����&��
	7	� 	!11!

�' 2C+C3C,����	.,+��	E�
��/���	����
��
D�����0	
�	���&���	���	������� 	�71	�
$%����&��
	�	� 	!11!

!1 +��.,(�,����	
�����	���������	�
�&���	�
�
��������=��	��������	&���
��&�����	��
/����
!;	� 	:�1'	� <	$%����&��
	�	� 	!11!

!� +)��)�	��
��	,��
�����
�	�0�����
��&��
�����	��	��&��
����	�
������� 	����
����������	���	��������/����0	����0���	��
��������	�
������	�
������� 	!'6	� 	$%�����
&��
	#	� 	!11!

!! ��3�*�$�B�	�3�F��-��	��	��
���0	�������
�
�������
�	�0����	/����	
�	�����������	����
���
�����
� 	�96	� 	$%����&��
	#	� 	!11!

!# 3���)�	����,�	>
�������
����0	�����������
���%
��	�
�	D��������&�	����	����0��� 	;"	�
:�91	� <	$%����&��
	�	� 	!11!

!7 �$�E�B�	B3�-,+,��		2�������	���������
����
���	������
�� 	";	� 	:�7;	� <	$%����&��

!	� 	!11!

!; .�$+E�3�	�3�F�$�		-0�����	���������
�	
�	����
������	���%
��	��	��
������	����
&��0
�0����� 	6'	� 	:�"1	� <	$%����&��
	!	� 	!11!

!6 �(,+�B�	B3�-,+,��		-
����	���
��
����
�
���%
��	�
�	�%�	��
/����	���%	/
�����0
��0��� 	#1	� 	:97	� < 	$%����&��
	�	� 	!11!

!" ��$)(�B���,B(,�-�	3)-+,3��	+��%��������	���
���������	����0���	
�	/
�����0	&����
��
/����	�
�	�����	��
� 	#1	� 	:�!6	� <	$%�����
&��
	�	� 	!11!

!9 2C+C3C,����	������	4>-+�	����
	����
��
����
������ 	!#;	� 	$%����&��
	!	� 	!11#

!' ��((�3��	��+)3,�	+�������	�����	��	��
��
�
�� 	���%�������	����&�����	�����	��
������/����	���	���������	>�>4	�0�����
!�1	� 	$%����&��
	!	� 	!11#

#1 +��(()3��	
�)�,�	G�
����%��	����
���	�����
���	���&��0	��
�����
�	���	��
������	��	�
�
����
��/����	���&���	��&��
����� 	�1'	�
$%����&��
	!	� 	!11#

#� 2��(����.��	�����	A�
�	������	�
	�
�����
����0��� 	�8���������	��
�	�
��	����

�����=���
�� 	'1	� 	:�;7	� <	$%����&��
	�	�
!11#

#! ��,.�+C(,�	
�)�,�	��	����
��%	�
	����������
�������	���
�����
�	�����	��==0	�0�����
�6'	� 	$%����&��
	�	� 	!11#

## ���3��.,�	��+,�	������	����
���	�
�	%����	����
����	������	����0��� 	�'!	� 	$%����&��
	;	�
!11#

#7 �,�+�3C�	+��(�..��	B�����	�����%	��
����%����	����������5	�	����	��0�%
�
�����
����
��% 	6�	� 	:�79	� <	$%����&��
	�	� 	!11#

#; $�)�	$)�	�������
�	���������	
�	�%�	�
���
����	��/ 	�"�	� 	$%����&��
	!	� 	!117

#6 .��.,3��	B����	.%�	�
�����	
�	
�����=���
���
�
��������	H	�	�
������
���	����0���
�	�����������00��	
����������
�
�
����������	�@��������@ 	���	� 	$%����&��
	!
� 	!117

� � � � � � � � � 	 �
 � �
 � � 	
 � 	 � � � � �

 � �

#" 3$$.,(C,����	B,��,�	>
���8����	���	����������
��������	��	����������	�
������
���������� �	(
��������		?�	���������������

����������
�	�
����������	%����������
"#	� 	:�7#	� <	$%����&��
	�	� 	!117

#9 (���,��	(,++��	���
����	���
����
�	���	�
��
/��������	���%������	�
�	��
&�����	D�����0

�	���&���		��	�%�	,������� 	�"�	� 	$%����&��

�	� 	!117

#' *2��G�	*2�$,�G�	+
���	�
��
����	�����
>
��������	�
������
��	���	���������
�	��
�%�	�����
�������/����	�0�����	����0���
���	������	��&��
����� 	"6	� 	:!�7	� <	$%�
����&��
	�	� 	!117

71 2����3��	+��
��	3����������	�
���

�%

�����=���
�	&����/��	������	/�����	���%
�
���%	�������	���
�0 	�1"	� 	$%����&��
	�	�
!117

7� (�3B,���	B,(.���	����������	���	�
���	�������
�
�	��������	�0�����	��	�
�����	���%
�0���������	���� 	9!	� 	!117

7! -�+��.,�B��	+��,��	��������=���
�	��
����������	�

������&�	����� 	"9	� 	!117

7# +��������	2�,((,�	��	%��������	%0/���
���%
��	���	����������	�
���	����	��	��
/��
�
�����
��	
�����=���
� 	7!	� 	:�69	� <
$%����&��
	�	� 	!117

77 A��3�B�	+�F,+�	�����/��	�
���
�	
&��
����
8�����
�	���
��	/0	������
���	�0��	�
�
�����
��	��������� 	#'	� 	:��!	� <	!117

7; *2��G�	
,���	I
��	���	��&����������	���
����
���
����
�	���%������	��	����������	,�
����
��� 	9;	� 	:!!7	� <	!117

76 ()
�3��	
�����	��	�
�������
�	��	�����������
�
����	���%	�	��0�%
�%0�����	���������
� 	71
� 	:�17	� <	!117 �

7" ��3E�(�B�	B,�.>2��3�B�	���������
�	
�
���%��������	�
������	�
�	�����
��&��
�����	��
/���� 	66	� 	:��9	� <	!117

79 2,�B�����	��,	� �	����������	���%��������
��������	��	�������� 	.%�	���������&��	
�
���
�����
�	���	�
���������
�	���%�
�
�0
���&���	��
&����	���	�������� 	77	� 	:�#;	� <
$%����&��
	!	� 	!11;

7' B��.,�,����	.����	+
���	�
�������	��	�	��
?���
�
����	��	���
�����
�	�0�����	�������
�
#!1	� 	$%����&��
	�� 	!11;

;1 2)�.��,�	
�)�,�		,����������	����%����
���
�����
�	�0����	�
����	���%	&������=���
�
���%��D��� 	�	G���������	����
?@�?������@���
&������	������
����	&�������
�����������
����
;6	� 	:�;"	� <	$%����&��
	�� 	!11;

;� 4�33��,)��	����	� �	>
���
�	���	����������

�	������������	��������	����
��� 	'�	�
:�'!	� <	$%����&��
	#	� 	!11;

;! 3���C����	+�)�,�	��	
��
�
�����	������
��
���	�	���%
�����	������
�	�
�	���%
�
�����������	H	�	�
���8����	����
��% 	"1!	�
$%����&��
	!	� 	!11;

;# +�.$)(�B,>2�	���G�$�	.%�	�
������
���0
+�8����	�0����	��	�
�����	���%	�����	���
�
�����	�
���� 	�#�	� 	$%����&��
	�	� 	!11;

;7 ��$��(��	�3�F��-���	������&�	��%�������	�
�
�%�	I
�	����
����	����
��� 	�!1	� 	:!�"	� <
!11;

;; ()�
���,�+,�	
�����	�	����0	
�	.-�>-+�	���
4>-+�	����
	����
��	��%��������� 	�77	�
:!#1	� <	$%����&��
	�	� 	!11;

;6 ��>2��,*(,$�	+$(�3��	A������	�8������
�	�
�
�����&����	��������	��	��
������	����
&��0
�0����� 	96	� 	:�"7	� <	$%����&��
	!	� 	!11;

;" ,(�����	��+)3,�	���������	���������	���%
��
�
�	�������	��������	
���
�� 	7#	� 	:�;;	� <
$%����&��
	�	� 	!11;

;9 (C�((C,����	(��,�	�%���	�������&��0	����0���
�
�	���������	�
����
�	
�	����	/
�����0
��
/���� 	9#	� 	:��'	� <	$%����&��
	�	� 	!11;

;' 2�3A���.�,��	��>2��	.������� 	��&����
���
��������
��	���	���
����
� 	��7	� 	:!16	� <
$%����&��
	!	� 	!11;

61 ��B�3��	(�3�B,�	>
������/����	������
�����������	�%������ 	,�	�%�	�����%	�
�
����
��% 	67	� 	:�!6	� <	$%����&��
	�	� 	!11;

6� (�.�����B�	��.�+�	-������/����0	�������	��
�%�	��&��
�����	���	��
&���
�	
�	�
����
��
/����	���&���� 	�;"	� 	$%����&��
	�	� 	!116

6! ���((,����	
��+��	-�����	��	����
����5
������������
��	������������
���	���������	���
�
����	�������� 	96	� 	:�9'	� <	$%����&��
	�	�
!116

6# C$�C+J�	��+,�	(�
������	������	�����
�
/���	���������� 	!'6	� 	$%����&��
	�	� 	!116

67 ,A,��-��	��,�>�3$	�+,3,�	����������	���
����
��������	�0�����	�������	����������5	��
���������&�	������
�� 	�##	� 	:#66	� <	$%�����
&��
	#	� 	!116

6; B,,�,(�,����	��,�	I�����0	
�	���&���	���
���������	������	��������	���&���	�����
����
��� 		6�	� 	:�'6	� <	$%����&��
	�	� 	!116

66 4)�	�),�	+��%
��	�
�	����������	���������
��������
�	��	-��>-+�	����0� 	"#	� 	:�!�	� <
!116

6" ���((�3��	2�����	-��������	,>.	�
�	�
�%���
)���	��0�%
�
�����	����
��% 	H	.���
�	?�
&�������@�������
����	�����������	@�������
(@0��@?@��0�
�
�����	�@�K����� 	""	�
:�"#	� <	$%����&��
	#	� 	!116

69 2�(�����	
)��,�	��	�
�������	
�	���������&�
�����
/?����&�	
�����=���
�	��	�%������
��
����	������ 	";	� 	:�61	� <	$%����&��
	!	�
!116

6' �)..�����	
��,�	+
/����0	����������	��
��������	����
��� 	��!	� 	:!�;	� <
$%����&��
	�	� 	!116

"1 3)��.��,����	(��,�	���
����	�	����������
���%
��	�
�	I
�	����
����	����
��� 	61	�
:�#�	� <	!116

"� .)�>2$��	��B3��	������&�	���%��	��	�
������
����%���	���	�
����/����	��������
� 	!"	�
:"'	� <	$%����&��
	�	�

"! *2�B.�E�$)(2�	-+$.���	>
���8�������	��/
���&���	�
��
����
� 	!'1	� 	$%����&��
	!	�
!116

� � � � � � � � � 	 �
 � �
 � � 	
 � 	 � � � � �

 � �

"# (�2B�((��	��.�3,$��	>
���8�	�
������	���
�����=���
�	��	%����
����
��	����
���
�;7	� 	$%����&��
	�	� 	!116

"7 +�*2�3,��	�3�(�,$�	+��D�������	�������
�	��
�
/���	�
���8�	/����	
�	/�%�&�
��	���
��&��
�����	�
���
���� 	"7	� 	:�"'	�< 	$%�
����&��
	�	� 	!11"

"; �,3.�����	
��+��	I�����0	
�	���&���	���
�0�����	��%�������	�
�	�������	�����������	��
��8�	��������
�	����
��� 	99	� 	:�;;	� <	!11"

"6 ())B��	���,�	>
������/����	����
��%	�

�8����������	&�����	��� 	�	���@��K�����������
�@%���0�������	&����������	�������	�
�����
���� 	!1#	� 	$%����&��
	#	� 	!11"

"" �)�2�����	.��,�	,���
&���	�%�	
������
�	
�	��
��������0	����������	/0	�����	�	��������
�
�
��� 	�67	� 	!11"

"9 ��)+��(��	��.���	����������/����	������
�
���
�	��	/�������	����
��� 	"!	� 	:!�;	� <
$%����&��
	�	� 	!11"

"' 4�23�.�-.�	��,�	�����%
�����L	�
������
��	
�
��������	��	��������	����������	�0�����
��&��
����� 	�	���������?���	�@���0����

����������	
������0��@����K?��	��%���@���
����@ 	9#	� 	:�#1	� <	$%����&��
	�	� 	!11"

91 �3�����	�33,�	I�����0	
�		���&���	�
�	������	���0
���&����	��	%����
����
��	����
��� 		99	�
:�91	� <	$%����&��
	�	� 	!11"

9� ���,�	A�����.��	A������	��&�����0	��������
�	��
�������	���
���%�� 		91	� 	:�9;	� <	$%����&��

�	� 	!11"

9! ()�2,����	
��,�	,��
�����
�	����&��0	��	�
/���
������
�����	����
��� 	76	� 	:�16	� <	$%����&��
�
	�	� 	!11"

9# (,3��3C,����	.)���	G����	���	
��
�
�0	/����
/�������	���
�����
�	���%��������	������
��
:G�E,�A< 	"7	� 	:�;#	� <	$%����&��
	�	� 	!11"

97 $�B��$�B��	,�$���	�
�&���	������������
�
��
/����	���%	�������������	������
�	������
����
��%�� 	�9!	� 	$%����&��
	�	� 	!11"

9; (���,�.��	,�.��	������=��	��������	I
�	���
����������
�	
�	�������	,>.	���&���� 	7;	�
:���	� <	$%����&��
	�	� 	!11"

96 G���2(�B��	�3����	�	�
�����
��	���
�	���������
���	������&�	���%
��	�
�	���
�������/��
&���
��	��
�	��
/���� 	"!	� 	:�!'	� <	$%�����
&��
	�	� 	!11"

9" 3�G���-�	�.�B��)��	
�	/�����
���	������
���
��
������	��	
��
�
����	�
�	�
��	�����
�����/������
�	��	�%�	��������	��/ 	"#	�
:�77	� <	$%����&��
	�	� 	!119

99 2C+C3C,����	�,,���	�&������
�	���
�����������	��	����������	���	�
������
���%��������	���������� 	�	��&�
����	?�
�����������	�
�
�����	?�	
%?������
������
��%�������	%���������� 	'�	� 	:�";	� <	$%�����
&��
	�	� 	!119

9' �
�3��	��.��	,��������
����=���
�	
�	�
������
�����5	A�����%	�����	���	���������=��
�
������	�����	��	
���� 	;"	� 	:�91	� <	$%�����
&��
	!	� 	!119

'1 3�,.,3��	��((,�	�0�/
���	����0���	���
��
������	+
���	��	�	E����	�
�	�	��
����
>
����%����
�	+��%
�
�
�0 	#!�	�
$%����&��
	#	� 	!119

'� �,2.,3C�	.,+��	����
������	
�	��&�����
.���������
�	���	�������
�	���
���%��	�
�
2��%	�����	-
������	������	������ 	'#	�
:�96	� <	$%����&��
	�	� 	!119

'! ��.C+���(C�((C,����	�����	����
��
�
������
�	�������
���
�&���	�	���
�����
/?����&�	
�����=���
�	��
/��� 	;!	�
:���� <	$%����&��
	�	� 	!119

'# �)3((,����	+,�
��	����������	���%��������	��
�	�
���/
����
�	�

� 	-�������&�	��
����	�
�
����������	���%��������	�����������
��������	���	��&��
����� 	�#1	� 	:!�;	� <
$%����&��
	!	� 	!119

'7 ��B3�B��	$)3,��	+���������	�
�����
�
�
�����
�	����	
�	�	��������
�����
���������
���	��&��
�������	���������
�!"	� 	$%����&��
	�	� 	!119

'; ��)�,�,����	.))3��	>%������L�	��&
�&�����	��
�%�	������	
�	�����/����	��������
��&��
������ 		!'"	� 	$%����&��
	!	� 	!119

'6 ()*��.��B�	�,(�3�$	B �	���/����0	���

��������
��	
�	�0�������	�0����� 	.%�
�0
���	���������
�� 	��6	� 	$%����&��
	�	� 	!119

'" (2�,$��(��	�3�(�,$�	������&�	��������	4�/
/����	��&��
�����	�
�	��/	���
����� 	�'#	�
$%����&��
	�	� 	!119

'9 .,�������	B,33��	G�
/��	
�����=���
�	�����
�������	������������	�&
����
�	���%
���������
��	�
	�
�	��&��	���%���	&���
�
'9	� 	:!79	� <	$%����&��
	�	� 	!119

'' B�3(�����	.)�+��	-�����
�&�8	�
�/�����
��

�	���������	���������5	�	�����%	�
�	
�����
�79	� 	$%����&��
	�	� 	!119

�11 ����A���B�	�3�G�	��0���
���	�%�
�0	
�
���
����	���������	��	D������	��&�������

�	&����/��	��
��������
� 	6'	� 	$%����&��
	�	�
!119

�1� ��*2���(,$�	�3�F�$�	��	�%�	������
�	���
�%
�
�	������
��	��	�
����0	����
�����
��&������� 	9�	� 	$%����&��
	�	� 	!119

�1! �,..�(��(,�	.,+��	��	�%��������	
�	��������
��
/����	��
/�����	�����
/?����&�	
�����=���
�
91	� 	:!17	� <	$%����&��
	�	� 	!11'

�1# $�3�2��	��,>�.�	+�������	
���%
��

���
������	
�	�
������	��&��
�����	�����
�%�	,>.�����
����	�������	��
����	�
���5	�
��
�������	����0��� 	'�	� 	:#1"	� <
$%����&��
	7	� 	!11'

�17 (�33��)��	��+,�	.���������@0�@�������
��%���@�����	
%?������
?�	��
���&����	
������
�����
���� 	�	,���
&�����	
�	��������
�
���������	��	�
������	
�����=���
�� 	�"'	�
������0	7	� 	!11'

�1; 3�,(���	
�����	3����E����	-����� 	MA
��	
�	����L
��	�	�
������
�	�
�	,>.	������	�
�	
����
������ 	�	��@�@�@%�K����	����������� 	��@�
�@���
�
	��@@��0&����	����
������?��	,>.
��
�������	?�	���&���?��	������������	�@%�K�
�
%���� 	!�9	� 	:#�9	� <	$%����&��
	7	� 	!11'

� � � � � � � � � 	 �
 � �
 � � 	
 � 	 � � � � �

 � �

�16 B��,3$�B��	�(�.��,���	.���
����	
�	����/���	��
��/�/����	��������	�0�����5	>���������/����
����������	���%	
�����	��������	�%
���
D�����
�� 		�!7	� 	:�97	� <	$%����&��
	!	�
!11'

�1" ()-�$��2�B��	�3���B �	>0����	��	�
�����
��
���	��������	�0�������	�0�����
>
�������
���	�
������	��������	��

���	���
�
������	�8��������� 	"'	� 	:�;!	� <	$%�����
&��
	�	� 	!11'

�19 E3�>(3�-G��	
���.2���		������
��������
����������	���	��&����	����������	�
����
��	�
�
�%�	����0���	���	��
�������	
�	�������	�������
���	������ 	!'"	� 	$%����&��
	�	� 	!11'

�1' ,B���,(�B�	��-�,$�		�8������
�	
�	�&�����������
�
��������	��
�	������
�����%��
����%0	����
�	2��@���
�����������	��������������	�����@���
���	��G�%�&����
�������
��� 	�19	� 	:�;1	� <
$%����&��
	�	� 	!11'

��1 (�3$�(,��	,G���		�8������
�	
�	�������%
������&��0	��
�	������
�����%��
����%0	����
�	�
�����&����������&�������	��
��������
��G������������ 	7"	� 	:�;6	� <	$%����&��
	�	�
!1�1

��� 2�,((,3C�	+��,((��		>

�������
�	
�	�
����8

������
��	
&��	
���������
���	/
��������
!6;	� 	$%����&��
	#	� 	!1�1

��! A�(�.��	GNE���		����
��	���������
����������	��	�
/���	���	�����%
���
�
��� 		'7	� 	:�";	� <	$%����&��
	�	� 	!1�1

��# ()
�3��	.)�+��		>������0�	�
���
��	���
������	�
������	�	�8��
����	�%�	�
������
��

�	���&��	���������
� 	�76	� 	:!;#	� <	$%����&��
�
	!	� 	!1�1

��7 3)G����	G,)������		-������	�
������0	������	�
�8��
����	�%�	�
��	
�	�
/���	�
����	�
������	��
�%�	��
����	
�	�������	�
�&������� 	!;#	�
:#�6	� <	$%����&��
	7	� 	!1�1

��; (�+�$3,��	����G,�.,��		A
�������	������&�
�%������ 	.%�	�
��	
�	������0	����%��� 	�
3�
&��	�?�������	��%���@�@��@ 	����
����

�����?���	�

�� 	�#6	� 	:!69	� <	$%����&��
	!	�
!1�1

��6 .�,B�����	
)((��		�%���	
�����=���
�	�����=���
�
��������	�������&����� 	�	+�
�
�	
����
����
�@0��@��	�
����������?�	%����00���@ 	;;	�
:�#1� <	$%����&��
	�	� 	!1�1

��" +�..,3��	(�,
��	,�����������
�	���%��D���	�
�
�%�	�������	E
��=����	���%
� 	�
B�������0��������	����
�
�����������
���
2����E
��=����	���������@��@5
���������
����	?�	������%�
� 	�""	� 	:!##	� <
$%����&��
	�	� 	!1�1

��9 >��G�	A��G$)�	�&������
�	���	�8������
�	
�
�������%	������&��0	�%�
��%	�8��
�����
����
����	���������	��������D����0�	���
�������	�������� 	�	�
�����&����������&�����
���	:++�<	��
��������	��&
�@%�K���%
��
��������	�@0��@��	�?��������	��������������	�����
���?���	�	?�	������������@ 	;"	� 	:�"#	� <	$%�����
&��
	�	� 	!1�1

��' 3,)�	�2��G2)��	,����������	���%	�����������
������ 		(�0	������	��	������/����	������
�
����
��	�0����	������ 	'1	� 	:�7#	� <	$%�����
&��
	!	� 	!1�1

�!1 �,��(�,����	.)�+���	���������	���%
��	�
�
��
������	���	�
���	�
���
� 	�	3�������������
���������@	����������	
��������	?�
�����&������������ 	;9	� 	:�##	� <	$%�����
&��
	!	� 	!1�1

�!� 4�E���	+�..2,�)�	��������	��
/��	
�����=���
�
�����������	�
������
��	��	������������
�&
����
� 	�	������������	��
/����
����
����
�
�������
�	���������	�@@����@�����
���������������&
�����
��� 	"1	� 	:�9;	� <
$%����&��
	!	� 	!1�1

�!! BCC�C+C(,�	.��,��	��8�	��������
�	����
����
�
/����0	����������	���	����������	��
�����������	������
��	�0����� 	�	������&��
�����
�&��	����
&���
��	������&�����	%�������
?�	�
&����������	@�0��@@��@	�����������@ 	;1	�
:���	� <	$%����&��
	�	� 	!1�1

�!# B,)(��,�	3�����	.���
�	?�	&�������@����������
&@���������	���&����	��%���@�����	�
���
���������� 	�	.%���	����
�����	�
�	��	,>.�
���&���	��&��
�����	 	#17	� 	������0	;	�
!1�1

�!7 �))�.,����	.)�+���	���������	��������
�	
�
�
�	�����������	�%�����	�
���������	
�
�
��������	���
��/��� 	�	�
��������?��
���
�����?��	�@��K�?
%��&�����	��������
���	�����
����	���������	�@��K���
����	
��7	� 	$%����&��
	�	� 	!1�1

�!; 2,3.)����	3�����	��%������	��/	�
����
������	�����	����
�	�������%	 	�	B����
�

��������	������������	��%���@�����
�
�����������������	����
��	
�'!	� 	$%����&��
	!	� 	!1�1

�!6 �2��	(��,�	��%������	�0����	��&��
����
������	
�	�%���	��������
�	��������
����
���	�%�
��%	B
,�	���	+E+�	���&����
�!�	� 	:!!�	� < 	$%����&��
	!	� 	!1�1

�!" 2C((,����	+��(()�	4%0	������	���� 	�
�
�����&�	�8������
�0	�
���
�1!	� 	:!�1	� < 	$%����&��
	�	� 	!1�1

�!9 ���������	����,�	�	����%�/����	���������
���%	���������
�� 	�	G������
%?�����
�
��%�����������@	�
&�����������
;!	� 	:�!9	� < 	$%����&��
	!	� 	!1�1

�!' �23G����	�,,((��	�
������	���������

�����=���
���	��������	���	�
������	��
����
����
&����� 	"1	� 	:�#"	� < 	$%����&��
	�	�
!1��

�#1 �,(,.,��	���G,$�	-0�����	�������	
�	����������
����������	���%���������	;!	� 	:��7	� <
$%����&��
	�	� 	!1��

�#� �,�-2$��	(��.2,(�	20/���	�&
����
���0	+�����
�/?����&�	������=���
�	���%	��%�����
>
�&�������	���	-�&�����0 	67	� 	:�61	� <
$%����&��
	�	� 	!1��

� � � � � � � � � 	 �
 � �
 � � 	
 � 	 � � � � �

 � �

��� ����	
����	
��
�����
��
������
�
����
��
����������
���������
��
�
����
�
�
�

��
�
� ��
���
�
������
��
��
����
����
!
���
�!
" ����#���
�
�!
�$��!

��� �%&'%�(
)�&&�	
&������
�
)����
����
��
*����+)��������
�����
�����
,������
��������

��
-�
����
.
#��!
��/
�!
" ����#���
�
�!
�$��!

��0 123�&-&	
422''�	
���
 ���������
����
���
������!
�
��������
�
���
��

��

1������
����
��� ��������
���
3����
������5
����
)������!
�6$
�!
" ����#���
�
�!
�$��!

	ABSTRACT
	PREFACE
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF ALGORITHMS
	LIST OF SYMBOLS
	LIST OF ACRONYMS
	CONTENTS
	1 INTRODUCTION
	1.1 Background and Research Environment
	1.2 Objectives and Scope
	1.3 Research Approach
	1.4 Contribution and Dissertation Structure

	2 VEHICLE ROUTING PROBLEMS
	2.1 Formulating Optimization Problems
	2.2 Vehicle Routing Problem Variants
	2.3 Vehicle Routing Problem Extensions
	2.4 Modeling Optimization Problems
	2.5 Summary of Routing Problem Models

	3 VEHICLE ROUTING SOLUTION METHODOLOGY
	3.1 Problem Complexity and Method Evaluation
	3.2 Exact Methods
	3.3 Heuristic Methods
	3.4 Metaheuristic Methods
	3.5 Unifying Elements in Solving Routing Problems

	4 IMPLEMENTABILITY IN ROUTING SYSTEMS
	4.1 Synthesis on Vehicle Routing Research
	4.2 Routing Systems from Software Quality Viewpoint
	4.3 Software Reuse
	4.4 Large-scale Software Reuse Techniques
	4.5 Summary of Implementability Aspects of Routing Systems

	5 MODELING FRAMEWORK
	5.1 Overview
	5.2 Domain Model
	5.3 Routing Metamodel
	5.4 Model Transformation
	5.5 Summary of Approach

	6 OPTIMIZATION IN THE FRAMEWORK
	6.1 Optimization Process
	6.2 Preliminary Results
	6.3 Implications of Model Characteristics

	7 PRODUCT LINE OF ROUTING SYSTEMS
	7.1 System Design
	7.2 Model Variation
	7.3 Quality Attributes

	8 CONCLUSION AND DISCUSSION
	8.1 Conclusions
	8.2 Applicability of Proposed Approach
	8.3 Implications of Unifying Modeling Framework
	8.4 Further Research

	YHTEENVETO (FINNISH SUMMARY)
	REFERENCES
	APPENDI

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

