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  Abstract	
  
	
  
Automatic	
  musical	
  genre	
  classification	
  is	
  an	
  important	
  information	
  retrieval	
  task	
  since	
  it	
  can	
  be	
  applied	
  for	
  
practical	
  purposes	
  such	
  as	
  the	
  organization	
  of	
  data	
  collections	
  in	
  the	
  digital	
  music	
  industry.	
  However,	
  this	
  
task	
  remains	
  an	
  open	
  question	
  because	
  the	
  current	
  state	
  of	
  the	
  art	
  shows	
  far	
  from	
  satisfactory	
  outcomes	
  in	
  
terms	
  of	
  classification	
  performance.	
  Moreover,	
  the	
  most	
  common	
  algorithms	
  that	
  are	
  used	
  for	
  this	
  task	
  are	
  
not	
  designed	
  for	
  modelling	
  music	
  perception.	
  This	
  study	
  suggests	
  a	
  framework	
  for	
  testing	
  different	
  musical	
  
features	
  for	
  use	
  in	
  music	
  genre	
  classification	
  and	
  evaluates	
  the	
  performance	
  of	
  this	
  task	
  based	
  on	
  two	
  
musical	
  descriptors.	
  
	
  
The	
  focus	
  of	
  this	
  study	
  is	
  on	
  automatic	
  classification	
  of	
  music	
  into	
  genres	
  based	
  on	
  audio	
  content.	
  The	
  
performance	
  of	
  two	
  sets	
  of	
  timbral	
  descriptors,	
  namely	
  the	
  sub-­‐band	
  fluxes	
  and	
  the	
  mel-­‐frequency	
  cepstral	
  
coefficients,	
  is	
  compared.	
  The	
  choice	
  of	
  these	
  particular	
  descriptors	
  is	
  based	
  on	
  their	
  ease	
  or	
  difficulty	
  of	
  
interpretation	
  from	
  a	
  perceptual	
  point	
  of	
  view.	
  Classification	
  performance	
  is	
  determined	
  by	
  using	
  a	
  variety	
  
of	
  music	
  datasets,	
  learning	
  algorithms,	
  feature	
  selection	
  approaches	
  and	
  combinatorial	
  feature	
  subsets	
  
yielded	
  from	
  these	
  descriptors.	
  The	
  results	
  were	
  estimated	
  upon	
  overall	
  classification	
  accuracies,	
  
generalization	
  capability,	
  and	
  relevance	
  of	
  these	
  musical	
  descriptors	
  based	
  on	
  feature	
  ranking.	
  
	
  
According	
  to	
  the	
  results,	
  the	
  sub-­‐band	
  fluxes,	
  perceptually	
  motivated	
  descriptors	
  of	
  polyphonic	
  timbre,	
  
performed	
  better	
  than	
  the	
  widely	
  used	
  mel-­‐frequency	
  cepstral	
  coefficients.	
  The	
  former	
  timbral	
  descriptors	
  
showed	
  better	
  classification	
  accuracies	
  and	
  lower	
  tendency	
  to	
  overfit	
  than	
  the	
  latter.	
  	
  
	
  
In	
  a	
  nutshell,	
  this	
  study	
  gives	
  support	
  to	
  using	
  perceptually	
  interpretable	
  timbre	
  desciptors	
  for	
  musical	
  
genre	
  classification	
  tasks	
  and	
  suggests	
  the	
  utilization	
  of	
  the	
  sub-­‐band	
  flux	
  set	
  for	
  further	
  content-­‐based	
  tasks	
  
in	
  the	
  field	
  of	
  music	
  information	
  retrieval.	
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bayes näıve bayes

svm support vector machines

knn k-nearest neighbors

vi



Abbreviations vii

Feature Selection Approaches

gainr gain ratio

wra.fs wrapper - forward selection

wra.be wrapper - backwards elimination



Dedicated to my beloved parents Tomás and Alicia, who have
always been with me. To my dear siblings Alejandro and Irene, and

to their delightful children: Ciro, Ema, Lena, and Violeta. . .

viii



Chapter 1

Introduction

In recent years, there has been a continuous increase of music available on the internet

and a notable expansion of the digital music market. According to the International

Federation of the Phonographic Industry (IFPI)1, the number of tracks rose from 1

million in 2004 to 13 million in 2010. The revenue of the music industry from digital

channels, including download stores, streaming services, internet radios, subscription

models, online video channels and free-to-user sites, has grown in only 6 years from 2 %

(US$ 420 million) to 29 % (US$ 4.6 billion). Moreover, in nine years, 297 million iPod

units have been sold.

Due to the magnitude of the information that needs to be organized and offered for

easy access, new computational tools were needed to satisfy the queries of the users

and enrich their experience in a clear competition with illegal distributions. A popular

example is the mobile-specific application Shazam 2, which has offered music retrieval

tasks to over 125 million users according to the company.

The problem of automatic genre classification refers to the detection of one or many

musical genres or styles that underly examples of music. This computational tool has

gained interest in music research as well as in the worldwide digital music and media

industry. In practice, automatic genre classification is advantageous wherever large

collections of music need to be organized: libraries, internet, radio, databases, and so

forth.
1http://www.ifpi.org/content/library/DMR2011.pdf
2http://www.shazam.com

1

http://www.ifpi.org/content/library/DMR2011.pdf
http://www.shazam.com
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In spite of the improvements during the last decade, automatic genre classification re-

mains an open question. One of the reasons is that musical genres are typically defined

by qualities that may not be evident in the audio signal but that require cultural knowl-

edge. For example, an intuitive description of a musical genre could contain background

information on the ethnic group where the music comes from, the location and period

of time in which a music style was produced, the age of the listeners that are generally

appealed by the music, the emotional aspects of the musical or lyrical content, other

genres that hold relationship to it, and so on. In addition to this and from a musicolog-

ical perspective, the common characteristics employed to group music into styles hold a

relatively high level of abstraction, such as rhythm, tonality, and musical form qualities.

Another feature that stands out in genre descriptions is the instrumentation, orchestra-

tion, or musical timbre. Timbral features have been considered critical factors in the

majority of the genre classification models so far suggested, thus indicating the role of

timbre similarity as a strategy for class membership decisions. The spectral components

of the audio signal have been widely investigated in the signal processing field and also

within music perception and Music Information Retrieval (MIR). In automatic music

genre classification, timbre-based approaches showed markedly better results when com-

pared to rhythm- or harmony-based approaches. Arguably, timbral qualities of sound

sources are crucial in prompting very fast sound recognition processes in humans –for

example, familiar voices can be rapidly identified on the phone thanks to their particu-

lar timbres, among other sonic features. Further, the use of spectral features in music

classification is motivated by the fact that humans are able to quickly identify known

musical genres (Gjerdingen & Perrott, 2008), suggesting that low-level descriptions are

important in this process.

However, there is no established method for modeling timbre, either over monophonic

–understood as the way a single instrument sounds– or polyphonic signals. Furthermore,

there is no general agreement on what timbre does exactly mean and the most common

psychoacoustic definitions of timbre are inappropriate, since they generally focus on what

timbre is not rather than in what it actually is. For example, the American Standards

Association (1960) defines timbre as “that attribute of sensation in terms of which a

listener can judge that two sounds having the same loudness and pitch are dissimilar”

(as cited in Toiviainen et al., 1998) and also notices its dependence on the spectrum.

Timbre is thus defined as any perceptual description besides pitch and loudness, or as

the perceptual representation of the spectrum. Neither the former definition –because

it is a negative one– nor the latter positive definition –since the signal spectrum is a

mathematical abstraction that also relates to loudness and pitch– are suitable to describe

what timbre is.
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Music perception aims to bridge the gap between lower and higher music processes,

e.g., between timbre descriptions and knowledge of genres. The target is to find com-

mon characteristics between music examples based on the role of auditory perception

and music cognition rather than on mathematical abstractions or purely acoustical re-

lationships (Fuhrmann & Herrera, 2010). Since musical genres or styles are high-level

representations of an inescapably social, emotional and embodied nature, the cognitive

and perceptual aspects of music form an integral part in MIR research.

The development of perceptually motivated algorithms for the description of timbre

qualities still imposes a challenge, particularly for polyphonic audio. It can be argued

that the pace of the progress in many MIR tasks is partly set by the development in

music perception. A recurrent problem for content-based approaches in automatic genre

classification is that high level cognitive processing does not take any role in most of the

models (Reed & Lee, 2006). This is probably one of the motives for MIR research to

hardly be able to surpass a pinnacle or glass ceiling of performance. This problem was

firstly observed by Aucouturier and Pachet (2004) for timbre similarity models that were

solely based on the extraction of low-level features from the audio signal. It is clear that

the glass ceiling in many MIR-related tasks is at least partly caused by a gap between

the audio signals and its semantic labels such as styles or moods. Recent efforts to bear

this problem by extracting symbolic representations and cultural features (McKay &

Fujinaga, 2008; Silla, Koerich, & Kaestner, 2010) show that genre classification can still

make much of its improvement through music perception and cognition.

The goal of the present study was to investigate the performance of two timbre-based

descriptors for automatic music genre classification using a variety of approaches. We

have compared a widely used set of descriptors, namely the Mel-Frequency Cepstral

Coefficients (MFCC, Mermelstein, 1976), to the more recent sub-band flux set of features

(Alluri & Toiviainen, 2010b). The former are of interest because these are prevalent

multipurpose descriptors in MIR and speech recognition, while the latter were chosen due

to their relevance from a perceptual viewpoint. To achieve our aim, we have compared

the classification performance of these descriptors and also investigated their relative

relevance trough a detailed analysis of optimal attributes for classification.

Structure of the thesis

The remainder of this study is organized as follows: the next Chapter focuses on the

state of the art in Music Genre Classification, including the most relevant descriptors

and the function of music perception in this task; Chapter 3 presents the research design

implemented in this study, as well as its data collection and posterior analysis of music
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descriptors and classification models; Chapter 4 presents the accuracies of the obtained

models, focusing on the music collections used and on the chosen subsets of timbral

descriptors; the results of the study are discussed in Chapter 5; finally, three Appendices

have been added to this study. Appendix A presents comprehensive plots containing the

accuracies of all the models that have been computed in the study, comprising a variety of

music databases, learning algorithms, feature selection approaches and feature subsets;

Appendices B and C include the most pertinent code that has been utilized in this study,

namely the extraction routine with MIRtoolbox in Matlab and the Borda Count method

for rank aggregation.



Chapter 2

Background

Musicologists have strived for many years to understand the properties of timbre and

to find its quantitative descriptions. These efforts find motivation in the fact that other

music processes show clear acoustic correlates, such as frequency for pitch and amplitude

for loudness. However, it remains unclear how humans perceptually organize the content

in the audio signal to identify sound sources in the music.

Research on computer-based modeling of music perception could help us to comprehend

how human music perception works, but in the case of genre classification the features

in use appear to be inappropriate. In fact, a variety of spectral-based features have been

investigated for automatic music classification, but there is little research on perceptually

motivated features available in the literature. Further, these features either come from

other domains or are not designed to model the overall timbre mixture or global timbral

quality of musical pieces (Aucouturier, 2006). Great efforts to understand the correlates

between timbral and spectral aspects on single instruments and sounds have been made

since the 1970s using similarity measurements (see for example Grey, 1977; Grey and

Gordon, 1978). In practice, timbre-based descriptors in music are particular in the sense

that they often model the perception of timbral qualities of more than one instrument

and sometimes concurrent notes of the same instrument. Monophonic timbre perception

can be insufficient for modeling music similarity, and in a sense the descriptors that are

normally borrowed from the speech domain are inadequate for music perception.

Etymologically, timbre was used in French language in order to refer both to quality of a

sound and to sound of a bell 1. It could have its origins in the greek word “tympanon”,

which means kettledrum. This rather ambiguous perceptual attribute is traditionally

associated with the color or shape of any sound.

1See Harper, D. (n.d.) Online Etymology Dictionary (Retrieved 11.05.2010 from http://www.
etymonline.com).

5

http://www.etymonline.com
http://www.etymonline.com
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The purpose of the present chapter is to examine, compare and evaluate recent research

in the MIR field with respect to genre classification and music perception that are rel-

evant to our problem. This chapter is organized to cover these issues thematically. In

section 2.1 the state of the art in the Music Information Retrieval scientific paradigm is

presented. Section 2.2 offers a review on the general procedures for music genre classi-

fication based on musical features and also an introduction to feature selection. Next,

Section 2.3 covers the most common musical descriptors in music genre classification, and

includes the features that were used in this study. Finally, in Section 2.4 a chronological

review of the Music Information Retrieval eXchange (MIREX) contest for classification

of musical genre is presented.

2.1 General background in Music Information Retrieval

The rampant distribution of musical files on the internet through illegal sources starting

in the late 1990s has been typically considered as a threat to the prevalent business

models in the music industry. The digital music revolution has been accompanied by

a fast development of lossy formats (.mp3, .wma) and applications for playback and

compression (Winamp) or music sharing (Napster).

Based at the outset on text query and retrieval principles, the Music Information Re-

trieval (MIR) paradigm became a prominent viewpoint for studying the connection be-

tween computer sciences, digital signal processing, and human perception (Tzanetakis,

2002). This interdisciplinary research approach basically aims to harvest relevant infor-

mation from musical data using a variety of methods (Fingerhut, 2004) and includes

a number of applications that enable scaffoldings between music listeners and musical

files. For example, it would be possible to automatically sort musical files according to

music genre, mood, artists or composers based on labels that are automatically assigned

to the audio. As opposed to manual labeling, these systems would provide rapid and

effortless tagging of music in a large scale.

The international Music Information Retrieval Systems Evaluation Laboratory (IMIRSEL)

aims to create “tera-scale” musical collections using audio, symbolic and metadata ma-

terial that can be accessible as digital libraries (Downie & Futrelle, 2005)

The MIREX Contest

In 2004, a community for discussion on MIR-related problems called Music information

Retrieval eXchange (MIREX) was created, promoting a framework for an annual con-

test that takes place within the International Society for Music Information Retrieval
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(ISMIR). Inspired by the Text Information Retrieval Conference (TREC), these MIREX

tasks are evaluated by the IMIRSEL project (Downie, 2008). As an example from the

2009 MIREX contest, 17 tasks focusing on both low and high levels of music process-

ing were evaluated, including Audio Classical Composer Identification, Audio Music

Mood Classification, Audio Cover Song Identification, Music Structure Segmentation

and Query-by-Tapping 2.

2.2 Feature-based music genre classification

Even for humans, associating musical excerpts to certain genres can bring difficulties,

mainly due to the blurry boundaries of musical genres. These common qualities could

at least be partly explained by a musical attribute, i.e., a quantity that describes an

example (Kohavi & Provost, 1998). Given a set of musical examples, automatic music

genre classification can be thus understood as an associative learning between attributes

and class decisions.

Panagakis and Kotropoulos (2010) discuss the motivation on music genre classification

studies and they refer to Aucouturier and Pachet (2003), who pointed out that probably

genre is the most popular variable for organizing music. Scaringella, Zoia, and Mlynek

(2006) have reviewed the music genre classification problem and stated relevant questions

on this topic.

Musical genres

In spite of the highly subjective ground of genre classification, we somewhat find a

consensus among individuals belonging to a same culture on how to group popular

pieces of music into genres. They typically organize music into genres according to

their similarities with more “prototypical” examples. Individuals can classify music into

genres, in other words, they can associate musical pieces with common characteristics

and assign categorical labels as a way of grouping them (Tzanetakis & Cook, 2002).

However, some ambiguities and lack of consensus in this assignment are sometimes

found. McKay and Fujinaga (2006) inquires into the the argument that the benefits

of automatic genre classification are restrained since musical genres are unclear and

subjective. Scaringella et al. (2006) suggest to loosen the classification paradigm by

adding more than one genre class to a file in order to attain realistic systems.

2Downie, J.S. and West, K. (2009). MIREX2009 Results (Retrieved from http://www.music-ir.
org/mirex/2009/index.php/MIREX2009).

http://www.music-ir.org/mirex/2009/index.php/MIREX2009
http://www.music-ir.org/mirex/2009/index.php/MIREX2009


Chapter 2. Background 8

Chance level scores It is clear that the complexity of a classification task increases

with the number of classes into which the examples must be grouped. Therefore, given

the same performance, there is more chance involved in settings where the examples

belong to a lower number of classes.

Music databases

There are two major problems that affect the music databases used for Music Genre

Classification. Both issues relate to the data preparation for this task and have been

discussed for different MIR problems.

Ground truth A ground truth refers to a description or set of descriptions used for

validation of measurements or techniques. For example, the ground truth of a context-

dependent descriptor –such as the style of a song– can be used for evaluation and vali-

dation of a technique that automatically assigns these descriptors to the data. In Music

Information Retrieval, the ground truth can be collected from many sources, such as

music catalogues, user ratings or tags, musicological studies, and so on.

Artist and album filtering These methods assure that all the music files that belong

to the same artist or album will be either part of the training list or of the test set. It

is important to consider that the validity of a classification model could be questioned

without the use of artist and album filtering (Downie, 2008). A significant drop in the

accuracy was noticed when the use of filtered and unfiltered data was compared in paral-

lel evaluations by Pampalk, Flexer, Widmer, et al. (2005) (Downie, 2008). Remarkably,

West (2005a) puts into consideration a future implementation of artist filtering in AGC

tasks, but the only submission that explicitly includes the filter in the 2005 evaluation

is Pampalk (2005) 3.

Feature extraction

It is possible to extract a variety of features from the audio signal, such as brightness and

tempo, that can be useful for automatically classifying music. The process of feature

extraction aims to reduce the data into measurable properties (Duda, Hart, & Stork,

2001).

3A recent study on music semantic similarity for polyphonic instrument recognition by Fuhrmann
and Herrera (2010) has also taken care that artist and album effects would not affect the results.
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The canonical method for genre classification based on audio content –which is partic-

ularly noisy and of considerable computational size– is to extract features instead of

working directly with the data. This procedure is used to reduce the data dimensional-

ity and to obtain information that is considered most important for genre classification.

The audio is analyzed as windows using audio frame decomposition for each feature in

order to obtain a compact representation of an attribute for each window. As a partial

result of a multiple feature extraction, each of the frames is represented by a vector

of feature values and each music excerpt as a sequence of feature frames. Finally, the

statistics (means and standard deviations) for each feature over the whole example are

usually computed. In this section we will describe the pre-processing step for musical

feature extraction and briefly present musical features that are commonly used in genre

classification.

Pre-processing Prior to the implementation of the feature extraction methods be-

low, the audio signal is divided into short overlapping or non-overlapping frames. In

feature extraction for MIR tasks, the signal information is typically truncated into short

frames that could correspond to the times and frequency resolutions of human hearing

and cognitive processing (Aucouturier, 2008; J. O. Smith, 2010). In order to better cap-

ture the temporal evolution of the audio signal, the frames are of the order of only 20

milliseconds long, which is a standard resolution for the purposes of classification based

on low-level features.

Extraction of feature values For each of the frames, a feature vector of a length

equal to the number of features is computed. Next, the usual method implies the

estimation of feature statistics, namely the arithmetic mean and the standard deviation

of a feature over each of the music examples. The calculation of the standard deviations

can serve as a compromise, for a given feature, between the details of each frame and

the central tendency of the whole example.

Feature selection and content-based classification

Classification is one example of pattern recognition, and it is pivotal in Music Infor-

mation Retrieval. Feature selection is often implemented as a previous step to clas-

sification for dimensionality reduction purposes. Lessening the dimensionality of the

feature space has a way to simplify the classification stage. As to this study, the latter is

based on the actual content of the source instead on metadata such as tags or keywords,

thus it is called content-based classification. A general introduction to the problem of
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content-based classification and a rationale for feature extraction are mentioned in this

subsection.

Pattern recognition or discriminant analysis roughly refer to methods for classification

in machine learning. These approaches can learn to recognize statistical regularities and

build models that can be applied to map data to suitable categories (McKay, 2010).

Pattern recognition systems can be optimized for computational ease and decent perfor-

mance. Once the model is deployed, it is possible to handle a significant amount of data

for rapid evaluation. Another advantage is that pattern recognition can lift the level

of complexity of many problems by concurrently embracing multiple characteristics or

attributes. Moreover, these systems offer consistent upshots and therefore are reusable

with new information and parameters.

A typical routine in Audio Genre Classification is to train a classifier with labeled data.

This method involves two fundamental steps. In the first place, a teacher provides a

training dataset, i.e., information where the category labels are known. In the second

step, a test set of new data without labels is inputed and the task of the algorithm is to

predict its classes. This method is called supervised learning since it needs to be taught

with a training dataset (Duda et al., 2001). Unlike regression and its continuous output,

classification refers to supervised learning with a discrete output –a genre class for each

song is predicted. For automatic genre classification tasks, supervised learning can be

used in order to train the classification algorithm with the ground truth –a collection

of factual data with the correct labels. In contrast, unsupervised learning is used in

automatic timbre similarity tasks since the aim is to group musical pieces according to

their overall sound (Aucouturier & Pachet, 2003).

Three paradigms for classification

Three main automatic classification paradigms are mentioned in the literature, namely

expert systems, supervised learning and unsupervised learning (McKay, 2010; Scaringella

et al., 2006).

Expert systems These systems explicitly compute sets of rules from high-level fea-

tures in order to define classes. In other words, with very detailed and objective de-

scriptions of the classes, expert systems could perform a classification based on a serious

understanding of the examples (Scaringella et al., 2006).

Unsupervised Learning The second paradigm is called unsupervised learning or

clustering and refers to a grouping of unlabeled instances. In other words, in clustering
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there is no prior specification of a dependent attribute. Since class attributes are not

provided, these techniques have to rely on the similarity between instances that is yielded

by the extracted descriptors. Typical algorithms are k -means, agglomerative hierarchical

clustering and Self-Organizing Maps (SOM).

In unsupervised learning, the system is not taught and therefore performs a grouping

or clustering of the data according to given parameters Duda et al., 2001. Due to the

absence of an explicit teacher, the classification of an example is based on their associated

feature vectors. For this purpose, a distance measure between vectors can be computed

by the clustering algorithm. There are many different distance measures that can be

applied, we can mention Euclidean and Cosine distances. Another option is to build

statistical models of the distribution of the features, like Gaussian Models and Gaussian

Mixture Models. (Scaringella et al., 2006)

Supervised Learning In supervised classification techniques, which are utilized in

this study, the learning algorithm maps instances into a category label that is given

beforehand by a teacher. In comparison with expert systems, the categories are not ex-

plicitly described in supervised learning, since the learning algorithm forms relationships

between the training set attributes and their classes.

Data post-processing

Once the classifier is trained and is tested for classification, it is possible to measure

its performance. This is done for example by calculating how fast, how accurate in

prediction, how extensible towards other scenarios and how simple is the created system

(Liu & Motoda, 1998). In order to evaluate the classification accuracy, the classifier is

tested with different information with respect to the data used for the training process.

Learning algorithms A variety of machine learning algorithms for supervised learn-

ing exist in the literature. There are two general types of classifiers, namely non-

parametric and parametric. Another recent distinction groups classifiers based on their

generative or discriminative properties.

1. The parametric versus non-parametric opposition (Duda et al., 2001) refers to the

knowledge of the forms of the probability distribution of the training data. In

other words, parametric classifiers are based on assumptions on the underlying

data distribution and the classifier training is constrained to estimated parameters
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of these distributions. Unlike parametric classifiers, non-parametric classifiers do

not require any assumption on the probability densities.

Among common non-parametric classifiers we find Fisher’s linear discriminant

function, Support Vector Machines (SVMs), and decision trees. These are con-

sidered as non-parametric in the sense that they do not depend on assumptions

about the distribution of the data. Parametric classifiers like Näıve Bayes adopt

assumptions of the statistical distribution of the training set.

The aforementioned distinction between classifiers can be confusing because for

both groupings the classifiers estimate parameters during the training phase in or-

der to apply them in the testing phase (see for example Kuncheva and Rodŕıguez,

2010). A different way to group them (Ng & Jordan, 2001) approximately main-

tains the same division, but based on different criteria.

2. According to this second distinction there are two to three main types of classifiers,

namely discriminative, generative and probabilistic. The main difference between

these approaches stems from the modeling method (Rattray, 2009). In discrim-

inative classifiers, either the classification rules are directly generated from the

training set or a direct function from the input instances to the labels is learned.

Similarly to the parametric group of classifiers, generative classifiers model the joint

probability distribution for the examples and the class labels. Both probabilistic

classifiers and generative classifiers set a probabilistic model of the data within

each of the classes. In contrast, in discriminative classifiers, the discriminant rule

is modeled directly from all the classes during the training process.

Generalization ability and overfitting The notion of generalization (von Luxburg

& Schölkopf, 2011) is useful to understand the relationship between the classification

results for the training test and test sets. We can define a training set as as a set of points

X in a space X , where each point has a known label denoted by Y . Using a learning

algorithm and the training set (X1, Y1), . . . , (X2, Y2) we come up with a classifier fn.

Without a test set we cannot know how many unlabeled points are misclassified, i.e, the

true underlying risk R(fn) of the classifier. Nevertheless, prior to the test classification

we can calculate the empirical risk or training error based on the number of mistakes

(
�

�) that the classifier makes over the training set:

Remp(f) :=
1

n

n�

i=1

�(X1, Y1, f(Xi)).

The generalization performance of the classifier R(fn) is relatively small when the learn-

ing algorithm is able to explain most of the data in the training set (X1, Y1), . . . , (X2, Y2).
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A good generalization ability is indicated by a small absolute difference between R(fn)

and Remp(fn), that is |R(fn)−Remp(fn)|.

Arguably, the generalization ability can be simply obtained by calculating the absolute

difference between the average train accuracy and the average test accuracy of a classi-

fication model. Further, a high generalization ability can correspond to low tendency of

overfitting the data.

This problem occurs when the training set feature values are fitted too well into the

learning algorithm. If the training data has noise or anomalies that are not part of the

overall distribution of the data, the resulting trained model may not fit appropriately

the testing examples unless it ignores the noisy training data. In other words, the model

fits closely the training examples but cannot generalize well to other data. Overfitting

occurs when not only the salient characteristics, but also the noise of the data is modeled.

Since there are more parameters than those that are necessary for creating a statistical

model of the data, it yields substandard accuracies. Noteworthy, feature dimensionality

leads to overfitting models because it adds noise to the training data that may not be

present in the testing data. (Sherrod, 2003)

A possible way of dealing with overfitting would be to use a large primary set in order to

refine the classifier learning process. Another solution is a method called cross-indexing,

which loops the selection process for a given learning method and a feature selection

search (Saari, 2009).

Attribute selection

Prior to classification, the aim of this task is to obtain, when possible, an optimal feature

subset for building a straightforward model. There are two general approaches to this

process, namely filter selection and wrapper selection. The former does not interact

with any learning algorithm, while the latter uses a meta classifier in order to provide

results based on classification accuracy (Silla, Koerich, & Kaestner, 2008; Saari, 2009).

Attribute selection aims to lower the effects of three important issues that can affect the

results of a classification (Saari, 2009). These problems are called curse of dimensionality,

feature relevance and feature redundancy.

Dimensionality It is not recommended to cram features into pattern recognition sys-

tems (Reunanen, 2003). Dimensionality occurs when too many feature vectors are

fed into the model, producing a highly dimensional feature space. The curse of

dimensionality can be computationally demanding and is most likely to produce a

constraint in the model interpretability.
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Feature relevance This problem is often observed when more features than those that

are needed are extracted from the audio signal. A feature is considered irrelevant

for the classification if the same classification accuracy is obtained when the values

of that single feature are absent from the model (John, Kohavi, & Pfleger, 1994).

Feature redundancy The third issue is called feature redundancy and occurs when

two features are providing similar or even identical information about the studied

data. Undesired results can occur if the classifier exaggerates the effect of the

phenomenon that both of the features are measuring.

Wrappers and filters Feature selection makes possible to obtain a smaller set of di-

mensions, similarly as with the Principal Component Analysis (PCA) method. However,

unlike the latter, which is an unsupervised method, feature selection can make full use

of information about the target concept. In other words, feature selection techniques

like wrapper selection can exploit the learning algorithm in order to find the best feature

subset.

While the filter approach provides information about feature redundancy –i.e., what

features are most correlated–, the wrapper approach can provide a ranking of the most

relevant features therefore suggesting an optimal feature subset. However, the wrapper

approach is more prone to produce overfitting than the filter approach (Saari, 2009).

Sánchez-Maroño, Alonso-Betanzos, and Tombilla-Sanromán (2007) give account of an

approach that combines wrappers and filters for feature selection. In addition, they

compare the drawbacks of both approaches, in terms of computational demand, goodness

of fit and number of attributes selected.

2.3 Musical descriptors

In this section we will present the most influential descriptors in music genre classifica-

tion, placing a special emphasis on timbre-based features. Firstly, a rough introduction

to digital signal processing is given in order to briefly mention the analog to digital

conversion and the calculation of the signal spectrum.

Overview of digital signals

Our ears respond to air vibrations that are called sounds. The “shape” of the vibrations

is represented as the air pressure variations as a function of time, and this shape can be

more or less regular. Sounds with higher periodicity could be heard as tones with a firm
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pitch, while sounds with more fluctuations in its shape could be considered more noisy.

(Moore, 1985)

Frequency The pitch and the frequency are two descriptions of the regular period of

sounds. Sounds can be heard by humans if this period ranges between 1
20 and 1

20000 of

a second (Moore, 1985). While frequency is a physical quantity that does not include

any reference to the ear for its calculation, pitch is a subjective evaluation of the fre-

quency that depends on other descriptions such as duration and loudness (Backus, 1977).

Roughly speaking, pitch is the perceived “tonal height”, in other words a logarithmic

scaling of frequency that is perceptually meaningful for humans.

Amplitude Given an oscillation, its amplitude measures the strength of the pressure

deviation with respect to the mean atmospheric pressure. The waveform shape is a result

of amplitude as a function of time; this general shape of the vibrations could suggest a

given tone quality or timbre. (Moore, 1985)

Phase Finally, the initial phase angle refers to the relative starting position of the

oscillation. Given a period T (measured as T = 1
frequency ), an amplitude A and an

initial phase angle φ, it is possible to define a sine function y at any given moment t

(Tempelaars, 1996):

y(t) = A× sin(360◦
t

T
+ φ)

Analog to digital conversion

An audio signal can be recorded using analog or digital representations. The analog

signal wave is a voltage wave that is analogous to the pressure wave. The digital signal

is a representation based on a discontinuous range of values. In order to transport analog

signals into a digital format, an analog-to-digital conversion is performed. The signal

is sampled and quantized for data stream encoding. Next, the resultant discrete-time

signal can be processed or analyzed using digital signal processing (DSP) algorithms.

Time to frequency transformation

The 18th century French mathematician and physicist Jean Baptiste Joseph Fourier

studied how periodic functions can be explained as a summation of a possibly infinite
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number of trigonometric functions, each with a particular amplitude and phase (Moore,

1985).

Fourier’s theorem associates sinusoidal vibrations and non-sinusoidal (or arbitrary) vi-

brations. It is possible to illustrate this by supposing that a tuning fork could produce

only one sinusoid. In such a case, this tuning system would be a harmonic oscillator :

unlike everyday sounds, the tuning fork would be everlasting and undamped. Ideally,

the sound of a violin could be decomposed into a possibly infinite number of harmonic

oscillators. (Tempelaars, 1996)

This reduction is called Fourier analysis or Fourier transform and it is applied in digital

processing units for the calculation of the signal spectrum in audio and image processing

(Rockmore, 2000).

Spectrum The frequency spectrum is a representation of the frequency and phase val-

ues of the sinusoidal components of the signal. The spectrum describes the amplitude

over frequency bins for a given instant or time lapse. This representation is partic-

ularly relevant since it could resemble the perception of pitch in the human auditory

system (Serra, 1989). It is possible that a similar filtering process in the cochlea detects

frequencies from incoming sounds.

Analogously to light, the sum of all the frequencies at the same time is called white

noise. When some frequencies are more prevalent than others, the sound obtains more

color. When there are more harmonic multiples of the fundamental frequency, the sound

becomes more pitched.

Fourier series The Fourier series is a possibly infinite number of sinusoidal compo-

nents of the periodic signal (Tempelaars, 1996). These components include harmonics,

in other words frequencies that are multiples of the fundamental F0. The decomposition

into a number of “basic blocks” is somewhat analogous to the calculation of all the prime

factors of a positive integer (Moore, 1985).

Fourier transform The aforementioned splitting of an arbitrary signal into its com-

ponents is referred to as a conversion from the time domain of the waveform to the

frequency domain or signal spectrum. The Fourier transform can be defined in the

following way (Serra, 1989):

X(ω) �
� +∞

−∞
x(t)e−jwtdt
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where ”�” means equals by definition, x(t) is the signal in the time domain and X(ω)

is the signal in the frequency domain. This formula can be applied to continuous wave-

forms, and each resultant ω is a frequency index measured in radians per second.

The frequency spectrum is a complex function, i.e. a non-sinusoidal function that con-

tains more than one component (see Tempelaars, 1996). This function is decomposed

into two real functions, namely the spectrum amplitude and the spectrum phase (S.

Smith, 1997). The continuous frequency indexes are complex numbers that specify the

frequency and the phase of each sinusoidal component, and are usually represented as

X(ω), standing for the whole frequency spectrum. (Serra, 1989)

The Fourier synthesis is the inverse of the Fourier transform and makes it possible to

reconstruct the arbitrary function from the sinusoidal components.

Short-Time Fourier Transform The Short-Time Fourier Transform (STFT) is used

for signals that vary in time, such as musical signals. The STFT is obtained by dividing

the signal into successive audio frames and performing a succession of Fourier transform

calculations. The result of the STFT representation of the amplitude distribution as a

function of frequency is a set of spectra called spectrogram (J. O. Smith, 2010).

Discrete-Time Fourier Transform The Discrete-Time Fourier Transform (DTFT)

is roughly the FT for time-varying and discrete (i.e. sampled) waveforms such as digital

signals. In other words, it is used for signals that are both discrete in frequency and in

time.

Discrete Fourier Transform The Discrete Fourier Transform (DFT) is roughly the

Fourier transform for periodic (i.e, they do not vary over time) and discrete waveforms.

The DFT is calculated in signals that are continuous in time but discrete in frequency,

such as digital periodic signals. The Fast Fourier Transform (FFT) is a fast algorithm

to implement the DFT, and since it calculates the frequency spectrum of a discrete

time-domain signal of finite duration, it is especially useful in Digital Signal Processing

applications.

The DFT of a signal X can be defined as

X(ωκ) �
N−1�

n=0

x(tn)e
−jωktn , k = 0, 1, 2, ..., N − 1,

where
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x(tn) � input signal amplitude (real or complex) at time tn(in seconds)

tn � nT = nth sampling instant (seconds), n is an integer ≥ 0

X(ωκ) � spectrum of x (complex valued), at frequency ωκ

ωκ � kΩ = kth frequency sample (in radians/second)

N = number of time samples = number of frequency samples (integer number).

The FFT computation of the frequency spectrum for each audio frame of a signal is the

STFT.

Features for music content description

At this point, the features that have been used for this study are presented. Both features

require a Fourier transform for their calculation and either divide or warp the frequency

content following the idea that both speech and music processing in the auditory system

could occur in separate frequency bands (Allen, 1994).

Mel-Frequency Cepstral Coefficients

Widely used for speech recognition, the MFCCs describe the spectral shape of the signal.

Its computation involves five main steps including the conversion of signal frame into a

mel scale representation (Logan et al., 2000) in order to emphasize the middle frequency

bands (J. T. Foote, 1997). The MFCC transformation discards pitch information from

the audio signal and it has been proved useful for computing music similarity (J. Foote,

1999).

There are other descriptors that have been recently developed and are similar to the

MFCCs. The MPEG-7 standard AudioSpectrumEnvelope has been considered a more

direct way of describing the signal spectral shape (J. B. L. Smith, 2010). This descriptor

is obtained by creating a partition of the spectrum into bands –most of them logarithmic–

and estimating the relative power for each of the bands.
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A variation of the MFCCs using an octave-based scale has been suggested for discrimi-

nation between instrumental sections and other sections that contain both instruments

and singing (Maddage, Xu, Kankanhalli, & Shao, 2004). The octave-scaled cepstrum

coefficients (OSCCs) aim to characterize the spectrum frequencies within the singing

range ( 250− 1000 Hz) for the purposes of music structure analysis. This change of the

frequency scale yielded to a more robust algorithm for this discrimination task. (J. B. L.

Smith, 2010)

Sub-band flux

The sub-band flux set of features is a representation of frequency and amplitude fluctu-

ations as a function of time in ten octave-scaled spectrum bands (Alluri & Toiviainen,

2010b). It is as a matter of fact a spectro-temporal feature based on the spectral flux

(see below), which is calculated for each sub-band of the filter bank, resulting in a set

of 10 sub-band spectral fluxes.

This feature set was suggested in a recent study by Alluri and Toiviainen (2010b) that

focused on finding correlations between perceptual dimensions and the acoustic ground

of polyphonic timbre. In one of the experiments, 35 participants rated 100 musical

excerpts of 1.5 seconds using 8 bipolar timbre semantic scales (Strong-Weak, Empty-Full,

etc.). Using factor analysis, the results were grouped into three perceptual dimensions

(Brightness, Activity and Fullness). A regression analysis was performed in order to find

out which acoustic features could better explain these dimensions and it showed that the

sub-band flux was a suitable descriptor for modeling of polyphonic timbre perception.

Similar results were later found in a cross-cultural setting (Alluri & Toiviainen, 2010a).

Following, a list of the most frequently used descriptors in music genre classification is

included. Some of these descriptors require to calculate one or more Fourier transforms

for their computation.

• Energy descriptors

High energy-Low energy ratio Ratio of frames showing energy below and above

1500 Hz. (Alluri & Toiviainen, 2010b)

• Spectral descriptors
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Delta Mel-Frequency Cepstral Coefficients The∆MFCC and∆−∆MFCC

(Furui, 1986) are calculated from the derivatives of the MFCCs and are con-

sidered dynamic features when compared to the “static” spectral description

of the MFCCs. Like the latter, these descriptors also are originally from

speech recognition but have been applied in MIR.

Spectral Centroid Statistical mean of the spectral distribution, gravity center

of the magnitude spectrum (Tzanetakis & Cook, 2002; Saari, 2009).

Relative Shannon entropy Peakiness of spectral distribution (Toh, Togneri, &

Nordholm, 2005).

Roughness Estimation of sensory dissonance. Average of dissonance curves (Sethares,

1998).

Spectral Flux Measures how quickly the power spectrum of a signal is changing,

calculated by comparing the power spectrum for one frame against the power

spectrum from the previous frame. Some of the derivates of this descriptor

are the sub-band flux and the perceptual spectral flux –a spectral flux com-

puted from a compensated spectrogram with respect to Equi-loudness curves

(Couvreur et al., 2008).

Spectral Roll-off Also termed as spectral extent (Theimer, Vatolkin, & Eronen,

2008), it describes the frequency below which 85% of the sound energy in the

spectrum is concentrated (Tzanetakis & Cook, 2002).

Spectral Slope Description of how quickly there is a decrease in amplitude of

successive partials as their frequency gets higher (Theimer et al., 2008).

• Perceptual descriptors

Chromagram The chromagram is arguably the most used harmonic descriptor

in music perception. Also called Pitch Class Profile, the chromagram usu-

ally represents the likelihood of a pitch class in the audio, but can also be

computed as the spectral energy collected in frequency bands of a pitch class

(Bartsch & Wakefield, 2005). The perception of pitch with respect to a musi-

cal context can be graphically represented with a continually cyclic helix that

has two dimensions, chroma (or pitch class) and height. Chroma refers to

the position of a musical pitch within one cycle of the helix as if it was seen

from directly above. The pitch height is the position in the vertical axis of

the cycle and is related with the octaves for a same pitch class. (Goto, 2006)

Loudness According to Fletcher and Munson (1933), the loudness of a tone is

the magnitude of an auditory sensation. Each of the equal-loudness contours

is an averaged estimation of the human sensitivity to different frequencies at

a given amplitude sound pressure level.
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• Temporal Features

Zero crossing rates Signal noisiness, measured by number of times the signal

changes sign (Tzanetakis & Cook, 2002).

This introduction to musical descriptors covered many of the most used algorithms for

feature extraction in music genre classification. In the next section, a review of recent

approaches to genre classification, there is more detailed information on the general

procedures for extraction of these features from the musical signal.

2.4 Approaches to automatic genre classification - Review

of MIREX 2005-2009 submissions

In recent years, a variety of models for automatic classification of music into genres or

styles has been suggested after first studies in MIDI by Dannenberg, Thom, and Watson

(1997) and in audio signal by Tzanetakis and Cook (2002). In 2004, the MIREX Com-

munity started the Audio Genre Classification (AGC) Contest as an evaluation platform

for this task. The overall goal in the AGC contest is to obtain a good performance in

genre classification of music. For this purpose, the suggested routine would be to extract

relevant musical features from the audio signal, train and finally test the classifier with

the music datasets provided for the contest (see Figure 3.1 below).

The AGC MIREX Contest is organized within the ISMIR (International Society for

Music Information Retrieval) and concurs with the ISMIR Conference. This contest has

been run on six occasions: 2004, 2005, 2007, 2008, 2009 and 2010. In the present review

the results of all the contests, except for 2004 and 2010 will be commented. There is

only little material available on the 2004 AGC contest, and the 2010 contest results were

not included in this review due to time constraints. The 2005 contest will be commented

with more detail to illustrate the general properties of the classification models for this

kind of contest.

2005 MIREX Evaluation

Two datasets were used for the 2005 Audio Genre Classification contest. The aim was

to explore genre classification performance using both hierarchical –i.e, relationships of

dependence between genres are established– and single level taxonomies. Either 3- or 5-
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fold cross validation, depending on the computational times, was used for the evaluation

and 13 participants out of 15 completed the task within the established time of 24 hours.

The datasets were composed of 1005 songs for the hierarchical set “Magnatune” and 940

songs for the single level set “USPOP”. Approximately 66% of each set was intended for

training the classifiers. The participants could choose to work with either mono (22.05

KHz) or stereo (44.1 KHz) PCM polyphonic music audio. However, all the candidates

that have reported on this matter performed the task in mono.

Prior to the classification stage, this task normally requires the extraction of musical

features from the audio signal. In the majority of the submissions for AGC contest 2005,

timbre-related features were extracted. Other features, such as rhythmic and energy-

based were also extracted, for example in the submission by Scaringella and Mlynek

(2005).

The mel-frequency cepstral coefficients (MFCCs) were among the most frequently ex-

tracted attributes (Pampalk, 2005; Mandel & Ellis, 2005). Other features include spectral

centroid (Tzanetakis & Murdoch, 2005; Burred, 2005), spectral roll-off (Tzanetakis &

Murdoch, 2005; Burred, 2005; Bergstra, Casagrande, & Eck, 2005), spectral flux (Tzane-

takis & Murdoch, 2005; Burred, 2005), zero crossing rates (Tzanetakis & Murdoch, 2005;

Burred, 2005; Bergstra et al., 2005), low energy (Tzanetakis & Murdoch, 2005; Burred,

2005; Scaringella & Mlynek, 2005) and loudness (Burred, 2005; Lidy & Rauber, 2005).

There was no established song length for the analysis of the audio files in the task.

Thus, the candidates could choose to extract information from the whole song or a part

thereof. At least five of the participants have analyzed snippets instead of whole songs.

Three of these submissions (Ahrendt and Meng, 2005; Burred, 2005 and Scaringella and

Mlynek, 2005) operated with snippets of 30 seconds. However, the three best performing

submissions (Bergstra et al., 2005; Mandel & Ellis, 2005; West, 2005a) have instead

worked with whole songs.

A prevalent method for feature extraction is to decompose the signal into a number

of frames using a window function for the analysis. The purpose of this is to capture

more precise information than if the features were computed over the whole duration of

the excerpt. This procedure is illustrated in this contest by Ahrendt and Meng (2005),

Bergstra et al. (2005), Lidy and Rauber (2005), Scaringella and Mlynek (2005) and

Tzanetakis and Murdoch (2005). The length of the windows usually varied between 20

and 23 milliseconds, nevertheless the submission of Bergstra et al. (2005) obtained the

best classification accuracy in MIREX 2005 using a window of 47 milliseconds.

Frequently, the analysis windows are overlapped in order to attenuate the loss at the

window edges. By overlapping, the analysis time origin between frames is advanced.
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The hop size or step size refers to the number of samples by which each of the successive

windows is advanced (J. O. Smith, 2010). Three participants have chosen an overlapping

of 50%, with hop sizes varying between 10 milliseconds (Scaringella & Mlynek, 2005)

and 400 milliseconds (Ahrendt & Meng, 2005). It is worthy of notice that Bergstra et al.

(2005) and Mandel and Ellis (2005) did not use overlapping in their models, which were

highly accurate in terms of classification performance.

Prior to the classification, the feature values can be aggregated into a window of a

larger length than the analysis window. From this “texture window” (Tzanetakis &

Cook, 2002) or segment that is shorter than the whole song length, statistics can be

computed for building the classification model. In this contest, algorithms that included

longer segmentations outperformed models in which shorter segmentations were used.

For example, the submissions by Bergstra, Casagrande and Eck (13.9 seconds) and

West (7 seconds segmentation for rhythmic features) have obtained better classification

performance than Ahrendt and Meng (2005) and Tzanetakis and Cook (2002), who used

1.2 seconds and 3 seconds for computing statistics, respectively.

For the final step of the feature extraction, a multidimensional feature vector is obtained.

Many differences were found in the submitted models with respect to the number of

dimensions for the classifier input. These range from 18 in Scaringella and Mlynek

(2005) to a total of 1668 dimensions in the submission by Lidy and Rauber (2005).

Usually, multi-class learning and classification is performed either with predictive density

estimation methods like the Gaussian Mixture Models (GMM) or using discriminative

exemplar-based classifiers like the Support Vector Machines (SVM) (Aucouturier, 2006;

Mandel & Ellis, 2005). Of the ten participants that completed the tasks, six have used

either SVM or GMM for their models. Other classifiers, such as simple Gaussian Dis-

tributions and ADABOOST are found in the three best ranked models (Bergstra et al.,

2005; Mandel & Ellis, 2005; West, 2005a).

The classification accuracies of the MIREX 2005 AGC contest were as follows: Bergstra,

Casagrande and Eck 82.34%; Mandel and Ellis 78.81%; West 75.29%; Lidy and Rauber

75.27%, 74.78% and 74.58%; Pampalk 75.14%; Scaringella and Mlynek 73.11%; Ahrendt

71.55%; Burred 62.63%; Soares 60.98%; Tzanetakis 60.72% 4. A total overall accuracy

of 72.84% with a standard deviation of σ = 7.21 was obtained in the 2005 contest.
4See Downie (2005). 2005 MIREX Contest Results - Audio Genre Classification (Contest wiki). Re-

trieved from http://www.music-ir.org/evaluation/mirex-results/audio-genre/index.html

http://www.music-ir.org/evaluation/mirex-results/audio-genre/index.html
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2007 MIREX Evaluation

Two years after MIREX 2005, the genre classification contest was repeated –there was

a MIREX contest but no AGC Contest in 2006. In this occasion, only one 10-genre

dataset of 22.05 kHz mono music snippets of 30 seconds each was used for the contest.

The major change for the evaluation of this year was the requirement of an artist filter for

the train/test splitting in order to assure both validity and reliability in the submissions.

As a result, there was an expected drop in the performance when compared to the results

of the AGC 2005. The results of this evaluation have been analyzed in the context of

the glass ceiling effect and the use of artist filtering in (Downie, 2008).

In the 2007 submission, the feature extraction techniques were similar to those in AGC

2005, because spectral and temporal features were extracted in the majority of the

algorithms. However, a novel approach to feature extraction using a symbolic-acoustic

combination was suggested by Lidy, Rauber, Pertusa, and Iñesta (2007). This method

yielded an extraction of information about pitches, durations, inter-onset intervals (IOI),

and other symbolic descriptions extracted from the audio signal.

While some submissions have based the feature extraction process on subjective mea-

surements, the majority did not seem to focus on perceptually interpretable models.

One of the exceptions was the submission of Mandel and Ellis (2007), who have given

account of dissonance, loudness sensations and masking effects for feature extraction.

In contrast, Guaus and Herrera (2005) investigated the extraction of variants of the

MFCCs, such as the delta MFCCs and delta square MFCCs.

Compared to AGC 2005, the results in 2007 were less variant and have shown an overall

lower performance (see Downie, 2008). While the performance of the 2005 contest had

a mean of 72.84%, the average results dropped in AGC 2007 to 64.31%. Remarkably,

the standard deviation of the average raw accuracies in the 2007 contest was of σ =

4.48 against more variant results in 2005 at σ = 7.21. Such a change in the performance

of the overall evaluation results has been acknowledged as a glass ceiling and may have

been partly caused by the implementation of the artist filter for the 2007 evaluation.

2008 MIREX Evaluation

Notably, only 6 candidates submitted accepted algorithms to the AGC contest in 2008,

4 of which had already participated in the 2007 contest. A new latin music dataset

(Silla, Kaestner, & Koerich, 2007) was used in this contest in addition to the dataset

used in 2007. Therefore, the classification task was enriched by increasing the diversity

of analyzed musical genres. A summary of the styles evaluated in MIREX Audio Genre
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2005 2005 2007 2008 2008 2009 2009
Magnatune USPOP Mixed Mixed Latin Mixed Latin

blues electronica/dance blues blues bachata blues bachata
classical newage classical classical bolero classical bolero

Genre electronic rap/hiphop country country forro country forro
classes ethnic reggae edance edance gaucha edance gaucha

folk rock jazz jazz merengue jazz merengue
jazz metal metal pagode metal pagode

newage raphiphop raphiphop salsa raphiphop salsa
punk rockroll rockroll sertaneja rockroll sertaneja
rock romantic romantic tango romantic tango

Total 10 6 10 10 10 10 10
Songs 1515 1414 7000 7000 3160 7000 3227
Length whole whole 30s 30s unknown 30s unknown
Format .mp3 .mp3 128 22.05khz 22.05khz .mp3 22.05khz .mp3

mono .wav mono .wav mono .wav

Table 2.1: Datasets used in the MIREX AGC contests until 2009 (Bergstra,
Casagrande, Erhan, Eck, & Kégl, 2006).

Classification is presented in Table 2.1 5.

There is another addition that is worthy of mention for the feature extraction process

and that was not present in past AGC evaluations. The submission by Peeters (2008)

includes the extraction of Chroma / Pitch Class Profiles (PCP) coefficients (Peeters,

2008) in order to incorporate basic harmonic content from the signal.

Notably, the 2008 AGC Contest overall accuracy was lower and less variant than a year

before. The overall accuracy in 2008 was of 63.89% for the mixed set, while the latin set

reached 58.18%. In contrast, in AGC 2007 the total average was of 64.31% (σ = 4.48).

The standard deviations of the 2008 contest are of σ = 1.93 (mixed set) and σ = 9.35

(Latin set), showing little differences in the evaluation results, especially for the mixed

set AGC evaluation.

2009 MIREX Evaluation

For the evaluation of 2009, the Latin music dataset and a mixed collection were used, the

latter consisting of 7000 30-second clips equally distributed into 10 genres (see Downie

and West, 2009. The Latin set, which comprised 3227 audio files and was also divided

into 10 music genres, encouraged the extraction of rhythmic features (Downie & West,

2009). The evaluation framework IMIRSEL asked the participants to submit algorithms

that supported mono WAV sound files with a sample rate of 22 kHz 16 bit. We will

focus on the three best ranked submissions of both sets.
5Information about the datasets can be found in http://www.music-ir.org/mirex/wiki/MainPage.

http://www.music-ir.org/mirex/wiki/MainPage
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Based on the articles that were attached in the submissions, the studied participants

submitted the same algorithm for both the Latin and the mixed dataset. However for the

Latin set, which was comprised of whole songs, Seyerlehner and Schedl (2009) decided

to decode up to the first 4 minutes of the musical files and analyze the central 2 minutes

of the decoded signal.

With respect to the type of features that have been extracted from the audio signal,

the most common were spectral, rhythmic and temporal, though some of the models

did not include precise information about the feature extraction process. In addition to

these features, Burred and Peeters (2009) and Grecu, Lidy, and Rauber (2009) extracted

perceptual features from the audio signal. The windows used for analysis have differed

as well, for example Seyerlehner and Schedl (2009) chose a Hanning window of 93 mil-

liseconds with a hop size of 23 milliseconds while Burred and Peeters (2009) selected a

Blackmann window of 60 milliseconds using 20 milliseconds of overlapping hop size.

We can find interesting variations in the number of dimensions for the feature vectors,

and therefore in the complexity of the submitted models. For the Latin set, Grecu et

al. (2009) reached an overall accuracy of 58.64% with a feature vector of 7320 dimen-

sions, while the less complex submission by Seyerlehner and Schedl (2009) obtained a

performance of 62.23% using a feature vector of 97 dimensions.

As regards the classification model accuracies, the first three places 6 for both the Latin

set and the mixed set were all obtained using either an SVM classifier or its variants

(SVM in Seyerlehner and Schedl, 2009, GSV-SVM in Cao and Li, 2009, C-SVM in

Burred and Peeters, 2009, multi-class SVM ensemble using one-against-one principle in

Grecu et al., 2009). It could be taken into account that both Cao and Li (2009) and

Seyerlehner and Schedl (2009) included classifiers that were already pre-trained using

other song datasets (i.e., different than those that were offered for the contest).

The overall average results for AGC 2009 were lower than in 2008, however the variance

is higher than in previous contests. A total mean classification accuracy of 55.62% and

62.07% was obtained for the Latin and mixed sets, respectively. The standard deviation

of the Latin set was of σ = 9.35 while for the mixed set it reached a value of σ = 12.20.

Such growth in the variance compared with previous evaluations could be explained in

part by an increase in the amount of submissions coming from new participants in the

2009 contest.
6AGC 2009 Classification results. http://www.music-ir.org/mirex/results/2009/

MIREX2009ResultsPoster2.pdf

http://www.music-ir.org/mirex/results/2009/MIREX2009ResultsPoster2.pdf
http://www.music-ir.org/mirex/results/2009/MIREX2009ResultsPoster2.pdf


Chapter 2. Background 27

To sum up, between 2005 and 2009 some interesting differences were found between the

models submitted to the MIREX contest. One of the main developments has arguably

been the mandatory addition of an artist filter in 2007, which reduced the classification

accuracy results but aimed to increase the validity of the models across datasets. Another

interesting development consisted in the additions to the number of songs for evaluation

in the contest, reaching a peak in 2008 and 2009 with 7000 songs. This could be an

attempt to add complexity to the genre characterization. We can also mention the

extraction of features that intend to resemble cognitive processes by taking into account

loudness, localization, dissonance and harmony.

It could be interesting to assess these features against behavioral measurements, looking

for their perceptual relevance. Another fundamental step for some of the models would

be to look after a reduction of dimensionality as a way to attain validity and a better

interpretation of the performance results. Undoubtedly, there is still a lot of room for

improvement in automatic Music Genre Classification. Moreover, after the suggested

models surpass the glass ceiling by far, it may be required to find plausible explana-

tions from a perceptual viewpoint in order to satisfy both engineering and perceptual

questions.
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Methodology

The methodological part of the present is divided into three major steps. The first stage

consists in pre-processing the data by performing feature extraction for three music

databases and preparing six combinatorial feature subsets. Next, three approaches to

feature selection were used in order to obtain the five best attributes of each combinato-

rial subset. In the final stage, both the “Top 5” subsets and the original combinatorial

subsets were classified using three learning algorithms. Generally, the suggested ap-

proach follows the layout for automatic music classification that has been illustrated by

West (2005b) for the MIREX contest (see Figure 3.1).

Create 
training 
and test 
datasets

Run feature 
extraction 

on train 
dataset

Run feature 
extraction 

on test 
dataset

Feature 
selection

Train the 
model

Apply the 
model to 
the test 
dataset Evaluation 

of results

Figure 3.1: Simplified routine for Audio Genre Classification tasks (West, 2005) The
train and test sets are subjected to a feature extraction process. A model can be trained
with the aid of feature selection in order to select relevant features for the subset.
The model is finally applied to the test set and the results of the implementation are

evaluated using cross-validation.

28
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factors→ learning combinatorial music
levels algorithm subset dataset
↓
1 K-NN mfcc GTZAN
2 NaiveBayes sbf RWC
3 Vector mfcc.sbf AF-RWC
4 mfcc.std

5 sbf.std

6 mfcc.sbf.std

Table 3.1: Full-factorial Design I: All attributes.

factors→ learning attribute selection combinatorial music
levels algorithm method subset dataset
↓
1 K-NN GainRatio mfcc GTZAN
2 NaiveBayes WrapperBE sbf RWC
3 Vector WrapperFS mfcc.sbf AF-RWC
4 mfcc.std

5 sbf.std

6 mfcc.sbf.std

Table 3.2: Full-factorial Design II: Top 5 attributes.

Full-factorial designs The performance of the MFCCs and the sub-band flux set

of features for music genre classification has been tested by implementing a variety of

strategies based on four main factors, namely 1) the music datasets used, 2) the features

extracted from the audio signal, 3) the learning algorithms used for classification 4) and

the feature selection methods for dimensionality reduction. Since our aim was to focus

on the performance of the sub-band flux feature set, we have investigated which of the

descriptors were relevant for this purpose and which models yielded best accuracies.

Tables 3.1 and 3.2 present the factorial designs that were implemented in this study.

The factor levels are described below in the present chapter; it can be noticed that the

only difference between both designs is that the Design I does not include the feature

selection stage. This design is called “All” design because the datasets do not undergo

feature selection, as opposed to the “Top” design, were feature selection is included and

the amount of attributes per dataset is reduced to a number of 5 “Top” ranked features.

The data used for both designs is kept identical until the feature selection stage, which

is skipped in the “All” design.
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3.1 Data pre-processing

In this section, an in-depth description of the characteristics of the music databases

that were utilized in the study is given. Furthermore, the data collection stage, that

consisted in the frame-decomposed extraction of musical features from the song excerpts,

is pointed up below.

Music databases

In order to evaluate the classification using different scenarios, two main databases have

been obtained and used as primary sets. One of the sets is called GTZAN, introduced in

Tzanetakis and Cook (2002) and widely used, e.g. in Kotropoulos, Arce, and Panagakis

(2010). The other music database is called RWC (Real World Computing) database

and was used in 2004 for the MIREX Audio Description Contest of that year. Both

databases are available on the internet 1.

These databases are publicly available and widely used in research on Audio Genre

Classification. Unlike the Latin set that has been used in the most recent MIREX

contests, only the most popular -and thus easily discernible- musical styles can be found

in these music datasets. However, the datasets are fairly adequate regarding the general

purposes of this study. The GTZAN, RWC and AF.RWC (a variant of the RWC)

databases are presented below in Table 3.3.

GTZAN Genre Collection The dataset was created by Tzanetakis and used for

the first time in Tzanetakis and Cook (2002). The files are untitled and have been

recorded in different conditions such as cd and radio quality. It contains 1000 audio

files of 30 seconds comprising 10 genres (blues, classical, country, disco, hip hop, jazz,

metal, reggae, rock), each genre being represented by 100 tracks. The sample rate of

the recordings is 22 050 Hz, and all the files are in Mono 16-bit .au format. Unlike the

RWC, it is a balanced dataset, since each genre is represented by the same amount of

songs (100).

RWC database The five Real World Computing (RWC) databases have been released

in 2001 by the Real World Computing Partnership of Japan. The songs in the database

were commissioned for RWC and they were not released for public consumption but are

instead aimed to be used for research purposes.

1RWC: http://www.music-ir.org/mirex/2005/index.php/Audio_Genre_Classification.
GTZAN: http://marsyas.info/download/data_sets

http://www.music-ir.org/mirex/2005/index.php/Audio_Genre_Classification
http://marsyas.info/download/data_sets
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GTZAN RWC AF.RWC

blues (100) classical (320) classical (40)
classical (100) electronic (115) jazz (5)
country (100) jazz (26) metal (6)
disco (100) metal (29) pop (2)

Genre hiphop (100) pop (6) punk (2)
classes jazz (100) punk (16) rock (24)

metal (100) rock (95) world (19)
pop (100) world (122)

reggae (100)
rock (100)

Number of 10 8 10
classes

Number of 1000 729 98
files

Average 30s Whole Whole
Song length (song openings)
Format .au .mp3 .mp3

Table 3.3: Music databases used for data collection. The music databases used in
the present study are quite different from each other. Besides the differences in genre
classes, both balanced (GTZAN) and unbalanced databases as well as an artist-filtered

database (AF.RWC) were used.

The RWC-Magnatune dataset was used for the first time in the MIREX 2004 Audio

Description Contest. It is comprised of 10 popular genres (ambient, blues, classical,

electronic, ethnic, folk, jazz, new-age, punk, rock) that are hierarchically organized.

The dataset contains 1515 instances (1005 training files and 510 testing files) that are

prepared for Audio Genre Classification. This public collection holds entire songs in mp3

format. However, only 8 classes comprising 729 files of this database could be accessed,

therefore ambient and blues were not included in our evaluations.

Artist Filtered RWC database The artist effect is an issue that particularly affects

Genre Classification. In this context, it refers to a biasing in genre classification towards

an unsuitable artist classification. For that purpose, one of the three datasets that are

used for evaluation is an artist filtered version of the RWC music database (Pampalk,

2005). In this database, there is only one musical excerpt per artist and therefore each

artist has been represented with only one song in order to avoid that the training set

and the testing set contain excerpts from the same artist. The number of songs has been

drastically reduced from 729 in RWC to 98 excerpts in Artist Filtered RWC (AF.RWC).

Only 13,44% of the RWC set is used for its Artist Filtered version.
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Feature extraction

The musical feature extraction was performed using in MIRtoolbox 1.3, a Matlab toolbox

for feature extraction and information retrieval of music (Lartillot & Toiviainen, 2007)

that is released as a free software under the GPLv2 public license.

The audio files in the GTZAN database were resampled from 22500 Hz to 44100 Hz in

order to use an identical sampling rate for all the databases. After this, 50 seconds of

audio were trimmed from the middle of each audio file in the GTZAN database. For the

other two databases, the whole snippets of 30 seconds were used. For all the databases,

the snippets were labeled based on their corresponding musical genres. For the extraction

of the attributes, frame decomposition was used using standard procedures in genre

classification, namely 25 milliseconds frames and 50 % of overlapping between frames.

A diagram of the data collection is presented in Figure 3.2.

GTZAN RWC AF.RWC

Feature Extraction

MFCC 

13 Means

13 Standard 
Deviations

Sub-band 
Flux 

10 Means

10 Standard 
Deviations
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Figure 3.2: Data collection diagram. A total of 46 descriptors is obtained in each
feature extraction. The extraction of sub-band fluxes and MFCCs is repeated for each

music database – GTZAN, RWC and AF.RWC.

Analysis window The short segments were extracted from the audio signals using

window functions in order to taper the audio data and thus avoid spectral leakage, which

is a common effect of the DFT. Spectral leakage is produced when the signal contains

frequency components that do not comprise complete cycles of the sine wave for a

given sampling rate. The Hanning, Hamming and Blackmann windows are commonly

used window functions that remove the tails produced by frequencies that cannot be

represented by a single sample. There is no ideal analysis window that can remove the

spectral leakage at a high resolution (J. O. Smith, 2010), but the Hamming window is
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Category Feature Description

Spectral Mel-Frequency Cepstral Coef-
ficients (13 features)

Used for speech recognition, they
can describe the spectral shape of
the sound. Its computation involves
five main steps including the conver-
sion of signal frame into a mel scale
representation. (Logan et al., 2000;
Alluri & Toiviainen, 2010b)

Spectro-temporal Sub-band flux (10 features) Fluctuations of frequency and am-
plitude in ten octave-scaled sub-
bands of the spectrum. The spec-
tral flux is calculated –taking the
Euclidean distance of each succes-
sive spectrogram frame– for each of
the filtered audio channels, obtain-
ing 10 sub-band fluxes. (Logan et
al., 2000)

Table 3.4: Features extracted in the present study. For each feature the mean value
plus its standard deviations was extracted.

considered most favorable for Fourier Transform (Lartillot, 2010) and it was therefore

applied in this study.

Spectral features

Two out of the eight features of the acoustic subset investigated by Alluri and Toiviainen

(2010b) were extracted, namely the MFCC coefficients and the sub-band flux. However,

unlike the aforementioned investigation, in this study both the means and standard

deviations of each of the first 13 MFCC coefficients and the 10 sub-band flux frequency

bands were extracted from the musical excerpts. Thus, a total of 46 attributes were

extracted from the audio files. In Table 3.4, the features that were used in the study are

presented.

The idea behind adding the standard deviations of these features was to make a com-

promise between detail and central tendency for the classification stage and to offer an

estimate of the relative impact of the standard deviations over the classification perfor-

mance.

Sub-band flux set of features The spectral flux of ten sub-bands was extracted

using frame analysis and later the mean and standard deviation for each sub-band flux
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was obtained. The extraction method and parameters suggested by Alluri and Toiviainen

(2010b) were kept intact for this study.

The sub-band flux was calculated using two main steps, namely filter-bank decompo-

sition and spectral flux. The first step performs a decomposition of the signal using a

bank of filters. The second step computes a spectrogram for each frequency channel and

calculates the distance between successive frames of the spectrograms. As a result, a

spectral flux for each frequency channel is obtained. (Alluri & Toiviainen, 2010b)

In order to perform the filter-bank decomposition, which models a process of the auditory

system by which the cochlea performs a frequency analysis of vibrations, the authors of

the original study have chosen a method suggested by Scheirer (1998). The aim of this

method was to perform tempo analysis and beat extraction of polyphonic audio signals

with arbitrary timbral information. This filter-bank includes a set of low-pass, band-pass

and high-pass elliptic filters that are non-overlapping. (Scheirer, 1998; Lartillot, 2010)

The chosen elliptic filters for the sub-band flux were of second-order, as against the

original model by Scheirer (1998) using sixth-order filters. Arguably, in Alluri and

Toiviainen (2010b) the attenuation of higher frequencies has been done gradually in

order to model human hearing –in the manner of the equal-loudness contours, which

do not have steep attenuations. The first elliptic filter used for the sub-band flux set is

low-pass and the last one is high-pass, while the remaining eight are band-pass.

The ten sub-bands cover a full frequency range for a sampling rate of 44.1 kHz and are

octave-scaled. The boundaries of the sub-bands are at around half-sharp G and the

ranges are as follows for each sub-band: 0-50 Hz, 50-100 Hz, 100-200 Hz, 200-400 Hz,

400-800 Hz, 800-1600 Hz, 1600-3200 Hz, 3200-6400 Hz, 6400-12800 Hz, and 12800-22050

Hz (Alluri & Toiviainen, 2010b). The octaves covered by each sub-band are shown in

Table 3.5 2.

For the second step of the computation, which obtains the spectral flux for each of the sub

bands, a spectrogram of each sub-band was calculated using STFT. Each spectrogram

is a frame-decomposition of the audio signal energy for each of the frequency channels

that were obtained in the first step. (Lartillot, 2010)

In order to calculate the spectrogram, a computation of the spectrum for each frame

was used in Alluri and Toiviainen (2010b) using 20 milliseconds frames. The method

used for calculating the spectrum of a signal is the FFT, or the computationally efficient

form of the DFT (Cooley & Tukey, 1965; Lartillot, 2010).

2As a matter of fact, the octaves in Table 3.5 are slightly shifted from G. The exact pitch chroma
for each frequency is G plus 35 cents (¢), or 7

20 of a semitone. One octave is equal to 1200 cents and in
equal temperament one semitone is equal to 100 cents.
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Frequency Range Octave Scale
Sub-band No. 1 0 - 50 Hz – G1(+35)
Sub-band No. 2 50 - 100 Hz G1(+35) – G2(+35)
Sub-band No. 3 100 - 200 Hz G2(+35) – G3(+35)
Sub-band No. 4 200 - 400 Hz G3(+35) – G4(+35)
Sub-band No. 5 400 - 800 Hz G4(+35) – G5(+35)
Sub-band No. 6 800 - 1600 Hz G5(+35) – G6(+35)
Sub-band No. 7 1600 - 3200 Hz G6(+35) – G7(+35)
Sub-band No. 8 3200 - 6400 Hz G7(+35) – G8(+35)
Sub-band No. 9 6400 - 12800 Hz G8(+35) – G9(+35)
Sub-band No. 10 12800 - 22050 Hz G9(+35) –

Table 3.5: Sub-band flux frequency ranges and pitch intervals

Finally, ten sub-band flux values are obtained by calculating the spectral flux of each

spectrogram. The spectral flux is a measure of distances between the magnitude spectra

of successive frames, thus giving account of their temporal evolution. A common distance

measure, which is the Euclidean distance d, was suggested by Alluri and Toiviainen

(2010b) using the following formula:

d =

����
N�

n=1

(At [n]−At−1 [n])
2

where the audio frames at times t and t-1 are normalized to have Euclidean norm unit:

ΣA[n]2 = 1

The optimal window size of the sub-band flux has been previously studied by correlating

perceptual similarity ratings with the results of the feature extraction using different

window lengths. Since no significant changes where found in the correlation values

between the different analysis sizes, a 25 milliseconds window with an overlap of 50% was

used, following previous literature in Music Information Retrieval (Alluri & Toiviainen,

2010b).

Mel-Frequency Cepstral Coefficients As often as not, the MFCCs 1-13 are ex-

tracted for MIR tasks. In this study, these standards were complied using frame decom-

position (25 milliseconds window and half overlapping) and subsequently the mean and

standard deviation of each coefficient was obtained. The first MFCC coefficient, usually

called MFCC №0 is discarded since it correlates with the signal log energy.

These descriptors come from the area of speech recognition and from the aim to suggest

a perceptually plausible representation of the human speech signal (Mermelstein, 1976).
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The spectrum is logarithmically scaled into a mel-spectrum in order to obtain frequencies

that are evenly spaced according to human perception. A common function (Deemagarn

& Kawtrakul, 2004) for calculating a mel pitch from the frequency in Hz is

mel(f) = 2595× log10(1 +
f

100
) .

For the computation of the MFCCs, firstly the short-time Discrete Fourier Transform

is obtained on each analysis window in order to obtain the spectrum. The next step

is to map the result onto mel banks of bandpass filters. The logarithmic scaling of the

frequencies is then computed to “shrink” frequency ranges above 1 kHz and to stand

out the range of frequencies under 1 kHz since this range is perceptually better for

distinguishing frequency differences between notes. Next or simultaneously to the prior

step, the signal is generally reduced into 40 mel bands. The logarithmic square of the

obtained mel-spectrum is transformed using a method called Discrete Cosine Transform

(DCT). The DCT is similar to the Discrete Fourier Transform but unlike the latter it is

obtained only with the real part of the input. Each of the amplitudes of the obtained

cepstrum is an MFC coefficient.

As aforementioned, the first coefficient (MFCC №0) is normally discarded in the litera-

ture because it correlates highly with the signal power, and only the next 13 periodicities

of the log spectrum are calculated. It has been studied that very high MFCCs corre-

late highly with pitch, so they are not considered timbral descriptors and therefore are

usually not calculated (J. B. L. Smith, 2010)

The MFCCs perform a cepstral analysis on the spectrum shape by computing, from the

spectrum itself, a signal with periodicities (J. B. L. Smith, 2010). The signal cepstrum

roughly involves a Fourier analysis on the observed spectrum. The real cepstrum of a

signal is obtained as the inverse Fourier transform of the logarithm of the signal power

spectrum (Yeh, 2008).

Data processing

After the feature extraction, the primary sets were exported into Weka (Waikato Envi-

ronment for Knowledge Analysis), a suite of machine learning algorithms that is released

as free software under the GNU General Public License (Witten & Frank, 2005).
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Figure 3.3: Analysis diagram presenting the main stages of the study. This process
is repeated for each music database (GTZAN, RWC and AF.RWC). The factor levels,
except for the databases, appear as shadowed boxes. For the evaluation, 10-fold cross-

validation has been applied.
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The collected data was processed using standard procedures for splitting into training

and testing sets. Prior to the classification, the datasets were organized into combina-

torial subsets. In the factorial design called “Top 5”, these subsets were reduced using

feature selection. Figure 3.3 illustrates in detail the analysis stage of the study.

Stratified splitting

In order to ensure that both the training and test set had an equal distribution of songs

belonging to a same genre, the primary sets that contained the feature vectors were

split into training and testing datasets in a random and stratified fashion. This method,

called stratified splitting, was implemented in order to reduce the chances of obtaining

invalid classification performance results. (Saari, 2009)

Standardization

The purpose of performing a dataset standardization is to ensure that initially each

feature is equally relevant for the feature selection algorithm (Saari, 2009).

Each attribute value x of the train set was subtracted by the mean value µ for that

attribute across all instances and the result divided by the standard deviation σ of that

mean value. The z-values

z =
x− µ

σ

have been computed prior to the feature selection process. This method scales the train

dataset in such a way that each of the extracted features has µ = 0 and σ = 1. Also the

test set feature values were scaled according to the standardization information of the

train set. In order to prepare the test set with the same parameters as the train set, the

batch filtering option has been used for standardization in Weka.

Combinatorial subset generation

In order to analyze the relative relevance of the descriptors under study, an analysis of

the dataset into subsets was implemented. These combinatorial subsets pointed to offer

better comparisons between the musical features, by separating or combining them for

the purpose of classification. Besides analyzing the interactions between features in the

classification, the aim was to evaluate the importance of the standard deviations for

this task. Of the chosen musical descriptors, a total of six combinatorial subsets were
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created prior to the feature selection stage.The following combinatorial feature subsets

have been generated:

mfcc Mel-frequency Cepstral Coefficients. Mean feature values (feature vector size =

13).

sbf Sub-band Fluxes. Mean feature values (feature vector size = 10).

mfcc.sbf Mel-frequency Cepstral Coefficients and Sub-band Fluxes. Mean feature val-

ues (feature vector size = 23).

mfcc.std Mel-frequency Cepstral Coefficients. Mean and standard deviation feature

values (feature vector size = 26).

sbf.std Sub-band Fluxes. Mean and standard deviation feature values (feature vector

size = 20).

mfcc.sbf.std Mel-frequency Cepstral Coefficients and Sub-band Fluxes. Mean and

standard deviation feature values (feature vector size = 46).

3.2 Feature selection

For the “Top” full-factorial design of this study, an important factor was added that

makes it distinguishable from the “All” design. This factor, namely attribute selection,

consisted in three levels or approaches to feature dimensionality reduction. The aims

were to reduce the dimensionality of the combinatorial subsets and secondly to achieve a

proper estimation of the relevance of individual attributes within the sub-band flux and

MFCC feature sets. Using an attribute ranking procedure, a total of five best ranked

attributes were selected for each combinatorial subset of the “Top” design. The reduced

combinatorial subsets were utilized both for rank aggregation (see Section 3.3 below)

and for classification.

Two methods have been used in this study for ranked feature selection in order to select

relevant features, avoid correlated features and reduce the dimensionality down to five

attributes. These two popular approaches are wrapper selection and filter selection.

Wrappers were used in this study by implementing a Greedy Stepwise heuristic search

method and both backwards elimination and forward selection approaches. Besides these

two approaches, filter selection was used to obtain classifier independent results. The

chosen method for filter selection was GainRatio, an optimized version of the Information

Gain. This kind of filter selection is based on the Kullback-Leibler divergence.
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For the wrapper selection, a total of three learning algorithms has been used as meta-

classifiers, namely bayes (Näıve Bayes), svm (Support Vector Machines) and knn (k -

Nearest Neighbors). The reduced combinatorial subsets based on wrappers utilized the

same learning algorithm as meta-classifier and later for the classification stage. For

example, wra.be (wrapper selection with backwards elimination search method) using

svm (Support Vector Machines) meta-classifier for feature selection also maintained svm

for train/test classification.

The aim of the Greedy Stepwise subset evaluator is to find the feature set with the highest

merit based on its classification accuracy. In forward selection mode, the starting point

is an empty set of features. Each attribute is firstly evaluated individually, so n subsets

are created, and each subset contains only one of the n attributes. For this step, the

best of the n subsets is the one with the best single attribute –based on the accuracy

provided using a meta-classifier. The “winner” subset is kept and the next step is to

expand its size by adding another attribute. From the remaining n − 1 attributes, the

attribute that improves the merit the most when it is added to the subset is selected

and included in the subset, which is now expanded to two attributes. In the “ranking”

mode of the Greedy Stepwise operation, the search continues expanding the subset until

the whole search space is covered, even if the overall merit is reduced by the feature

expansion. Since the aim is to create a ranking of attributes, the search is forced to the

far side of the search space. The operation adds to the subset, at each step, a single best

attribute. In backwards elimination mode, the process is similar but in inverse direction,

so the starting point is a subset with n attributes and these are removed one at a time.

(Saari, 2009)

In this study, only the best five attributes from the ranking feature selection were re-

tained in the combinatorial subsets. Therefore, each of the classification models of the

“Top” design were based on final feature vectors of 5 dimensions. The ranking of at-

tributes was obtained based on an arbitrary number of final dimensions that were set a

priori. Different approaches like, for example, a search of the smallest feature set with

the highest performance could have been more suitable at this point. However, the focus

was more on the individual attributes and their relative weight in the classification than

on obtaining the most efficient models.

3.3 Classification and evaluation

The last section of the present chapter focuses on the methods that were utilized for the

culmination of the data analysis. The steps followed for the collection of classification

metrics based on key factor levels are described, including explanations of the learning
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algorithms that were implemented for train and test classification of the data. Moreover,

the applied method for obtaining a relative valuation of attributes from the reduced

combinatorial feature subsets is presented.

Classification

Finally, the train classification models were built based on different learning algorithms.

Train classification accuracies and test classification results were obtained from the

datasets. The models were validated using 10-fold cross-validation, requiring an av-

eraging step in order to summarize the results of the cross-validation folds.

Learning algorithms

The learning algorithms used for performance assessment with the wrappers and for

train/test classification were the k -Nearest Neighbors (k = 5), Sequential Minimal Opti-

mization (an optimization of the Support Vector Machines) and a Näıve Bayes classifier.

Support Vector Machines These widely used algorithms belong to the family of

binary linear discriminative classifiers, and operate by building a separating hyperplane

between the data points of each class. In order to avoid overfitting, the data is separated

into two classes by finding the separating hyperplane that maximizes the geometric mar-

gin between class members and non-class members (West, 2008). The training examples

that are not close to the decision boundary receive zero weights. If the weighted exam-

ples are removed, the position of the separating hyperplane would change. Therefore,

these the training examples that lie close from the hyperplane and thus take part in its

specification are called supportive patterns or support vectors (Boser, Guyon, & Vapnik,

1992).

K-Nearest Neighbors Instance-based classifiers create a model of the data at the

classification runtime. This goes in contrast with other classifiers such as svm, which

attempt to create a model and the class division of the data before the classification.

Therefore, the discriminative knn learning algorithms are commonly known as lazy clas-

sifiers, and calculate posterior probabilities by finding k nearest neighbors of the new

instances inside the training data. The parameter k represents the neighborhood magni-

tude used for the classification of each instance. A distance function, like for example the

Euclidean distances, can be used in order to compute the distance between instances.

Finally, a posterior probability of class membership P ( x — y ) is estimated (West,

2008).
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Näıve Bayes These popular probabilistic classifiers depend on three main assump-

tions. The first assumption is that no latent or hidden features would be influential in

the classification. Another assumption for these classifiers is that there are no correla-

tions between the features. The third is an assumption of normal distribution of the

feature values within each class. Despite the second assumption, which is called class-

conditional independence and that it is usually not met, this classifier provides fairly

good results especially in combination with feature selection methods. The probabilis-

tic model of the data is obtained by calculating a class-conditional probability density

function for each feature vector using means and standard deviations (Witten & Frank,

2005).

A Bayes’ rule can be used to form a classifier for each new feature vector by determining

a posterior distribution for each feature vector, or the probability of a feature vector x

to belong to a class y (Barber, 2010). This is possible to achieve because both the prior

probability P ( x ) – the probability of class membership before any observation is

made about the classes– and the likelihood –probability of the class y being the value x

present– have been estimated during the training process (Duda et al., 2001).

Cross-validation

A prevalent procedure for evaluating the classifier performance by averaging out the

error in the modeling of the data is called cross validation. This method partitions the

data into training and test samples and repeats the whole classification routine a number

of times using a given learning algorithm. Cross validation builds and evaluates multiple

models, one for each cross-validation fold.

In this study, each time a new random stratified splitting of the primary dataset was

performed. In other words, first the primary dataset was randomly split n times into

training and testing sets in order to obtain n classification results. Finally, an overall

classification accuracy was obtained by calculating the average of the cross-validated

classification accuracies (Saari, 2009).

In a review on different validation methods by Refaeilzadeh, Tang, and Liu (2009), k -

fold cross-validation is mentioned as the most widely used validation method for data

mining. The drawback of this method is that the k training sets can overlap to each

other, however the k test sets remain independent.

The most used cross-validation approach in data mining is 10-fold cross-validation, of-

fering a compromise between generalizable predictions on one hand, and less overlapping

training sets and relatively larger testing sets on the other hand. Multiple run k -fold
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cross-validation (i.e., a repetition of the cross-validation and posterior averaging) pro-

duces a large amount of performance measurements and it has been recommended for

reliable estimates (Witten & Frank, 2005), e.g. in binary data (Bouckaert, 2003), but it

is not commonly used in data mining.

For the present study, one run of stratified 10-fold cross-validation has been performed in

order to evaluate the extent to which the models could be generalized. Cross-validation

is recommended in approaches where the amount of data is scarce; in studies where the

available data was sufficient, this step was avoided (Downie, Ehmann, & Tcheng, 2005).

Averaging The training and test cross-validated models were subsequently averaged,

obtaining 54 test classification accuracies for the “All” design and 162 test classification

accuracies for the “Top” design.

Evaluation

For the evaluation of the results, the performance measure accuracy

Accuracy =
TP + TN

TP + TN + FP + FN

was used, and for each cross-validated model an average accuracy was calculated.

Relevance estimates of individual attributes

The rank aggregation problem roughly refers to the search of an optimal ranking given

two or more ordered lists. It is a combination of various ranking lists into one optimal

rank ordering (Pihur, Datta, & Datta, 2007). In order to find an optimal ranking, a

simple methodology called Borda count finds the average ranks of each element across

all lists. Rank aggregation was performed using R, a programming language and software

environment available under the GNU GPL 3. An example of the code implemented for

the Borda count can be found in Appendix C.

A total of 16 “optimal” lists of five attributes each were calculated based on the ex-

plored factors: six combinatorial feature subsets, seven attribute selection methods, and

three music databases. For the attribute selection method we have calculated seven

rank lists including the filter selection approach and six wrapper selection approaches,

since we have explored three meta-classifiers for each of the greedy selection algorithms.

3http://www.r-project.org/

http://www.r-project.org/
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Moreover, a list combining all the wrapper selection methods was obtained. For the

combinatorial subsets, six lists were created across all music databases. For the mu-

sic databases, three lists summarize the ranks. These lists are presented in the second

section of the next chapter.
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Results

The general purpose of the experiment was to compare the accuracies between the sub-

band flux- and the MFCC-based models and to roughly estimate which of the attributes

within these feature sets would be of higher relevance for music genre classification

tasks. In the present chapter, the outcomes of our approach with respect to classification

accuracies and relative relevance of attributes are examined in detail.

4.1 Performance

In order to obtain measures of performance for this study, the ten folds of each cross-

validated model were firstly averaged. The results have been organized by averaging the

results for each of the music databases, since the accuracies are substantially dependent

on the data. Table 4.1 shows the average accuracies for both designs, each of these

divided into the training and testing sets to offer an estimation of model overfitting.

For all the designs, the GTZAN model appears as the music database that yields the

lowest accuracies. The table shows mostly better results for the “All” design when

compared to the “Top” design. The “All” design contains models that were not subjected

to feature selection.

The highest of the average test accuracies is been found for the “All” RWC music

database at 62.46%, while the “Top” test models –i.e., those to which feature ranking

and selection has been applied– for the GTZAN database show the lowest test accuracies

at 36.24%. In spite of the design, the test accuracies showed lower accuracies than the

train accuracies, following the expected tendency. Typically, lower results are found for

the test accuracies, since the classification of instances that were not used for building

the classification model is more challenging than the classification of the training set,

45
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which has already been used for building the model. We also observe that for each of

the databases, the higher accuracies are found for the “All” training models, while the

“Top” test models yielded lower results.

Design and set GTZAN RWC AF.RWC
all – train 58.67 67.66 68.31
all – test 50.66 62.46 55.35
top – train 44.03 62.07 62.91
top – test 36.24 57.41 52.57

Table 4.1: Mean accuracies per music database for both factorial designs.

Table 4.2 shows the results across music databases in order to offer an estimate of

the mean performance provided by the combination of the spectral descriptors. It is

clear, based on this information, that the feature ranking and selection leads to poorer

classification results. If the results between the train and test sets are simply subtracted,

a difference of 8.45 is found for the models that were not subjected to attribute selection

and a difference of 7.41 for the “Top” designs.

Design and set Accuracy
all – train 64.86
all – test 56.41
top – train 56.31
top – test 48.90

Table 4.2: Average accuracy for both factorial designs across music databases.

Table 4.3 shows results across music databases for each of the combinatorial subsets and

each of the designs divided into train and test sets. The mfcc.sbf.std obtained the

highest results for each category except for the “Top” test design accuracies, that where

higher in average for the sbf.std. The mfcc combinatorial subset showed the lowest

accuracies for each category. It is also apparent that the average accuracies were higher

for the sbf than for the mfcc. When the test results between the “All” and the “Top”

are compared, the highest amplitude for the mfcc.sbf.std is observed at 12.62, and
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the lowest for the sbf means at 3.5, showing the expected tendency of obtaining better

results when the combinatorial subsets have more attributes. A reduction from 10 to

5 attributes (sbf) yields to a much smaller difference in classification accuracy than a

reduction from 46 to 5 attributes (mfcc.sbf.std). In addition, and for all the designs

and sets, there is an increase in the classification accuracy for the models with standard

deviations in the combinatorial subsets (sbf.std and mfcc.std) when compared to the

models in which the subsets contained only mean values (sbf and mfcc respectively).

Design and set mfcc sbf mfcc.sbf mfcc.std sbf.std mfcc.sbf.std

all – train 59.79 60.81 66.26 64.59 64.53 73.31
all – test 48.79 54.15 58.40 54.74 56.88 63.98
top – train 51.42 57.85 57.99 52.94 58.74 59.08
top – test 42.06 51.1 50.98 45.17 51.79 51.36

Table 4.3: Accuracy across music databases for each combinatorial subset and for
both factorial designs

Table 4.4 shows, for both experimental designs, the subtraction between the train and

test set accuracies for each combinatorial subset. The data has been presented separately

for each of the music databases. The sub-band flux mean subsets (sbf) yield the lowest

absolute differences in all the cases, followed by the sub-band flux mean and standard

deviation subsets (sbf.std). It can also be seen that the artist filtered music database

(AF.RWC) shows the highest differences between training and test models, regardless of

the combinatorial subset. The lowest differences are given for the RWC database. Also

for all the music databases, the differences for the mfcc.std models are lower than the

differences for the sbf.std, but they are higher when comparing sbf.std and sbf.

music database mfcc sbf mfcc.sbf mfcc.std sbf.std mfcc.sbf.std

gtzan 10.36 5.88 7.53 9.23 6.63 8.42
rwc 5.19 4.28 5.18 5.17 4.86 6.54
af.rwc 17.45 9.81 10.88 15.15 11.47 13.02

Table 4.4: Absolute differences in average accuracy between train sets and test sets
for each combinatorial subset and music dataset
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Figures 4.1 and 4.2 provide similar information to the results shown in Table 4.3. These

two box plots, one for the models containing all the attributes and another for those

only keeping the “Top” models, show descriptive statistics for the accuracies of each

combinatorial subset. Two whiskers are shown for each subset; the black and white

whiskers contain information about the training models, while the red and light blue

whiskers refer to the test set models. For each whisker the thick horizontal line is

the classification median, the lower and upper sides of the box are the first and third

quartiles, the short horizontal lines are the sample minima and maxima (accuracies at

±3σ from the mean) and the dotted circles are outliers.

These figures show clear differences between the combinatorial subsets, especially be-

tween the medians in Figure 4.1. Also for the same graph, the difference between training

and test set medians in the combinatorial subset sbf is smaller when compared to other

combinatorial subsets. In Figure 4.2 some differences can be found between models

where sub-band flux means are or could be among the five chosen attributes; the differ-

ence between the medians is larger for mfcc and mfcc.std when compared to the rest

of the combinatorial subsets.

It is also visible that Figure 4.1 presents less overlapping between the training and test set

distributions than Figure 4.2. To illustrate this, the distance between the first and third

quartiles and between sample minima and maxima for both training and test models is

greater than in the models that were subjected to feature selection (presented in Figure

4.2). This suggests that the dimensionality reduction that has been implemented has

increased the variability of the results.

Another difference between both designs refers to the outliers, which can occur due to

chance, measurement errors or a tendency to leptokurtosis (high peakiness around the

mean and fatter tails) in the distributions. The “All” design (Figure 4.1) presents less

outliers than the “Top” design (Figure 4.2), and most of the outliers are for the training

data –actually there are no outliers present in the testing data for the “Top” design. It

can also be seen in both figures that the mfcc combinatorial subsets do not show any

outlier models, and that the only combinatorial subset in which there are outliers at

+3σ instead of −3σ is mfcc.std for the “All” design and the training set.
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Figure 4.1: Accuracies for each combinatorial subset - “All” design. The white
whiskers represent the training set descriptions while the blue whiskers depict statistical

summaries for the test set.

Figures 4.3, 4.4 and 4.5 visualize, for each music database, classification results within

each combinatorial subset. The results for each design and set are connected with lines

for a better comparison. The red lines illustrate the combinatorial subsets with all the

attributes and the brown lines represent the combinatorial subsets that were subjected

to feature selection. Dashed lines and continuous lines were used to indicate training

sets and test sets, respectively.
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Figure 4.2: Accuracies for each combinatorial subset - “Top 5” design

In Figure 4.3 the accuracy profiles for the GTZAN music database are presented. For the

sbf and sbf.std models, it can be seen that the attribute ranking and selection stage

does not affect much the accuracies when compared to the “All” design accuracies. The

most notable differences between designs appear in the mfcc.sbf.std models, perhaps

either showing overfitting or an impractical attribute selection. Concerning the models

with feature selection, their accuracy profiles are almost horizontally straight –as if the

results were independent of the combinatorial subset.

In contrast with Figure 4.3, Figure 4.4 shows in overall higher accuracies for the RWC

database. The accuracy profiles appear much more concentrated and there are clearer

differences between each combinatorial subset. It can be noticed also in this figure
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Figure 4.3: Accuracy profiles for each combinatorial subset and design - GTZAN
music database.

that the sbf and sbf.std models do not decrease much in accuracy if dimensionality

reduction is applied, as opposed to other models.

Figure 4.5 shows that the artist-filtered RWC music database yielded lower accuracies

when compared with the unfiltered RWC database in Figure 4.4. These differences could

be due to the reduction of both the artist and album effects and also to a lessening of

the number of examples for some of the genre classes. In addition, it can be seen in

Figure 4.5 for the artist-filtered RWC database that similar accuracies were obtained

for “Top” and “All” design accuracies of a given combinatorial subset and set. It seems

that the results were not sufficiently affected by the attribute reduction, and once again,

this was especially the case for the sbf and sbf.std combinatorial subsets.

Considering the three music databases, and based upon the differences between the

highest and the lowest accuracies that are present in the graphs, it can be noticed
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Figure 4.4: Accuracy profiles for each combinatorial subset and design - RWC music
database

that the GTZAN database shows high variance in the accuracies, followed by AF.RWC.

In comparison with the aforementioned databases, the RWC database models present

relatively even results regardless of the design, set or combinatorial subset – except for

mfcc.sbf.std and mfcc.std that yielded great differences between designs. Moreover,

across combinatory subsets, RWC appears to be the database that leads to less over-

fitted results due to small differences between training and test sets. On the contrary, the

AF.RWC database models showed clear differences between the profiles of each design.

Overall it is observed that the sbf subset shows higher accuracies when compared to mfcc

subset, although in the GTZAN database where the profiles are less regular and greater

differences can be observed between the designs. However, based on the three figures
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Figure 4.5: Accuracy profiles for each combinatorial subset and design - AF.RWC
music database

it can be deduced that the dimensionality reduction affects more the mfcc accuracies

than those of the sbf combinatorial subsets. This could suggest that there are more

features in the sub-band flux set showing a high correlation than in the MFCC set and

therefore the former presents more redundant features than the latter for an AGC task,

since their inclusion does not significantly improve the results.

For the accuracies based on modeling with all the features of a subset, the combination

of MFCC and sub-band fluxes (mfcc.sbf) can outperform the accuracies for sbf either

mildly or highly (see GTZAN “All” design in Figure 4.3). However, the difference in

accuracy between both “All” and “Top” designs is higher for mfcc.sbf with respect to

sbf. In addition to this, the “Top” mfcc.sbf accuracies are higher than those of the

“Top” mfcc subset accuracies, showing that for subsets of the same size, the addition of

sub-band flux descriptors can improve the overall accuracy.
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It can also be added that the combination of MFCC and sub-band flux (mfcc.sbf)

yields quite similar results, for all music databases, designs and sets, to the combination

of sub-band flux means plus its standard deviations (sbf.std). Finally, the “Top” design

results between mfcc.sbf and mfcc.sbf.std are fairly similar to each other. We will

analyze this information below based on the rank aggregation results.

4.2 Relative attribute relevance

As previously mentioned in Section 3.3, rank aggregation refers to a search for optimal

ranked lists that offer a summarization of more than two rankings. This method was

utilized in the “Top” design, since it consists in ranked datasets of five elements each.

The aim was to estimate the relevance of the sub-band flux and MFCC individual

attributes across these datasets. The results were organized into 16 “optimal” lists that

are presented in Tables 4.5, 4.6 and 4.7. Notably, a total of 53 occurrences in the lists

for the sub-band flux attributes, from which 39 corresponded to the mean values and 14

to the standard deviations. For the MFCC attributes 27 occurrences were found, from

which 23 were mean values and 4 corresponded to their standard deviations.

The listed sub-band flux means, ranked by number of occurrences are №2 (9 occurrences),

№10 (6 occurrences), №3 (4 occurrences), №4 (4 occurrences), №6 (4 occurrences), №8

(4 occurrences), №9 (4 occurrences), №7 (2 occurrences), №1 (1 occurrence) and №5

(1 occurrence). The sub-band flux standard deviations are №2 (6 occurrences), №10 (3

occurrences), №8 (2 occurrences), №9 (9 occurrences) and №3 (1 occurrence).

The MFCC mean that appears the most in the rankings was the MFCC №1 (9 occur-

rences). It was followed by MFCC means №3 (3 ocurrences), №13 (3 ocurrences) and

№4 (2 ocurrences). The mean of the coefficients №5, №6, №8, №10, №11 and №12 were

listed once. The MFCC standard deviations that were listed in the aggregated ranks

are №1, №3, №8 and №11, with one appearance each.

In addition to the mentioned rankings, we have combined all the top 5 attribute rankings

from each fold, except for the models using filter selection, in order to obtain a general

optimal ranking across all wrapper methods and music databases.

In Table 4.5, each ranking combines a total of 18 datasets. Based on the results after

grouping the datasets according to seven approaches for dimensionality reduction, it

appears that the sub-band flux means №2 and №6, as well as the MFCC mean №1
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are relatively relevant. It can be taken into account at this point that the wrapper

method with backwards elimination (wra.be) for feature selection yielded relatively low

accuracies, as shown below in Appendix A.

Ranks (1 is best) gainr wra.be knn wra.be bayes wra.be svm
1 sbf mean 2 sbf mean 6 sbf mean 6 mfcc mean 13
2 sbf mean 10 sbf mean 4 sbf mean 8 mfcc mean 10
3 mfcc mean 1 mfcc mean 8 sbf mean 9 sbf mean 5
4 sbf std 2 mfcc mean 13 mfcc mean 11 mfcc mean 5
5 sbf mean 3 mfcc mean 12 sbf mean 7 sbf mean 6

wra.fs knn wra.fs bayes wra.fs svm
1 mfcc mean 1 mfcc mean 1 mfcc mean 1
2 sbf mean 2 sbf mean 2 sbf mean 2
3 sbf mean 10 mfcc mean 3 sbf mean 4
4 sbf mean 8 mfcc mean 4 mfcc mean 3
5 sbf std 2 sbf mean 10 sbf mean 3

Table 4.5: Aggregated rankings of top attributes for seven feature selection approaches

In Table 4.6 there are six rankings for the combinatorial subsets; each list groups together

21 datasets belonging to a combinatorial subset. Sub-band flux means and standard

deviations №2 and №10, as well as MFCC mean №1 appear more than once in the lists.

It is noteworthy that the sub-band flux №5 is not ranked in this list nor in the following,

since it clearly represents a part of the human audible range (between 400-800 Hz).

As we have mentioned above, the results between mfcc.sbf and mfcc.sbf.std are for

this design quite similar, but the results for the mfcc.sbf.std aggregated rank do not

show information that is consistent with those results. It would be expected that most

of the aggregated ranks for this subset had been related with the mfcc.sbf subset, that

is, either MFCC means or sub-band flux means. However, most of the ranks listed

correspond to standard deviations. In any case, finding similar results does not imply

that similar methods were used.

In Table 4.7 each of the columns refers to the rank aggregation of 42 datasets. The

aggregated rankings for each music database show a general tendency towards descriptors
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Ranks (1 is best) mfcc sbf mfcc.sbf

1 mfcc mean 1 sbf mean 2 sbf mean 2
2 mfcc mean 4 sbf mean 10 sbf mean 10
3 mfcc mean 6 sbf mean 9 sbf mean 8
4 mfcc mean 3 sbf mean 4 sbf mean 3
5 mfcc mean 13 sbf mean 6 sbf mean 9

mfcc.std sbf.std mfcc.sbf.std

1 mfcc mean 1 sbf std 2 sbf std 2
2 mfcc std 11 sbf std 10 sbf std 10
3 mfcc std 1 sbf std 8 sbf std 8
4 mfcc std 3 sbf std 3 sbf mean 2
5 mfcc std 8 sbf std 9 sbf std 9

Table 4.6: Aggregated rankings of top attributes for six combinatorial subsets

of low value, especially №1 and №2. However, there is a tendency towards high values

in the aggregated rank for the GTZAN music database. One descriptor, namely the

MFCC mean №1 appears ranked for the three databases.

Ranks (1 is best) gtzan rwc af.rwc
1 mfcc mean 1 sbf mean 2 sbf mean 2
2 sbf mean 10 mfcc mean 1 mfcc mean 1
3 sbf mean 9 sbf mean 1 sbf mean 3
4 sbf mean 8 sbf mean 7 sbf mean 4
5 sbf std 10 sbf std 2 sbf std 2

Table 4.7: Aggregated rankings of top attributes for three music databases

Finally, Table 4.8 summarizes the rankings of 108 datasets using a wrapper approach

for feature selection. Based on this table, it appears that the sub-band flux means are

relatively more relevant than its standard deviations and than the MFCC descriptors.

Overall, both the performance measures and the aggregated ranks offer clear tendencies

that suggest the suitability of the sub-band flux feature set for the purpose of music
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Ranks (1 is best) Wrapper feature selection
1 mfcc mean 1
2 sbf mean 2
3 sbf mean 7
4 sbf mean 4
5 sbf mean 8

Table 4.8: Aggregated rank of top attributes combining all the “wrapper” feature
selection methods

genre classification, particularly against the MFCCs. The next chapter puts forward

general considerations on the results described above.
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Discussion

In the present chapter, an exploration on the implications of the obtained results for

music genre classification and Music Information Retrieval in general is presented. The

focus of the analysis is set on model overfitting, classification performance and relative

attribute relevance. Moreover, significant limitations of this study and suggestions for

further research are discussed.

5.1 Overfitting models

The in-depth analysis presented in the last chapter suggests that the designs in which

attribute selection was applied yielded results that might over-fit less, as it is illustrated

in Figures 4.1 and 4.2, e.g. by comparing the overlapping between whiskers. In contrast,

and for the design that yielded less likeliness of model overfitting, the MFCC means –

and perhaps the standard deviations of these features as well– showed higher overfitting

tendencies, as it can be inferred from the difference between medians in 4.2 and as

suggested from Table 4.4.

Comparing the accuracies between the train and the test sets (Table 4.4) we find larger

differences in the MFCC subsets than in the case of the sub-band flux. This finding

could indicate a greater tendency to over-fit of both mfcc and mfcc.std when compared

to sbf and sbf.std. A smaller tendency of overfitting in sub-band flux models -or in

models where the sub-band flux could have been chosen as an attribute in the feature

selection stage- can be visualized in Figures 4.1 and 4.2 when comparing the difference

between medians for the training and test sets. This difference between the train and

test accuracy can be referred to as generalization ability. As seen in Table 4.4, a higher

generalization ability is found in the models where the only descriptors were sub-band

58
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fluxes. Within small combinatorial subsets, the models that only contained sub-band

flux means yielded the lowest tendency to over-fit.

Another finding that can be inferred from the accuracy profiles is that a reduced com-

bination of sub-band flux means and MFCC means (“Top” mfcc.sbf models) performs

on average better than a subset of top MFCC descriptors of the same number of di-

mensions (“Top” mfcc), while showing similar difference between train and test sets and

thus overfitting risks of comparable magnitude.

5.2 Accuracies

Based on the averaged classification accuracies, a number of critical observations can

be made about the studied descriptors. First of all, Tables 4.2 and 4.3 highlight the

expected tendency of large combinatorial subsets to increase the classification rates.

Other interesting remarks on the chance levels of the databases, on the musical features

under study and on the dimensionality of the models are described below.

Chance level

The chance level was lower for the classification models using the GTZAN database. This

makes sense because this database has more classes than the other databases that were

investigated. The lower chance level could partly explain the relatively low accuracies

yielded by this database. Comparing the accuracy profiles of Figure 4.3 with the profiles

for the databases RWR and AF.RWC, great differences are found for both designs as

well as a poorer overall classification performance. Probably the differences between the

GTZAN accuracies and the other models are better explained by their chance levels.

Descriptors

About the performance that were found for the investigated descriptors, better results

have been yielded by the sub-band flux than the MFCCs. Table 4.3 shows a better overall

performance for the sub-band flux when compared to the MFCCs, and this difference

appears to be more important when the number of attributes is reduced.

With respect to the accuracy profiles presented in Section 4.1 of the previous Chapter, it

is possible to do some remarks on the sub-band flux means in comparison to the MFCC

means. The combinatorial subsets that consisted only in sub-band flux means (sbf)

showed less tendency to over-fit than the MFCC means subsets, suggesting a higher
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ability to generalize to other scenarios. Moreover, the former yielded higher accuracies

or little decrease in test accuracies (see Figure 4.3) with respect to the latter. It remains

noteworthy that being the sub-band flux a set with less attributes than the MFCCs,

the sub-band flux descriptors showed less decrease in performance when the number of

dimensions was reduced to five.

The described tendency is similar when comparing the versions of these combinatorial

subsets that included their standard deviations (sbf.std and mfcc.std, respectively).

However, mixed results are seen after a comparison of mean accuracies between the

sub-band flux combinatorial subset (sbf) and the sub-band flux plus the standard de-

viations subset (sbf.std) and equivalently between the MFCC means and its subset

that included the deviations. Based on Tables 4.3 and 4.4, it can be suggested that the

“addition” of the standard deviations to the sub-band flux means and to the MFCC

means subsets could help in raising the classification accuracy. However, this addition

apparently decreases the model overfitting in the case of the MFCCs, and increases

overfitting of the sub-band flux models.

Based on these findings it seems that an optimal way to extract the sub-band flux would

be by only including mean values; and that the best way to extract MFCCs from the

signal would be including both means and standard deviations.

As we mentioned in Section 4.1, it is also noteworthy that the MFCC and sub-band flux

sets combined subset (mfcc.sbf) is comparable to the combination of the sub-band flux

means and standard deviations (sbf.std). This would suggest that the MFCC means

perform similarly to the standard deviations of the sub-band flux, unless these similar

results only occur when these descriptors are combined with the sub-band flux means.

Dimensionality

Table 4.1 shows that the models that were subjected to feature ranking and selection did

not perform as accurately as the models for which no reduction of dimensionality was

made. However, it is worth of notice that in the designs with dimensionality reduction,

the number of attributes was at least halved, so it was expected to find drops in the

classification rates.

The accuracy profiles have shown that, for the models based on the RWC and AF.RWC

music databases, the combinatorial subsets that contained only sub-band flux attributes

(sbf and sbf.std) have yielded very similar results for the reduced design and for the

design that was not subjected to dimensionality reduction. Yet the GTZAN reduced
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model accuracies for these subsets were relatively similar to the full subsets, when com-

pared to models corresponding to the other music databases. This relative independence

of feature selection for the sub-band fluxes has at least one possible explanation, namely,

that there could be dispensable attributes in the sub-band flux set as opposed to the

MFCCs for a genre classification task.

5.3 Relevance of attributes

In the last chapter, compelling results have been presented on the lists of attributes that

could be considered as relatively relevant for the purpose of music genre classification.

From the analysis of the aggregated rankings for the best five attributes of each dataset,

it has been discovered that the sub-band fluxes have been more times among the best

attributes than the MFCC coefficients and that the sub-band flux set yielded more

unique relevant attributes than the MFCC set.

The total number of sub-band flux attributes that were listed in the aggregated ranks

has almost doubled the amount of MFCC attributes. From these amounts, the number

of standard deviations was more than 17% for the MFCC attributes versus almost 36%

for the sub-band flux descriptors. This means that the relative relevance of the standard

deviations over the means is higher for the sub-band flux than for the MFCCs, as if it

made more sense to incorporate the sub-band flux standard deviations to the sub-band

flux means than to do the same with the MFCC standard deviations – however, this

idea is in clear contradiction with the findings presented in Section 5.2.

According to the aggregated “Top 5” ranks, all the sub-band flux means are relatively

relevant since the bands №1-10 have been listed in the aggregated ranks. From the

MFCCmeans, all the coefficients except №2, №7 and №9 could be considered as relatively

relevant. Out of 13 standard deviations for the MFCCs, only 4 attributes were listed,

while half of the 10 sub-band flux standard deviations have been computed within the

aggregated ranks.

Overall, the most frequent attributes in the lists were the sub-band flux mean №2 and

the MFCC mean №1. For the standard deviations, the most frequently listed attribute

was the sub-band flux deviation №2; the MFCC standard deviations were multimodal,

with one occurrence each.

The relative relevance of MFCC mean №1 suggested by the rank aggregation can be

explained by the fact that this coefficient correlates highly with the spectral slope, a

representation of the decrease in amplitude as a function of frequency (Theimer et al.,

2008). Further, strong negative correlations have been found between this second MFCC
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coefficient and the spectral rolloff (Pedersen & Diederich, 2007). The spectral rolloff gives

account of the brightness of the signal and yielded moderately high positive correlations

with the dimension of Activity in the study on polyphonic timbre perception by Alluri

and Toiviainen (2010a).

The relative relevance of the sub-band flux mean and standard deviation №2 can be

linked to the moderate positive correlation of the mean №2 with the perceptual di-

mension of Fullness found by Alluri and Toiviainen (2010b), and also to a moderate

correlation with the perceptual dimension of Activity in another study (Alluri & Toivi-

ainen, 2010a). Another pair of attributes that were also found many times as relevant,

the sub-band flux mean and standard deviation №10, has an analogous relationship

with the moderate positive correlations between the sub-band flux mean №10 and the

Activity perceptual dimension, found in the latter study.

5.4 Limitations

This study has a number of technical and design limitations that may have affected

the results and should be taken into consideration. These barriers concern the general

approach that was implemented, the music databases that were used, the chosen fea-

ture extraction parameters, the feature selection and rank aggregation stages, and the

problem of overfitting.

Bag-of-frames approach

One of the biggest limitations of the current “bag-of-frames” approaches in genre classifi-

cation is the fact that merely the statistics of the feature values are used for building the

classification model. Because of this, the classification results might remain the same

if the content of the audio signal was a random rearrangement in time (i.e. “spliced

and scrambled” version) of a musical signal (Aucouturier, 2008). To exemplify this, a

randomly reorganized version of a classical music excerpt may be classified as exper-

imental music by a human but a machine learning algorithm would still assign it to

the classical group. An important outcome of the “bag-of-frames” approach is that any

musical feature will offer a description of the average evolution of the signal based on

short fragments. This is averse to spectrotemporal features, compelling these to offer a

poorer description, if any, of the long-term development of the musical signal over time.
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Databases

A number of limitations have been found with respect to the databases that are orig-

inated by the lack of open data available for genre classification tasks. Besides that,

other issues regarding the preprocessing and analysis of this study must be mentioned.

First, the preprocessing of the AF.RWC database did not include the Electronic class,

due to an error in the processing. This makes it more difficult to compare the results

of RWC and its artist-filtered version AF.RWC. Second, a better analysis of the feature

sets could have been done if the classification results were analyzed for each genre class.

Furthermore, other limitations must be mentioned concerning the music databases:

No validation set It would have been possible to holdout, for each of the music

databases, a percentage of the training data for validation in order to provide a more

correct analysis of the classification performance, although it would have been necessary

to reduce the training set size and therefore the number of examples used in order to

build the model for each cross-validation fold.

Improper investigation of artist and album effect The effect of adding artist and

album filtering could not be analyzed, mainly due to the lack of proper databases for

investigating these effects. The number of examples contained in the AF.RWC database

is fairly small, thus the results yielded by the use of this database could not be contrasted

with those found for the RWC database.

Duplicates in used databases Both of the original music databases that were used

in this study (GTZAN and RWC) contain a number of duplicated songs. For example,

7 duplicates were found in the GTZAN database. The classification accuracies should

be underestimated since the same song could have been assigned to both training and

test sets for some of the models.

Unbalanced data and lack of examples per class The databases RWC and es-

pecially AF.RWC are highly unbalanced, meaning that the number of songs per class is

considerably variant. Further, some of the classes are significantly underrepresented due

to an insufficient amount of songs. This might have operated as a confounding variable,

thus affecting the classification accuracies.
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Feature extraction

For the feature extraction stage, the implemented design aimed to trim a total of 50

seconds from the middle of each file. However, the RWC and AF.RWC databases con-

tained only 30 seconds excerpts. As a result, the extraction of these two databases was

made with shorter audio when compared to the GTZAN dataset. Thus, the results for

each database are harder to compare.

Feature selection and rank aggregation

Some of the choices for the design of the feature selection and feature ranking stage where

done in an arbitrary way. Since the generated combinatorial subsets -mfcc, mfcc.sbf,

and so forth- do not contain the same subset size, it could be considered a mistake to

select the “top” five attributes of each subset. To solve this problem, an option would

have been to reduce the dimensionality using a ratio of the combinatorial subsets. This

could have been done, for example, by retaining the best ranked 1
4 ratio of attributes for

each dataset. However, this option is not available in Weka, the software used for feature

selection, and it would have also added challenges to the design of the rank aggregation

stage.

About rank aggregation, the relative relevance of the individual attributes that were

ranked is a matter not yet decided. The weights for the attribute ranking could not

be collected, therefore the Rank Aggregation was done using an unweighted method.

Consequently, it could be the case that all the ranked attributes had the first place in

the aggregated ranks. This means that the results for the “Top 5” lists could have been

randomly obtained.

Overfitting

The problem of overfitting should be taken seriously, especially for datasets with a re-

duced number of instances (Kohavi & Sommerfield, 1995). In this study, the analysis

included models that were likely to be highly over-fitted due to their factor level combi-

nation in the design. For example in the AF.RWC models, the mfcc.sbf.std subsets

have too many attributes and only few instances. The final overall accuracies could

show a bias in favor of these models. It would have been optimal to limit the analysis

by excluding the results of the smaller datasets and of the bigger combinatorial subsets

to avoid highly over-fitted outcomes.
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Again, it must be considered that there is no validation set in the design. The difference

between train and test accuracy is not enough as an estimate of overfitting and general-

ization ability. Therefore, the reported remarks on overfitting for this study should be

taken with reservation.

5.5 Conclusions

In a nutshell, we found a total of four fundamental outcomes of this study. Firstly, the

results show a better overall performance in accuracy for the sub-band flux than for the

MFCC. These results were clearer when the number of sub-band flux bands and MFCC

coefficients was reduced to five. Second, overfitting risk might not increased but instead

decreased after the dimensionality reduction –an opposite scenario was expected for the

case of the models subjected to wrapper feature selection. Third, the results suggest

higher tendency to model overfitting for the MFCC models than for the sub-band flux

models. It can be thus conjectured that the sub-band flux yields a higher generalization

ability. Finally, the relative feature relevancy of sub-band flux bands on both ends of the

frequency spectrum gives support to previous findings on the suitability of this feature

set for polyphonic music similarity.

Future research can focus on whether or not the sub-band flux is convenient for other

machine learning scenarios in Music Information Retrieval such as mood, artist and audio

tag classification, since arguably spectrotemporal descriptions of polyphonic music are

important in this tasks. Moreover, other challenges such as music structure analysis

can be benefited from these outcomes. Clearly, these designs shall be more cautious in

order to provide a more solid validation of the results, for example by incorporating a

validation set. Finally, other musical contexts, such as latin or non-western music genres

can deliver interesting insights on the potential of the sub-band flux feature set for music

genre classification.

The models for music genre classification that have been tested in this study might re-

sult very simple when compared to the processes of human classification. Music conveys

timbral information that probably serves as a crucial component for musical “class mem-

bership” decisions in humans, as supported by perceptual studies that found accurate

musical genre recognition times of about 250 milliseconds (Gjerdingen & Perrott, 2008).

However, the timbral information that is contained in the music is surely not enough as
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a description for genre class decisions. Music genre classification probably depends on

subjective and active processes that are developed early in life (Piaget, 1986).

Nevertheless, this study tried to shed light on the importance of perceptually inter-

pretable features for music information retrieval purposes. The results have supported

the evidence that these descriptors offer better accuracies and could be generalized bet-

ter to other musical data than descriptors of unproved perceptual motivation, while

lowering model complexity. Further research is needed to evaluate the scope of these

findings and possibly extend it to other problems in Music Information Retrieval and

computational music analysis.



Appendix A

Level plots for factorial designs

and sets

In the present Appendix the level plots for the “All” and “Top” factorial designs are

presented. These are of special interest for future reference, because they provide mean

accuracies for the 396 classification models that were obtained based on all the levels of

the full-factorial designs (see Tables 3.1 and 3.2).

The first figure (Figure A.1) presents the train set accuracies for the design that did not

include dimensionality reduction (“All” design). The second figure (Figure A.2) shows

the classification models for the test set accuracies of this design. The third (Figure

A.3) and fourth (Figure A.4) figures refer to the design that included a feature ranking

and selection stage (“Top” design) resulting in five attributes per model; these figures

contain the classification accuracies for the training and test set models, respectively.
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Figure A.1: Train set accuracies for the “All” design. A clear drop of accuracy can
be observed for the GTZAN database models builded with the Näıve Bayes (“bayes”)
classifier. The k-nearest neighbor (“knn”) classifier has yielded high train accuracies.
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Figure A.2: Test set accuracies for the “All” design. The results follow a similar
pattern with those of the previous figure, although the accuracies are lower (notice that

the color scale has changed).
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Figure A.3: Train set accuracies for the “Top” design. The wrapper feature selection
method using a backwards elimination approach (“wra.be”) yields relatively low results
for the GTZAN database models. Also good overall results are obtained with the k-

nearest neighbor (“knn”) classifier.
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Figure A.4: The pattern of classification accuracies is similar to the previous figure,
but showing lower accuracies (the color scale has changed in this figure with respect to

the previous one).
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Feature extraction in MIRtoolbox

The complete code for the feature extraction that was implemented for this study is

presented below. For the following design in MIRtoolbox for Matlab we counted with

the precious help of Olivier Lartillot, Vinoo Alluri and Pasi Saari.

1

3

% Flowchart des ign f o r f e a t u r e ex t r a c t i on

5

a = miraudio ( ’ Design ’ , ’ Extract ’ , −25, +25, ’Middle ’ ,

7 ’ Sampling ’ , 44100 , ’ Label ’ , [ 1 2 3 ] ) ;

9 % Mel−Frequency Cepst ra l C o e f f i c i e n t s

11 myflow . mfcc = mirmfcc ( a , ’Frame ’ , . 0 25 , ’ s ’ , 50 , ’% ’) ;

13

% Sub−Band Flux

15

myflow . sb f l ux = mir f lux ( m i r f i l t e r b ank (a , ’Manual ’ ,

17 [− I n f 5 0 ∗ 2 . ˆ ( 0 : 1 : 8 ) I n f ] , ’ Order ’ , 2 ) , ’Frame ’ , . 0 25 , 50 , ’% ’) ;

19 % Average and standard dev i a t i on along frames

21 myflow = mir s ta t (myflow ) ;

23 % Appl i ca t ion o f the ob j e c t to the audio f i l e s conta ined in f o l d e r s ( each

f o l d e r name corresponds to the musica l genre o f the inc luded exce rp t s )

25 output = mireva l (myflow , ’ Folders ’ ) ;

70
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27 % Exportat ion o f the s t a t i s t i c a l in fo rmat ion in to an a t t r i bu t e−r e l a t i o n

f i l e

29 mirexport ( ’ export . a r f f ’ , output ) ;



Appendix C

Rank aggregation - Borda count

method

The code for the Borda count method that was utilized for generating aggregated ranks

of attributes is based on the the following example and function written in R. The author

of the code, repeated verbatim, is Vasyl Pihur, developer of the R RankAggreg package.

2

x <− matrix (0 , 10 , 5)

4 for ( i in 1 : 10 )

x [ i , ] <− sample ( 1 : 1 3 , 5)

6

borda <− function (mat) {
8 uniq <− sort (unique ( as . vector ( x ) ) )

ranks <− matrix (c ( uniq , rep (0 , length ( uniq ) ) ) , ncol=2)

10

rank i <− l i s t ( )

12 for ( i in 1 :nrow( ranks ) ) {
rank i [ [ i ] ] <− unlist (apply (x , 1 , function ( z ) which( z == ranks [ i , 1 ] ) ) )

14 ranks [ i , 2 ] <− mean(c ( rank i [ [ i ] ] , rep (ncol ( x )+1, nrow( x ) − length ( rank i

[ [ i ] ] ) ) ) ) # g i v e rank nco l ( x ) + 1 when not appear ing in the l i s t

}
16 names( rank i ) <− 1 :nrow( ranks )

l i s t ( ranks [ order ( ranks [ , 2 ] ) , ] , rank i [ order ( ranks [ , 2 ] ) ] )

18 }

20 borda (x )

72
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