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Abstract

Processes that can be modeled with numerical calculations of acoustic pressure
fields include medical and industrial ultrasound, echo sounding, and environmen-
tal noise. We present two methods for making these calculations based on Helmoltz
equation. The first method is based directly on the complex-valued Helmholtz equa-
tion and an algebraic multigrid approximation of the discretized shifted-Laplacian
operator; i.e. the damped Helmholtz operator as a preconditioner. The second ap-
proach returns to a transient wave equation, and finds the time-periodic solution
using a controllability technique. We concentrate on acoustic problems, but our
methods can be used for other types of Helmholtz problems as well. Numerical ex-
periments show that the control method takes more CPU time, whereas the shifted-
Laplacian method has larger memory requirement.

Key words: Helmholtz equation, computational acoustics, algebraic multigrid
method, preconditioner, exact controllability, finite element method, spectral
element method
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1 Introduction

The many applications of computational acoustics in industry range from
medical measurement to machinery design. Computational acoustics enables
the simulation of situations that would be difficult to explore experimentally.
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Compared to experiments, computer simulations provide a safe, fast, and cost-
efficient way of providing guidelines for acoustical applications. Nevertheless,
solving problems arising from real life acoustic applications by computer de-
mands a considerable amount of time and memory. In particular, high fre-
quency phenomena are computationally demanding. This is because the res-
olution of the spatial discretization needs to be adjusted to the frequency
to achieve accurate results. Furthermore, solutions with high frequency suf-
fer from numerical dispersion. This so-called pollution effect [1] cannot be
avoided in two- and three-dimensional problems [2], but it can be reduced by
using higher order polynomial basis [3,4], among other methods. However, the
pollution error in discretizations necessitates finer meshes for high-frequency
problems.

Our aim is to develop efficient iterative solution methods for acoustic prob-
lems, which are modelled by the Helmholtz equation presented in Section 2.
Element methods, such as the finite element method (FEM) and the spec-
tral element method (SEM), have emerged as generic tools for discretizing the
Helmholtz equation. The review [5] describes research efforts on this field (see
also [6,7]). Finite element discretizations of the Helmholtz equation are non-
Hermitian and indefinite. For mid-frequency and high-frequency problems, the
resultant matrix can be extremely large, which often limits the feasible size
of the scattering problem under consideration. As a result, the finite element
discretizations of the Helmoltz equation are a challenge for the current solvers,
and require the use of iterative methods such as the GMRES method or the
BICGSTAB method [8]. These methods, in turn, require a good precondi-
tioner for the discretized Helmholtz equations in order to have reasonably fast
convergence.

In Section 3, we consider a shifted-Laplacian preconditioner that is obtained
from the discretized damped Helmholtz operator. A preconditioner based on
approximating a damped Helmholtz operator by a geometric multigrid cycle
was considered in [9]. There, the scattering problems were posed on a rect-
angular domain and they were discretized using low-order finite differences,
and a geometric multigrid method was used. Quadratic and cubic finite el-
ements in particular helped to reduce the number of unknowns in order to
reach prescribed accuracy, as they have much smaller interpolation and pol-
lution errors than linear basis functions [1]. The preconditioner used in this
paper, employs an algebraic multigrid (AMG) method in the approximation
of the damped Helmholtz operator. In particular, the preconditioner can be
constructed purely algebraically when the matrix for the 0th order terms is
also available.

An alternative iterative approach suitable for solving the Helmholtz equation
via the time-dependent wave-equation is presented in Section 4. The basic idea
is to find a time-periodic solution to wave equations by using a controllability
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method. This leads to preconditioned conjugate gradient iterations for initial
data. This technique was introduced for the Helmholtz equation by Bristeau,
Glowinski, and Périaux [10,11]. They used low order finite elements for space
discretization and second order central finite differences for time discretization.
Since low order discretizations lead to poor accuracy, we have made improve-
ments to the method. In [12], we used higher order spectral elements for space
discretization. We noticed that second order time discretization limits the ac-
curacy with elements of order r = 3 or higher, unless very fine time steps
are used. That is why the fourth order Runge-Kutta time discretization was
applied to the method in [13]. Higher order discretizations in both space and
time domain provide high accuracy. However, with higher order discretizations
the computational cost is larger than with lower order discretizations.

Comparison between the shifted-Laplacian and the controllability methods is
presented in Section 5 with respect to CPU time and memory usage. Although
the computational grids are not the same for both methods, the same num-
ber of discretization points is used for both methods to make comparisons
reasonable. The accuracy of the discretizations is compared as well.

The methods that we use are not restricted to a certain application but can be
suited to simulate several real life problems. Hence, our examples do not focus
on a specific application. However, geometrical shapes similar to those used in
our scattering examples can be used in several applications in audio technology
and echo sounding. For example, noise barriers with cross sections as presented
in our scattering examples can be used in environmental noise attenuation. In
this setting, simulation results show where the noise is reduced to a certain
level. In echo sounding, one can determine the location of the highest echo
signal.

2 The Helmholtz equation and boundary conditions

Acoustic scattering can be described by the Helmholtz equation

−∇ · 1

ρ(x)
∇u− k(x)2

ρ(x)
u= 0, (1)

where u denotes the complex-valued time-harmonic acoustic pressure field,
k (x) = ω/c (x) is the wave number, ρ (x) is the density of the material,
ω is the angular frequency of the sound, c (x) is the speed of sound, and
x = (x1, x2) ∈ R2 is the space variable. The wave number k varies depending
on location as materials change.

We consider two different boundary conditions: the Dirichlet boundary con-
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dition and the absorbing boundary condition. We decompose the boundary
Γ = ∂Ω into two parts, Γd and Γa such that Γ = Γd∪Γa. The Dirichlet bound-
ary Γd is sound-soft and is described by the Dirichlet boundary condition

u = gd on Γd, (2)

where function gd gives the sound source.

The absorbing boundary condition should let outgoing waves propagate out
of the domain without reflections, as the Sommerfeld radiation condition re-
quires. Considering a perfect absorbing boundary condition as a non-local
operator is computationally difficult, but it can be approximated by a local
operator [14]. We use here the absorbing boundary condition

−ik(x)u+
∂u

∂n
= ga on Γa, (3)

with the imaginary unit i =
√
−1, outer normal vector n, and source term ga.

3 The Finite element method and preconditioning with the shifted-
Laplacian

In the finite element method, the weak formulation of the Helmholtz equation
is used to form the discretized version of the equation. The weak form and cor-
responding spaces that are used here are identical to the ones described in [15].
The finite element discretization is made on a triangulation given by a set of
non-overlapping triangles Kh such that Ωh =

⋃
τ∈Kh

τ . Here h corresponds to
the largest distance between discretization nodes and Ωh is an approximation
of the computational domain Ω. In this paper, linear and cubic finite elements
are employed. They correspond to the first and third order Lagrangian poly-
nomials as basis functions of elements, respectively. Ultimately, a system of
linear equations

Au = f , (4)

is obtained, where A is a sparse matrix, u is the vector that contains the
values of u on triangulation nodes and f is a non-zero vector arising from the
sound source.

In this case, A is indefinite and symmetric but non-Hermitian. Hence, the gen-
eralized minimal residual (GMRES) method [8] is a suitable iterative method
for the sparse matrix equation (4). In the numerical experiments we use the
full GMRES method without restarts.

Except for very small-scale problems, the system (4) is generally badly condi-
tioned, and it leads to very slow convergence of Krylov subspace methods when
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applied directly to the system (4). To improve the conditioning and the speed
of convergence, we right-precondition (4) by B−1 and solve the preconditioned
system

AB−1ũ = f , u = B−1ũ. (5)

The goal is to find a preconditioner B such that the matrix AB−1 is well
conditioned and multiplication of vectors by B−1, i.e. solving systems with
the matrix B, can be done with a small computational effort. These ideal
properties would lead to a fast convergence of the iterative method at a small
overall computational cost.

In this paper, the preconditioner is based on a discretized form of the shifted-

Laplacian operator BSL = −∇· 1
ρ(x)
∇−(β1 + β2i)

k(x)2

ρ(x)
, as originally presented

in [16]. By choosing β1 = 1 and β2 to be positive, BSL corresponds to damped
Helmholtz operator. In [15], the algebraic multigrid method (AMG) was used
to approximate inversion of BSL. We use this preconditioner here and denote
it by BMG. When evaluating B−1

MG with the AMG method, we use one W-cycle
with underrelaxed Jacobi method with relaxation parameter ωjac = 0.4 as the
smoothener. One iteration of the Jacobi is used as a pre- and post-smoothener.
The damping parameter β2 is chosen to be 0.5, which was found to be a good
choice in [15].

4 A control based approach with spectral elements

An alternative approach to solving the Helmholtz equation is based on finding
a time-periodic solution of the associated transient wave equation via an exact
controllability technique. To obtain the time-harmonic solution, we minimize
the difference between initial conditions and the corresponding variables after
one time period T = 2π/ω. Proceeding this way, the problem of time-harmonic
wave scattering can then be cast as a least squares problem

min

(
1

2

∫
Ω

∣∣∣∣∂U(T )

∂t
− e1

∣∣∣∣2dx+
1

2

∫
Ω

∣∣∣∣∇(U(T )− e0)
∣∣∣∣2dx

)
, (6)

where the initial conditions are contained in a vector (e0, e1)T = (U(0), ∂U
∂t

(0))T ,
and U(t) = Re(e−iktu) satisfies the time-dependent equations associated with
the system (1)-(3).

The time-dependent wave equation and the function to be minimized in (6)
are discretized in space domain with the spectral element method [3]. We
use higher-order Lagrange interpolation polynomials as basis functions, and
the nodes of these functions are placed at the Gauss-Lobatto discretization
points. The integrals in the weak form of the equation are evaluated with
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the corresponding Gauss-Lobatto quadrature formulas. This leads to semi-
discretized state equation

M
∂2U

∂t2
+ S

∂U

∂t
+ KU = F, (7)

where U is the global vector containing the values of the pressure U(t) at
the Gauss-Lobatto points of the quadrilateral mesh, M is the mass matrix, S
is the matrix arising from the absorbing boundary condition, K is the stiff-
ness matrix, and F is the vector due to the source functions Re

(
e−iktgd

)
and

Re
(
e−iktga

)
. The least squares problem, where the function to be minimized

is semi-discrete form, is

min

1

2
(U(T )− e0)T K (U(T )− e0) +

1

2

(
∂U(T )

∂t
− e1

)T
M

(
∂U(T )

∂t
− e1

) .
For time discretization we use the fourth order Runge-Kutta method.

The discretized minimization problem is solved by a preconditioned conjugate
gradient (CG) algorithm. We use a block-diagonal preconditioner diag (K,M).
The linear systems with the stiffness matrix K are solved by the algebraic
multigrid method [17,15,13]. As a smoother for the AMG, we apply the suc-
cessive over relaxation (SOR) method with relaxation factor equal to 1.2. One
iteration of the SOR is used for a pre- and post-smoothener. Additionally,
at the beginning of every multigrid iteration, four iterations of the SOR are
used to smooth the solution initially. The so-called W-cycle [18] is utilized as
a multigrid iteration until the residual norm of the solution is smaller than
10−6.

5 Numerical experiments

We compared the efficiency of the methods, presented in Sections 3 and 4,
by performing tests considering accuracy, computational cost and memory
requirement. In both methods, the overall accuracy of the discrete solution
depends on spatial discretization (performed by higher order element meth-
ods with mesh step size h and element order r), the stopping criterion ε of the
iterative method (GMRES or CG), approximation of the geometrical bound-
aries, and approximation of the radiation condition.

In the shifted-Laplacian method, we used an unstructured triangular mesh
generated with Comsol Multiphysics 3.3. For the control method, a mesh con-
sisting of polygonal elements was created by a mesh generator from Numerola
Ltd. The meshes are built such that approximate number of discretization
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points is same for both methods. Since good efficiency can be achieved with
higher order elements by using sufficiently large mesh step size, we have used
constant spatial discretization between different element orders (i.e., r/h is
constant).

In [15,12,13], it is shown that the number of iterations needed to achieve a
given stopping criterion is independent of the element order. Since with lower
order elements we can save CPU time by using rougher stopping criterion
without loss of accuracy, we have used stopping criterion ε = 10−(r+2) with
both methods for element order r, unless otherwise mentioned. In accuracy
tests, we have used polygonal boundaries to avoid the error from approximat-
ing the geometry, in connection with a test problem that satisfies the absorbing
boundary condition. Errors between the real parts of the analytical solution
and the computational result are reported as L∞-norms.

Time discretization, performed by the fourth order Runge-Kutta scheme, af-
fects the accuracy of the control method. To eliminate the temporal error,
for elements of order r we use a timestep of length ∆t = αrhmin/cmax, where
α1 = 2/3, α2 = 1/5, α3 = 7/80, and α4 = 5/90. Here, hmin denotes the mini-
mum mesh step size and cmax denotes the maximum sound speed.

Throughout the tests, we have chosen to use the propagation direction (−1, 1),
which is determined by wave vector k = 1√

2
(−1, 1) k. The starting values

(e0, e1)T for the control method are set by the procedure presented in [13]. All
computations have been carried out on an AMD Opteron 885 processor at 2.6
GHz. In the figures and tables, we use the abbreviation SL method for the
shifted-Laplacian method.

5.1 Accuracy

The domain Ω, consisting of a fluid with density ρ = 1, is defined so that its
outer boundary, Γa, coincides with the boundary of the rectangle [0, 4]× [0, 4].
We have set a square obstacle, having a side length of 2 and boundary Γd in

Table 1
Number of nodes and number of space discretization points for different element
orders in the coarsest meshes.

SL method Control method

Element order 1 3 1 2 3 4

Mesh step size h 0.025–0.084 0.097–0.252 0.050 0.100 0.143 0.200

Number of nodes in mesh 5075 610 5040 1320 672 360

Number of space discretization points 5075 5142 5040 5040 5544 5040
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the center of the domain Ω. The error arising from the approximation of the
absorbing boundary condition is eliminated by solving the Helmholtz problem
with gd = eik·x and ga = i (k1n1 + k2n2 − k) eik·x. The function u = eik·x

satisfies this problem, and the solution of the corresponding time-dependent
equation is U = cos(kt−k ·x). The accuracy of the methods is compared with
a series of tests where mesh step size is halved consecutively, starting from the
meshes introduced in Table 1.

In the first accuracy experiment, we used angular frequency ω = 2π and wave
speed c(x) = 1 corresponding to the constant wave number k = 2π. As mesh
refinement with a constant wave number leads to more accurate results, we
also refine the stopping criterion in this particular test, as opposed to the
usual stopping criterion ε = 10−(r+2) for rth-order elements. Theoretically, the
asymptotic maximum error between the analytical solution and the computed
solution is divided by four for the element order r = 1 and by sixteen for r = 3,
when the total number of elements in the mesh is multiplied by four (i.e., the
mesh step size is divided by two). To guarantee that the stopping criterion does
not limit the accuracy, we have used stopping criteria ε = 10−3, 5·10−4, 10−4, 5·
10−5, 10−5 for r = 1 with increasing mesh density. Respectively, within each
mesh refinement for r = 3, we have divided the stopping criterion by ten.
The results with element orders r = 1 and r = 3, plotted in Figure 1, are
in line with the theoretical consideration, and they show that using higher
order elements is better then refining the mesh when high efficiency is needed.
With the control method in particular, the computations with fine grids are
inefficient since small time steps need to be used to satisfy the stability and
accuracy demands. Consequently, to obtain the prescribed level of the the
residual for the three smallest values of h and ∆t with spectral elements and
r = 3, more than 1000 iterations (our maximum number of iterations) are
required.

Because solving acoustic problems with large frequencies is of special interest,
we have performed another set of experiments by doubling the angular fre-
quency with every mesh refinement. In these tests, we have set ωh constant
for angular frequencies ω = 2π, 4π, 8π, 16π, 32π, and the number of space
discretization points has been approximately 20 per wavelength. The results
presented in Figure 2 for the shifted-Laplacian method with r = 1, 3 and the
control method with r = 1, 2, 3, 4 show how the pollution error deteriorates the
accuracy as the frequency becomes larger. The lowest order elements (r = 1)
become useless with both methods as the angular frequency increases. The
higher-order methods appear to be the most effective in both respects. We
see that better accuracy is gained by the control method with spectral ele-
ment discretization, but the shifted-Laplacian method with triangular finite
elements appears to be faster. Due to the comparatively large discretization
error in connection with our triangular space discretization, the pollution error
is not clearly visible for the cubic elements (r = 3) within the frequency range
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Figure 2. Errors with respect to CPU
time (in seconds). On each line, there
are points for angular frequencies
ω = 2π, 4π, 8π, 16π, 32π when ωh is
a constant giving approximately 20
discretization points per wavelength.

used in this experiment. However, it is possible to improve the accuracy at
the expense of computational time with triangular elements by using denser
discretization mesh.

5.2 Scattering

We illustrate acoustic scattering by solving the Helmholtz problem with gd = 0
and ga = i (k1n1 + k2n2 − k) eik·x in both homogeneous and heterogeneous
domains. The outer boundary of the domain coincides with the boundary of the
rectangle [−3/4, 3/4]×[−3/4, 3/4]. Density is assumed to be constant ρ(x) = 1.
For tests in homogeneous domain we have used c(x) = 1. In the heterogeneous
test case, parameters are the same, except c(x) = 1.5 for x1 /∈ [−3/20, 3/20].
Our methods can be applied to complex geometries as well, and as an example
of such a geometry we have chosen a crescent-shaped scatterer. The scatterer
can be described as the set of points inside the closed disk of radius 3

√
2/20

centered at the origin but outside the open disk of radius 3
√

2/20 centered at
(3/10, 0). See Figure 4.

In these tests, we have used angular frequencies ω = 12π, 24π, 48π, 96π, 192π
for element orders r = 1, 3. The scattering problems are solved by using
constant ωh, implying approximately 10 space discretization points per wave
length in the homogeneous domain and for x1 ∈ [−3/20, 3/20] in the hetero-
geneous domain. Respectively, the number of space discretization points per
wave length is approximately 15 for x1 /∈ [−3/20, 3/20] in the heterogeneous
domain. The mesh is refined every time the angular frequency is doubled, as in
the previous test measuring the influence of the pollution error. An example of
a solution, computed by the shifted-Laplacian method with r = 1, at angular
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frequency ω = 48π is plotted in Figure 5.

(a) Homogeneous. (b) Heterogeneous.

Figure 3. Memory usage with respect to CPU time (in seconds). On each line,
there are points for angular frequencies ω = 12π, 24π, 48π, 96π, 192π when ωh is a
constant giving approximately 10 discretization points per wavelength.

The CPU times and maximum memory usage for these scattering tests are
shown in Figure 3. It can be seen that memory requirement is almost equal
between the methods when the frequency is low. As the frequency increases,
the GMRES iterations increase in the shifted-Laplacian method. At the same
time, the memory needed for storing the Krylov subspace grows as well. The
memory requirement of the control method stays constant regardless of the
growing of number of iterations. Replacing GMRES method with another
method, such as BICGSTAB, would remove this linearly growing memory
requirement.

(a) Mesh for the method
with shifted-Laplacian
preconditioning.

(b) Mesh for the control
method.

Figure 4. Geometry and the coarsest meshes for both methods with r = 3 in scat-
tering tests.
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(a) Homogeneous. (b) Heterogeneous.

Figure 5. Solution of the scattering problem in homogeneous and heterogenous do-
mains at angular frequency ω = 48π with the method with shifted-Laplacian pre-
conditioning and r = 1.

6 Conclusions

From the numerical tests we can conclude that the control method gave
more accurate results but it took more CPU time than the shifted-Laplacian
method. One reason for the lower accuracy with the shifted-Laplacian method
is the unstructured mesh with changing step size h, as seen in Table 1. It
is worth mentioning that the shifted-Laplacian method has quadratic CPU
time and linear memory requirement due to the necessity to build Krylov
subspace at each GMRES iteration. Choosing some other iterative method,
such as BICGSTAB, to the outer iteration could lead to better performance
as measured by CPU time. In addition, quadrilateral spectral elements require
fewer discretization nodes than triangular finite elements to obtain the same
accuracy level.
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[18] W. Hackbusch, Multigrid Methods and Applications, Springer-Verlag, Berlin,
Germany, 1985.

13


