
121
J Y V Ä S K Y L Ä S T U D I E S I N C O M P U T I N G

Parallel Global Optimization

Structuring Populations in
Differential Evolution

Matthieu Weber

JYVÄSKYLÄ STUDIES IN COMPUTING 121

Matthieu Weber

UNIVERSITY OF

JYVÄSKYLÄ 2010

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksen auditoriossa 2

marraskuun 13. päivänä 2010 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

in the building Agora, auditorium 2, on November 13, 2010 at 12 o'clock noon.

JYVÄSKYLÄ

Parallel Global Optimization
Structuring Populations in Differential Evolution

Parallel Global Optimization
Structuring Populations in Differential Evolution

JYVÄSKYLÄ STUDIES IN COMPUTING 121

JYVÄSKYLÄ 2010

Parallel Global Optimization
Structuring Populations in Differential Evolution

UNIVERSITY OF JYVÄSKYLÄ

Matthieu Weber

Copyright © , by University of Jyväskylä

URN:ISBN:978-951-39-4076-8
ISBN 978-951-39-4076-8 (PDF)

ISBN 978-951-39-4057-7 (nid.)
ISSN 1456-5390

2010

Jyväskylä University Printing House, Jyväskylä 2010

The cover picture represents the author's
great-grandfather. Montage by Rudi Klos.

Editor
Timo Männikkö
Department of Mathematical Information Technology, University of Jyväskylä
Pekka Olsbo, Sini Rainivaara
Publishing Unit, University Library of Jyväskylä

ABSTRACT

Weber, Matthieu
Parallel Global Optimization. Structuring Populations in Differential Evolution.
Jyväskylä: University of Jyväskylä, 2010, 70 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 121)
ISBN 978-951-39-4057-7
Finnish summary
Diss.

Differential Evolution is a versatile and powerful optimization algorithm that
can be applied to a wide range of continuous problems. Under some conditions
however, the algorithm may suffer from stagnation, where it stops improving
upon its current solutions, especially when applied to medium and large scale
problems. The replacement of the usual panmictic population by a structured
population composed of interacting subpopulations has been found to improve the
performance of the Differential Evolution. This work presents a few algorithmic
components build upon such algorithms, aimed at preventing stagnation by
acting on the subpopulations themselves or by modifying the search logic of the
algorithm. One important finding in this work is that the introduction of small
amounts of randomness in structured population algorithm, controlled by using
very simple rules leads to significant improvements in performance.

Keywords: global optimization, evolutionary computing, differential evolution,
structured population, algorithmic enhancements

slehto
Typewritten Text

slehto
Typewritten Text

slehto
Typewritten Text

slehto
Typewritten Text

slehto
Typewritten Text
 (nid.), 978-951-39-4076-8 (PDF)

Author Matthieu Weber
Department of Mathematical Information Technology
University of Jyväskylä
Finland
matthieu.weber@jyu.fi

Supervisors Dr. Ferrante Neri
Department of Mathematical Information Technology
University of Jyväskylä
Finland
ferrante.neri@jyu.fi

Dr. Ville Tirronen
Department of Mathematical Information Technology
University of Jyväskylä
Finland
ville.tirronen@jyu.fi

Reviewers Dr. Dimitris K. Tasoulis
Mathematics Department
Imperial College London
United Kingdom
d.tasoulis@imperial.ac.uk

Dr. Leonardo Vanneschi
Department of Informatics, Systems and Communica-
tion (D.I.S.Co.)
University of Milano-Bicocca
Italy
vanneschi@disco.unimib.it

Opponent Dr. Janez Brest
Institute of Computer Science
University of Maribor
Slovenia
janez.brest@uni-mb.si

mailto:matthieu.weber@jyu.fi
mailto:ferrante.neri@jyu.fi
mailto:ville.tirronen@jyu.fi
mailto:d.tasoulis@imperial.ac.uk
mailto:vanneschi@disco.unimib.it
mailto:janez.brest@uni-mb.si

PRÉFACE

Bien que la majeure partie de ce mémoire de doctorat soit écrite en anglais, j’ai décidé
d’en rédiger la préface en français afin d’expliquer en termes simples le sujet de mon travail
à mon entourage francophone, que la lecture du contenu scientifique de cet ouvrage ne
motive pas forcément beaucoup.

Le sujet de ce mémoire se traduit en français par Optimisation globale parallèle :
structuration des populations dans l’évolution différentielle. En termes mathéma-
tiques concis, le but est de développer des algorithmes permettant de calculer une valeur
approximative de l’optimum d’une fonction de plusieurs variables sans recourir à son
expression analytique (qui n’est même pas forcément connue). Pour prendre une comparai-
son accessible au plus grand nombre, imaginons que l’on veuille préparer un gâteau mais
que l’on n’aie pas de recette sous la main. Tout ce que l’on sait c’est qu’il faut des œufs,
du sucre, de la farine, du beurre et qu’il faut le faire cuire au four un temps donné à une
température donnée.1 On suppose que l’on est aussi capable de goûter un gâteau et de lui
donner une note, ceci afin de pouvoir comparer deux gâteaux et d’en choisir le meilleur.
L’optimisation de la recette consiste donc à trouver les valeurs des six paramètres de la
recette (quantités d’œufs, de sucre, de farine et de beurre, durée et température de cuisson)
qui permettent de préparer le meilleur gâteau possible. L’ensemble des règles dictant
les étapes qui conduisent à la découverte de cette recette optimale s’appelle un algorithme
d’optimisation.

L’idée fondamentale de la méthode utilisée pour optimiser la recette d’un gâteau
est déconcertante de simplicité : essayer des recettes complètement aléatoires, goûter
les gâteaux ainsi produits et conserver la meilleure recette. Cette manière de procéder a
cependant l’inconvénient d’être extrêmement lente2 car elle va explorer un grand nombre de
recettes absurdes (par exemple des quantités d’ingrédients complètement disproportionnées,
une durée de cuisson démesurément longue ou courte, etc.) L’idée des algorithmes dits
metaheuristiques est alors de « guider » cette exploration aléatoire en se concentrant sur
les recettes qui sont proches de celles ayant donné de bons résultats (et qui ont donc eu une
bonne note) et en évitant les recettes semblables à celles ayant donné de mauvais gâteaux.

Une des approches utilisées pour guider cette exploration est inspirée directement
des mécanismes naturels qui permettent l’évolution des êtres vivants. On qualifie ces
algorithmes d’évolutionnistes, car ils font appel à des concepts tels qu’une population
d’individus, des mécanismes de sélection, de mutation et de recombinaison que l’on
trouve en biologie et en génétique. Le principe des algorithmes évolutionnistes appliqué à
nos gâteaux est relativement simple : on commence avec un ensemble de recettes aléatoires
(chaque recette se compose donc de quantités aléatoires d’œufs, de sucre, de farine et de
beurre, et d’un temps et d’une température de cuisson aléatoires). Chaque recette de cet
ensemble est considérée comme un individu, et l’ensemble forme donc notre population.

1 On devrait aussi prendre en compte l’ordre dans lequel les ingrédients sont mélangés, mais
cela compliquerait inutilement l’exemple.

2 On ne tient ici même pas compte du temps qu’il faut pour préparer le gâteau et le faire cuire ;
on mesure en fait la vitesse de l’algorithme en nombre de gâteaux qu’il faut préparer avant
d’obtenir un résultat satisfaisant.

On va alors essayer chaque recette de la population et lui donner une note. Puis on choisit
au hasard des paires de recettes que l’on combine pour produire de nouvelles recettes, de
la même manière que dans la nature, deux parents combinent leurs gènes pour produire
un descendant.3 Des gâteaux sont ensuite préparés en suivant ces nouvelles recettes, et
des notes leur sont attribuées. Enfin, on sélectionne les meilleures recettes, c’est-à-dire
celles ayant obtenu les meilleures notes, et qui vont composer la génération suivante de
la population : on se retrouve donc avec une population composée d’individus un peu
meilleurs que ceux de la génération précédente. On répète alors le même processus que
ci-dessus (recombinaison, sélection), autant de fois que nécessaire jusqu’à obtention d’une
recette produisant un gâteau que l’on juge suffisamment bon.

L’algorithme décrit ci-dessus (que l’on nomme, selon les variantes, algorithme
génétique ou stratégie d’évolution) n’est pas celui sur lequel j’ai travaillé. Mon travail
a porté sur un algorithme nommé évolution différentielle, où l’on crée une recette
mutante à partir d’une recette choisie au hasard dans la population à laquelle on ajoute la
différence entre deux autres recettes, elles aussi choisies au hasard dans la population :
ainsi si l’on a par exemple une première recette qui utilise 200 g de farine, une autre 150 g
et une troisième 210 g, la recette mutante utilisera 200 + (150− 210) = 140 g de farine ;
on répète ce ensuite calcul4 pour les cinq autres paramètres de la recette, puis on recombine
la recette mutante avec une recette parente pour produire une recette descendante. La
descendante remplace alors la parente si elle permet de préparer un meilleur gâteau que sa
parente ; sinon, on conserve la parente et on rejette la descendante. L’évolution différentielle
ne cherche plus à reproduire un mécanisme existant dans la nature, mais son mécanisme
un peu abscons la rend, pour certain types de problèmes, plus efficace que les algorithmes
décrits plus haut.

L’idée d’optimisation parallèle consiste alors à diviser la population en plusieurs
sous-populations que l’on va optimiser séparément et en même temps. Certains individus
sont alors parfois autorisés à migrer d’une sous-population à l’autre et apportent ainsi les
améliorations issues de leur propre évolution aux individus d’une autre sous-population,
qui s’est elle-même améliorée mais d’une manière éventuellement différente. La combinai-
son de ces deux améliorations peut alors conduire à une amélioration encore supérieure, et
ainsi de suite.

Le but de mon travail a été de perfectionner des algorithmes d’optimisation parallèle
pour les rendre plus performants, c’est à dire de les rendre capables de produire de meilleures
recettes avec comme contrainte un nombre maximum de gâteaux que l’on peut préparer. La
comparaison avec les gâteaux s’arrête là, car je me suis intéressé à des problèmes qui n’ont
non pas six paramètres comme nos recettes, mais cinq cents ou mille, et qui nécessitent

3 Une telle recombinaison peut se faire dans la pratique en prenant par exemple les quantités
d’œufs et de sucre de l’une des recettes parentes, et les autres quantités de l’autre recette
parente. On peut aussi introduire une mutation en changeant un peu la quantité d’un des
ingrédients (ou la durée, ou la température de cuisson) de manière aléatoire : par exemple
en augmentant la quantité de sucre de 30 grammes, ou en diminuant le temps de cuisson de
5 minutes. Ces deux transformations sont inspirées directement de mécanismes génétiques
qui ont lieu lors des divisions cellulaires dans tous les êtres vivants.

4 Cette description est simplifiée : la formule exacte est r1 + F× (r2 − r3) où F est un nombre
entre 0 et 1, et une bonne partie de mes recherches a consisté à étudier comment faire varier
F afin d’améliorer les performances de l’algorithme.

un million de « préparations de gâteaux », voire plus. Heureusement, au lieu de devoir
préparer des gâteaux afin de leur donner des notes, j’ai utilisé de très courts programmes
informatiques qui mettent moins d’un millième de seconde à produire une « note », et de
nombreux ordinateurs effectuant tous ces calculs en même temps.

Quant à la question « À quoi tout cela sert-il ? » que certains ne manqueront pas
de poser, il est très facile de répondre : ça sert à trouver l’optimum d’une fonction. Dans
la pratique, bon nombre de problèmes du monde réel peuvent être traduits sous la forme
d’une fonction mathématique : faire évoluer un robot dans une pièce sans se cogner aux
objets qui s’y trouvent, faire trier par un ordinateur des photos en fonction des personnes
ou des objets qui y sont représentés, placer des composants électroniques sur un circuit
imprimé de sorte que ce dernier soit le plus compact possible, prédire la structure d’une
protéine afin de concevoir de nouveaux médicaments, definir l’emploi du temps de toutes
les classes d’une école en fonction des salles de classe disponibles, planifier le déploiement
d’antennes-relais pour un réseau de téléphonie mobile, faire jouer un ordinateur à un jeu de
société. . . Ces problèms présentent souvent plusieurs solutions possibles, mais une de ces
solutions est meilleure que toutes les autres5 : c’est la solution correspondant à l’optimum
de la fonction mathématique. Les algorithmes d’optimisation, en trouvant cet optimum,
permettent alors de trouver la meilleure solution au problème, et donc de le résoudre.

5 Dans un but de simplification, on ne prend pas en compte l’existence possible de plusieurs
optima d’égales valeurs.

ACKNOWLEDGEMENTS

My first and very warm thanks go to Ferrante Neri and Ville Tirronen for their
guidance, without whom this work would not exist. Ville introduced me to global
optimization through its applicative side, while Ferrante lead the way to the
algorithmic aspect of the field, eventually resulting in this work. Ferrante and
Ville provided numerous algorithmic ideas (some of which even worked), and
Ferrante’s guidance when writing many of the articles included in this thesis was
very much appreciated. Moreover, I probably would never have completed this
thesis without their continuous, yet gentle pressure.

Additional thanks go to Jonne Itkonen for enlightening me in my initiation of
the Python programming language, and Petteri Olkinuora and Tapani Tarvainen
for their help with the computing resources that were needed in producing the
hundreds of gigabytes of data resulting from this work. More thanks go to the
Faculty of Information Technology for the financial support of this work.

Further acknowledgements must be given to the anonymous reviewers of
various journals and conferences who sometimes ask pertinent questions and are
the source of new ideas.

Last but not least, my love goes to my wife, my daughter, my parents and
my friends for general moral support.

LIST OF FIGURES

FIGURE 1 Examples of crossover .. 22
FIGURE 2 Difference vectors and their distribution for a population of six

points ... 32
FIGURE 3 Mutation schemes.. 33
FIGURE 3 Mutation schemes (continued) .. 34
FIGURE 3 Mutation schemes (continued) .. 35
FIGURE 4 The crossover between the two-dimensional individuals xi and

x′off can produce four different offsprings: x1
off , x2

off , and the two
degenerate ones xi and x′off .. 36

FIGURE 5 Example of convergence of the DE/rand/1/bin Differential Evo-
lution with a population of 15 individuals on the two-dimensional
Rastrigin function .. 40

FIGURE 6 Unidirectional ring topology in the Parallel Differential Evolution
algorithm .. 50

FIGURE 7 Torus topology in the Distributed Differential Evolution algorithm 53

LIST OF TABLES

TABLE 1 Test Problems .. 56

LIST OF ALGORITHMS

ALGORITHM 1 General structure of an evolutionary algorithm 21
ALGORITHM 2 General structure of the Differential Evolution 29
ALGORITHM 3 DE pseudocode ... 30
ALGORITHM 4 Pseudo-code of the Parallel Differential Evolution algo-

rithm for both the master node and a subpopulation........... 51
ALGORITHM 5 Pseudo-code of the Island-Based Distributed Differential

Evolution algorithm for subpopulation Pp 52
ALGORITHM 6 Pseudo-code of the Distributed Differential Evolution algo-

rithm at a subpopulation .. 54

CONTENTS

ABSTRACT
PRÉFACE
ACKNOWLEDGEMENTS
LIST OF FIGURES AND TABLES
CONTENTS
LIST OF INCLUDED ARTICLES

1 INTRODUCTION .. 15
1.1 Derivative-based Optimization .. 16
1.2 Derivative-Free Optimization .. 16

2 METAHEURISTICS ... 19
2.1 Single-Individual Metaheuristics.. 19
2.2 Population-Based Metaheuristics ... 20

2.2.1 Evolutionary Algorithms.. 21
2.2.2 Swarm Intelligence .. 24
2.2.3 Memetic Algorithms .. 26

3 DIFFERENTIAL EVOLUTION ... 28
3.1 Mutation Schemes .. 29
3.2 Crossover Schemes ... 36

3.2.1 One-Point Crossover .. 37
3.2.2 N-Point Crossover ... 37
3.2.3 Exponential Crossover ... 38
3.2.4 Uniform (Binomial) Crossover .. 38

3.3 Survivor Selection .. 39
3.4 The Evolutionary Algorithm-Swarm Intelligence Duality 39
3.5 Implicit Self-Adaptation: a Double-Edged Sword 41
3.6 Overcoming Stagnation... 42

3.6.1 Dynamic Control Parameters .. 43
3.6.2 Supplementary Search Moves ... 44
3.6.3 Hybrid Approaches ... 46
3.6.4 Variable Population Sizes ... 47

4 DIFFERENTIAL EVOLUTION WITH STRUCTURED POPULATION .. 49
4.1 Differential Evolution Algorithms with Structured Populations 50

4.1.1 Parallel Differential Evolution... 50
4.1.2 Island-Based Distributed Differential Evolution................ 52
4.1.3 Distributed Differential Evolution 53
4.1.4 Randomly Connected Topologies 54

5 BUILDING UPON STRUCTURED POPULATION ALGORITHMS 55
5.1 Test Framework.. 55
5.2 Population Modification.. 57

5.3 Operator Modification .. 58
5.4 Hybrid Approach for Large-Scale Optimization 59

6 CONCLUSION ... 61

YHTEENVETO (FINNISH SUMMARY) .. 63

REFERENCES ... 65

INCLUDED ARTICLES

LIST OF INCLUDED ARTICLES

PI Matthieu Weber, Ville Tirronen and Ferrante Neri. Fitness Diversity Parallel
Evolution Algorithms in the Turtle Race Game. In Applications of Evolu-
tionary Computing, volume 5484/2009 of Lecture Notes in Computer Science,
pages 303–312, 2009.

PII Matthieu Weber, Ferrante Neri and Ville Tirronen. Distributed differen-
tial evolution with explorative-exploitative population families. In Genetic
Programming and Evolvable Machines, volume 10, issue 4, pages 343–371,
2009.

PIII Matthieu Weber, Ville Tirronen and Ferrante Neri. Scale factor inheritance
mechanism in distributed differential evolution. In Soft Computing - A
Fusion of Foundations, Methodologies and Applications, volume 14, number 11,
pages 1187–1207, 2010.

PIV Matthieu Weber, Ferrante Neri and Ville Tirronen. Parallel Random In-
jection Differential Evolution. In Applications of Evolutionary Computation,
volume 6024/2010 of Lecture Notes in Computer Science, pages 471-480, 2010.

PV Matthieu Weber, Ferrante Neri and Ville Tirronen. Parallel Differential
Evolution with Endemic Randomized Control Parameters. In Proceedings of
the Fourth International Conference on Bioinspired Optimization Methods and
their Applications, pages 19–29, 2010.

PVI Matthieu Weber, Ferrante Neri and Ville Tirronen. Component Decomposi-
tion in Parallel Differential Evolution. In Proceedings of the Fourth Interna-
tional Conference on Bioinspired Optimization Methods and their Applications,
pages 43–53, 2010.

PVII Matthieu Weber, Ferrante Neri and Ville Tirronen. Shuffle Or Update Paral-
lel Differential Evolution for Large Scale Optimization. In Special Issue of Soft
Computing on Scalability of Evolutionary Algorithms and other Metaheuristics
for Large Scale Continuous Optimization Problems, to appear, 2010.

The author’s contribution in the articles listed above was as follows.
The article which introduced the author to global optimization and more

particularly parallel global optimization is Article PI, where an artificial player
for a board game is presented. The author implemented the software modeling
the game as well as the four optimization algorithms used for training the player
and the distributed framework used for running those software. The author
also compiled the results produced by the various algorithms and took part in
the writing of the article (description of the game and of the artificial player;
production of the figures and result tables).

Articles PII to PVI form together a study of distributed variants of the
Differential Evolution and of algorithmic components aimed at improving the

former. In all these articles, the author implemented all the test functions forming
the benchmark on which the algorithms are tested, and based on which they are
compared. He also implemented the various algorithms described in those articles
and compiled the results produced by the algorithms into the tables and figures
shown in the articles.

In addition to the contribution described above which apply to all the articles,
the author wrote the descriptions of the various reference algorithms and the
section on numerical results in Articles PII and PIII, while Articles PV and PVI
were integrally written by the author.

Article PVII uses a different benchmark than the previous articles, which
was imposed by the guest editor of the journal it was published in. The author
designed the new algorithm introduced in this article and implemented it as well
as the benchmark. He also compiled the results presented therein and wrote the
section on numerical results.

This progression in the participation to the preparation of these articles
eventually led to the author’s scientific independence.

More details on the scientific content of Article PI can be found in Section 4.1.4
on page 54 while Articles PII to PVII are described in Chapter 5 on page 55.

1 INTRODUCTION

The goal of optimization is, for a given problem formalized as an objective function
f : D → E, to find the element of D which gives the “best” solution in E, for a
given definition of what “best” means. One can distinguish two categories of such
problems: combinatorial problems and continuous ones. In combinatorial prob-
lems, there is a finite, albeit potentially immensely large set of discrete solutions to
the problem. One famous such problem is the Traveling Salesman Problem, where
a salesman must find the shortest path allowing him to visit a given number of
cities without passing more than once through each city. Continuous problems
on the contrary are represented by functions of the type f : D ⊂ Rn → E ⊂ Rp,
where there is an infinite number of potential solutions in the continuous space
D. In the remainder of this thesis, only continuous problems with p = 1 will be
considered. Moreover the notion of “best” solution will be reduced to the solution
x such that f (x) is minimum. Finally, while D can take any shape in Rn, we will
limit ourselves to hyperrectangles. More formally, we will focus on objective
functions of the type

f : D ⊂ Rn → R

and trying to find
min
x∈D

f (x)

where D can be expressed as a tuple of intervals of R, thus

D = ([a1, b1] , . . . , [an, bn]) .

Throughout the literature on the subject of optimization, multiple names
have been used to qualify given concepts. Thus, function and problem are often used
interchangeably, and are sometimes referred to as test function or test problem. The
space D can be called the search space, the problem space or the function’s domain.
The element x ∈ D may be named a vector, a solution or possibly a point in D.
The fitness of x, f (x), is sometimes called the performance of x, especially when
comparing the fitness of x to that of y ∈ D. Finally, when n > 1, x is composed of
multiple design variables, sometimes also referred to as components.

16

1.1 Derivative-based Optimization

If f has an analytical expression, and under the conditions that f is unimodal
and twice differentiable, one can attempt to find its minimum using an analytical
method, based on the decomposition of f into a Taylor series. We then can write

f (x) = f (x0) + g(x) · (x− x0) + (x− x0)T · 1
2

G(x0) · (x− x0) + . . .

where g(x) is the gradient of f and G(x) is the Hessian matrix of f . Since the
optimum x∗ of f is a stationary point where g(x∗) = 0, we can derive that

x∗ = −g(x0) · G−1(x0) + x0.

In situations where computing G−1(x0) is impractical, one can use the steepest
descent method, which consists in replacing G−1(x0) with the identity matrix and
compute

x1 = x0 − g(x0).

While x1 is not the sought extremum, it is closer to it than x0 if the g(x0) step that
lead from x0 to x1 was not too big. The size of the step can be controlled by the
adjunction of a step-size parameter γ, leading to the recursive equation

xn+1 = xn − γ · g(xn).

The choice of the proper step size however becomes yet another problem, more so
since it depends on the objective function. Moreover, this approximation of the
above-described analytical solution causes new problems to appear, calling for
more elaborate techniques which can fall into two categories: quasi-newton methods
attempt to approximate the inverse Hessian matrix in various ways which often
require extensive matrix computations, while conjugate gradient methods forgo the
Hessian matrix entirely and repose on line optimization in conjugate directions.
But even if these methods show fast convergence properties on quadratic, once-
or twice-differentiable, unimodal functions, their efficiency is not guaranteed on
arbitrary functions.

1.2 Derivative-Free Optimization

Arbitrary functions are not necessarily differentiable, in some cases they do not
even have an analytical expression. In the case the function is expressed as a
computer program the source code of which is available and can be modified,
automatic differentiation (see for example Rall, 1981) can be applied to generate a
computer program able to compute the function’s derivative; the derivative-based
methods described above can then be applied as well. Otherwise, one has to turn
to other techniques.

17

Derivative-free optimization methods have thus been developed to allow the
optimization of arbitrary functions. Also known as direct search methods, they con-
sist in essence in generating a solution x and testing its fitness by computing f (x).
This process is then repeated until a satisfactory solution is found. An alternative
ending condition for such algorithms is the exhaustion of the predefined budget
of fitness evaluations allocated for the process. The enumeration, also known as
the brute-force search1 method, consists in selecting a finite number of points in D
and evaluating all of them, keeping the best one as the solution to the problem.
One way to select those points is to sample k equally spaced points in each [ai, bi]
interval, and thus construct a grid covering the whole search space. However
impractical the brute-force search may be, it highlights a crucial point, namely the
“step-size problem”: be the grid too coarse, and one risks to miss the optimum;
be it too fine, and the number of tested points increases exponentially with the
problem’s dimensionality, n.

The main flaw in the brute-force search is that most of the tested points are
far from the optimum (and the number of such points increases exponentially
with n) and testing them all is a waste of resources. The Hooke-Jeeves and the
Nelder-Mead methods are two examples of derivative-free methods which are
much more efficient than brute-force.

The Hooke-Jeeves algorithm (Hooke and Jeeves, 1961) is based on a single
base point x0 and a step size h. The main idea of the algorithm is to explore the
neighborhood of x0 along each of the axes of the search space, and to find whether
a step of size h towards the positive or the negative direction is leading to a better
fitness (if no improvement has been found after exploring both directions, the
original position of x0 on that axis is retained). Once every axis has been probed,
the new point x1, obtained by offsetting x0 by h or −h along the relevant axes, is
evaluated. If the fitness of x1 is no better than the one of x0, a new exploration of
the neighborhood of x0 is undertaken, this time with a smaller step size. Otherwise,
a new base point x2 is chosen by taking one step further from x1 in the direction
defined by x0 and x1 (formally x2 = x1 + (x1 − x0)), optimistically assuming that
the direction is leading towards a better fitness, and the algorithm is applied again
on x2.

While the Hooke-Jeeves algorithm relies on a single point and the system-
atic exploration of its neighborhood, the Nelder-Mead algorithm (Nelder and
Mead, 1965) makes use of a set of n + 1 points in D, x0, . . . , xn forming an n + 1-
dimensional polyhedron, or simplex. At each iteration of the algorithm, the indices
points are sorted by their increasing fitness so that x0 has the best fitness and xn
presents the worst fitness. The procedure then consists in constructing a candidate
replacement point xr for xn by reflection of xn in respect with the barycenter xm
of the other x0, . . . , xn−1 points. Depending on the performance of xr compared
to x0 and xn−1, an extension point may be created in an optimistic attempt to
explore further in the same direction, or on the contrary a contraction point may
be computed closer to xm. If none of the above attempts lead to a better solution,

1 This method is comparable to the exhaustive search for combinatorial problems, where all the
possible solutions are tested.

18

the simplex is contracted around its best point in order to reduce the exploration
range in the next iteration of the algorithm.

It is worth noting that even though these algorithms do not require any
knowledge about the fitness function and particularly its derivative, they still
do make use of some crude form of gradient by sampling the search space and
measuring the difference of the fitness between two points from this sample. If this
“gradient” is leaning toward an improvement, the algorithms will make optimistic
attempts to follow it in the hope to find yet a better point in that direction.

2 METAHEURISTICS

Meta-heuristics (from Greek metá “beyond”, meaning here “higher-level”, and
eÍrískw, “I find”) are a class of general-purpose heuristic algorithms, which consist
in applying a heuristic method in a controlled way to guide it into obtaining faster
results compared to a totally random set of trials and errors.

The algorithms briefly described in the previous chapter, although efficient
when applied to unimodal functions, suffer a serious flaw when confronted to
multimodal functions, i.e., functions exhibiting more than one extremum, and
therefore do not fully qualified as metaheuristics. Since a starting point is indeed
required for initializing them, and because these algorithms are meant to progress
towards the nearest extremum, they might not find the global extremum of the
function if the starting point is located near a local, sub-optimal one. More general
algorithms are thus called for.

Nature having in numerous occasions inspired scientific research, optimiza-
tion is no exception and examples of optimization algorithms inspired from natural
phenomena are numerous. For example, the behavior of atoms during the cooling
down of a molten substance has inspired the Simulated Annealing algorithm, while
the use of memory in order not to repeat past errors is the basis of Tabu Search. The
random travel of foraging ants in search for a source of food have inspired the
Random Walk algorithm, and the mechanism by which the ants mark the shortest
path to a source of food is applied in the Ant Colony algorithm. Finally, one must
mention the theory of evolution, natural selection and genetics, which are the
foundation for Genetic Algorithms, Genetic Programming and Evolution Strategies.

Among the above examples, a distinction can be made between single-point
methods and population-based methods.

2.1 Single-Individual Metaheuristics

The Random Walk algorithm (see for example Solis and Wets, 1981) is probably
one of the simplest global optimization algorithm: a random initial base point is

20

chosen in the search space, and, on each iteration of the algorithm, a candidate
point is generated by adding a random, normally distributed deviation to the
base point. If this candidate point presents a better fitness than the base point,
it becomes the new base point. Since the normal distribution is unbounded, a
deviation of any size may occur and the algorithm has the possibility to move out
of a local optimum in order to find a better optimum and eventually the global
one. The drawback of this method is that the probability for this to happen is
very low, and the algorithm may take an unacceptably long time to find the global
optimum.

The Simulated Annealing algorithm (Kirkpatrick et al., 1983) is similar to the
Random Walk, but it allows moves towards a worse solution with a given proba-
bility, which diminishes over the course of the algorithm. This design is directly
inspired by the atoms of molten metal settling down into a crystallized structure
when the temperature diminishes. At higher temperatures, important thermal
agitation allows the atoms to take a larger number of positions with respects to
each other, while at lower temperature this probability diminishes exponentially,
the atoms settling into a minimum energy configuration. In Simulated Annealing,
the probability of accepting a move towards a worse position is a function of the
form Θ = edβ/T where T is a temperature parameter which decreases with every
iteration of the algorithm.

In Tabu Search (Glover, 1989a,b), the algorithm keeps a track, in its short-
term memory, of the solutions which have already been visited in order to prevent
wasting time by visiting them more than once. A long-term memory can also be
added to the algorithm in order to reinforce attractive solutions. In continuous
problems, the probability of reaching twice the same solution is extremely low,
rendering the short-term memory useless. Tabu Search therefore needs to be
adapted to continuous functions, for example by defining a neighborhood around
the solution to be ignored, as in Siarry and Berthiau (1998).

2.2 Population-Based Metaheuristics

In multi-point methods, the search space is sampled in multiple points, which
are considered concurrently. One can consider two classes of metaheuristics,
employing multiple starting points and imitating natural processes. Evolutionary
algorithms thus considers the multiple starting points as a population of individuals
which breed with each other and adapt themselves to their environment. Multiple
solutions thus support each other, in the sense that new solutions are derived
from several precursor solutions. In swarm intelligence algorithms, the starting
points are considered as members of a flock or a swarm, each individual having
only a limited intelligence and following simple behavioral rules, but contributing
altogether to the solution of the problem. Multiple solutions are then rather
following the lead of one of them.

21

2.2.1 Evolutionary Algorithms

The idea of applying evolutionary principles to computer science can be traced
back to Turing, who mentioned “genetical or evolutionary search” in 1948, while
Bremermann experimented on “optimization through evolutionary and recombi-
nation” methods in the 1950s. The most common evolutionary algorithms in use
nowadays are Evolutionary Programming, Genetic Algorithms, Evolution Strategies
and Genetic Programming. All these algorithms (of which exist many variants)
follow a common structure, represented as pseudocode in Algorithm 1. The main
characteristics of evolutionary algorithms are the use of a population of parent
solutions, the creation of offspring solutions from selected parents, and the selec-
tion of survivors individuals among both parents and offsprings. These survivors
form the population of the next generation and the process repeats.

Generate an initial population by sampling the search space
Evaluate the fitness of each candidate solution
while termination conditions are not met do

Select parents
Create offsprings by recombining the parents
Mutate the offsprings
Evaluate the fitness of each offspring
Select survivors for the next generation

end while
ALGORITHM 1 General structure of an evolutionary algorithm

Evolutionary Programming

Evolutionary Programming (Fogel et al., 1965, 1966) mimics the way new features
appear in living beings through mutation of their genome. Each individual is
composed of a real-valued vector representing the candidate solution, and each
component xi of this vector is associated to a self-adaptive parameter σi.

The algorithm does not employ a recombination scheme, but relies solely on
mutation. Thus, for a candidate solution of the form

(x̄, σ̄) = (x1, . . . , xi, . . . , xn, σ1, . . . , σi, . . . , σn)

on each iteration of the algorithm, an offspring (x̄′, σ̄′) is generated in the following
manner:

σ′i = σi(1 + αN(0, 1))

x′i = xi + σ′i N(0, 1)

where the prime symbol ′ indicates the newly generated component or parameter
of the offspring, N(0, 1) is a Gaussian random variable with a mean of 0 and a
standard deviation of 1, and α is a constant value traditionally set to 0.2.

22

The offspring population is then evaluated, and merged with the parent
population. This extended population then undergoes a survivor selection as
follows: each individuals is compared against a set of other, randomly selected
individuals; the individuals which won the highest number of comparisons are
selected.

Genetic Algorithms

Genetic algorithms (Goldberg, 1989; Holland, 1962) attempt to reproduce some of
the biological mechanisms happening in living organisms during reproduction:
two parent individuals recombine their genomes in order to produce offsprings. In
the original implementation of the genetic algorithm, the genome of an individual
is represented by a string of bits, and each component can therefore take a value
of 0 or 1. This requires for the solutions to be one way or another to be encoded
as bit strings, using for example Gray code. In modern implementations, integer-
and real-valued genetic algorithms have also been proposed.

Parent selection can be done in multiple ways. Proportionate selection assigns
the parents a selection probability depending on their fitness, so that the individ-
uals with the best fitnesses have higher chance to be selected than the one with
lower fitnesses. In k-tournament selection, each parent is the individual presenting
the best fitness out of a random sample of k individuals.

Offsprings are then generated by recombining the parents using a crossover
function, which concatenates components from one parent with other components
from the other parent. Figure 1 presents two common crossover variants, single-
point and multi-point crossovers. More complex crossover schemes are also
possible, such as mask crossover or partially mapped crossover, see Eiben and
Smith (2003).

Crossover point

Parents

Children

(a) Single-point crossover

Parents

Children

Crossover points

(b) Multi-point crossover

FIGURE 1 Examples of crossover

The new offspring then undergoes a mutation process, which consists in
altering each component of the newly created solution with a very low probability.
In the case of bit-string encoded individuals, the mutation may consist for example

23

in changing a bit’s value from 0 to 1 or vice versa. The need for mutation arises
from the fact that if one would create offsprings only by crossover, the points in
the search space that can be reached by the individuals depends entirely on the
initial population. Consequently, a part of the space would be totally inaccessible.
Random mutations however are not subjected to that limitation, and therefore
give the individuals a chance to explore the entire search space.

After the offsprings have been evaluated, the survivors are selected according
to the generational strategy, where the parents are completely replaced by their
offsprings.

Evolution Strategies

Evolution Strategies (Rechenberg, 1971) look similar in appearance to Genetic
Algorithms, but since the former use real-valued solutions, they are better suited
for continuous function optimization than the latter. They employ they same
type of individuals as Evolutionary Programming does, where each component
xi of the candidate solution is associated with a self-adaptive parameter σi (see
Evolutionary Programming above for more details).

In Evolution Strategies, a population of µ parents are recombined to produce
a population of λ ≥ µ offsprings. Recombination involves two randomly chosen
parents and can be discrete, where some components are from one parent while
the others come from the second parent, or intermediate, where the components of
both parents are for example averaged.

As in Genetic Algorithms, the offsprings are then mutated, by the addition
to each component of a random value, typically a zero-mean Gaussian random
variable, in a way similar to the one used in Evolutionary Programming:

x′i = xi + σ′i N(0, 1)

where the prime symbol ′ indicates the newly generated component or parameter
of the offspring and N(0, 1) is a Gaussian random variable with a mean of 0
and a standard deviation of 1. Concerning the generation of the σ′i parameter,
several different schemes can be found in literature, such as the 1/5 success
rule (Rechenberg, 1971), uncorrelated mutation with n step sizes and correlated
mutation, see Eiben and Smith (2003) for more details. As it was the case with
Genetic Algorithms, mutations allow to explore regions of the search space which
cannot be reached by only recombining individuals from the parent population.

Finally, two different survivor selection mechanisms can be applied. In the
(µ, λ) Evolution Strategy, the µ best offsprings are selected to become the next
population of parents; this variant is also known as the “comma” variant. When
following the (µ + λ) Evolution Strategy, the parent and offspring populations are
merged, and the µ best individuals are selected to become the parents for the next
generation; this variant is sometimes called the “plus” variant.

24

Genetic Programming

Genetic Programming (Koza, 1992, 1994) differs from the above evolutionary algo-
rithms in that the individuals do not represent a point in a geometrical space, but
rather a parse tree, a data structure used for representing mathematical formulas,
logical expressions or a computer procedure, where the internal nodes represent
mathematical operators or logical programming structures, and the external leaves
represent the variables and constants. Because of this difference, the algorithms
behave differently from the other evolutionary algorithms.

Individuals in Genetic Programming undergo recombination and mutation,
as they do in the evolutionary algorithms described above. Parent selection is
usually carried out by a fitness- based proportionate procedure, as in Genetic
Algorithms, although tournament-based selection is a possibility as well. In some
cases, a process called over-selection is used: parents are sorted by their fitness
values and separated into two groups, one containing the best individuals, and
the other one containing the remaining ones. Parents in the first group are given a
higher probability to be selected than those in the second group. Group sizes need
to be empirically chosen following a rule of thumb (Langdon and Poli, 2001).

Recombination between parents is most commonly performed by exchanging
subtrees between the two parents in order to generate two offsprings. Mutation
is similarly executed by replacing a subtree with a pseudo-randomly generated
one. While mutations were discouraged in the first implementations (Koza, 1992),
it was shown later that a low mutation probability can be beneficial (Luke and
Spector, 1997; Banzhaf et al., 1998).

Finally, survivor selection is traditionally generational, where the offsprings
completely replace the parents, although in many new implementations, different
schemes are employed.

2.2.2 Swarm Intelligence

While evolutionary algorithms find their inspiration in the theory of evolution and
natural selection, swarm intelligence has its roots in the observation of groups of
animals, where some kind of collective intelligence emerges although the animals
themselves do not present signs of intelligence but rather following relatively
simple rules. The observation of ants has thus led to the development of the
Ant Colony Optimization algorithm, while the metaphor of a flock of birds is the
foundation for the Particle Swarm Optimization algorithm.

Ant Colony Optimization

Originally developed as Ant System in Dorigo (1992), the Ant Colony Optimization
algorithm is inspired by the method used by foraging ants in search for food to find
the shortest path leading to it. The first application of the algorithm was to find the
optimal path in a graph, and while other problems can be solved by this algorithm,
they need to be expressed as a search for the best path in a weighted graph.

25

Each solution in the algorithm represents one ant moving on the graph. While
the virtual insect travels the graph randomly at first, it lays down a pheromone
trail, which can be picked up and followed by other ants who are thus going to
reinforce it. The pheromone however has the property to evaporate over time,
resulting in the trail disappearing on paths which are only seldom used, making
them less attractive to the ants. Shorter paths being travelled more quickly than
longer ones, they are used by more ants and therefore receive more pheromone
than the former. Eventually, all the ants are going to follow the same, optimal path.

The virtual pheromone is a set of parameters associated with graph com-
ponents (either nodes or edges) whose values are modified by the ants during
the course of the algorithm. Evaporation is an essential feature in Ant Colony
Optimization, preventing the algorithm to get stuck in a local minimum: without
this feature, the paths chosen at random by the first ants would be more attractive
than the other.

Particle Swarm Optimization

Although the Particle Swarm Optimization (Eberhart and Kennedy, 1995) is not
directly inspired by a natural phenomenon, it is based on the metaphor of a group
of particles using their “personal” and “social” experience in order to explore
the problem’s space and locate optima. A particle represents a pseudo-randomly
initialized point xi in that space, and is associated to a pseudo-randomly initial-
ized velocity1 vi. The algorithm iteratively updates the particle’s position until a
terminating criterion is met. The particle’s position xi is thus updated by applying
the formula

x′i = xi + vi

where the prime symbol ′ represents the newly generated value. Each particle
additionally keeps a record of which one, of all the positions it has taken, was the
most successful; this point xbest

i is called the local best. Moreover, the population of
particles tracks which one of the particles’ local bests has the best fitness, and this
point xbest is named the global best. The particle’s velocity is then updated based
on these two points, using the formula

v′i = vi + φ1U(0, 1)(xbest
i − xi) + φ2U(0, 1)(xbest − xi)

where φ1 and φ2 are parameters and U(0, 1) represents a uniformly-distributed
pseudo-random variable in the interval [0, 1].

A particle’s local best can be considered as the particle’s memory, and thus
the personal learning experience of the particle due to successful and unsuccessful
moves. The global best, being shared by all the particles represents the above-
mentioned social experience. The particles therefore decide of their movements
along two dimensions, the first one being their own experience, and the second

1 Strictly speaking, the velocity should be better named a perturbation or a displacement
vector, since it does not represent a speed in the physical acceptance of the term.

26

one being the imitation of the population’s most successful individual. The uti-
lization of random scale factors allow to maintain diversity in the population and
to prevent premature convergence.

2.2.3 Memetic Algorithms

Memetic algorithms are defined in Moscato and Norman (1989) as hybrids of one
metaheuristic algorithm with one or more local search algorithms. A meme, as
defined by Dawkins (1976), is an abstract element of cultural ideas, symbols or
practice, transmitted between individuals by means of speech, gestures, rituals. . .
An individual (in the context of a metaheuristic algorithm) to which a local search
algorithm is applied can be compared to a person going to school, learning skills
which are not transmitted genetically but rather memetically, making this person
a “better” person and making the individual a better performing one. The ratio-
nale behind memetic algorithms is the conviction that a combination of several
algorithms is more efficient than one single algorithm.

Memetic algorithms form a broad class of optimization algorithms; merging
one of the numerous metaheuristics with one or several of the many existing local
search algorithms leads to a tremendously large number of possible combinations.
Memetic algorithms can be classified in several ways. Lozano et al. (2004) dis-
criminates between algorithms where the local search is implemented within the
variation operator (e.g., mutation or crossover) in order to control the generation of
offsprings, and algorithms where the local search is applied to already generated
offsprings in order to improve upon their initial fitness value (this manner of using
a local search algorithm is named life-time learning).

Another way of classifying memetic algorithms has been proposed in Ong
et al. (2006), and depends on the manner the local search algorithmic compo-
nents are selected, in the case of memetic algorithms employing multiple local
search components. The first category groups algorithms governed by a set of
predefined, immutable rules governing the behavior of the search, and are called
hyperheuristic algorithms. In this case, the designer of the algorithm must take
several decisions, such as: whether to use multiple local search components
(Krasnogor, 2002; Krasnogor et al., 2002), to choose local search algorithms which
employ a variety of local search logics (Krasnogor, 2004), how to balance the
amount of fitness evaluations allocated to the local search component with re-
spect to the amount devoted to the global search component (Ishibuchi et al.,
2003; Ong and Keane, 2004), how to coordinate the algorithmic components by
observing the population diversity (Caponio et al., 2007). . . One can however
alleviate the need to take some of those decisions by letting the algorithm de-
cide by itself, thus self-adapting at runtime. Algorithms of the second category
present those properties, by making use of multiple memes competing against
each other, selecting the best meme for being used in the future; these algorithms
are qualified as meta-lamarckian. The third and last category goes beyond the
concept of meta-lamarckian algorithms, and the memes are undergoing their
own evolution, as part of the individuals’ genomes (self-adaptive memetic al-

27

gorithms) or as co-operating populations of memes (co-evolutionary memetic
algorithms).

3 DIFFERENTIAL EVOLUTION

Differential evolution (Price et al., 2005) is a versatile optimizer which, although
being originally described as an evolutionary algorithm, shares in certain circum-
stances some features with Swarm Intelligence algorithm. The general structure of
DE is the same as the one of other evolutionary algorithms (see Algorithm 1 on
page 21), with which it shares in particular the concepts of mutation and crossover,
but the Differential Evolution cannot be anymore considered to be inspired by
evolutionary processes found in Nature. What sets Differential Evolution apart
from e.g., Genetic Algorithms or Evolution Strategies is that while in those the
mutation is an operation which produces a random change in an individual, the
mutation operator in Differential Evolution takes place before the crossover and
produces on one hand a deterministic change, and on the other hand may not in-
volve the individual itself at all. Another noticeable difference is that the crossover
operation in the Differential Evolution involves one parent and its provisional
offspring rather than two parents as is the case in the above-mentioned evolution-
ary algorithms. The general structure of the Differential evolution is illustrated in
Algorithm 2 on the next page.

The initial sampling of the population is performed pseudo-randomly with
a uniform distribution function within the decision space. At each generation, for
each individual xi of the Spop, three individuals xr, xs and xt are pseudo-randomly
extracted from the population. According to the DE logic, a provisional offspring
x′off is generated by mutation as:

x′off = xr + F(xs − xt) (1)

where F ∈ [0, 1+] is a scale factor which controls the length of the exploration vec-
tor (xs − xt) and thus determines how far from point xt the provisional offspring
should be generated. With F ∈ [0, 1+], it is meant here that the scale factor should
be a positive value which cannot be much greater than 1.

When the provisional offspring has been generated by mutation, each gene of
the individual x′off is exchanged with the corresponding gene of xi with a uniform

29

Generate an initial population by sampling the search space
Evaluate the fitness of each candidate solution
while termination conditions are not met do

for each individual in the population do
Generate a provisional offspring by mutation
Generate the offspring by crossover between the parent and the provisional
offspring
Evaluate the fitness of the offspring

end for
for each individual in the population do

if the individual’s offspring has a better fitness than its parent then
Substitute the offspring to the parent

end if
end for

end while
ALGORITHM 2 General structure of the Differential Evolution

probability and the final offspring xoff is generated:

xoff ,j =

{
x′off ,j if U(0, 1) < CR or j = jrand

xi,j otherwise
(2)

where U(0, 1) is a uniformly distributed random variable in [0, 1]; j is the index of
the gene under examination and jrand is a randomly selected gene which is always
exchanged, in order to prevent cases where no gene from the provisional offspring
is exchanged.

The resulting offspring xoff is evaluated and, according to a one-to-one spawn-
ing strategy, it replaces xi if and only if f (xoff) < f (xi); otherwise no replacement
occurs. It must be remarked that although the replacement indexes are saved
one by one during the generation, the actual replacements occur all at once at the
end of the generation. For the sake of clarity, the pseudo-code highlighting the
working principles of the DE is shown in Algorithm 3 on the following page.

3.1 Mutation Schemes

The version of the Differential Evolution described above employs one particular
mutation scheme involving three distinct, randomly selected individuals in the
population and noted DE/rand/1/bin. DE refers to the Differential Evolution,
“rand” means that the first base point is chosen at random, “1” indicates that
one difference vector is used and “bin” refers the the binomial crossover applied
after the mutation (see below for a discussion about different types of crossover
methods). Several other mutation schemes are described in Qin and Suganthan
(2005) (DE/rand/1/bin is repeated here for the sake of completion):

30

Generate Spop individuals of the initial population pseudo-randomly
while budget condition do

for i = 1 : Spop do
Compute f (xi)

end for
for i = 1 : Spop do

{** Mutation **}
Select three distinct individuals xr, xs, and xt, distinct from xi
Compute x′off = xr + F(xs − xt)
{** Crossover **}
xoff = xi,j
Choose jrand randomly in {1, . . . , n}
xoff ,jrand

= x′off ,jrand
for j = 1 : n do

Generate U(0, 1)
if U(0, 1) < CR then

xoff ,j = x′off ,j
end if

end for
{** Selection **}
if f (xoff) < f (xi) then

Save index for replacement xi = xoff
end if

end for
Perform replacements

end while
ALGORITHM 3 DE pseudocode

31

• DE/rand/1/bin: x′off = xr + F(xs − xt)

• DE/best/1/bin: x′off = xbest + F(xs − xt)

• DE/current-to-best/1/bin: x′off = xi + F(xbest − xi) + F(xs − xt)

• DE/rand/2/bin: x′off = xr + F(xs − xt) + F(xu − xv)

• DE/best/2/bin: x′off = xbest + F(xs − xt) + F(xu − xv)

• DE/rand-to-best/2/bin: x′off = xr + F(xbest − xi) + F(xs − xt) + F(xu − xv)

where xbest is the solution with the best performance among the individuals of
the population, xu and xv are two additional pseudo-randomly selected indi-
viduals. The number of difference vectors is by no means limited to two, and
thus Chakraborty (2008) presents a generalization as

x′off = yi + F · 1
N

N−1

∑
k=0

(
xr(2k+1) − xr(2k+2)

)
where yi is the base vector and xr(k) are 2(N + 1) randomly selected vectors.

It is worth mentioning the rotation invariant mutation shown in Price (1999)
as well:

• DE/current-to-rand/1 xoff = xi + K(xr − xi) + F′(xs − xt)

where K is is the combination coefficient, which, as suggested in Price (1999),
should be chosen with a uniform random distribution from [0, 1] and F′ = K · F.
For this special mutation the mutated solution does not undergo a crossover
operation.

Recently, in Price et al. (2005), a new mutation strategy has been defined.
This strategy, namely DE/rand/1/either-or, consists of the following:

x′off =
{

xr + F(xs − xt) if U(0, 1) < pF
xr + (F + 1)(xs+xt

2 − xr) otherwise
(3)

As for the DE/current-to-rand/1, when this mutation scheme is applied, it is not
followed by a crossover.

Figure 2 on the next page shows the distribution of difference vectors that
can be constructed from a population of six points. The vectors have all been
re-arranged around one point for a clearer view of the points that can potentially
be reached when applying a difference vector to one point. An important fact
that can be discovered by examining Figure 2b on the following page is that
for every point in the population, there is only a limited number of points from
the search space that can be reached by applying such a mutation scheme (see
below for a more detailed discussion). One can also notice that schemes such as
DE/rand/2/bin, employing more than one difference vectors, allow to increase
the number of potential provisional offsprings, thus allowing to explore a wider

32

x1

x5

x4

x2

x3

x6

(a) All possible difference
vectors between the
six points of the popu-
lation

(b) The same vectors rearranged around their
origin, showing their distribution

FIGURE 2 Difference vectors and their distribution for a population of six points

area of the search space or provide a finer granularity to the exploration of the
area occupied by the population.

Figure 3 on the next page illustrates where provisional offsprings are gen-
erated in the search space by the various schemes described above. From the
non-exhaustive list of mutation schemes presented above, one can tentatively
categorize them, based on the location of the generated provisional offspring
compared to the population:

• The schemes using the individual presenting the best performance (named
xbest in the figures) as the base point, such as DE/best/1/bin and DE/best/2
/bin. These schemes tend to generate the provisional offsprings around
the best individuals, which is also one characteristic of Swarm Intelligence
algorithms.

• The schemes using a random vector as the base vector, such as DE/rand
/1/bin, DE/rand/2/bin or DE/rand-to-best/2, where the provisional off-
spring can be generated potentially anywhere in the vicinity of the popula-
tion.

• The schemes using the point currently considered by the algorithm as the
base point such as DE/current-to-rand/1 or DE/current-to-best/1/bin, can
be considered as an intermediate between the two above categories, since
the offsprings are generated in the vicinity of the current point.

• Schemes involving the best individual without using it as the base point
but rather considering the direction towards that individual can also be

33

x0

x1

xr

xt

xs

x′off
F(xs− xt)

(a) DE/rand/1/bin

x0

x1

xt

xs

x′off
F(xs− xt)

xbest

(b) DE/best/1/bin

x0

x1
xs

xv

xr

F(xs− xt)

xu

xtx′off

F(xu− xv)

⊕

(c) DE/rand/2/bin

FIGURE 3 Mutation schemes

34

x0

x1
xs

xv

xbest

F(xs− xt)

xu

xtx′off

F(xu− xv)

⊕

(d) DE/best/2/bin

x0

x1
xs

xi

F(xs− xt)

xbest
F(xbest− xi)

xt

x′off ⊕

(e) DE/current-to-best/1/bin

x0

x1
xs

xi

F(xs− xt)

xbest

xtxr

x′off

F(xu− xv)

xu

xv
F(xbest− xi)

⊕

(f) DE/rand-to-best/2/bin

FIGURE 3 Mutation schemes (continued)

35

x0

x1
xs

xi

xr

xt

⊕
K · F(xs− xt)

K(xr − xi)

x′off

(g) DE/current-to-rand/1

x0

x1

xr

xs

xt

x′off2

F(xs− xt)
(F + 1)(xs+xt

2 − xr)x′off1

(h) DE/rand/1/either-or

FIGURE 3 Mutation schemes (continued)

36

x1

x0

xi

x′off

x1
off

x2
off

FIGURE 4 The crossover between the two-dimensional individuals xi and x′off can pro-
duce four different offsprings: x1

off , x2
off , and the two degenerate ones xi and

x′off .

considered as an intermediate albeit in a different way than the one above.
In this case the direction towards the best individual gives the mutation
a bias towards that individual without restricting the explored area to its
immediate vicinity.

Directed mutation schemes are a class of mutation schemes where the fitness of the
individuals involved is taken into account. One such example is the trigonometric
mutation presented in Section 3.6.2. A generalization of mutation schemes and a
classification including the directed ones as well as the ones described above has
been proposed in Feoktistov (2006): mutations schemes are categorized based on
whether they are purely random, directed, using the best individual or directed
and using the best individual.

On must however keep in mind that depending on the function to which the
algorithm is applied, some mutation schemes perform better than others, and that
none of them has proved to be the best for all problems (Chakraborty, 2008).

3.2 Crossover Schemes

Most mutation schemes require a recombination step involving the provisional
offspring generated by the mutation and the parent. While the binomial crossover
mentioned in Section 3.1 on page 29 is the most common recombination method
used in the Differential Evolution, Price et al. (2005) mentions three other ones:
one-point crossover, N-point crossover and exponential crossover.

Figure 4 illustrates the result of crossover in two dimensions (represented by
axes x0 and x1). When recombining the parent individual xi with the provisional

37

offspring x′off , one can obtain four different results:

• If no gene from xi is replaced by the corresponding gene from x′off , the off-
spring xoff is equal to xi. Since this status quo does not allow any improvement
on xi, one usually tries to prevent it from happening by forcing at least one
gene replacement when implementing the crossover function.

• If the first gene of xi (along axis x0) is replaced by the corresponding gene
from x′off , the resulting offspring is then x1

off : it shares its first gene with
the provisional offspring and its second gene with its parent, and can be
represented as the vector (x′off ,0, xi,1).

• Conversely, if the second gene of xi (along axis x1) is substituted with the
corresponding one from x′off , the result is x2

off , represented as the vector
(xi,0, x′off ,1).

• Finally, if both genes of xi are replaced, the offspring is equal to x′off .

Crossover can therefore be seen as another mechanism for producing exploratory
moves along the axes of the search space. Similarly to the mutation schemes
described above, the crossover produces a deterministic and limited number of
such moves.

3.2.1 One-Point Crossover

One-point crossover (see e.g., Holland, 1992) has already briefly been presented in
Section 2.2.1 on page 21 and in Figure 1a on page 22. In a more formal way, a one-
point crossover between the provisional offspring x′off and the current individual
xi produces an offspring xoff such that

xoff ,j =

{
x′off ,j if j < jcr

xi,j otherwise
(4)

where xi,j is the gene of xi under consideration and jcr, randomly selected in
{1, . . . , n} with a uniform distribution, is the crossover point.

3.2.2 N-Point Crossover

N-Point crossover (see e.g., Eshelman et al., 1989), illustrated in Section 2.2.1 on
page 21 and in Figure 1b on page 22, randomly subdivides xi and x′off into N + 1
partitions; xoff is then generated by taking alternatively partitions from one and
from the other vector:

xoff ,j =

{
x′off ,j if ∃k ∈ {1, . . . , (N + 1)/2}|j ∈ p2k

xi,j otherwise
(5)

where P = {p1, . . . , pN+1} is the set of the randomly selected partitions of the
dimensions of the search space.

38

3.2.3 Exponential Crossover

The exponential crossover (see e.g., Caruana et al., 1989) is a two-point crossover
where the boundaries of the partitions are determined by a series of random
numbers. The procedure starts at a random gene in the current individual’s
genome, where this gene is replaced by the corresponding one of the provisional
offspring. For each subsequent gene (wrapping around the end of the genome
if necessary), a uniformly distributed random number is generated in [0, 1] and
if this number is lower than the crossover rate CR, the gene is replaced by the
corresponding one from the provisional offspring. If on the contrary the random
number is higher than CR, the procedure stops there and no more genes are
replaced. More formally, the exponential crossover can be described as follows:

xoff ,j =

{
x′off ,j if j = jrand or (j− jrand) mod n ∈ J
xi,j otherwise

(6)

where j is the index of the gene under consideration, jrand is a randomly selected
gene and J is the set of gene indexes defined as J = {1, . . . , k}, k < n|∀m ∈
J, rm < CR and (k = n − 1 or (k < n − 1 and rk+1 ≥ CR)), with R =
{r1, . . . , rn−1} a set of n− 1 uniformly distributed random numbers in [0, 1]. The
gene at index jrand is always replaced, which ensures that the offspring always
differs from its parent by at least one gene.

The name of this crossover method comes from the fact that the probability
that k or fewer genes are inherited from the provisional offspring is 1−CRk (see
Price et al. (2005) for the demonstration), which is an exponential function of k.

3.2.4 Uniform (Binomial) Crossover

In the uniform crossover (see e.g., Syswerda, 1989), each gene from the parent
individual has an equal probability CR to be replaced by a gene from the provi-
sional offspring. Since this method of recombination was described in Equation 2
on page 29, it will not be repeated here.

The uniform crossover is named after the fact that each gene has the same
probability to be replaced. It is sometimes referred to as binomial due to the fact
that the number of replaced genes follows a binomial distribution (see again Price
et al. (2005) for the demonstration).

In the uniform crossover as well as in the exponential crossover, the crossover
rate parameter CR determines how “far” from the parent the offspring is located.
With a low crossover rate, close to 0, most of the offspring’s genome is identical to
its parent’s and the offspring is therefore close to it. If on the contrary the crossover
rate is close to 1, the offspring will be very similar to the provisional offspring
which, depending on the selected mutation scheme can be located far from the
parent, thus allowing a wider exploration radius of the search space.

39

3.3 Survivor Selection

The step following the generation of the offsprings consists in selecting which of
the parents and of the offsprings will constitute the initial population for the next
generation.

In simple Genetic Algorithms, the age is the sole selection criterion (see e.g.,
Goldberg, 1989), meaning that, provided that the offspring population is of the
same size as the parent population, the latter is entirely replaced by the former.
Since the fitness of the offsprings is not taken into account in this step, age-based
survivor selection is efficient only if the selection of the parents is based on their
fitness. Since the Differential Evolution does not select the parents based on their
fitness, this method is not suited for this algorithm.

On the opposite, the surviving individuals can be selected based on their
fitness only (Rudolph, 1996), a method sometimes referred to as elitism, and used
for example in the (µ + λ) Evolution Strategy algorithms. With this method only
the best individuals of both the parent and offspring populations are retained,
regardless of whether they are parents or offsprings.

The (µ, λ) Evolution Strategy algorithms make use of an intermediary ap-
proach, where only the µ best individuals out of the λ offsprings are retained, thus
considering both the age and the fitness criteria (Bäck and Schwefel, 1995).

Tournament selection, used in Genetic Algorithms and Evolutionary Program-
ming for parent selection, can also be applied to select survivors (Fogel et al., 1966).
The one-to-one tournament selection used in the Differential Evolution is a form of
tournament involving only the parent and its offspring; the best of them is selected
as the survivor. This method of selection, which is also used for the same purpose
in the Particle Swarm Optimization, ensures that only offsprings that are better
than their parent are retained, and that the best individuals in the population are
preserved as well. It must be noted that there are two different ways of imple-
menting the one-to-one tournament in the Differential Evolution: the parents that
are outperformed by their offsprings can be either replaced immediately after
the offspring has been generated (continuous selection), or all at once after all the
offsprings have been generated (discrete selection). In the first case, one of more of
such offsprings may be selected as xr, xs and xt, whereas in the second case only
parent individuals can be selected. While the original definition of the Differential
Evolution makes use of a discrete selection mechanism, continuous selection has
been studied e.g., in Tagawa (2009).

3.4 The Evolutionary Algorithm-Swarm Intelligence Duality

The Differential Evolution was designed originally as a form of evolutionary
algorithm, with which it shares its main structure: parent selection, offspring
generation by mutation and recombination, and survivor selection. Some of its

40

-4

-2

 0

 2

 4

-4 -2 0 2 4

(a) At generation 1

-4

-2

 0

 2

 4

-4 -2 0 2 4

(b) At generation 16

-4

-2

 0

 2

 4

-4 -2 0 2 4

(c) At generation 31

-4

-2

 0

 2

 4

-4 -2 0 2 4

(d) At generation 46

-4

-2

 0

 2

 4

-4 -2 0 2 4

(e) At generation 61

-4

-2

 0

 2

 4

-4 -2 0 2 4

(f) At generation 76

FIGURE 5 Example of convergence of the DE/rand/1/bin Differential Evolution with a
population of 15 individuals on the two-dimensional Rastrigin function

41

characteristics however allow to classify it as a swarm intelligence as well.
The behavior of any evolutionary algorithm can be summarized into three

main phases (Eiben and Smith, 2003): exploration of the search space for promis-
ing solutions, exploitation of those solutions to improve upon them and finally
convergence towards the global optimum. This evolution is illustrated in Figure 5
on the preceding page, where the Differential Evolution is used for finding the
global optimum of the Rastrigin function: at first the individuals of the population
are spread over the search space, they then slowly cluster around the best solutions
before finally converging towards the global minimum of the function.

In some cases however, an evolutionary algorithm may fail at finding the
global optimum (Eiben and Smith, 2003). Different algorithms can thus be charac-
terized by the manner in which this failure happens: Genetic Algorithms (Gold-
berg, 1989) for example tend to converge quickly toward one local minimum, while
swarm intelligence algorithms on the contrary maintain a high spatial diversity,
preventing the population from converging (Bonabeau et al., 1999). While many
evolutionary algorithms suffer from premature convergence by exploiting too early
their solutions, the Differential Evolution rather behaves as a swarm intelligence
in this respect and exhibits symptoms of stagnation, where the population explores
the search space indefinitely without finding any exploitable solution (Lampinen
and Zelinka, 2000).

Another argument in favor of classifying the Differential Evolution as a
swarm intelligence is that when the mutation scheme employed involves the
best individual, the population of a Differential Evolution follows the evolution
of its best individual, which is one of the characteristics of swarm intelligence
algorithms.

Finally, one can argue that the mutation and crossover operators in the Dif-
ferential Evolution differ quite much from those, inspired by natural mechanisms,
employed in other evolutionary algorithms (Chiong et al., 2010). In the Differential
Evolution, the crossover involves a parent and its offsprings instead of two parents
as it does in e.g., Genetic Algorithms, and the mutation does not use a purely
random modification, as can be found in e.g., Evolution Strategies.

Depending on the point of view, the Differential Evolution may thus be
considered either as an evolutionary algorithm or as a swarm intelligence, with
both of which it shares characteristics.

3.5 Implicit Self-Adaptation: a Double-Edged Sword

One of the main characteristics of the Differential Evolution lies in the mechanism
of self-adaptation that emerges from the algorithmic structure (Feoktistov, 2006).
It has been shown in the description of the algorithm that the generation of
an offspring by a parent individual depends on the other individuals in the
population, through the mutation and crossover mechanisms. In the beginning
of the optimization process, when the individuals are widely spread over the

42

search space, the large distances separating the individuals allow for difference
vectors with a large norm and therefore allow to explore the space with a large step
size. During the course of the optimization, the individuals tend to concentrate
towards portions of the space exhibiting potentially good solutions, therefore
reducing the norm of most difference vectors (if the population is divided in at
least two, widely separated clusters, large difference vectors can still be produced
by choosing individuals from two distinct clusters, but difference vectors produced
by individuals selected from within one cluster will have a comparatively small
norm). The step size of the exploration is therefore progressively reduced and
the search performed in the neighborhood of the solutions. The behavior of
the algorithm thus progressively shifts from exploring the entire search space to
exploiting the promising solutions discovered during the exploration (Mininno
and Neri, 2010).

This self-adaptation mechanism is however inherently flawed (Neri and
Tirronen, 2010). Since the number of distinct offsprings that can potentially be
produced by one population is deterministic and limited by the number of indi-
viduals in that population, the case can arise when no offspring exhibits a better
performance than its parent, causing the population to stagnate i.e., it will not be
renewed by the offsprings. The search will be then repeated with the same popu-
lation and the same step size, but the population is likely not going to converge,
not even towards a local optimum.

3.6 Overcoming Stagnation

Some amount of effort has been put in solving the stagnation problem described
above (see e.g., Neri and Mininno, 2010; Neri and Tirronen, 2010), which can be
summarized as a need for the algorithm to be allowed more search moves than
those defined by the basic mutation scheme and crossover. The variants of the
Differential Evolution that have been published over the years as a result of that
research can be categorized according to the mechanism they use:

• The control parameters, scale factor and crossover rate, can be dynamically
changed during the course of the optimization.

• Supplementary moves can be generated by various means.

• The size of the population can be changed during the process, reducing the
number of individuals or increasing it.

• The problem space can be separated into sub-spaces which are optimized
separately.

43

3.6.1 Dynamic Control Parameters

If one considers that stagnation is caused by too large step sizes, the obvious
response is to change the step size during the course of the optimization. The
step size depends on the difference of two vectors in the population and on
the value of the scale factor. While the former cannot be acted upon when e.g.,
the DE/rand/1/bin scheme is employed, the latter can however be modified
dynamically.

In Zaharie (2002), the scale factor F is replaced by a normally distributed
random variable hereafter named Fi or Fj. The practice of sampling Fi for each
individual xi is called dithering, while sampling Fj for each component xi,j of
the individual xi is called jitter. While dithering only changes the norm of the
difference vector, jitter changes its orientation as well, which causes this process
to fundamentally differ from the classic Differential Evolution using a constant
scale factor. Using a normally distributed random variable Nj(0, σ) for the scale
factor as described above causes the value of Fj to be close to 0 when σ approaches
0. One variant of the dithering/jitter algorithm consists therefore in defining
Fj = F · Nj(1, σ), which generates a distribution of Fj values centered around F.
This variant, as well as the employment of other statistical distributions such as
log-normal, uniform and power law as an alternative to the normal distribution,
are described in Price et al. (2005).

Differential Evolution with Random Scale Factor (Das et al., 2005), designed
for the optimization of noisy functions, is one other example of dithering based on
a uniform distribution with Fi = 0.5× (1 + U(0, 1)), where U(0, 1) is a random
number sampled with a uniform probability in [0, 1]. The algorithm additionally
modifies the selection mechanism by introducing a threshold margin τ = k · σ2

n
based on the variance σ2

n of the noise: the fitness of the offspring must be better
than its parent’s by at least τ for the former to be allowed to replace the latter.

Self-Adaptive Control Parameter Distributed Evolution (Brest et al., 2006)
uses an approach similar to dithering but extends it to both control parameters.
Each individual xi is assigned a scale factor Fi and a crossover rate CRi which are
used for generating that individual’s offspring; those two values are inherited by
the offspring as well. On every generation, Fi and CRi each have a fixed probability
to be updated to a new value based on a uniform distribution.

The Fuzzy Adaptive Differential Evolution (Liu and Lampinen, 2005) makes
use of two fuzzy logic controllers to adapt the values of the control parameters
to the evolution of the population between one generation and the next one. The
magnitude of the evolution is measured both in the search space by computing
the root mean square value of the components of all the individuals between
generation g and g + 1, and in the fitness domain, by computing the root mean
square value of the fitness of all the individuals. These values are then mapped to
fuzzy variables which can take the values small, medium or big, and new values for
the scale factor and the crossover rate are eventually computed according to a set
of rules.

These dynamic changes in the values of the control parameter ensures that

44

the step size does not remain constant over time, thus giving the possibility to a
stagnant population to overcome the problem and to continue improving upon its
solutions.

3.6.2 Supplementary Search Moves

Stagnation can also be considered to be caused by a lack of “good” search moves,
i.e., search moves leading to offsprings which outperform their parent. Supple-
mentary search moves can be introduced by hybridizing the Differential Evolution
with a local search algorithm that attempts to improve some of the individuals in
the population (often the one with the best performance). Another possibility is the
generation of additional search moves based on the existing ones (i.e., produced
by the mutation scheme).

The Differential Evolution with Trigonometric Mutation (Fan and Lampinen,
2003) makes use of a mutation scheme which differs from the one described in
Section 3.1 on page 29 in that it takes into account the fitness of the three randomly
selected vectors it is based on. The provisional offspring is thus computed as

x′off =
xr + xs + xt

3
+ (ps − pr)(xr − xs) + (pt − ps)(xs − xt) + (pr − pt)(xt − xr)

where for k = r, s, t,

pk =
| f (xk)|

| f (xr)|+ | f (xs)|+ | f (xt)| .
The provisional offspring thus generated is the centroid of the triangle formed
by xr, xs and xt, where the weight of each individual is a function of its own
fitness fitness and of the average fitness of the other two individuals. The goal of
this mutation scheme is to increase the explorative component of the Differential
Evolution algorithm by detecting optimal directions; it can be in a sense considered
as a single-step local search.

The incorporation of a crossover-based local search into the Differential Evo-
lution in order to improve the performance of the algorithm is presented in Noman
and Iba (2008). Since the length of the local search i.e., the number of steps of
local search that must be performed depends on the problem, it is impossible
to define it a priori. This algorithm therefore proposes to adaptively change the
length of the local search by taking feedback from the search. This local search
is applied at the beginning of every generation to the individual presenting the
highest performance. The chosen local search is the simplex crossover algorithm
presented in Tsutsui et al. (1999), which takes for input the target individual and
additional np − 1 parents randomly selected in the population. The target indi-
vidual is then recursively recombined with each of those parents to produce one
offspring. If this offspring exhibits better performance than the target individual,
it is selected as the new target individual and one additional step of local search is
performed. Otherwise, the target individual replaces the original best individual
in the population, and the Differential Evolution algorithm goes on.

The Differential Evolution with Global and Local Neighborhoods uses the
concepts of population neighborhoods presented in Chakraborty et al. (2006) and

45

Das et al. (2009). The individuals of the population being randomly sorted, the in-
dividuals xi−k, . . . , xi, . . . , xi+k represent a neighborhood of radius k of individuals
xi. A new mutation operator is then designed as

xoff = wGi + (1− w)Li

where w is a weight factor set between 0 and 1 balancing the impact of the local
contribution Li and the global contribution Gi. The former is defined as

Li = xi + α(xl−best − xi) + β(xp − xq)

and the latter as
Gi = xi + α(xp−best − xi) + β(xr − xs)

where (xl−best is the best performing individual in the neighborhood of xi, xp
and xq are randomly selected in the neighborhood, xp−best is the best performing
individuals in the whole population and xr and xs are two randomly selected
individuals from the population. While Chakraborty et al. (2006) suggests to set
α = β, the weight w varies during the course of the optimization process according
to

w = wmin + (wmax − wmin)
g

gmax

where where wmin and wmax are the lower and upper bounds of the weight factor,
respectively. The indexes g and gmax denote the current generation index and the
maximum amount of generations, respectively. Three additional schemes for the
weight factor update have been presented and compared in Das et al. (2009): an
exponential increase rule, a randomly generated w and an evolutionary rule. In the
latter case, each individuals xi is assigned a weight wi, and on every generation, a
new value w′i is computed as

w′i = wi + F(wbest − wi) + F(wr − ws)

where wbest is the weight of the best performing individual and wr and ws are the
weights of xr and xs in the formula of Gi.

The Opposition-Based Differential Evolution presented in Rahnamayan et
al. (2006) and Rahnamayan et al. (2008) proposes to create supplementary search
moves by taking the symmetrical of the individuals with regard to the center of a
rectangular hyperparallelepiped. More formally, the individual x̃i, symmetrical of
xi is defined by its genes as

x̃i,j = aj + bj − xi,j

where j is the index of the genes under consideration and aj and bj are the ex-
tremities of the bounding box along the jth dimension of the search space. At the
beginning of the algorithm, after the initial sampling of the population, a first set
of symmetrical individuals is generated, which are then merged with the initial
population, and the Spop best ones are retained for the first generation. During
the subsequent generations, this process has a given probability jr (jump rate) to

46

be repeated, this time using the center of the population’s bounding box i.e., of
the smallest possible rectangular hyperparallelepiped containing the whole popu-
lation; from this point on, the symmetrical individuals are generated according
to

x̃i,j = min
i

xi,j + max
i

xi,j − xi,j

where mini xi,j and maxi xi,j are the respectively minimum and maximum values
taken by the jth component of the individuals in the population.

3.6.3 Hybrid Approaches

The scale factor being a key element in the definition of the step size of the
Differential Evolution, its value is crucial for the performance of the algorithm.
The optimal value of the scale factor however depends on the problem being
optimized. In Differential Evolution with Scale Factor Local Search (Tirronen et al.,
2009; Neri et al., 2009; Neri and Tirronen, 2009), the authors propose to consider
the choice of the scale factor as a one-dimensional problem to be optimized with
a local search algorithm. During the generation of an offspring, the local search
algorithm has a given probability to be activated. The fitness of a particular value
of the scale factor is the fitness of an offspring which is generated with this scale
factor. It must be noted that during the local search, the search domain of the scale
factor is [−1.2, 1.2]; negative values mean that the direction of the search (in the
Differential Evolution) is reversed.

In the JADE algorithm presented in Zhang and Sanderson (2007), the values
of the control parameters are updated based on a memory of values leading to
offsprings that outperform their parents. The algorithm employs the DE/current-
to-pbest/1/bin mutation scheme

x′off = xi + Fi(xp
best − xi) + Fi(xr − xs)

where xp
best is randomly chosen among the 100p% best individuals in the popu-

lation with p ∈ (0, 1], Fi is the scale factor associated with individuals xi and xr
and xs are two individuals randomly selected in the population. The candidate
offspring x′off is then recombined with individual xi using the uniform crossover
defined in Equation 2 on page 29 where the crossover rate CR is replaced by the
value CRi associated to individuals xi. The values of Fi and CRi are randomly
generated at the beginning of every generation based on two parameters µF and
µCR. While the CRi values are based on a normally distributed random variable
centered on µCR, the Fi values of one third of the individuals are generated by
a uniformly distributed random variable, while the others are generated by a
normally distributed random variable centered on µF. When an offspring xoff out-
performs its parent, the scale factor Fi and the crossover rate CRi of its parent are
saved in two sets respectively named SF and SCR. At the end of every generation
of the algorithm, the values of µF and µCR are updated by calculating a weighted
average between the current value of the parameter and, for µCR the mean value

47

of SCR, and for µF the Lehmer mean of SF; the latter is defined by

L(SF) =
∑F∈SF

F2

∑F∈SF
F

.

In the Self-Adaptive Differential Evolution (Qin and Suganthan, 2005), mul-
tiple mutation schemes are employed and each individual xi is assigned a set
of probability values pk

i , one for each mutation scheme. In the more efficient
implementation of the algorithm presented in Qin et al. (2009), the mutations
schemes in use are DE/rand/1/bin, DE/rand-to-best/2/bin, DE/rand/2/bin and
DE/current-to-rand/1. The probabilities pk

i , k = 1 . . . , 4 for each of those schemes
are initialized to 0.25. During the subsequent learning period of LP generations,
the number of offsprings ni,k

s that better their parent is accounted, for each indi-
vidual xi and for each mutation scheme k; the number of offsprings ni,k

f that are
worse than their parent is accounted as well. At the end of the learning period, on
each generation G the probabilities pk

i are updated according to the formula

pk
i =

Sk
i

∑4
k=1 Sk

i

where

Sk
i =

∑G−1
G−LP ni,k

s

∑G−1
G−LP ni,k

s + ∑G−1
G−LPi ni,k

f

+ ε

and ε is a small value set to 0.01, designed to ensure a numerical stability of the
algorithm in the case Sk

i = 0 for all the mutation schemes. The mutation scheme
used when producing one particular provisional offspring is then selected by
Stochastic Universal Sampling (Baker, 1987) based on the probabilities assigned
to the four possible mutation schemes by the parent individual. Each individual
xi is additionally assigned one scale factor Fi and one crossover rate CRk

i for
each of the four mutation schemes. The value of Fi is initialized by means of a
random value sampled from a normal distribution N(µ, σ) where µ = 0.5 and
σ = 0.3. The K factor involved in the DE/current-to-rand/1 is sampled from
[0, 1] with a uniform probability. The crossover rate values are initialized to 0.5
for each strategy, and then updated on every generation of the learning period
by a random value sampled from a normal distribution N(µ, σ) where µ = CRk

i
and σ = 0.1. During the same period, the values of CRk

i which lead to offsprings
bettering their parents are saved for each individual and each mutation scheme.
At the end of the learning period, CRk

i is replaced by the the median of those saved
CRk

i values; CRk
i continues to be updated as before during the remainder of the

optimization process.

3.6.4 Variable Population Sizes

Since the variability of the search moves depends on the individuals present in
the population, acting upon the size of the population can affect the performance

48

of the Differential Evolution. Stagnation may be prevented by focusing the search
in progressively smaller search spaces. The search is highly explorative during the
early stages of the process, making use of a large population, and becomes pro-
gressively exploitative by reducing the size of the population and thus narrowing
the searched region.

In the Differential Evolution with Population Size Reduction (Brest and
Maučec, 2008), the algorithm starts with an initial population size S1

pop, a total
budget of fitness evaluations Tb and a number of stages Ns. The total budget is
divided into Ns periods, each of which is characterized by a population size of
Sk

pop, with k = 1, . . . , Ns. A number of generations Nk
g is computed for each period

by

Nk
g =

∣∣∣∣∣ Tb

NsSk
pop

∣∣∣∣∣+ rk

where rk ≥ 0 takes a non-null value when Tb is not divisible by Ns. At the end
of every period except the last one, the population size is halved. Therefore,
Sk+1

pop = Sk
pop/2 for k = 1, . . . , Ns − 1. The selection of the individuals surviving

the reduction of the population is done by separating the population into two
unsorted lists of equal sizes and comparing the fitnesses of the two individuals
located at the same index in both lists; the best individual of the two is kept in the
new, smaller population.

In the algorithm presented in Teo (2006), the population size, as well as the
other control parameters, are self-adaptive: these parameters are appended to the
genome of the individual and updated using a difference vector and a crossover,
as are the individual’s regular genes. It must be noted however that the algorithm
described in the paper does not follow the structure of the original Differential
Evolution, since it employs a scale factor of 1 and perturbs the offspring prior
to selection by adding to each component a random value sampled in a normal
distribution.

4 DIFFERENTIAL EVOLUTION WITH STRUCTURED
POPULATION

In order to increase the execution speed of an algorithm, one can consider us-
ing multiple processors to execute parts of the algorithm in parallel. Alba and
Tomassini (2002) presents three manners in which parallelism can be achieved:
master-slave, coarse-grained and fine-grained structures. In the master-slave ap-
proach, the master controls the logic of the algorithm and distributes only the
evaluation of the fitness function to the slaves; the algorithm does not require
any structural modification and, provided that the time required to evaluate the
fitness of one individual is greater than the time required to communicate with
the slave, the execution time is reduced. Coarse and fine-grained structures are
very different since they imply the modification of the the algorithm in order to
assign one subpopulation to each processor of the parallel computer; each processor
also runs its own instance of the algorithm, and processors are allowed to com-
municate with each other. The difference between coarse and fine-grained resides
in the size, number and topology of these subpopulations: coarse-grained employ
few subpopulations of quite large size, while fine-grained are composed of many
subpopulations of reduced size, possibly limited to one single individual. In both
cases, the different processors are organized into a given topology and are allowed
to exchange information. Hybrids between master-slave, coarse- and fine-grained
structures are also possible, for example by using a master-slave implementation
of the instance running at each node of a coarse-grained algorithm.

Algorithms employing a structured population are not however required to
be executed on parallel computers: the instructions which would be executed in
parallel can be serialized and executed on a single processor. This implementation
requires more time to execute than the parallel one, but it highlights the structured
population not anymore as a manner to reduce the execution time but rather as
a new variation of the original algorithm. The serialization of the algorithm also
removes the synchronization problems which occurs on parallel computers when
the different processors need to communicate with each other and where the need
may arise for the initiator of a communication to wait for the acceptor to complete
its current task before being able to respond.

50

4.1 Differential Evolution Algorithms with Structured Populations

4.1.1 Parallel Differential Evolution

The problem of parallelization for Differential Evolution schemes has been studied
in Tasoulis et al. (2004) through an experimental analysis, and an algorithm, namely
Parallel Differential Evolution has been proposed.

The original Parallel Differential Evolution implementation uses the Parallel
Virtual Machine, allowing multiple computers (called nodes) to be organized as
a cluster and exchange arbitrary messages. The algorithm is structured around
one master node and N subpopulations running each on one node, and organized
as a unidirectional ring, as illustrated in Figure 6. It must be noted that although
the logical topology is a ring which does not contain the master node, the actual
topology is a star, where all communications (i.e., the migrations of individuals
from one subpopulation to another) are passing through the master.

Sub−population node

Master node

FIGURE 6 Unidirectional ring topology in the Parallel Differential Evolution algorithm

Each subpopulation runs a regular Differential Evolution algorithm while the
master node coordinates the migration of individuals between the subpopulations.
On each generation, the subpopulation has a given probability to send a copy of
its best individual to its next neighbor in the ring. Algorithm 4 on the next page
describes the behaviors of both the master node and the subpopulations in more
details.

The Differential Evolution variant run by each subpopulation is the same
across all the subpopulations. In Tasoulis et al. (2004), six mutation strategies have
been compared, namely DE/best/1, DE/rand/1, DE/cur-to-best/1, DE/best/2,
DE/rand/2 described in Section 3.1 on page 29, as well as the trigonometric
operator described in Section 3.6.2 on page 44. Each strategy is used with different
values of the migration constant φ and compared over seven test functions whose

51

At the master node:
spawn N subpopulations, each one on a different processor
for each generation do

receive an individual from each subpopulation
for each received individual do

if rand(0, 1) < φ then
send the individual to the next subpopulation in the ring

end if
end for
if the stop criterion for the objective function is met then

send a termination signal to all the subpopulations
end if

end for

At each subpopulation:
for each generation do

perform a Differential Evolution step
send a copy of the best individual to the master node
if a migrated individual has been received then

replace a random individual, different from the best, by this migrated indi-
vidual

end if
if a termination signal has been received then

terminate the execution
end if

end for
ALGORITHM 4 Pseudo-code of the Parallel Differential Evolution algorithm for both

the master node and a subpopulation

52

dimensions vary between 2 and 30. The results show that DE/best/1 is the most
efficient mutation strategy and quite stable across different values of φ, whereas
the results of DE/rand/1 are average and quite unstable when φ varies.

4.1.2 Island-Based Distributed Differential Evolution

A distributed Differential Evolution, namely Island Based Distributed Differential
Evolution has been proposed in Apolloni et al. (2008). The algorithm is a modified
version of the Parallel Differential Evolution described in Section 4.1.1 on page 50.
The algorithm is described in a generic way, presenting a population P structured
in m subpopulations Pp of np individuals. The size of P is noted N = ∑n

i=1 ni.
The migration policy is then defined as a five-tupleM = (γ, ρ, φs, φr, τ). γ ∈ N

is the number of generations between two migrations, ρ ∈ N is the number of
individuals which are migrated from a subpopulation during each migration, φs
is the selection function which, applied to a subpopulation, returns the migrat-
ing individuals, φr is the replacement function that selects the individuals to be
replaced by the immigrants in the receiving subpopulation, and τ : P → 2P is the
topological model, which selects what subpopulation can send to (or receive from)
what other subpopulation. Algorithm 5 describes the algorithm as pseudo-code.

initialize(Pp)
while the stopping condition is not met do

perform a Differential Evolution step
if the last migration was γ generations ago then

for each of the ρ individuals to send do
v′ig ← φs(Pp)
send v′ig to Pj chosen by τ

end for
end if
{** Asynchronous communication **}
while individuals are arriving do

receive v′ig from Pj

replace an individual chosen from φs(Pp) by v′ig
end while

end while
ALGORITHM 5 Pseudo-code of the Island-Based Distributed Differential Evolution

algorithm for subpopulation Pp

For the actual experiments, the population size N is set to 20, and the popula-
tion is divided into two subpopulations of 10 individuals in one experiment, and
into four subpopulations of 5 individuals in a second experiment. The migration
parameters are set to γ = 100, ρ = 1, the functions φs and φr are defined to ran-
domly select an individual, and the topology τ is a unidirectional ring, very similar
to the logical topology used by Parallel Differential Evolution (see Section 4.1.1 on
page 50). The mutation strategy for the Differential Evolution is DE/rand/1, and

53

the algorithm is tested on 25 different test functions in 30 and 50 dimensions, for a
total of 50 test functions.

4.1.3 Distributed Differential Evolution

In order to solve an image registration problem, a distributed Differential Evo-
lution has been proposed in Falco et al. (2007a,b,c). This algorithm differs from
the Parallel Differential Evolution and the Island-Based Distributed Differential
Evolution by the topology it uses. Instead of a unidirectional ring, the Distributed
Differential Evolution uses a locally connected topology, where each node is con-
nected to µ other nodes. Figure 7 represents such a topology where the nodes are
arranged in a mesh folded into a torus.

The grey discs represent the neighbors of the black disc.

FIGURE 7 Torus topology in the Distributed Differential Evolution algorithm

In this configuration µ = 4, i.e., each node (such as the black disc in the
figure) has exactly four nearest neighbors (represented by the four grey discs). In
the Distributed Differential Evolution, each node represents one processor running
a Differential Evolution algorithm with a DE/rand/1 mutation strategy on a sub-
population. Every MI generations (the migration interval), each subpopulation is
allowed to exchange SI (the migration rate) individuals with its nearest neighbors.
In the experimental setup, each node sends a copy of its best individual to its
neighbors. Algorithm 6 describes the algorithm as pseudo-code.

The Distributed Differential Evolution also makes use of a master node, the
role of which is to collect the best solutions found in each subpopulation and to
present the results to the user.

54

initialize the subpopulation
while the stopping condition is not met do

perform a Differential Evolution step
if the last migration was MI generations ago then

send a copy of the best individual to each neighbor
end if
if there are incoming individuals then

replace the worst SI × µ individuals by the SI × µ incoming ones
end if

end while
ALGORITHM 6 Pseudo-code of the Distributed Differential Evolution algorithm at a

subpopulation

4.1.4 Randomly Connected Topologies

The ring and torus topologies employed by the algorithms described above do
not represent all the possible topologies used in designing distributed algorithms.
Although Zaharie and Petcu (2004) has not been studied with as much attention
as the three algorithms above, it is worth mentioning its use of a random topology,
where the subpopulations are not considered to be connected to each other but
rather share a common communication medium. After a given number of gener-
ations, each subpopulation is selecting a random other subpopulation and each
individual in the first subpopulation has a given probability to be exchanged with
an individual in the other subpopulation. This process is then repeated until the
end of the algorithm.

A similar topology is used in PI, but only the individuals presenting the best
performance in the subpopulation under consideration are selected for migration
to a randomly chosen subpopulation. The incoming individuals are merged
with the subpopulation’s own individuals and only the best ones are retained,
in a fashion similar to the survivor selection process of the (µ + λ) Evolution
Strategy algorithm described in Section 2.2.1 on page 23. It must be noted that PI
additionally differs from the other articles presented in this work by many aspects.
The problem under study is the optimization of an artificial player based on a
neural network, for a game involving an important part of randomness. The
problem was therefore noisy and computationally intensive, leading to the the
development of a truly distributed algorithm that was run in parallel on several
computers. This problem however sparked the author’s interest for parallel
optimization algorithms and lead to the work described in the next chapter.

5 BUILDING UPON STRUCTURED POPULATION
ALGORITHMS

Considering a given topology for a distributed Differential Evolution, one can
attempt at enhancing its performance by modifying some parts of the basic algo-
rithm, in a fashion similar to the numerous variants of the original Differential
Evolution presented in Section 3.6 on page 42. Each of the articles presented in this
work, with the exception of PI, presents such variations, which can be organized
into two categories: the variations that act on the subpopulations of a distributed
Differential Evolution, changing its size or the individuals it contains, and the
variations that modify the operators which are at the core of the Differential Evolu-
tion’s algorithm. The algorithm presented in article PVII having been specifically
designed for large scale problems, it is described in a separate section. It must
also be noted that the budget of fitness evaluations allotted to the algorithms in
Articles PII to PVI are considerably shorter than the ones used in PVII.

5.1 Test Framework

Articles PII to PVI form a common set of algorithmic modules that can be added to
Differential Evolution algorithms with structured population. These modules have
been implemented within at least the Parallel Differential Evolution, and tested on
a common set of continuous functions, using similar parameter settings. Table 1
summarizes these functions. In shorter articles, only a subset of these functions
has been considered. Many of these test functions being additionally separable,
they can be optimized one component at a time, making them potentially easier for
algorithms searching along the axes of the problem space. To make the problems
more difficult, rotated versions of some of these functions have been used as well.
The rotation is performed by multiplying the input vector by a given, random
orthonormal matrix. The test function is then applied to the rotated input vector.

The optimization algorithms presented below being stochastic processes, one
cannot run them only once on a test function to measure their performance: the

56

TABLE 1 Test Problems

Test Problem Function Decision
Space

Ackley
−20 + e + 20 exp

(
− 0.2

n

√
∑n

i=1 x2
i

)
− exp

(
1
n ∑n

i=1 cos(2π · xi)xi

) [−1, 1]n

Alpine ∑n
i=1 |xi sin xi + 0.1xi| [−10, 10]n

Axis-parallel
hyper-ellipsoid ∑n

i=1 ix2
i [−5.12, 5.12]n

DeJong ‖x‖2 [−5.12, 5.12]n

DropWave − 1+cos
(

12
√
‖x‖2

)
1
2 ‖x‖2+2 [−5.12, 5.12]n

Griewangk
‖x‖2

4000 −∏n
i=0 cos xi√

i
+ 1 [−600, 600]n

Michalewicz −∑n
i=1 sin xi

(
sin
(

i·x2
i

π

))20

[0, π]n

Pathological ∑n−1
i=1

(
0.5 +

sin2
(√

100x2
i +x2

i+1−0.5
)

1+0.001∗(x2
i −2xixi+1+x2

i+1)
2

)
[−100, 100]n

Rastrigin 10n + ∑n
i=0
(
x2

i − 10 cos(2πxi)
)

[−5.12, 5.12]n

Rosenbrock valley ∑n−1
i=1

(
100

(
xi+1 − x2

i
)2 + (1− xi)

2
)

[−2.048, 2.048]n

Schwefel ∑n
i=1−xi sin

(√|xi|
)

[−500, 500]n

Sum of powers ∑n
i=1 |xi|i+1 [−1, 1]n

Tirronen
3 exp

(
− ‖x‖2

10n

)
− 10 exp

(−8‖x‖2)
+ 2.5

n ∑n
i=1 cos

(
5
(

xi + (1 + i mod 2)cos
(‖x‖2))) [−10, 5]n

57

result of a single run could be exceptionally “good” or conversely exceptionally
“bad” and not reflect the actual performance of the algorithm. The current practice
is thus to run each algorithm repeatedly on a test function, which produces a
set of fitness values; the comparison of the performance of two algorithms when
applied to that test function is therefore a non-trivial task. To that effect, multiple
complementary approaches have been employed in the articles presented below.
The first approach is to compare the average values returned by the algorithms
over their multiple runs; those are therefore presented in a table, which contains
additionally the corresponding standard deviations. Averages alone are however
not significant enough, especially if the ranges of the samples are overlapping
to some extent. Statistical tests such as Student’s t-test or Wilcoxon’s rank-sum
test are therefore applied to the results; these tests attempt at determining, with
a given confidence level, if the two statistical distributions, from which the sets
of results produced by the two algorithms have been sampled, are identical. In
the case the test rejects the null hypothesis e.g., their equality, one can conclude
that one algorithm is significantly outperforming the other. As the tests above
are applied to results obtained from one function only, a post-hoc test such as
Wilcoxon’s signed-rank test or Holm’s procedure can be applied to compare
the performance of several algorithms over the whole benchmark they have
been applied to. Descriptions of those tests and detailed discussions about the
reasons they are needed can be found e.g., in García et al. (2008a,b). Finally, the
convergence speed of the algorithms is analyzed (except in PVII where it was
not required) through the so-called Q-test, which measures the proportion of
runs where the algorithm reaches a given threshold. Algorithms which never
manage to reach the threshold on some functions are said to be unstable, since
their efficiency is not guaranteed, and considered to be performing less well than
the ones consistently reaching the threshold.

5.2 Population Modification

The population of an evolutionary algorithm can be modified in at least two ways:
by changing its size, or by replacing one individuals with another one. The latter
differs from the normal way Differential Evolution works in that the individuals
which is introduced is not the product of the algorithm itself, but is alien to the
population. These two mechanisms are applied in the examples below.

In PII, the distributed algorithms described in Sections 4.1.1, 4.1.2 and 4.1.3
are compared to a new algorithm named Distributed Differential Evolution with
Explorative-Exploitative Population Families. In this algorithm, two families of
populations are evolving independently at first, one family running the Parallel
Differential Evolution described in Section 4.1.1, while the other runs independent
Differential Evolution with Population Size Reduction algorithms (see Section 3.6.4
on page 48). After a period of observation, the best individuals from the second
family of subpopulations are injected into the subpopulations of the first family,

58

in the prospect that this individual would allow the subpopulation new search
moves that would lead it closer to the global optimum.

In the Parallel Random Injection Differential Evolution PIV, random, new
individuals are injected at random intervals into one randomly chosen subpopu-
lation of a Parallel Differential Evolution, replacing one randomly selected indi-
vidual (an exception is made of the individual presenting the best performance,
which is never replaced). Although this new individual is not expected to be
improving on the ones in the subpopulation, it modifies the spatial distribution
of the subpopulation and therefore allows the mutation operator to produce new
search moves and prevents the algorithm from stagnating.

Results presented in both articles PII and PIV show that indeed a slight
perturbation of the algorithm’s population improves its performance compared to
the reference algorithms where no such perturbation is performed.

5.3 Operator Modification

The operators which are here referred to are the the mutation and the crossover.
Section 3.6 on page 42 presents several examples of modified operators in the
Differential Evolution which were a source of inspiration for the following algo-
rithms.

In the F-Adaptive Control Parallel Differential Evolution PIII, a Parallel Dif-
ferential Evolution (see 4.1.1 on page 50) is setup with, in each subpopulation,
random values of the scale factor. When a subpopulation’s best individual is
migrated to another subpopulation, a slightly perturbed value of the scale factor
is migrated along with that individual. This way, a “good” scale factor can propa-
gate and enhance the efficiency of the optimization process. The value which is
migrated is modified by adding a normally distributed random value with a small
standard deviation, allowing the modified value to be different from the original
value but without varying to much. This mechanism, comparable to the mutation
operation in e.g., Evolutionary Programming (see 2.2.1 on page 21), allows to
optimize the value of the scale factor in an attempt to adapt this parameter to the
function being optimized.

The Parallel Differential Evolution with Endemic Random Control Param-
eters PV is based on the Parallel Differential Evolution algorithm. In each sub-
population, both control parameters are initialized to random values. During the
course of the optimization, the values of the control parameters are updated to a
new random value based on a given probability. One unexpected finding was that
the repeated updates of the crossover rate are detrimental to the performance or
the algorithm, but repeated updates of the scale factor are beneficial.

The Parallel Component Decomposition Differential Evolution described in
PVI is aimed at large scale optimization (see also Section 5.4 on the next page
for a brief introduction to the challenges posed by large scale problems). When
confronted to problems with a large number of variables, most classical algorithms

59

fail. Potter and De Jong (1994) introduces the idea of restricting the optimization to
only some of the variables of the problem instead of attempting to optimize them
all at once. This idea is applied to a Parallel Differential Evolution by assigning
the Differential Evolution algorithms running on each subpopulation a subset
of the problem’s variables. This is implemented by modifying the crossover
function to limit its action to the subset assigned to the subpopulation. Individuals
migrating from population to population are therefore optimized on different
subsets, eventually being optimized over the whole search space. One would
expect such a mechanism to perform well on separable functions i.e., functions
which can be optimized component by component, but less well on non-separable
functions. The results presented in this article however show that even on rotated
versions of separable functions (the rotation removing the function’s separability
property), the algorithm remains competitive.

The experimental results presented in Articles PIII and PV show that vari-
able scale factors generally improve the performance of a Parallel Differential
Evolution. Article PV moreover indicates that the crossover rate is more sensitive
to repeated variations and although different crossover rates assigned to different
subpopulations of a Parallel Differential Evolution are beneficial to the optimiza-
tion process compared to a single, common value, its update in the course of
the optimization process is detrimental. However, modifications of the crossover
mechanism itself, presented in Article PVI, without modifying the value of the
corresponding control parameter, are shown to be beneficial compared to the
reference Parallel Differential Evolution.

5.4 Hybrid Approach for Large-Scale Optimization

Optimization algorithms suffer from the so-called “curse of dimensionality”, i.e.,
that the problem to optimize becomes exponentially more difficult when its di-
mensionality increases. This is easily illustrated with a simple function of the
type f (x) = ∑n

1 x2
i with x ∈ [−0.5, 0.5]n: if one considers, when n = 1, that the

area located “near” the global optimum is [−0.05, 0.05] (one tenth of the whole
interval), one can deduce that in n dimensions, that area represents 10−n of the
whole search space. When, e.g., n = 1000 one can easily understand that the
“interesting” area represents only a minute fraction of the whole space that must
be explored by the optimization algorithm. Large-scale optimization therefore
aims at developing algorithms able to optimize problems with a large number of
dimensions.

In PVII, the Shuffle Or Update Parallel Differential Evolution algorithm is
applied to a benchmark of nineteen large-scale test functions, which was provided
by the guest editor of the special issue of the journal it was published in, and is
compared to three other, well understood optimization algorithms (also imposed
by the guest editor): the Differential Evolution using the DE/rand/1/exp variant,
the Real-coded CHC algorithm (Eshelman, 1991; Eshelman and Schaffer, 1993)

60

and the G-CMA-ES algorithm (Auger and Hansen, 2005). The Shuffle Or Update
Parallel Differential Evolution algorithm is based on a structured population and
belongs to both categories described in 5 on page 55. Each subpopulation runs a
Differential Evolution where the scale factor is updated on each generation, with a
given probability, to a new, random value. Additionally, on each generation, with
a given probability, all the individuals of the subpopulations are “shuffled”, i.e.,
gathered and randomly redistributed to the subpopulations. This algorithm uses,
in a structured population Differential Evolution (which, lacking the migration
mechanism, is not a Parallel Differential Evolution), a combination of a mechanism
modifying the population and the modified mutation operator already presented
in PV.

Both Wilcoxon’s signed-rank test and Holm’s procedure were applied to
the experimental results, and although the former concludes that the Shuffle Or
Update Parallel Differential Evolution outperforms the reference algorithms in all
dimensionalities, the latter statistical test only concludes that its results, although
slightly better, are not significantly different from the second best algorithm’s.

6 CONCLUSION

The Differential Evolution is a high performance population-based optimization
algorithm suitable for a wide range of continuous problems. One of the core prin-
ciples of the algorithm is to search for improved solutions by producing mutant
individuals based solely on individuals found in the algorithm’s population: one
randomly chosen individual is perturbed by the scaled differences between two
other, randomly chosen individuals. The Differential Evolution however contains
an inherent flaw which can cause it to fail at improving upon existing solutions in
two ways: stagnation and premature convergence.

Stagnation is a condition occurring when the algorithm is unable to produce
a mutant that outperforms its parent. Since the mutants are produced solely from
material found within the population, the number of different mutants that can
be produced from a given population is limited by the population itself. When
no combination of individuals produces a mutant able to outperform its parent,
the population is unable to evolve and thus fails at closing towards the global
optimum.

Premature convergence on the contrary is a condition happening when a
population converges towards a local optimum and is unable to escape from it.
Since mutants are produced from the scaled difference between two individuals
in the population, the largest step that can occur is limited on one hand by the
difference between the two individuals which are the farthest from each other
and on the other hand by the value of the scale factor. When the population
converges, its individuals move nearer to each other; the size of the largest step
thus diminishes and, when too small, prevents the population from escaping the
local minimum it may have converged to since any move away from it produces a
solution worse than the current ones.

Various research directions have been explored in order to enhance the Dif-
ferential Evolution and prevent stagnation and premature convergence. Among
those, one can mention the use of structured populations i.e., a set of interacting
subpopulations, instead of monolithic ones, and various attempts at modifying
the search logic (i.e., the mutation or the crossover operators) or at modifying the
population itself. With the exception of the first article presented in this thesis,

62

which, although it employs a distributed Evolution Strategy and not a Differential
Evolution, started the author’s interest in distributed optimization algorithms, the
other six articles describe algorithmic improvements applied to one or more algo-
rithms with a structured-population based on the Differential Evolution. These
improvements can be classified into two categories: those modifying the popula-
tion, and those modifying the Differential Evolution’s search logic. Modifications
of the population is performed by injecting into a population a partially optimized
or a completely random individual, or by randomly redistributing the individ-
uals between subpopulations. Modifications of the mutation operator consist
in changing the value of the scale factor during the course of the optimization
process, either randomly or by inheriting its value from another subpopulation.
Finally, one article describes a modified crossover operator that limits its action
to a subset of the problem’s variables; different subpopulations then optimize
different subsets and a migration mechanism allows individuals to see their whole
set of variables to be optimized.

Although different at first glance, both categories of improvements aim to-
wards a single goal: preventing the algorithm from stagnating or from converging
prematurely by acting either on the pool of individuals used for producing mu-
tants, or by adding a stochastic component to the mutation operator. These two
modifications allow the Differential Evolution to produce solutions which would
otherwise have been inaccessible, and thus increase the algorithm’s probability of
improving upon its current solutions.

A remarkable learning that can be drawn from this work is that the Differ-
ential Evolution can be improved and adapted to large-scale problems without
resorting to complex memory mechanisms or awkward-to-determine learning pe-
riods: conceptually simple mechanisms that add, in a controlled way, a stochastic
component to the algorithm allow to significantly improve its performance.

63

YHTEENVETO (FINNISH SUMMARY)

Tämän työn nimi on “Rinnakkainen globaalioptimointi. Populaation rakenteen
määrittäminen differentiaalievoluutiossa”. Differentiaalievoluutio on erittäin suo-
rituskykyinen globaalioptimointimenetelmä, joka soveltuu moniin jatkuviin tehtä-
viin. Yksi algoritmin pääperiaatteista on populaation yksilöiden käyttäminen seu-
raavan populaation tuottamiseen: yhtä satunnaisesti valittua yksilöä muokataan
kahden muun satunnaisesti valitun yksilön välisillä skaalatuilla eroilla. Raken-
teensa takia differentiaalievoluutio kärsii usein ennenaikaisesta konvergenssista,
sekä ns. stagnaatiosta, joka estää globaalin minimin löytymisen.

Stagnaatiolla tarkoitetaan sellaista menetelmän tilaa, jossa kaikki mahdolliset
jälkeläiset ovat populaation jäseniä huonompia ja menetelmä ei voi edetä. Tähän
tilaan saatetaan päätyä, sillä uusi sukupolvi luodaan täysin edellisen perusteel-
la. Näin ollen populaation koko asettaa ehdottoman ylärajan sille, mitä pisteitä
menetelmä voi kokeilla.

Ennenaikainen konvergenssi on tila, jossa populaatio on saavuttanut koko-
naisuudessaan lokaalin optimin, eikä pysty pakenemaan siitä. Koska yritepisteet
muodostetaan edellisen populaation muodon perusteella, suurin mahdollinen
siirtymä määräytyy populaation hajonnan ja menetelmän skaalaparametrin yh-
teisvaikutuksesta. Suorituksen aikana populaation hajonta pienenee ja alue, joka
on menetelmän saavutettavissa, kutistuu. Jos menetelmä konvergoituu lokaalin
minimin vaikutuksesta liian pitkälle ja väärälle alueelle, se ei pysty tuottamaan
yritepisteitä, jotka eivät johtaisi samaan minimiin.

Tässä työssä differentiaalievoluutiota on pyritty tehostamaan tarkastelemalla
menetelmää stagnaation ja ennenaikaisen konvergenssin näkökulmasta. Työssä
on tutkittu useita eri parannuksia menetelmään, kuten rakenteisia populaatioita
sekä suoria hakulogiikan muunnoksia.

Väitöskirjan ensimmäinen artikkeli käsittelee differentiaalievoluution sijasta
hajautettua evoluutiostrategiaa, ja se on otettu mukaan, koska se sai kirjoittajan
alun perin kiinnostumaan hajautetuista optimointialgoritmeista. Muut kuusi artik-
kelia kuvaavat algoritmisia parannuksia rakenteiseen populaatioon perustuviin
differentiaalievoluutiomenetelmän muunnelmiin. Esitetyt parannukset voidaan
jakaa kahteen luokkaan: populaation kokoa ja tilaa suoraan muokkaavat, ja haku-
logiikkaa muokkaavat parannukset.

Hakulogiikan muutokset koostuvat skaalauskertoimen arvon muuttamisesta
optimointiprosessin aikana joko satunnaisesti tai johtamalla se toisesta osasta ra-
kenteista populaatiota. Viimeinen artikkeli kuvaa menetelmän muunnoksen, joka
käyttää rakenteista populaatiota ongelman jakamiseksi osiin. Jokainen alipopulaa-
tio pyrkii ratkaisemaan tehtävästä oman komponenttinsa ja kommunikoimaan
ratkaisunsa eteenpäin.

Tässä työssä esitettyjen parannusten ansiosta differentiaalievoluutio voi tuot-
taa ratkaisuja, jotka olisivat muuten saavuttamattomissa, ja näin tuottaa nykyistä
parempia ratkaisuja.

Differentiaalievoluutiota voidaan siis parantaa ja soveltaa suuren mittakaa-

64

van ongelmiin tarvitsematta turvautua monimutkaisiin muistimekanismeihin
tai vaikeasti määritettäviin oppimisjaksoihin. Algoritmin tehokkuutta voidaan
merkittävästi parantaa käsitteellisesti yksinkertaisten mekanismien avulla.

65

REFERENCES

Alba, E. & Tomassini, M. 2002. Parallelism and evolutionary algorithms. IEEE
Transactions on Evolutionary Computation 6 (5), 443–462.

Apolloni, J., Leguizamón, G., García-Nieto, J. & Alba, E. 2008. Island based dis-
tributed differential evolution: An experimental study on hybrid testbeds. In
Proceedings of the IEEE International Conference on Hybrid Intelligent Systems,
696–701.

Auger, A. & Hansen, N. 2005. A restart CMA evolution strategy with increasing
population size. In 2005 IEEE Congress on Evolutionary Computation, 1769–
1776.

Baker, J. E. 1987. Reducing bias and inefficiency in the selection algorithm. In
Proceedings of the International Conference on Genetic Algorithms. Lawrence
Erlbaum Associates, Inc. Mahwah, NJ, USA, 14–21.

Banzhaf, W., Nordin, P., Keller, R. E. & Francone, F. D. 1998. Genetic programming
– An introduction on the automatic evolution of computer programs and its
application. Morgan Kaufmann.

Bonabeau, E., Rodrigo, M. & Theraulaz, G. 1999. Swarm intelligence: from natural
to artificial systems. Oxford University Press.

Brest, J., Greiner, S., Bošković, B., Mernik, M. & Žumer, V. 2006. Self-adapting
control parameters in differential evolution: A comparative study on numerical
benchmark problems. IEEE Transactions on Evolutionary Computation 10 (6),
646–657.

Brest, J. & Maučec, M. S. 2008. Population size reduction for the differential
evolution algorithm. Applied Intelligence 29 (3), 228–247.

Bäck, T. & Schwefel, H.-P. 1995. Evolution strategies I: variants and their computa-
tional implementation. In J. Periaux & G. Winter (Eds.) Genetic algorithms in
engineering and computer science. Wiley.

Caponio, A., Cascella, G. L., Neri, F., Salvatore, N. & Sumner, M. 2007. A fast
adaptive memetic algorithm for on-line and off-line control design of PMSM
drives. IEEE Transactions on System Man and Cybernetics – part B, special issue
on Memetic Algorithms 37 (1), 28–41.

Caruana, R. A., Eshelman, L. J. & Schaffer, J. D. 1989. Representation and hidden
bias II: eliminating defining length bias in genetic search via shuffle crossover. In
Proceedings of the 11th international joint conference on Artificial intelligence,
Vol. 1. Morgan Kaufmann, 750–755.

66

Chakraborty, U. K., Das, S. & Konar, A. 2006. Differential evolution with local
neighborhood. In Proceedings of the IEEE Congress on Evolutionary Computa-
tion, 2042–2049.

Chakraborty, U. K. (Ed.) 2008. Advances in Differential Evolution, Vol. 143.
Springer. Studies in Computational Intelligence.

Chiong, R., Neri, F. & McKay, R. I. 2010. Nature that breeds solutions. In R. Chiong
(Ed.) Nature-Inspired Informatics for Intelligent Applications and Knowledge
Discovery: Implications in Business, Science, and Engineering. IGI Global, 1–24.

Das, S., Konar, A. & Chakraborty, U. 2005. Improved differential evolution algo-
rithms for handling noisy optimization problems. In Proceedings of the IEEE
Congress on Evolutionary Computation, Vol. 2, 1691–1698.

Das, S., Abraham, A., Chakraborty, U. K. & Konar, A. 2009. Differential evolution
with a neighborhood-based mutation operator. IEEE Transactions on Evolution-
ary Computation 13 (3), 526–553.

Dawkins, R. 1976. The selfish game. Oxford University Press.

Dorigo, M. 1992. Optimization, learning and natural algorithms. Politecnico de
Milano. Ph. D. Thesis.

Eberhart, R. C. & Kennedy, J. 1995. A new optimizer using particle swarm theory.
In Proceedings of the Sixth International Symposium on Micromachine and
Human Science, 39–43.

Eiben, A. E. & Smith, J. E. 2003. Introduction to Evolutionary Computation. Berlin:
Springer-verlag, 175–188.

Eshelman, L. 1991. The CHC adaptive search algorithm: how to have safe search
when engaging in nontraditional genetic recombination. In G. Rawlin (Ed.)
Foundations of Genetic Algorithms 1. San Mateo, CA: Morgan Kaufmann, 265–
283.

Eshelman, L. J. & Schaffer, J. D. 1993. Real-coded genetic algorithm and interval
schemata. In Foundation of Genetic Algorithms, 187–202.

Eshelman, L. J., Caruana, R. A. & Schaffer, J. D. 1989. Biases in the crossover land-
scape. In Proceedings of the third international conference on Genetic algorithms.
Morgan Kaufmann, 10–19.

Falco, I. D., Cioppa, A. D., Maisto, D., Scafuri, U. & Tarantino, E. 2007a. Satellite
image registration by distributed differential evolution. In Applications of Evo-
lutionary Computing, Vol. 4448. Springer. Lectures Notes in Computer Science,
251–260.

67

Falco, I. D., Maisto, D., Scafuri, U., Tarantino, E. & Cioppa, A. D. 2007b. Distributed
differential evolution for the registration of remotely sensed images. In Proceed-
ings of the IEEE Euromicro International Conference on Parallel, Distributed
and Network-Based Processing, 358–362.

Falco, I. D., Scafuri, U., Tarantino, E. & Cioppa, A. D. 2007c. A distributed differ-
ential evolution approach for mapping in a grid environment. In Proceedings
of the IEEE Euromicro International Conference on Parallel, Distributed and
Network-Based Processing, 442–449.

Fan, H.-Y. & Lampinen, J. 2003. A trigonometric mutation operation to differential
evolution. Journal of Global Optimization 27 (1), 105–129.

Feoktistov, V. 2006. Differential Evolution in Search of Solutions. Springer, 83–86.

Fogel, L. J., Owens, A. J. & Walsh, M. J. 1965. Artificial intelligence through a
simulation of the evolution. In A. M. Maxfield & L. J. Fogel (Eds.) Biophysics
and cybernetics systems. Spartan Book Co: Washington, DC, 131–156.

Fogel, L. J., Owens, A. J. & Walsh, M. J. 1966. Artificial intelligence through
simulated evolution. John Wiley & Sons, Inc.

García, S., Fernández, A., Luengo, J. & Herrera, F. 2008a. A study of statistical
techniques and performance measures for genetics-based machine learning:
accuracy and interpretability. Soft Computing 13 (10), 959–977.

García, S., Molina, D., Lozano, M. & Herrera, F. 2008b. A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: a case
study on the CEC’2005 special session on real parameter optimization. Journal
of Heuristics 15 (6), 617–644.

Glover, F. 1989a. Tabu search – part I. ORSA Journal on Computing 1, 190–206.

Glover, F. 1989b. Tabu search – part II. ORSA Journal on Computing 2, 4–32.

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, MA, USA: Addison-Wesley Publishing Co.

Holland, J. 1962. Outline for a logical theory of adaptive systems. Journal of the
Association for Computing Machinery 3, 297–314.

Holland, J. H. 1992. Adaptation in Natural and Artificial Systems. MIT Press.

Hooke, R. & Jeeves, T. A. 1961. Direct search solution of numerical and statistical
problems. Journal of the ACM 8, 212-229.

Ishibuchi, H., Yoshida, T. & Murata, T. 2003. Balance between genetic search and
local search in memetic algorithms for multiobjective permutation flow shop
scheduling. IEEE Transactions on Evolutionary Computation 7 (2), 204-223.

68

Kirkpatrick, S., Gelatt, C. D. J. & Vecchi, M. P. 1983. Optimization by simulated
annealing. Science 220, 671–680.

Koza, J. R. 1992. Genetic programming: On the programming of computers by
means of natural selection. The MIT Press.

Koza, J. R. 1994. Genetic programming II. The MIT Press.

Krasnogor, N., Blackburne, B., Burke, E. & Hirst, J. 2002. Multimeme algorithms
for proteine structure prediction. In Proceeding of Parallel Problem Solving in
Nature VII. Lecture Notes in Computer Science, Springer-Verlag.

Krasnogor, N. 2002. Studies in the Theory and Design Space of Memetic Algo-
rithms. University of West England. Ph. D. Thesis.

Krasnogor, N. 2004. Toward robust memetic algorithms. In W. E. Hart, N. Krasno-
gor & J. E. Smith (Eds.) Recent Advances in Memetic Algorithms. Berlin, Ger-
many: Springer. Studies in Fuzzines and Soft Computing, 185–207.

Lampinen, J. & Zelinka, I. 2000. On stagnation of the differential evolution algo-
rithm. In P. Oŝmera (Ed.) Proceedings of 6th International Mendel Conference
on Soft Computing, 76–83.

Langdon, W. B. & Poli, R. 2001. Foundations of genetic programming. Springer
Verlag.

Liu, J. & Lampinen, J. 2005. A fuzzy adaptive differential evolution algorithm.
Soft Computing - A Fusion of Foundations, Methodologies and Applications,
Springer 9 (6), 448–462.

Lozano, M., Herrera, F., Krasnogor, N. & Molina, D. 2004. Real-coded memetic
algorithms with crossover hill-climbing. Evolutionary Computation, Special
Issue on Memetic Algorithms 12 (3), 273–302.

Luke, S. & Spector, L. 1997. A comparison of crossover and mutation in genetic
programming. In J. K. et al. (Ed.) Genetic programming 1997: Proceedings of the
2nd Annual Conference. San Francisco: Morgan Kaufmann, 240–248.

Mininno, E. & Neri, F. 2010. Estimation distribution differential evolution. In
Applications of Evolutionary Computation, Vol. 6024/2010. Springer Berlin /
Heidelberg. Lecture Notes in Computer Science, 522-531.

Moscato, P. & Norman, M. 1989. A Competitive and Cooperative Approach to
Complex Combinatorial Search.

Nelder, A. & Mead, R. 1965. A simplex method for function optimization. Compu-
tation Journal Vol 7, 308-313.

Neri, F., Tirronen, V. & Kärkkäinen, T. 2009. Enhancing differential evolution
frameworks by scale factor local search – part II. In Proceedings of the IEEE
Congress on Evolutionary Computation, 118–125.

69

Neri, F. & Tirronen, V. 2009. Scale factor local search in differential evolution.
Memetic Computing 1 (2), 153–171.

Neri, F. & Mininno, E. 2010. Memetic compact differential evolution for cartesian
robot control. IEEE Computational Intelligence Magazine 5 (2), 54–65.

Neri, F. & Tirronen, V. 2010. Recent advances in differential evolution: a survey
and experimental analysis. Artificial Intelligence Review 33 (1–2), 61–106.

Noman, N. & Iba, H. 2008. Accelerating differential evolution using an adaptive
local search. IEEE Transactions on Evolutionary Computation 12 (1), 107–125.

Ong, Y. S. & Keane, A. J. 2004. Meta-lamarkian learning in memetic algorithms.
IEEE Transactions on Evolutionary Computation 8 (2), 99–110.

Ong, Y. S., Lim, M. H., Zhu, N. & Wong, K. W. 2006. Classification of adaptive
memetic algorithms: A comparative study. IEEE Transactions On Systems, Man
and Cybernetics - Part B 36 (1), 141–152.

Potter, M. A. & De Jong, K. A. 1994. A cooperative coevolutionary approach
to function optimization. In Proceedings of the Third Conference on Parallel
Problem Solving from Nature. Springer-Verlag, 249–257.

Price, K. V. 1999. Mechanical engineering design optimization by differential
evolution. In D. Corne, M. Dorigo & F. Glover (Eds.) New Ideas in Optimization.
McGraw-Hill, 293–298.

Price, K. V., Storn, R. & Lampinen, J. 2005. Differential Evolution: A Practical
Approach to Global Optimization. Springer.

Qin, A. K., Huang, V. L. & Suganthan, P. N. 2009. Differential evolution algorithm
with strategy adaptation for global numerical optimization. IEEE Transactions
on Evolutionary Computation 13, 398–417.

Qin, A. K. & Suganthan, P. N. 2005. Self-adaptive differential evolution algorithm
for numerical optimization. In Proceedings of the IEEE Congress on Evolutionary
Computation, Vol. 2, 1785–1791.

Rahnamayan, S., Tizhoosh, H. R. & Salama, M. M. 2006. Opposition-based differ-
ential evolution algorithms. In IEEE Congress on Evolutionary Computation,
2010–2017.

Rahnamayan, S., Tizhoosh, H. R. & Salama, M. M. 2008. Opposition-based differ-
ential evolution. IEEE Transactions on Evolutionary Computation 12 (1), 64–79.

Rall, L. B. 1981. Automatic Differentiation: Techniques and Applications, Vol.
120/1981. Springer Berlin / Heidelberg. Lecture Notes in Computer Science.

Rechenberg, I. 1971. Evolutionsstrategie - Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Technische Universität Berlin. Ph. D. The-
sis.

70

Rudolph, G. 1996. Convergence of evolutionary algorithms in general search
spaces. In Proceedings of the third IEEE conference on evolutionary computation.
IEEE Press, 50–54.

Siarry, P. & Berthiau, G. 1998. Fitting of tabu search to optimize functions of con-
tinuous variables. International Journal for Numerical Methods in Engineering
40 (3), 2449–2457.

Solis, F. & Wets, R.-B. 1981. Minimization by random search techniques. Mathe-
matics of Operations Research 6 (1), 19–30.

Syswerda, G. 1989. Uniform crossover in genetic algorithms. In J. Shaffer (Ed.)
Proceedings of the third international conference on genetic algorithms. San
Francisco: Morgan Kaufmann, 2–9.

Tagawa, K. 2009. A statistical study of the differential evolution based on con-
tinuous generation model. In Evolutionary Computation, 2009. CEC ’09. IEEE
Congress on, 2614–2621.

Tasoulis, D. K., Pavlidis, N. G., Plagianakos, V. P. & Vrahatis, M. N. 2004. Parallel
differential evolution. In Proceedings of the IEEE Congress on Evolutionary
Computation, 2023–2029.

Teo, J. 2006. Exploring dynamic self-adaptive populations in differential evolution.
Soft Computing—A Fusion of Foundations, Methodologies and Applications 10
(8), 673–686.

Tirronen, V., Neri, F. & Rossi, T. 2009. Enhancing differential evolution frameworks
by scale factor local search – part I. In Proceedings of the IEEE Congress on
Evolutionary Computation, 94–101.

Tsutsui, S., Yamamura, M. & Higuchi, T. 1999. Multi-parent recombination with
simplex crossover in real coded genetic algorithms. In Proceedings of the Genetic
Evol. Comput. Conf. (GECCO), 657–664.

Zaharie, D. & Petcu, D. 2004. Adaptive pareto differential evolution and its paral-
lelization. In Parallel Processing and Applied Mathematics, Vol. 3019. Lecture
Notes in Computer Science, 261–268.

Zaharie, D. 2002. Critical values for control parameters of differential evolution
algorithm. In R. Matuŝek & P. Oŝmera (Eds.) Proceedings of 8th International
Mendel Conference on Soft Computing, 62–67.

Zhang, J. & Sanderson, A. 2007. JADE: Self-adaptive differential evolution with
fast and reliable convergence performance. In Evolutionary Computation, 2007.
CEC 2007. IEEE Congress on, 2251–2258.

ORIGINAL PAPERS

PI

FITNESS DIVERSITY PARALLEL EVOLUTION ALGORITHMS
IN THE TURTLE RACE GAME

by

Matthieu Weber, Ville Tirronen and Ferrante Neri 2009

In Applications of Evolutionary Computing, volume 5484/2009 of Lecture Notes in
Computer Science, pages 303–312

Reproduced with kind permission from Springer Berlin / Heidelberg.

Fitness Diversity Parallel Evolution Algorithms
in the Turtle Race Game

Matthieu Weber, Ville Tirronen, and Ferrante Neri

Department of Mathematical Information Technology,
University of Jyväskylä, P.O. Box 35 (Agora), FI-40014, Finland

{matthieu.weber, ville.tirronen, neferran}@jyu.fi

Abstract. This paper proposes an artificial player for the Turtle Race
game, with the goal of creating an opponent that will provide some
amount of challenge to a human player. Turtle Race is a game of imper-
fect information, where the players know which one of the game pieces
is theirs, but do not know which ones belong to the other players and
which ones are neutral. Moreover, movement of the pieces is determined
by cards randomly drawn from a deck. The artificial player is based on
a non-linear neural network whose training is performed by means of a
novel parallel evolutionary algorithm with fitness diversity adaptation.
The algorithm handles, in parallel, several populations which cooperate
with each other by exchanging individuals when a population registers a
diversity loss. Four popular evolutionary algorithms have been tested for
the proposed parallel framework. Numerical results show that an evo-
lution strategy can be very efficient for the problem under examination
and that the proposed adaptation tends to improve upon the algorith-
mic performance without any addition in computational overhead. The
resulting artificial player displayed a high performance against other ar-
tificial players and a challenging behavior for expert human players.

1 Introduction

In recent years, artificial game players have extensively been studied, see [1].
These games and thus the architecture of the artificial players can be classified
into two groups: complete information games, when all players have the same
information about the state of the game; incomplete information games, when
each players has only an incomplete view of the game state.

Complete information games are also deterministic, thus a good player puts
most of his efforts into foreseeing possible scenarios and movements the opponent
may make in order to detect the most profitable move. Games of this kind have
been widely studied by means of various artificial intelligence techniques. Some
representative examples include from the simple tic-tac-toe [2] to the eminently
complex go [3], [4], from classical chess and checkers [5] to the more recent sudoku
[6].

In incomplete information games (see analogies and differences with the con-
cept of imperfect information [7]), the player does not have a complete set of

information related to game state since, for example, he cannot know moves of
the opponent, as in the classical case of the prisoner dilemma, or cannot predict
moves the other players will make, as often happens in card games (this problem
has been clear since the dawn of Artificial Intelligence, see [8]). Some examples
of incomplete information games can be poker [9], bridge, backgammon, the ant
wars [10]. In card games, each time a deck of cards is shuffled prior to the start
of the game, a new game is settled. The overall process can, in this case, be seen
as a system characterized by a state (i.e., what the players see on the table) plus
some parameters (i.e., a deck of cards) which are affected by uncertainties.

This paper studies a complex game, namely Turtle Race, which is charac-
terized by several uncertainties, including the unknown identity of the other
players and proposes an artificial player for it. The core of this artificial player
is a multi-perceptron neural network trained by means of a novel adaptive par-
allel evolutionary algorithm. This algorithm employs a multi-population and a
refreshment of the individuals by means of migration controlled by a fitness
diversity adaptation.

2 The Turtle Race Game
Schildkrötenrennen (Turtle Race in English) is a board game for two to five
players by Reiner Knizia, initially published in 2004 by Winning Moves, Inc.
Fig. 1 shows a picture of the game components. The game is composed of five
wooden turtles in five different colors (red, green, blue, yellow and purple), five
turtle tokens of the same colors, fifty-two cards and a board representing a linear
track of ten squares. Each player is secretely assigned one color by randomly
drawing one of the tokens, and all five turtles are placed on the first square of
the board, called the start square. The goal of this game is to move one’s turtle
from the start square to the tenth square, called the goal. The cards are used for
deciding how the turtles will be moved.

Fig. 1. Game components

The players are dealt five cards each, and the remaining cards are placed
face down, forming the draw deck. Players take turns until at least one turtle

reaches the goal. On his turn, the player selects one card from his hand, moves
one turtle based on the action symbolized on the card, and places the card face
up on the discard pile. He then draws a new card from the draw deck. If the
draw stack is empty, the discard stack is shuffled and replaces the draw deck.

Each card represents a turtle bearing a symbol. The color of the turtle de-
termines which turtle will be moved, while the symbol defines in which direction
and by how many squares it will move. Some cards represent a rainbow-colored
turtle, meaning that the player must decide which turtle will be moved. The
symbols are plus, minus, double plus, arrow and double arrow. Plus, minus and
double plus respectively mean one square forward, one square backwards, and
two square forward. The arrow and double arrow respectively mean one square
forward and two squares forward, but can be applied only to the turtles which
are the nearest to the start square, In the configuration depicted in Fig. 2 for
example, arrow and double arrow cards can be applied only to turtle Y. The
turtles bearing arrow or double arrow are always rainbow-colored. The cards are
distributed as follows: 5 plus, 1 double plus and 2 minus for each color, 5 rainbow
plus, 2 rainbow minus, 3 rainbow arrow and 2 rainbow double arrow.

Turtles can be stacked: as illustrated in Fig. 2, when moving one turtle, one
also moves at the same time all turtles that are stacked on its back. When a
turtle reaches a square already occupied by one or more stacked turtles, it is
placed on top of that stack. The only exception is the start square, where the
turtles are never stacked but placed side-by-side. The stacking mechanism allows
a player, in some cases, to move his turtle even if he does not currently have
a card of the right color in his hand, by moving another turtle situated below
his own in the stack. Moreover, when playing an arrow or a double arrow card,
if there is more than one turtle on the square nearest to the start, the player
decides which one of these turtles he will move.

There are always five turtles in the game, even if there are less than five
players. In this case, one or more turtles are neutral, i.e., not belonging to any
player. When a turtle reaches the goal square, the game immediately ends and
the players reveal their colors. It is possible that the turtle reaching the goal
square is a neutral one. The rule for determining the winner is therefore as
follows: the game winner is the player whose turtle is nearest to the goal square
(possibly located exactly on this square) and is lowest in its stack. In other
words, one considers the stacks of turtles from the goal rearward, and in each
stack the turtles from bottom to top. The first non-neutral turtle is then the
winner (see Fig. 3).

3 The Artificial Player

The core of the artificial player is a neural network, which associates a weight
to each card held by the player. Rainbow-colored cards are decomposed into
virtual single-colored cards, and a weight is associated to each one of them. The
artificial player then sorts the cards according to their weights and the card with
the lowest weight is selected to be played.

-

R
G
B

PY
G
B

x

Fig. 2. When moving turtle G by one
square forward, turtle B located on top
of it moves at the same time.

R
G
B

PY

goal

Fig. 3. To determine the winner, one
examines P, R, G, and B in that order.

In order for the neural network to weigh a given card, the game logic considers
the current game state, creates a copy of it and changes this copy according to
the action depicted on the card. The neural network is then presented with these
before and after game states and calculates the weight of that card based on this
information.

The neural network chosen to be the core of the artificial player is a three-
layer perceptron, using the hyperbolic tangent as the activation function [11].
This configuration has been chosen since it has shown a high performance with
similar games, see [12] and [13]. The neural network is composed of nineteen
neurons organized in three layers, has nineteen inputs and one output, and counts
325, real-number weights. Inputs of the neural network are the artificial player’s
own color, a synthetic representation of the game state before playing a given
card and the representation of the game state after playing that card. Both
representations have the same parameters:

– The position on the board of the artificial player’s turtle, as an offset from
the start square (integer number between zero and nine) and its position in
the stack, as an offset from the bottom of the stack (integer number between
zero and four). These two parameters give the neural network a global view
of its position in the game.

– The number of turtles situated above and below the artificial player’s within
the stack (as integer numbers between zero and four).

– The number of turtles situated on the square preceding the artificial player’s,
i.e., nearer to the start square, the number of turtles situated on the square
following that of the artificial player’s, and the number of turtles situated
on the second square after that of the artificial player’s (integer numbers
between zero and four).

– The number of turtles situated on the start square (integer number between
zero and five).

– The number of squares between the artificial player’s turtle and the goal
square (integer number between one and nine).

The artificial player design consists of detecting a set of 325 weights of the
neural network, ensuring a high performance in playing the turtle game.

It can be seen that except for its own color, the neural network is fed with
no further information about the color of the other turtles. The reason is that

a player ignores the color of the various opponents as well as the color of the
neutral turtles. This fact leads to the consequence that a player (the neural
network in this case) makes a decision on the basis of those cards he can see (his
own cards) and possible configurations which are visible on the board. Thus, it is
clear that, due to the nature of the game, given a configuration of turtles on the
track, success of the decision made by the artificial player is heavily influenced
by parameters that cannot be controlled, i.e., cards held by the other players
and the way the deck has been shuffled. consequently, evaluation of a playing
strategy in a single match is not reliable since “good luck” and “bad luck” play an
important role in this game. This phenomenon can be seen as noise unavoidably
introduced into the system. Thus, in order to perform proper ranking of two
players a certain amount of games are required and the quality of a player can
be extracted by means of a statistical analysis on the success of the players under
consideration.

Thus, the quality of playing strategy has been performed in this paper by
means of the following method. Let a and b be two players and N the number
of games played between a and b. If a is the playing strategy proposed by the
aforementioned neural network, the objective function to be minimized is then
defined as:

F (a, b) = 1− Va
Va +Da

(1)

where Va is the number of victories of a against b, and Da the number of defeats
of a against b. The value of N has been fixed to 100, which has been found to be
a good trade-off between statistical significance and speed of execution. It must
be noted that Va+Da is not necessarily equal to N , since there are cases where
a neutral turtle reaches the goal square while both players’ turtles are still on
the start square. There is no rule in the game to determine the winner in such
a situation.

The opponent player for the neural network is a random player, i.e., a player
which randomly performs its choices during the game time. This choice is based
on the assumption that the neural network will challenge a large amount of
random players and eventually develop a strategy that allows a robust behav-
ior against other players which have an actual playing strategy (e.g., human
players). This assumption is limited to such games as Turtle Race which have
an inherently large amount of randomness in their structure. This choice can
be further justified by the theoretical results given in [14]. It is shown that a
complex and expert player can be replaced by a simple random player which
executes multiple games. This fact based on the property of the random player’s
average behavior, given a large enough number of trials, tends to asymptotically
converge toward the behavior of an expert player. This property has already
been used when developing so-called Monte Carlo players for various games, see
[15]. Although not identical, the use of a random player as an opponent when
training a neural network-based player is strongly correlated to its use in Monte
Carlo players, which has been confirmed experimentally.

The problem studied in this paper is then the minimization of the fitness
function F in eq. (1) dependent on the 325 weights which characterize neural

network a. These weights vary in a decision space D =]−∞,∞[325. As shown
above, the quality of a candidate neural network is identified by its success rate
against 100 random players.

4 Fitness Diversity Parallel Evolutionary Algorithms

In order to perform the neural network training, four evolutionary algorithms
have been tested. More specifically the following algorithms have been consid-
ered: 1) the evolutionary algorithm proposed in [5] for a neural network training,
indicated here with Checkers Algorithm (CA), 2) a standard Differential Evolu-
tion (DE) [16], [17] with the so called DE/rand/1 strategy, 3) a Particle Swarm
Optimization (PSO) according to the implementation proposed in [18] for a
similar neural network training, and 4) an Evolutionary Strategy, see [19] and
[20], employing the so called “plus strategy” (ES+), i.e., the offspring solutions
are merged with the parent solution and the survivor selection scheme selects a
predetermined amount of candidate solutions having the best performance and
uncorrelated mutation with n step sizes, i.e., a step size is sampled for each
design variable.

In order to evaluate the performance of each candidate solution, 100 games
against 100 random players are performed and the fitness value is computed as
shown in eq. (1). For those evolutionary algorithms which allow an individual to
survive over several generations (e.g., DE or ES+), the fitness value is updated,
taking into account run off of the previous matches.

At the end of each generation, the range of variability of the fitness values is
calculated for each population:

γ = Fworst − Fbest (2)

where Fworst and Fbest are the worst and best values of the population, respec-
tively. The index γ can be seen as a fitness diversity index, see e.g. [21], [22], [23],
and [24], which is designed for this specific co-domain (the fitness values vary
between 0 and 1). The index γ varies between 0 and 1; if γ ≈ 1 the population
is likely to be highly diverse since performance of the population is spread out
over the whole range of variability of the co-domain; on the contrary, if γ ≈ 0
performance for the candidate neural networks in the population is very similar
and the diversity is therefore low. In order to enhance exploration of the algo-
rithmic system and prevent undesired conditions of stagnation and premature
convergence, a migration mechanism has been introduced by employing infor-
mation of the fitness diversity. More specifically, if in a population γ < 0.05,
10 individuals are pseudo-randomly swapped between this population and the
population with the lowest diversity value. This system allows a harmonic devel-
opment of the parallel algorithm and, most importantly, performs a refreshment
of genotypes in the various populations. The groups of swapped individuals are
likely to have similar performance, but by means of a different strategy (geno-
typically different) since they evolved within different populations. The presence

of new genotypes in the population will then be beneficial, since it will allow a re-
combination between individuals which are strong and (probably) genotypically
distant, see for analogy [25] and [26].

5 Numerical Results

The CA is based on [5], with σ = 0.05. However, some changes have been made
in the parent selection scheme in order to adjust the CA to the problem at hand.
A linear ranking [27] with a selective pressure sp = 1.7 has been included. The
DE, as described in [16], has been implemented with Cr = 0.3 and F = 0.7. The
Particle Swarm Optimization (PSO), as described in [18], has been implemented
with parameters φ1 = 2 and φ2 = 2. ES+ was implemented, as described in [20],
with λ = µ and initial values of mutation step size σi = 0.1. Each algorithm has
been run with a population size of 30 individuals; each was run for 35000 fitness
evaluations. Each algorithm has been run twice with 10 parallel populations each
(i.e., a statistic set of 20 evolving populations). The same algorithms have also
been run without the adaptive migration mechanism: each algorithm has been
run for 20 independent runs. In order to perform a fair comparison, the same
initial populations used for the fitness diversity parallel evolutionary algorithms
have also been employed for this experiment on isolated populations.

Fig. 4 shows the performance trend (averaged over the 20 populations) of the
proposed fitness diversity parallel evolutionary algorithms. In order to enhance
clarity in the result representation, the results have been averaged within inter-
vals of 600 fitness evaluations. Fig. 5 shows the average performance trend (over
20 independent runs) of the four algorithms under study in the isolated imple-
mentation. Table 1 lists the average final fitness values with the corresponding
standard deviation values.

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5000 10000 15000 20000 25000 30000 35000

Fi
tn

es
s

Fitness evaluations

CA
PSO

DE
ES+

Fig. 4. Performance trend for the four algorithms with migration

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5000 10000 15000 20000 25000 30000 35000

Fi
tn

es
s

Fitness evaluations

CA
PSO

DE
ES+

Fig. 5. Performance trend for the four algorithms without migration

As displayed in Table 1, ES+ obtained the best performance solution al-
gorithm, while CA succeeded in performing only a marginal improvement. DE
seems to be the second best and PSO comes third. The migration process seems
to be beneficial for all algorithms in a similar way. As a matter of fact, it can be
observed that ranking among the algorithms remains the same whether migra-
tions are allowed or not.

Table 2 shows the performance of the best players trained according to the
four algorithms with and without migrations. Each of the eight players competes
in 10,000 games against all of the other seven players as well as against itself,
and the score of the first player is given as a percentage of victories. One can see
that the results of this cross-comparison is consistent with the results observed
in Table 1, when the neural network -based players were confronted with random
players.

Finally, the best player trained with ES+ and migration has been playing ten
games against five expert, human players. The results are shown in Table 3. The
artificial player won on average 4.4 games, with a standard deviation of 1.02,
proving to be a fairly challenging player.

6 Conclusion

An artificial, neural network-based player for the Turtle Race game has been
presented. The neural network has been trained by means of a novel parallel
evolutionary algorithm which employs a fitness diversity measure to activate a
migration of the individuals between populations in order to perform a refresh-
ment of the genotypes and prevent premature convergence and stagnation. Four
popular evolutionary algorithms have been tested within the proposed adaptive
parallel framework. Numerical results show that an Evolution Strategy employ-
ing a “plus” strategy (despite the presence of noise) in the survivor selection

Table 1. Average fitness and
standard deviation for all
four algorithms, with and
without migrations

Algorithm Fitness
Migration

CA 0.1435 ± 0.0414
PSO 0.1030 ± 0.0282
DE 0.0663 ± 0.0123
ES+ 0.0280 ± 0.0066

Isolated
CA 0.1680 ± 0.0407
PSO 0.1145 ± 0.0213
DE 0.0809 ± 0.0163
ES+ 0.0550 ± 0.0084

Table 2. Cross-comparison of the best individu-
als produced by each algorithm. The values are ex-
pressed in percentage of victories of the first player
over 10,000 games.

Second Player
Migration Isolated

CA PSO DE ES+ CA PSO DE ES+

F
ir

st
P

la
ye

r
M

ig
ra

ti
on CA 50.2 45.8 42.7 32.1 53.3 53.3 44.1 33.7

PSO 51.4 45.1 46.7 33.4 55.6 55.7 46.2 35.6
DE 59.3 54.8 55.5 41.3 64.2 62.6 53.8 42.5
ES+ 67.8 64.3 66.1 51.8 72.1 75.0 66.1 51.0

Is
ol

at
ed

CA 46.7 41.1 37.7 28.7 49.9 54.4 40.7 31.7
PSO 45.1 37.3 40.4 25.0 44.8 47.3 37.5 28.1
DE 57.4 50.5 51.7 37.4 60.1 61.0 52.0 38.8
ES+ 66.4 61.4 62.0 49.1 68.8 70.7 63.8 49.8

Table 3. Number of victories of the artificial player trained with ES+ and migrations
against five human players over ten games

Opponent Player 1 Player 2 Player 3 Player 4 Player 5
Victories 3 4 6 5 4

scheme is fairly promising for this class of problems. In addition, the proposed
fitness diversity migration seems to be beneficial to the tested algorithms regard-
less of the evolutionary structure which characterizes them. A test carried out
against expert human players shows that the designed artificial player is rather
challenging since it succeeds in defeating human players in almost half of the
games.

References

1. Lucas, S., Kendall, G.: Evolutionary computation and games. IEEE Computational
Intelligence Magazine 1 (2006) 10–18

2. Fogel, D.: Using evolutionary programming to create networks that are capable of
playing tic-tac-toe. In: Proceedings of IEEE International Conference on Neural
Networks. (1993) 875–880

3. Richards, N., Moriarty, D., Miikkulainen, R.: Evolving neural networks to play go.
Applied Intelligence 8 (1998) 85–96

4. Runarsson, T.P., Lucas, S.M.: Coevolution versus self-play temporal difference
learning for acquiring position evaluation in small-board go. IEEE Transactions
on Evolutionary Computation 9 (2005) 628–640

5. Chellapilla, K., Fogel, D.: Evolving an expert checkers playing program without
using human expertise. IEEE Transactions on Evolutionary Computation 5 (2001)
422–428

6. Moraglio, A., Togelius, J.: Geometric particle swarm optimization for the sudoku
puzzle. In: GECCO ’07: Proceedings of the 9th annual conference on Genetic and
evolutionary computation. (2007) 118–125

7. Fudenberg, D., Tirole, J.: 6. In: Game Theory. MIT Press (1993)
8. Barricelli, N.A.: Esempi numerici di processi di evoluzione. Methodos (1954) 45–68
9. Barone, L., While, L.: Evolving adaptive play for simplified poker. In: Proceedings

of IEEE Intl. Conf. on Computational Intelligence (ICEC-98). (1998) 108–113
10. Jaśkowski, W., Krawiec, K., Wieloch, B.: Evolving strategy for a probabilistic

game of imperfect information using genetic programming. Journal Genetic Pro-
gramming and Evolvable Machines 9 (2008) 281–294

11. Engelbrecht, A.P.: Computational Intelligence: An Introduction. John Wiley &
Sons Ltd. (2002)

12. Bourg, D.M., Seemann, G.: AI for Game Developers. O’Reilly (2004)
13. Chellapilla, K., Fogel, D.: Evolution, neural networks, games, and intelligence.

Proceedings of the IEEE 87 (1999) 1471–1496
14. Abramson, B.: Expected-outcome: a general model of static evaluation. IEEE

Transactions on Pattern Analysis and Machine Intelligence 12 (1990) 182–193
15. Brügmann, B.: Monte carlo go. IEEE Transactions on Pattern Analysis and

Machine Intelligence 12 (1993) 182–193
16. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for

global optimization over continuous spaces. Journal on Global Optimization 11
(1997) 341–359

17. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution–A Practical Ap-
proach to Global Optimization. Springer (2005)

18. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International
Conference on Neural Networks. Volume 4. (1995) 1942–1948

19. Rechemberg, I.: Evolutionstrategie: Optimierung Technisher Systeme nach prinzip-
ien des Biologishen Evolution. Fromman-Hozlboog Verlag (1973)

20. Eiben, A.E., Smith, J.E. In: Introduction to Evolutionary Computation. Springer-
verlag, Berlin (2003) 71–87

21. Caponio, A., Cascella, G.L., Neri, F., Salvatore, N., Sumner, M.: A fast adaptive
memetic algorithm for on-line and off-line control design of pmsm drives. IEEE
Transactions on System Man and Cybernetics-part B 37 (2007) 28–41

22. Neri, F., Toivanen, J., Cascella, G.L., Ong, Y.S.: An adaptive multimeme algo-
rithm for designing HIV multidrug therapies. IEEE/ACM Transactions on Com-
putational Biology and Bioinformatics 4 (2007) 264–278

23. Tirronen, V., Neri, F., Kärkkäinen, T., Majava, K., Rossi, T.: An enhanced
memetic differential evolution in filter design for defect detection in paper pro-
duction. Evolutionary Computation 16 (2008) to appear.

24. Caponio, A., Neri, F., Tirronen, V.: Super-fit control adaptation in memetic differ-
ential evolution frameworks. Soft Computing-A Fusion of Foundations, Method-
ologies and Applications (2008) to appear.

25. Smith, J.E.: Coevolving memetic algorithms: A review and progress report. IEEE
Transactions on Systems, Man, and Cybernetics, Part B 37 (2007) 6–17

26. Zamuda, A., Brest, J., Bošković, B., Žumer, V.: Large scale global optimization
using differential evolution with self-adaptation and cooperative co-evolution. In:
Proceedings of the IEEE World Congress on Computational Intelligence. (2008)
3719–3726

27. Back, T.: Selective pressure in evolutionary algorithms: a characterization of selec-
tion mechanisms. In: Proceedings of the IEEE World Congress on Computational
Intelligence. Volume 1. (1994) 57–62

PII

DISTRIBUTED DIFFERENTIAL EVOLUTION WITH
EXPLORATIVE-EXPLOITATIVE POPULATION FAMILIES

by

Matthieu Weber, Ferrante Neri and Ville Tirronen 2009

In Genetic Programming and Evolvable Machines, volume 10, issue 4,
pages 343–371

Reproduced with kind permission from Springer Netherlands.

Genetic Programming and Evolvable Machines manuscript No.
(will be inserted by the editor)

Distributed Differential Evolution with
Explorative-Exploitative Population Families

Matthieu Weber · Ferrante Neri · Ville
Tirronen

Received: date / Accepted: date

Abstract This paper proposes a novel distributed differential evolution, namely
Distributed Differential Evolution with Explorative-Exploitative Population Fami-
lies (DDE-EEPF). In DDE-EEPF the sub-populations are grouped into two families.
Sub-populations belonging to the first family have constant population size, are ar-
ranged according to a ring topology and employ a migration mechanism acting on
the individuals with the best performance. This first family of sub-populations has
the role of exploring the decision space and constituting an external evolutionary
framework. The second family is composed of sub-populations with a dynamic pop-
ulation size: the size is progressively reduced. The sub-populations belonging to the
second family are highly exploitative and are supposed to quickly detect solutions
with a high performance. The solutions generated by the second family then migrate
to the first family. In order to verify its viability and effectiveness, the DDE-EEPF
has been run on a set of various test problems and compared to four distributed dif-
ferential evolution algorithms. Numerical results show that the proposed algorithm
is efficient for most of the analyzed problems, and outperforms, on average, all the
other algorithms considered in this study.

This research is supported by the Academy of Finland, Akatemiatutkĳa 00853, Algorithmic
Design Issues in Memetic Computing.

Matthieu Weber
Tel.: +358-14-2603056
E-mail: matthieu.weber@jyu.fi

Ferrante Neri
Tel.: +358-14-2602764
E-mail: ferrante.neri@jyu.fi

Ville Tirronen
Tel.: +358-14-2604987
E-mail: ville.tirronen@jyu.fi

University of Jyväskylä
Department of Mathematical Information Technology
P.O. Box 35 (Agora), 40014, Jyväskylä
Finland
Fax: +358-14-2604981

2

Keywords Differential Evolution · Distributed Systems · Population Size
Reduction · Multi-family Distributed Algorithms

1 Introduction

Panmictic Evolutionary Algorithms [3], i.e., standard evolutionary algorithms char-
acterized by a unique population and global recombination among all the possible
individuals, are commonly used tools in optimization which have shown a high per-
formance on various problems in applied science and engineering. On the other hand,
these algorithms suffer from the well-known problems of stagnation and premature
convergence caused by an improper balance of the population diversity, see e.g. [16].
In other words, the main drawback of a standard Evolutionary Algorithm (EA) is
the fact that it may fail to generate new promising solutions and return a poorly
performing suboptimal solutions.

In order to overcome this drawback, computer scientists and practitioners, since
the earliest EA implementations, have attempted to enhance the EA performance
by modifying the original ideas in various manners, e.g. proposing alternative search
structures [52], developing adaptation models [45], hybridizing EAs with local search
algorithms [33], or designing structured versions of EAs. The latter category, which
is the focus of this paper, consists of a decentralization of the population into a set
of sub-populations which have diverse roles and can somehow interact. Two most
famous examples of structured EAs are Cellular Evolutionary Algorithms (CEAs),
see [58], [5], [25], [24], [1] and [26], and Distributed Evolutionary Algorithms (DEAs),
see [56], [7], [2], [22], and [62] and classification in [4] and [3]. In CEAs, the sub-
populations are constructed on the basis of a neighborhood criterion and thus each
sub-population has the role of exploring (and exploiting) a different region of the
decision space. In DEAs, all the sub-populations explore the entire decision space and
develop a parallel evolution for the solution of the same problem, usually cooperating
in the search of the optimum by means of some information exchange.

Due to their nature, EAs (as well as other population based metaheuristics)
are easy to be run in parallel over multiple machines or multiple core machines.
The oldest, simplest and most straightforward EA parallelization is the so called
Single-population Master-Slave Parallel Model (see [27] and [43]). In this kind of
parallelization, the EA runs with a single population and the fitness evaluations
are distributed over several cores. Clearly, this parallelization does not influence
the EA structure (since it is algorithmically equivalent to a standard EA) nor its
performance.

Since structured EAs modify the normal EA by distributing the whole popu-
lation into a set of many sub-populations, a parallelization can be naturally per-
formed by assigning the management of a sub-population to each core. In this
case, the distribution over several computational cores and the algorithmic modifica-
tions/enhancements are strictly connected issues. In literature several classifications
of parallel EAs have been proposed, see e.g., [10], [11], and [13].

In terms of parallelization, a popular classification, see [38], distinguishes be-
tween coarse-grained and fine-grained algorithms. Coarse-grained algorithms run on
a limited amount of populations with a relatively high number of individuals while
fine-grained algorithms run on many populations composed of only a few individ-
uals. This classification often coincides with the one mentioned above (DEA and

3

CEA) which sees the same issue from an alternative (according to the algorithmic
structure) viewpoint.

Although the sub-populations evolve separately, they interact somehow and coop-
erate by exchanging information in order to pursue their common global optimization
goal. In other words, the sub-populations copy, transfer, and exchange individuals
according to various migration schemes, see e.g., [34], [8], [11], [12], and [14].

Over the recent years, among the other EAs present in literature, Differential
Evolution (DE see [51], [49], [42], and [15]) stimulated the interest of computer
scientists and practitioners. As many applications in engineering have proven, DE is
a reliable and versatile function optimizer which is especially efficient in continuous
problems. Thanks to, on one hand, its simplicity and ease of implementation, and
on the other hand, its reliability and high performance, DE became a very popular
solution for solving various real-world problems almost immediately after its original
definition.

Although DE has a great potential, it has been clear to the scientific commu-
nity that some modifications to the original structure were necessary in order to
significantly improve its performance. A popular way, especially during the latest
years, to enhance the DE is the integration of structured populations evolving in
parallel. For example, in [30] a distributed DE scheme employing a ring topology
(the cores are interconnected in a circle and the migrations occur following the ring)
has been proposed for the training of a neural network. In [48], an example of DE
parallelization is given for a medical imaging application. A few famous examples
of distributed DE are presented in [59], [60], and [63]; in these papers the migra-
tion mechanism as well as the algorithmic parameters are adaptively coordinated
on a criterion based on the genotypical diversity. In paper [61], a distributed DE
for preserving the diversity in the niches is proposed in order to solve multi-modal
optimization problems. In [53], a distributed DE characterized by a ring topology
and the migration of the individuals with the best performance, to replace random
individuals of the neighbor sub-population, has been proposed. An application of
the algorithm in [53] for the training of a neural network has been presented in [39].
Following a similar logic, paper [29] proposes a distributed DE where the compu-
tational cores are arranged according to a ring topology and, during the migration,
the best individual of a sub-population replaces the oldest member of the neighbor
population. In [17], [18], and [19] a distributed DE has been designed for the im-
age registration problem. In these papers, a computational core acts as a master
by collecting the best individuals detected by the various sub-populations running
in slave cores. The slave cores are connected in a grid and a migration is arranged
among neighbor sub-populations. In [6], a distributed DE which modifies the scheme
proposed in [53] has been presented. In [6], the migration is based on a probabilistic
criterion depending on five parameters. It is worthwhile to mention that also some
parallel implementations of panmictic DE are available in literature, see [36]. An
investigation about DE parallelization is given in [31].

This paper deals with distributed versions of DE and proposes a novel implemen-
tation of distributed DE, namely Distributed Differential Evolution with Explorative-
Exploitative Population Families (DDE-EEPF). The DDE-EEPF is a distributed
algorithm composed of two families of sub-populations. In the first family the sub-
populations have a fixed population size and employ a migration scheme. In the
second family, the sub-populations have a different behavior depending on the gen-
eration number. During the beginning of the evolution, the sub-populations evolve

4

independently by applying a population size reduction scheme. During the late stages
of the evolution, the sub-populations belonging to the second family allow a migration
of the individuals with the best performance to the sub-populations belonging to the
first family. The distributed mechanism counts then on a family of sub-populations
for exploring the decision space and performing the global search and on a family
of sub-populations for exploiting the available search directions and thus detecting
high quality solutions. The second family is then supposed to assist the first one by
“injecting” high performance solutions within its explorative frameworks in the mid-
dle of their optimization process. This operation is supposed to enhance the overall
algorithmic performance.

The remaining part of the paper is organized in the following way. Section 2 de-
scribes the working principles of DE and explains the reasons behind the paralleliza-
tion. Section 3 gives a short description of recently presented distributed versions of
DE and introduces the algorithms employed for comparison in the experimental sec-
tion. Section 4 describes the proposed algorithm. Section 5 shows the experimental
setup and numerical results of the present study. Section 6 gives the conclusions of
this paper.

2 Standard Differential Evolution

In order to clarify the notation used throughout this chapter we refer to the min-
imization problem of an objective function f (x), where x is a vector of n design
variables in a decision space D.

According to its original definition given in [51], the DE consists of the following
steps. An initial sampling of Spop individuals is performed pseudo-randomly with a
uniform distribution function within the decision space D. At each generation, for
each individual xi of the Spop, three individuals xr, xs and xt are pseudo-randomly
extracted from the population. According to the DE logic, a provisional offspring
x′off is generated by mutation as:

x′off = xt + F (xr − xs) (1)

where F ∈ [0, 1+[is a scale factor which controls the length of the exploration vector
(xr−xs) and thus determines how far from point xi the offspring should be generated.
With F ∈ [0, 1+[, it is meant here that the scale factor should be a positive value
which cannot be much greater than 1, see [42]. While there is no theoretical upper
limit for F , effective values are rarely greater than 1.0. The mutation scheme shown
in Equation (1) is also known as DE/rand/1. Other variants of the mutation rule
have been subsequently proposed in literature, see [44]:

– DE/best/1: x′off = xbest + F (xs − xt)
– DE/cur-to-best/1: x′off = xi + F (xbest − xi) + F (xs − xt)
– DE/best/2: x′off = xbest + F (xs − xt) + F (xu − xv)
– DE/rand/2: x′off = xr + F (xs − xt) + F (xu − xv)
– DE/rand-to-best/2: x′off = xi + F (xbest − xi) +F (xr − xs) + F (xu − xv)

where xbest is the solution with the best performance among the individuals of the
population, xu and xv are two additional pseudo-randomly selected individuals. It
is worthwhile to mention the rotation invariant mutation shown in [41]:

5

– DE/current-to-rand/1 xoff = xi +K (xt − xi) + F ′ (xr − xs)
where K is is the combination coefficient, which, as suggested in [41], should be
chosen with a uniform random distribution from [0, 1] and F ′ = K · F . For this
special mutation the mutated solution does not undergo the crossover operation
described below.

Recently, in [42], a new mutation strategy has been defined. This strategy, namely
DE/rand/1/either-or, consists of the following:

x′off =
{

xt + F (xr − xs) if rand (0, 1) < pF
xt +K (xr + xs − 2xt) otherwise (2)

where for a given value of F , the parameter K is set equal to 0.5 (F + 1).
When the provisional offspring has been generated by mutation, each gene of

the individual x′off is exchanged with the corresponding gene of xi with a uniform
probability and the final offspring xoff is generated:

xoff ,j =
{

xi,j if rand (0, 1) < CR
x′off ,j otherwise

(3)

where rand (0, 1) is a random number between 0 and 1; j is the index of the gene
under examination.

The resulting offspring xoff is evaluated and, according to a one-to-one spawning
strategy, it replaces xi if and only if f(xoff) ≤ f(xi); otherwise no replacement
occurs. It must be remarked that although the replacement indexes are saved, one
by one, during the generation, the actual replacements occur all at once at the end
of the generation. For the sake of clarity, the pseudo-code highlighting the working
principles of the DE is shown in Figure 1.

2.1 Why to Distribute Differential Evolution?

As shown in Subsection 2, DE is based on a very simple idea, i.e., the search by means
of adding vectors and a one-to-one spawning for the survivor selection. Thus, DE is
very simple to implement/code and contains a limited number of parameters to tune
(only Spop, F , and CR). In addition, the fact that DE is rather robust and versatile
has encouraged engineers and practitioners to employ it in various applications. For
example, in [28], a DE application to the multisensor fusion problem is given. In
[50], a filter design is carried out by DE. In [54] and [55], a DE based algorithm is
implemented to design a digital filter for paper industry applications. A review of
DE applications is presented in [40].

From an algorithmic viewpoint, the reasons of the success of DE have been high-
lighted in [21]: the success of the DE is due to an implicit self-adaptation contained
within the algorithmic structure. More specifically, since, for each candidate solution,
the search rule depends on other solutions belonging to the population (e.g. xt, xr,
and xs), the capability of detecting new promising offspring solutions depends on
the current distribution of the solutions within the decision space. During the early
stages of the optimization process, the solutions tend to be spread out within the de-
cision space. For a given scale factor value, this implies that the mutation appears to
generate new solutions by exploring the space by means of a large step size (if xr and

6

generate Spop individuals of the initial population pseudo-randomly
while budget condition do

for i = 1 : Spop do
compute f (xi)

end for
for i = 1 : Spop do

{** Mutation **}
select three individuals xr, xs, and xt
compute x′off = xt + F (xr − xs)
{** Crossover **}
xoff = x′off
for j = 1 : n do

generate rand(0, 1)
if rand(0, 1) < CR then
xoff ,j = xi,j

end if
end for
{** Selection **}
if f

(
xoff
)
≤ f (xi) then

save index for replacement xi = xoff
end if

end for
perform replacements

end while

Fig. 1 DE pseudocode

xs are distant solutions, F (xr − xs) is a vector characterized by a large modulus).
During the optimization process, the solutions of the population tend to concentrate
on specific parts of the decision space. Therefore, the step size in the mutation is
progressively reduced and the search is performed in the neighborhood of the solu-
tions. In other words, due to its structure, a DE scheme is highly explorative at the
beginning of the evolution and subsequently becomes more exploitative during the
optimization.

Although this mechanism seems at first glance very efficient, it hides a limitation.
If for some reasons, the algorithm does not succeed in generating offspring solutions
which outperform the corresponding parent, the search is repeated again with simi-
lar step size values and likely fails by falling into the undesired stagnation condition
(see [32]). Stagnation is the undesired effect which occurs when a population-based
algorithm does not converge to a solution (even suboptimal) and the population di-
versity is still high. In the case of the DE, stagnation occurs when the algorithm does
not manage to improve upon any solution of its population for a prolonged number
of generations. In other words, the main drawback of the DE is that the scheme has,
for each stage of the optimization process, a limited amount of exploratory moves
and if these moves are not enough for generating new promising solutions, the search
can be heavily compromised.

Thus, in order to enhance the DE performance, alternative search moves should
support the original scheme and promote a successful continuation of the optimiza-
tion process. The use of multiple populations in distributed DE algorithms allows an
observation of the decision space from various perspectives and, most importantly,
decreases the risk of stagnation since each sub-population imposes a high exploitation
pressure. In addition, the migration mechanism ensures that solutions with a high

7

performance are included within the sub-populations during their evolution. This
fact is equivalent to modifying the set of search moves. If the migration privileges
the best solutions, the new search moves promote the detection of new promising
search directions and thus allow the DE search structure to be periodically “refur-
bished”. Thus, the migration is supposed to mitigate the risk of stagnation of the
DE (sub-)populations and to enhance the global algorithmic performance.

In addition, within a DE framework there is, with respect to the other EAs, a
different relationship between algorithmic functioning and the population diversity.
As it is well known, the concept of population diversity is very important in many
EAs and, in order to obtain a proper algorithmic behavior, it is crucial to design
a system to maintain the diversity high throughout the evolution. It might likely
happen that a diversity loss in an EA can cause the premature convergence towards
solutions characterized by a poor performance. In DE, as for swarm intelligence
optimizers, there is not a quick diversity loss and the algorithm can perform the
entire optimization process and still keep the diversity high. This fact can cause an
excessively exploratory behavior and then the stagnation phenomenon mentioned
above. Thus a successful DE, as explained above, is supposed to explore the entire
decision space only during the early stage of the evolution and subsequently narrows
its search in a small (and interesting) portion of the domain. In summary, DE is an
atypical EA: operations which aim at maintaining the diversity high are beneficial
to most of the EAs while being detrimental to DE.

On the other hand, it must be remarked that many population-based metaheuris-
tics and not only the DE can greatly benefit from a proper parallelization. Generally
speaking, a distributed population structure can offer an alternative search view to
the algorithmic structures and generate compensation to the weak points of the cho-
sen algorithm. In DE stagnation problems and the limited set of available moves
have been highlighted. A classical example of the advantages of distribution can be
the Distributed Evolution Strategies, see [46]. Evolution Strategies, especially those
employing the “plus” strategy, suffer from premature convergence and diversity loss.
The use of a distributed population with a proper migration mechanism can be
an efficient countermeasure against diversity loss and thus an enhancement in the
algorithmic performance.

In other words, the distribution of the population can be beneficial to DE (as well
as to swarm intelligence algorithms) since it can generate extra moves in the search
logic, thus mitigating the stagnation effect, and to other EAs since it can produce
genotypes which increase the diversity, thus mitigating the premature convergence
inconveniences.

The implementation of the parallelization e.g., occurrence of the migrations as
well as the choice of migrating individuals, replacement rules, and choice of popu-
lation involved in the migration events have been intensively discussed in literature
and, in many cases, are still points of investigation for computer scientists. As a
matter of fact, although the employment of structured populations can be beneficial
to many meta-heuristics, each case must be, in our view, separately analyzed and
the design of the distributed structure must be performed taking into account the
nature and the limitation of each core algorithm.

The next section illustrates three successful, recently developed distributed DEs
and highlights their differences and similarities.

8

Master node

Sub−population node

Fig. 2 Unidirectional ring topology in the Parallel Differential Evolution algorithm

3 Distributed Differential Evolution: Recently Developed Algorithms

This section describes three distributed algorithm based on a DE structure recently
proposed in literature. The algorithms described in this section are, according to
our judgement, representative of the state of the art of structured DE algorithms
and have been included in the benchmark in order to compare the performance of
the proposed approach. Although the notation can generate some confusion, i.e., all
the algorithms are distributed and can easily be parallelized, we decided to indicate
them according to the original terminology defined by their respective authors.

3.1 Parallel Differential Evolution

In [53], the problem of parallelization for DE schemes has been studied through an
experimental analysis and an algorithm, namely Parallel Differential Evolution (here
indicated with PDE) has been proposed.

The original PDE implementation uses the Parallel Virtual Machine (PVM),
allowing multiple computers (called nodes) to be organized as a cluster and ex-
change arbitrary messages. PDE is organized around one master node and N sub-
populations running each on one node, and organized as a unidirectional ring, as
illustrated in Figure 2. It must be noted that although the logical topology is a ring
which does not contain the master node, the actual topology is a star, where all
communications (i.e., the migrations of individuals) are passing through the master.

Each sub-population runs a regular DE algorithm while the master node coordi-
nates the migration of individuals between the sub-populations. On each generation,
the sub-population has a given probability to send a copy of its best individual to
its next neighbor in the ring. Figure 3 describes the behaviors of both the master
node and the sub-populations in more details.

The DE variant run by each sub-population is the same across all the sub-
populations. In [53], six mutation strategies have been compared, namely DE/best/1,
DE/rand/1, DE/cur-to-best/1, DE/best/2, DE/rand/2 described in Section 2, as

9

spawn N sub-populations, each one on a different processor
for each generation do

receive an individual from each sub-population
for each received individual do

if rand(0, 1) < φ then
send the individual to the next subpopulation in the ring

end if
end for
if the stop criterion for the objective function is met then

send a termination signal to all the sub-populations
end if

end for
(a) At the master node

for each generation do
perform a DE step
send a copy of the best individual to the master node
if a migrated individual has been received then

replace a random individual, different from the best, by this migrated individual
end if
if a termination signal has been received then

terminate the execution
end if

end for
(b) At each sub-population

Fig. 3 Pseudo-code of the PDE algorithm

well as the trigonometric operator described in [20]. Each strategy is used with dif-
ferent values of the migration constant φ and compared over seven test functions
whose dimensions vary between 2 and 30. The results show that DE/best/1 is the
most efficient mutation strategy and quite stable across different values of φ, whereas
the results of DE/rand/1 are average and quite unstable when φ varies.

3.2 Island Based Distributed Differential Evolution

In [6] a distributed DE, namely Island Based Distributed Differential Evolution
(IBDDE) has been proposed. The IBDDE is a modified version of the PDE de-
scribed in Subsection 3.1. The algorithm is described in a generic way, present-
ing a population P structured in m sub-populations Pp of np individuals. The size
of P is noted N =

∑n
i=1 ni. The migration policy is then defined as a five-tuple

M = (γ, ρ, φs, φr, τ). γ ∈ N is the number of generations between two migrations,
ρ ∈ N is the number of individuals which are migrated from a sub-population dur-
ing each migration, φs is the selection function which, applied to a sub-population,
returns the migrating individuals, φr is the replacement function that selects the
individuals to be replaced by the immigrants in the receiving sub-population, and
τ : P → 2P is the topological model, which selects what sub-population can send
to (or receive from) what other sub-population. Figure 4 describes the algorithm as
pseudo-code.

For the actual experiments, the population size N is set to 20, and the popu-
lation is divided into two sub-populations of 10 individuals in one experiment, and

10

initialize(Pp)
while the stopping condition is not met do

perform a DE step
if the last migration was γ generations ago then

for each of the ρ individuals to send do
v′ig ← φs(Pp)
send v′ig to Pj chosen by τ

end for
end if{** Asynchronous communication **}
while individuals are arriving do

receive v′ig from Pj
replace an individual chosen from φs(Pp) by v′ig

end while
end while

Fig. 4 Pseudo-code of the IBDDE algorithm for sub-population Pp

Fig. 5 Torus topology in the Distributed Differential Evolution algorithm

into four sub-populations of 5 individuals in a second experiment. The migration pa-
rameters are set to γ = 100, ρ = 1, the functions φs and φr are defined to randomly
select an individual, and the topology τ is a unidirectional ring, very similar to the
logical topology used by PDE (see Subsection 3.1). The mutation strategy for DE is
DE/rand/1, and the algorithm is tested on 25 different test functions in 30 and 50
dimensions, for a total of 50 test functions.

3.3 Distributed Differential Evolution

In [17], [18], and [19], in order to solve and image registration problem a distributed
DE (here indicated with DDE) has been proposed. This algorithm differs from PDE
and IBDDE by the topology it uses. Instead of a unidirectional ring, DDE uses a
locally connected topology, where each node is connected to µ other nodes. Figure 5
represents such a topology where the nodes are arranged in a mesh folded into a
torus.

11

initialize the sub-population
while the stopping condition is not met do

perform a DE step
if the last migration was MI generations ago then

send a copy of the best individual to each neighbor
end if
if there are incoming individuals then

replace the worst SI × µ individuals by the SI × µ incoming ones
end if

end while

Fig. 6 Pseudo-code of the DDE algorithm at a sub-population

In this configuration µ = 4, i.e., each node (such as the black disc in the figure)
has exactly four nearest neighbors (represented by the four grey discs). In DDE, each
node represents one processor running a DE algorithm with a DE/rand/1 mutation
strategy on a sub-population. Every MI generations (the migration interval), each
sub-population is allowed to exchange SI (the migration rate) individuals with its
nearest neighbors. In the experimental setup, each node sends a copy of its best
individual to its neighbors. Figure 6 describes the algorithm as pseudo-code.

DDE also makes use of a master node, whose role is to collect the best solutions
found in each sub-population and to present the results to the user.

4 Distributed Differential Evolution with Explorative-Exploitative
Population Families

The proposed algorithm, namely Distributed Differential Evolution with Explorative-
Exploitative Population Families (DDE-EEPF), consists of the following steps.

An initial population of Spop individuals is pseudo-randomly sampled within the
decision space D. These Spop individuals are distributed over m sub-populations;
each sub-population has a size equal to Ss-pop = Spop

m . The m sub-populations are
then divided into two families: α are assigned to the first family (hereafter named Pp
with p = 1, 2, . . . , α) and β to the second (named Qq with q = 1, 2, . . . , β); α+β = m.

The α sub-populations belonging to the first family are arranged according to a
ring topology following the suggestions given in [53]. In the first family, each sub-
population Pp evolves like a standard DE and employs the DE/rand/1 mutation
strategy illustrated in Equation (1) and the crossover described in Equation (3). The
replacements of the individuals are performed according to the one-to-one spawn-
ing shown in Section 2. These α sub-populations interact by means of a migration
scheme. For each population Pp, p = 1, . . . , α, with a probability pmig, a copy of the
best individual xPpbest of sub-population Pp is sent to the next sub-population in the
ring. At that sub-population, the incoming xPpbest replaces a pseudo-randomly selected
(uniform distribution) solution, which is then discarded.

The behavior of the β sub-populations Qq composing the second family is divided
into two ages. During the first age, the sub-populations evolve independently without
the support of a migration scheme. Each sub-population employs the population size
reduction strategy introduced in [9] (see also [23] and [57]). This strategy requires
that initial population size S1

s-pop (in our case S1
s-pop = Ss-pop), duration of the first

age in terms of fitness evaluations (time budget Tb), and number of stages Ns (the

12

number of population sizes employed during the algorithm’s run), are prearranged.
Then, the first age (Tb) is divided into Ns periods, each period being characterized
by a population size value Sks-pop (for k = 1 we obtain the initial population size).
Each period is composed of Nk

g generations which are calculated in the following
way:

Nk
g =

⌊
Tb

NsSks-pop

⌋
+ rk (4)

where rk is a constant non-negative value which takes a positive value when Tb is
not divisible by Ns. In this case rk extra generations are performed. The population
reduction is simply carried out by halving the population size at the beginning of the
new stage, see [9]. In other words, for k = 1, 2, . . . , Ns, the population size is halved
Sk+1

s-pop = Sks-pop
2 . The selection of the survivors occurs by dividing into groups the

sub-population according to their indexes and performing the one-to-one spawning
to each corresponding pair of individuals. Finally, it should be remarked that in
order to guarantee a proper functioning of the population reduction mechanism,
populations should never undergo sorting of any kind.

In this way, the population size is progressively reduced during the optimization
process until the budget of the first age (Tb) is reached. The concept behind this
strategy is that of focusing the search in progressively smaller search spaces in order
to inhibit the DE stagnation. During the early stages of the optimization process, the
search requires a highly explorative search rule, i.e., a large population size, in order
to explore a large portion of the decision space. During the optimization, the search
space is progressively narrowed by decreasing the population size and thus exploiting
the promising search directions previously detected. Although this strategy does not
guarantee the detection of the global optimum, it allows quick improvements in the
solution performance.

During the second age, the sub-populations composing the second family keep
their size constant at their minimum and a migration scheme is employed. At each
generation, for each sub-population belonging to the second family, its individual
with the best performance migrates to a sub-population of the first family. As for
the migration among sub-populations of the first family, individuals are copied and
replace a pseudo-randomly selected individual of the target population. The choice
of the target population is performed at pseudo-random with a uniform probability.

It is important to remark that a synchronization of the computational overhead
has been implemented among the sub-populations belonging to the first and sec-
ond family. In other words, the amount of fitness evaluations during a generation
is kept constant for all the sub-populations. For example, if k = 2, the size of a
sub-population belonging to the first family is twice bigger than the size of a sub-
population of the second family. Under these conditions, for each generation in the
first family two consecutive generations are performed in the second family.

Figure 7 gives a graphical representation of the DDE-EEPF during both its ages
of the evolution.

According to the idea proposed in this paper, the whole DE population is divided
into sub-populations. These sub-populations are grouped into two families. Each
family plays a different role on the optimization process. The sub-populations of the
first family are supposed to explore the decision space and to attempt detecting the
global optimum. The risk of stagnation is mitigated by the migration mechanism
among the sub-populations of the first family. On the contrary, the sub-populations

13

P1 Pα

Pp

. . .

. . .

. . . Qβ

Migr
ate
x
P1

bes
t

Q1

(perform population-size reduction)

Migrate xPαbest

M
igrate

x P
pbest

(a) Operation during the first age

Migr
ate
x
P1

bes
t

Migrate xQi
best

P1

Pp

. . .

. . .

. . . QβQ1

Migrate xQ1
best

M
igrate

x P
pbest

Migrate xPαbest

Pα

(b) Operation during the second age

Fig. 7 Operation scheme of the DDE-EEPF

belonging to the second family have a completely different role and behavior. The
sub-populations of the second family do not aim at exploring the entire decision
space, but their role is focused on the greedy achievement of solutions with a high
performance, despite the fact that these solutions can be suboptimal. There is no
migration mechanism within the second family in order to allow a full exploitation
of the available search directions. Migrations would slow down the search since they
result in an increase of the exploration properties. When the sub-populations of the
second family detected high quality solutions, the inter-family migration occurs. The
introduction of high quality solutions into the exploratory search structure of the first
family is supposed to further decrease the risk of stagnation and, most importantly, to
assist the global search by proposing the exploration of promising search directions.
Hence, during the second age, the sub-populations of the first family have the role
to improve upon the immigrants coming from the second family and continue the
search towards the optimum. In this sense, the first family is meant to be explorative
while the second is to be exploitative.

5 Experimental Results

The test problems listed in Table 1 have been considered in this study.
The rotated version of some of the test problems listed in Table 1 have been

included into the benchmark set. These rotated problems have been generated by
means of the multiplication of the vector of variables by a randomly generated or-
thogonal rotation matrix. In total, twenty-four test problems have been considered
in this study with both n = 500 and n = 1, 000. Each algorithm has been run
for 500, 000 fitness evaluations in the case of n = 500 and for 1, 000, 000 fitness
evaluations when n = 1, 000. Fifty independent runs have been performed for each
algorithm involved in this paper.

The DDE-EEPF has been tested and compared with the PDE, IBDDE, DDE
and one more algorithm designed by us for comparison (see below). Preliminary ex-
periments related to the sequential DE have shown that DE is not at all competitive

14

Table 1 Test Problems

Test Problem Function Decision
Space

Ackley −20 + e + 20 exp
(
− 0.2

n

√∑n

i=1
x2
i

)
[−1, 1]n

− exp
(

1
n

∑n

i=1
cos(2π · xi)xi

)
Alpine

∑n

i=1
|xi sin xi + 0.1xi| [−10, 10]n

Axis-parallel
hyper-ellipsoid

∑n

i=1
ix2
i

[−5.12, 5.12]n

DeJong ‖x‖2 [−5.12, 5.12]n

DropWave
−

1+cos
(

12
√
‖x‖2
)

1
2 ‖x‖2+2

[−5.12, 5.12]n

Griewangk ‖x‖2
4000 −

∏n

i=0
cos xi√

i
+ 1 [−600, 600]n

Michalewicz −
∑n

i=1
sin xi

(
sin
(
i·x2
i

π

))20 [0, π]n

Pathological ∑n−1
i=1

(
0.5 +

sin2
(√

100x2
i

+x2
i+1−0.5

)
1+0.001∗

(
x2
i
−2xixi+1+x2

i+1

)2

)
[−100, 100]n

Rastrigin 10n +
∑n

i=0

(
x2
i − 10 cos(2πxi)

)
[−5.12, 5.12]n

Rosenbrock val-
ley

∑n−1
i=1

(
100
(
xi+1 − x2

i

)2
+ (1− xi)2

)
[−2.048, 2.048]n

Schwefel ∑n

i=1
−xi sin

(√
|xi|
)

[−500, 500]n

Sum of powers
∑n

i=1
|xi|i+1 [−1, 1]n

Tirronen 3 exp
(
− ‖x‖2

10n

)
− 10 exp

(
−8‖x‖2

) [−10, 5]n

+ 2.5
n

∑n

i=1
cos
(

5
(
xi + (1 + i mod 2)cos

(
‖x‖2

)))
with the above distributed ones, and has therefore been left out from these result
presentation.

The algorithms considered in this study have been run with the following param-
eter setting.
– The DE used within the sub-populations of each of the distributed algorithms

has been run with F = 0.7 and CR = 0.3, in accordance with the suggestions
given in [65] and [64].

– The PDE has been run with populations of 200 or 400 individuals divided
into 5 sub-populations of 40 or 80 individuals each, for the 500 and 1,000-
dimensional problems, respectively. Despite [53] showing better performance for
the DE/best/1 mutation strategy in 30 and 50 dimensions, it has proven ex-

15

cessively exploitative and has lead to premature convergence of the solutions
when used on higher dimension problems. In order to perform a fair compari-
son, an analysis on mutations strategies has been made, leading to the choice of
DE/rand/1 and setting the migration constant to φ = 0.2. These are the settings
which have been chosen for the experiments described below.

– Similarly to PDE, the IBDDE has been run with populations of 200 or 400
individuals divided into 5 sub-populations of 40 or 80 individuals each, depending
on the dimensionality of the test problems. The other parameters have been
chosen according to the values in [6]: the sub-populations exchange one individual
(ρ = 1) every 100 generations (γ = 100). φs and φr have been defined so as to
choose a uniformly random individual, and τ has been set to a unidirectional
ring.

– For the 500-dimensional problems, the DDE has been run with a population of
200 individuals divided into 16 sub-populations of alternatively 12 or 13 individ-
uals. In the case of the 1,000-dimensional problems, the population has been set
to 400 individuals divided into 16 sub-populations of 25 individuals. Following
the suggestions in [18] the sub-populations have been organized into a 4× 4 grid
folded into a torus (µ = 4). Each sub-population migrated only its best individual
(SI = 1) every MI = 5 generations.

– The DDE-EEPF has been run with Spop = 200 or Spop = 400 (representing 5
populations of 40 or 80 individuals, for the 500 or 1,000-dimensional problems,
respectively). The first family has been composed of α = 3 sub-populations
while the second family has been made of β = 2 sub-populations. Although we
do not have a theoretical explanation for the choice of α and β, it is worthwhile
commenting the performed setting. Since in this algorithm α sub-populations are
supposed to explore the decision space while β are supposed to exploit it, the
choice of α and β should be made in order to efficiently balance the exploration
and exploitation features of the algorithm. Our preliminary experiments have
clearly shown that α should be greater than β. On the other hand, the role of
the second family is very important and requires some computational effort. As a
general guideline, on the basis of empirical observations, we suggest to set β about
20 − 40% of m. With both 500 and 1,000-dimensional problems, the migration
constant has been set to pmig = 0.5, and the Tb parameter for the population
reduction algorithm has been set to 60% of the total budget, i.e., Tb = 300, 000
and Tb = 600, 000 for 500 and 1,000 dimensions respectively. This proportion of
the budget seems to guarantee a robust behavior of the algorithm: according to
our interpretation, a too low value of Tb implies a too short duration of the first
age, which makes the algorithm too exploitative during the process, promoting
quick improvements in the fitness values, but also causing premature convergence.
Conversely, if Tb is too high (e.g., the first age lasts for 80% of the duration of the
optimization process), the algorithm is too explorative and the second age does
not have the opportunity to exploit the promising search directions generated by
the population size reduction algorithm. The other parameters of the population
reduction algorithms have been set to rk = 0 for all k values, and to Ns = 4 steps
of reduction; see [9] for parameter setting.

– In order to evaluate the impact, in DDE-EEPF, of the injection of individuals
from the second family of sub-populations into the first family, a variant of DDE-
EEPF named Parallel Differential Evolution With Random Injections (PDE-
WRI) has been run, under the exact same conditions as DDE-EEPF. The only

16

difference between DDE-EEPF and PDE-WRI is that, at the point when DDE-
EEPF would send an individual from the second family to the first one, PDE-WRI
introduces instead a new, randomly generated (uniform distribution) individual
into the first family.

It is worthwhile commenting the choice of the population sizes Spop = 200 and
Spop = 400. Although in [52] it is suggested to set the DE population size equal to
about ten times the dimensionality of the problem, this indication is not confirmed
by a recent study in [35] where it is shown that a population size lower than the
dimensionality of the problem can be optimal in many cases.

Table 2 shows the average of the final results detected by each algorithm ±
the standard deviations, for the 500 dimension case, for the DE with additional
components. Table 3 shows the results for the 1, 000 dimension case. The best results
are highlighted in bold face.

Results in Tables 2 and 3 show that the proposed DDE-EEPF seems promising
in terms of final result, since it detected (on average) the best performing solutions
in fourteen cases out of the twenty-four considered in this study in 500 dimensions.
PDE obtained the best results only in two cases, DDE is the best in three cases and
PDE-WRI in five cases. In 1,000 dimensions, DDE-EEPF detected on average the
best performing solutions in nine cases out of twenty-four, DDE is the best in nine
cases, and PDE and PDE-WRI win in three cases each.

In order to prove the statistical significance of the results, the two-tail unequal
variance t-test has been applied according to the description given in [47] (see also
[37]) for a confidence level of 0.95. Tables 4 and 5 show the results of the test.
A “+” indicates the case when the DDE-EEPF statistically outperforms, for the
corresponding test problem, the algorithm mentioned in the column; a “=” indicates
that the pairwise comparison leads to the success of the t-test, i.e., the two algorithms
have the same performance; a “-” indicates that DDE-EEPF is outperformed.

In the case of 500-dimensional problems, the t-test results show that the DDE-
EEPF outperforms PDE in 54.1% of the cases, IBDDE in 95.8%, DDE in 75.0% and
PDE-WRI in 58.3% of the cases. On the opposite, DDE-EEPF is outperformed by
PDE in 33.3% of the cases, by IBDDE in 4.17%, by DDE in 8.33% and by PDE-
WRI in 25.0% of the cases. In the 1,000-dimensional problems, the t-test results
show that DDE-EEPF wins against PDE, IBDDE, DDE and PDE-WRI in 79.1%,
95.8%, 50.0% and 41.7% of the cases, respectively. It loses in 4.17%, 0.00%, 25.0%
and 12.5% of the cases against PDE, IBDDE, DDE and PDE-WRI, respectively.

In order to carry out a numerical comparison of the convergence speed perfor-
mance, for each test problem, the average final fitness value returned by the best
performing algorithm G has been considered. Subsequently, the average fitness value
at the beginning of the optimization process J has also been computed. The thresh-
old value THR = J−0.95(G−J) has then been calculated. The value THR represents
95% of the decay in the fitness value of the algorithm with the best performance. If
an algorithm succeeds during a certain run to reach the value THR, the run is said
to be successful. For each test problem, the average amount of fitness evaluations
n̄e required, for each algorithm, to reach THR has been computed. Subsequently,
the Q-test (Q stands for Quality) described in [21] has been applied. For each test
problem and each algorithm, the Q measure is computed as:

Q = n̄e

R
(5)

17

Table 2 Average final fitness values ± standard deviations for 500 dimensions problems

PDE IBDDE DDE
Ackley 1.62e− 01± 1.67e− 02 3.55e + 00± 2.96e− 02 1.51e− 01± 6.96e− 02
Alpine 8.88e + 01± 1.26e + 01 1.21e + 03± 3.43e + 01 1.50e + 02± 4.35e + 01
Ax.-par. hyp.-ell. 3.68e + 03± 6.84e + 02 7.27e + 05± 3.70e + 04 4.09e + 03± 4.73e + 03
DeJong 1.92e + 01± 3.57e + 00 3.19e + 03± 2.67e + 02 1.61e + 01± 1.15e + 01
DropWave −4.11e− 03± 3.96e− 04 −1.13e− 03± 8.03e− 05−2.56e− 03± 2.69e− 04
Griewangk 5.62e + 02± 1.09e + 01 1.13e + 04± 7.65e + 02 5.68e + 02± 4.86e + 01
Michalewicz −3.06e + 02± 5.68e + 00 −9.13e + 01± 2.09e + 00−2.60e + 02± 8.56e + 00
Pathological −3.34e + 02± 5.98e + 00−3.34e + 02± 7.40e + 00−3.06e + 02± 7.28e + 00
Rastrigin 1.91e + 03± 9.94e + 01 7.78e + 03± 1.55e + 02 2.73e + 03± 2.28e + 02
Rosenbrock 2.11e + 03± 1.77e + 02 1.35e + 05± 1.61e + 04 1.82e + 03± 6.14e + 02
Schwefel −1.30e + 05± 3.17e + 03 −4.48e + 04± 8.15e + 02−1.06e + 05± 4.19e + 03
Sum of powers 1.06e− 05± 5.19e− 05 3.09e− 01± 1.67e− 01 1.02e− 03± 2.51e− 03
Tirronen −1.57e + 00± 3.44e− 02 −1.01e + 00± 1.90e− 02−1.38e + 00± 6.76e− 02
Rt. Ackley 2.15e− 01± 2.50e− 02 3.53e + 00± 3.82e− 02 1.94e− 01± 7.21e− 02
Rt. Alpine 1.03e + 02± 9.74e + 00 1.23e + 03± 4.13e + 01 1.39e + 02± 2.64e + 01
Rt. Ax.-par. hyp.-ell. 4.90e + 03± 7.92e + 02 7.12e + 05± 3.97e + 04 3.87e + 03± 2.20e + 03
Rt. Griewangk 5.66e + 02± 1.03e + 01 1.10e + 04± 6.18e + 02 5.56e + 02± 3.75e + 01
Rt. Michalewicz −1.76e + 02± 7.76e + 00 −4.99e + 01± 1.62e + 00−1.37e + 02± 7.98e + 00
Rt. Pathological −1.21e + 02± 7.30e + 00 −2.11e + 01± 1.05e + 00−1.01e + 02± 1.20e + 01
Rt. Rastrigin 1.95e + 03± 1.51e + 02 7.85e + 03± 2.27e + 02 2.70e + 03± 2.60e + 02
Rt. Rosenbrock 1.66e + 03± 1.53e + 02 1.47e + 05± 1.56e + 04 1.45e + 03± 4.68e + 02
Rt. Schwefel −1.65e + 05± 4.74e + 03 −5.31e + 04± 1.87e + 03−1.27e + 05± 7.80e + 03
Rt. Sum of powers 1.06e− 05± 5.20e− 05 2.13e + 15± 7.15e + 15 2.27e− 03± 6.51e− 03
Rt. Tirronen −1.24e + 00± 7.73e− 02−5.08e− 01± 2.45e− 02−9.31e− 01± 9.41e− 02

PDE-WRI DDE-EEPF
Ackley 1.45e− 01± 1.76e− 02 1.06e− 01± 1.05e− 02
Alpine 6.29e + 01± 9.95e + 00 4.34e + 01± 6.87e + 00
Ax.-par. hyp.-ell. 2.77e + 03± 5.37e + 02 1.63e + 03± 2.39e + 02
DeJong 1.57e + 01± 2.26e + 00 8.22e + 00± 1.01e + 00
DropWave −3.45e− 03± 2.08e− 04 −5.96e− 03± 4.16e− 04
Griewangk 5.52e + 02± 1.09e + 01 5.28e + 02± 4.22e + 00
Michalewicz −3.39e + 02± 4.77e + 00 −3.49e + 02± 4.98e + 00
Pathological −3.31e + 02± 6.02e + 00 −3.27e + 02± 5.70e + 00
Rastrigin 1.62e + 03± 8.41e + 01 1.24e + 03± 5.74e + 01
Rosenbrock 2.37e + 03± 1.98e + 02 2.24e + 03± 2.10e + 02
Schwefel −1.41e + 05± 2.78e + 03 −1.53e + 05± 2.20e + 03
Sum of powers 3.35e− 06± 1.05e− 05 5.84e− 05± 2.02e− 04
Tirronen −1.49e + 00± 4.05e− 02 −1.58e + 00± 4.79e− 02
Rt. Ackley 2.19e− 01± 2.93e− 02 1.80e− 01± 2.15e− 02
Rt. Alpine 9.85e + 01± 9.57e + 00 1.33e + 02± 1.31e + 01
Rt. Ax.-par. hyp.-ell. 4.81e + 03± 7.48e + 02 3.99e + 03± 6.32e + 02
Rt. Griewangk 5.66e + 02± 9.94e + 00 5.49e + 02± 6.42e + 00
Rt. Michalewicz −1.95e + 02± 6.02e + 00 −1.96e + 02± 5.58e + 00
Rt. Pathological −1.50e + 02± 7.08e + 00 −1.11e + 02± 1.22e + 01
Rt. Rastrigin 1.85e + 03± 1.14e + 02 2.13e + 03± 1.59e + 02
Rt. Rosenbrock 1.84e + 03± 2.05e + 02 1.89e + 03± 2.13e + 02
Rt. Schwefel −1.66e + 05± 3.83e + 03 −1.57e + 05± 5.02e + 03
Rt. Sum of powers 2.15e− 09± 1.24e− 08 1.87e− 09± 1.22e− 08
Rt. Tirronen −1.13e + 00± 7.77e− 02 −9.95e− 01± 9.07e− 02

18

Table 3 Average final fitness values ± standard deviations for 1,000 dimensions problems

PDE IBDDE DDE
Ackley 9.75e− 01± 4.77e− 02 3.72e + 00± 1.61e− 02 7.25e− 01± 8.17e− 02
Alpine 6.24e + 02± 3.28e + 01 2.66e + 03± 6.16e + 01 3.85e + 02± 4.99e + 01
Ax.-par. hyp.-ell. 1.81e + 05± 1.23e + 04 3.20e + 06± 1.62e + 05 1.06e + 05± 1.86e + 04
DeJong 4.66e + 02± 2.81e + 01 6.29e + 03± 3.74e + 02 2.83e + 02± 5.12e + 01
DropWave −1.62e− 03± 9.29e− 05 −5.20e− 04± 2.21e− 05−1.17e− 03± 9.73e− 05
Griewangk 2.58e + 03± 1.03e + 02 2.28e + 04± 1.55e + 03 1.96e + 03± 1.80e + 02
Michalewicz −4.18e + 02± 9.73e + 00 −1.49e + 02± 2.24e + 00−4.43e + 02± 1.22e + 01
Pathological −6.39e + 02± 8.43e + 00−1.87e + 02± 3.77e + 01−5.70e + 02± 1.30e + 01
Rastrigin 6.65e + 03± 2.16e + 02 1.69e + 04± 3.40e + 02 6.18e + 03± 3.96e + 02
Rosenbrock 1.34e + 04± 9.17e + 02 2.90e + 05± 3.35e + 04 8.96e + 03± 1.82e + 03
Schwefel −1.91e + 05± 4.04e + 03 −6.45e + 04± 1.08e + 03−1.86e + 05± 8.61e + 03
Sum of powers 3.07e− 06± 1.01e− 05 1.07e + 00± 3.69e− 01 4.68e− 04± 1.64e− 03
Tirronen −1.45e + 00± 2.04e− 02−8.63e− 01± 1.40e− 02−1.35e + 00± 5.11e− 02
Rt. Ackley 9.35e− 01± 5.37e− 02 3.69e + 00± 4.53e− 02 6.90e− 01± 7.83e− 02
Rt. Alpine 6.13e + 02± 2.58e + 01 2.70e + 03± 8.77e + 01 4.01e + 02± 4.19e + 01
Rt. Ax.-par. hyp.-ell. 1.59e + 05± 1.25e + 04 3.31e + 06± 2.20e + 05 8.52e + 04± 1.60e + 04
Rt. Griewangk 2.24e + 03± 9.40e + 01 2.33e + 04± 1.52e + 03 1.75e + 03± 1.60e + 02
Rt. Michalewicz −2.45e + 02± 7.54e + 00 −7.24e + 01± 2.19e + 00−2.29e + 02± 1.23e + 01
Rt. Pathological −1.45e + 02± 6.58e + 00 −2.99e + 01± 1.56e + 00−1.80e + 02± 1.89e + 01
Rt. Rastrigin 6.71e + 03± 2.04e + 02 1.66e + 04± 5.33e + 02 5.90e + 03± 4.07e + 02
Rt. Rosenbrock 1.08e + 04± 7.14e + 02 3.18e + 05± 3.03e + 04 6.95e + 03± 9.68e + 02
Rt. Schwefel −2.48e + 05± 7.65e + 03 −7.18e + 04± 1.83e + 03−2.48e + 05± 1.06e + 04
Rt. Sum of powers 1.00e− 07± 4.88e− 07 8.67e + 50± 4.47e + 51 2.02e− 02± 8.35e− 02
Rt. Tirronen −9.73e− 01± 4.86e− 02 −3.74e− 01± 1.89e− 02−8.12e− 01± 6.75e− 02

PDE-WRI DDE-EEPF
Ackley 7.33e− 01± 5.62e− 02 6.06e− 01± 3.39e− 02
Alpine 3.76e + 02± 2.04e + 01 3.66e + 02± 1.90e + 01
Ax.-par. hyp.-ell. 1.31e + 05± 9.03e + 03 1.08e + 05± 8.53e + 03
DeJong 3.42e + 02± 2.52e + 01 3.26e + 02± 3.19e + 01
DropWave −1.45e− 03± 5.33e− 05 −1.82e− 03± 1.08e− 04
Griewangk 2.17e + 03± 8.73e + 01 2.13e + 03± 1.12e + 02
Michalewicz −5.04e + 02± 9.17e + 00 −5.07e + 02± 9.84e + 00
Pathological −6.37e + 02± 8.00e + 00 −6.34e + 02± 9.41e + 00
Rastrigin 5.13e + 03± 1.98e + 02 5.01e + 03± 1.91e + 02
Rosenbrock 1.13e + 04± 7.02e + 02 1.12e + 04± 6.85e + 02
Schwefel −2.32e + 05± 4.51e + 03 −2.33e + 05± 4.31e + 03
Sum of powers 6.88e− 06± 2.94e− 05 1.40e− 04± 5.34e− 04
Tirronen −1.44e + 00± 2.66e− 02 −1.45e + 00± 1.94e− 02
Rt. Ackley 7.81e− 01± 4.94e− 02 7.01e− 01± 4.27e− 02
Rt. Alpine 4.07e + 02± 2.58e + 01 4.02e + 02± 2.48e + 01
Rt. Ax.-par. hyp.-ell. 1.10e + 05± 9.44e + 03 9.68e + 04± 7.37e + 03
Rt. Griewangk 1.90e + 03± 6.19e + 01 1.78e + 03± 5.05e + 01
Rt. Michalewicz −3.03e + 02± 7.15e + 00 −3.05e + 02± 6.82e + 00
Rt. Pathological −1.94e + 02± 7.64e + 00 −1.71e + 02± 1.01e + 01
Rt. Rastrigin 5.31e + 03± 1.98e + 02 5.27e + 03± 2.04e + 02
Rt. Rosenbrock 8.89e + 03± 5.79e + 02 8.47e + 03± 5.78e + 02
Rt. Schwefel −2.81e + 05± 7.87e + 03 −2.80e + 05± 9.56e + 03
Rt. Sum of powers 2.86e− 08± 1.53e− 07 2.80e− 08± 1.53e− 07
Rt. Tirronen −9.97e− 01± 6.33e− 02 −9.44e− 01± 9.02e− 02

19

Table 4 Results of the unequal variance t-test for 500 dimensions problems

PDE IBDDE DDE PDE-WRI
Ackley + + + +
Alpine + + + +
Ax.-par. hyp.-ell. + + + +
DeJong + + + +
DropWave + + + +
Griewangk + + + +
Michalewicz + + + +
Pathological - - + -
Rastrigin + + + +
Rosenbrock - + - +
Schwefel + + + +
Sum of powers = + + =
Tirronen = + + +
Rt. Ackley + + = +
Rt. Alpine - + = -
Rt. Ax.-par. hyp.-ell. + + = +
Rt. Griewangk + + = +
Rt. Michalewicz + + + =
Rt. Pathological - + + -
Rt. Rastrigin - + + -
Rt. Rosenbrock - + - =
Rt. Schwefel - + + -
Rt. Sum of powers = + + =
Rt. Tirronen - + + -

where the robustness R is the percentage of successful runs. It is clear that, for each
test problem, the smallest value equals the best performance in terms of conver-
gence speed. The value “∞” means that R = 0, i.e., the algorithm never reached the
THR. It is important to remark that the Q-measure implicitly includes a piece of
information on the computational time needed to reach a reasonably good perfor-
mance. More explicitly, in order to determine the time that each algorithm requires
in order to reach the threshold value it is enough to compute Q× number of runs
(50) × time of a single fitness evaluation. The time of each fitness evaluation clearly
depends on the test problem and on the hardware involved. The∞ value means that
the corresponding algorithm required an infinite time to reach the threshold.

Tables 6 and 7 show the Q values for 500-dimensional problems and 1,000-
dimensional problems respectively. The best results are highlighted in bold face.

Regarding the Q-measures in Table 6, in 500 dimensions, the DDE-EEPF ob-
tained the best results in 7 cases, while PDE, DDE and PDE-WRI obtained the best
results in 4, 10 and 3 cases, respectively. In 1,000 dimensions (Table 7), DDE-EEPF
obtained the best results in 8 cases, while PDE, DDE and PDE-WRI obtained the
best results in 0, 12 and 4 cases, respectively. It is worthwhile commenting the DDE
behavior: due to its grid structure, the DDE seems very fast in the early stages
of the evolution but it tends to focus its search on not so promising areas of the
decision space since it is often outperformed by PDE and DDE-EEPF in terms of
quality of final solutions. Nevertheless, considering that the DDE was designed for a
domain-specific application, it can be considered a rather robust algorithm.

20

Table 5 Results of the unequal variance t-test for 1,000 dimensions problems

PDE IBDDE DDE PDE-WRI
Ackley + + + +
Alpine + + + +
Ax.-par. hyp.-ell. + + = +
DeJong + + - +
DropWave + + + +
Griewangk + + - =
Michalewicz + + + =
Pathological - + + -
Rastrigin + + + +
Rosenbrock + + - =
Schwefel + + + =
Sum of powers = + = =
Tirronen = + + =
Rt. Ackley + + = +
Rt. Alpine + + = =
Rt. Ax.-par. hyp.-ell. + + - +
Rt. Griewangk + + = +
Rt. Michalewicz + + + =
Rt. Pathological + + - -
Rt. Rastrigin + + + =
Rt. Rosenbrock + + - +
Rt. Schwefel + + + =
Rt. Sum of powers = = = =
Rt. Tirronen = + + -

Regarding the IBDDE, this study highlights that although the algorithm was
very promising in thirty dimensions as showed in [6], it seems to suffer from the
curse of dimensionality and to lose its high-quality performance.

It is important to remark that the proposed DDE-EEPF displays in Tables 6
and 7 the smallest number of ∞ values, which means that there is only one case
in which it is not competitive with the best algorithm in 500 dimensions, and zero
case in 1,000 dimensions. For the remaining test problems, the DDE-EEPF is either
the best or a competitive algorithm. Thus, the DDE-EEPF demonstrated the best
performance in terms of robustness.

Figure 8 shows average performance trends of the five considered algorithms over
a selection of the test problems listed in Table 1 in 500 dimensions.

Figures 8(a), 8(c), 8(d) and 8(f) show that IBDDE improves only marginally.
DDE, on the contrary, shows in those figures a very steep curve in the beginning of
the optimization, outperforming at this point all the other algorithms, but quickly
ceases to improve on its solutions. PDE’s start is less steep than DDE’s, but it
continuously improves on its solutions and outperforms the algorithms above by a
large margin. Finally, PDE-WRI and DDE-EEPF start with a steeper slope than
PDE (although less steep than DDE’s), but show hints that their improvement rates
will deteriorate more quickly than PDE’s. This can be explained by the fact that
DDE-EEPF uses the same algorithm as PDE in the beginning, albeit with only three
populations (instead of five for PDE) and with a higher migration constant which
makes it more greedy and more prone to lose its ability to improve on its solutions.

21

Table 6 Results of the Q-test for 500 dimensions problems

PDE IBDDE DDE PDE-WRI DDE-EEPF
Ackley 4.01e+03 ∞ 3.46e+03 3.70e+03 3.43e+03
Alpine 4.77e+03 ∞ 1.25e+04 3.72e+03 3.46e+03
Ax.-par. hyp.-ell. 2.11e+03 ∞ 1.18e+03 1.67e+03 1.67e+03
DeJong 2.32e+03 ∞ 1.32e+03 1.94e+03 1.94e+03
DropWave ∞ ∞ ∞ ∞ 5.80e+03
Griewangk 2.30e+03 ∞ 1.37e+03 1.92e+03 1.92e+03
Michalewicz ∞ ∞ ∞ 5.67e+03 4.53e+03
Pathological 1.69e+03 3.98e+03 3.92e+04 1.78e+03 1.80e+03
Rastrigin ∞ ∞ ∞ 1.08e+04 4.05e+03
Rosenbrock 1.56e+03 ∞ 7.12e+02 1.22e+03 1.22e+03
Schwefel ∞ ∞ ∞ 6.04e+04 4.39e+03
Sum of powers 2.32e+02 3.52e+04 7.97e+01 1.39e+02 1.39e+02
Tirronen 2.70e+03 ∞ ∞ 8.79e+03 3.89e+03
Rt. Ackley 3.96e+03 ∞ 3.23e+03 3.85e+03 3.58e+03
Rt. Alpine 3.78e+03 ∞ 3.08e+03 3.14e+03 3.32e+03
Rt. Ax.-par. hyp.-ell. 1.98e+03 ∞ 9.97e+02 1.53e+03 1.53e+03
Rt. Griewangk 2.11e+03 ∞ 1.14e+03 1.67e+03 1.67e+03
Rt. Michalewicz 5.91e+04 ∞ ∞ 5.11e+03 4.75e+03
Rt. Pathological ∞ ∞ ∞ 5.33e+03 ∞
Rt. Rastrigin 4.32e+03 ∞ 9.63e+04 3.87e+03 5.79e+03
Rt. Rosenbrock 1.38e+03 ∞ 5.97e+02 1.01e+03 1.01e+03
Rt. Schwefel 4.32e+03 ∞ ∞ 4.00e+03 1.01e+04
Rt. Sum of powers 4.12e+00 1.24e+01 4.28e+00 4.40e+00 4.40e+00
Rt. Tirronen 3.98e+03 ∞ ∞ 1.40e+04 9.06e+04

Table 7 Results of the Q-test for 1,000 dimensions problems

PDE IBDDE DDE PDE-WRI DDE-EEPF
Ackley ∞ ∞ 1.24e+04 1.28e+04 8.88e+03
Alpine ∞ ∞ 6.68e+03 7.97e+03 7.90e+03
Ax.-par. hyp.-ell. 7.53e+03 ∞ 4.31e+03 5.83e+03 5.83e+03
DeJong 8.04e+03 ∞ 4.77e+03 6.45e+03 6.43e+03
DropWave 7.74e+04 ∞ ∞ ∞ 1.26e+04
Griewangk 8.03e+03 ∞ 4.84e+03 6.45e+03 6.43e+03
Michalewicz ∞ ∞ ∞ 9.69e+03 9.59e+03
Pathological 6.79e+03 ∞ ∞ 4.99e+03 4.99e+03
Rastrigin ∞ ∞ 8.16e+04 8.45e+03 8.30e+03
Rosenbrock 5.58e+03 ∞ 2.60e+03 4.23e+03 4.23e+03
Schwefel ∞ ∞ ∞ 8.82e+03 8.72e+03
Sum of powers 6.84e+02 ∞ 1.90e+02 4.06e+02 4.06e+02
Tirronen 7.15e+03 ∞ 7.74e+03 5.84e+03 5.70e+03
Rt. Ackley 4.95e+05 ∞ 8.04e+03 1.04e+04 8.77e+03
Rt. Alpine ∞ ∞ 5.73e+03 7.62e+03 7.61e+03
Rt. Ax.-par. hyp.-ell. 7.26e+03 ∞ 3.84e+03 5.37e+03 5.37e+03
Rt. Griewangk 7.45e+03 ∞ 4.21e+03 5.69e+03 5.69e+03
Rt. Michalewicz ∞ ∞ ∞ 9.63e+03 9.17e+03
Rt. Pathological ∞ ∞ 1.54e+04 1.01e+04 4.95e+05
Rt. Rastrigin ∞ ∞ 1.40e+04 8.16e+03 8.08e+03
Rt. Rosenbrock 4.96e+03 ∞ 2.07e+03 3.58e+03 3.58e+03
Rt. Schwefel ∞ ∞ 4.92e+05 8.94e+03 9.19e+03
Rt. Sum of powers 1.29e+01 3.62e+01 1.12e+01 1.38e+01 1.38e+01
Rt. Tirronen 1.22e+04 ∞ ∞ 8.68e+03 1.37e+04

22

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

PDE
IBDDE

DDE
PDE-WRI

DDE-EEPF

(a) Alpine

-0.006

-0.0055

-0.005

-0.0045

-0.004

-0.0035

-0.003

-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

PDE
IBDDE

DDE
PDE-WRI

DDE-EEPF

(b) DropWave

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

PDE
IBDDE

DDE
PDE-WRI

DDE-EEPF

(c) Rastrigin

Fig. 8 Performance trends in 500 dimensions

23

-160000

-140000

-120000

-100000

-80000

-60000

-40000

-20000

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

PDE
IBDDE

DDE
PDE-WRI

DDE-EEPF

(d) Schwefel

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

PDE
IBDDE

DDE
PDE-WRI

DDE-EEPF

(e) Tirronen

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

PDE
IBDDE

DDE
PDE-WRI

DDE-EEPF

(f) Rotated Michalewicz

Fig. 8 Performance trends in 500 dimensions (continued)

24

In 8(f), they are even slightly outperformed by PDE. However, at 300,000 fitness
evaluations, PDE-WRI’s and DDE-EEPF’s first sub-population families start to be
refreshed by individuals from the second sub-population family and by random new
individuals, respectively. This shows on the curve as a “knee”, a sudden change in
the slope, which becomes again much steeper. In these four examples, at the end
of the run, PDE-WRI and DDE-EEPF clearly outperform PDE and the other two
algorithms by a large margin, DDE-EEPF also outperforming PDE-WRI, albeit only
slightly in 8(a) and 8(f). Figure 8(b) shows the same behavior as described above, but
PDE-WRI and DDE-EEPF lose very quickly their ability to make any improvement,
until the time when the first family of sub-population is being refreshed. At this point,
the slope of the curve becomes suddenly very much steeper. PDE-WRI is eventually
outperformed by PDE, but DDE-EEPF outperforms PDE by a very large margin.

Figure 8(e) shows an example where PDE is on a par with DDE-EEPF and PDE-
WRI: starting from 200,000 fitness evaluations, DDE-EEPF and PDE-WRI seem to
become unable to improve on their solutions, while PDE continues improving. At
300,000 fitness evaluations, the sub-populations of the first family start receiving
new individuals, causing DDE-EEPF and PDE-WRI to start improving again. DDE-
EEPF eventually catches up with PDE around 500,000 fitness evaluations. One can
also notice that on this function, IBDDE performs much better than on the other
ones, without, however, being able to compete with the other algorithms.

In these six examples of 500-dimensional problems, IBDDE, DDE and PDE show
similar behaviors whatever the test problem when one considers the general shape
of their curves. PDE-WRI and DDE-EEPF behave identically during the first age of
the algorithms, while the improvement in DDE-EEPF brought by the solutions of
the second family of sub-populations, compared to the introduction of new, random
individuals in PDE-WRI, ranges from very small in two cases to considerably large
in one other case.

Figure 9 shows average performance trends of the five considered algorithms over
a selection of the test problems listed in Table 1, in 1,000 dimensions.

Similarly to the 500-dimensional problems, IBDDE in 1,000 dimensions improves
on its solutions only marginally (see Figures 9(d), 9(e), 9(f)) or not at all (see Figures
9(a),9(b), 9(c)).

In Figure 9(b), PDE, DDE, PDE-WRI and DDE-EEPF present the same behav-
ior as in 500 dimensions: DDE improves very quickly at first, but ceases to find any
better solutions after about 200,000 fitness evaluations. DDE-EEPF and PDE-WRI
seem to suffer from the same problem at first (although with a slower improvement
rate than DDE), but at 600,000 fitness evaluations, the sub-populations of the first
family start being refreshed, and the algorithms progress again, eventually finding
better solutions than PDE. The difference between PDE-WRI and DDE-EEPF is
unnoticeable on the graph.

In Figures 9(c), 9(d), 9(e), and 9(f), PDE, DDE, PDE-WRI and DDE-EEPF
exhibit very similar behaviors across the different test problems: DDE improves
very quickly at the beginning, faster than the other two algorithms, but improves
only marginally on its solutions after about 400,000 fitness evaluations. PDE, PDE-
WRI and DDE-EEPF both show a steady rate of improvement, PDE-WRI’s and
DDE-EEPF’s being better than PDE’s, with a slight advantage for DDE-EEPF over
PDE-WRI. Contrary to the 500-dimensional problems, DDE-EEPF’s second age
is not marked by a sharp change in the slope of the curve although the Figures do
present a “knee” in the curve at 600,000 fitness evaluations, at the start of the second

25

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Fi
tn

es
s

Fitness evaluations

PDE
IBDDE

DDE
PDE-WRI

DDE-EEPF

(a) Ackley

-0.002

-0.0018

-0.0016

-0.0014

-0.0012

-0.001

-0.0008

-0.0006

-0.0004

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Fi
tn

es
s

Fitness evaluations

PDE
IBDDE

DDE
PDE-WRI

DDE-EEPF

(b) Dropwave

-550

-500

-450

-400

-350

-300

-250

-200

-150

-100

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Fi
tn

es
s

Fitness evaluations

PDE
IBDDE

DDE
PDE-WRI

DDE-EEPF

(c) Michalewicz

Fig. 9 Performance trends in 1,000 dimensions

26

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Fi
tn

es
s

Fitness evaluations

PDE
IBDDE

DDE
PDE-WRI

DDE-EEPF

(d) Rastrigin

-250000

-200000

-150000

-100000

-50000

 0

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Fi
tn

es
s

Fitness evaluations

PDE
IBDDE

DDE
PDE-WRI

DDE-EEPF

(e) Schwefel

-350

-300

-250

-200

-150

-100

-50

 0

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Fi
tn

es
s

Fitness evaluations

PDE
IBDDE

DDE
PDE-WRI

DDE-EEPF

(f) Rotated Michalewicz

Fig. 9 Performance trends in 1,000 dimensions (continued)

27

age. The absence of a sharp “knee” is explained by the fact that in 500 dimensions,
PDE-WRI and DDE-EEPF are not anymore improving on their solutions near the
end of the first age, while in 1,000 dimensions they still are.

Figures 9(a), 9(c) and 9(d) show examples where DDE outperforms PDE and, in
Figure 9(a), PDE-WRI as well: its sharper improvement rate in the beginning allows
it to reach a better solution than the other algorithms, although all three reach
similar solutions near the end. In Figure 9(a) one can notice that the difference
between DDE-EEPF and PDE-WRI is perceptibly larger than it is in Figures 9(c),
9(d), 9(e), and 9(f).

In these six examples of 1,000-dimensional problems, as was the case with the
500-dimensional problems, the shapes of the curves presented by IBDDE, DDE and
PDE are very similar across the various test problems. Moreover, while PDE was
outperforming DDE on the 500-dimensional problems, the latter is better than the
former in 1,000 dimensions.

The comparison between DDE-EEPF and PDE-WRI shows that although the
random injection leads to satisfactory results both in 500 and 1,000 dimensions, and
thus requires further investigation in the future, DDE-EEPF shows better results
on average. This fact confirms that the injection of proper, high quality solutions is
beneficial. We believe that a proper selection of these high quality solutions to be
injected might have a great potential on a various set of problems.

6 Conclusion

The DDE-EEPF algorithm proposed in this paper is compared against three state-
of-the-art, distributed DE algorithms and one designed ad hoc in this study. DDE-
EEPF is characterized in that it uses two families of sub-populations instead of only
one, as is the case in the three distributed DE algorithms. The first family has sub-
populations of constant size organized into a ring topology, where the best individuals
of a sub-population can migrate to another sub-population. The second family has
sub-populations with a dynamic population size, which is reduced progressively. This
scheme allows the first family to explore the search space, while the second family
independently attempts to detect high performance solutions. These solutions then
migrate to the first family in order to direct the exploration towards better solutions.

Numerical results show that DDE-EEPF outperforms the other algorithms in
the majority of the twenty-four high-dimensional test problems. The injection of
individuals from the second family of sub-populations into the first family has, in
most of the cases, a beneficial effect as it gives a “second breath” to the process and
allows it to explore the search space further. The numerical results presented in this
paper additionally show that the use of a structured population improves greatly
the performance of the DE algorithm compared to its original, serial version, when
applied to high-dimensional problems.

Future development of this work will consider a generalization and extension of
the two-family mechanism. A first direction of the research could aim at testing the
proposed distributed system for Particle Swarm Optimizers and Covariance Matrix
Adaptation Evolution Strategy. A second could involve different algorithms operating
on the sub-populations, or include local search algorithms instead of the second
family of sub-populations in order to generate high quality solutions.

28

References

1. E. Alba and B. Dorronsoro. The exploration/exploitation tradeoff in dynamic cellular
genetic algorithms. IEEE Transactions on Evolutionary Computation, 9(2):126–142, 2005.

2. E. Alba and S. Khuri. Sequential and distributed evolutionary algorithms for combinatorial
optimization problems. In Recent advances in intelligent paradigms and applications,
Studies in Fuzziness and Soft Computing, pages 211–233. Springer, 2003.

3. E. Alba and M. Tomassini. Parallelism and evolutionary algorithms. IEEE Transactions
on Evolutionary Computation, 6(5):443–462, 2002.

4. E. Alba and J. M. Troya. A survey of parallel distributed genetic algorithms. Complexity,
4(4), 1999.

5. E. Alba and J. M. Troya. Cellular evolutionary algorithms: Evaluating the influence of
ratio. In Parallel Problem Solving from Nature, volume 1917 of Lecture Notes in Computer
Science, pages 29–38. Springer, 2000.

6. J. Apolloni, G. Leguizamón, J. García-Nieto, and E. Alba. Island based distributed differ-
ential evolution: An experimental study on hybrid testbeds. In Proceedings of the IEEE
International Conference on Hybrid Intelligent Systems, pages 696–701, 2008.

7. M. G. Arenas, P. Collet, A. E. Eiben, M. Jelasity, J. J. Merelo, B. Paechter, M. Preuß, and
M. Schoenauer. A framework for distributed evolutionary algorithms. In Parallel Problem
Solving from Nature, volume 2439 of Lecture Notes in Computer Science, pages 665–675.
Springer, 2002.

8. T. C. Belding. The distributed genetic algorithm revisited. In Proceedings of the Interna-
tional Conference on Genetic Algorithms, pages 114–121. Morgan Kaufmann Publishers,
1995.

9. J. Brest and M. S. Maučec. Population size reduction for the differential evolution algo-
rithm. Applied Intelligence, 29(3):228–247, 2008.

10. E. Cantú-Paz. A survey of parallel genetic algorithms. Technical Report 97003, IlliGAL,
1997.

11. E. Cantú-Paz. A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux
et Systems Repartis, 10(2):141–171, 1998.

12. E. Cantú-Paz. Topologies, migration rates, and multi-population parallel genetic algo-
rithms. In Proceedings of the Genetic and Evolutionary Computation Conference, pages
91–98, 1999.

13. E. Cantú-Paz. Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic
Publishers, 2000.

14. E. Cantú-Paz. Migration policies, selection pressure, and parallel evolutionary algorithms.
Journal of Heuristics, 7(4):311–334, 2001.

15. U. K. Chakraborty, editor. Advances in Differential Evolution, volume 143 of Studies in
Computational Intelligence. Springer, 2008.

16. A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computation. Springer-verlag,
Berlin, 2003.

17. I. D. Falco, A. D. Cioppa, D. Maisto, U. Scafuri, and E. Tarantino. Satellite image regis-
tration by distributed differential evolution. In Applications of Evolutionary Computing,
volume 4448 of Lectures Notes in Computer Science, pages 251–260. Springer, 2007.

18. I. D. Falco, D. Maisto, U. Scafuri, E. Tarantino, and A. D. Cioppa. Distributed differential
evolution for the registration of remotely sensed images. In Proceedings of the IEEE Eu-
romicro International Conference on Parallel, Distributed and Network-Based Processing,
pages 358–362, 2007.

19. I. D. Falco, U. Scafuri, E. Tarantino, and A. D. Cioppa. A distributed differential evolution
approach for mapping in a grid environment. In Proceedings of the IEEE Euromicro
International Conference on Parallel, Distributed and Network-Based Processing, pages
442–449, 2007.

20. H.-Y. Fan and J. Lampinen. A trigonometric mutation operation to differential evolution.
Journal of Global Optimization, 27(1):105–129, 2003.

21. V. Feoktistov. Differential Evolution in Search of Solutions. Springer, 2006.
22. F. Fernández, M. Tomassini, and L. Vanneschi. An empirical study of multipopulation

genetic programming. Genetic Programming and Evolvable Machines, 4(1):21–52, 2003.
23. F. Fernández, M. Tomassini, and L. Vanneschi. Saving computational effort in genetic

programming by means of plagues. In Proceedings of the IEEE Congress on Evolutionary
Computation, pages 2042–2049, 2003.

29

24. M. Giacobini, E. Alba, A. Tettamanzi, and M. Tomassini. Modeling selection intensity
for toroidal cellular evolutionary algorithms. In Genetic and Evolutionary Computation,
volume 3102 of Lecture Notes in Computer Science, pages 1138–1149. Springer, 2004.

25. M. Giacobini, E. Alba, and M. Tomassini. Selection intensity in asynchronous cellular
evolutionary algorithms. In E. Cantú-Paz et al., editor, Genetic and Evolutionary Com-
putation, volume 2723 of Lecture Notes in Computer Science, pages 955–966. Springer,
2003.

26. M. Giacobini, M. Tomassini, A. Tettamanzi, and E. Alba. Selection intensity in cellular
evolutionary algorithms for regular lattices. IEEE Transactions on Evolutionary Compu-
tation, 9(5):489–505, 2005.

27. J. Grefenstette. Parallel adaptive algorithms for function optimization. Technical Report
CS-81-19, Vanderbilt University, 1981.

28. R. Joshi and A. C. Sanderson. Minimal representation multisensor fusion using differential
evolution. IEEE Transactions on Systems, Man and Cybernetics, Part A, 29(1):63–76,
1999.

29. K. N. Kozlov and A. M. Samsonov. New migration scheme for parallel differential evo-
lution. In Proceedings of the International Conference on Bioinformatics of Genome
Regulation and Structure, pages 141–144, 2006.

30. W. Kwedlo and K. Bandurski. A parallel differential evolution algorithm. In Proceedings
of the IEEE International Symposium on Parallel Computing in Electrical Engineering,
pages 319–324, 2006.

31. J. Lampinen. Differential evolution - new naturally parallel approach for engineering design
optimization. In B. H. Topping, editor, Developments in Computational Mechanics with
High Performance Computing, pages 217–228. Civil-Comp Press, 1999.

32. J. Lampinen and I. Zelinka. On stagnation of the differential evolution algorithm. In
P. Oŝmera, editor, Proceedings of 6th International Mendel Conference on Soft Computing,
pages 76–83, 2000.

33. P. Moscato and M. Norman. A competitive and cooperative approach to complex combi-
natorial search. Technical Report 790, 1989.

34. H. Mühlenbein, M. Schomisch, and J. Born. The parallel genetic algorithm as function
optimizer. Parallel Computing, 17(6–7):619–632, 1991.

35. F. Neri and V. Tirronen. On memetic differential evolution frameworks: a study of ad-
vantages and limitations in hybridization. In Proceedings of the IEEE World Congress on
Computational Intelligence, pages 2135–2142, 2008.

36. M. S. Nipteni, I. Valakos, and I. Nikolos. An asynchronous parallel differential evolu-
tion algorithm. In Proceedings of the ERCOFTAC Conference on Design Optimisation:
Methods and Application, 2006.

37. NIST/SEMATECH. e-handbook of statistical methods.
http://www.itl.nist.gov/div898/handbook/, 2003.

38. M. Nowostawski and R. Poli. Parallel genetic algorithm taxonomy. In Proceedings of
the International Conference on Knowledge-Based Intelligent Information Engineering
Systems, pages 88–92, 1999.

39. N. G. Pavlidis, D. K. Tasoulis, V. P. Plagianakos, G. Nikiforidis, and M. N. Vrahatis.
Spiking neural network training using evolutionary algorithms. In Proceedings of the
IEEE International Joint Conference on Neural Networks, pages 2190–2194, 2005.

40. V. P. Plagianakos, D. K. Tasoulis, and M. N. Vrahatis. A review of major application areas
of differential evolution. In U. K. Chakraborty, editor, Advances in Differential Evolution,
volume 143 of Studies in Computational Intelligence, pages 197–238. Springer, 2008.

41. K. V. Price. Mechanical engineering design optimization by differential evolution. In
D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pages 293–298.
McGraw-Hill, 1999.

42. K. V. Price, R. Storn, and J. Lampinen. Differential Evolution: A Practical Approach to
Global Optimization. Springer, 2005.

43. W. Punch, E. Goodman, M. Pei, L. Chain-Shun, P. Hovland, and R. Enbody. Further
research on feature selection and classification using genetic algorithms. In S. Forrest,
editor, Proceedings of the International Conference on Genetic Algorithms, pages 557–
564. Morgan Kaufmann, 1993.

44. A. K. Qin and P. N. Suganthan. Self-adaptive differential evolution algorithm for numer-
ical optimization. In Proceedings of the IEEE Congress on Evolutionary Computation,
volume 2, pages 1785–1791, 2005.

30

45. I. Rechemberg. Evolutionstrategie: Optimierung Technisher Systeme nach prinzipien des
Biologishen Evolution. Fromman-Hozlboog Verlag, 1973.

46. G. Rudolph. Global optimization by means of distributed evolution strategies. In Parallel
Problem Solving from Nature, volume 496 of Lecture Notes in Computer Science, pages
209–213. Springer, 1991.

47. G. D. Ruxton. The unequal variance t-test is an underused alternative to Student’s t-test
and the Mann-Whitney test. Behavioral Ecology, 17(4):688–690, 2006.

48. M. Salomon, G.-R. Perrin, F. Heitz, and J.-P. Armspach. Parallel differential evolution:
Application to 3-d medical image registration. In K. V. Price, R. M. Storn, and J. A.
Lampinen, editors, Differential Evolution–A Practical Approach to Global Optimization,
Natural Computing Series, chapter 7, pages 353–411. Springer, 2005.

49. R. Storn. System design by constraint adaptation and differential evolution. IEEE Trans-
actions on Evolutionary Computation, 3(1):22–34, 1999.

50. R. Storn. Designing nonstandard filters with differential evolution. IEEE Signal Processing
Magazine, 22(1):103–106, 2005.

51. R. Storn and K. Price. Differential evolution - a simple and efficient adaptive scheme for
global optimization over continuous spaces. Technical Report TR-95-012, ICSI, 1995.

52. R. Storn and K. Price. Differential evolution – a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization, 11:341–359, 1997.

53. D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and M. N. Vrahatis. Parallel differential
evolution. In Proceedings of the IEEE Congress on Evolutionary Computation, pages
2023–2029, 2004.

54. V. Tirronen, F. Neri, T. Kärkkäinen, K. Majava, and T. Rossi. A memetic differential
evolution in filter design for defect detection in paper production. In Applications of
Evolutionary Computing, volume 4448, pages 320–329. Springer, Berlin, Germany, 2007.

55. V. Tirronen, F. Neri, T. Kärkkäinen, K. Majava, and T. Rossi. An enhanced memetic
differential evolution in filter design for defect detection in paper production. Evolutionary
Computation, 16:529–555, 2008.

56. M. Tomassini. Parallel and distributed evolutionary algorithms: A review. In K. Miettinen,
M. M. Mäkelä, P. Neittaanmäki, and J. Périaux, editors, Evolutionary Algorithms in
Engineering and Computer Science - Recent Advances in Genetic Algorithms, Evolution
Strategies, Evolutionary Programming, Genetic Programming and Industrial Applications.
John Wiley and Sons, 1999.

57. M. Tomassini, L. Vanneschi, J. Cuendet, and F. Fernández. A new technique for dy-
namic size populations in genetic programming. In Proceedings of the IEEE Congress on
Evolutionary Computation, pages 486–493, 2004.

58. D. Whitley. Cellular genetic algorithms. In S. Forrest, editor, Proceedings of the Interna-
tional Conference on Genetic Algorithms, page 658, 1993.

59. D. Zaharie. Parameter adaptation in differential evolution by controlling the population
diversity. In D. Petcu et al, editor, Proceedings of the International Workshop on Symbolic
and Numeric Algorithms for Scientific Computing, pages 385–397, 2002.

60. D. Zaharie. Control of population diversity and adaptation in differential evolution algo-
rithms. In D.Matousek and P. Osmera, editors, Proceedings of MENDEL International
Conference on Soft Computing, pages 41–46, 2003.

61. D. Zaharie. A multipopulation differential evolution algorithm for multimodal optimiza-
tion. In R. Matousek and P. Osmera, editors, Proceedings of Mendel International Con-
ference on Soft Computing, pages 17–22, 2004.

62. D. Zaharie and G. Ciobanu. Distributed evolutionary algorithms inspired by membranes
in solving continuous optimization problems. In Membrane Computing, volume 4361 of
Lecture Notes in Computer Science, pages 536–553. Springer, 2006.

63. D. Zaharie and D. Petcu. Parallel implementation of multi-population differential evolu-
tion. In Proceedings of the NATO Advanced Research Workshop on Concurrent Informa-
tion Processing and Computing, pages 223–232. IOS Press, 2003.

64. K. Zielinski and R. Laur. Stopping criteria for differential evolution in constrained single-
objective optimization. In U. K. Chakraborty, editor, Advances in Differential Evolution,
volume 143 of Studies in Computational Intelligence, pages 111–138. Springer, 2008.

65. K. Zielinski, P. Weitkemper, R. Laur, and K.-D. Kammeyer. Parameter study for differ-
ential evolution using a power allocation problem including interference cancellation. In
Proceedings of the IEEE Congress on Evolutionary Computation, pages 1857–1864, 2006.

PIII

SCALE FACTOR INHERITANCE MECHANISM IN
DISTRIBUTED DIFFERENTIAL EVOLUTION

by

Matthieu Weber, Ville Tirronen and Ferrante Neri 2010

In Soft Computing - A Fusion of Foundations, Methodologies and Applications,
volume 14, number 11, pages 1187–1207

Reproduced with kind permission from Springer Berlin / Heidelberg.

Soft Computing manuscript No.
(will be inserted by the editor)

Scale Factor Inheritance Mechanism in Distributed
Differential Evolution

Matthieu Weber · Ville Tirronen · Ferrante
Neri

Received: date / Accepted: date

Abstract This paper proposes a distributed differential evolution which employs a
novel self-adaptive scheme, namely scale factor inheritance. In the proposed algo-
rithm, the population is distributed over several sub-populations allocated accord-
ing to a ring topology. Each sub-population is characterized by its own scale factor
value. With a probabilistic criterion, that individual displaying the best performance
is migrated to the neighbor population and replaces a pseudo-randomly selected in-
dividual of the target sub-population. The target sub-population inherits not only
this individual but also the scale factor if it seems promising at the current stage of
evolution. In addition, a perturbation mechanism enhances the exploration feature
of the algorithm.

The proposed algorithm has been run on a set of various test problems and then
compared to two sequential differential evolution algorithms and three distributed
differential evolution algorithms recently proposed in literature and representing
state-of-the-art in the field. Numerical results show that the proposed approach

This research is supported by the Academy of Finland, Akatemiatutkĳa 00853, Algorithmic
Design Issues in Memetic Computing.

Matthieu Weber
Tel.: +358-14-2603056
E-mail: matthieu.weber@jyu.fi

Ville Tirronen
Tel.: +358-14-2604987
E-mail: ville.tirronen@jyu.fi

Ferrante Neri
Tel.: +358-14-2602764
E-mail: ferrante.neri@jyu.fi

University of Jyväskylä
Department of Mathematical Information Technology
P.O. Box 35 (Agora)
40014 University of Jyväskylä
Finland
Fax: +358-14-2604981

2

seems very efficient for most of the analyzed problems, and outperforms all other
algorithms considered in this study.

Keywords Differential Evolution · Distributed Evolutionary Algorithms ·
Evolutionary Algorithms · Continuous Optimization

1 Introduction

Differential Evolution (DE, see [1], [2], and [3]) is a reliable and versatile function op-
timizer which displays a solid performance for diverse continuous optimization prob-
lems. DE is a very interesting population based metaheuristic having mixed features.
Due to its recombination and selection features DE can be seen as an Evolutionary
Algorithm (EA). On the other hand, a DE structure tends to generate an individual
with an above average performance which leads the exploration search, similar to
Swarm Intelligence Algorithms (SIA). In addition, DE, unlike EAs, generates off-
spring by perturbing the solutions with a scaled difference of two randomly selected
population vectors, instead of recombining the solutions by means of a probabilistic
criterion. Finally, DE employs a very peculiar survivor selection scheme, namely one
to one spawning. This selection scheme allows replacement of an individual only if
the offspring outperforms its corresponding parent.

Regardless of its classification, DE has proven to have a very good performance on
various real-world problems. For example, in [4] a DE application to the multisensor
fusion problem is given. In [5], and [6] DE applications to power electronics are
presented. In [7] an application of DE to chemical engineering is proposed. In [8] a
filter design is carried out by DE.

Reasons for success of the DE can be found in its simplicity and ease of imple-
mentation, while at the same time demonstrating reliability and high performance.
In addition, the fact that only three parameters require tuning greatly contributes
to the rapid diffusion of DE schemes among computer scientists and practitioners.

Although the DE undoubtedly has a great potential, setting of the control param-
eters is not a trivial task, since it has a heavy impact on the algorithmic performance.
Thus, over the years, the DE community has intensively investigated the topic of pa-
rameter setting. Several studies have been reported, e.g. in [9], [10], [11], [12], and
[13], and led to contradictory conclusions. In other words, in accordance with the
No Free Lunch Theorem, [14], an efficient DE parameter setting is very prone to
problems, as the studies in [15], [11], and [16] confirm.

In order to overcome the problem of the setting, some algorithms which employ
adaptive and self-adaptive parameter settings have recently been proposed in litera-
ture. In [17] and [18], a variable population size is presented The adaptive population
size approach has been recently improved in two different implementations reported
in [19]. Another scheme, which proposes a progressive population size reduction in
DE, has been proposed in [20]. A variable population size DE, based on a fitness
diversity adaptation is proposed in [21]. An adaptive scheme for the DE scale factor
is presented in [22]. An automatic update of the scale factor has been proposed in
[23]. By following a similar line of thought, in [24], [25] and [26], a normal distri-
bution is employed in order to perform a self-adaptation on the parameters F and
CR. A Cauchy distribution in the self-adaptive scheme proposed in [27] and [28].
An alternative kind of self-adaptation which employs the so called chaos mutation is

3

proposed in [29]. A controlled randomization of scale factor and crossover rate has
been proposed in [30].

In addition, since the DE algorithm suffers from many real world conditions, e.g.
high dimensionality and noisy problems, some modifications on the standard DE
scheme can significantly improve upon its performance. Modern DE based algorithms
can be divided into the two following categories:

1. DE integrating an extra component. This class includes those algorithms which
use the DE as an evolutionary framework in which it is assisted by additional
algorithmic components, e.g. local searchers or extra operators (see [31], [32],
[33], [34], [35], and [36]). The algorithms belonging to this class can be clearly
decomposed as a DE framework and additional components.

2. Modified structures of DE. This class includes those algorithms which make a
substantial modification within the DE structure, in the search logic, the selection
etc. Some examples are given in [37] and [38]

A popular way to enhance the DE performance by structurally modifying the
algorithmic functioning is through employment of structured populations. In other
words, the population individuals are distributed over several sub-populations which
evolve independently and interact by exchanging data and information details and
contribute to a unique simultaneous evolution.

In [39] a distributed DE scheme employing a ring topology (the cores are inter-
connected in a circle and the migrations occur following the ring) has been proposed
for the training of a neural network. In [40], an example of DE parallelization is given
for a medical imaging application. A few famous examples of distributed DE are pre-
sented in [41], [42], and [43]; in these papers the migration mechanism as well as the
algorithmic parameters are adaptively coordinated according to criterion based on
genotypical diversity. In paper [44], a distributed DE for preserving diversity in the
niches is proposed in order to solve multi-modal optimization problems. In [45], a dis-
tributed DE characterized by a ring topology and the migration of individuals with
the best performance, to replace random individuals of the neighbor sub-population,
has been proposed. An application of the algorithm in [45] for training of a neu-
ral network has been presented in [46]. Following similar logic, paper [47] proposes
a distributed DE where the computational cores are arranged according to a ring
topology and, during migration, the best individual of a sub-population replaces the
oldest member of the neighboring population. In [48], [49], and [50] a distributed
DE has been designed for the image registration problem. In these papers, a com-
putational core acts as a master by collecting the best individuals detected by the
various sub-populations running in slave cores. The slave cores are connected in a
grid and a migration is arranged among neighbor sub-populations. In [51], a dis-
tributed DE which modifies the scheme proposed in [45] has been presented. In [51],
the migration is based on a probabilistic criterion depending on five parameters. It
is worthwhile mentioning that some parallel implementations of sequential (without
structured population) DE are also available in literature, see [52]. An investigation
of DE parallelization is given in [53].

This paper focuses on Distributed Differential Evolutions and proposes a novel
distributed algorithm. The proposed algorithm distributes its individuals within sub-
populations arranged according to a ring topology. Each sub-population is charac-
terized by its own scale factor. According to a simple probabilistic criterion, the
migration of individual with the best performance and its associated scale factor

4

occurs between neighbor sub-populations (following the ring topology). At each mi-
gration, the scale factor is also perturbed by means of a normal distribution. This
paper is based on the idea that the scale factor is a determinant element within the
DE search strategy. Thus, a successful search strategy can be inherited by the other
sub-populations and propagated throughout the ring. A probabilistic perturbation
enhances the exploration pressure of the algorithm.

The remainder of this paper is organized in the following way. Section 2 describes
the working principles of DE. Section 3 gives a short description of recently presented
distributed versions of DE and introduces algorithms employed for comparison in the
experimental section. Section 4 describes the proposed algorithm and discusses its
algorithmic principle of functioning. Section 5 shows the experimental setup and
numerical results of the present study. Section 6 gives the conclusions of this paper.

2 Sequential Differential Evolution

In order to clarify the notation used throughout this chapter we refer to the min-
imization problem of an objective function f (x), where x is a vector of n design
variables in a decision space D.

According to its original definition given in [1], the DE consists of the following
steps. An initial sampling of Spop individuals is performed pseudo-randomly with a
uniform distribution function within the decision space D. At each generation, for
each individual xi of the Spop, three individuals xr, xs and xt are pseudo-randomly
extracted from the population. According to the DE logic, a provisional offspring
x′off is generated by mutation as:

x′off = xt + F (xr − xs) (1)

where F ∈ [0, 1+[is a scale factor which controls the length of the exploration vector
(xr−xs) and thus determines how far from point xi the offspring should be generated.
With F ∈ [0, 1+[, it is meant here that the scale factor should be a positive value
which cannot be much greater than 1, see [2]. While there is no theoretical upper
limit for F , effective values are rarely greater than 1.0. The mutation scheme shown
in Equation (1) is also known as DE/rand/1. Other variants of the mutation rule
have been subsequently proposed in literature, see [54]:
– DE/best/1: x′off = xbest + F (xr − xs)
– DE/cur-to-best/1: x′off = xi + F (xbest − xi) + F (xs − xt)
– DE/best/2: x′off = xbest + F (xs − xt) + F (xu − xv)
– DE/rand/2: x′off = xt + F (xr − xs) + F (xu − xv)
– DE/rand-to-best/2: x′off = xt + F (xbest − xt) +F (xr − xs) + F (xu − xv)

where xbest is the solution with the best performance among the individuals of the
population, xu and xv are two additional pseudo-randomly selected individuals. It
is worthwhile to mention the rotation invariant mutation shown in [55]:
– DE/current-to-rand/1 xoff = xi +K (xt − xi) + F ′ (xr − xs)

where K is is the combination coefficient, which, as suggested in [55], should be
chosen with a uniform random distribution from [0, 1] and F ′ = K · F . For this
special mutation the mutated solution does not undergo the crossover operation
described below.

5

generate Spop individuals of the initial population pseudo-randomly
while budget condition do

for i = 1 : Spop do
compute f (xi)

end for
for i = 1 : Spop do

{** Mutation **}
select three individuals xr, xs, and xt
compute x′off = xt + F (xr − xs)
{** Crossover **}
xoff = x′off
for j = 1 : n do

generate rand(0, 1)
if rand(0, 1) < CR then
xoff ,j = xi,j

end if
end for
{** Selection **}
if f

(
xoff
)
≤ f (xi) then

save index for replacement xi = xoff
end if

end for
perform replacements

end while

Fig. 1 Pseudo-code of DE/rand/1/bin

Recently, in [2], a new mutation strategy has been defined. This strategy, namely
DE/rand/1/either-or, consists of the following:

x′off =
{

xt + F (xr − xs) if rand (0, 1) < pF
xt +K (xr + xs − 2xt) otherwise (2)

where for a given value of F , the parameter K is set equal to 0.5 (F + 1).
When the provisional offspring has been generated by mutation, each gene of

the individual x′off is exchanged with the corresponding gene of xi with a uniform
probability and the final offspring xoff is generated:

xoff ,j =
{

xi,j if rand (0, 1) < CR
x′off ,j otherwise

(3)

where rand (0, 1) is a random number between 0 and 1; j is the index of the gene
under examination. The crossover described in eq. (3) is known as binary crossover
(simply indicated with ´´bin”) and is the most common crossover scheme. It can be
remarked that also the exponential crossover, see [2], is used in some cases.

The resulting offspring xoff is evaluated and, according to a one-to-one spawning
strategy, it replaces xi if and only if f(xoff) ≤ f(xi); otherwise no replacement
occurs. It must be remarked that although the replacement indexes are saved one
by one, during generation, actual replacements occur all at once at the end of the
generation. For the sake of clarity, the pseudo-code highlighting working principles
of the DE is shown in Figure 1.

6

Master node

Sub−population node

Fig. 2 Unidirectional ring topology in the Parallel Differential Evolution algorithm

3 Distributed Differential Evolution: Recently Developed Algorithms

This section describes three distributed algorithms based on a DE structure recently
proposed in literature. The algorithms described in this section are, according to our
judgement, representative the state-of-the-art structured DE algorithms and have
been included in the benchmark for comparing the performance of the proposed
approach. Although the notation can generate some confusion, i.e., all algorithms
are distributed and can easily be parallelized, we decided to indicate these according
to original terminology defined by their respective authors.

3.1 Parallel Differential Evolution

In [45], the problem of parallelization for DE schemes has been studied through
an experimental analysis and an algorithm, namely Parallel Differential Evolution
(indicated here with PDE) has been proposed.

The original PDE implementation uses the Parallel Virtual Machine (PVM),
allowing multiple computers (called nodes) to be organized as a cluster and exchange
arbitrary messages. The PDE algorithm is organized around one master node and m
sub-populations running each on one node, and organized as a unidirectional ring,
as illustrated in Figure 2. It must be noted that although the logical topology is a
ring which does not contain the master node, the actual topology is a star, where all
communications (i.e., the migrations of individuals) are passing through the master.

The Spop individuals constituting the populations are distributed over them sub-
populations composing the ring. Each sub-population is composed of Spop

m individuals.
Each sub-population runs a regular DE algorithm while the master node coordinates
the migration of individuals between sub-populations. On each generation, the sub-
population has a given probability φ to send a copy of its best individual to its
next neighbor sub-population in the ring. When migration occurs, the migrating
individual replaces a pseudo-randomly selected individual belonging to the target

7

spawn N sub-populations, each one on a different processor
for each generation do

receive an individual from each sub-population
for each received individual do

if rand(0, 1) < φ then
send the individual to the next sub-population in the ring

end if
end for
if the stop criterion for the objective function is met then

send a termination signal to all the sub-populations
end if

end for
(a) At the master node

for each generation do
perform a DE generation
send a copy of the best individual to the master node
if a migrated individual has been received then

replace a random individual, different from the best, by this migrated individual
end if
if a termination signal has been received then

terminate the execution
end if

end for
(b) At each sub-population

Fig. 3 Pseudo-code of PDE

sub-population. Figure 3 describes the behavior of both the master node and the
sub-populations in more detail.

The DE variant run by each sub-population is the same across all the sub-
populations. In [45], six mutation strategies have been compared, namely DE/best/1,
DE/rand/1, DE/cur-to-best/1, DE/best/2, DE/rand/2 described in Section 2, as
well as the trigonometric operator described in [31]. Each strategy is used with dif-
ferent values of the migration constant φ and compared over seven test functions
whose dimensions vary between 2 and 30. The results in [45] showed that DE/best/1
is the most efficient mutation strategy and quite stable across different values of φ
for the low dimensional problems analyzed.

3.2 Island Based Distributed Differential Evolution

In [51] a distributed DE algorithm, namely Island Based Distributed Differential
Evolution (IBDDE) has been proposed. The IBDDE algorithm is a modified version
of PDE described in Subsection 3.1. In IBDDE, the population, having size Spop, is
structured in m sub-populations. Thus, each sub-population is composed of Spop

m in-
dividuals. The migration policy is then defined as a five-tupleM = (γ, ρ, φs, φr, τ).
γ ∈ N is the number of generations between two migrations, ρ ∈ N is the num-
ber of individuals which migrate from a sub-population P during each migration,
φs is the selection function which, applied to a sub-population, returns the migrat-
ing individuals v′ig , φr is the replacement function that selects individuals to be
replaced by the immigrants in the receiving sub-population, and τ is the topological

8

initialize(P)
while the stopping condition is not met do

perform a DE generation
if the last migration was γ generations ago then

for each of the ρ individuals to send do
v′ig ← φs(P)
send v′ig to Q chosen by τ

end for
end if{** Asynchronous communication **}
while individuals are arriving do

receive v′ig from P

replace an individual chosen from φr(Q) by v′ig
end while

end while

Fig. 4 Pseudo-code of IBDDE for the sub-population P

rule, which selects the target sub-population Q. The individuals to be migrated are
pseudo-randomly (uniformly) chosen by the selection function φs. Incoming individ-
uals from other sub-populations replace pseudo-randomly chosen local individuals,
only if the former are better, by the replacement function φr.

Figure 4 describes the algorithm as pseudo-code.
In [51], the experiments have been run with a population size Spop equal to 20.

The population is divided into two sub-populations of 10 individuals in one exper-
iment, and into four sub-populations of 5 individuals in a second experiment. The
migration parameters are set to γ = 100, ρ = 1, the functions φs and φr are defined
to randomly select an individual, the topology τ is a unidirectional ring very similar
to the logical topology used by PDE (see Subsection 3.1). The mutation strategy for
DE is DE/rand/1, and the algorithm is tested on 25 different test functions in 30
and 50 dimensions, for a total of 50 test functions.

3.3 Distributed Differential Evolution

In [48], [49], and [50], in order to solve some image registration problems a distributed
DE (indicated here with DDE) has been proposed. This algorithm differs from PDE
and IBDDE by the topology it uses. Instead of a unidirectional ring, DDE uses a
locally connected topology, where each node is connected to µ other nodes. Figure 5
represents such a topology where the nodes are arranged in a mesh folded into a
torus.

In t[48], [49], and [50], it has been proposed to set µ = 4, i.e., each node (such as
the black disc in the Figure 5) has exactly four nearest neighbors (represented by the
four grey discs). In DDE, each node represents one processor running a DE algorithm
with a DE/rand/1 mutation strategy on a sub-population. EveryMI generations (the
migration interval), each sub-population is allowed to exchange SI (the migration
rate) individuals with its nearest neighbors. In the experimental setup, each node
sends a copy of its best individual to its neighbors. Figure 6 describes the algorithm
as pseudo-code.

DDE also makes use of a master node, whose role it is to collect the best solutions
found in each sub-population and to present these results to the user.

9

Fig. 5 Torus topology in Distributed Differential Evolution

initialize the sub-population
while the stopping condition is not met do

perform a DE generation
if the last migration was MI generations ago then

send a copy of the best individual to each neighbor
end if
if there are incoming individuals then

replace the worst SI × µ individuals by the SI × µ incoming ones
end if

end while

Fig. 6 Pseudo-code of the DDE algorithm at a sub-population

4 Distributed Differential Evolution with Scale Factor Inheritance

The proposed algorithm enhances the PDE structure described in Subsection 3.1 by
means of the implementation, in a distributed logic, of the self-adaptive parameter
control proposed in [30]. More specifically, an adaptive control of the scale factor ”F”
is proposed here. The novel mechanism proposed here in this paper is named scale
factor inheritance. The proposed algorithm, namely ”F” Adaptive Control Parallel
Differential Evolution (FACPDE) consists of the following steps.

At the beginning of the optimization process, Spop individuals are pseudo-randomly
sampled within the decision spaceD. These Spop are distributed overm sub-populations;
each sub-population is composed of Spop

m individuals. For each (generic hth) sub-
population a scale factor F k, for k = 1, . . . ,m, is assigned. Each scale factor is
initially generated as pseudo-random by sampling a value from a uniform distribu-
tion between −1 and 1. The sub-populations are then arranged according to ring
topology, as with the PDE topology represented in Figure 2.

At each generation, each sub-population performs a DE scheme. For each indi-
vidual xi of the Spop

m , three individuals xr, xs and xt are pseudo-randomly extracted
from the population. The provisional offspring x′off is generated by mutation as:

x′off = xt + F k(xr − xs) (4)

10

It is clear that a scale factor taking on a negative value means that the search
direction is inverted.

When the provisional offspring has been generated by mutation, each gene of
the individual x′off is exchanged with the corresponding gene of xi with a uniform
probability and the final offspring xoff is generated:

xoff ,j =
{

xi,j if rand (0, 1) < CR
x′off ,j otherwise

(5)

where, as for the sequential DE, rand (0, 1) is a random number between 0 and 1;
j is the index of the gene under examination. The standard one-to-one spawning
is then applied and, at the end of each generation, the scheduled replacements are
performed.

For each sub-population, between two subsequent generations, a pseudo-random
number rand(0, 1) is generated by means of a uniform distribution. Analogous to
what was explained about the PDE in Subsection 3.1, this pseudo-random number is
then compared with a constant value φ, namely migration constant. If rand(0, 1) < φ,
the individual with the best performance is selected to undergo migration. Thus, for
the generic kth sub-population, the individual xkbest is duplicated and then replaces
a pseudo-randomly selected individual of the neighbor (in the ring) sub-population.
The scale factor inheritance mechanism occurs contextually with the migration. More
specifically, when the migration occurs, performance of the individual xkbest is com-
pared with that of the best individual belonging to the target sub-population, indi-
cated here with xk+1

best . If the new immigrant has a better performance than the best
individual of the target sub-population, i.e. if f

(
xkbest

)
< f

(
xk+1
best
)
, the (k + 1)th

sub-population inherits the scale factor F k after a perturbation. More specifically,
the scale factor F k+1 related to the (k + 1)th sub-population is updated according
to the following formula:

F k+1 = F k + αN (0, 1) (6)

where N (0, 1) is a pseudo-random value sampled from a normal distribution charac-
terized by a zero mean and variance equal to 1. The constant value α has the role of
controlling the range of perturbation values αN (0, 1). It must be observed that we
did not impose any bounds for the variation of F . On the contrary, we decided to al-
low an unbounded variation of the control parameter and rely on the self-adaptation
mechanism.

If the new immigrant does not outperform the best individual of the target sub-
population, i.e. f

(
xkbest

) ≥ f
(
xk+1
best
)
, the scale factor inheritance mechanism is not

activated and thus only the migration of the individual xkbest occurs.
The described operations are repeated until the budget conditions are satisfied.
A graphical representation of FACPDE is given in Figure 7.
For the sake of clarity, the pseudo-code illustrating working principles of FACPDE

is shown in Figure 8.

4.1 Scale Factor Inheritance: Algorithmic Philosophy

As shown in Section 2, DE is based on a very simple idea, i.e., a search by means
of adding vectors and a one-to-one spawning for the survivor selection. Thus, DE is

11

. . .

..
.

...

...

. . .

M
ig

ra
te

(x
m be

st
,F

1
=
F
m

+
α
N

(0
,1

))

M
igrate

(x
kbest ,F

k+
1=

F
k+

αN
(0,1))

Migrate (xk+1
best , F

k+2 = F k+1 + αN (0, 1))

Migra
te (x

1
best
, F

2 = F
1 + α
N (0,

1))

Fig. 7 Graphical Representation of FACPDE

while budget conditions do
for each generation do

for each sub-population k = 1 : m do
if rand (0, 1) < φ then

select and copy xkbest
migrate xkbest into the (k + 1)th sub-population by replacing a pseudo-randomly
selected individual
if f

(
xkbest

)
< f
(
xk+1
best

)
then

Fk+1 = Fk + αN (0, 1)
end if

end if
end for

end for
end while

Fig. 8 Pseudo-code of the FACPDE algorithm

12

very simple to implement/code and contains a limited number of parameters to tune
(only Spop, F , and CR).

From an algorithmic viewpoint, reasons for the success of DE have been high-
lighted in [56]: success of DE is due to an implicit self-adaptation contained within
the algorithmic structure. More specifically, since, for each candidate solution, the
search rule depends on other solutions belonging to the population (e.g. xt, xr, and
xs), the capability of detecting new promising offspring solutions depends on the
current distribution of the solutions within the decision space. During early stages of
the optimization process, solutions tend to be spread out within the decision space.
For a given scale factor value, this implies that the mutation appears to generate
new solutions by exploring the space by means of a large step size (if xr and xs are
distant solutions, F (xr − xs) is a vector characterized by a large modulus). During
the optimization process, the solutions of the population tend to concentrate on spe-
cific parts of the decision space. Therefore, step size in the mutation is progressively
reduced and the search is performed in the neighborhood of the solutions. In other
words, due to its structure, a DE scheme is highly explorative at the beginning of
the evolution and subsequently becomes more exploitative during optimization.

Although this mechanism seems at first glance to be very efficient, it hides a
limitation. If for some reason, the algorithm does not succeed in generating offspring
solutions which outperform the corresponding parent, the search is repeated again
with similar step size values and will likely fail by falling into an undesired stag-
nation condition (see [57]). Stagnation is the undesired effect which occurs when a
population-based algorithm does not converge to a solution (even suboptimal) and
the population diversity is still high. In the case of the DE, stagnation occurs when
the algorithm does not manage to improve upon any solution of its population for
a prolonged number of generations. In other words, the main drawback of the DE
is that the scheme has, for each stage of the optimization process, a limited amount
of exploratory moves. If these moves are not enough for generating new promising
solutions the search can be heavily compromised.

Thus, in order to enhance the DE performance, alternative search moves should
support the original scheme and promote a successful continuation of the optimiza-
tion process. The use of multiple populations in distributed DE algorithms allows
an observation of the decision space from various perspectives and, most impor-
tantly, decreases the risk of stagnation since each sub-population imposes a high
exploitation pressure. In addition, the migration mechanism ensures that solutions
with a high performance are included within the sub-populations during their evo-
lution. This fact is equivalent to modifying the set of search moves. If the migration
gives privilege to the best individuals, the new search moves promote the detection
of new promising search directions and thus allow the DE search structure to be
periodically “refurbished”. Thus, migration is supposed to mitigate the risk of DE
(sub-)populations stagnating and to enhance the global algorithmic performance.

As a countermeasure against stagnation, several recent DE versions propose a
randomization in the search logic which increases the amount of potential explo-
ration moves. For example in [30], scale factor and crossover rates are periodically
updated by generating new random values. This simple operation seems to have a
very relevant effect on the algorithmic performance. Also the DE scheme proposed
in [37] enhances a previously proposed algorithm (presented in [54]) by introducing
a randomization of the control parameters. Thus, two operations needed in order to

13

obtain significant improvements in DE performance seem to be the updating and
randomization of control parameters.

In this paper we focus on the scale factor dynamics. Although DE schemes
are characterized by the implicit self-adaptation described above, employment of a
unique and constant scale factor value can be improper since the exploratory moves
depend on distribution of the solution within the decision space. For example, for
a highly multi-modal problem, a scale factor F ≈ 1 can generate very long moving
vectors F (xr − xs) if the population is spread out within the decision space (see
Figure 9(a)) and very short moving vectors if the population is concentrated in some
areas of the decision space (see Figure 9(b)). This fact may lead to an excessively ex-
plorative behavior during some stages of the evolution and an excessively exploitative
behavior during other stages. These two behaviors can cause, respectively, stagna-
tion due to an incapability to detect a promising search direction and a premature
convergence due to the excessive exploitation of a suboptimal basin of attraction. In
other words, a proper choice of the scale factor depends not only on the optimization
problem but also on the stage of the evolution.

On the basis of this consideration, the scale factor inheritance mechanism has
been designed. The initial pseudo-random assignment of the scale factors (one per
sub-population) allows each FACPDE sub-population to explore the decision space
from complementary perspectives. Subsequently, each evolving sub-population can
be seen as a separate searcher which cooperates and competes with the other searcher,
analogous to memetic algorithms, see [58], [59], [60], and [61]. The sub-populations
cooperate with each other by means of migration of the individual with the best
performance which can be seen as a suggestion of a promising search direction. The
sub-populations compete with each other by means of the scale factor migration;
this fact can be seen like the the imposition of the most successful search strategy
to other sub-populations employing a weaker strategy. The ring topology assures
propagation of this successful strategy to all sub-populations. On the other hand,
this propagation is rather slow, so as to avoid too greedy an algorithmic behavior.
In addition, randomization of the scale factor when the migration occurs guarantees
a certain diversity of scale factors even in the event that a propagation throughout
the entire ring occurs. Thus, we avoid that all the sub-population are characterized
by the same scale factor.

In summary, the combined action of an exploration of the decision space from
diverse and complementary perspectives, the cooperation mechanism with its sugges-
tion of promising search directions, the competitive procedure of the most successful
search strategies and their randomized updates should, together, compose a robust
DE based algorithm which efficiently balances its explorative and exploitative re-
sources in order to efficiently and robustly solve complex optimization problems.

5 Experimental Results

In order to prove the viability of the FACPDE and test its performance with respect
to modern distributed DE based algorithms, the following numerical experiments
have been performed. The test problems listed in Table 1 have been considered in
this study.

The rotated version of some of the test problems listed in Table 1 have been in-
cluded into the benchmark set. These rotated problems have been generated through

14

xr

xt

xs

x′
off = xt + F (xr − xs)

F (x r
− xs)

(a) too explorative conditions

xs

xt

xr

x′off = xt + F (xr − xs)F
(x r
− x
s
)

(b) too exploitative conditions

Fig. 9 Search mechanism in Differential Evolution

15

Table 1 Test Problems

Test Problem Function Decision Space

Ackley −20 + e + 20 exp
(
− 0.2

n

√∑n

i=1
x2
i

)
[−1, 1]n

− exp
(

1
n

∑n

i=1
cos(2π · xi)xi

)
Alpine

∑n

i=1
|xi sin xi + 0.1xi| [−10, 10]n

Axis-parallel
hyper-ellipsoid

∑n

i=1
ix2
i

[−5.12, 5.12]n

DeJong ‖x‖2 [−5.12, 5.12]n

DropWave
−

1+cos
(

12
√
‖x‖2
)

1
2 ‖x‖2+2

[−5.12, 5.12]n

Griewangk ‖x‖2
4000 −

∏n

i=0
cos xi√

i
+ 1 [−600, 600]n

Michalewicz −
∑n

i=1
sin xi

(
sin
(
i·x2
i

π

))20 [0, π]n

Pathological ∑n−1
i=1

(
0.5 +

sin2
(√

100x2
i

+x2
i+1−0.5

)
1+0.001∗

(
x2
i
−2xixi+1+x2

i+1

)2

)
[−100, 100]n

Rastrigin 10n +
∑n

i=0

(
x2
i − 10 cos(2πxi)

)
[−5.12, 5.12]n

Rosenbrock val-
ley

∑n−1
i=1

(
100
(
xi+1 − x2

i

)2
+ (1− xi)2

)
[−2.048, 2.048]n

Schwefel ∑n

i=1
−xi sin

(√
|xi|
)

[−500, 500]n

Sum of powers
∑n

i=1
|xi|i+1 [−1, 1]n

Tirronen 3 exp
(
− ‖x‖2

10n

)
− 10 exp

(
−8‖x‖2

) [−10, 5]n

+ 2.5
n

∑n

i=1
cos
(

5
(
xi + (1 + i mod 2)cos

(
‖x‖2

)))

the multiplication of the vector of variables by a randomly generated orthogonal ro-
tation matrix. In total, twenty-four test problems have been considered in this study
with both n = 500 and n = 1000. The FACPDE has been tested with these twenty-
four test problems and its behavior and performance have been compared with those
obtained by standard sequential DE/rand/1/bin (simply indicated here as DE), the
improved DE algorithm employing Random Scale Factor proposed in [23] and indi-
cated as DERSF, PDE introduced in [45], IBDDE given in [51] and DDE employed
in [48], [49], and [50]. It must be remarked that all the algorithms chosen for com-
parison are modern distributed DE algorithms recently proposed in literature, and
which are representative of the state-of-the-art in the field. Each algorithm has been
run for 500, 000 fitness evaluations in the case of n = 500 and for 1, 000, 000 fitness

16

evaluations when n = 1000. Fifty independent runs have been performed for each
algorithm involved in this paper.

The algorithms considered in this study have been run with the following param-
eter setting.

– DE has been run with F = 0.7 and CR = 0.3 in accordance with the suggestions
given in [13] and [62]. The population size has been set to Spop = 200 for the
500-dimensional problems and to Spop = 400 for the 1000-dimensional ones.

– DESRF has been run with CR = 0.3. Analogous to DE, the population size has
been set to Spop = 200 for the 500-dimensional problems and to Spop = 400 for
the 1000-dimensional ones. In DERSF the scale factor is randomized, at each
generation, according to the rule F = 0.5 (1 + rand (0, 1)).

– PDE has been run with populations of 200 or 400 individuals divided into 5 sub-
populations of 40 or 80 individuals each, for the 500 and 1000-dimensional prob-
lems, respectively. Despite [45] showing better performance for the DE/best/1
mutation strategy in 30 and 50 dimensions, it has proven excessively exploita-
tive and has led to premature convergence of the solutions when used on higher
dimension problems. In order to perform a fair comparison, we have carried out
an analysis on mutation strategies, leading to the choice of DE/rand/1 and set-
ting the migration constant to φ = 0.2. These settings proved to be the best
choices in terms of algorithmic performance and have, thus, been chosen for the
experiments described below.

– Similarly to PDE, IBDDE has been run with populations of 200 or 400 individuals
divided into 5 sub-populations of 40 or 80 individuals each, depending on the
dimensionality of the test problems. The other parameters have been chosen
according to the values in [51]: the sub-populations exchange one individual (ρ =
1) every 100 generations (γ = 100). φs and φr have been defined so as to pseudo-
randomly select an individual by means of a uniform distribution, and τ has been
set to a unidirectional ring.

– For the 500-dimensional problems, the DDE has been run with a population of
200 individuals divided into 16 sub-populations of alternatively 12 or 13 individ-
uals. In the case of the 1000-dimensional problems, the population has been set
to 400 individuals divided into 16 sub-populations of 25 individuals. Following
the suggestions in [49] the sub-populations have been organized into a 4× 4 grid
folded into a torus (µ = 4). Migration occurred in each sub-population with only
its best individual (SI = 1) every MI = 5 generations.

– Similarly to PDE and IBDDE, FACPDE has been run with populations of 200
and 400 individuals divided into 5 sub-populations of 40 and 80 individuals each
for the 500 and 1000-dimensional cases, respectively. The migration constant φ
has been set equal to 0.2 and the constant α in formula (6) has been set equal
to 0.1.

It is worthwhile commenting on choice of the population sizes Spop = 200 and
Spop = 400. Although in [9] it is suggested that the DE population size be set equal
to about ten times the dimensionality of the problem, this indication is not confirmed
by a recent study in [63] where it is shown that a population size lower than the
dimensionality of the problem can be optimal in many cases.

Table 2 shows the average of the final results detected by each algorithm ± the
standard deviations, with the 500 dimension case. Table 3 shows the results for the
1000 dimension case. The best results are highlighted in bold face.

17

Table 2 Average final fitness values ± standard deviations for 500 dimensions problems

DE DERSF PDE IBDDE DDE FACPDE
Ackley 3.62e + 00± 9.69e − 03 3.58e + 00± 1.40e − 02 1.62e − 01± 1.67e − 02 3.55e + 00± 2.96e − 02 1.51e − 01± 6.96e − 02 2.67e − 02± 1.25e − 02
Alpine 1.30e + 03± 1.19e + 01 1.24e + 03± 1.53e + 01 8.88e + 01± 1.26e + 01 1.21e + 03± 3.43e + 01 1.50e + 02± 4.35e + 01 3.09e + 01± 1.60e + 01
Ax.-par. hyp.-ell. 8.67e + 05± 1.07e + 04 7.06e + 05± 1.50e + 04 3.68e + 03± 6.84e + 02 7.27e + 05± 3.70e + 04 4.09e + 03± 4.73e + 03 3.28e + 02± 2.96e + 02
DeJong 3.86e + 03± 5.73e + 01 3.34e + 03± 4.98e + 01 1.92e + 01± 3.57e + 00 3.19e + 03± 2.67e + 02 1.61e + 01± 1.15e + 01 1.80e + 00± 2.02e + 00
DropWave −9.83e − 04± 2.23e − 05 −9.90e − 04± 1.91e − 05 −4.11e − 03± 3.96e − 04 −1.13e − 03± 8.03e − 05 −2.56e − 03± 2.69e − 04 −5.02e − 03± 8.78e − 04
Griewangk 1.38e + 04± 2.15e + 02 1.19e + 04± 1.73e + 02 5.62e + 02± 1.09e + 01 1.13e + 04± 7.65e + 02 5.68e + 02± 4.86e + 01 5.04e + 02± 1.19e + 01
Michalewicz −8.84e + 01± 1.61e + 00 −8.85e + 01± 9.05e − 01 −3.06e + 02± 5.68e + 00 −9.13e + 01± 2.09e + 00 −2.60e + 02± 8.56e + 00 −3.54e + 02± 3.12e + 01
Pathological −1.05e + 02± 1.96e + 00 −1.21e + 02± 2.40e + 00 −3.34e + 02± 5.98e + 00 −3.34e + 02± 7.40e + 00 −3.06e + 02± 7.28e + 00 −3.55e + 02± 3.05e + 01
Rastrigin 8.21e + 03± 5.26e + 01 7.90e + 03± 6.55e + 01 1.91e + 03± 9.94e + 01 7.78e + 03± 1.55e + 02 2.73e + 03± 2.28e + 02 9.91e + 02± 3.93e + 02
Rosenbrock 1.94e + 05± 5.44e + 03 1.79e + 05± 4.47e + 03 2.11e + 03± 1.77e + 02 1.35e + 05± 1.61e + 04 1.82e + 03± 6.14e + 02 1.63e + 03± 6.18e + 02
Schwefel −4.42e + 04± 7.07e + 02 −4.57e + 04± 9.54e + 02 −1.30e + 05± 3.17e + 03 −4.48e + 04± 8.15e + 02 −1.06e + 05± 4.19e + 03 −1.54e + 05± 1.83e + 04
Sum of powers 1.82e + 00± 3.99e − 01 1.82e + 00± 3.99e − 01 1.06e − 05± 5.19e − 05 3.09e − 01± 1.67e − 01 1.02e − 03± 2.51e − 03 4.82e − 06± 1.15e − 05
Tirronen −9.92e − 01± 2.02e − 02 −1.10e + 00± 1.77e − 02 −1.57e + 00± 3.44e − 02 −1.01e + 00± 1.90e − 02 −1.38e + 00± 6.76e − 02 −1.63e + 00± 3.41e − 02
Rt. Ackley 3.65e + 00± 1.54e − 02 3.56e + 00± 1.99e − 02 2.15e − 01± 2.50e − 02 3.53e + 00± 3.82e − 02 1.94e − 01± 7.21e − 02 6.92e − 02± 1.92e − 02
Rt. Alpine 1.32e + 03± 1.60e + 01 1.28e + 03± 1.54e + 01 1.03e + 02± 9.74e + 00 1.23e + 03± 4.13e + 01 1.39e + 02± 2.64e + 01 6.26e + 01± 2.87e + 01
Rt. Ax.-par. hyp.-ell. 8.41e + 05± 1.53e + 04 7.43e + 05± 1.43e + 04 4.90e + 03± 7.92e + 02 7.12e + 05± 3.97e + 04 3.87e + 03± 2.20e + 03 1.07e + 03± 4.10e + 02
Rt. Griewangk 1.28e + 04± 2.16e + 02 1.12e + 04± 2.05e + 02 5.66e + 02± 1.03e + 01 1.10e + 04± 6.18e + 02 5.56e + 02± 3.75e + 01 5.10e + 02± 5.04e + 00
Rt. Michalewicz −4.93e + 01± 1.90e + 00 −4.82e + 01± 1.18e + 00 −1.76e + 02± 7.76e + 00 −4.99e + 01± 1.62e + 00 −1.37e + 02± 7.98e + 00 −1.92e + 02± 1.20e + 01
Rt. Pathological −2.11e + 01± 1.36e + 00 −2.09e + 01± 7.80e − 01 −1.21e + 02± 7.30e + 00 −2.11e + 01± 1.05e + 00 −1.01e + 02± 1.20e + 01 −1.13e + 02± 1.26e + 01
Rt. Rastrigin 8.39e + 03± 6.89e + 01 8.11e + 03± 5.68e + 01 1.95e + 03± 1.51e + 02 7.85e + 03± 2.27e + 02 2.70e + 03± 2.60e + 02 1.10e + 03± 1.85e + 02
Rt. Rosenbrock 1.95e + 05± 6.04e + 03 1.75e + 05± 4.47e + 03 1.66e + 03± 1.53e + 02 1.47e + 05± 1.56e + 04 1.45e + 03± 4.68e + 02 9.74e + 02± 1.74e + 02
Rt. Schwefel −5.16e + 04± 1.80e + 03 −5.45e + 04± 1.35e + 03 −1.65e + 05± 4.74e + 03 −5.31e + 04± 1.87e + 03 −1.27e + 05± 7.80e + 03 −1.67e + 05± 1.22e + 04
Rt. Sum of powers 3.81e + 16± 1.28e + 17 8.50e + 16± 4.18e + 17 1.06e − 05± 5.20e − 05 2.13e + 15± 7.15e + 15 2.27e − 03± 6.51e − 03 2.47e − 04± 1.71e − 03
Rt. Tirronen −5.06e − 01± 2.09e − 02 −5.02e − 01± 2.34e − 02 −1.24e + 00± 7.73e − 02 −5.08e − 01± 2.45e − 02 −9.31e − 01± 9.41e − 02 −1.28e + 00± 7.60e − 02

18

Table 3 Average final fitness values ± standard deviations for 1000 dimensions problems

DE DERSF PDE IBDDE DDE FACPDE
Ackley 3.75e + 00± 7.55e − 03 3.72e + 00± 7.94e − 03 9.75e − 01± 4.77e − 02 3.72e + 00± 1.61e − 02 7.25e − 01± 8.17e − 02 2.00e − 02± 1.02e − 02
Alpine 2.77e + 03± 2.71e + 01 2.73e + 03± 1.66e + 01 6.24e + 02± 3.28e + 01 2.66e + 03± 6.16e + 01 3.85e + 02± 4.99e + 01 1.05e + 02± 2.33e + 02
Ax.-par. hyp.-ell. 3.96e + 06± 4.94e + 04 3.89e + 06± 4.28e + 04 1.81e + 05± 1.23e + 04 3.20e + 06± 1.62e + 05 1.06e + 05± 1.86e + 04 6.43e + 02± 9.09e + 02
DeJong 8.01e + 03± 9.20e + 01 8.00e + 03± 9.03e + 01 4.66e + 02± 2.81e + 01 6.29e + 03± 3.74e + 02 2.83e + 02± 5.12e + 01 1.75e + 00± 1.94e + 00
DropWave −4.84e − 04± 7.42e − 06 −4.84e − 04± 7.42e − 06 −1.62e − 03± 9.29e − 05 −5.20e − 04± 2.21e − 05 −1.17e − 03± 9.73e − 05 −2.06e − 03± 2.47e − 04
Griewangk 2.85e + 04± 3.16e + 02 2.84e + 04± 2.72e + 02 2.58e + 03± 1.03e + 02 2.28e + 04± 1.55e + 03 1.96e + 03± 1.80e + 02 1.02e + 03± 2.12e + 02
Michalewicz −1.45e + 02± 1.72e + 00 −1.49e + 02± 1.72e + 00 −4.18e + 02± 9.73e + 00 −1.49e + 02± 2.24e + 00 −4.43e + 02± 1.22e + 01 −6.03e + 02± 1.57e + 02
Pathological −1.57e + 02± 2.41e + 00 −1.98e + 02± 3.95e + 00 −6.39e + 02± 8.43e + 00 −1.87e + 02± 3.77e + 01 −5.70e + 02± 1.30e + 01 −7.17e + 02± 6.26e + 00
Rastrigin 1.75e + 04± 9.32e + 01 1.71e + 04± 7.23e + 01 6.65e + 03± 2.16e + 02 1.69e + 04± 3.40e + 02 6.18e + 03± 3.96e + 02 1.99e + 03± 1.35e + 03
Rosenbrock 4.06e + 05± 7.22e + 03 4.06e + 05± 7.19e + 03 1.34e + 04± 9.17e + 02 2.90e + 05± 3.35e + 04 8.96e + 03± 1.82e + 03 2.94e + 03± 6.19e + 02
Schwefel −6.43e + 04± 1.08e + 03 −6.51e + 04± 9.96e + 02 −1.91e + 05± 4.04e + 03 −6.45e + 04± 1.08e + 03 −1.86e + 05± 8.61e + 03 −3.24e + 05± 5.25e + 04
Sum of powers 1.90e + 00± 3.55e − 01 1.90e + 00± 3.55e − 01 3.07e − 06± 1.01e − 05 1.07e + 00± 3.69e − 01 4.68e − 04± 1.64e − 03 3.50e − 06± 1.59e − 05
Tirronen −8.49e − 01± 1.27e − 02 −9.72e − 01± 1.46e − 02 −1.45e + 00± 2.04e − 02 −8.63e − 01± 1.40e − 02 −1.35e + 00± 5.11e − 02 −1.59e + 00± 3.57e − 02
Rt. Ackley 3.78e + 00± 1.04e − 02 3.74e + 00± 1.21e − 02 9.35e − 01± 5.37e − 02 3.69e + 00± 4.53e − 02 6.90e − 01± 7.83e − 02 6.45e − 02± 1.91e − 02
Rt. Alpine 2.83e + 03± 2.14e + 01 2.79e + 03± 2.22e + 01 6.13e + 02± 2.58e + 01 2.70e + 03± 8.77e + 01 4.01e + 02± 4.19e + 01 1.13e + 02± 3.59e + 01
Rt. Ax.-par. hyp.-ell. 3.87e + 06± 5.89e + 04 3.76e + 06± 4.55e + 04 1.59e + 05± 1.25e + 04 3.31e + 06± 2.20e + 05 8.52e + 04± 1.60e + 04 3.31e + 03± 1.24e + 03
Rt. Griewangk 2.80e + 04± 3.56e + 02 2.76e + 04± 2.48e + 02 2.24e + 03± 9.40e + 01 2.33e + 04± 1.52e + 03 1.75e + 03± 1.60e + 02 1.01e + 03± 5.59e + 00
Rt. Michalewicz −7.20e + 01± 2.82e + 00 −7.51e + 01± 1.83e + 00 −2.45e + 02± 7.54e + 00 −7.24e + 01± 2.19e + 00 −2.29e + 02± 1.23e + 01 −3.08e + 02± 5.12e + 01
Rt. Pathological −2.95e + 01± 1.45e + 00 −2.98e + 01± 9.77e − 01 −1.45e + 02± 6.58e + 00 −2.99e + 01± 1.56e + 00 −1.80e + 02± 1.89e + 01 −1.60e + 02± 2.12e + 01
Rt. Rastrigin 1.76e + 04± 1.42e + 02 1.74e + 04± 1.06e + 02 6.71e + 03± 2.04e + 02 1.66e + 04± 5.33e + 02 5.90e + 03± 4.07e + 02 2.18e + 03± 6.85e + 02
Rt. Rosenbrock 4.32e + 05± 9.18e + 03 4.28e + 05± 8.25e + 03 1.08e + 04± 7.14e + 02 3.18e + 05± 3.03e + 04 6.95e + 03± 9.68e + 02 2.08e + 03± 4.17e + 02
Rt. Schwefel −7.09e + 04± 2.21e + 03 −7.24e + 04± 1.97e + 03 −2.48e + 05± 7.65e + 03 −7.18e + 04± 1.83e + 03 −2.48e + 05± 1.06e + 04 −3.16e + 05± 2.25e + 04
Rt. Sum of powers 1.14e + 52± 4.68e + 52 1.12e + 54± 7.06e + 54 1.00e − 07± 4.88e − 07 8.67e + 50± 4.47e + 51 2.02e − 02± 8.35e − 02 2.43e − 01± 1.70e + 00
Rt. Tirronen −3.73e − 01± 1.49e − 02 −3.98e − 01± 1.24e − 02 −9.73e − 01± 4.86e − 02 −3.74e − 01± 1.89e − 02 −8.12e − 01± 6.75e − 02 −1.04e + 00± 6.09e − 02

19

Results in Tables 2 and 3 show that the sequential DE algorithms are outper-
formed by the distributed algorithms. This result confirms that a structured popu-
lation can enhance performance of the DE, see [64]. In addition, FACPDE seems to
have a very good performance with the test problems considered in this study since
it detects those solutions with best performance for twenty-three and twenty-one test
problems out of the twenty-four considered in 500 and 1000 dimensions, respectively.
It must be remarked that in the cases where FACPDE does not detect the solutions
with best performance, the algorithm still detects, in any case, competitive solutions;
these solutions usually have, on average, the second best performance. In this sense,
FACPDE seems to be a high quality algorithm for various test problems.

In order to prove statistical significance of the results, the Wilcoxon Rank-Sum
test has also been applied according to the description given in [65], where the con-
fidence level has been fixed to 0.95. Tables 4 and 5 show results of the test. A “+”
indicates the case in which FACPDE statistically outperforms, for the correspond-
ing test problem, the algorithm mentioned in that column; a “=” indicates that a
pairwise comparison leads to success of the Wilcoxon Rank-Sum test, i.e., the two al-
gorithms have the same performance; a “-” indicates that FACPDE is outperformed.

In the case of 500-dimensional problems, the Wilcoxon test results in Table 4 show
that FACPDE, out of the one hundred twenty pair-wise comparisons performed, loses
out in only one case, obtains the same results in four cases, and wins in ninety-one
cases. Thus, FACPDE comes out behind in only 0.83% of the comparisons and and
comes out ahead in 95.0% of the considered comparisons. In 1000 dimensions, the
Wilcoxon test results displayed in Table 5 show that FACPDE, out of the one hun-
dred twenty pair-wise comparisons performed, loses in one case, obtains the same
results in seven cases, and wins in one hundred twelve cases. Thus, FACPDE loses
only 0.83% of the comparisons and and is shown to be superior in 93.3% of the con-
sidered comparisons. The statistical test carried out confirms that FACPDE has a
very good performance in regard to the studied test problems. In addition, the com-
parison between PDE and FACPDE shows that the proposed scale factor inheritance
mechanism seems to be very beneficial.

In order to strengthen the statistical significance of the results, the Holm proce-
dure [66] has been applied by following the description in [67]. The Holm procedure
consists of the following. Considering the results in tables 2 and 3, the six algorithms
under analysis have been ranked on the basis of their average performance calcu-
lated over the twenty-four test problems. Thus, or in other words, a score Ri for
i = 1, . . . , NA (where NA is the number of algorithms under analysis, NA = 6 in
our case) has been assigned. With the calculated Ri values, the FACPDE has been
taken as a reference algorithm. Indicating with R0 the rank of FACPDE, and with
Rj for j = 1, . . . , NA− 1 the rank of one of the remaining five algorithms, the values
zj have been calculated as

zj = Rj −R0√
NA(NA+1)

6NTP

where NTP is the number of test problems in consideration (NTP = 24 in our
case). By means of the zj values, the corresponding cumulative normal distribution
values pj have been calculated. These pj values have then been compared with the
corresponding δ/(NA − j) where δ is the level of confidence, set to 0.05 in our case.
Tables 6 and 7 display zj values, pj values, and corresponding δ/(NA − j). The
values of zj and pj are expressed in terms of zNA−j and pNA−j for j = 1, . . . , NA −

20

Table 4 Results of the Wilcoxon rank-sum test for 500 dimensions problems

DE DERSF PDE IBDDE DDE
Ackley + + + + +
Alpine + + + + +
Ax.-par. hyp.-ell. + + + + +
DeJong + + + + +
DropWave + + + + +
Griewangk + + + + +
Michalewicz + + + + +
Pathological + + + + +
Rastrigin + + + + +
Rosenbrock + + + + =
Schwefel + + + + +
Sum of powers + + = + +
Tirronen + + + + +
Rt. Ackley + + + + +
Rt. Alpine + + + + +
Rt. Ax.-par. hyp.-ell. + + + + +
Rt. Griewangk + + + + +
Rt. Michalewicz + + + + +
Rt. Pathological + + - + +
Rt. Rastrigin + + + + +
Rt. Rosenbrock + + + + +
Rt. Schwefel + + = + +
Rt. Sum of powers + = = + +
Rt. Tirronen + + + + +

1. Moreover, it is indicated whether the null-hypothesis (that the two algorithms
have indistinguishable performances) is “Rejected” i.e., the FACPDE statistically
outperforms the algorithm under consideration, or “Accepted” if the distribution of
values can be considered the same (there is no outperformance).

The Holm procedure confirms that the FACPDE displays a significantly better
performance with respect to the other algorithms in this study for both 500- and
1000-dimensional cases.

In order to carry out a numerical comparison of the convergence speed perfor-
mance, for each test problem, the average final fitness value returned by the best
performing algorithm G has been considered. Subsequently, the average fitness value
at the beginning of the optimization process J has also been computed. The thresh-
old value THR = J−0.95(J−G) has then been calculated. The value THR represents
95% of the decay in the fitness value of the algorithm with the best performance. If
an algorithm succeeds during a certain run to reach the value THR, the run is said
to be successful. For each test problem, the average amount of fitness evaluations
n̄e required, for each algorithm, to reach THR has been computed. Subsequently,
the Q-test (Q stands for Quality) described in [56] has been applied. For each test
problem and each algorithm, the Q measure is computed as:

Q = n̄e

Rob
(7)

where the robustness Rob is the percentage of successful runs. It is clear that, for each
test problem, the smallest value equals the best performance in terms of convergence

21

Table 5 Results of the Wilcoxon rank-sum test for 1000 dimensions problems

DE DERSF PDE IBDDE DDE
Ackley + + + + +
Alpine + + + + +
Ax.-par. hyp.-ell. + + + + +
DeJong + + + + +
DropWave + + + + +
Griewangk + + + + +
Michalewicz + + + + +
Pathological + + + + +
Rastrigin + + + + +
Rosenbrock + + + + +
Schwefel + + + + +
Sum of powers + + = + =
Tirronen + + + + +
Rt. Ackley + + + + +
Rt. Alpine + + + + +
Rt. Ax.-par. hyp.-ell. + + + + +
Rt. Griewangk + + + + +
Rt. Michalewicz + + + + +
Rt. Pathological + + + + -
Rt. Rastrigin + + + + +
Rt. Rosenbrock + + + + +
Rt. Schwefel + + + + +
Rt. Sum of powers = = = = =
Rt. Tirronen + + + + +

Table 6 Results of the Holm procedure for 500-dimensional problems (FACPDE is the control
algorithm)

NA − j Optimizer zNA−j pNA−j δ/(NA − j) Hypothesis
5 DE -8.72e+00 1.41e-18 1.00e-02 Rejected
4 DERSF -7.33e+00 1.16e-13 1.25e-02 Rejected
3 IBDDE -5.63e+00 8.90e-09 1.67e-02 Rejected
2 DDE -3.09e+00 1.01e-03 2.50e-02 Rejected
1 PDE -2.08e+00 1.86e-02 5.00e-02 Rejected

Table 7 Results of the Holm procedure for 1000-dimensional problems (FACPDE is the con-
trol algorithm)

NA − j Optimizer zNA−j pNA−j δ/(NA − j) Hypothesis
5 DE -8.72e+00 1.41e-18 1.00e-02 Rejected
4 DERSF -6.71e+00 9.59e-12 1.25e-02 Rejected
3 IBDDE -5.86e+00 2.27e-09 1.67e-02 Rejected
2 PDE -2.62e+00 4.36e-03 2.50e-02 Rejected
1 DDE -2.01e+00 2.24e-02 5.00e-02 Rejected

22

Table 8 Results of the Q-test for 500 dimensions problems

THR DE DERSF PDE IBDDE DDE FACPDE
Ackley 2.15e-01 ∞ ∞ 4.58e+03 ∞ 4.65e+03 7.37e+02
Alpine 9.89e+01 ∞ ∞ 5.82e+03 ∞ 2.54e+04 1.79e+03
Ax.-par. hyp.-ell. 4.99e+04 ∞ ∞ 2.14e+03 ∞ 1.20e+03 4.43e+02
DeJong 2.02e+02 ∞ ∞ 2.36e+03 ∞ 1.35e+03 4.96e+02
DropWave -4.81e-03 ∞ ∞ 9.31e+04 ∞ ∞ 3.50e+03
Griewangk 1.19e+03 ∞ ∞ 2.34e+03 ∞ 1.40e+03 5.29e+02
Michalewicz -3.39e+02 ∞ ∞ ∞ ∞ ∞ 3.38e+03
Pathological -3.37e+02 ∞ ∞ 8.43e+03 1.65e+04 ∞ 1.22e+03
Rastrigin 1.38e+03 ∞ ∞ ∞ ∞ ∞ 1.23e+03
Rosenbrock 1.17e+04 ∞ ∞ 1.57e+03 ∞ 7.23e+02 4.71e+02
Schwefel -1.46e+05 ∞ ∞ ∞ ∞ ∞ 1.17e+03
Sum of powers 1.24e-01 ∞ ∞ 2.32e+02 3.52e+04 7.97e+01 1.81e+02
Tirronen -1.55e+00 ∞ ∞ 5.04e+03 ∞ ∞ 2.04e+03
Rt. Ackley 2.55e-01 ∞ ∞ 4.98e+03 ∞ 4.59e+03 8.62e+02
Rt. Alpine 1.31e+02 ∞ ∞ 4.35e+03 ∞ 8.47e+03 1.50e+03
Rt. Ax.-par. hyp.-ell. 4.97e+04 ∞ ∞ 2.04e+03 ∞ 1.04e+03 4.84e+02
Rt. Griewangk 1.19e+03 ∞ ∞ 2.17e+03 ∞ 1.18e+03 4.91e+02
Rt. Michalewicz -1.83e+02 ∞ ∞ 2.27e+04 ∞ ∞ 3.87e+03
Rt. Pathological -1.15e+02 ∞ ∞ 5.24e+03 ∞ 3.16e+04 1.01e+04
Rt. Rastrigin 1.49e+03 ∞ ∞ ∞ ∞ ∞ 1.76e+03
Rt. Rosenbrock 1.17e+04 ∞ ∞ 1.41e+03 ∞ 6.18e+02 4.70e+02
Rt. Schwefel -1.60e+05 ∞ ∞ 4.70e+03 ∞ ∞ 3.39e+03
Rt. Sum of powers 6.33e+20 2.27e+01 1.31e+01 5.24e+00 1.44e+01 4.92e+00 4.12e+00
Rt. Tirronen -1.21e+00 ∞ ∞ 5.21e+03 ∞ ∞ 3.72e+03

speed. The value “∞” means that Rob = 0, i.e., the algorithm never reached the
THR.

Tables 8 and 9 show the Q values for 500-dimensional problems and 1000-
dimensional problems respectively, as well as the associated THR values. The best
results are highlighted in bold face.

The Q-test results, listed in Table 8 and 9, show that in 500 and 1000-dimensional
cases, the proposed FACPDE algorithm has the best performance in terms of conver-
gence speed in twenty-two and twenty-one cases out of the twenty-four considered,
respectively. Most importantly, the FACPDE algorithm, throughout all considered
test problems, is never characterized by an ∞ value of Q-measure. This fact shows
that the proposed algorithm is always competitive with the other algorithms in the
benchmark and is never relevantly outperformed. In summary, the algorithmic be-
havior of FACPDE, thanks to its scale factor inheritance mechanism, is extremely
promising in terms of algorithmic robustness.

Figure 9 shows average performance trends of the five considered algorithms over
a selection of the test problems listed in Table 1 in 500 dimensions.

Figures 9(c)–9(k) show that in 500 dimensions, the serial DE algorithms improve
only marginally. IBDDE has a slightly better performance than DE and DERSF
(see for example Figure 9(i)), but is still not competitive compared to PDE, DDE
and FACPDE for the high dimensional problems considered in this study. In Fig-
ures 9(d)–9(k), DDE improves its solutions very quickly in the beginning, before
ceasing to make any significant improvement. The transition occurs around 100,000

23

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

DE
DERSF

PDE
IBDDE

DDE
FACPDE

(c) Ackley

-0.0055

-0.005

-0.0045

-0.004

-0.0035

-0.003

-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

DE
DERSF

PDE
IBDDE

DDE
FACPDE

(d) DropWave

-400

-350

-300

-250

-200

-150

-100

-50

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

DE
DERSF

PDE
IBDDE

DDE
FACPDE

(e) Michalewicz

Fig. 9 Performance trends in 500 dimensions

24

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

DE
DERSF

PDE
IBDDE

DDE
FACPDE

(f) Rastrigin

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

DE
DERSF

PDE
IBDDE

DDE
FACPDE

(g) Rotated Michalewicz

-140

-120

-100

-80

-60

-40

-20

 0

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

DE
DERSF

PDE
IBDDE

DDE
FACPDE

(h) Rotated Pathological

Fig. 9 Performance trends in 500 dimensions (continued)

25

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

DE
DERSF

PDE
IBDDE

DDE
FACPDE

(i) Rotated Rastrigin

-160000

-140000

-120000

-100000

-80000

-60000

-40000

-20000

 0

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

DE
DERSF

PDE
IBDDE

DDE
FACPDE

(j) Schwfel

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

DE
DERSF

PDE
IBDDE

DDE
FACPDE

(k) Tirronen

Fig. 9 Performance trends in 500 dimensions (continued)

26

Table 9 Results of the Q-test for 1000 dimensions problems

THR DE DERSF PDE IBDDE DDE FACPDE
Ackley 2.10e-01 ∞ ∞ ∞ ∞ ∞ 2.14e+03
Alpine 2.41e+02 ∞ ∞ ∞ ∞ ∞ 2.81e+03
Ax.-par. hyp.-ell. 2.02e+05 ∞ ∞ 9.45e+03 ∞ 6.10e+03 1.43e+03
DeJong 4.11e+02 ∞ ∞ ∞ ∞ 7.61e+03 1.40e+03
DropWave -1.98e-03 ∞ ∞ ∞ ∞ ∞ 1.13e+04
Griewangk 2.43e+03 ∞ ∞ 1.22e+05 ∞ 7.43e+03 1.45e+03
Michalewicz -5.79e+02 ∞ ∞ ∞ ∞ ∞ 7.94e+03
Pathological -6.81e+02 ∞ ∞ ∞ ∞ ∞ 4.39e+03
Rastrigin 2.78e+03 ∞ ∞ ∞ ∞ ∞ 2.59e+03
Rosenbrock 2.38e+04 ∞ ∞ 6.57e+03 ∞ 3.37e+03 1.54e+03
Schwefel -3.09e+05 ∞ ∞ ∞ ∞ ∞ 2.57e+03
Sum of powers 1.23e-01 ∞ ∞ 6.84e+02 ∞ 1.90e+02 4.86e+02
Tirronen -1.51e+00 ∞ ∞ ∞ ∞ ∞ 5.03e+03
Rt. Ackley 2.52e-01 ∞ ∞ ∞ ∞ ∞ 2.60e+03
Rt. Alpine 2.52e+02 ∞ ∞ ∞ ∞ ∞ 3.68e+03
Rt. Ax.-par. hyp.-ell. 2.02e+05 ∞ ∞ 8.78e+03 ∞ 5.15e+03 1.49e+03
Rt. Griewangk 2.40e+03 ∞ ∞ 1.01e+04 ∞ 6.09e+03 1.37e+03
Rt. Michalewicz -2.94e+02 ∞ ∞ ∞ ∞ ∞ 8.87e+03
Rt. Pathological -1.72e+02 ∞ ∞ ∞ ∞ 7.56e+03 3.30e+04
Rt. Rastrigin 2.96e+03 ∞ ∞ ∞ ∞ ∞ 4.03e+03
Rt. Rosenbrock 2.43e+04 ∞ ∞ 5.65e+03 ∞ 2.52e+03 1.30e+03
Rt. Schwefel -3.01e+05 ∞ ∞ ∞ ∞ ∞ 6.91e+03
Rt. Sum of powers 2.08e+56 8.00e+00 1.30e+01 8.00e+00 8.00e+00 8.00e+00 9.28e+00
Rt. Tirronen -9.88e-01 ∞ ∞ 2.10e+04 ∞ ∞ 9.92e+03

fitness evaluations in all cases except 9(h), where it occurs around 200,000 fitness
evaluations. PDE’s improvement rate is slower than DDE’s, but contrary to the lat-
ter, it continuously improves its solutions and in all but one of the examples listed
above, finds a better solution than DDE; Figure 9(c) is the exception, but PDE’s
solution is still very close to DDE’s. Finally, FACPDE’s improvement rate at the
onset is steeper than DDE’s in Figures 9(c), 9(f) and 9(j), similar in 9(i) and 9(k),
and softer in Figures 9(d), 9(e), 9(g) and 9(h). In all cases however, FACPDE does
not show symptoms of premature convergence as DDE does. Moreover, FACPDE’s
final solutions are, in all above examples except 9(h), better than PDE’s.

Figure 10 shows average performance trends of the five considered algorithms
over a selection of the test problems listed in Table 1 in 1000 dimensions.

Qualitative results represented in Figure 10 confirm the findings in 500 dimen-
sions. For large scale problems, the sequential DE seems to suffer from the curse of
dimensionality. The IBDDE algorithm succeeds at improving upon the performance
of sequential DE and DERSF. The other algorithms demonstrate a better behavior
for the high dimensional problems. The DDE has good convergence speed perfor-
mance during early stages of the evolution since it often manages to detect high
quality solutions during the initial generations. However, the DDE tends to stop im-
proving upon previous achievements quite quickly, see e.g. Figures 10(c) and 10(i).
It is interesting to observe that in 1000 dimensions PDE is slower at detecting high
quality solutions with respect to the 500-dimensional case e.g. compare the behavior
with Michalewicz function in Figures 9(e) and 10(e). Thus, more often than in the

27

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Fi
tn

es
s

Fitness evaluations

DE
DERSF

PDE
IBDDE

DDE
FACPDE

(a) Ackley

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Fi
tn

es
s

Fitness evaluations

DE
DERSF

PDE
IBDDE

DDE
FACPDE

(b) Alpine

-0.0022

-0.002

-0.0018

-0.0016

-0.0014

-0.0012

-0.001

-0.0008

-0.0006

-0.0004

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Fi
tn

es
s

Fitness evaluations

DE
DERSF

PDE
IBDDE

DDE
FACPDE

(c) DropWave

Fig. 10 Performance trends in 1000 dimensions

28

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Fi
tn

es
s

Fitness evaluations

DE
DERSF

PDE
IBDDE

DDE
FACPDE

(d) Griewangk

-650

-600

-550

-500

-450

-400

-350

-300

-250

-200

-150

-100

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Fi
tn

es
s

Fitness evaluations

DE
DERSF

PDE
IBDDE

DDE
FACPDE

(e) Michalewicz

-800

-700

-600

-500

-400

-300

-200

-100

 0

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Fi
tn

es
s

Fitness evaluations

DE
DERSF

PDE
IBDDE

DDE
FACPDE

(f) Pathological

Fig. 10 Performance trends in 1000 dimensions (continued)

29

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Fi
tn

es
s

Fitness evaluations

DE
DERSF

PDE
IBDDE

DDE
FACPDE

(g) Rastrigin

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Fi
tn

es
s

Fitness evaluations

DE
DERSF

PDE
IBDDE

DDE
FACPDE

(h) Rotated Ackley

-350

-300

-250

-200

-150

-100

-50

 0

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Fi
tn

es
s

Fitness evaluations

DE
DERSF

PDE
IBDDE

DDE
FACPDE

(i) Rotated Michalewicz

Fig. 10 Performance trends in 1000 dimensions (continued)

30

0

1

0 100000 200000 300000 400000 500000

subpop 1
0

1

subpop 2
0

1

subpop 3
0

1

subpop 4
0

1

subpop 5

Fig. 11 Example of the scale factor behavior over the five sub-populations

500-dimensional case, the DDE outperforms PDE in high dimensions. The FACPDE
algorithm, on the contrary, seems to be very efficient and outperforms, in most cases,
both PDE and DDE. In addition, the gap between FACPDE and the second best
algorithm performance seems to be systematically larger for the 1000-dimensional
case with respect to the results in 500 dimensions, see e.g. Figures 10(a), 10(c), 10(e)
and 10(h). In other words, the scale factor inheritance mechanism seems to be very
beneficial in order to tackle large scale problems.

In order to better understand the working principle of the scale factor inheritance,
Figure 11 has been included. Figure 11 shows an example, based on a single run, of
the trend that the absolute value of F takes during the FACPDE evolution for the
five distributed sub-populations.

It can be noticed from Figure 11 how the scale factor inheritance mechanism
works. For example, at around 150,000 a sudden increase in the scale factor value
occurs throughout all the sub-populations. This phenomenon is clearly visible in
sub-populations 1,2, and 3 and proves how promising scale factor values are propa-
gated within the ring of sub-populations. The most important finding in Figure 11
is related to the variation of the scale factor values. It can be observed that although
the variation of F is, in principle, unbounded, there is no divergence in the trends.
On the contrary, the scale factors never take a value greater than 2. In addition, the
scale factor trends do not converge to a constant value. On the contrary, the trends
continue to oscillate throughout the entire evolution. This fact can be seen as confir-
mation that there is no optimal scale factor for a given problem, but that a dynamic
mechanism is required in order to satisfy the necessities of the evolution. Finally,
since the evolution is biased by randomization, according to our interpretation, the

31

Table 10 Experimental Results for the IEEE CEC08 Benchmark

n = 100 n = 500 n = 1000
F1 3.94e + 01± 1.41e + 02 2.45e + 02± 2.42e + 02 3.76e + 02± 3.54e + 02
F2 8.97e + 01± 7.68e + 00 1.13e + 02± 7.20e + 00 1.28e + 02± 9.92e + 00
F3 8.49e + 06± 3.05e + 07 2.39e + 08± 3.40e + 08 3.35e + 08± 3.09e + 08
F4 1.89e + 02± 7.18e + 01 8.31e + 02± 1.66e + 02 1.65e + 03± 3.32e + 02
F5 8.64e− 01± 1.17e + 00 4.18e + 00± 2.89e + 00 1.36e + 01± 4.96e + 01
F6 1.01e + 01± 3.60e + 00 2.83e + 00± 2.24e + 00 4.24e + 00± 4.41e + 00
F7 −1.32e + 03± 5.09e + 01 −6.31e + 03± 2.03e + 02 −1.19e + 04± 9.28e + 02

scale factor control should also contain some randomization, as empirically shown in
many papers on DE e.g. [23], [30], [37] and [38].

5.1 Experimental Results for a Large Scale Optimization Benchmark

The proposed FACPDE has been finally tested on the large scale benchmark settled
for the 2008 IEEE Congress on Evolutionary Computation (IEEE CEC08) described
in [68]. Following the suggestions given in [68], each function has been considered in
100, 500, and 1000 dimensions. For each problem, FACPDE has been has been run
25 times (25 independent runs) and the computational budget has been fixed equal
to 5000 × n. Regarding the parameter setting, the FACPDE has been in 500 and
1000 dimensions with the same setting mentioned above. Following the same rate
n

Spop
, in 100 dimensions, the population size Spop has been set equal to 40. The final

results, expressed in terms of fitness difference between the detected value and the
actual minimum (± related standard deviation) are given for the seven test problems
contained in [68] for the three levels of dimensionality in Table 10

Although the results displayed in Table 10 are outperformed in several cases
by the algorithms which took part in the CEC08 competition, FACPDE is still
competitive in most cases. This fact is, in our opinion, very relevant since FACPDE,
unlike most of those algorithms, does not employ local search components and did
not undergo a parameter setting in order to have a high quality performance for
these specific test problems.

6 Conclusion

This paper proposes an adaptive mechanism for the scale factor in distributed dif-
ferential evolution schemes. The proposed mechanism, namely, scale factor inheri-
tance, consists of the perturbation, by means of a random number and migration,
of promising scale factor values throughout sub-populations arranged according to a
ring topology. This mechanism is integrated within a distributed differential evolution
which employs migration of those individuals demonstrating the best performance.

The resulting algorithm has been tested on a broad and various set of opti-
mization problems and then compared with two sequential differential evolution al-
gorithms and three distributed differential evolution schemes, recently proposed in
literature. Numerical results show that the proposed approach is very promising and
that the resulting algorithm displays excellent performance in terms of detected final

32

solutions, convergence speed, and robustness for all test problems and comparisons
considered in this study.

On the basis of the obtained results and an analysis of the algorithmic working
principles, some additional conclusions have been drawn. In distributed differential
evolution a cooperative/competitive adaptation of the scale factor is beneficial to al-
gorithmic performance and, more generally, the employment of multiple scale factors
factors, updating of which can greatly improve performance of the distributed algo-
rithm. In addition, a constant scale factor value is inadequate since it restricts the
amount of search moves in differential evolution (both sequential and distributed).
In other words, for a given problem there is no optimal scale factor since the optimal
setting varies during the various stages of evolution. An optimal setting dynamically
varies with distribution of the solutions within the decision space during evolution.
Although an understanding of a proper control dynamic of the scale factor variation
is not yet complete, according to our interpretation, it does not follow a progressive
increase or decrease, but takes on an oscillatory behavior. Finally, since the evolu-
tion is affected by random events, mainly in the selection of individuals composing
the moving vectors within the mutation operation, a certain randomization of the
scale factor seems to be beneficial for a successful enhancement of the differential
evolution performance.

References

1. R. Storn and K. Price, “Differential evolution - a simple and efficient adaptive scheme for
global optimization over continuous spaces,” Tech. Rep. TR-95-012, ICSI, 1995.

2. K. V. Price, R. Storn, and J. Lampinen, Differential Evolution: A Practical Approach to
Global Optimization. Springer, 2005.

3. U. K. Chakraborty, ed., Advances in Differential Evolution, vol. 143 of Studies in Com-
putational Intelligence. Springer, 2008.

4. R. Joshi and A. C. Sanderson, “Minimal representation multisensor fusion using differential
evolution,” IEEE Transactions on Systems, Man and Cybernetics, Part A, vol. 29, no. 1,
pp. 63–76, 1999.

5. C.-T. Su and C.-S. Lee, “Network reconfiguration of distribution systems using im-
proved mixed-integer hybrid differential evolution,” IEEE Transactions on Power De-
livery, vol. 18, no. 3, pp. 1022–1027, 2003.

6. J.-P. Chiou, C.-F. Chang, and C.-T. Su, “Ant direction hybrid differential evolution
for solving large capacitor placement problems,” IEEE Transactions on Power Systems,
vol. 19, no. 4, pp. 1794–1800, 2004.

7. F.-S. Wang and H.-J. Jang, “Parameter estimation of a bioreaction model by hybrid dif-
ferential evolution,” in Proceedings of the IEEE Congress on Evolutionary Computation,
vol. 1, pp. 410–417, 2000.

8. R. Storn, “Designing nonstandard filters with differential evolution,” IEEE Signal Pro-
cessing Magazine, vol. 22, no. 1, pp. 103–106, 2005.

9. R. Storn and K. Price, “Differential evolution – a simple and efficient heuristic for global
optimization over continuous spaces,” Journal of Global Optimization, vol. 11, pp. 341–
359, 1997.

10. K. Price and R. Storn, “Differential evolution: A simple evolution strategy for fast opti-
mization,” Dr. Dobb’s J. Software Tools, vol. 22, no. 4, pp. 18–24, 1997.

11. J. Liu and J. Lampinen, “On setting the control parameter of the differential evolution
algorithm,” in Proceedings of the 8th international Mendel conference on soft computing,
pp. 11–18, 2002.

12. J. Rönkkönen, S. Kukkonen, and K. V. Price, “Real-parameter optimization with dif-
ferential evolution,” in Proceedings of IEEE International Conference on Evolutionary
Computation, vol. 1, pp. 506–513, 2005.

33

13. K. Zielinski, P. Weitkemper, R. Laur, and K.-D. Kammeyer, “Parameter study for differ-
ential evolution using a power allocation problem including interference cancellation,” in
Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1857–1864, 2006.

14. D. Wolpert and W. Macready, “No free lunch theorems for optimization,” IEEE Transac-
tions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.

15. R. Gämperle, S. D. Müller, and P. Koumoutsakos, “A parameter study for differential
evolution,” in Proceedings of the Conference in Neural Networks and Applications (NNA),
Fuzzy Sets and Fuzzy Systems (FSFS) and Evolutionary Computation (EC), pp. 293–298,
WSEAS, 2002.

16. R. Mallipeddi and P. N. Suganthan, “Empirical study on the effect of population size on
differential evolution algorithm,” in Proceedings of the IEEE Congress on Evolutionary
Computation, pp. 3663–3670, 2008.

17. J. Teo, “Differential evolution with self-adaptive populations,” in Knowledge-Based In-
telligent Information and Engineering Systems, vol. 3681 of Lecture Notes in Computer
Science, pp. 1284–1290, Springer, 2005.

18. J. Teo, “Exploring dynamic self-adaptive populations in differential evolution,” Soft Com-
puting – A Fusion of Foundations, Methodologies and Applications, vol. 10, no. 8, pp. 673–
686, 2006.

19. N. S. Teng, J. Teo, and M. H. A. Hĳazi, “Self-adaptive population sizing for a tune-free
differential evolution,” Soft Computing – A Fusion of Foundations, Methodologies and
Applications, vol. 13, no. 7, pp. 709–724, 2009.

20. J. Brest and M. S. Maučec, “Population size reduction for the differential evolution algo-
rithm,” Applied Intelligence, vol. 29, no. 3, pp. 228–247, 2008.

21. V. Tirronen and F. Neri, “Differential evolution with fitness diversity self-adaptation,”
in Nature-Inspired Algorithms for Optimisation (R. Chiong, ed.), vol. 193 of Studies in
Computational Intelligence, pp. 199–234, Springer, 2009.

22. M. M. Ali and A. Törn, “Population set-based global optimization algorithms: Some modi-
fications and numerical studies,” Computer Operational Research, vol. 31, no. 10, pp. 1703–
1725, 2004.

23. S. Das, A. Konar, and U. K. Chakraborty, “Two improved differential evolution schemes for
faster global search,” in Proceedings of the 2005 conference on Genetic and evolutionary
computation, pp. 991–998, ACM, 2005.

24. J. Rönkkönen and J. Lampinen, “On using normally distributed mutation step length
for the differential evolution algorithm,” in Proceedings of Ninth International MENDEL
Conference on Soft Computing (R. Matousek and P. Osmera, eds.), pp. 11–18, 2003.

25. M. G. Omran, A. Salman, and A. P. Engelbrecht, “Self-adaptive differential evolution,” in
Computational Intelligence and Security, vol. 3801 of Lecture Notes in Computer Science,
pp. 192–199, Springer, 2005.

26. A. Salman, A. P. Engelbrecht, and M. G. Omran, “Empirical analysis of self-adaptive
differential evolution,” European Journal of Operational Research, vol. 183, no. 2, pp. 785–
804, 2007.

27. O. S. Soliman, L. T. Bui, and H. A. Abbass, “The effect of a stochastic step length on the
performance of the differential evolution algorithm,” in Proceedings of the IEEE Congress
on Evolutionary Computation, pp. 2850–2857, 2007.

28. O. S. Soliman and L. T. Bui, “A self-adaptive strategy for controlling parameters in dif-
ferential evolution,” in Proceedings of the IEEE Congress on Evolutionary Computation,
pp. 2837–2842, 2008.

29. G. Zhenyu, C. Bo, Y. Min, and C. Binggang, “Self-adaptive chaos differential evolution,”
in Advances in Natural Computation, vol. 4221 of Lecture Notes in Computer Science,
pp. 972–975, Springer, 2006.

30. J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer, “Self-adapting control param-
eters in differential evolution: A comparative study on numerical benchmark problems,”
IEEE Transactions on Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006.

31. H.-Y. Fan and J. Lampinen, “A trigonometric mutation operation to differential evolu-
tion,” Journal of Global Optimization, vol. 27, no. 1, pp. 105–129, 2003.

32. J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution algorithm,” Soft Comput-
ing - A Fusion of Foundations, Methodologies and Applications, Springer, vol. 9, pp. 448–
462, June 2005.

33. N. Noman and H. Iba, “Accelerating differential evolution using an adaptive local search,”
IEEE Transactions on Evolutionary Computation, vol. 12, no. 1, pp. 107–125, 2008.

34

34. V. Tirronen, F. Neri, T. Kärkkäinen, K. Majava, and T. Rossi, “An enhanced memetic
differential evolution in filter design for defect detection in paper production,” Evolutionary
Computation, vol. 16, pp. 529–555, 2008.

35. A. Caponio, F. Neri, and V. Tirronen, “Super-fit control adaptation in memetic differen-
tial evolution frameworks,” Soft Computing-A Fusion of Foundations, Methodologies and
Applications, vol. 13, no. 8, pp. 811–831, 2009.

36. F. Neri and V. Tirronen, “Scale factor local search in differential evolution,” Memetic
Computing Journal, vol. 1, no. 2, pp. 153–171, 2009.

37. A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution algorithm with strat-
egy adaptation for global numerical optimization,” IEEE Transactions on Evolutionary
Computation, vol. 13, pp. 398–417, 2009.

38. S. Das, A. Abraham, U. K. Chakraborty, and A. Konar, “Differential evolution with a
neighborhood-based mutation operator,” IEEE Transactions on Evolutionary Computa-
tion, vol. 13, pp. 526–553, 2009.

39. W. Kwedlo and K. Bandurski, “A parallel differential evolution algorithm,” in Proceedings
of the IEEE International Symposium on Parallel Computing in Electrical Engineering,
pp. 319–324, 2006.

40. M. Salomon, G.-R. Perrin, F. Heitz, and J.-P. Armspach, “Parallel differential evolution:
Application to 3-d medical image registration,” in Differential Evolution–A Practical Ap-
proach to Global Optimization (K. V. Price, R. M. Storn, and J. A. Lampinen, eds.),
Natural Computing Series, ch. 7, pp. 353–411, Springer, 2005.

41. D. Zaharie, “Parameter adaptation in differential evolution by controlling the population
diversity,” in Proceedings of the International Workshop on Symbolic and Numeric Algo-
rithms for Scientific Computing (D. Petcu et al, ed.), pp. 385–397, 2002.

42. D. Zaharie, “Control of population diversity and adaptation in differential evolution
algorithms,” in Proceedings of MENDEL International Conference on Soft Computing
(D.Matousek and P. Osmera, eds.), pp. 41–46, 2003.

43. D. Zaharie and D. Petcu, “Parallel implementation of multi-population differential evolu-
tion,” in Proceedings of the NATO Advanced Research Workshop on Concurrent Infor-
mation Processing and Computing, pp. 223–232, IOS Press, 2003.

44. D. Zaharie, “A multipopulation differential evolution algorithm for multimodal optimiza-
tion,” in Proceedings of Mendel International Conference on Soft Computing (R. Matousek
and P. Osmera, eds.), pp. 17–22, 2004.

45. D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and M. N. Vrahatis, “Parallel differential
evolution,” in Proceedings of the IEEE Congress on Evolutionary Computation, pp. 2023–
2029, 2004.

46. N. G. Pavlidis, D. K. Tasoulis, V. P. Plagianakos, G. Nikiforidis, and M. N. Vrahatis,
“Spiking neural network training using evolutionary algorithms,” in Proceedings of the
IEEE International Joint Conference on Neural Networks, pp. 2190–2194, 2005.

47. K. N. Kozlov and A. M. Samsonov, “New migration scheme for parallel differential evo-
lution,” in Proceedings of the International Conference on Bioinformatics of Genome
Regulation and Structure, pp. 141–144, 2006.

48. I. D. Falco, A. D. Cioppa, D. Maisto, U. Scafuri, and E. Tarantino, “Satellite image regis-
tration by distributed differential evolution,” in Applications of Evolutionary Computing,
vol. 4448 of Lectures Notes in Computer Science, pp. 251–260, Springer, 2007.

49. I. D. Falco, D. Maisto, U. Scafuri, E. Tarantino, and A. D. Cioppa, “Distributed dif-
ferential evolution for the registration of remotely sensed images,” in Proceedings of the
IEEE Euromicro International Conference on Parallel, Distributed and Network-Based
Processing, pp. 358–362, 2007.

50. I. D. Falco, U. Scafuri, E. Tarantino, and A. D. Cioppa, “A distributed differential evolution
approach for mapping in a grid environment,” in Proceedings of the IEEE Euromicro
International Conference on Parallel, Distributed and Network-Based Processing, pp. 442–
449, 2007.

51. J. Apolloni, G. Leguizamón, J. García-Nieto, and E. Alba, “Island based distributed differ-
ential evolution: An experimental study on hybrid testbeds,” in Proceedings of the IEEE
International Conference on Hybrid Intelligent Systems, pp. 696–701, 2008.

52. M. S. Nipteni, I. Valakos, and I. Nikolos, “An asynchronous parallel differential evolu-
tion algorithm,” in Proceedings of the ERCOFTAC Conference on Design Optimisation:
Methods and Application, 2006.

53. J. Lampinen, “Differential evolution - new naturally parallel approach for engineering de-
sign optimization,” in Developments in Computational Mechanics with High Performance
Computing (B. H. Topping, ed.), pp. 217–228, Civil-Comp Press, 1999.

35

54. A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution algorithm for numer-
ical optimization,” in Proceedings of the IEEE Congress on Evolutionary Computation,
vol. 2, pp. 1785–1791, 2005.

55. K. V. Price, “Mechanical engineering design optimization by differential evolution,” in
New Ideas in Optimization (D. Corne, M. Dorigo, and F. Glover, eds.), pp. 293–298,
McGraw-Hill, 1999.

56. V. Feoktistov, Differential Evolution in Search of Solutions. Springer, 2006.
57. J. Lampinen and I. Zelinka, “On stagnation of the differential evolution algorithm,” in

Proceedings of 6th International Mendel Conference on Soft Computing (P. Oŝmera, ed.),
pp. 76–83, 2000.

58. Y. S. Ong and A. J. Keane, “Meta-lamarkian learning in memetic algorithms,” IEEE
Transactions on Evolutionary Computation, vol. 8, no. 2, pp. 99–110, 2004.

59. J. Tang, M. H. Lim, and Y. S. Ong, “Diversity-adaptive parallel memetic algorithm for
solving large scale combinatorial optimization problems,” Soft Computing-A Fusion of
Foundations, Methodologies and Applications, vol. 11, no. 9, pp. 873–888, 2007.

60. A. Caponio, G. L. Cascella, F. Neri, N. Salvatore, and M. Sumner, “A fast adaptive
memetic algorithm for on-line and off-line control design of pmsm drives,” IEEE Trans-
actions on System Man and Cybernetics-part B, vol. 37, no. 1, pp. 28–41, 2007.

61. F. Neri, J. Toivanen, G. L. Cascella, and Y. S. Ong, “An adaptive multimeme algorithm for
designing HIV multidrug therapies,” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. 4, no. 2, pp. 264–278, 2007.

62. K. Zielinski and R. Laur, “Stopping criteria for differential evolution in constrained single-
objective optimization,” in Advances in Differential Evolution (U. K. Chakraborty, ed.),
vol. 143 of Studies in Computational Intelligence, pp. 111–138, Springer, 2008.

63. F. Neri and V. Tirronen, “On memetic differential evolution frameworks: a study of ad-
vantages and limitations in hybridization,” in Proceedings of the IEEE World Congress
on Computational Intelligence, pp. 2135–2142, 2008.

64. E. Alba and M. Tomassini, “Parallelism and evolutionary algorithms,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 5, pp. 443–462, 2002.

65. F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics Bulletin, vol. 1,
no. 6, pp. 80–83, 1945.

66. S. Holm, “A simple sequentially rejective multiple test procedure,” Scandinavian Journal
of Statistics, vol. 6, no. 2, pp. 65–70, 1979.

67. S. García, A. Fernández, J. Luengo, and F. Herrera, “A study of statistical techniques and
performance measures for genetics-based machine learning: accuracy and interpretability,”
Soft Computing, vol. 13, no. 10, pp. 959–977, 2008.

68. K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen, C. M. Chen, and Z. Yang,
“Benchmark functions for the CEC 2008 special session and competition on large scale
global optimization,” tech. rep., Nature Inspired Computation and Applications Labora-
tory, USTC, China, 2007.

PIV

PARALLEL RANDOM INJECTION DIFFERENTIAL
EVOLUTION

by

Matthieu Weber, Ferrante Neri and Ville Tirronen 2010

In Applications of Evolutionary Computation, volume 6024/2010 of Lecture Notes
in Computer Science, pages 471-480

Reproduced with kind permission from Springer Berlin / Heidelberg.

Parallel Random Injection Differential
Evolution⋆

Matthieu Weber, Ferrante Neri, and Ville Tirronen

Department of Mathematical Information Technology,
University of Jyväskylä, P.O. Box 35 (Agora), FI-40014, Finland
{matthieu.weber, ferrante.neri, ville.tirronen}@jyu.fi

Abstract. This paper proposes the introduction of a generator of ran-
dom individuals within the ring topology of a Parallel Differential Evo-
lution algorithm. The generated random individuals are then injected
within a sub-population. A crucial point in the proposed study is that a
proper balance between migration and random injection can determine
the success of a distributed Differential Evolution scheme. An experimen-
tal study of this balance is carried out in this paper. Numerical results
show that the proposed Parallel Random Injection Differential Evolution
seems to be a simple, robust, and efficient algorithm which can be used
for various applications. An important finding of this paper is that pre-
mature convergence problems due to an excessively frequent migration
can be overcome by the injection of random individuals. In this way, the
resulting algorithm maintains the high convergence speed properties of
a parallel algorithm with high migration but differs in that it is able to
continue improving upon the available genotypes and detect high quality
solutions.

1 Introduction

Differential Evolution (DE), see [1], is a versatile optimizer which has shown
high performance in several applications, especially continuous problems, for ex-
ample [2]. As highlighted in [3], the success of DE is contained in its implicit
self-adaptation which allows an extensive domain exploration during early stages
of the evolution and a progressive narrowing of the search within the most promis-
ing areas of the decision space. Although this mechanism is effective, it conceals
a drawback: the DE contains a limited amount of search moves which could
cause the population to fail at enhancing upon the available genotypes, thus
resulting in a stagnation condition. In order to overcome this drawback, com-
puter scientists in recent years have attempted to improve the DE performance
by modifying the basic DE. Some popular examples of this scientific trend are
contained in [4] where multiple search logics are employed, in [5] where the off-
spring are generated by combining two mating pools (one global and one local,
⋆ This research is supported by the Academy of Finland, Akatemiatutkĳa 00853, Al-

gorithmic Design Issues in Memetic Computing

respectively), and in [6] where a randomization of the parameters increases the
variability of the potential search moves.

Another popular way to enhance the DE performance is through employ-
ment of structured populations. In [7] a distributed DE scheme employing a ring
topology (the cores are interconnected in a circle and the migrations occur fol-
lowing the ring) has been proposed for the training of a neural network. In [8],
an example of DE parallelization is given for a medical imaging application. A
few famous examples of distributed DE are presented in [9] and [10]; in these
papers the migration mechanism and the algorithmic parameters are adaptively
coordinated according to criterion based on genotypical diversity. In paper [9], a
distributed DE that preserves diversity in the niches is proposed in order to solve
multi-modal optimization problems. In [11], a distributed DE characterized by
a ring topology and the migration of individuals with the best performance, to
replace random individuals of the neighbor sub-population, has been proposed.
Following similar logic, paper [12] proposes a distributed DE where the compu-
tational cores are arranged according to a ring topology and, during migration,
the best individual of a sub-population replaces the oldest member of the neigh-
boring population. In [13] a distributed DE has been designed for the image
registration problem. In these papers, a computational core acts as a master
by collecting the best individuals detected by the various sub-populations run-
ning in slave cores. The slave cores are connected in a grid and a migration is
arranged among neighbor sub-populations. In [14], a distributed DE which mod-
ifies the scheme proposed in [11] has been presented. In [14], the migration is
based on a probabilistic criterion depending on five parameters. It is worthwhile
mentioning that some parallel implementations of sequential (without structured
population) DE are also available in literature, see [15]. An investigation of DE
parallelization is given in [16].

This paper focuses on distributed DE and in particular on the ring topology
scheme presented in [11]. The main novelty in Parallel Differential Evolution
(PDE) described in [11] consists of the migration scheme and its related prob-
ability: the DE is independently performed on each sub-population composing
the ring and, at the end of each generation, with a certain probability the indi-
vidual with the best performance is copied in the neighbor sub-population and
replaces a randomly selected individual from the target sub-population. In [11] a
compromise value of migration probability is proposed. In this paper we propose
a novel algorithm based on PDE, namely Parallel Random Injection Differential
Evolution (PRIDE). The PRIDE algorithm includes within the ring topology a
random generator of candidate solutions: at the end of each generation a random
individual replaces a randomly selected individual from a sub-population of the
ring topology. This simple mechanism, if properly used, can have a major impact
on the algorithmic performance of the original PDE scheme. In addition, the re-
sulting effect of migration (with its probability levels) and random injection is a
very interesting topic and has thus been analyzed in this paper.

The remainder of this article is organized in the following way. Section 2
describes the working principles of DE, PDE and PRIDE. Section 3 shows the

experimental setup and numerical results of the present study. Section 4 gives
the conclusions of this paper.

2 Parallel Random Injection Differential Evolution

In order to clarify the notation used throughout this chapter we refer to the
minimization problem of an objective function f (x), where x is a vector of n
design variables in a decision space D.

At the beginning of the optimization process Spop individuals are pseudo-
randomly sampled with a uniform distribution function within the decision space
D (for simplicity, the term random will be used instead of pseudo-random in the
reminder of this paper). The Spop individuals constituting the populations are
distributed over the m sub-populations composing the ring. Each sub-population
is composed of Spop

m individuals.
Within each sub-population a standard DE, following its original definition,

is performed. At each generation, for each individual xi of the Spop, three indi-
viduals xr, xs and xt are randomly extracted from the population. According to
the DE logic, a provisional offspring x′off is generated by mutation as:

x′off = xt + F (xr − xs) (1)

where F ∈ [0, 1+[is a scale factor which controls the length of the exploration
vector (xr − xs) and thus determines how far from point xi the offspring should
be generated. With F ∈ [0, 1+[, it is meant here that the scale factor should be
a positive value which cannot be much greater than 1, see [1]. While there is no
theoretical upper limit for F , effective values are rarely greater than 1.0. The
mutation scheme shown in Equation (1) is also known as DE/rand/1. It is worth
mentioning that there exist many other mutation variants, see [4].

When the provisional offspring has been generated by mutation, each gene
of the individual x′off is exchanged with the corresponding gene of xi with a
uniform probability and the final offspring xoff is generated:

xoff ,j =
{
xoff ,j if rand (0, 1) ≤ CR
x′i,j otherwise

(2)

where rand (0, 1) is a random number between 0 and 1; j is the index of the gene
under examination.

The resulting offspring xoff is evaluated and, according to a one-to-one spawn-
ing strategy, it replaces xi if and only if f(xoff) ≤ f(xi); otherwise no replace-
ment occurs. It must be remarked that although the replacement indexes are
saved one by one during generation, actual replacements occur all at once at the
end of the generation.

According to its original implementation, PDE uses the Parallel Virtual Ma-
chine (PVM), allowing multiple computers (called nodes) to be organized as a
cluster and exchange arbitrary messages. PDE is organized around one master

node and m sub-populations running each on one node, and organized as a uni-
directional ring. It must be noted that although the logical topology is a ring
which does not contain the master node, the actual topology is a star, where
all communications (i.e., the migrations of individuals) are passing through the
master.

Each sub-population runs a regular DE algorithm while the master node
coordinates the migration of individuals between sub-populations. On each gen-
eration, the sub-population has a given probability φ to send a copy of its best
individual to its next neighbor sub-population in the ring. When migration oc-
curs, the migrating individual replaces a randomly selected individual belonging
to the target sub-population.

The PRIDE introduces an apparently minor modification to the PDE scheme.
At the end of each generation, according to a certan probability ψ a random
individual is generated and inserted within a randomly selected sub-population
by replacing a randomly selected individual. However, the replacement cannot
involve the individual with the best performance in that sub-population, which
is saved in an elitist fashion. For the sake of clarity a scheme highlighting the
working principles of PRIDE is shown in Figure 1.

In order to understand the

Migrate xbest with a φ probability

Inject a random new individual with a ψ
probability to a randomly selected
sub-population

Random
individual
generator

Sub-population

Fig. 1. Working principle of the Parallel
Random Injection Differential Evolution

rationale behind the proposed
mechanism, it is important to an-
alyze the concept of parallelism
and migration in a PDE scheme.
As highlighted above, in panmic-
tic DE, stagnation occurs when
the algorithm does not manage
to improve upon any solution of
its population for a prolonged
number of generations. In other
words, for each stage of the op-
timization process, DE can gen-
erate a limited amount of ex-
ploratory moves. If these moves
are not enough for generating
new promising solutions, the search
can be heavily compromised.

Thus, in order to enhance the DE performance, alternative search moves
should support the original scheme and promote a successful continuation of the
optimization process. The use of multiple populations in distributed DE algo-
rithms allows an observation of the decision space from various perspectives and,
most importantly, decreases the risk of stagnation since each sub-population im-
poses a high exploitation pressure. In addition, the migration mechanism ensures
that solutions with a high performance are included within the sub-populations
during their evolution. This fact is equivalent to modifying the set of search
moves. If the migration privileges the best solutions, the new search moves pro-

mote detection of new promising search directions and thus allow the DE search
structure to be periodically “refurbished”. Thus, the migration is supposed to
mitigate risk of stagnation of the DE sub-populations and to enhance global
algorithmic performance.

Migration in PDE has a very interesting effect. Low migration probability
values (low values of φ) make the algorithm rather explorative, i.e. the PDE
slowly improves upon the available solutions and eventually detects individu-
als characterized by a (relatively) high performance. On the other hand, high
migration probability values produce very quick improvements during the early
stages of the optimization but eventually cause a premature convergence. The
final values detected in these cases may likely have an unsatisfactory perfor-
mance. This fact can be easily explained as the consequence of a diversity loss
due to a high migration: the best individuals are too often copied into the target
sub-populations thus causing an excessively aggressive/exploitative algorithmic
behavior. In order to obtain an algorithm which produces high quality results
with a reasonably good convergence speed, in [11] a compromise on the φ value
(subsequent to a tuning) has been implemented.

This paper proposes the idea of making use of the highly exploitative behavior
of a PDE with a high migration probability, but to inhibit premature convergence
by including new genotypes within the ring structure. The algorithmic philoso-
phy employed here is a balance between two opposite and conflicting actions: the
migration exploits available search directions by promoting quick improvements
upon available genotypes (φ action) while the random injection mechanism is
supposed to generate completely new genotypes which assist the PDE framework
in testing novel promising search directions (ψ action) thus avoiding diversity
loss. Analogous to the balance between exploration and exploitation in Evolu-
tionary Algorithms, a proper balance between φ and ψ actions determine the
success of the proposed PRIDE algorithm.

3 Experimental Results

The test problems listed in Table 1 have been considered in this study.
The rotated version of some of the test problems listed in Table 1 have been

included into the benchmark set. These rotated problems have been generated
through the multiplication of the vector of variables by a sparse orthogonal ro-
tation matrix, created by composing n rotations of random angles (uniformly
sampled in [−π, π]), one around each of the n axes of the search space. The
boundaries of rotated problems are kept the same as for the non-rotated prob-
lems. In total, ten test problems have been considered in this study with n = 500.
The choice of the relatively high dimensionality for the test problems in this study
is due to the fact that the advantages of PDE-based algorithms with respect to
panmictic DE is not evident for low dimensional problems, see [17].

In order to prove the effectiveness of the random injection and its relation-
ship with the migration constant, for each test problem the PDE and PRIDE
algorithms have been run with φ equal to 0.2 (suggested value in [11]), 0.5, and

Table 1. Test Problems

Test
Problem

Function Decision Space Features

Ackley
−20 + e + 20 exp

(
− 0.2
n

√∑
n

i=1
x2
i

)
− exp
(

1
n

∑
n

i=1
cos(2π · xi)xi

) [−1, 1]n multimodal,
non-separable

Alpine
∑
n

i=1
|xi sin xi + 0.1xi| [−10, 10]n multimodal,

separable

DeJong’s
Sphere ‖x‖2 [−5.12, 5.12]n unimodal,

separable

Michalewicz −
∑n

i=1
sin xi
(

sin
(
i·x2
i
π

))20
[0, π]n multimodal,

separable

Rastrigin 10n+
∑n

i=0

(
x2
i − 10 cos(2πxi)

)
[−5.12, 5.12]n multimodal,

separable

Schwefel −
∑
n

i=1
xi sin
(√

|xi|
)

[−500, 500]n multimodal,
separable

1 respectively. On the basis of a preliminary tuning, we decided to set ψ = 1
for all the versions of PRIDE contained in this paper. All the algorithms in
this study have been run with populations of 200 individuals divided into 5 sub-
populations of 40 individuals each. Regarding scale factor and crossover rate,
F has been set equal to 0.7 and CR equal to 0.1 for all the algorithms in this
study. Each algorithm has undergone 50 independent runs for each test problem;
rotated problems have been rotated using the same matrix on each run. Each
single run has been performed for 500, 000 fitness evaluations.

Table 2 shows the average of the final results detected by each algorithm± the
standard deviations, with the 500 dimension case. Results are organized in PDE
vs PRIDE pairs. The best results of each pairwise comparison are highlighted
in bold face. The best overall results for each problem are also underlined. With
the notation PDE-φ and PRIDE-φ we mean the PDE and PRIDE algorithms,
respectively, running with the corresponding φ value. In order to prove statis-
tical significance of the results, the Wilcoxon Rank-sum test has been applied
according to the description given in [18] for a confidence level of 0.95. Table 3
shows results of the test. A “+” indicates the case in which PRIDE statistically
outperforms its corresponding PDE variant; a “=” indicates that a pairwise com-
parison leads to success of the Wilcoxon test, i.e., the two algorithms have the
same performance; a “-” indicates that PRIDE is outperformed. In order to carry
out a numerical comparison of the convergence speed performance for each test
problem, the average final fitness value returned by the best performing algo-
rithm (of each pair PDE vs PRIDE under consideration) G has been considered.
Subsequently, the average fitness value at the beginning of the optimization pro-
cess J has also been computed. The threshold value THR = J −0.95(J−G) has
then been calculated. The value THR represents 95% of the decay in the fitness
value of the algorithm displaying the best performance. If during a certain run
an algorithm succeeds in reaching the value THR, the run is said to be successful.
For each test problem, the average amount of fitness evaluations n̄e required for

Table 2. Fitness ± standard deviation

PDE-0.2 PRIDE-0.2 PDE-0.5
Ackley 1.62e− 01±1.67e− 02 2.86e− 01± 1.92e− 02 1.31e− 01± 5.49e− 02
Alpine 8.88e + 01±1.26e + 01 1.22e + 02± 1.36e + 01 8.45e+ 01± 1.64e + 01
DeJong’s Sphere 1.92e + 01±3.57e + 00 4.82e + 01± 6.00e + 00 1.17e + 01±5.17e + 00
Michalewicz −3.06e + 02±5.68e + 00 −2.95e + 02± 6.50e + 00 −2.86e+ 02± 9.56e + 00
Rastrigin 1.91e + 03±9.94e + 01 1.92e + 03± 9.04e + 01 2.24e+ 03± 1.60e + 02
Schwefel −1.30e+ 05± 3.17e + 03 −1.32e + 05±2.35e + 03 −1.23e+ 05± 4.11e + 03
Rt. Ackley 2.15e− 01±2.50e− 02 3.67e− 01± 3.33e− 02 1.72e− 01±5.72e− 02
Rt. Michalewicz −1.76e + 02±7.76e + 00 −1.76e + 02± 5.86e + 00 −1.52e+ 02± 7.48e + 00
Rt. Rastrigin 1.95e + 03±1.51e + 02 2.09e + 03± 1.06e + 02 2.34e+ 03± 1.96e + 02
Rt. Schwefel −1.65e+ 05± 4.74e + 03 −1.65e + 05±4.78e + 03 −1.53e+ 05± 6.10e + 03

PRIDE-0.5 PDE-1.0 PRIDE-1.0
Ackley 1.24e− 01±1.17e− 02 2.80e− 01± 9.08e− 02 9.99e− 02±1.10e− 02
Alpine 5.56e + 01±7.21e + 00 1.59e + 02± 2.47e + 01 4.08e + 01±5.34e + 00
DeJong’s Sphere 1.32e + 01± 2.35e + 00 4.85e + 01± 1.89e + 01 8.41e + 00±1.70e + 00
Michalewicz −3.55e + 02±5.45e + 00 −2.56e + 02± 9.29e + 00 −3.83e + 02±4.21e + 00
Rastrigin 1.40e + 03±7.85e + 01 2.82e + 03± 1.88e + 02 1.17e + 03±6.07e + 01
Schwefel −1.48e + 05±1.94e + 03 −1.12e + 05± 4.54e + 03 −1.57e + 05±1.86e + 03
Rt. Ackley 1.95e− 01± 2.66e− 02 3.11e− 01± 8.27e− 02 1.65e− 01±2.40e− 02
Rt. Michalewicz −2.09e + 02±4.57e + 00 −1.34e + 02± 7.50e + 00 −2.24e + 02±4.47e + 00
Rt. Rastrigin 1.67e + 03±9.08e + 01 2.95e + 03± 2.32e + 02 1.51e + 03±6.93e + 01
Rt. Schwefel −1.71e + 05±4.55e + 03 −1.36e + 05± 6.61e + 03 −1.74e + 05±4.35e + 03

Table 3. Wilcoxon Rank-Sum test (PDE vs. corresponding PRIDE)

PDE-0.2 PDE-0.5 PDE-1.0
Ackley - = +
Alpine - + +
DeJong’s Sphere - - +
Michalewicz - + +
Rastrigin = + +
Schwefel + + +
Rt. Ackley - - +
Rt. Michalewicz = + +
Rt. Rastrigin - + +
Rt. Schwefel = + +

each algorithm to reach THR has been computed. Subsequently, the Q-test (Q
stands for Quality) described in [3] has been applied. For each test problem and
each algorithm, the Q measure is computed as Q = n̄e

R where the robustness R
is the percentage of successful runs. It is clear that, for each test problem, the
smallest value equals the best performance in terms of convergence speed. The
value “∞” means that R = 0, i.e., the algorithm never reached the THR. Results
of the Q-test are given in Table 4. Best results are highlighted in bold face.

Table 4. Q-test

PDE-0.2 PRIDE-0.2 PDE-0.5 PRIDE-0.5 PDE-1.0 PRIDE-1.0
Ackley 3.75e+03 4.59e+03 3.43e+03 3.29e+03 7.19e+03 3.05e+03
Alpine 3.84e+03 4.74e+03 3.33e+03 3.22e+03 ∞ 2.93e+03
DeJong’s Sphere 2.28e+03 2.82e+03 1.69e+03 1.92e+03 1.75e+03 1.63e+03
Michalewicz 4.36e+03 8.51e+03 ∞ 4.39e+03 ∞ 4.25e+03
Rastrigin 3.74e+03 4.18e+03 ∞ 3.64e+03 ∞ 3.61e+03
Schwefel 4.27e+03 4.30e+03 ∞ 4.02e+03 ∞ 4.03e+03
Rt. Ackley 3.79e+03 5.79e+03 3.40e+03 3.70e+03 5.60e+03 3.39e+03
Rt. Michalewicz 4.57e+03 4.84e+03 ∞ 4.30e+03 ∞ 4.19e+03
Rt. Rastrigin 3.87e+03 4.60e+03 6.44e+04 3.61e+03 ∞ 3.49e+03
Rt. Schwefel 4.06e+03 4.43e+03 4.73e+04 3.91e+03 ∞ 3.92e+03

Results can be analyzed from two complementary perspectives: by consider-
ing the pairwise comparisons for fixed values of migration constant φ and by
considering the entire experimental setup. By analyzing the pairwise compar-
isons, it is clear that in the case φ = 0.2 the random injection does not lead to
any improvement; on the contrary in most cases it leads to a worsening of the
algorithmic performance and a slowdown in the convergence. In the case φ = 0.5,
employment of random injection is advisable since it succeeds at improving upon
the PDE performance in seven cases out of the ten considered in this study. How-
ever, not in all cases is this extra component beneficial. Finally in the case φ = 1,
there is a clear benefit in the employment of random injection in terms of both
final results and convergence speed. In particular Q-test results show that the
PDE algorithm in the comparison PDE-1.0 vs PRIDE-1.0 displays many ∞ val-
ues, i.e. it is not competitive with respect to its PRIDE variant. This fact can
be seen as a confirmation that the introduction of novel (random) individuals
within the ring topology can be an efficient countermeasure against premature
convergence.

An analysis of the entire experimental setup shows that the PRIDE with
φ = ψ = 1 is a very efficient algorithm which outperforms (at least for those
tests carried out in this paper) all the other algorithms in this study, in par-
ticular the PDE with its most promising parameter tuning (φ = 0.2). More
specifically the PRIDE, analogous to the PDE-1.0, tends to reach improvements
very quickly during early stages of the evolution, but instead of converging pre-
maturely continues generating solutions with a high performance and eventually
detects good results. According to our interpretation, this algorithmic behavior
is due to an efficient balance in the exploitation of promising search directions

resulting from the frequent migrations and testing of unexplored areas of the de-
cision space resulting from the random injections. Both these components within
a DE structure seem to compensate for the lack of potential search moves and
the stagnation inconvenience.

For sake of clarity an example of the performance trend is shown in Fig-
ure 2(a). In order to highlight the benefit of random injection, the trend of the
average fitness ± standard deviation is shown in Figure 2(b).

-160000
-140000
-120000
-100000
-80000
-60000
-40000
-20000

 0

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

PDE-0.2
PDE-0.5
PDE-1.0

PRIDE-0.2
PRIDE-0.5
PRIDE-1.0

(a)

-160000
-140000
-120000
-100000
-80000
-60000
-40000
-20000

 0

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

PDE-0.2
PRIDE-1.0

(b)

Fig. 2. Performance trend (Schwefel)

4 Conclusion

This paper proposes the generation of random solutions during the evolution
of a Parallel Differential Evolution algorithm previously proposed in literature.
These random solutions are intended to propose new promising search directions
to the sub-populations during the optimization process. An analysis of the algo-
rithmic performance, dependant on the value of migration probability, has been
carried out. Experimental results show that while random injections do not lead
to benefits for low values of migration probabilities, they could be extremely
beneficial in conjunction with high migration probabilities. In particular, an al-
gorithm combining frequent migrations and random injections seems very robust
and efficient for various problems and seems to outperform the original Parallel
Differential Evolution regardless of its parameter setting. An important finding
of this research is the relationship between high migration and random injections
which can be seen as parametrization, in relation to Parallel Differential Evolu-
tion, of the general concept of balance between exploration and exploitation in
Evolutionary Computation.

References

1. Price, K.V., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach
to Global Optimization. Springer (2005)

2. Tirronen, V., Neri, F., Kärkkäinen, T., Majava, K., Rossi, T.: An enhanced
memetic differential evolution in filter design for defect detection in paper pro-
duction. Evolutionary Computation 16 (2008) 529–555

3. Feoktistov, V. In: Differential Evolution in Search of Solutions. Springer (2006)
83–86

4. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with
strategy adaptation for global numerical optimization. IEEE Transactions on Evo-
lutionary Computation 13 (2009) 398–417

5. Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution with
a neighborhood-based mutation operator. IEEE Transactions on Evolutionary
Computation (2009) to appear.

6. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control
parameters in differential evolution: A comparative study on numerical benchmark
problems. IEEE Transactions on Evolutionary Computation 10(6) (2006) 646–657

7. Kwedlo, W., Bandurski, K.: A parallel differential evolution algorithm. In: Pro-
ceedings of the IEEE International Symposium on Parallel Computing in Electrical
Engineering. (2006) 319–324

8. Salomon, M., Perrin, G.R., Heitz, F., Armspach, J.P.: Parallel differential evolu-
tion: Application to 3-d medical image registration. In Price, K.V., Storn, R.M.,
Lampinen, J.A., eds.: Differential Evolution–A Practical Approach to Global Op-
timization. Natural Computing Series. Springer (2005) 353–411

9. Zaharie, D.: Parameter adaptation in differential evolution by controlling the pop-
ulation diversity. In D. Petcu et al, ed.: Proceedings of the International Workshop
on Symbolic and Numeric Algorithms for Scientific Computing. (2002) 385–397

10. Zaharie, D., Petcu, D.: Parallel implementation of multi-population differential evo-
lution. In: Proceedings of the NATO Advanced Research Workshop on Concurrent
Information Processing and Computing, IOS Press (2003) 223–232

11. Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Parallel differen-
tial evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation.
(2004) 2023–2029

12. Kozlov, K.N., Samsonov, A.M.: New migration scheme for parallel differential
evolution. In: Proceedings of the International Conference on Bioinformatics of
Genome Regulation and Structure. (2006) 141–144

13. De Falco, I., Della Cioppa, A., Maisto, D., Scafuri, U., Tarantino, E.: Satellite image
registration by distributed differential evolution. In: Applications of Evolutionary
Computing. Volume 4448 of Lectures Notes in Computer Science. Springer (2007)
251–260

14. Apolloni, J., Leguizamón, G., García-Nieto, J., Alba, E.: Island based distributed
differential evolution: An experimental study on hybrid testbeds. In: Proceedings of
the IEEE International Conference on Hybrid Intelligent Systems. (2008) 696–701

15. Nipteni, M.S., Valakos, I., Nikolos, I.: An asynchronous parallel differential evolu-
tion algorithm. In: Proceedings of the ERCOFTAC Conference on Design Optimi-
sation: Methods and Application. (2006)

16. Lampinen, J.: Differential evolution - new naturally parallel approach for engineer-
ing design optimization. In Topping, B.H., ed.: Developments in Computational
Mechanics with High Performance Computing, Civil-Comp Press (1999) 217–228

17. Weber, M., Neri, F., Tirronen, V.: Distributed differential evolution with
explorative-exploitative population families. Genetic Programming and Evolvable
Machines 10(4) (2009) 343–371

18. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin
1(6) (1945) 80–83

PV

PARALLEL DIFFERENTIAL EVOLUTION WITH ENDEMIC
RANDOMIZED CONTROL PARAMETERS

by

Matthieu Weber, Ferrante Neri and Ville Tirronen 2010

In Proceedings of the Fourth International Conference on Bioinspired
Optimization Methods and their Applications, pages 19–29

Reproduced with kind permission from Proceedings of the Fourth International
Conference on Bioinspired Optimization Methods and their Applications, BIOMA

2010, published by the Jožef Stefan Institute, Ljubljana, Slovenia..

PARALLEL DIFFERENTIAL EVOLUTION
WITH ENDEMIC RANDOMIZED
CONTROL PARAMETERS

Matthieu Weber
University of Jyväskylä
matthieu.weber@jyu.fi

Ferrante Neri∗
University of Jyväskylä
ferrante.neri@jyu.fi

Ville Tirronen
University of Jyväskylä
ville.tirronen@jyu.fi

Abstract This paper proposes the use of endemic control parameters within a
Parallel Differential Evolution algorithm. The Differential Evolution
running at each subpopulation is associated with randomly initialized
scale factor and crossover rate, which are then repeatedly updated dur-
ing the optimization process. Numerical results show that the Endemic
Randomized Control Parameter Parallel Differential Evolution seems
to be a simple, robust, and efficient algorithm suited for various appli-
cations. An important finding of this study is that randomized initial
values of both control parameters and repeated updates of the scale fac-
tor are beneficial to the optimization process, whereas repeated updates
of the crossover rate are detrimental.

1. Introduction
Differential Evolution (DE), see [8], is an optimization algorithm which

has shown high performance in various types of applications particularly

∗This work is supported by Academy of Finland, Akatemiatutkija 130600, Algorithmic Design
Issues in Memetic Computing.

1

2

when applied to continuous problems, for example [11]. DE is implicitly
self-adaptive (see [3]), which allows it to extensively explore the problem
space during the early stages of the evolution and progressively narrow
the search within the most promising areas of the decision space. Al-
though this mechanism is effective, there is a hidden drawback: the DE
contains a limited amount of search moves and the population could fail
at enhancing upon the available genotypes, thus resulting in a stagnation
condition. In order to overcome this drawback, computer scientists in
recent years have attempted to improve the DE performance by modify-
ing the basic DE. Some popular examples of this scientific trend can be
found in [9] where multiple search strategies are employed, in [2] where
the offspring are generated by combining two mating pools (one global
and one local, respectively), and in [1] where a randomization of the
parameters increases the variability of the potential search moves.

Another popular method of enhancing the DE performance is through
employment of structured populations. In [6], a distributed DE scheme
employing a ring topology (the cores are interconnected in a circle and
the migrations occur following the ring) has been proposed for the train-
ing of a neural network. [10] proposes a distributed DE characterized by
a ring topology and the migration of individuals with the best perfor-
mance to replace random individuals of the neighbor subpopulation; an
application of this algorithm for training of a neural network has been
presented in [7].

This paper focuses on distributed DE and in particular on the ring
topology scheme presented in [10]. The main novelty in Parallel Differen-
tial Evolution (PDE) described in [10] consists of the migration scheme
and the related probability: the DE is independently performed on each
subpopulation composing the ring and, at the end of each generation,
with a certain probability the individual with the best performance is
copied into the neighbor subpopulation and replaces a randomly selected
individual from the target subpopulation. In [10], a compromise value
of migration probability is proposed. In this paper we propose a novel
algorithm based on PDE, namely Endemic Randomized Control Param-
eters Parallel Differential Evolution. Instead of the fixed values of the
control parameters used in PDE, ERCPDE uses pseudo-randomly gener-
ated values, inspired by the Self-Adapting Control Parameters method
described in [1]. Scale factors and crossover rates are endemic (local)
to each subpopulation and they are updated over time according to a
probabilistic scheme.

The remainder of this article is organized in the following way. Sec-
tion 2 describes the working principles of DE, PDE and ERCPDE. Sec-

Parallel Differential Evolution with Endemic RandomizedControl Parameters3

tion 3 shows the experimental setup and numerical results of the present
study. Section 4 gives the conclusions of this paper.

2. Endemic Randomized Control Parameters
Parallel Differential Evolution

In order to clarify the notation used throughout this paper we refer
to the minimization problem of an objective function f (x), where x is
a vector of n design variables in a decision space D.

At the beginning of the optimization process Spop individuals are
pseudo-randomly sampled with a uniform distribution function within
the decision spaceD (for simplicity, the term random will be used instead
of pseudo-random in the reminder of this paper). The Spop individuals
constituting the populations are distributed over m subpopulations Pk,
k = 1, . . . ,m, organized into a unidirectional ring. Each subpopulation
is therefore composed of Spop/m individuals.

Within each subpopulation a original DE, following its original defi-
nition, is performed. At each generation, for each individual xi of the
Spop , three individuals xr, xs and xt are randomly extracted from the
population. According to the DE logic, a provisional offspring x′off is
generated by mutation as:

x′off = xt + F (xr − xs) (1)

where F ∈ [0, 1+] is a scale factor which controls the length of the
exploration vector (xr − xs) and thus determines how far from point xi

the offspring should be generated. With F ∈ [0, 1+], it is meant here
that the scale factor should be a positive value which cannot be much
greater than 1, see [8]. While there is no theoretical upper limit for
F , effective values are rarely greater than 1.0. The mutation scheme
shown in Equation (1) is also known as DE/rand/1. It is worthwhile
mentioning that there exist many other mutation variants, see [9].

When the provisional offspring has been generated by mutation, each
gene of the individual x′off is exchanged with the corresponding gene of
xi with a uniform probability and the final offspring xoff is generated:

xoff ,j =

{
x′off ,j if rand (0, 1) ≤ CR
xi,j otherwise

(2)

where rand (0, 1) is a random number between 0 and 1; j is the index of
the gene under examination.

The resulting offspring xoff is evaluated and, according to a one-to-
one spawning strategy, it replaces xi if and only if f(xoff) ≤ f(xi);
otherwise no replacement occurs. It must be remarked that although

4

the replacement indexes are saved one by one during generation, actual
replacements occur all at once at the end of the generation.

In PDE, each subpopulation Pk runs the DE algorithm described
above. On each generation, the subpopulation has a given probability φ
to send a copy of its best individual to its next neighbor subpopulation
in the ring. When a migration occurs, the migrating individual replaces
a randomly selected individual belonging to the target subpopulation,
with an exception being made of the subpopulation’s best performing
individual, which can never be replaced. For the sake of clarity a scheme
highlighting the working principles of ERCPDE is shown in Figure 1.

In PDE, the control parame-

Migrate xbest with a φ probability

Sub-population

CRk

Fk

.

F1
CR1

Fm
CRm

Figure 1. Working principle of the ER-
CPDE

ters of DE (namely the scale fac-
tor F and the crossover rate CR)
are global for all the subpopula-
tions, meaning that whichever sub-
population an individual x belongs
to at a given time the same values
of F and CR are used when the
DE algorithm is applied to it. In
ERCPDE however, each subpop-
ulation Pk has its own scale factor
Fk and crossover rate CRk. Thus,

when an individual x resides within population Pk, DE is applied to it
using the local Fk and CRk control parameters. During the initializa-
tion phase of the algorithm, the values of Fk and CRk are randomly set
in each subpopulation, such that Fk ∈ [Fl, Fl + Fu] and CRk ∈ [0, 1].
Additionally, the values of Fk and CRk of each subpopulation vary in
time; more precisely, on each generation Fk and CRk have a probability
to be updated of τ1 and τ2, respectively, see [1]:

Fk =
{
Fl + Fu × rand1, if rand2 < τ1

Fk, otherwise (3)

CRk =
{
rand3, if rand4 < τ2
CRk, otherwise (4)

where randj , j ∈ {1, 2, 3, 4}, are uniform pseudo-random values between
0 and 1; τ1 and τ2 are constant values which represent the probabilities
that parameters are updated, Fl and Fu are constant values which rep-
resent the minimum value that F could take and the maximum variable
contribution to F , respectively.

To understand the rationale behind the proposed mechanism, it is
important to analyze the concept of parallelism and migration in a PDE

Parallel Differential Evolution with Endemic RandomizedControl Parameters5

scheme. In the classical DE, for each stage of the optimization process
the algorithm can generate only a limited amount of exploratory moves.
If these moves are not enough for generating new promising solutions,
stagnation occurs as the algorithm does not manage to improve upon
any solution of its population for a prolonged number of generations.

The use of multiple populations in distributed DE algorithms allows
an observation of the decision space from various perspectives and, most
importantly, decreases the risk of stagnation. In addition, the migration
mechanism ensures that solutions with a high performance are intro-
duced into the subpopulations during their evolution, which modifies
the set of search moves and promote detection of new promising search
directions. Thus, the migration is supposed to mitigate the risk of stag-
nation of the DE subpopulations and to enhance the global algorithmic
performance.

Since the number of search moves allowed to an individual depends
not only on other individuals in the population, but also on the values of
the scale factor and crossover rate, allowing for different values of these
two control parameters within the framework of a structured population
such as the one used by PDE leads to a higher number of possible search
moves, which increases the explorative capacity of the algorithm and
leads to a quicker improvement. This paper proposes to achieve such a
setup by assigning multiple values of the scale factor and the crossover
rate to each subpopulation in PDE and by updating them over time so as
to yet increase the number of search moves a given individual is allowed.

3. Experimental Results
The test problems listed in Table 1 have been considered in this study.

The rotated version of some of the test problems listed in Table 1 have
been included into the benchmark set. These rotated problems have
been generated through the multiplication of the vector of variables by a
randomly generated sparse orthogonal rotation matrix, created by com-
posing n rotations of random angles (uniformly sampled in [−π, π]), one
around each of the n axes of the search space. In total, ten test problems
have been considered in this study with n = 500.

In order to prove the effectiveness of varying control parameters, PDE
has been used as a reference algorithm and run with a value of φ set to
0.2 (suggested value in [10]). For the sake of comparison, the jDE algo-
rithm described in [1] has been run on the same function, but preliminary
experiments show it to be clearly inferior to PDE (as is illustrated in
Figure 2 on page 9) and is therefore not included in the results pre-
sented below. ERCPDE has been run with the same value of φ; Fl and

6

Table 1. Test Problems

Test
Problem

Function Decision
Space

Optimum

Ackley
−20 + e+ 20 exp

(
− 0.2

n

√∑n

i=1
x2
i

)
− exp

(
1
n

∑n

i=1
cos(2π · xi)xi

) [−1, 1]n 0

Alpine
∑n

i=1
|xi sin xi + 0.1xi| [−10, 10]n 0

Sphere ‖x‖2 [−5.12, 5.12]n 0

Michalewicz −
∑n

i=1
sin xi

(
sin

(
i·x2
i

π

))20

[0, π]n unknown

Rastrigin 10n+
∑n

i=0

(
x2
i − 10 cos(2πxi)

)
[−5.12, 5.12]n 0

Schwefel −
∑n

i=1
xi sin

(√
|xi|
)

[−500, 500]n −418.9829n

Fu were set to 0.1 and 0.9, respectively. Regarding the values of τ1 and
τ2, two versions are presented here. The first version, indicated with
ERCPDE-CR+F, has τ1 = 0.1 and τ2 = 0.1, the second indicated with
ERCPDE-F has τ1 = 0.1 and τ2 = 0. In the last case, crossover rates
are randomly sampled values and remain unchanged for the duration of
the optimization process.

All the algorithms in this study have been run with populations of 200
individuals divided into 5 subpopulations of 40 individuals each, a setup
which, according to our preliminary study, leads to the best average
performance over the test functions. Each algorithm has undergone
50 independent runs for each test problem. Each single run has been
performed for 500, 000 fitness evaluations. Table 2 shows the average of
the final results detected by each algorithm ± the standard deviations,
with the 500 dimension case. The algorithm achieving the best result
for each test problem is highlighted in bold face.

In order to prove the statistical significance of the results, the Wilcoxon
Rank-sum test has been applied according to the description given in [12]

Table 2. Average Fitness ± standard deviation at the end of the optimization

PDE ERCPDE CR+F ERCPDE-F

Ackley 1.62e− 01± 1.67e− 02 1.52e− 02± 7.50e− 03 6.47e− 03± 4.88e− 03

Alpine 8.88e+ 01± 1.26e+ 01 7.05e+ 00± 3.95e+ 00 1.98e + 00± 2.36e + 00

DeJong 1.92e+ 01± 3.57e+ 00 3.37e− 01± 5.80e− 01 8.82e− 02± 1.95e− 01

Michalewicz −3.06e+ 02± 5.68e+ 00 −3.11e+ 02± 1.49e+ 01 −3.51e + 02± 3.58e + 01

Rastrigin 1.91e+ 03± 9.94e+ 01 1.08e+ 03± 1.42e+ 02 8.64e + 02± 1.38e + 02

Schwefel −1.30e+ 05± 3.17e+ 03 −1.33e+ 05± 3.27e+ 03 −1.50e + 05± 1.14e + 04

Rt. Ackley 2.15e− 01± 2.50e− 02 4.45e− 02± 9.44e− 03 3.36e− 02± 1.03e− 02

Rt. Michalewicz −1.76e+ 02± 7.76e+ 00 −1.56e+ 02± 7.13e+ 00 −1.83e + 02± 2.58e + 01

Rt. Rastrigin 1.95e+ 03± 1.51e+ 02 1.16e+ 03± 1.55e+ 02 9.61e + 02± 1.65e + 02

Rt. Schwefel −1.65e+ 05± 4.74e+ 03 −1.54e+ 05± 6.07e+ 03 −1.66e + 05± 8.11e + 03

Parallel Differential Evolution with Endemic RandomizedControl Parameters7

Table 3. Results of the Wilcoxon Rank-Sum test (Comparison with ERCPDE-F)

PDE ERCPDE-CR+F

Ackley + +

Alpine + +

DeJong + +

Michalewicz + +

Rastrigin + +

Schwefel + +

Rt. Ackley + +

Rt. Michalewicz = +

Rt. Rastrigin + +

Rt. Schwefel = +

for a confidence level of 0.95. Table 3 shows results of the test. A “+” in-
dicates the case in which ERCPDE-F statistically outperforms, for the
corresponding test problem, the algorithm mentioned in that column
and a “=” indicates that a pairwise comparison leads to success of the
Wilcoxon test, i.e., the two algorithms have the same performance. The
results presented in Table 3 show that ERCPDE-F outperforms PDE in
eight out of the ten test problems, and has comparable results in two
cases. ERCPDE-F also outperforms ERCPDE-CR+F on all ten test
problems.

In order to strengthen the statistical significance of the results, the
Holm procedure [5] has been applied by following the description in [4].
Considering the results in Table 2, the three algorithms under analysis
have been ranked based on their average performance over the ten test
problems, assigning to each algorithm a score Ri for i = 0, . . . , NA − 1
(where NA is the number of algorithms under analysis, NA = 3 in our
case). With the calculated Ri values, the ERCPDE-F has been taken as
the reference algorithm. The values zi have been calculated as

zi = (R0 −Ri)/
√
NA(NA + 1)/(6NTP)

where R0 is the rank of ERCPDE-F and NTP is the number of test
problems in consideration (NTP = 10 in our case). The corresponding
cumulative normal distribution values pi corresponding to the zi values
have been calculated and compared with the corresponding α/i where α
is the confidence threshold, set to 0.05 in our case. Table 4 displays zi val-

Table 4. Results of the Holm procedure (Comparison with ERCPDE-F)

i Optimizer z p α/i Hypothesis

2 PDE -4.02e+00 2.85e-05 2.50e-02 Rejected

1 ERCPDE CR+F -2.68e+00 3.65e-03 5.00e-02 Rejected

8

ues, pi values, and corresponding α/i. Moreover, it is indicated whether
the null-hypothesis (when the two algorithms have indistinguishable per-
formances) is “Rejected” i.e., the ERCPDE-F statistically outperforms
the algorithm under consideration, or “Accepted” if the distribution of
values can be considered the same (no algorithm is outperformed). The
Holm procedure confirms that the ERCPDE-F displays a significantly
better performance with respect to the other algorithms in this study.

In order to carry out a numerical comparison of the convergence speed
performance for each test problem, the average fitness values J and G
returned by the best performing algorithm respectively at the beginning
and at the end of the optimization process have been computed. The
threshold value THR = J − 0.95(J − G) has then been calculated and
represents 95% of the decay in the fitness value of the best performing
algorithm. If during a certain run an algorithm succeeds in reaching
the value THR, the run is said to be successful. For each test problem,
the average amount of fitness evaluations n̄e required for each algorithm
to reach THR has been computed. Subsequently, the Q-test (Q stands
for Quality) described in [3] has been applied. For each test problem
and each algorithm, the Q measure is computed as: Q = n̄e/R where
the robustness R is the percentage of successful runs. It is clear that,
for each test problem, the smallest value equals the best performance in
terms of convergence speed. The value “∞” means that R = 0, i.e., the
algorithm never reached the THR. Table 5 shows the Q values for the ten
problems; the best results are highlighted in bold face. They show that
the ERCPDE-F variant of the proposed ERCPDE algorithm has the best
performance in terms of convergence speed in nine cases out of the ten
test problems considered. Most importantly, the ERCPDE-F algorithm,
throughout all considered test problems, is never characterized by an∞
value of Q-measure. This fact demonstrates that the proposed algorithm
is always competitive with the other algorithms in the benchmark and is

Table 5. Results of the Q-test

PDE ERCPDE-CR+F ERCPDE-F

Ackley 4.91e+03 2.24e+03 1.96e+03

Alpine 8.14e+04 2.18e+03 2.04e+03

DeJong 2.49e+03 9.27e+02 9.67e+02

Michalewicz ∞ 7.00e+04 5.69e+03

Rastrigin ∞ 3.64e+03 2.71e+03

Schwefel ∞ ∞ 4.86e+03

Rt. Ackley 8.39e+03 2.35e+03 2.05e+03

Rt. Michalewicz 7.44e+03 ∞ 5.21e+03

Rt. Rastrigin ∞ 3.88e+03 2.75e+03

Rt. Schwefel 4.35e+03 1.23e+04 3.48e+03

Parallel Differential Evolution with Endemic RandomizedControl Parameters9

-160000

-140000

-120000

-100000

-80000

-60000

-40000

-20000

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

PDE
jDE

ERCPDE-F+CR
ERCPDE-F

Figure 2. Performance trend (Schwefel)

never outperformed. In summary, the algorithmic behavior of ERCPDE-
F is extremely promising in terms of algorithmic robustness.

Results show that endemic control parameters are an improvement
over the original PDE algorithm. In addition, the fact that ERCPDE-F
is superior to ERCPDE-CR+F indicates that repeated updates of the
scale factor is beneficial to the performance of the algorithm, whereas
the same kind of update applied to crossover rate is detrimental. In this
sense, our study partly confirms and extends the self-adaptive control
parameters strategy presented in [1] to PDE systems. The fact that
in our case a crossover rate update is detrimental to the algorithmic
performance is, according to our conjectures, explained by the fact that it
appears to lead to an excessively frequent variation in the search strategy
of each subpopulation, thus not allowing for an efficient exploitation of
the available genotypes. Instead, as results show, it makes the algorithm
too explorative, which seems to lead to stagnation (see Figure 2).

4. Conclusion
This paper proposes a novel distributed algorithm based on a parallel

differential evolution scheme previously proposed in literature, namely
Endemic Randomized Control parameters Parallel Differential Evolu-
tion. Each population is characterized by its own control parameter
values. The individuals displaying the best performance migrate across
the subpopulations, thus conforming to various search strategies. The
endemic (belonging to the subpopulation) control parameters are up-
dated over time according to probabilistic criteria. Numerical results
show that the proposed algorithmic strategy leads to significant im-
provements in terms of algorithmic performance with respect to original
Parallel Differential Evolution. In addition, the scheme employing only
the update of the scale factor seems more promising with respect to the

10

scheme that updates both control parameters, which seems to indicate
that while Parallel Differential Evolution structure requires a certain
degree of randomization in order to highly enhance its performance, ex-
cessive randomization may lead to a too explorative algorithmic behavior
and therefore stagnation.

References
[1] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer. Self-adapting

control parameters in differential evolution: A comparative study on numer-
ical benchmark problems. IEEE Transactions on Evolutionary Computation,
10(6):646–657, 2006.

[2] S. Das, A. Abraham, U. K. Chakraborty, and A. Konar. Differential evolution
with a neighborhood-based mutation operator. IEEE Transactions on Evolu-
tionary Computation, 13(3):526–553, 2009.

[3] V. Feoktistov. Differential Evolution in Search of Solutions, pages 83–86.
Springer, 2006.

[4] S. Garćıa, A. Fernández, J. Luengo, and F. Herrera. A study of statistical tech-
niques and performance measures for genetics-based machine learning: accuracy
and interpretability. Soft Computing, 13(10):959–977, 2008.

[5] S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics, 6(2):65–70, 1979.

[6] W. Kwedlo and K. Bandurski. A parallel differential evolution algorithm. In
Proceedings of the IEEE International Symposium on Parallel Computing in
Electrical Engineering, pages 319–324, 2006.

[7] N. G. Pavlidis, D. K. Tasoulis, V. P. Plagianakos, G. Nikiforidis, and M. N.
Vrahatis. Spiking neural network training using evolutionary algorithms. In
Proceedings of the IEEE International Joint Conference on Neural Networks,
pages 2190–2194, 2005.

[8] K. V. Price, R. Storn, and J. Lampinen. Differential Evolution: A Practical
Approach to Global Optimization. Springer, 2005.

[9] A. K. Qin, V. L. Huang, and P. N. Suganthan. Differential evolution algorithm
with strategy adaptation for global numerical optimization. IEEE Transactions
on Evolutionary Computation, 13:398–417, 2009.

[10] D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and M. N. Vrahatis. Parallel
differential evolution. In Proceedings of the IEEE Congress on Evolutionary
Computation, pages 2023–2029, 2004.

[11] V. Tirronen, F. Neri, T. Kärkkäinen, K. Majava, and T. Rossi. An enhanced
memetic differential evolution in filter design for defect detection in paper pro-
duction. Evolutionary Computation, 16:529–555, 2008.

[12] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin,
1(6):80–83, 1945.

PVI

COMPONENT DECOMPOSITION IN PARALLEL
DIFFERENTIAL EVOLUTION

by

Matthieu Weber, Ferrante Neri and Ville Tirronen 2010

In Proceedings of the Fourth International Conference on Bioinspired
Optimization Methods and their Applications, pages 43–53

Reproduced with kind permission from Proceedings of the Fourth International
Conference on Bioinspired Optimization Methods and their Applications, BIOMA

2010, published by the Jožef Stefan Institute, Ljubljana, Slovenia..

COMPONENT DECOMPOSITION IN
PARALLEL DIFFERENTIAL EVOLUTION

Matthieu Weber
University of Jyväskylä
matthieu.weber@jyu.fi

Ferrante Neri∗
University of Jyväskylä
ferrante.neri@jyu.fi

Ville Tirronen
University of Jyväskylä
ville.tirronen@jyu.fi

Abstract This paper proposes decomposing the search space of large-scale prob-
lems into lower-dimensionality subspaces, and associating each of these
to one subpopulation of a Parallel Differential Evolution algorithm.
Each subpopulation is running a modified Differential Evolution algo-
rithm, where the crossover function is limited to components of the
subpopulation’s associated subspace. According to numerical results
the Parallel Component Decomposition Differential Evolution seems to
be a clear improvement over the original Parallel Distributed Evolution,
making it a simple, robust, and efficient algorithm suited for various ap-
plications.

1. Introduction
Differential Evolution (DE), see [7], has shown high performance in

various types of optimization problems, and more particularly in contin-
uous problems, for example [10]. Like all optimization algorithms, DE
suffers from the so-called “curse of dimensionality”, which refers to the

∗This work is supported by Academy of Finland, Akatemiatutkija 130600, Algorithmic Design
Issues in Memetic Computing.

1

2

fact that the complexity of a multidimensional problem increases with
its dimensionality in an exponential fashion. In [12] we have shown that
the structured population characterizing the Parallel Differential Evo-
lution (PDE) described in [9] is one enhancement that allows to break
this curse: instead of running the DE over a single population, PDE
runs multiple DE algorithms over multiple subpopulations which are
organized in a unidirectional ring; with a given probability, the best in-
dividual of a subpopulation is migrated to the next subpopulation in the
ring, where it replaces a random individual. In order to enhance PDE,
[12] then proposes to use two families of subpopulations, the first one
running a regular PDE while the second runs independent instances of
the population-size reduction DE proposed in [2]; after an observation
period, individuals from the second family are injected into the subpop-
ulations of the first family.

The randomization of DE’s control parameter during the course of
the optimization process, such as in [1], is another strategy which allows
to improve the performance of the algorithm. In [13], we propose to
blend the randomization of the control parameters with the migration
mechanism of the PDE, resulting in a variant of the latter where the scale
factor used by the DE at one given subpopulation is migrated (with a
small perturbation) along with the best individual.

The rationale behind these variants of PDE and DE lies in the fact
that DE contains a limited amount of search moves and the population
could fail at enhancing upon the available genotypes thus resulting in
stagnation. The variation over time of the control parameters or the
injection of independently optimized individuals increases the number of
available search moves, thus allowing for a more exhaustive exploration
of the problem space.

Yet another possibility of enhancing the DE is to subdivide the search
space into subspaces and optimize only the components of the solution
that belong to one subspace, while keeping the others constant. This
approach, which effectively breaks the curse of dimensionality by lo-
cally reducing the dimensionality of the problem, was first proposed in
[6]. Here each component of the solution was optimized separately by a
dedicated subpopulation, while the fitness of one solution was evaluated
over the whole set of components by taking random individuals from the
other subpopulations in order to reconstruct a whole solution; this pro-
cess was called cooperative co-evolution. This decomposition scheme is,
however, reputed to be inefficient on non-separable functions (see [6, 15])
i.e., where the variables of the problem interact with each other. To over-
come this problem, [17] uses randomly selected sub-components which
change over time, [15] proposes using a set of weights, itself evolved us-

Component Decomposition in Parallel Differential Evolution 3

ing DE, to select the sub-components, [16] makes use of the DE with
neighborhood search, while [11] selects components showing the highest
variance across the population as the ones to be optimized at a given
time. The three above cited articles made use of non-standard DE algo-
rithms in order to yet increase their efficiency.

The algorithm proposed in this paper, the Parallel Component De-
composition Differential Evolution (PaCoDDE) borrows the structured
population and best individual migration from the Parallel Differen-
tial Evolution (PDE) described in [9] and merges it with a static sub-
component decomposition: the search space is decomposed into sub-
spaces of near-equal dimensionality, and each subspace is assigned to
one subpopulation. The subpopulations focus on optimizing their solu-
tions within their own subspaces, while keeping the rest of the compo-
nents constant. On every generation, each subpopulation has a given
probability of migrating its best-performing individual to the next sub-
population in the ring, allowing to the optimized sub-components to
incrementally propagate the other subpopulations.

The remainder of this article is organized in the following way. Sec-
tion 2 describes the working principles of DE, PDE and PaCoDDE. Sec-
tion 3 shows the experimental setup and numerical results of the present
study. Section 4 gives the conclusions of this paper.

2. Parallel Component Decomposition
Differential Evolution

In order to clarify the notation used throughout this paper we refer
to the minimization problem of an objective function f (x), where x is
a vector of n design variables in a decision space D.

At the beginning of the optimization process, Spop individuals are
pseudo-randomly sampled with a uniform distribution function within
the decision space D (for simplicity, the term random will be used in-
stead of pseudo-random in the reminder of this paper). The Spop individ-
uals constituting the populations are distributed over m subpopulations
Pk, k = 1, . . . ,m arranged in a unidirectional ring. Each subpopulation
is therefore composed of Spop/m individuals. Additionally, the set of
dimensions of the search space D is decomposed into m subsets Ck of
approximately equal sizes nk, with the constraints that

∑m
k=1 nk = n and

∀(k1, k2) ∈ {1, . . . ,m}2 , k1 6= k2, Ck1 ∩ Ck2 = ∅. In other words, Ck rep-
resents the sub-component of x that is to be optimized by subpopulation
Pk.

Within each subpopulation Pk, a modified DE is performed. At each
generation, for each individual xi of Pk, three individuals xr, xs and xt

4

are randomly extracted from the subpopulation. According to the DE
logic, a provisional offspring x′off is generated by mutation as:

x′off = xt + F (xr − xs) (1)

where F ∈ [0, 1+] is a scale factor which controls the length of the
exploration vector (xr − xs) and thus determines how far from point xi

the offspring should be generated. With F ∈ [0, 1+], it is meant here
that the scale factor should be a positive value which cannot be much
greater than 1, see [7]. The mutation scheme shown in Equation (1) is
also known as DE/rand/1. It is worthwhile mentioning that there exist
many other mutation variants, see [8].

When the provisional offspring has been generated by mutation, each
gene xi,j , j ∈ Ck of xi is exchanged with the corresponding gene of x′off
with a uniform probability and the final offspring xoff is generated:

xoff ,j =

{
x′off ,j if j ∈ Ck and rand (0, 1) ≤ CR
xi,j otherwise

(2)

where rand (0, 1) is a random number between 0 and 1; j = 1, . . . , n is the
index of the gene under examination. This modified crossover function
always keeps the parent’s genes which are not part of the considered
sub-component, and actually crosses over only the genes of the offspring
and of the parent which are part of the sub-component.

The resulting offspring xoff is

Migrate xbest with a φ probability

Sub-population
.

Cm

Ck

C1

Figure 1. Working principle of the Pa-
CoDDE

evaluated and, according to a one-
to-one spawning strategy, replaces
xi if and only if f(xoff) ≤ f(xi);
otherwise no replacement occurs.
It must be remarked that although
the replacement indexes are saved
one by one during generation, ac-
tual replacements occur all at once
at the end of the generation.

In PDE, each subpopulations Pk

runs a regular DE algorithm, which
is replaced in PaCoDDE by the modified DE algorithm described above.
On each generation, the subpopulation has a given probability φ to send
a copy of its best individual to its next neighbor subpopulation in the
ring. When a migration occurs, the migrating individual replaces a ran-
domly selected individual belonging to the target subpopulation, with
an exception being made of the subpopulation’s best performing indi-
vidual, which can never be replaced. For the sake of clarity, a schema
highlighting the working principles of PaCoDDE is shown in Figure 1.

Component Decomposition in Parallel Differential Evolution 5

Table 1. Test Problems

Test
Problem

Function Decision
Space

Optimum

Ackley
−20 + e+ 20 exp

(
− 0.2

n

√∑n

i=1
x2
i

)
− exp

(
1
n

∑n

i=1
cos(2π · xi)xi

) [−1, 1]n 0

Alpine
∑n

i=1
|xi sin xi + 0.1xi| [−10, 10]n 0

Sphere ‖x‖2 [−5.12, 5.12]n 0

Michalewicz −
∑n

i=1
sin xi

(
sin

(
i·x2
i

π

))20

[0, π]n unknown

Rastrigin 10n+
∑n

i=0

(
x2
i − 10 cos(2πxi)

)
[−5.12, 5.12]n 0

Schwefel −
∑n

i=1
xi sin

(√
|xi|
)

[−500, 500]n −418.9829n

Although PaCoDDE may seem crude due to the fact that it makes
use of a static decomposition of the search space while the modern
above-mentioned algorithms are based on random or dynamic decom-
position schemes, its specificity lies in that the individuals showing the
best performance are traveling between subpopulations during the run
of the algorithm, being optimized incrementally over each of their sub-
components, and revisiting each subpopulation multiple times. The mi-
gration rate must therefore be high enough to ensure that these individu-
als are not allowed to become excessively specialized within one subspace
while being far from optimal when considering the whole search space.

3. Experimental Results
The test problems listed in Table 1 have been considered in this study.

The rotated version of some of them have been included into the bench-
mark set. These rotated problems have been generated through the
multiplication of the vector of variables by a randomly generated sparse
orthogonal rotation matrix, created by composing n rotations of ran-
dom angles (uniformly sampled in [−π, π]), one around each of the n
axes of the search space. While the six unrotated functions are separa-
ble, the rotated versions are not. In total, ten test problems have been
considered in this study with n = 500.

To prove the effectiveness of component decomposition within the
framework of a PDE algorithm, PaCoDDE has been compared to the
original PDE and to the DEwSAcc described in [17]. In both PDE and
PaCoDDE the control parameters of DE, namely the scale factor F and
the crossover rate CR have been set to 0.7 and 0.3 respectively, in accor-
dance with the suggestions given in [19] and [18]. The migration rate φ

6

-160000

-140000

-120000

-100000

-80000

-60000

-40000

-20000

 0

 0 100000 200000 300000 400000 500000

Fi
tn

es
s

Fitness evaluations

PDE
DEwSAcc
PaCoDDE

Figure 2. Example of a performance trend (Schwefel)

was set to 0.2, as suggested in [9]. The τ parameter of DEwSAcc was set
to 0.2

√
2/
√

500, as recommended in [17] for 500-dimensional problems.
It has to be mentioned that DEwSAcc, in addition to search space de-
composition, uses multiple mutation schemes and self-adaptive control
parameters, a variation on the original DE which in itself improves per-
formance of the algorithm compared to the original DE. PaCoDDE, on
the contrary, uses a single mutation scheme and static control parameter
values, as does PDE.

All the algorithms in this study have been run with populations of
200 individuals. In PDE and PaCoDDE, these individuals are orga-
nized into 5 subpopulations of 40 individuals, a setup which, according
to our preliminary study, leads to the best average performance over
the test functions. For DEwSAcc, a single population of 200 individuals
is used. The search space was decomposed as follows. The dimen-
sions of the problems, indexed from 1 to 500, were split into 5 intervals
Ck = {100k − 99, . . . , 100k} for k = 1, . . . , 5. Each interval Ck was then
assigned to subpopulation Pk. Each algorithm has undergone 50 inde-
pendent runs for each test problem. Each single run has been performed
for 500, 000 fitness evaluations. Table 2 shows the average of the final
results detected by each algorithm ± the standard deviations. The al-
gorithm achieving the best result for each test problem is highlighted in
bold face. An example of the performance trend is shown in Figure 2.

To prove the statistical significance of the results, the Wilcoxon Rank-
sum test has been applied according to the description given in [14] for
a confidence level of 0.95. Table 3a shows results of the test. A “+”
indicates a case where PaCoDDE statistically outperforms, for the cor-
responding test problem, the algorithm mentioned in that column, a

Component Decomposition in Parallel Differential Evolution 7

Table 2. Average Fitness ± standard deviation at the end of the optimization process

PDE DEwSAcc PaCoDDE

Ackley 1.62e− 01± 1.67e− 02 4.22e− 02± 9.85e− 03 5.44e− 02± 5.80e− 03

Alpine 8.88e+ 01± 1.26e+ 01 7.07e+ 01± 1.74e+ 01 1.97e + 01± 3.05e + 00

Sphere 1.92e+ 01± 3.57e+ 00 1.51e + 00± 5.68e− 01 2.42e+ 00± 4.55e− 01

Michalewicz −3.06e+ 02± 5.68e+ 00 −2.52e+ 02± 1.04e+ 01 −4.18e + 02± 3.18e + 00

Rastrigin 1.91e+ 03± 9.94e+ 01 1.57e+ 03± 2.24e+ 02 7.84e + 02± 4.48e + 01

Schwefel −1.30e+ 05± 3.17e+ 03 −1.27e+ 05± 6.91e+ 03 −1.59e + 05± 2.12e + 03

Rt.Ackley 2.15e− 01± 2.50e− 02 8.36e− 02± 1.26e− 02 1.41e− 01± 2.10e− 02

Rt.Michalewicz −1.76e+ 02± 7.76e+ 00 −1.48e+ 02± 4.90e+ 00 −2.55e + 02± 4.93e + 00

Rt.Rastrigin 1.95e+ 03± 1.51e+ 02 2.50e+ 03± 2.32e+ 02 1.19e + 03± 5.06e + 01

Rt. Schwefel −1.65e+ 05± 4.74e+ 03 −1.25e+ 05± 4.54e+ 03 −1.90e + 05± 2.81e + 03

“−” indicates that PaCoDDE is outperformed by the algorithm it is
compared to, and a “=” indicates that a pairwise comparison leads to
success of the Wilcoxon test i.e., that the two algorithms have the same
performance. The results presented in Table 3a show that PaCoDDE
outperforms PDE for all ten test problems. It moreover outperforms
DEwSAcc in seven cases out of the ten.

To strengthen the statistical significance of the results, the Holm pro-
cedure [5] has been applied by following the description in [4]. Consider-
ing the results in Table 2, the three algorithms under analysis have been
ranked on the basis of their average performance calculated over the ten
test problems, assigning to each algorithm a score Ri for i = 0, . . . , NA−1
(where NA is the number of algorithms under analysis, NA = 3 in our
case). With the calculated Ri values, the PaCoDDE has been taken as
the reference algorithm. The values zi have then been calculated as

zi = (R0 −Ri)/
√
NA(NA + 1)/(6NTP)

where R0 is the rank of PaCoDDE and NTP is the number of test prob-
lems in consideration (NTP = 10 in our case). The cumulative normal
distribution values pi corresponding to the zi values have then been cal-
culated and compared with the corresponding α/i values where α is the
confidence threshold, set to 0.05 in our case. Table 3b displays zi values,
pi values, and corresponding α/i. Moreover, it is indicated whether the
null-hypothesis (when the two algorithms have indistinguishable per-
formances) is “Rejected” i.e., the PaCoDDE statistically outperforms
the algorithm under consideration, or “Accepted” if the distribution of
values can be considered the same (no algorithm is outperformed). The
Holm procedure thus confirms that the PaCoDDE performs significantly
better than the other algorithms in this study.

To carry out a numerical comparison of the convergence speed perfor-
mance for each test problem, the average fitness values J and G returned

8

Table 3a. Wilcoxon Rank-Sum test
(Comparison with PaCoDDE)

PDE DEwSAcc

Ackley + -

Alpine + +

Sphere + -

Michalewicz + +

Rastrigin + +

Schwefel + +

Rt. Ackley + -

Rt. Michalewicz + +

Rt. Rastrigin + +

Rt. Schwefel + +

Table 3b. Results of the Holm proce-
dure (Comparison with PaCoDDE)

i 2 1

Optimizer PDE DEwSAcc

z -2.68e+00 -2.01e+00

p 3.65e-03 2.21e-02

α/i 2.50e-02 5.00e-02

Hypothesis Rejected Rejected

Table 4. Results of the Q-test

PDE DEwSAcc PaCoDDE

Ackley 4.41e+03 2.96e+03 3.42e+03

Alpine 9.98e+03 5.35e+03 3.61e+03

Sphere 2.38e+03 1.42e+03 2.06e+03

Michalewicz ∞ ∞ 4.41e+03

Rastrigin ∞ 2.48e+05 3.92e+03

Schwefel ∞ ∞ 3.62e+03

Rt. Ackley 4.88e+03 3.03e+03 4.01e+03

Rt. Michalewicz ∞ ∞ 4.18e+03

Rt. Rastrigin ∞ 2.47e+05 3.94e+03

Rt. Schwefel ∞ ∞ 3.33e+03

by the best performing algorithm respectively at the beginning and at
the end of the optimization process have been computed. The threshold
value THR = J − 0.95(J −G) has then been calculated and represents
95% of the decay in the fitness value of the best performing algorithm. If
during a certain run an algorithm succeeds in reaching the value THR,
the run is said to be successful. For each test problem, the average
amount of fitness evaluations n̄e required for each algorithm to reach
THR has been computed. Subsequently, the Q-test (Q stands for Qual-
ity) described in [3] has been applied. For each test problem and each
algorithm, the Q measure is computed as: Q = n̄e/R where the robust-
ness R is the percentage of successful runs. It is clear that, for each
test problem, the smallest value equals the best performance in terms
of convergence speed. The value “∞” means that R = 0, i.e., the algo-
rithm never reached the THR. Table 4 shows the Q values for the ten
problems and the best results are highlighted in bold face. These show
that the PaCoDDE has the best performance in terms of convergence
speed in seven cases out of the ten test problems considered. Most
importantly, the PaCoDDE algorithm, throughout all considered test
problems, is never characterized by an∞ value of the Q-measure, which

Component Decomposition in Parallel Differential Evolution 9

demonstrates that the proposed algorithm is always competitive with
the other algorithms in the benchmark and is never outperformed. In
summary, the algorithmic behavior of PaCoDDE is extremely promising
in terms of algorithmic robustness.

Results show that sub-component decomposition of the search space
applied to PDE is an improvement over the original algorithm. This
confirms the results presented in [6] about search space decomposi-
tion and sub-component optimization, and extends them to structured-
population DE schemes.

4. Conclusion
This paper proposes an improved variant of the Parallel Differential

Evolution for high-dimensionality problems, namely Parallel Component
Decomposition Differential Evolution. The search space of the prob-
lem is decomposed into disjoint subspaces, each of which is associated
to one subpopulation of a Parallel Differential Evolution. Each sub-
population runs a modified Differential Evolution algorithm, where the
crossover function limits its action on the considered individual to the
components belonging to the associated subspace. Individuals display-
ing the best performance are then given the possibility to migrate to
the neighboring subpopulation, where another of their sub-component
is optimized. Numerical results show that the proposed algorithmic logic
leads to significant improvements in terms of algorithmic performance
with respect to standard Parallel Differential Evolution. Despite the
fact that our algorithm employs a single mutation scheme, static control
parameter values and a static sub-component decomposition, on average
it outperforms the DEwSAcc algorithm which employs multiple muta-
tion schemes, self-adaptive control parameters and a random, dynamic
decomposition scheme. The integration of such features into a Parallel
Differential Evolution framework seems to be a promising research path.

References

[1] J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer. Self-adapting
control parameters in differential evolution: A comparative study on numer-
ical benchmark problems. IEEE Transactions on Evolutionary Computation,
10(6):646–657, 2006.

[2] J. Brest and M. S. Maučec. Population size reduction for the differential evolu-
tion algorithm. Applied Intelligence, 29(3):228–247, 2008.

[3] V. Feoktistov. Differential Evolution in Search of Solutions, pages 83–86.
Springer, 2006.

[4] S. Garca, A. Fernndez, J. Luengo, and F. Herrera. A study of statistical tech-
niques and performance measures for genetics-based machine learning: accuracy

10

and interpretability. Soft Computing, 13(10):959–977, 2008.

[5] S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics, 6(2):65–70, 1979.

[6] M. A. Potter and K. A. De Jong. A cooperative coevolutionary approach to
function optimization. In Proceedings of the Third Conference on Parallel Prob-
lem Solving from Nature, pages 249–257. Springer-Verlag, 1994.

[7] K. V. Price, R. Storn, and J. Lampinen. Differential Evolution: A Practical
Approach to Global Optimization. Springer, 2005.

[8] A. K. Qin, V. L. Huang, and P. N. Suganthan. Differential evolution algorithm
with strategy adaptation for global numerical optimization. IEEE Transactions
on Evolutionary Computation, 13:398–417, 2009.

[9] D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and M. N. Vrahatis. Parallel
differential evolution. In Proceedings of the IEEE Congress on Evolutionary
Computation, pages 2023–2029, 2004.

[10] V. Tirronen, F. Neri, T. Kärkkäinen, K. Majava, and T. Rossi. An enhanced
memetic differential evolution in filter design for defect detection in paper pro-
duction. Evolutionary Computation, 16:529–555, 2008.

[11] Y. Wang, B. Li, and X. Lai. Variance priority based cooperative co-evolution
differential evolution for large scale global optimization. In Evolutionary Com-
putation, 2009. CEC ’09. IEEE Congress on, pages 1232–1239, May 2009.

[12] M. Weber, F. Neri, and V. Tirronen. Distributed differential evolution with
explorative-exploitative population families. Genetic Programming and Evolv-
able Machines, 10(4):343–371, 2009.

[13] M. Weber, F. Neri, and V. Tirronen. Scale factor inheritance mechanism in
distributed differential evolution. Soft Computing, 2009.

[14] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin,
1(6):80–83, 1945.

[15] Z. Yang, K. Tang, and X. Yao. Differential evolution for high-dimensional func-
tion optimization. In Proceedings of the IEEE Congress on Evolutionary Com-
putation, pages 3523–3530, 2007.

[16] Z. Yang, K. Tang, and X. Yao. Large scale evolutionary optimization using
cooperative coevolution. Information Sciences, 178(15):2985–2999, 2008.

[17] A. Zamuda, J. Brest, B. Bošković, and V. Žumer. Large scale global optimization
using differential evolution with self-adaptation and cooperative co-evolution. In
Proceedings of the IEEE World Congress on Computational Intelligence, pages
3719–3726, 2008.

[18] K. Zielinski and R. Laur. Stopping criteria for differential evolution in con-
strained single-objective optimization. In U. K. Chakraborty, editor, Advances
in Differential Evolution, volume 143 of Studies in Computational Intelligence,
pages 111–138. Springer, 2008.

[19] K. Zielinski, P. Weitkemper, R. Laur, and K.-D. Kammeyer. Parameter study
for differential evolution using a power allocation problem including interference
cancellation. In Proceedings of the IEEE Congress on Evolutionary Computa-
tion, pages 1857–1864, 2006.

PVII

SHUFFLE OR UPDATE PARALLEL DIFFERENTIAL
EVOLUTION FOR LARGE SCALE OPTIMIZATION

by

Matthieu Weber, Ferrante Neri and Ville Tirronen 2010

In Special Issue of Soft Computing on Scalability of Evolutionary Algorithms and
other Metaheuristics for Large Scale Continuous Optimization Problems, to

appear

Reproduced with kind permission from Springer Berlin / Heidelberg.

Soft Computing manuscript No.
(will be inserted by the editor)

Matthieu Weber · Ferrante Neri · Ville
Tirronen

Shuffle Or Update Parallel Differential
Evolution for Large Scale Optimization

Received: date / Accepted: date

Abstract This paper proposes a novel algorithm for large scale optimiza-
tion problems. The proposed algorithm, namely Shuffle Or Update Parallel
Differential Evolution (SOUPDE) is a structured population algorithm char-
acterized by sub-populations employing a Differential Evolution logic. The
sub-populations quickly exploit some areas of the decision space, thus drasti-
cally and quickly reducing the fitness value in the highly multi-variate fitness
landscape. New search logics are introduced into the sub-population func-
tioning in order to avoid a diversity loss and thus premature convergence.
Two simple mechanisms have been integrated in order to pursue this aim.
The first, namely shuffling, consists of randomly rearranging the individu-
als over the sub-populations. The second consists of updating all the scale
factors of the sub-populations.

This research is supported by the Academy of Finland, Akatemiatutkija 130600,
Algorithmic Design Issues in Memetic Computing.

Matthieu Weber
Tel.: +358-14-2603056
E-mail: matthieu.weber@jyu.fi

Ferrante Neri
Tel.: +358-14-2602764
E-mail: ferrante.neri@jyu.fi

Ville Tirronen
Tel.: +358-14-2604987
E-mail: ville.tirronen@jyu.fi

University of Jyväskylä
Department of Mathematical Information Technology
P.O. Box 35 (Agora)
40014 University of Jyväskylä
Finland
Fax: +358-14-2604981

2

The proposed algorithm has been run on a set of various test problems
for five levels of dimensionality and then compared to three popular meta-
heuristics. Rigorous statistical and scalability analyses are reported in this
article. Numerical results show that the proposed approach significantly out-
performs the meta-heuristics considered in the benchmark and has a good
performance despite the high dimensionality of the problems.

The proposed algorithm has a good balance between exploitation and ex-
ploration and succeeds to have a good performance over the various dimen-
sionality values and test problems present in the benchmark. It succeeds at
outperforming the reference algorithms considered in this study. In addition,
the scalability analysis proves that with respect to a standard Differential
Evolution, the proposed SOUPDE algorithm enhances its performance while
the dimensionality grows.

Keywords Differential Evolution · Distributed Algorithms · Large Scale
Optimization · Randomization · Scale Factor Update · Shuffling Mechanism

1 Introduction

According to the common sense, for a given problem characterized by di-
mensionality n, an increase in the dimensionality results into an increase of
the problem difficulty. Clearly, this increase is not linear with respect to the
dimensionality but follows an exponential rule. In other words, if we dou-
ble the dimensionality of a problem we do not just double its difficulty. The
problem difficulty would result increased by many times. Without getting
into a mathematical proof, we can consider an optimization problem char-
acterized by a flat fitness landscape and a small basin of attraction within
a hypercube whose side is 1

100 of the side of the entire domain. Under these
conditions, we can consider this optimization problem to be solved when the
optimization algorithm employed samples at least one point within the basin
of attraction. If n = 1, the basin of attraction is 1

100 of the search domain,
i.e. on average, a simple random search algorithm would need to sample 100
points before detecting the basin of attraction. This means that the problem
for n = 1 is fairly easy. If n = 2, a random search algorithm would need
10000 points before solving the problem. If n = 100, it can easily be checked
that a random search would need 10200 points to solve the problem. Thus, for
n = 100, the same problem, which is easy for lower dimensionality, becomes
extremely hard.

Although trivial, this example can be enlightening in order to understand
the difficulty of an optimization algorithms for highly dimensional problems
and the so called “curse of dimensionality”, i.e. the deterioration in the al-
gorithmic performance, as the dimensionality of the search space increases,
see [1]. However, the design of algorithms capable to handle highly multi-
variate fitness landscapes, also known as Large Scale Optimization Problems
(LSOP), is crucially important for many real-world optimization problems.
For example, in structural optimization an accurate description of complex
spatial objects might require the formulation of a LSOP; similarly such a

3

situation also occurs in scheduling problems, see [2]. Another important ex-
ample of a class of real-world LSOPs is the inverse problem chemical kinetics
studied in [3] and [4]. Unfortunately, when an exact method cannot be ap-
plied, LSOPs can turn out to be very difficult to solve. As a matter of fact,
due to high dimensionality, algorithms which perform a neighborhood search
(e.g. Hooke-Jeeves Algorithm) might require an unreasonably high number
of fitness evaluations at each step of the search while population based algo-
rithms are likely to either prematurely converge to suboptimal solutions, or
stagnate due to an inability to generate new promising search directions. In
other words, many metaheuristics (even the most modern and sophisticated)
that perform well for problems characterized by a low dimensionality can
often fail to find good near optimal solutions to high-dimensional problems.

Since the employment of optimization algorithms can lead to a pro-
hibitively high computational cost of the optimization run without the detec-
tion of a satisfactory result, it is crucially important to detect an algorithmic
solution that allows good results by performing a relatively low amount of
objective function evaluations. In the literature various studies have been
carried out and several algorithmic solutions have been proposed. In [5], a
modified Ant Colony Optimizer (ACO) has been proposed for large scale
optimization problems. Some other papers propose a technique, namely co-
operative coevolution, originally defined in [6] and subsequently developed in
other works, see e.g. [7] and [8]. The concept of the cooperative coevolution
is to decompose a LSOPs in a set of low dimension problems which can be
separately solved and then recombined in order to compose the solution of
the original problem. It is obvious that if the objective function (fitness func-
tion) is separable then the problem decomposition can be trivial while for
nonseparable functions the problem decomposition can turn out to be a very
difficult task. However, some techniques for performing the decomposition of
nonseparable functions have been developed, see [9]. Recently, cooperative
coevolution procedures have been successfully integrated within Differential
Evolution (DE) frameworks for solving LSPs, see e.g. [10], [11], [12], [13] and
[14].

It should be remarked that a standard DE can be inefficient for solving
LSOPs, see [15] and [16]. However, DE framework, thanks to its simple struc-
ture and flexibility, can be easily modified and become an efficient solver of
high dimensional problems. Besides the examples of DE integrating cooper-
ative coevolution, other DE based algorithms for LSPs have been proposed.
In [17] the opposition based technique is proposed for handling the high
dimensionality. This technique consists of generating extra points, that are
symmetric to those belonging to the original population, see details in [18].
In [19] a Memetic Algorithm (MA) (see for the definitions e.g. [20], [21], and
[22]) which integrates a simplex crossover within the DE framework has been
proposed in order to solve LSOPs, see also [23]. In [24], on the basis of the
studies carried out in [25], [26], and [27], a DE for LSOPs has proposed.
The algorithm proposed in [24] performs a probabilistic update of the con-
trol parameter of DE variation operators and a progressive size reduction
of the population size. Although the theoretical justifications of the success
of this algorithm are not fully clear, the proposed approach seems to be ex-

4

tremely promising for various problems. In [28], a memetic algorithm which
hybridizes the self-adaptive DE described in [27] and a local search applied to
the scale factor in order to generate candidate solutions with a high perfor-
mance has been proposed. Since the local search on the scale factor (or scale
factor local search) is independent on the dimensionality of the problem, the
resulting memetic algorithm offered a good performance for relatively large
scale problems, see [28].

Yet another possibility of enhancing the DE is to employ structured pop-
ulations, i.e. to subdivide the population into subpopulation which evolve
independently and somehow exchange pieces of information for performing
the global search, see [29] and [30]. While the small subpopulations are ef-
ficient at quickly improving upon their fitness values, might likely dissipate
the initial diversity thus resulting into a premature convergence, see [31] and
[32].

This paper aims at overcoming this inconvenience while performing the
optimization by means of a structured population DE by integrating two
simple randomized components. These components are supposed to intro-
duce a certain degree of randomization within the DE logic which proved
to be beneficial, see [16], and, at the same time, to perform a refreshment
of the search logic which allows the search to continue towards the global
optimum despite the high dimensionality. The proposed algorithm, namely
Shuffle Or Update Parallel Differential Evolution (SOUPDE) is composed
on a structured population (parallel) DE/rand/1/exp which integrates two
extra mechanism activated by means of a probabilistic criterion. The first
mechanism, namely shuffling, consists of merging the sub-populations and
subsequently randomly dividing the individuals again into sub-populations.
The second mechanism, namely update, consists of randomly updating the
values of the scale factors of each population.

The remainder of this article is organized in the following way. Section 2
describes the algorithmic components characterizing the proposed algorithm.
Section 3 shows the numerical results and highlights the performance and
scalability of the SOUPDE. Section 4 gives the conclusion of this work.

2 Shuffle Or Update Parallel Differential Evolution

In order to clarify the notation used throughout this article we refer to the
minimization problem of an objective function f(x), where x is a vector of n
design variables in a decision space D.

At the beginning of the optimization process, Spop individuals are pseudo-
randomly sampled within the decision space D. These Spop individuals are
distributed over m sub-populations Pk, k = 1, . . . ,m; each sub-population
is composed of Spop

m individuals. For each sub-population Pk a scale factor
F k, for k = 1, . . . ,m, is assigned. Each scale factor is initially generated as
pseudo-random by sampling a value from a uniform distribution between 0.1
and 1.

Within each sub-population k, a DE/rand/1/exp is performed. The mu-
tation procedure is implemented in the following way. For each individual

5

xoff ← xi

generate j ← 1 + round(n× rand(0, 1))
xoff (j)← x′

off (j)
p← 0
while rand(0, 1) ≤ Cr AND p < n− 1 do

xoff (1 + (j + p) mod n)← x′
off (1 + (j + p) mod n)

p← p + 1
generate rand(0, 1)

end while

Fig. 1: Exponential crossover pseudo-code

xi of the Spop

m three individuals xr, xs and xt are randomly extracted from
the population. According to the DE logic, a provisional offspring x′off is
generated by mutation as:

x′off = xt + F k(xr − xs) (1)

where usually F k ∈ [0, 2] is a scale factor which controls the length of the
exploration vector (xr − xs) and thus determines how far from point xi the
offspring should be generated.

When the provisional offspring has been generated by mutation, the ex-
ponential crossover is applied. A design variable of the provisional offspring
x′off (j) is randomly selected and copied into the jth design variable of the
solution xi. This guarantees that parent and offspring have different geno-
types. Subsequently, a set of random numbers between 0 and 1 are generated.
As long as rand (0, 1) ≤ Cr, where the crossover rate Cr is a predetermined
parameter, the design variables from the provisional offspring (mutant) are
copied into the corresponding positions of the parent xi. The first time that
rand (0, 1) > Cr the copy process is interrupted. Thus, all the remaining
design variables of the offspring are copied from the parent. For the sake of
clarity the pseudo-code of the exponential crossover is shown in Fig. 1

With a probability ps the shuffling operation is performed. The solutions
distributed over the m sub-populations are moved into a provisional list.
Then the solutions are randomly re-distributed over the m sub-populations.
Fig. 2 displays a graphical representation of the shuffling mechanism.

With a probability pu the update operation is performed. The set of scale
factors F k, for k = 1, . . . ,m is replaced by newly generated random numbers,
sampled between 0.1 and 1.

The described operations are repeated until the budget conditions are
satisfied.

2.1 Algorithmic Philosophy

This section summarizes the considerations regarding the functioning of the
SOUPDE. In order to understand the working principle of the proposed al-
gorithm it is necessary to make some considerations about the DE structure.
As highlighted in [33], the success of DE is due to an implicit self-adaptation
contained within the algorithmic structure. Since, for each candidate solution,

6

P1

Pk PmPmPk

P1

Fig. 2: Shuffling mechanism

the search rule depends on other solutions belonging to the population (e.g.
xt, xr, and xs), the capability of detecting new promising offspring solutions
depends on the current distribution of the solutions within the decision space.
During early stages of the optimization process, solutions tend to be spread
out within the decision space. For a given scale factor value, this implies that
the mutation appears to generate new solutions by exploring the space by
means of a large step size (if xr and xs are distant solutions, F k (xr − xs) is
a vector characterized by a large modulus). During the optimization process,
the solutions of the population tend to concentrate on specific parts of the
decision space. Therefore, step size in the mutation is progressively reduced
and the search is performed in the neighborhood of the solutions. In other
words, due to its structure, a DE scheme is highly explorative at the begin-
ning of the evolution and subsequently becomes more exploitative during fine
tuning.

However, as highlighted in [16], DE mechanism hides a limitation. If for
some reasons, the algorithm does not succeed in generating offspring solu-
tions which outperform the corresponding parent, the search is repeated again
with similar step size values and will likely fail by falling into an undesired
stagnation condition (see [34]). This effect can become frequent in LSOPs
and often jeopardize the entire algorithmic functioning. According the anal-
ysis presented in [16], the DE incorrect functioning can be due to a limited
amount of search moves and therefore recently proposed successful DE vari-
ants employ extra moves within the search logic. An efficient way to increase
the amount of search moves is to introduce a certain degree of randomization
as in the case of [27]. The use of multiple populations in distributed DE algo-
rithms allows an observation of the decision space from various perspectives
thus decreasing the risk of stagnation since each sub-population imposes a
high exploitation pressure. The fact that focusing of the search is beneficial
in the presence a highly dimensional problems has been proposed in [25] and
[24] where the population size reduction allows faster improvements and in
[31] where the search is distributed over explorative and exploitative sub-
populations. On the other hand, the high exploitation imposed by the small
size of the sub-populations leads to quick improvements in the early stages

7

of the optimization process and thus quickly dissipate the diversity and re-
sult into a premature convergence. This effect is amplified in LSOPs where
a distributed DE easily succeed at improving the initial solutions but likely
fail at detecting the global optimum or solutions characterized by a high
performance.

In order to correct this drawback the proposed SOUPDE employs shuf-
fling and update mechanisms. The idea behind this algorithmic components
is simple and efficient. Since, within each sub-population, the incapability of
enhancing upon the best individuals is due to an excessive exploitation of
the search moves, a new set of search moves in necessary in order to con-
tinue the optimization, see [16] and [32]. The search moves in a DE scheme
are due to the solutions composing the population and the scale factor val-
ues. The shuffling operation described above is equivalent to modifying the
set of search moves. The new search moves promote the detection of new
promising search directions and thus allow the DE search structure to be
periodically “refurbished”. Thus, shuffling is supposed to mitigate the risk
of DE (sub-)populations losing the diversity and to enhance the global al-
gorithmic performance. Finally, the scale factor update is supposed to give
an alternative “refurbishment” strategy with respect to the shuffling and
attempt to detect new areas of the search space.

The proposed SOUPDE algorithm can be seen as a multiple mini-search,
where each search algorithm is a sub-population performing a DE search.
This structure integrates, in a memetic computing fashion, alternative ran-
domized search logics which lead to a restart of the mini-search while still
keeping in the memory the previous achieved enhancements. Thus, the sub-
population are supposed to highly exploit their set of search moves until their
action becomes ineffective. The refurbishment operation then delivers to each
sob-population a new set of search moves to be subsequently exploited.

3 Numerical Results

The proposed SOUPDE algorithm has been run with m = 3 sub-populations
composed of Spop

m = 20 individuals each. The scale factors F k are randomly
generated and updated in the [0.1, 1] interval using a uniform distribution,
while the crossover rate Cr has been set equal to 0.9. Both the shuffling and
update probabilities ps and pu have been set equal to 0.01. The test problems
and the other parameters have been set according to the rules given for this
special issue.

3.1 Parameter Settings

Preliminary tests have shown that setting the shuffling and update proba-
bilities ps and pu to 0.01 have produced reasonably good results. In order
to determinate if better values can be chosen, multiple tests have been run
with values of ps and pu set to 0, 0.001, 0.01, 0.1 and 0.5. The set of values
tested is limited to the above due to the enormous amount of computing time

8

Table 1: Holm test for parameter setting in 50 dimensions (reference: ps = 0.1,
pu = 0.5, estimator = average)

i ps pu z p α/i Hypothesis
24 0 0.001 -6.50e+00 3.96e-11 2.08e-03 Rejected
23 0 0.01 -6.33e+00 1.26e-10 2.17e-03 Rejected
22 0 0 -6.26e+00 1.93e-10 2.27e-03 Rejected
21 0.001 0 -5.16e+00 1.25e-07 2.38e-03 Rejected
20 0.01 0 -4.92e+00 4.43e-07 2.50e-03 Rejected
19 0 0.1 -4.67e+00 1.49e-06 2.63e-03 Rejected
18 0.001 0.001 -4.58e+00 2.27e-06 2.78e-03 Rejected
17 0.5 0 -4.54e+00 2.81e-06 2.94e-03 Rejected
16 0.1 0 -4.23e+00 1.16e-05 3.13e-03 Rejected
15 0.01 0.001 -4.06e+00 2.50e-05 3.33e-03 Rejected
14 0 0.5 -3.77e+00 8.19e-05 3.57e-03 Rejected
13 0.001 0.01 -3.64e+00 1.38e-04 3.85e-03 Rejected
12 0.1 0.001 -3.20e+00 6.97e-04 4.17e-03 Rejected
11 0.5 0.001 -3.11e+00 9.42e-04 4.55e-03 Rejected
10 0.01 0.01 -2.31e+00 1.03e-02 5.00e-03 Accepted
9 0.001 0.1 -2.27e+00 1.16e-02 5.56e-03 Accepted
8 0.001 0.5 -1.54e+00 6.14e-02 6.25e-03 Accepted
7 0.1 0.01 -1.08e+00 1.40e-01 7.14e-03 Accepted
6 0.5 0.01 -9.70e-01 1.66e-01 8.33e-03 Accepted
5 0.01 0.1 -8.16e-01 2.07e-01 1.00e-02 Accepted
4 0.01 0.5 -3.97e-01 3.46e-01 1.25e-02 Accepted
3 0.1 0.1 -3.53e-01 3.62e-01 1.67e-02 Accepted
2 0.5 0.5 -2.42e-01 4.04e-01 2.50e-02 Accepted
1 0.5 0.1 -1.54e-01 4.39e-01 5.00e-02 Accepted

required to test multiple combinations of parameter values. To decide which
combination of parameters produces the “best” results, the Holm procedure
has been applied to the results obtained from those various combinations.
This procedure compares multiple algorithms based on their performance on
the set of test problems under interest for this special issue. In the tables
below, the performance is estimated either with the average value returned
by the algorithm over multiple trials on a given test function, or with the
median value. The Holm procedure then selects the algorithm presenting the
best performance (based on the algorithms’ average ranking over the whole
set of test functions, see [35,36] for details) and tests the other algorithms
for the null-hypothesis, i.e., whether the performance of each algorithm is
the same as that of the best. The case where the null hypothesis is rejected,
meaning that the performance of the algorithm is significantly different from
the best performance, is indicated with the word “Rejected” in the tables.
Otherwise, the word “Accepted” indicates that the performance is not sig-
nificantly different. For the sake of completeness, the tables below moreover
indicate the algorithm’s rank (“i”), the z and p-values obtained, as well as
the threshold (α/i) against which the p-value is compared.

The results of this analysis are presented in Tables 1 to 10. In order to
help in choosing optimal values of ps and pu, Tables 11 and 12 have been
produced. They indicated the rank obtained by a given combination of ps and
pu in the Holm procedures described above. In a sense, they are a repetition
of the same data, but presented in a way which increases the legibility of

9

Table 2: Holm test for parameter setting in 50 dimensions (reference: ps = 0.5,
pu = 0.5, estimator = median)

i ps pu z p α/i Hypothesis
24 0 0.01 -3.73e+00 9.76e-05 2.08e-03 Rejected
23 0 0.001 -3.50e+00 2.29e-04 2.17e-03 Rejected
22 0 0 -3.35e+00 4.04e-04 2.27e-03 Rejected
21 0 0.1 -3.22e+00 6.45e-04 2.38e-03 Rejected
20 0 0.5 -3.02e+00 1.27e-03 2.50e-03 Rejected
19 0.001 0 -2.31e+00 1.03e-02 2.63e-03 Accepted
18 0.001 0.001 -2.16e+00 1.54e-02 2.78e-03 Accepted
17 0.001 0.01 -1.70e+00 4.48e-02 2.94e-03 Accepted
16 0.001 0.1 -1.43e+00 7.60e-02 3.13e-03 Accepted
15 0.001 0.5 -1.43e+00 7.60e-02 3.33e-03 Accepted
14 0.1 0 -1.39e+00 8.25e-02 3.57e-03 Accepted
13 0.5 0.001 -1.23e+00 1.09e-01 3.85e-03 Accepted
12 0.01 0.001 -1.06e+00 1.45e-01 4.17e-03 Accepted
11 0.01 0 -1.01e+00 1.55e-01 4.55e-03 Accepted
10 0.1 0.001 -9.48e-01 1.72e-01 5.00e-03 Accepted
9 0.01 0.1 -8.16e-01 2.07e-01 5.56e-03 Accepted
8 0.01 0.5 -7.49e-01 2.27e-01 6.25e-03 Accepted
7 0.5 0 -7.27e-01 2.33e-01 7.14e-03 Accepted
6 0.5 0.01 -6.83e-01 2.47e-01 8.33e-03 Accepted
5 0.01 0.01 -5.29e-01 2.98e-01 1.00e-02 Accepted
4 0.1 0.01 -4.85e-01 3.14e-01 1.25e-02 Accepted
3 0.1 0.1 -3.97e-01 3.46e-01 1.67e-02 Accepted
2 0.5 0.1 -1.76e-01 4.30e-01 2.50e-02 Accepted
1 0.1 0.5 -1.32e-01 4.47e-01 5.00e-02 Accepted

Table 3: Holm test for parameter setting in 100 dimensions (reference = ps = 0.1,
pu = 0.5, estimator = average)

i ps pu z p α/i Hypothesis
24 0 0.001 -6.08e+00 5.88e-10 2.08e-03 Rejected
23 0 0 -5.97e+00 1.16e-09 2.17e-03 Rejected
22 0 0.01 -5.95e+00 1.33e-09 2.27e-03 Rejected
21 0 0.1 -5.00e+00 2.82e-07 2.38e-03 Rejected
20 0.001 0 -4.96e+00 3.54e-07 2.50e-03 Rejected
19 0.01 0 -4.92e+00 4.43e-07 2.63e-03 Rejected
18 0.01 0.001 -4.36e+00 6.38e-06 2.78e-03 Rejected
17 0.5 0 -4.12e+00 1.88e-05 2.94e-03 Rejected
16 0 0.5 -4.01e+00 3.02e-05 3.13e-03 Rejected
15 0.1 0 -3.99e+00 3.31e-05 3.33e-03 Rejected
14 0.001 0.001 -3.79e+00 7.50e-05 3.57e-03 Rejected
13 0.001 0.01 -2.98e+00 1.46e-03 3.85e-03 Rejected
12 0.5 0.001 -2.45e+00 7.21e-03 4.17e-03 Accepted
11 0.1 0.001 -2.29e+00 1.09e-02 4.55e-03 Accepted
10 0.01 0.01 -2.07e+00 1.91e-02 5.00e-03 Accepted
9 0.001 0.1 -1.56e+00 5.88e-02 5.56e-03 Accepted
8 0.1 0.01 -1.26e+00 1.04e-01 6.25e-03 Accepted
7 0.001 0.5 -1.17e+00 1.21e-01 7.14e-03 Accepted
6 0.5 0.01 -8.60e-01 1.95e-01 8.33e-03 Accepted
5 0.01 0.1 -3.97e-01 3.46e-01 1.00e-02 Accepted
4 0.1 0.1 -3.31e-01 3.70e-01 1.25e-02 Accepted
3 0.5 0.1 -3.31e-01 3.70e-01 1.67e-02 Accepted
2 0.01 0.5 -2.42e-01 4.04e-01 2.50e-02 Accepted
1 0.5 0.5 0.00e+00 5.00e-01 5.00e-02 Accepted

10

Table 4: Holm test for parameter setting in 100 dimensions (reference: ps = 0.5,
pu = 0.5, estimator = median)

i ps pu z p α/i Hypothesis
24 0 0.01 -3.70e+00 1.07e-04 2.08e-03 Rejected
23 0 0.001 -3.68e+00 1.16e-04 2.17e-03 Rejected
22 0 0.1 -3.28e+00 5.11e-04 2.27e-03 Rejected
21 0 0 -3.15e+00 8.11e-04 2.38e-03 Rejected
20 0 0.5 -2.91e+00 1.81e-03 2.50e-03 Rejected
19 0.001 0 -2.05e+00 2.02e-02 2.63e-03 Accepted
18 0.001 0.001 -1.50e+00 6.70e-02 2.78e-03 Accepted
17 0.1 0 -1.41e+00 7.92e-02 2.94e-03 Accepted
16 0.5 0 -1.41e+00 7.92e-02 3.13e-03 Accepted
15 0.01 0 -1.37e+00 8.59e-02 3.33e-03 Accepted
14 0.01 0.001 -1.34e+00 8.94e-02 3.57e-03 Accepted
13 0.001 0.01 -1.26e+00 1.04e-01 3.85e-03 Accepted
12 0.001 0.5 -1.15e+00 1.26e-01 4.17e-03 Accepted
11 0.001 0.1 -1.10e+00 1.35e-01 4.55e-03 Accepted
10 0.5 0.001 -1.04e+00 1.50e-01 5.00e-03 Accepted
9 0.1 0.001 -9.26e-01 1.77e-01 5.56e-03 Accepted
8 0.1 0.01 -4.63e-01 3.22e-01 6.25e-03 Accepted
7 0.01 0.5 -4.41e-01 3.30e-01 7.14e-03 Accepted
6 0.01 0.1 -3.97e-01 3.46e-01 8.33e-03 Accepted
5 0.01 0.01 -3.53e-01 3.62e-01 1.00e-02 Accepted
4 0.5 0.01 -3.53e-01 3.62e-01 1.25e-02 Accepted
3 0.1 0.1 -2.42e-01 4.04e-01 1.67e-02 Accepted
2 0.5 0.1 -1.54e-01 4.39e-01 2.50e-02 Accepted
1 0.1 0.5 -6.61e-02 4.74e-01 5.00e-02 Accepted

Table 5: Holm test for parameter setting in 200 dimensions (reference: ps = 0.1,
pu = 0.5, estimator = average)

i ps pu z p α/i Hypothesis
24 0 0 -5.82e+00 2.96e-09 2.08e-03 Rejected
23 0 0.001 -5.75e+00 4.39e-09 2.17e-03 Rejected
22 0 0.01 -5.40e+00 3.33e-08 2.27e-03 Rejected
21 0.001 0 -5.22e+00 8.76e-08 2.38e-03 Rejected
20 0.01 0 -4.92e+00 4.43e-07 2.50e-03 Rejected
19 0 0.1 -4.65e+00 1.65e-06 2.63e-03 Rejected
18 0 0.5 -4.52e+00 3.11e-06 2.78e-03 Rejected
17 0.5 0 -4.08e+00 2.27e-05 2.94e-03 Rejected
16 0.001 0.001 -4.03e+00 2.75e-05 3.13e-03 Rejected
15 0.1 0 -3.90e+00 4.78e-05 3.33e-03 Rejected
14 0.01 0.001 -3.57e+00 1.78e-04 3.57e-03 Rejected
13 0.001 0.01 -2.51e+00 5.99e-03 3.85e-03 Accepted
12 0.5 0.001 -2.40e+00 8.14e-03 4.17e-03 Accepted
11 0.1 0.001 -2.09e+00 1.81e-02 4.55e-03 Accepted
10 0.01 0.01 -1.50e+00 6.70e-02 5.00e-03 Accepted
9 0.1 0.01 -9.48e-01 1.72e-01 5.56e-03 Accepted
8 0.5 0.01 -8.16e-01 2.07e-01 6.25e-03 Accepted
7 0.001 0.5 -6.39e-01 2.61e-01 7.14e-03 Accepted
6 0.001 0.1 -5.73e-01 2.83e-01 8.33e-03 Accepted
5 0.1 0.1 -2.64e-01 3.96e-01 1.00e-02 Accepted
4 0.01 0.1 -2.42e-01 4.04e-01 1.25e-02 Accepted
3 0.01 0.5 -2.20e-01 4.13e-01 1.67e-02 Accepted
2 0.5 0.1 -2.20e-01 4.13e-01 2.50e-02 Accepted
1 0.5 0.5 -1.54e-01 4.39e-01 5.00e-02 Accepted

11

Table 6: Holm test for parameter setting in 200 dimensions (reference: ps = 0.5,
pu = 0.5, estimator = median)

i ps pu z p α/i Hypothesis
24 0 0.01 -3.50e+00 2.29e-04 2.08e-03 Rejected
23 0 0.001 -3.44e+00 2.92e-04 2.17e-03 Rejected
22 0 0.1 -3.22e+00 6.45e-04 2.27e-03 Rejected
21 0 0 -3.13e+00 8.74e-04 2.38e-03 Rejected
20 0 0.5 -3.09e+00 1.01e-03 2.50e-03 Rejected
19 0.01 0 -1.85e+00 3.20e-02 2.63e-03 Accepted
18 0.001 0 -1.74e+00 4.08e-02 2.78e-03 Accepted
17 0.1 0 -1.74e+00 4.08e-02 2.94e-03 Accepted
16 0.5 0 -1.61e+00 5.38e-02 3.13e-03 Accepted
15 0.001 0.001 -1.59e+00 5.63e-02 3.33e-03 Accepted
14 0.01 0.001 -1.17e+00 1.21e-01 3.57e-03 Accepted
13 0.5 0.001 -9.70e-01 1.66e-01 3.85e-03 Accepted
12 0.001 0.01 -8.60e-01 1.95e-01 4.17e-03 Accepted
11 0.001 0.1 -7.71e-01 2.20e-01 4.55e-03 Accepted
10 0.001 0.5 -7.49e-01 2.27e-01 5.00e-03 Accepted
9 0.1 0.001 -7.49e-01 2.27e-01 5.56e-03 Accepted
8 0.01 0.5 -4.19e-01 3.38e-01 6.25e-03 Accepted
7 0.1 0.01 -3.75e-01 3.54e-01 7.14e-03 Accepted
6 0.01 0.01 -3.53e-01 3.62e-01 8.33e-03 Accepted
5 0.5 0.01 -3.53e-01 3.62e-01 1.00e-02 Accepted
4 0.01 0.1 -2.87e-01 3.87e-01 1.25e-02 Accepted
3 0.5 0.1 -2.42e-01 4.04e-01 1.67e-02 Accepted
2 0.1 0.1 -1.76e-01 4.30e-01 2.50e-02 Accepted
1 0.1 0.5 -4.41e-02 4.82e-01 5.00e-02 Accepted

Table 7: Holm test for parameter setting in 500 dimensions (reference: ps = 0.5,
pu = 0.1, estimator = average)

i ps pu z p α/i Hypothesis
24 0 0 -5.62e+00 9.52e-09 2.08e-03 Rejected
23 0 0.001 -5.53e+00 1.58e-08 2.17e-03 Rejected
22 0.001 0 -5.38e+00 3.76e-08 2.27e-03 Rejected
21 0 0.01 -4.85e+00 6.20e-07 2.38e-03 Rejected
20 0 0.5 -4.65e+00 1.65e-06 2.50e-03 Rejected
19 0 0.1 -4.56e+00 2.53e-06 2.63e-03 Rejected
18 0.01 0 -4.41e+00 5.21e-06 2.78e-03 Rejected
17 0.1 0 -4.36e+00 6.38e-06 2.94e-03 Rejected
16 0.5 0 -4.19e+00 1.41e-05 3.13e-03 Rejected
15 0.001 0.001 -3.24e+00 5.97e-04 3.33e-03 Rejected
14 0.01 0.001 -2.62e+00 4.36e-03 3.57e-03 Accepted
13 0.1 0.001 -2.34e+00 9.74e-03 3.85e-03 Accepted
12 0.5 0.001 -2.25e+00 1.23e-02 4.17e-03 Accepted
11 0.001 0.01 -1.56e+00 5.88e-02 4.55e-03 Accepted
10 0.01 0.01 -1.34e+00 8.94e-02 5.00e-03 Accepted
9 0.001 0.5 -9.26e-01 1.77e-01 5.56e-03 Accepted
8 0.1 0.01 -8.16e-01 2.07e-01 6.25e-03 Accepted
7 0.001 0.1 -7.49e-01 2.27e-01 7.14e-03 Accepted
6 0.1 0.1 -6.39e-01 2.61e-01 8.33e-03 Accepted
5 0.5 0.01 -5.95e-01 2.76e-01 1.00e-02 Accepted
4 0.1 0.5 -5.73e-01 2.83e-01 1.25e-02 Accepted
3 0.01 0.5 -5.07e-01 3.06e-01 1.67e-02 Accepted
2 0.01 0.1 -4.63e-01 3.22e-01 2.50e-02 Accepted
1 0.5 0.5 -3.53e-01 3.62e-01 5.00e-02 Accepted

12

Table 8: Holm test for parameter setting in 500 dimensions (reference: ps = 0.5,
pu = 0.1, estimator = median)

i ps pu z p α/i Hypothesis
24 0 0.001 -3.28e+00 5.11e-04 2.08e-03 Rejected
23 0 0.01 -2.89e+00 1.94e-03 2.17e-03 Rejected
22 0 0.1 -2.82e+00 2.39e-03 2.27e-03 Accepted
21 0 0.5 -2.76e+00 2.93e-03 2.38e-03 Accepted
20 0 0 -2.60e+00 4.65e-03 2.50e-03 Accepted
19 0.01 0 -1.90e+00 2.90e-02 2.63e-03 Accepted
18 0.5 0 -1.79e+00 3.71e-02 2.78e-03 Accepted
17 0.001 0.001 -1.52e+00 6.41e-02 2.94e-03 Accepted
16 0.001 0 -1.45e+00 7.29e-02 3.13e-03 Accepted
15 0.1 0 -1.39e+00 8.25e-02 3.33e-03 Accepted
14 0.5 0.001 -9.26e-01 1.77e-01 3.57e-03 Accepted
13 0.1 0.001 -7.27e-01 2.33e-01 3.85e-03 Accepted
12 0.001 0.01 -5.95e-01 2.76e-01 4.17e-03 Accepted
11 0.001 0.5 -5.73e-01 2.83e-01 4.55e-03 Accepted
10 0.01 0.001 -5.29e-01 2.98e-01 5.00e-03 Accepted
9 0.01 0.5 -4.41e-01 3.30e-01 5.56e-03 Accepted
8 0.001 0.1 -4.19e-01 3.38e-01 6.25e-03 Accepted
7 0.01 0.1 -3.75e-01 3.54e-01 7.14e-03 Accepted
6 0.01 0.01 -2.64e-01 3.96e-01 8.33e-03 Accepted
5 0.1 0.5 -1.98e-01 4.21e-01 1.00e-02 Accepted
4 0.5 0.01 -1.54e-01 4.39e-01 1.25e-02 Accepted
3 0.5 0.5 -1.32e-01 4.47e-01 1.67e-02 Accepted
2 0.1 0.1 -8.82e-02 4.65e-01 2.50e-02 Accepted
1 0.1 0.01 -4.41e-02 4.82e-01 5.00e-02 Accepted

Table 9: Holm test for parameter setting in 1000 dimensions (reference: ps = 0.5,
pu = 0.1, estimator = average)

i ps pu z p α/i Hypothesis
24 0 0 -4.83e+00 6.93e-07 2.08e-03 Rejected
23 0 0.001 -4.61e+00 2.05e-06 2.17e-03 Rejected
22 0.001 0 -4.39e+00 5.77e-06 2.27e-03 Rejected
21 0.5 0 -4.32e+00 7.80e-06 2.38e-03 Rejected
20 0 0.01 -4.30e+00 8.61e-06 2.50e-03 Rejected
19 0 0.1 -4.19e+00 1.41e-05 2.63e-03 Rejected
18 0 0.5 -4.08e+00 2.27e-05 2.78e-03 Rejected
17 0.01 0 -3.86e+00 5.73e-05 2.94e-03 Rejected
16 0.1 0 -3.73e+00 9.76e-05 3.13e-03 Rejected
15 0.001 0.001 -2.73e+00 3.14e-03 3.33e-03 Rejected
14 0.01 0.001 -2.34e+00 9.74e-03 3.57e-03 Accepted
13 0.5 0.001 -2.18e+00 1.46e-02 3.85e-03 Accepted
12 0.1 0.001 -1.92e+00 2.76e-02 4.17e-03 Accepted
11 0.001 0.01 -1.28e+00 1.01e-01 4.55e-03 Accepted
10 0.001 0.1 -7.05e-01 2.40e-01 5.00e-03 Accepted
9 0.01 0.01 -7.05e-01 2.40e-01 5.56e-03 Accepted
8 0.1 0.01 -6.17e-01 2.69e-01 6.25e-03 Accepted
7 0.001 0.5 -3.97e-01 3.46e-01 7.14e-03 Accepted
6 0.01 0.1 -3.97e-01 3.46e-01 8.33e-03 Accepted
5 0.01 0.5 -3.53e-01 3.62e-01 1.00e-02 Accepted
4 0.5 0.01 -3.31e-01 3.70e-01 1.25e-02 Accepted
3 0.1 0.1 -2.64e-01 3.96e-01 1.67e-02 Accepted
2 0.1 0.5 -1.76e-01 4.30e-01 2.50e-02 Accepted
1 0.5 0.5 -1.54e-01 4.39e-01 5.00e-02 Accepted

13

Table 10: Holm test for parameter setting in 1000 dimensions (reference: ps = 0.5,
pu = 0.1, estimator = median)

i ps pu z p α/i Hypothesis
24 0 0.01 -2.95e+00 1.57e-03 2.08e-03 Rejected
23 0 0.5 -2.95e+00 1.57e-03 2.17e-03 Rejected
22 0 0.1 -2.89e+00 1.94e-03 2.27e-03 Rejected
21 0 0.001 -2.84e+00 2.23e-03 2.38e-03 Rejected
20 0 0 -2.18e+00 1.46e-02 2.50e-03 Accepted
19 0.5 0 -2.12e+00 1.72e-02 2.63e-03 Accepted
18 0.001 0 -1.61e+00 5.38e-02 2.78e-03 Accepted
17 0.01 0 -1.59e+00 5.63e-02 2.94e-03 Accepted
16 0.001 0.001 -1.50e+00 6.70e-02 3.13e-03 Accepted
15 0.1 0 -1.45e+00 7.29e-02 3.33e-03 Accepted
14 0.5 0.001 -9.48e-01 1.72e-01 3.57e-03 Accepted
13 0.01 0.001 -7.93e-01 2.14e-01 3.85e-03 Accepted
12 0.001 0.1 -6.61e-01 2.54e-01 4.17e-03 Accepted
11 0.1 0.001 -6.17e-01 2.69e-01 4.55e-03 Accepted
10 0.001 0.5 -5.95e-01 2.76e-01 5.00e-03 Accepted
9 0.01 0.5 -5.07e-01 3.06e-01 5.56e-03 Accepted
8 0.001 0.01 -4.19e-01 3.38e-01 6.25e-03 Accepted
7 0.01 0.1 -3.09e-01 3.79e-01 7.14e-03 Accepted
6 0.1 0.01 -2.87e-01 3.87e-01 8.33e-03 Accepted
5 0.1 0.1 -2.87e-01 3.87e-01 1.00e-02 Accepted
4 0.01 0.01 -2.42e-01 4.04e-01 1.25e-02 Accepted
3 0.5 0.01 -2.42e-01 4.04e-01 1.67e-02 Accepted
2 0.5 0.5 -4.41e-02 4.82e-01 2.50e-02 Accepted
1 0.1 0.5 -2.20e-02 4.91e-01 5.00e-02 Accepted

a parameter’s influence on the algorithm’s performance. The best-ranking
algorithm is indicated with an “X” in the table, and the number values are
the same as in the “i” column of the corresponding table above. Parameter
combinations which do no reject the null hypothesis in the tests described
above are indicated in boldface.

From those tables, we can see that choosing the average or the median
for estimating the performance of an algorithm on a given function leads to
a significant difference in the tables: with the average, low values of both ps

and pu lead to significantly inferior results, while when using the median,
the difference in performance is not significant anymore. The best ranking
combination of ps and pu are however always in the lower-right area of the
tables, meaning values of 0.1 or 0.5 for both parameters. The rank numbers
are increasing when traveling the tables from the lower-right to the upper-left
area i.e., to lower values of the parameters.

More particularly, when ps = 0 the Holm procedure considers the per-
formance to be significantly worse than with higher values of the parameter.
With the average as performance estimator, pu = 0 leads to significantly
inferior performance as well, in all dimensionalities.

As mentioned above, when considering the median as the performance
estimator, the Holm procedure considers that most combinations of the pa-
rameters to produce equivalent performance, with the exception of the case
when ps = 0 for dimensionalities of 200 and less. The relative ranking of
the combinations of parameters are however similar to those obtained when

14

Table 11: Ranking of SOUPDE for various values of parameters ps and pu. The
best combination of ps and pu is indicated by X. All the ranks in boldface indicate
that there is no significant difference in performance between these combinations
of parameters according to the Holm procedure using the average as performance
estimator

(a) 50 dimensions

PPPPPPps

pu 0 0.001 0.01 0.1 0.5

0 22 24 23 19 14
0.001 21 18 13 9 8
0.01 20 15 10 5 4
0.1 16 12 7 3 X
0.5 17 11 6 1 2

(b) 100 dimensions

PPPPPPps

pu 0 0.001 0.01 0.1 0.5

0 23 24 22 21 16
0.001 20 14 13 9 7
0.01 19 18 10 5 2
0.1 15 11 8 4 X
0.5 17 12 6 3 1

(c) 200 dimensions

PPPPPPps

pu 0 0.001 0.01 0.1 0.5

0 24 23 22 19 18
0.001 21 16 13 6 7
0.01 20 14 10 4 3
0.1 15 11 9 5 X
0.5 17 12 8 2 1

(d) 500 dimensions

PPPPPPps

pu 0 0.001 0.01 0.1 0.5

0 24 23 20 19 18
0.001 22 15 11 10 7
0.01 17 14 9 6 5
0.1 16 12 8 3 2
0.5 21 13 4 X 1

(e) 1000 dimensions

PPPPPPps

pu 0 0.001 0.01 0.1 0.5

0 24 23 21 19 20
0.001 22 15 11 7 9
0.01 18 14 10 2 3
0.1 17 13 8 6 4
0.5 16 12 5 X 1

15

Table 12: Ranking of SOUPDE for various values of parameters ps and pu. The
best combination of ps and pu is indicated by X. All the ranks in boldface indicate
that there is no significant difference in performance between these combinations
of parameters according to the Holm procedure using the median as performance
estimator

(a) 50 dimensions

PPPPPPps

pu 0 0.001 0.01 0.1 0.5

0 22 23 24 21 20
0.001 19 18 17 15 16
0.01 11 12 5 9 8
0.1 14 10 4 3 1
0.5 7 13 6 2 X

(b) 100 dimensions

PPPPPPps

pu 0 0.001 0.01 0.1 0.5

0 21 23 24 22 20
0.001 19 18 13 11 12
0.01 15 14 4 6 7
0.1 16 9 8 3 1
0.5 17 10 5 2 X

(c) 200 dimensions

PPPPPPps

pu 0 0.001 0.01 0.1 0.5

0 21 23 24 22 20
0.001 17 15 12 11 10
0.01 19 14 5 4 8
0.1 18 9 7 2 1
0.5 16 13 6 3 X

(d) 500 dimensions

PPPPPPps

pu 0 0.001 0.01 0.1 0.5

0 20 24 23 22 21
0.001 16 17 12 8 11
0.01 19 10 6 7 9
0.1 15 13 1 2 5
0.5 18 14 4 X 3

(e) 1000 dimensions

PPPPPPps

pu 0 0.001 0.01 0.1 0.5

0 20 21 23 22 24
0.001 18 16 8 12 10
0.01 17 13 3 7 9
0.1 15 11 6 5 1
0.5 19 14 4 X 2

16

considering the average, with the same progression form the lower-right area
to the upper-left.

Based on the results presented above, both the shuffling and update prob-
abilities ps and pu have been set equal to 0.5 for the experiments described
in the remainder of this paper.

3.2 Performance Analysis

Tables 13, 18, 23, 28 and 33 present the error obtained on the fitness val-
ues by SOUPDE at the end of the allocated budget of fitness evaluations,
for dimensions 50, 100, 200, 500 and 1000, respectively. In each table, the
top subtable presents the average, median, minimum and maximum fitness
values obtained by performing 25 independent runs of the algorithm on each
test function. Conforming to the requirements for this study, all values be-
low 10−14 have been rounded to 0. The small histogram shown between the
minimum and maximum values graphically shows how those 25 values are
distributed between the minimum and maximum values. This representation
allows to see for example in Table 13 that SOUPDE, when applied to func-
tion F14 reaches 0 in all the cases except two. This can be interpreted as the
fact that in most runs, SOUPDE performs well on function F14 in 50 dimen-
sions, except in rare conditions where it fails to find the function’s minimum.
The bottom subtables present the average and median error values reached
by SOUPDE compared to those of the three reference algorithms, DE, CHC
and G-CMA-ES. The best average value(s) for each function is highlighted
in bold, while the best median value(s) are highlighted in italics.

From the study of those bar graphs, it has been concluded that for most
functions, the average error value is not a good estimator of the performance
of the algorithm, and that the median is generally better suited. We have
therefore decided to perform the Wilcoxon Signed-Rank test and the Holm
procedure using both the average and median error values as a measure of
the algorithm’s performance and present both series of results.

The Wilcoxon Signed-Rank test [37] allows to compare two algorithms
based on their individual performances on the set of functions F1–F19*.
SOUPDE is thus compared to DE, CHC and G-CMA-ES (except for the
1000-dimensional test functions where G-CMA-ES is not compared against).
Tables 14, 19, 24, 29 and 34 show the results of this test when using the
algorithms’ average error value as a measure of their performance, while
Tables 16, 21, 26, 31 and 36 present the results of the same test when the
median is used. A two-tailed Signed-Rank test with a threshold set to 0.05
can be performed to determinate if SOUPDE has similar performance than
the algorithm it is compared to (this is the null hypothesis for this test). The
p-value obtained from this test is indicated in the table. However, in order to
find out if SOUPDE potentially outperforms or is outperformed by the other
algorithm, we used up to two directional Signed-Rank tests with a threshold
of 0.025. Such a test has first been performed in order to determinate if
SOUPDE outperforms the algorithm it is compared to. If this is the case,
it is thus indicated in the table with a “+” symbol. Otherwise, a second
directional Signed-Rank test with the same threshold is performed in order

17

to determinate if the other algorithm outperforms SOUPDE. If this is the
case, it is indicated in the table with a “-” symbol. Otherwise, the case when
no algorithm is outperforming the other one is indicated with an “=” symbol
in the table.

The Wilcoxon Signed-Rank test thus indicates that SOUPDE outper-
forms CHC and G-CMA-ES in every case. When considering the algorithms’
average performance, SOUPDE exhibits performances similar to the ones
of DE in 50, and 200 dimensions, but outperforms the latter in 50, 100, 500
and 1000 dimensions. When considering the algorithms’ median performance,
SOUPDE outperforms DE in all the dimensionalities under consideration.

As explained in [36] and [35], the Wilcoxon test does not allow to extract
conclusion when more than one pairwise comparison is made, because the
errors of each pairwise comparison accumulate. The Holm procedure [38] is
one method that allows to alleviate this problem by adapting the threshold
against which the p-value is compared for each algorithm. Tables 15, 20, 25,
30 and 35 show the results of this test when using the algorithms’ average
error value as a measure of their performance, while Tables 17, 22, 27, 32
and 37 present the results of the same test when the median is used. For this
procedure, one formulates the null-hypothesis as “the two algorithm exhibit
similar performance”. The algorithms are then ranked according to their per-
formance on each test function, and their average rank is then computed. The
algorithm with the smallest rank is chosen as a reference against which the
others are compared. The tables show the z value obtained from the Fried-
man test, and from which a p-value (p in the table) is derived. This p-value
is then compared against a threshold (α/i) which varies depending on the
algorithm’s average rank. If the p-value is lower than the threshold, the null
hypothesis is rejected and the reference algorithm therefore exhibits better
performance than the one it is compared to. Otherwise, the null hypothesis
is accepted and the two algorithms have similar performance.

The Holm procedure confirms the findings of the Wilcoxon test regarding
CHC and G-CMA-ES for all the dimensionalities under consideration. When
considering the algorithm’s average performance, SOUPDE is ranked first for
all dimensionalities while DE comes second. On the contrary to the Wilcoxon
test mentioned above, the Holm procedure does not consider that SOUPDE
is performing significantly better than DE. The difference between the results
of those tests might be due to the fact that the Holm procedure seems more
“strict” than the Wilcoxon test. Since both DE and SOUPDE reach the
global minimum of the functions in several cases, the difference in average
rank of those algorithms is not large enough to reject the null hypothesis.

As a general consideration, the proposed SOUPDE algorithm appears
to efficiently handle most of the problems in the benchmark. On the other
hand, numerical results show that SOUPDE does not succeed at efficiently
minimizing test problems F2, F3, F8, F13, and F17*. For these test problems
the search logic of DE appear to be not so efficient since also the DE version in
this article fails at detecting the minimum for the above-mentioned functions.
Regarding test problems F2 and F8 the directional search logic of G-CMA-ES
seems more promising than the randomized DE logic. This fact, according to
our conjecture, is due to the presence of a strong optimal basin of attraction

18

within the landscape related to these functions. The exploitative directional
logic of G-CMA-ES is, in our opinion, then suitable for problems of this kind.
Regarding function F3, G-CMA-ES outperforms DE based algorithms but
still fails at detecting the global minimum. Regarding test problems, F13 and
F17*, the landscapes are very complex and, to our knowledge, currently, there
are no algorithms which are capable to solve them. However, our proposed
SOUPDE succeeds at outperforming all the other algorithms considered in
this study for these two problems.

19

Table 13: Error in 50D

(a) Average, Median, Min and Max Error of SOUPDE

SOUPDE

Average Median Minimum Maximum

F1 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F2 1.18e+ 00 6.73e− 01 9.70e− 02 4.21e+ 00

F3 3.10e+ 01 2.37e+ 01 2.12e+ 01 7.19e+ 01

F4 3.98e− 02 0.00e+ 00 0.00e+ 00 9.95e− 01

F5 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F6 1.47e− 14 1.47e− 14 1.47e− 14 1.47e− 14

F7 2.28e− 14 2.28e− 14 2.28e− 14 2.28e− 14

F8 9.69e− 02 8.42e− 02 4.11e− 02 1.90e− 01

F9 3.75e− 06 3.75e− 06 3.75e− 06 3.75e− 06

F10 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F11 3.09e− 06 3.09e− 06 3.09e− 06 3.09e− 06

F12 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F13 2.06e+ 01 2.01e+ 01 1.88e+ 01 2.50e+ 01

F14 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F15 1.38e− 14 1.38e− 14 1.38e− 14 1.38e− 14

F16* 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F17* 2.53e− 01 7.38e− 02 1.18e− 02 3.99e+ 00

F18* 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F19* 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

(b) Average and Median Error of SOUPDE compared to the reference algorithms

SOUPDE DE CHC G-CMA-ES
Average Median Average Median Average Median Average Median

F1 0.00e + 00 0 .00e + 00 0.00e + 00 0 .00e + 00 1.67e− 11 1.67e− 11 0.00e + 00 0 .00e + 00
F2 1.18e + 00 6.73e− 01 3.60e− 01 3.29e− 01 6.19e + 01 6.19e + 01 2.75e− 11 2 .64e − 11
F3 3.10e + 01 2.37e + 01 2.89e + 01 2.90e + 01 1.25e + 06 1.25e + 06 7.97e− 01 0 .00e + 00
F4 3.98e− 02 0 .00e + 00 3.98e− 02 1.51e− 13 7.43e + 01 7.43e + 01 1.05e + 02 1.08e + 02
F5 0.00e + 00 0 .00e + 00 0.00e + 00 0 .00e + 00 1.67e− 03 1.67e− 03 2.96e− 04 0 .00e + 00
F6 1.47e− 14 1 .47e − 14 1.43e− 13 1.42e− 13 6.15e− 07 6.15e− 07 2.09e + 01 2.11e + 01
F7 2.28e− 14 2.28e− 14 0.00e + 00 0 .00e + 00 2.66e− 09 2.66e− 09 1.01e− 10 7.67e− 11
F8 9.69e− 02 8.42e− 02 3.44e + 00 3.54e + 00 2.24e + 02 2.24e + 02 0.00e + 00 0 .00e + 00
F9 3.75e− 06 3 .75e − 06 2.73e + 02 2.73e + 02 3.10e + 02 3.10e + 02 1.66e + 01 1.61e + 01
F10 0.00e + 00 0 .00e + 00 0.00e + 00 0 .00e + 00 7.30e + 00 7.30e + 00 6.81e + 00 6.71e + 00
F11 3.09e− 06 3 .09e − 06 6.23e− 05 5.60e− 05 2.16e + 00 2.16e + 00 3.01e + 01 2.83e + 01
F12 0.00e + 00 0 .00e + 00 5.35e− 13 5.27e− 13 9.57e− 01 9.57e− 01 1.88e + 02 1.87e + 02
F13 2.06e + 01 2 .01e + 01 2.45e + 01 2.44e + 01 2.08e + 06 2.08e + 06 1.97e + 02 1.97e + 02
F14 0.00e + 00 0 .00e + 00 4.16e− 08 2.58e− 08 6.17e + 01 6.17e + 01 1.09e + 02 1.05e + 02
F15 1.38e− 14 1.38e− 14 0.00e + 00 0 .00e + 00 3.98e− 01 3.98e− 01 9.79e− 04 8.12e− 04
F16* 0.00e + 00 0 .00e + 00 1.56e− 09 1.51e− 09 2.95e− 09 2.95e− 09 4.27e + 02 4.22e + 02
F17* 2.53e− 01 7 .38e − 02 7.98e− 01 6.83e− 01 2.26e + 04 2.26e + 04 6.89e + 02 6.71e + 02
F18* 0.00e + 00 0 .00e + 00 1.22e− 04 1.20e− 04 1.58e + 01 1.58e + 01 1.31e + 02 1.27e + 02
F19* 0.00e + 00 0 .00e + 00 0.00e + 00 0 .00e + 00 3.59e + 02 3.59e + 02 4.76e + 00 4.03e + 00

20

Table 14: Wilcoxon Signed-Rank test in 50D (reference = SOUPDE, estimator =
average)

Optimizer p-value Hypothesis
DE 1.950e+00 =
CHC 3.815e-06 +
G-CMA-ES 4.644e-03 +

Table 15: Holm procedure in 50D (reference = SOUPDE, estimator = average)

i Optimizer z p α/i Hypothesis
3 CHC -4.77e+00 8.99e-07 1.67e-02 Rejected
2 G-CMA-ES -3.27e+00 5.43e-04 2.50e-02 Rejected
1 DE -1.01e+00 1.57e-01 5.00e-02 Accepted

Table 16: Wilcoxon Signed-Rank test in 50D (reference = SOUPDE, estimator =
median)

Optimizer p-value Hypothesis
DE 8.266e-03 +

CHC 3.815e-06 +
G-CMA-ES 4.507e-03 +

Table 17: Holm procedure in 50D (reference = SOUPDE, estimator = median)

i Optimizer z p α/i Hypothesis
3 CHC -4.77e+00 8.99e-07 1.67e-02 Rejected
2 G-CMA-ES -3.27e+00 5.43e-04 2.50e-02 Rejected
1 DE -1.26e+00 1.04e-01 5.00e-02 Accepted

21

Table 18: Error in 100D

(a) Average, Median, Min and Max Error of SOUPDE

SOUPDE

Average Median Minimum Maximum

F1 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F2 7.47e+ 00 7.01e+ 00 4.10e+ 00 1.28e+ 01

F3 7.92e+ 01 7.30e+ 01 6.96e+ 01 1.18e+ 02

F4 3.98e− 02 0.00e+ 00 0.00e+ 00 9.95e− 01

F5 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F6 3.03e− 14 2.89e− 14 2.53e− 14 3.24e− 14

F7 3.88e− 14 3.88e− 14 3.88e− 14 3.88e− 14

F8 6.55e+ 01 6.52e+ 01 3.63e+ 01 1.06e+ 02

F9 7.82e− 06 7.82e− 06 7.82e− 06 7.82e− 06

F10 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F11 6.75e− 06 6.75e− 06 6.75e− 06 6.75e− 06

F12 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F13 5.85e+ 01 5.83e+ 01 5.70e+ 01 6.37e+ 01

F14 0.00e+ 00 0.00e+ 00 0.00e+ 00 1.14e− 13

F15 2.79e− 14 2.79e− 14 2.79e− 14 2.79e− 14

F16* 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F17* 8.55e+ 00 8.74e+ 00 1.30e− 03 1.13e+ 01

F18* 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F19* 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

(b) Average and Median Error of SOUPDE compared to the reference algorithms

SOUPDE DE CHC G-CMA-ES
Average Median Average Median Average Median Average Median

F1 0.00e + 00 0 .00e + 00 0.00e + 00 0 .00e + 00 3.56e− 11 3.56e− 11 0.00e + 00 0 .00e + 00
F2 7.47e + 00 7.01e + 00 4.45e + 00 4.34e + 00 8.58e + 01 8.58e + 01 1.51e− 10 1 .62e − 10
F3 7.92e + 01 7.30e + 01 8.01e + 01 7.81e + 01 4.19e + 06 4.19e + 06 3.88e + 00 2 .27e + 00
F4 3.98e− 02 0 .00e + 00 7.96e− 02 4.23e− 13 2.19e + 02 2.19e + 02 2.50e + 02 2.50e + 02
F5 0.00e + 00 0 .00e + 00 0.00e + 00 0 .00e + 00 3.83e− 03 3.83e− 03 1.58e− 03 0 .00e + 00
F6 3.03e− 14 2 .89e − 14 3.10e− 13 3.13e− 13 4.10e− 07 4.10e− 07 2.12e + 01 2.13e + 01
F7 3.88e− 14 3.88e− 14 0.00e + 00 0 .00e + 00 1.40e− 02 1.40e− 02 4.22e− 04 6.98e− 07
F8 6.55e + 01 6.52e + 01 3.69e + 02 3.47e + 02 1.69e + 03 1.69e + 03 0.00e + 00 0 .00e + 00
F9 7.82e− 06 7 .82e − 06 5.06e + 02 5.06e + 02 5.86e + 02 5.86e + 02 1.02e + 02 1.06e + 02
F10 0.00e + 00 0 .00e + 00 0.00e + 00 0 .00e + 00 3.30e + 01 3.30e + 01 1.66e + 01 1.68e + 01
F11 6.75e− 06 6 .75e − 06 1.28e− 04 1.29e− 04 7.32e + 01 7.32e + 01 1.64e + 02 1.51e + 02
F12 0.00e + 00 0 .00e + 00 5.99e− 11 6.18e− 11 1.03e + 01 1.03e + 01 4.17e + 02 4.20e + 02
F13 5.85e + 01 5 .83e + 01 6.17e + 01 6.17e + 01 2.70e + 06 2.70e + 06 4.21e + 02 4.12e + 02
F14 0.00e + 00 0 .00e + 00 4.79e− 02 1.30e− 07 1.66e + 02 1.66e + 02 2.55e + 02 2.52e + 02
F15 2.79e− 14 2.79e− 14 0.00e + 00 0 .00e + 00 8.13e + 00 8.13e + 00 6.30e− 01 4.13e− 01
F16* 0.00e + 00 0 .00e + 00 3.58e− 09 3.53e− 09 2.23e + 01 2.23e + 01 8.59e + 02 8.48e + 02
F17* 8.55e + 00 8 .74e + 00 1.23e + 01 1.28e + 01 1.47e + 05 1.47e + 05 1.51e + 03 1.52e + 03
F18* 0.00e + 00 0 .00e + 00 2.98e− 04 2.86e− 04 7.00e + 01 7.00e + 01 3.07e + 02 3.13e + 02
F19* 0.00e + 00 0 .00e + 00 0.00e + 00 0 .00e + 00 5.45e + 02 5.45e + 02 2.02e + 01 1.47e + 01

22

Table 19: Wilcoxon Signed-Rank test in 100D (reference = SOUPDE, estimator =
average)

Optimizer p-value Hypothesis
DE 9.760e-03 +

CHC 3.815e-06 +
G-CMA-ES 5.316e-03 +

Table 20: Holm procedure in 100D (reference = SOUPDE, estimator = average)

i Optimizer z p α/i Hypothesis
3 CHC -4.90e+00 4.78e-07 1.67e-02 Rejected
2 G-CMA-ES -3.39e+00 3.46e-04 2.50e-02 Rejected
1 DE -1.26e+00 1.04e-01 5.00e-02 Accepted

Table 21: Wilcoxon Signed-Rank test in 100D (reference = SOUPDE, estimator =
median)

Optimizer p-value Hypothesis
DE 8.266e-03 +

CHC 3.815e-06 +
G-CMA-ES 6.040e-03 +

Table 22: Holm procedure in 100D (reference = SOUPDE, estimator = median)

i Optimizer z p α/i Hypothesis
3 CHC -4.77e+00 8.99e-07 1.67e-02 Rejected
2 G-CMA-ES -3.27e+00 5.43e-04 2.50e-02 Rejected
1 DE -1.26e+00 1.04e-01 5.00e-02 Accepted

23

Table 23: Error in 200D

(a) Average, Median, Min and Max Error of SOUPDE

SOUPDE

Average Median Minimum Maximum

F1 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F2 2.38e+ 01 2.33e+ 01 2.17e+ 01 2.75e+ 01

F3 1.80e+ 02 1.71e+ 02 1.68e+ 02 2.18e+ 02

F4 1.19e− 01 2.27e− 13 0.00e+ 00 9.95e− 01

F5 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F6 6.40e− 14 6.44e− 14 5.73e− 14 6.79e− 14

F7 7.46e− 14 7.46e− 14 7.46e− 14 7.46e− 14

F8 2.46e+ 03 2.46e+ 03 1.75e+ 03 3.23e+ 03

F9 1.51e− 05 1.51e− 05 1.51e− 05 1.51e− 05

F10 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F11 1.43e− 05 1.43e− 05 1.43e− 05 1.43e− 05

F12 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F13 1.35e+ 02 1.32e+ 02 1.31e+ 02 1.75e+ 02

F14 3.98e− 02 2.27e− 13 2.27e− 13 9.95e− 01

F15 5.79e− 14 5.79e− 14 5.79e− 14 5.79e− 14

F16* 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F17* 3.31e+ 01 3.30e+ 01 3.14e+ 01 3.52e+ 01

F18* 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F19* 1.91e− 14 1.91e− 14 1.91e− 14 1.91e− 14

(b) Average and Median Error of SOUPDE compared to the reference algorithms

SOUPDE DE CHC G-CMA-ES
Average Median Average Median Average Median Average Median

F1 0.00e + 00 0 .00e + 00 0.00e + 00 0 .00e + 00 8.34e− 01 8.34e− 01 0.00e + 00 0 .00e + 00
F2 2.38e + 01 2.33e + 01 1.92e + 01 1.93e + 01 1.03e + 02 1.03e + 02 1.16e− 09 9 .91e − 10
F3 1.80e + 02 1.71e + 02 1.78e + 02 1.77e + 02 2.01e + 07 2.01e + 07 8.91e + 01 8 .95e + 01
F4 1.19e− 01 2 .27e − 13 1.27e− 01 3.58e− 12 5.40e + 02 5.40e + 02 6.48e + 02 6.68e + 02
F5 0.00e + 00 0 .00e + 00 0.00e + 00 0 .00e + 00 8.76e− 03 8.76e− 03 0.00e + 00 0 .00e + 00
F6 6.40e− 14 6 .44e − 14 6.54e− 13 6.54e− 13 1.23e + 00 1.23e + 00 2.14e + 01 2.14e + 01
F7 7.46e− 14 7.46e− 14 0.00e + 00 0 .00e + 00 2.59e− 01 2.59e− 01 1.17e− 01 2.61e− 02
F8 2.46e + 03 2.46e + 03 5.53e + 03 5.33e + 03 9.38e + 03 9.38e + 03 0.00e + 00 0 .00e + 00
F9 1.51e− 05 1 .51e − 05 1.01e + 03 1.01e + 03 1.19e + 03 1.19e + 03 3.75e + 02 3.81e + 02
F10 0.00e + 00 0 .00e + 00 0.00e + 00 0 .00e + 00 7.13e + 01 7.13e + 01 4.43e + 01 4.41e + 01
F11 1.43e− 05 1 .43e − 05 2.62e− 04 2.59e− 04 3.85e + 02 3.85e + 02 8.03e + 02 7.93e + 02
F12 0.00e + 00 0 .00e + 00 9.76e− 10 9.36e− 10 7.44e + 01 7.44e + 01 9.06e + 02 9.08e + 02
F13 1.35e + 02 1 .32e + 02 1.36e + 02 1.36e + 02 5.75e + 06 5.75e + 06 9.43e + 02 9.34e + 02
F14 3.98e− 02 2 .27e − 13 1.38e− 01 2.71e− 07 4.29e + 02 4.29e + 02 6.09e + 02 6.24e + 02
F15 5.79e− 14 5.79e− 14 0.00e + 00 0 .00e + 00 2.14e + 01 2.14e + 01 1.75e + 00 2.10e + 00
F16* 0.00e + 00 0 .00e + 00 7.46e− 09 7.26e− 09 1.60e + 02 1.60e + 02 1.92e + 03 1.90e + 03
F17* 3.31e + 01 3 .30e + 01 3.70e + 01 3.70e + 01 1.75e + 05 1.75e + 05 3.36e + 03 3.33e + 03
F18* 0.00e + 00 0 .00e + 00 4.73e− 04 4.70e− 04 2.12e + 02 2.12e + 02 6.89e + 02 6.88e + 02
F19* 1.91e− 14 1.91e− 14 0.00e + 00 0 .00e + 00 2.06e + 03 2.06e + 03 7.52e + 02 5.74e + 02

24

Table 24: Wilcoxon Signed-Rank test in 200D (reference = SOUPDE, estimator =
average)

Optimizer p-value Hypothesis
DE 1.941e+00 =

CHC 3.815e-06 +
G-CMA-ES 1.794e-02 +

Table 25: Holm procedure in 200D (reference = SOUPDE, estimator = average)

i Optimizer z p α/i Hypothesis
3 CHC -4.65e+00 1.67e-06 1.67e-02 Rejected
2 G-CMA-ES -3.14e+00 8.41e-04 2.50e-02 Rejected
1 DE -8.80e-01 1.90e-01 5.00e-02 Accepted

Table 26: Wilcoxon Signed-Rank test in 200D (reference = SOUPDE, estimator =
median)

Optimizer p-value Hypothesis
DE 1.048e-02 +

CHC 3.815e-06 +
G-CMA-ES 1.794e-02 +

Table 27: Holm procedure in 200D (reference = SOUPDE, estimator = median)

i Optimizer z p α/i Hypothesis
3 CHC -4.77e+00 8.99e-07 1.67e-02 Rejected
2 G-CMA-ES -3.27e+00 5.43e-04 2.50e-02 Rejected
1 DE -1.13e+00 1.29e-01 5.00e-02 Accepted

25

Table 28: Error in 500D

(a) Average, Median, Min and Max Error of SOUPDE

SOUPDE

Average Median Minimum Maximum

F1 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F2 6.50e+ 01 6.50e+ 01 6.28e+ 01 6.78e+ 01

F3 4.71e+ 02 4.67e+ 02 4.65e+ 02 5.12e+ 02

F4 7.96e− 02 4.55e− 12 2.73e− 12 9.95e− 01

F5 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F6 1.67e− 13 1.64e− 13 1.57e− 13 1.82e− 13

F7 1.78e− 13 1.78e− 13 1.78e− 13 1.78e− 13

F8 4.36e+ 04 4.38e+ 04 3.64e+ 04 4.72e+ 04

F9 3.59e− 05 3.59e− 05 3.59e− 05 3.59e− 05

F10 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F11 4.66e− 04 3.72e− 05 3.72e− 05 1.08e− 02

F12 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F13 3.58e+ 02 3.55e+ 02 3.53e+ 02 3.95e+ 02

F14 1.31e− 12 1.36e− 12 9.09e− 13 1.82e− 12

F15 1.39e− 13 1.39e− 13 1.39e− 13 1.39e− 13

F16* 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F17* 1.09e+ 02 1.08e+ 02 1.06e+ 02 1.53e+ 02

F18* 2.82e− 13 2.27e− 13 2.27e− 13 4.55e− 13

F19* 4.95e− 14 4.95e− 14 4.95e− 14 4.95e− 14

(b) Average and Median Error of SOUPDE compared to the reference algorithms

SOUPDE DE CHC G-CMA-ES
Average Median Average Median Average Median Average Median

F1 0.00e + 00 0 .00e + 00 0.00e + 00 0 .00e + 00 2.84e− 12 2.84e− 12 0.00e + 00 0 .00e + 00
F2 6.50e + 01 6.50e + 01 5.35e + 01 5.33e + 01 1.29e + 02 1.29e + 02 3.48e− 04 3 .31e − 04
F3 4.71e + 02 4.67e + 02 4.76e + 02 4.74e + 02 1.14e + 06 1.14e + 06 3.58e + 02 3 .55e + 02
F4 7.96e− 02 4 .55e − 12 3.20e− 01 9.22e− 03 1.91e + 03 1.91e + 03 2.10e + 03 2.07e + 03
F5 0.00e + 00 0 .00e + 00 0.00e + 00 0 .00e + 00 6.98e− 03 6.98e− 03 2.96e− 04 0 .00e + 00
F6 1.67e− 13 1 .64e − 13 1.65e− 12 1.65e− 12 5.16e + 00 5.16e + 00 2.15e + 01 2.15e + 01
F7 1.78e− 13 1.78e− 13 0.00e + 00 0 .00e + 00 1.27e− 01 1.27e− 01 7.21e + 153 2.14e + 143
F8 4.36e + 04 4.38e + 04 6.09e + 04 6.11e + 04 7.22e + 04 7.22e + 04 2.36e− 06 2 .31e − 06
F9 3.59e− 05 3 .59e − 05 2.52e + 03 2.52e + 03 3.00e + 03 3.00e + 03 1.74e + 03 1.76e + 03
F10 0.00e + 00 0 .00e + 00 0.00e + 00 0 .00e + 00 1.86e + 02 1.86e + 02 1.27e + 02 1.27e + 02
F11 4.66e− 04 3 .72e − 05 6.76e− 04 6.71e− 04 1.81e + 03 1.81e + 03 4.16e + 03 4.18e + 03
F12 0.00e + 00 0 .00e + 00 7.07e− 09 6.98e− 09 4.48e + 02 4.48e + 02 2.58e + 03 2.59e + 03
F13 3.58e + 02 3 .55e + 02 3.59e + 02 3.58e + 02 3.22e + 07 3.22e + 07 2.87e + 03 2.87e + 03
F14 1.31e− 12 1 .36e − 12 1.35e− 01 9.01e− 07 1.46e + 03 1.46e + 03 1.95e + 03 1.95e + 03
F15 1.39e− 13 1.39e− 13 0.00e + 00 0 .00e + 00 6.01e + 01 6.01e + 01 2.82e + 262 5.57e + 258
F16* 0.00e + 00 0 .00e + 00 2.04e− 08 2.05e− 08 9.55e + 02 9.55e + 02 5.45e + 03 5.43e + 03
F17* 1.09e + 02 1 .08e + 02 1.11e + 02 1.11e + 02 8.40e + 05 8.40e + 05 9.59e + 03 9.50e + 03
F18* 2.82e− 13 2 .27e − 13 1.22e− 03 1.22e− 03 7.32e + 02 7.32e + 02 2.05e + 03 2.06e + 03
F19* 4.95e− 14 4.95e− 14 0.00e + 00 0 .00e + 00 1.76e + 03 1.76e + 03 2.44e + 06 2.50e + 06

26

Table 29: Wilcoxon Signed-Rank test in 500D (reference = SOUPDE, estimator =
average)

Optimizer p-value Hypothesis
DE 1.404e-02 +

CHC 3.815e-06 +
G-CMA-ES 6.076e-03 +

Table 30: Holm procedure in 500D (reference = SOUPDE, estimator = average)

i Optimizer z p α/i Hypothesis
3 CHC -4.52e+00 3.04e-06 1.67e-02 Rejected
2 G-CMA-ES -3.77e+00 8.17e-05 2.50e-02 Rejected
1 DE -1.13e+00 1.29e-01 5.00e-02 Accepted

Table 31: Wilcoxon Signed-Rank test in 500D (reference = SOUPDE, estimator =
median)

Optimizer p-value Hypothesis
DE 1.404e-02 +

CHC 3.815e-06 +
G-CMA-ES 6.970e-03 +

Table 32: Holm procedure in 500D (reference = SOUPDE, estimator = median)

i Optimizer z p α/i Hypothesis
3 CHC -4.40e+00 5.46e-06 1.67e-02 Rejected
2 G-CMA-ES -3.64e+00 1.34e-04 2.50e-02 Rejected
1 DE -1.13e+00 1.29e-01 5.00e-02 Accepted

27

3.3 Scalability Analysis

Tables 38 and 39 present the average and median errors, respectively, ob-
tained by SOUPDE on the test function F1–F19* in 50, 100, 200, 500 and
1000 dimensions. For functions F1, F5, F10, F12 and F16*, the average error
remains at 0. On the other function, where SOUPDE did not manage to get
“close enough” to the minimum, the error increases with the dimensional-
ity. One must however mention the notable exception of the average error in
F14 in 500 dimensions, where the value is much lower than in 200 and 1000
dimensions.

The same comments apply to the table of median errors: the value re-
mains at 0 on functions F1, F5, F10, F12 and F16*, and increases with the
dimensionality on the other functions.

3.4 Running Time

The algorithms have been run on a cluster computer of forty nodes, each
equipped with four Intel Xeon processors running at 3.0 GHz. The nodes are
running Linux. The algorithms were developed in Python 2.4 and the numpy
library was used for implementing the test functions.

Table 40 shows the average running time of SOUPDE on each test func-
tion, expressed in seconds. Table 41 presents the average runtime of individ-
ual test functions, and Table 42 shows the overhead running time related to
the algorithm itself, calculated as the difference between SOUPDE’s average
execution time and the average execution time of the test functions alone.

Table 41 shows that the execution time of the test functions increases
non-linearly with the dimensionality, which may be partly attributed to the
increased needs of memory allocation which are not necessarily behaving lin-
early. From the same table one can read that the average overhead of the
algorithm is also increases non-linearly with the dimensionality. Given that
the nodes of the cluster are not real-time computers, it is difficult to draw
conclusions from the variations of the overhead within one dimensionality
for different test problems: delays in the computing process may be caused
by other causes (e.g., input-output) than the algorithm itself. However, we
can observe from Table 42 that the SOUPDE overhead per single fitness call
is approximately constant, e.g. for each function the total overhead in 100
dimensions is approximately twice the overhead in 50 dimensions. This fea-
ture is important in terms of scalability because, unlike other algorithms (e.g.
G-CMA-ES) which make use of algorithmic structure whose computational
overhead is heavily biased by the dimensionality of the problem, SOUPDE
by itself has essentially the same cost regardless the dimensionality under
consideration.

4 Conclusion

This paper proposes a distributed algorithm based on Differential Evolution
in order to solve complex large scale optimization problem. The proposed

28

Table 33: Error in 1000 D

(a) Average, Median, Min and Max Error of SOUPDE

SOUPDE

Average Median Minimum Maximum

F1 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F2 9.25e+ 01 9.25e+ 01 8.97e+ 01 9.43e+ 01

F3 9.62e+ 02 9.62e+ 02 9.59e+ 02 9.65e+ 02

F4 3.18e− 01 2.00e− 11 1.64e− 11 9.95e− 01

F5 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F6 3.41e− 13 3.42e− 13 3.27e− 13 3.52e− 13

F7 3.57e− 13 3.57e− 13 3.57e− 13 3.57e− 13

F8 2.13e+ 05 2.12e+ 05 2.00e+ 05 2.30e+ 05

F9 7.39e− 05 7.39e− 05 7.39e− 05 7.40e− 05

F10 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F11 7.44e− 05 7.44e− 05 7.44e− 05 7.44e− 05

F12 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F13 7.29e+ 02 7.26e+ 02 7.24e+ 02 7.67e+ 02

F14 2.79e− 01 6.37e− 12 5.46e− 12 9.95e− 01

F15 2.69e− 13 2.69e− 13 2.69e− 13 2.69e− 13

F16* 0.00e+ 00 0.00e+ 00 0.00e+ 00 0.00e+ 00

F17* 2.31e+ 02 2.31e+ 02 2.29e+ 02 2.32e+ 02

F18* 4.29e− 04 1.36e− 12 9.09e− 13 1.07e− 02

F19* 9.50e− 14 9.50e− 14 9.50e− 14 9.50e− 14

(b) Average and Median Error of SOUPDE compared to the reference algorithms

SOUPDE DE CHC
Average Median Average Median Average Median

F1 0.00e + 00 0 .00e + 00 0.00e + 00 0 .00e + 00 1.36e− 11 1.36e− 11
F2 9.25e + 01 9.25e + 01 8.46e + 01 8 .44e + 01 1.44e + 02 1.44e + 02
F3 9.62e + 02 9 .62e + 02 9.69e + 02 9.69e + 02 8.75e + 03 8.75e + 03
F4 3.18e− 01 2 .00e − 11 1.44e + 00 1.32e + 00 4.76e + 03 4.76e + 03
F5 0.00e + 00 0 .00e + 00 0.00e + 00 0 .00e + 00 7.02e− 03 7.02e− 03
F6 3.41e− 13 3 .42e − 13 3.29e− 12 3.30e− 12 1.38e + 01 1.38e + 01
F7 3.57e− 13 3.57e− 13 0.00e + 00 0 .00e + 00 3.52e− 01 3.52e− 01
F8 2.13e + 05 2 .12e + 05 2.46e + 05 2.46e + 05 3.11e + 05 3.11e + 05
F9 7.39e− 05 7 .39e − 05 5.13e + 03 5.13e + 03 6.11e + 03 6.11e + 03
F10 0.00e + 00 0 .00e + 00 0.00e + 00 0 .00e + 00 3.83e + 02 3.83e + 02
F11 7.44e− 05 7 .44e − 05 1.35e− 03 1.35e− 03 4.82e + 03 4.82e + 03
F12 0.00e + 00 0 .00e + 00 1.68e− 08 1.70e− 08 1.05e + 03 1.05e + 03
F13 7.29e + 02 7 .26e + 02 7.30e + 02 7.29e + 02 6.66e + 07 6.66e + 07
F14 2.79e− 01 6 .37e − 12 6.90e− 01 9.95e− 01 3.62e + 03 3.62e + 03
F15 2.69e− 13 2.69e− 13 0.00e + 00 0 .00e + 00 8.37e + 01 8.37e + 01
F16* 0.00e + 00 0 .00e + 00 4.18e− 08 4.19e− 08 2.32e + 03 2.32e + 03
F17* 2.31e + 02 2 .31e + 02 2.36e + 02 2.35e + 02 2.04e + 07 2.04e + 07
F18* 4.29e− 04 1 .36e − 12 2.37e− 03 2.37e− 03 1.72e + 03 1.72e + 03
F19* 9.50e− 14 9.50e− 14 0.00e + 00 0 .00e + 00 4.20e + 03 4.20e + 03

29

Table 34: Wilcoxon Signed-Rank test in 1000D (reference = SOUPDE, estimator
= average)

Optimizer p-value Hypothesis
DE 1.404e-02 +

CHC 3.815e-06 +

Table 35: Holm procedure in 1000D (reference = SOUPDE, estimator = average)

i Optimizer z p α/i Hypothesis
2 CHC -5.03e+00 2.47e-07 2.50e-02 Rejected
1 DE -1.30e+00 9.72e-02 5.00e-02 Accepted

Table 36: Wilcoxon Signed-Rank test in 1000D (reference = SOUPDE, estimator
= median)

Optimizer p-value Hypothesis
DE 1.404e-02 +

CHC 1.386e-04 +

Table 37: Holm procedure in 1000D (reference = SOUPDE, estimator = median)

i Optimizer z p α/i Hypothesis
2 CHC -5.03e+00 2.47e-07 2.50e-02 Rejected
1 DE -1.30e+00 9.72e-02 5.00e-02 Accepted

Table 38: Scalability analysis on average error (SOUPDE)

50 100 200 500 1000
F1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F2 1.18e+00 7.47e+00 2.38e+01 6.50e+01 9.25e+01
F3 3.10e+01 7.92e+01 1.80e+02 4.71e+02 9.62e+02
F4 3.98e-02 3.98e-02 1.19e-01 7.96e-02 3.18e-01
F5 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F6 1.47e-14 3.03e-14 6.40e-14 1.67e-13 3.41e-13
F7 2.28e-14 3.88e-14 7.46e-14 1.78e-13 3.57e-13
F8 9.69e-02 6.55e+01 2.46e+03 4.36e+04 2.13e+05
F9 3.75e-06 7.82e-06 1.51e-05 3.59e-05 7.39e-05
F10 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F11 3.09e-06 6.75e-06 1.43e-05 4.66e-04 7.44e-05
F12 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F13 2.06e+01 5.85e+01 1.35e+02 3.58e+02 7.29e+02
F14 0.00e+00 9.09e-15 3.98e-02 1.31e-12 2.79e-01
F15 1.38e-14 2.79e-14 5.79e-14 1.39e-13 2.69e-13
F16* 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F17* 2.53e-01 8.55e+00 3.31e+01 1.09e+02 2.31e+02
F18* 0.00e+00 0.00e+00 0.00e+00 2.82e-13 4.29e-04
F19* 0.00e+00 0.00e+00 1.91e-14 4.95e-14 9.50e-14

30

Table 39: Scalability analysis on median error (SOUPDE)

50 100 200 500 1000
F1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F2 6.73e-01 7.01e+00 2.33e+01 6.50e+01 9.25e+01
F3 2.37e+01 7.30e+01 1.71e+02 4.67e+02 9.62e+02
F4 0.00e+00 0.00e+00 2.27e-13 4.55e-12 2.00e-11
F5 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F6 1.47e-14 2.89e-14 6.44e-14 1.64e-13 3.42e-13
F7 2.28e-14 3.88e-14 7.46e-14 1.78e-13 3.57e-13
F8 8.42e-02 6.52e+01 2.46e+03 4.38e+04 2.12e+05
F9 3.75e-06 7.82e-06 1.51e-05 3.59e-05 7.39e-05
F10 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F11 3.09e-06 6.75e-06 1.43e-05 3.72e-05 7.44e-05
F12 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F13 2.01e+01 5.83e+01 1.32e+02 3.55e+02 7.26e+02
F14 0.00e+00 0.00e+00 2.27e-13 1.36e-12 6.37e-12
F15 1.38e-14 2.79e-14 5.79e-14 1.39e-13 2.69e-13
F16* 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F17* 7.35e-02 8.74e+00 3.30e+01 1.08e+02 2.31e+02
F18* 0.00e+00 0.00e+00 0.00e+00 2.27e-13 1.36e-12
F19* 0.00e+00 0.00e+00 1.91e-14 4.95e-14 9.50e-14

Table 40: Average execution time of SOUPDE (in seconds)

50 100 200 500 1000
F1 115 248 546 1768 4922
F2 117 252 558 1810 5032
F3 153 328 713 2211 5829
F4 129 284 637 2066 5812
F5 132 289 648 2113 5889
F6 134 298 658 2096 5695
F7 119 262 583 1879 5216
F8 104 231 514 1671 4686
F9 156 356 826 2916 8877
F10 163 355 783 2462 6739
F11 159 360 831 2933 8888
F12 265 585 1339 4570 13253
F13 304 675 1510 5026 14451
F14 284 629 1437 4886 14343
F15 288 635 1430 4727 13577
F16* 264 592 1367 4727 14042
F17* 308 684 1561 5378 15691
F18* 281 615 1443 5039 15386
F19* 271 609 1362 4402 10905

algorithm consists of a Differential Evolution employing a structured popu-
lation where each sub-population evolves independently, for a portion of the
optimization process, by quickly exploiting the set of available search moves
and thus enhancing upon the original fitness values. Two randomized mech-
anisms periodically activated allow interaction among sub-populations and
generation of unexplored search logics. The resulting algorithm behaves in
a similar way to a multi-start multiple search and proved to be efficient for
highly dimensional problems.

31

Table 41: Average execution time for the test functions (in seconds)

50 100 200 500 1000
F1 25 51 111 329 783
F2 28 57 122 363 883
F3 65 137 285 797 1807
F4 44 97 217 755 2231
F5 47 104 240 903 2639
F6 52 114 251 823 2364
F7 32 70 149 441 1080
F8 21 46 98 287 696
F9 75 172 435 1846 6168
F10 79 178 403 1381 4014
F11 74 175 435 1853 6122
F12 173 390 906 3233 9652
F13 213 472 1072 3694 10537
F14 192 432 1012 3638 10817
F15 196 435 988 3414 9713
F16* 172 400 943 3459 10574
F17* 213 486 1136 4144 12375
F18* 191 444 1055 3986 12165
F19* 194 439 990 3415 8948

Table 42: Average overhead of SOUPDE (in seconds)

50 100 200 500 1000
F1 90 196 435 1439 4139
F2 89 194 436 1447 4148
F3 88 191 428 1413 4021
F4 84 187 420 1311 3580
F5 85 185 408 1210 3249
F6 82 184 407 1273 3330
F7 86 191 433 1437 4135
F8 82 185 415 1384 3990
F9 81 184 390 1070 2709
F10 83 177 380 1080 2724
F11 84 185 395 1079 2765
F12 91 195 432 1336 3601
F13 90 202 438 1331 3913
F14 91 197 424 1248 3526
F15 92 200 441 1313 3864
F16* 92 191 424 1268 3468
F17* 94 198 424 1233 3315
F18* 90 170 387 1052 3220
F19* 76 169 371 987 1957

Two important features of the proposed algorithm must be highlighted.
The first is the capability of detecting the theoretical global optimum in most
of the runs and for most of the problems in the benchmark. The second fea-
ture is the robustness to the curse of dimensionality with respect to the other
algorithms considered in the study. More specifically, the standard DE in the
benchmark has a performance comparable to the proposed algorithm for low
dimensional cases. While the dimensionality grows the proposed algorithm

32

appears to be more capable to handle the fitness landscapes and for the set
of most multi-variate problems displays a significantly better performance.

References

1. F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to particle
swarm optimization,” IEEE Transactions on Evolutionary Computation, vol. 8,
no. 3, pp. 225–239, 2004.

2. E. Marchiori and A. Steenbeek, “An evolutionary algorithm for large scale set
covering problems with application to airline crew scheduling,” in Scheduling,
in Real World Applications of Evolutionary Computing, Lecture Notes in Com-
puter Science, pp. 367–381, Springer, 2000.

3. A. V. Kononova, K. J. Hughes, M. Pourkashanian, and D. B. Ingham, “Fit-
ness diversity based adaptive memetic algorithm for solving inverse problems
of chemical kinetics,” in Proceedings of the IEEE Congress on Evolutionary
Computation, pp. 2366–2373, 2007.

4. A. V. Kononova, D. B. Ingham, and M. Pourkashanian, “Simple scheduled
memetic algorithm for inverse problems in higher dimensions: Application to
chemical kinetics,” in Proceedings of the IEEE World Congress on Computa-
tional Intelligence, pp. 3906–3913, 2008.

5. P. Korošec and J. Šilc, “The differential ant-stigmergy algorithm for large scale
real-parameter optimization,” in ANTS ’08: Proceedings of the 6th interna-
tional conference on Ant Colony Optimization and Swarm Intelligence, Lecture
Notes in Computer Science, pp. 413–414, Springer, 2008.

6. M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach
to function optimization,” in Proceedings of the Third Conference on Parallel
Problem Solving from Nature, pp. 249–257, Springer-Verlag, 1994.

7. Y. Liu and Q. Zhao, “Scaling up fast evolutionary programming with coop-
erative coevolution,” in Proceedings of the IEEE Congress on Evolutionary
Computation, pp. 1101–1108, 2001.

8. D. Sofge, K. De Jong, and A. Schultz, “A blended population approach to
cooperative coevolution fordecomposition of complex problems,” in Proceedings
of the IEEE Congress on Evolutionary Computation, pp. 413–418, 2002.

9. M. A. Potter and K. De Jong, “Cooperative coevolution: An architecture for
evolving coadapted subcomponents,” Evolutionary Computation, vol. 8, no. 1,
pp. 1–29, 2000.

10. Y.-J. Shi, H.-F. Teng, and Z.-Q. Li, “Cooperative co-evolutionary differen-
tial evolution for function optimization,” in Advances in Natural Computation,
vol. 3611 of Lecture Notes in Computer Science, pp. 1080–1088, Springer, 2005.

11. Z. Yang, K. Tang, and X. Yao, “Differential evolution for high-dimensional
function optimization,” in Proceedings of the IEEE Congress on Evolutionary
Computation, pp. 3523–3530, 2007.

12. A. Zamuda, J. Brest, B. Bošković, and V. Žumer, “Large scale global opti-
mization using differential evolution with self-adaptation and cooperative co-
evolution,” in Proceedings of the IEEE World Congress on Computational In-
telligence, pp. 3719–3726, 2008.

13. O. Olorunda and A. Engelbrecht, “Differential evolution in high-dimensional
search spaces,” in Proceedings of the IEEE Congress on Evolutionary Compu-
tation, pp. 1934–1941, 2007.

14. Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization using
cooperative coevolution,” Information Sciences, vol. 178, no. 15, pp. 2985–2999,
2008.

15. U. K. Chakraborty, ed., Advances in Differential Evolution, vol. 143 of Studies
in Computational Intelligence. Springer, 2008.

16. F. Neri and V. Tirronen, “Recent advances in differential evolution: A review
and experimental analysis,” Artificial Intelligence Review, vol. 33, no. 1, pp. 61–
106, 2010.

33

17. S. Rahnamayan and G. G. Wang, “Solving large scale optimization problems by
opposition-based differential evolution (ode),” WSEAS Transactions on Com-
puters, vol. 7, no. 10, pp. 1792–1804, 2008.

18. S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, “Opposition-based dif-
ferential evolution,” IEEE Transactions on Evolutionary Computation, vol. 12,
no. 1, pp. 64–79, 2008.

19. N. Noman and H. Iba, “Enhancing differential evolution performance with local
search for high dimensional function optimization,” in Proceedings of the 2005
conference on Genetic and evolutionary computation, pp. 967–974, ACM, 2005.

20. P. Moscato and M. Norman, “A competitive and cooperative approach to com-
plex combinatorial search,” Tech. Rep. 790, 1989.

21. W. E. Hart, N. Krasnogor, and J. E. Smith, “Memetic evolutionary algo-
rithms,” in Recent Advances in Memetic Algorithms (W. E. Hart, N. Krasnogor,
and J. E. Smith, eds.), (Berlin, Germany), pp. 3–27, Springer, 2004.

22. Y. S. Ong and A. J. Keane, “Meta-lamarkian learning in memetic algorithms,”
IEEE Transactions on Evolutionary Computation, vol. 8, no. 2, pp. 99–110,
2004.

23. N. Noman and H. Iba, “Accelerating differential evolution using an adaptive
local search,” IEEE Transactions on Evolutionary Computation, vol. 12, no. 1,
pp. 107–125, 2008.

24. J. Brest, A. Zamuda, B. Bošković, M. S. Maucec, and V. Žumer, “High-
dimensional real-parameter optimization using self-adaptive differential evo-
lution algorithm with population size reduction,” in Proceedings of the IEEE
World Congress on Computational Intelligence, pp. 2032–2039, 2008.

25. J. Brest and M. S. Maučec, “Population size reduction for the differential evo-
lution algorithm,” Applied Intelligence, vol. 29, no. 3, pp. 228–247, 2008.

26. J. Brest, B. Bošković, S. Greiner, V. Žumer, and M. S. Maučec, “Performance
comparison of self-adaptive and adaptive differential evolution algorithms,”
Soft Computing, vol. 11, no. 7, pp. 617–629, 2007.

27. J. Brest, S. Greiner, B. Bošković, M. Mernik, and V. Žumer, “Self-adapting
control parameters in differential evolution: A comparative study on numeri-
cal benchmark problems,” IEEE Transactions on Evolutionary Computation,
vol. 10, no. 6, pp. 646–657, 2006.

28. F. Neri and V. Tirronen, “Scale factor local search in differential evolution,”
Memetic Computing Journal, vol. 1, no. 2, pp. 153–171, 2009.

29. D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and M. N. Vrahatis, “Parallel
differential evolution,” in Proceedings of the IEEE Congress on Evolutionary
Computation, pp. 2023–2029, 2004.

30. J. Apolloni, G. Leguizamón, J. Garćıa-Nieto, and E. Alba, “Island based dis-
tributed differential evolution: An experimental study on hybrid testbeds,” in
Proceedings of the IEEE International Conference on Hybrid Intelligent Sys-
tems, pp. 696–701, 2008.

31. M. Weber, F. Neri, and V. Tirronen, “Distributed differential evolution with
explorative-exploitative population families,” Genetic Programming and Evolv-
able Machines, vol. 10, no. 4, pp. 343–371, 2010.

32. M. Weber, V. Tirronen, and F. Neri, “Scale factor inheritance mechanism in
distributed differential evolution,” Soft Computing - A Fusion of Foundations,
Methodologies and Applications. to appear.

33. V. Feoktistov, Differential Evolution in Search of Solutions. Springer, 2006.
34. J. Lampinen and I. Zelinka, “On stagnation of the differential evolution algo-

rithm,” in Proceedings of 6th International Mendel Conference on Soft Com-
puting (P. Oŝmera, ed.), pp. 76–83, 2000.

35. S. Garćıa, A. Fernández, J. Luengo, and F. Herrera, “A study of statistical
techniques and performance measures for genetics-based machine learning: ac-
curacy and interpretability,” Soft Computing, vol. 13, no. 10, pp. 959–977, 2008.

36. S. Garćıa, D. Molina, M. Lozano, and F. Herrera, “A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: a case
study on the cec’2005 special session on real parameter optimization,” Journal
of Heuristics, vol. 15, no. 6, pp. 617–644, 2008.

34

37. F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics Bul-
letin, vol. 1, no. 6, pp. 80–83, 1945.

38. S. Holm, “A simple sequentially rejective multiple test procedure,” Scandina-
vian Journal of Statistics, vol. 6, no. 2, pp. 65–70, 1979.

	Abstract
	Préface
	Acknowledgements
	List of Figures and Tables
	Contents
	List of Included Articles
	Introduction
	Derivative-based Optimization
	Derivative-Free Optimization

	Metaheuristics
	Single-Individual Metaheuristics
	Population-Based Metaheuristics
	Evolutionary Algorithms
	Swarm Intelligence
	Memetic Algorithms

	Differential Evolution
	Mutation Schemes
	Crossover Schemes
	One-Point Crossover
	N-Point Crossover
	Exponential Crossover
	Uniform (Binomial) Crossover

	Survivor Selection
	The Evolutionary Algorithm-Swarm Intelligence Duality
	Implicit Self-Adaptation: a Double-Edged Sword
	Overcoming Stagnation
	Dynamic Control Parameters
	Supplementary Search Moves
	Hybrid Approaches
	Variable Population Sizes

	Differential Evolution with Structured Population
	Differential Evolution Algorithms with Structured Populations
	Parallel Differential Evolution
	Island-Based Distributed Differential Evolution
	Distributed Differential Evolution
	Randomly Connected Topologies

	Building Upon Structured Population Algorithms
	Test Framework
	Population Modification
	Operator Modification
	Hybrid Approach for Large-Scale Optimization

	Conclusion
	Yhteenveto (Finnish Summary)
	References
	Included Articles
	Fitness Diversity Parallel Evolution Algorithms in the Turtle Race Game
	Distributed differential evolution with explorative-exploitative population families
	Scale factor inheritance mechanism in distributed differential evolution
	Parallel Random Injection Differential Evolution
	Parallel Differential Evolution with Endemic Randomized Control Parameters
	Component Decomposition in Parallel Differential Evolution
	Shuffle Or Update Parallel Differential Evolution for Large Scale Optimization

