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Finnish summary

Diss.

This dissertation considers numerical methods for wave propagation modelling
and noise control. The first part of the dissertation discusses an efficient method
for solving time-harmonic wave equations in acoustic (the Helmholtz equation)
and elastic domains (the Navier equation). The solver is based on precondition-
ing a Krylov subspace method, such as GMRES, with approximations of damped
variants of the corresponding wave equations. An algebraic multigrid method
is used in approximating the inverse of damped operators. The method can be
used in complex three-dimensional computational domains with varying mate-
rial properties.

The second part of the dissertation considers noise control problems. Two
different noise control problems are discussed in detail. First, a shape optimiza-
tion of a duct system with respect to sound transmission loss is discussed. The
sound transmission loss is maximized at multiple frequency ranges simultane-
ously, by adjusting the shape of a reactive muffler component. The noise re-
duction problem is formulated as a multiobjective optimization problem for the
NSGA-II genetic algorithm. The discussed method provides an efficient approach
to design muffler components. Second, a novel method is introduced for assess-
ing the effectiveness of the optimal anti-noise for local sound control in a stochas-
tic domain. A three-dimensional enclosed acoustic space, for example, a cabin
with acoustic actuators in given locations, is modelled using the finite element
method in the frequency domain. In a model problem, a significant noise reduc-
tion is demonstrated particularly at lower frequencies.

Keywords: acoustics, preconditioning, noise control, finite element method, op-
timization, stochastic domain, genetic algorithm, shape optimization,
duct, reactive muffler
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1 INTRODUCTION

Motivation for conducting research on sound-related phenomena can be found in
everyday life. Indeed, noise is a significant inconvenience for everyone in today’s
society. It is encountered in city centers, factories, and various vehicles. Rotating
parts such as wheels, engines, and cooler fans are typical noise sources. These
devices need noise reduction in order to be safe and comfortable in use. Various
noise control techniques for the reduction of noise levels are available.

Sound and vibration phenomena are also advantageous in many ways. They
are exploited by many applications of modern technology. Particularly non-
audible ultra- and infrasound are used in many applications. Echo sounding de-
vices use infrasound, whereas ultrasound is used for various medical purposes
such as ultrasound surgery, imaging, and tomography. Ultrasound is also used
to catalyze certain chemical reactions, as well as for purification and disinfection
purposes.

There are a number of different sound research methods and these are cat-
egorized in three main classes: experimental, analytical, and computational. Ex-
perimental techniques are commonly used in acoustical studies. These methods
require special settings that are not always feasible due to technical or economic
reasons. In some cases, it is possible to build an analytical acoustic model, but
these are limited to rather simple problem types with respect to geometry, mate-
rial, and boundary properties. Computational methods offer a novel approach to
perform acoustical studies accurately and efficiently. All of these methods have
their own advantages and complement each other. For example, computational
models are often verified by analytical or experimental studies.

The field of computational acoustics is relatively new, as the computer tech-
nology allowing appropriate simulations has only existed for a few decades. Dur-
ing these decades, however, active research on numerical methods allowing ef-
ticient modelling for complicated problem types has been conducted. Recently,
the technological development has made computational methods an affordable
alternative to various acoustical studies. They are often very cost-effective, as
prototypes and scale models are not needed. Computation also makes it possible
to perform optimizations that typically require a large number of experiments.
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The shape, topology, and material parameters can be optimized, for example,
with respect to acoustic properties such as noise reduction.

The aims of this dissertation are to introduce an improved numerical method
for acoustic and elastic wave propagation simulation and to propose advanced
optimization methods for noise reduction. The dissertation comprises an intro-
duction and five scientific articles. The introduction offers a review of the five ar-
ticles included. The introduction is structured as follows: Chapter 1 indicates the
motivation for the study and provides some introductory background informa-
tion, as well as outlines the organization of the dissertation; Chapter 2 presents
the physical and mathematical background to the acoustic problems addressed
in the dissertation; Chapter 3 reviews both the numerical methods used in this
study and some other major numerical methods used in studies of acoustics.

In Chapter 4, a preconditioning technique based on physical damping for
time-harmonic acoustic and elastic wave equations is presented, summarizing
articles [I, II, III]. An algebraic multigrid method is used to approximate the in-
verse of the discretized preconditioner. The technique was introduced for the
two-dimensional Helmholtz problems in [I] and further generalized to three-
dimensional problems and elastic problems in [II]. The results are compared to
the MIC-based preconditioning and exact controllability method [21, III].

Chapter 5 reviews noteworthy sound or noise controlling methods and sum-
marizes the studies carried out for the articles [IV, V]. Two different noise control
methods are presented. Both methods involve optimization and acoustic simula-
tions. The first method considers noise control in duct systems by optimizing the
shape of a reactive muffler component, based on article [V]. The second method
examines local noise control in a stochastic domain, based on article [IV].

Finally, Chapter 6 summarizes the results of the dissertation and offers some
concluding remarks.



2 PHYSICS OF SOUND

As a physical quantity, sound is described as propagation of temporal density
fluctuations, i.e. compressions and rarefactions of the medium. In fluids, these
fluctuations are small pressure changes and in solid materials they are small dis-
placements of material particles. The wave propagation problems addressed in
this dissertation are described mathematically by linear wave equations. The
sound modelling is considered in fluid (gas or liquid) and solid elastic material.
A solid material is referred to as elastic if it reverts to its original shape after being
deformed. Most metals are elastic with respect to small deformations.

In this chapter, the acoustic wave equation is derived. In many practical ap-
plications, sound is time-harmonic by nature. Moreover, time-dependent prob-
lems can be converted into time-harmonic problems through Fourier transforma-
tion. A time-harmonic assumption simplifies the mathematical formulation of
wave propagation problems. The acoustic wave equation reduces to the Helm-
holtz equation, and, in elastic media, time-harmonic wave-propagation is gov-
erned by the Navier equation, correspondingly. In the later chapters, only time-
harmonic problem types are considered.

Several books providing an introduction on acoustics and elasticity have
been written; for example, [31, 35]. In the following section, the derivation of
wave equation is based on [28].

2.1 Acoustic wave equation

A justified assumption for most fluids is that sound propagation (emergence and
transmission) is an isentropic process, i.e. it is adiabatic and reversible. In an
adiabatic process there is no thermal entry or loss, i.e. the amount of thermal
energy is constant. Thus, it holds, that

p = —Bs, (1)
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FIGURE1 The one-dimensional fluid element.

where p is the pressure, s = AV /V is the condensation of the volume V and B is
the bulk modulus determining the stiffness of the medium. The behavior of fluid
with slow volume changes is analogous to the compression of a harmonic spring.
The minus sign in Eq. (1) indicates that pressure increase leads to a decrease of
volume and vice versa. In the one-dimensional case, the condensation depends
on the displacement u as s = du/dx, so Eq. (1) for pressure reads

ou
= —B—. 2
p = @
To obtain the Euler equation, Newton’s second law is applied to a small
fluid interval Ax with ending points at xo and x; (see Figure 1). The compressive
forces at the interval boundaries are at equilibrium with the volume force due to
inertia:

~Ap() - p(n) = poAla-x0) S, ®

where A is the area of the surface at the ends of the considered one-dimensional
element, and v is the velocity of the fluid element and py is the static, or time-
averaged density of the material. When Ax — 0, the Euler equation is obtained:

ap ov
i 4
9x ot @
To derive the wave equation, a spatial derivative is first taken on both sides
of Eq. (4):
0%p 0 ov
%2~ o (Po§> : (5)
It is assumed that the static density is constant, i.e. dypg = 0. Next, Eq. (2) is
considered, i.e. 9;v = u and d,u = —B~1 p are substituted in Eq. (5):
Pp _ podp

%~ B (6)



13

Now, it is enough to note that the speed of sound ¢ = /B /pg can be substituted,
and the wave equation is obtained:

?p 1%
w2z O @

This generalizes to a three-dimensional wave equation, which reads

1 92
v2p lop
Pz = O ®)

Time-harmonic acoustic wave equation (the Helmholtz equation)

By substituting a time-harmonic pressure of the form

p(x,t) = p(x)e )

in Eq. (8), with an angular frequency w and imaginary unit i = \/—1, the Helm-
holtz equation is obtained:

~V?p—K*p =0, (10)

where k (x) = w/c (x) is the wave number. In an inhomogeneous medium, the
wave number k varies depending on location, as the sound speed c varies.

Impedance boundary condition

Absorbing and partially absorbing boundaries of the fluid domain are approxi-
mated by an impedance boundary condition that is modelled by

n-Vp=iykp, (11)

where n(x) is the outer unit normal vector [27]. Choosing the absorbency coef-
ficient v = 0 leads to the Neumann boundary condition that implies a perfect
reflecting sound-hard boundary, and v = 1 gives a low-order absorbing bound-
ary condition.

Acoustic wave propagation in ducts

In uniform ducts, the solution to the Helmholtz equation Eq. (10) can be obtained
by modal analysis [45]. In certain special cases, such as circular or rectangular
ducts, the analytical form of the solution can be derived; whereas in the general
shaped duct, eigenfunctions have to be solved numerically. The expansion of the
acoustic pressure in the duct is represented in cylindrical coordinates as a sum
over the eigenmodes
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TABLE 1 First roots of Bessel derivative function, ],’ﬂj (bj) = 0.

jl1 2 3 4 5
mi| 0 1 2 0 3
bj |00 184 3.05 3.83 4.20
p(r,0,z) = Y A®(r,0)e N+ Y F®;(r,0) "> (12)
j=0 j=0

where ®; (r,6) are the transverse duct eigenfunctions corresponding to the cross-
section of the pipe; A; and F; are the modal amplitudes corresponding to eigen-
functions ®;; and A; are axial wavenumbers along the z-axis.

In the circular duct, eigenfunctions ®; (r, 0) are represented by modes

@i (r,0) = Ju, (kyjr) ™, (13)

where [, (x) is order m; Bessel function of the first kind and k,; is the radial
wavenumber. The radial wavenumber k;,; is obtained by considering a sound-
hard wall boundary condition n - Vp = 0, which here implies that at r = g,
where a is the radius of the duct wall,

T, (keja) = 0. (14)

Axial wavenumber k; is evaluated from the effective wavenumber k and the ra-

dial wavenumber k,; by
ki = /Jk*— kfj. (15)

The axial wave propagation in Eq. (12) is determined by term ¢*=i?, which im-
plies that the imaginary axial wavenumber k,; leads to exponential decaying of
the wave mode. Thus, the evanescent modes with k;; > k can be neglected.
The modes are denoted by an index j, which starts from zero and is ordered in
accordance with the radial wavenumbers k;;. The radial wavenumbers can be
calculated from Bessel derivative roots k;; = b;/a according to Eq. (14) (see Table
1), where b; is the root of Bessel derivate of order m; and 4 is the radius of the

duct.
Reciprocity principle

The acoustical reciprocity principle is explained in the following: the sound emit-
ted by the source at the location a, measured at the location b, has the same pres-
sure amplitude as the sound emitted from the source at the location b, measured
at the location a. In other words, the principle says that the observation stays the
same when the locations of sound source and observer are exchanged. For more
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details about the priciple and its applications, see [16, 17, 31].
2.2 Time-harmonic elastic wave equation (Navier equation)

The theory of elasticity is covered in detail in [35]. Here, only the governing
equation for time-harmonic propagation in linear elastic media is given.

For time-harmonic displacements u (x,t) = e "“! (x) in a domain consist-
ing of elastic materials, the scattering of time-harmonic waves is described by the
Navier equation

— WP —V.o(a) = f (16)

where ¢ is the stress tensor, f is a force term that is non-zero at sound sources,
and p is the density of the material. Hooke’s law gives a relation between dis-
placements, and stress and strain forces, thus describing strain tensor € and stress
tensor ¢

€(u) = % (Vu+ (Vu)T> , o(u)=A(V-u)+2ue(u). (17)

Here Lamé parameters A and p are defined as follows:

E Ev

iy PN T a Aoy (18)

A(x) =
These depend on the Young modulus E (x) and Poisson’s ratio v (x) that charac-

terize the elastic behavior of the material. The speeds of pressure wave, c,, and
shear wave, c;, are to be expressed as functions of Lamé parameters:

A+2pu \/ﬁ
Cp = , Cs = ./—. (19)
b o 0

Impedance boundary condition

Absorbing and partially absorbing boundaries are approximated by an impedance
boundary condition, which is modelled by the equation

iywpsBa + o () n =0, (20)

where 7 is the absorbency coefficient, and B is a 3 x 3 matrix for three-dimensional
problems [11]. Choosing the absorbency coefficient v = 0 leads to a natural
boundary condition and v = 1 gives an absorbing boundary condition. In com-
ponent form, B has the expression

Bij = Cpnin; + Cstit]' + Cs8;Sj (21)
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for three-dimensional problems, where ¢, and ¢ are the speeds of pressure and
shear waves given by Eq. (19), n is the unit normal vector pointing out of the
elastic domain, and t and s are tangential vectors on the boundary.



3 NUMERICAL METHODS FOR ACOUSTIC
MODELLING

During recent decades, numerical methods for acoustic and elastic wave propa-
gation problems have been actively researched. It has proven challenging, both
mathematically and computationally, to develop robust, efficient, and universal
methods for solving these problems. Due to the wide range of applications that
exist in different disciplines, interest and motivation for good numerical meth-
ods are emphasized. Several recently studied numerical methods for acoustics
are presented in detail in [40]. This chapter reviews briefly the numerical meth-
ods that are used in this dissertation and some others that are commonly used in
acoustic modelling.

3.1 Discretization methods for PDEs

Finite element method

The finite element method (FEM) is a general framework for solving numeri-
cally integral and differential equations, particularly partial differential equations
(PDEs). It has been successfully applied to structural mechanics, fluid dynamics,
thermal transfer problems, quantum mechanics, electromagnetics, acoustics, and
various combinations of these, to name a few. Finite element analysis, particu-
larly in the context of acoustic scattering problems is addressed in [27]. The finite
element approximation of the PDE solution is obtained either by eliminating the
differential equation completely (steady state problems) or by turning the PDE
into a system of ordinary differential equations that are integrated numerically
(time-dependent problems). The procedure of Galerkin FEM is described briefly
in the following.

A mesh consisting of small, non-overlapping elements is constructed for
computation domain ). Triangles or quadrangles are usually used in two-dimen-
sional problems as well as in three-dimensional domain surfaces, and tetrahedral
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(a) (b)
FIGURE 2 Finite element mesh examples.

or hexahedral elements are used to fill three-dimensional volumes. In Figure 2,
two finite element mesh examples are shown. Curvilinear polygons can also be
used to improve accuracy on curved boundaries and it is possible to use several
different types of elements simultaneously in the same problem. The element
sizes are adapted to the requirements of the problem and may vary over the do-
main. FEM is particularly efficient in regard to complicated domains in which
the desired precision varies over the entire domain.

The problem is formulated in the weak form by multiplying the govern-
ing equation by a test function and integrating it over the computation domain.
Higher order derivatives in resulting integral equation are integrated by parts.
The examined quantity, such as acoustic pressure for example, is approximated

p(x) = YN@)pi=[Ni(x),...Ne(x)] | : | =Nx)"p, (22
Pn

where Nj (x) is the basis function of i node in the defined mesh, pj is the nodal
value of the examined quantity at node j, and 7 is the number of nodes in the
computation domain. The Galerkin method proposes that N; (x) are used as test
functions. There are many choices of basis functions, but piecewise linear or poly-
nomial functions are typically used. The choice of piecewise basis functions has
the advantage that the pressure on each individual node only depends on a few
neighbouring nodes. This leads to a sparse linear system of equations, which
allows the solution of large problems.

The resulting system of linear equations from the discretization of the Helm-
holtz or Navier equation is non-Hermitian and indefinite. For mid-frequency
and high-frequency problems, the matrix equation can be extremely large. Par-
ticularly the finite element phase shift error (often referred to as the pollution er-
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(.j+1)

@
- G ‘ (i.j) Q 1)
O

(,j-1)

FIGURE 3 Five-point stencil.

ror) necessitates finer discretizations for high-frequency problems [27] and thus
increases memory and computational requirements. Many three-dimensional
problems are too large to be solved by direct methods with an affordable com-
puting effort. Hence, it is necessary to use iterative methods such as the GMRES
method [48] or the Bi-CGSTAB method [56]. However, these methods require a
good preconditioner in order to converge in a reasonable time.

Finite difference method

The finite difference method (FDM) approximates PDEs by replacing the deriva-
tive expressions with approximating difference quotients [44]. Discretization of
the problem’s domain is usually done by dividing the subdomain into a uniform
grid. In two- and three-dimensional domains, a stencil notation is useful in the
discretization of partial differential equations. For example, if a square grid is
used in two dimensions, the five-point stencil of a point is made up of the point
itself and four neighboring nodes (see Figure 3). The five-point stencil for the
two-dimensional Helmholtz operator Ap = —d2p — 85;9 — k?p is given by the
following notation:

~1
1
A= | -1 4—(1;11)2 1. (23)

The system of linear equations is assembled simply from the linear equations that
are constructed for each computation node in a discretization grid. The coefficient
matrix A is a banded, sparse matrix.

The finite difference method is very popular due to its simplicity and straight-
forward implementation. However, it is limited to staircase approximations of
the domain, which makes it inefficient for complex problems.
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3.2 Solution methods for PDEs

Preconditioned iterations

The convergence of Krylov subspace methods for the discretized Helmholtz or
Navier equation is very slow for medium- and large-scale scattering problems,
due to the ill conditioning of coefficient matrix A. The speed of the convergence
can be significantly improved by choosing a suitable preconditioner B. This leads
to the right preconditioned system

AB li=f. (24)

Once i is solved from this system, the solution u is obtained as u = B~!i. The
goal is to find a preconditioner B such that the matrix AB~! is well conditioned
and that vectors can be multiplied by B!, i.e. solve systems with B with lit-
tle computational effort. These properties would lead to a fast convergence of
the iterative method and to a small overall computational cost. Several precon-
ditioners and iterative solution techniques have been proposed for the discrete
Helmholtz and Navier equations.

So-called natural preconditioning techniques are applicable for many acous-
tic problems, including time-harmonic wave equations [55]. An example of this
approach is the class of preconditioners based on damped operators discussed in
Chapter 4. A shifted-Laplacian preconditioner with a complex shift, which is here
referred to as the damped Helmholtz preconditioner, was first reported in [13] for
the Helmholtz equation. This was a development over the shifted-Laplacian pre-
conditioner with a real shift, previously described in [34].

The damped Helmholtz preconditioner with geometric multigrid was stud-
ied in [12]. This approach was extended in [I] to general shaped two-dimensional
domains using finite element discretizations. The algebraic multigrid method
(AMG) was applied instead of the geometric multigrid in order to approximate
the inversion of the damped Helmholtz operator. In [II], this method was further
extended to three-dimensional problems and also time-harmonic wave propaga-
tion problems in elastic media, i.e. the Navier equation. The technique and some
results and comparison are discussed particularly in Chapter 4, based on articles
[, I, IIT].

An incomplete factorization preconditioner has been considered in [39]. The
preconditioning is based on adding small perturbations to the diagonal entries of
the real part of the preconditioner matrix, assembled from the discretization of
the Helmholtz equation. The perturbed preconditioner matrix equation is then
solved with standard incomplete factorization methods such as incomplete LU
or incomplete Cholesky (see e.g., [47]). Significant savings of GMRES iterations
are reported. In Section 4.2, this technique is compared to the damped Helmholtz
and Navier preconditioners.
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Multigrid methods

Multigrid methods [54] are techniques for solving partial differential equations
by using a hierarchy of discretizations. Accelerated convergence of an iterative
method is achieved by a global correction obtained by solving a set of coarse
problems. The coarse problems are formed either geometrically (geometric multi-
grid method, GMG) or algebraically (algebraic multigrid method, AMG).

The multigrid method proceeds as follows. The residual of the matrix equa-
tion is first restricted to coarse levels. A correction is obtained by approximately
solving the error equation Ae = r at a coarse level, where A is the matrix at the
coarse level, e is the error vector, and r is the current residual. This is done in a
recursive manner at several coarse levels. Corrections from different coarse lev-
els reduce the residual at different frequency ranges: particularly low frequency
error components are reduced at the coarsest levels. This makes the method ef-
ficient, as low frequency error components deteriorate the convergence speed
of iterative solvers. The error equation is solved by a solver that reduces high-
frequency error components effectively, and is thus referred to as a smoother.
For example, the Jacobi or Gauss-Seidel methods [47] are commonly used as
smoothers.

The multigrid method alone has been successfully applied to various types
of problems, but has proven to be ineffective for wave propagation problems. In
[9], it has been used for the Helmholtz problems as a preconditioner to the outer
GMRES iteration. There, GMRES has been used as a smoother on the coarsest
grids. The resulting method is robust and significantly more effective than the
standard multigrid method alone.

Domain imbedding / Fictitious domain method

Domain imbedding/fictitious domain methods are special techniques for con-
structing efficient preconditioners for elliptic equations. These methods are based
on imbedding the original domain into another one with a simple geometrical
form, which permits the application of fast direct solvers. An algebraic ficti-
tious domain method is proposed as a preconditioning method for the Helmholtz
equation in [22, 26]. Due to the structure of the preconditioner, GMRES iterations
are reduced in a low-dimensional subspace. The method is scalable and offers
fast convergence, but it is more difficult to implement for complicated problems.
The finite element capacitance matrix method [14] is an approach that is similar
to domain imbedding / fictitious domain methods.

Domain decomposition methods
The idea of domain decomposition methods [53] is to split the partial differen-

tial equation into coupled problems on smaller subdomains such that they form
a partition of the original domain and then iterate the interactions between ad-
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jacent subdomains. A coarse problem with relatively few unknowns per sub-
domain is used to synchronize the solution globally. The subdomain problems
are independent, which makes the method suitable for parallel computing. Do-
main decomposition methods have been proposed for the Helmholtz problems
in [18, 29], and for elastic problems in [5, 15], for example.

Exact controllability method

Exact controllability [4, 25] is an approach that is suitable for solving the Helm-
holtz equation via the time-dependent wave equation. The basic idea is to find
a time-harmonic solution to the associated time-dependent wave equations by
using a controllability method. The solution is obtained by minimizing the dif-
ference between initial conditions and the corresponding variables after time pe-
riod T = 27t/ w. By proceeding in this way, the problem of time-harmonic wave
scattering is then cast as a least-squares problem

min 1 /
€0,1 2 0O

where the initial conditions are contained in a vector (eg,e1)” = (p(0),9:p(0))7,
and p(t) = Re(e ™ p) satisfies the time-dependent equations associated with the
system. The least-squares problem can be solved by a conjugate gradient method.
The method leads to preconditioned conjugate gradient iterations for the initial
data.

In article [III], the exact controllability approach was compared to the damp-
ed preconditioner method described in Chapter 4. The damped preconditioner
method was revealed to be considerably faster when the performance was com-
pared with respect to CPU time. Some results are reviewed in Section 4.2.

dp (T)
ot

2
—e dx+%/Q\V(p(T)—eo)|2dx>, (25)

3.3 Other acoustic simulation methods

Boundary element method

The boundary element method [33] is a robust and commonly used method in
computational acoustics, and it is particularly popular in acoustic scattering be-
cause it produces smaller matrices than FEM or FDM.

Instead of solving the governing PDE in entire volume, the boundary ele-
ment method attempts to use the given boundary conditions in order to fit the
boundary values into the integral equation. The radiation problem is arranged
into the Helmholtz-Kirchhoff integral equation

p(r)= /aQ (8 (rlro)n-Vp (ro) —p(ro)n- Vg (rlro)) dx, (26)
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where
g (r|ro) = e~ iklr=rol /471 |r — 19 (27)

is Green’s function and d(2 is the boundary surface of the domain. The problem
boundary is then discretized into surface elements; the problem can also be seen
as a finite element discretization of the boundary integral equation Eq. (26). The
Green function Eq. (27) fulfills the far-field radiation condition (Sommerfeld con-
dition) of vanishing sound pressure when r — co. In the post-processing stage,
the integral equation can be used again to numerically calculate the solution in
any interior point of the solution domain.

BEM is often computationally more efficient than FEM/FDM for problems
that have a small surface-to-volume ratio. Therefore, BEM is often used for acous-
tic scattering problems. One of the benefits is that the number of degrees of free-
dom in BEM is relatively small due to the integration only occurring over the
boundary. In turn, the resulting matrix of the problem is full, i.e. all nodes are
connected to each other. Thus, the memory consumption and CPU time used for
the inversion tends to grow in accordance with the square of the problem size,
whereas the FEM/FDM typically only has corresponding linear growth. A con-
siderable restriction to the boundary element method is the fact that it can only
be used on problems that have homogeneous media.

Statistical energy analysis

Statistical energy analysis (SEA) is an acoustic simulation approach that is com-
pletely different from the other methods reviewed in this section. It is still worth
mentioning here, as it provides an alternative for many large, high-frequency
acoustic problems that would be too difficult to solve by current finite element
methods.

The SEA method aims at predicting vibration transmission in a system that
consists of coupled acoustic cavities and structures. The vibrational behavior in
a system is described in terms of energy. A problem is solved with SEA by par-
titioning a system into regions in which the energy is equally shared among the
vibrational modes.

SEA was originally introduced in the 1960s by Lyon and Maidanik [38, 37].
It has become particularly popular in the aerospace and automotive industries. A
technique for coupling SEA with FEM or BEM has subsequently been developed
in [49].

3.4 Duct acoustics modelling

Sound propagation in waveguides is a fundamentally interesting topic. Ventila-
tion ducts are an example of a waveguide in which noise reduction is of a special
interest. Often, the acoustic influence of a non-uniform obstruction is essential in
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QA QB QC

FIGURE 4 The cross-cut illustration of a duct system in a general case: inlet pipe ()4,
muffler component of arbitrary shape (g and outlet pipe Q)c.

an otherwise uniform duct.

Duct acoustics can be modelled by several different means. There is an in-
troduction to one dimensional duct acoustic modelling in [45]. The four-pole
transfer matrix method, based on plane wave theory, offers an approximative
way to make a one-dimensional model of muffler acoustics. This approach has
been used for transmission loss optimization in the duct system [61]. However,
the method is limited to simple geometries and boundary conditions. In [42], a
mapped infinite partition of unity method is presented for axisymmetrical prob-
lems, which is applicable for duct acoustic problems.

The hybrid numerical method of [32] provides realistic modelling of acous-
tics in a muffler component, which is located between the uniform inlet and out-
let ducts. In the uniform parts, an acoustic solution can be obtained by modal
analysis, in which individual propagating modes are solved numerically, or, in
special cases, analytically. The finite element method is used to solve the Helm-
holtz equation in the non-uniform muffler part of the ductwork. Mode matching
[1] is used to couple the different solutions in the muffler and inlet/outlet ducts.
The generality of the finite element method is thus provided to the acoustics sim-
ulation and complicated shapes and configurations can be treated accurately.

Hybrid numerical method

In the following, the hybrid numerical method of [32] is presented. The solution
of the Helmholtz equation (Eq. (10) on page 13) in the muffler component do-
main Qg (see Figure 4) is obtained by using the finite element method. In duct
domains (4 and Q¢, the Helmholtz solution can be obtained by modal analy-
sis. In certain special cases such as in a circular or rectangular duct, the analytical
form of the solution can be derived; whereas in a general shaped duct, eigenfunc-
tions have to be solved numerically. For example, in circular ducts, the solution
of the Helmholtz equation can be represented in terms of Bessel functions, see
Section 2.1. The acoustic pressure amplitudes in duct domains ()4 and Q)¢ are
represented in cylindrical coordinates as expansions over the eigenmodes:
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A . ma .
Pa(r0,2) = ) AjD;(r,0) MY Fi®; (r,0) e*  and
j—O ]'—0

pc(r9,z) = ZB]T] r,0)e "1 +Z ) ez, (28)
j=0

where hat symbols are used to denote the pressure amplitude of a time-harmonic
wave (see Eq. (9) on page 13); ®; (r,0) and ¥, (r,0) are transverse duct eigen-
functions corresponding to the cross -section of the pipe; Aj, Fj, Bj and C; are the
modal amplitudes corresponding to eigenfunctions ¥;, ®;; and A], 7; are axial
wavenumbers along the z-axis. As the evanescent modes can be truncated, the
sums in Eq. (28) only have a finite number of propagating modes, denoted by
ma, mc. Coordinate systems in uniform ducts are chosen in such a way that the
z-coordinate gives the axial direction of the duct with a positive direction away
from the non-uniform domain Q)g. The origin of the coordinate system in domain
()4 is located on the interface I' 4, and the origin of )¢ is located on I'c.

Coefficients F; determine the incoming sound from the inlet pipe. Modal
amplitude coefficients A; correspond to the sound that is reflected back from the
muffler, B; correspond to the sound propagating to the outlet pipe, and C; corre-
spond to the sound that is reflected back from the outlet pipe. By setting C; = 0
for all j, a perfectly non-reflecting boundary is imposed on I'c.

The modal representations in (4 and ()¢ are coupled to the finite element
representation in () by mode matching. The weak formulation of the Helmholtz
equation (Eq. (10) on page 13) is the following: find pp € H' () such that

1 1
/ - (V;aB Vi - kz;agq) dx — / “n-Vpgddx =0 (29)
O3 P 90 P

for any § € H' (Qp), n is outward normal vector. Solutions p4 and pc are cou-
pled to pp by the boundary conditions:

n-Vpg=n-Vpy on I'y, (30)
n-Vpp=n-Vpc on I'c, (31)
PB=Pa on Iy, (32)
PB = pc on Ic. (33)

The first two conditions Egs. (30) and (31) and the Neumann conditionn-Vp =0
on I'; can be incorporated in the weak form Eq. (44), leading to the equation

/ 1 <V;93 -V§ —kzﬁgq) dx —/ 1n -Vpagdx — / 1n -Vpecqdx =0.
Qp r, P Ic P
(34)
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In mode matching, the two other conditions Eqgs. (32) and (33) are imposed in
weak forms: find 4 € Z4, pp € H' (Qp) and pc € Zc such that

/ (ﬁB—ﬁA)dDidx = 0and

Ty

/ (Pp—pc)¥idx = 0 (35)
I'c

for any ®; € Z4 and ¥; € Z¢, where test function spaces are defined as Z, =
span; g, {®j(r,0)} and Zc = span;_y ,, {¥;(r,0)}. In summary, the hy-
brid formulation of the acoustic problem in the waveguide is given by the Egs.
(34) and (35).

Finite element discretization proceeds by approximating the acoustic pres-
sure amplitude in Qp by Eq. (22), which is replaced in Eq. (34) to form a matrix
equation

/ 1(VN-VNT—kZNNT)alxp—/ an-VﬁAdx—/ INn-Vpedx = 0.
QB rAp rcp

p
(36)
The modal representations of the solutions 4 and p¢c in Eq. (12) are replaced in
Eq. (36), which then is written in component form

%/ 1(VN VN, — ®N;N;) d Y0 [ LN dxa
j=0 Qg P l / o i j=0 J Y t J

ma 1 mc 1
—1 Z /\] / —Niq)]' dx F] +1 Z Vi / —Nilf]' dx B]' = 0. (37)

By using matrix notations

Hy = iAjfr, %Niq)jldx' Kj = i f{c pNi¥jdx, 2
g e
fi = 15 Jr, pNi®jdxEy, Gy = [o, 5 (VNi- VN; = K*N;N;) dx,
(38)
Eq. (37) can be presented compactly in matrix form
Ha+Gp+Kb = f, (39)

where a contains m4 complex modal amplitudes of interface I'4, b contains mp
complex modal amplitudes of interface I's. Eqs. (12) and (22) are next replaced in
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Eq. (35), which is written in component form

n

ma mA
Y | ®iNjdxp; = Zé/r D;d;dxAj+) | DdidxF,
= A

j=0/Ta j=0/Ta
n _ mc _
Y. / ¥iNjdxp; = Y [ ¥;¥idxB, (40)
j=07TB j=07Ta
By using matrix notations
I:Iij = fFA (I)](_T)l dx, Ifl] = frC TJ‘E__[IZ dx,
Hjj = —Jr, ®iN; dx,_ Kij = — Jp. YiNjdx, (41)
fi = L% Jr, ®j®idxF,

Eq. (40) can be presented in compact matrix form

Ha+Hp = f
Kb+Kp = 0. (42)

The Egs. (39) and (42) can now be written as a single block matrix equation

HH O a f
H G K pl=1Ff]. (43)
0 K K b 0

In Section 5.2, the hybrid numerical method is used with an optimization
method to obtain shape optimization of the muffler component, based on the
article [V].



4 DAMPED PRECONDITIONER METHOD

In Section 3.2, the principle of preconditioning and some preconditioner meth-
ods for the Helmholtz and Navier equations were discussed. In this chapter, an
efficient preconditioning technique based on physical damping is studied. The
chapter reviews articles [I, II, III].

The damped Helmholtz preconditioner was first considered in [12]. There,
the scattering problems were posed in a rectangular domain that was discretized
using low-order finite differences. The geometric multigrid method method was
used to approximate the inversion of the damped Helmholtz preconditioner op-
erator. In [I], this approach was extended to general shaped domains using
linear, quadratic, and cubic finite element discretizations. An algebraic multi-
grid method (AMG) was used instead of the geometric multigrid. In [II], a fur-
ther generalization was proposed by extending the method to three-dimensional
problems and a similar technique was proposed for scattering problems in elastic
media (the Navier problems).

For the Helmholtz equation, the preconditioning operator is called damped
a Helmholtz preconditioner, or shifted-Laplacian (as in [12] and [I, III]) due to
a complex shifting coefficient applied to the Laplacian operator. For the Navier
equation, the preconditioning is called the damped Navier preconditioner. In
[I, II], simulations were carried out in two-dimensional and three-dimensional
computational domains, including complicated geometries for both the Helm-
holtz and Navier problems. The method was compared to the MIC-based pre-
conditioning method in [II] and exact controllability method in [III]. Some of the
results from comparison and performance measurements are given in Section 4.2.

In [57], the mathematical results were obtained that could be used in exam-
ining the eigenvalue spectrum of the preconditioned Helmholtz equation. These
results can be used to estimate the convergence of an iterative method such as
GMRES for the Helmholtz problems. Some of the results were generalized to the
Navier equation in [II]. These are reviewed in Section 4.3.
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4.1 Problem formulation

The finite element method (see Section 3.1) is used to give an approximate so-
lution to the acoustic and elastic wave propagation problems. For the FEM,
weak formulation of the corresponding problem is needed. The weak form of
the Helmholtz problem (Eq. (10) on page 13) reads: Find p € H! (Qf) such that

Vp-V§—kpd)d —/ ivkpgd :/ 5d 44
/Qf( p-Vi Pq)x vy TRPAAS o Jrax (44)

forall § € H' (/). Here, O/ is the fluid domain and F{ is the partially absorb-
ing boundary, where the impedance boundary condition (Eq. (11) on page 13)
with the absorption coefficient <y is applied. For three-dimensional problems, the
Navier equation (Eq. (16) on page 15) in weak form reads: Find & € [H! (Q° )}3
such that

/ (—pswzﬁ-§+a(ﬁ) (\7)) dx—/ i’ywpsBﬁ-‘X/ds:/ f;-vdx  (45)
S rf Qs

for all ¥ € [H! (O )}3 Here, )° is the elastic domain and I is the partially
absorbing boundary, where impedance boundary condition (Eq. (20) on page 15)
with absorption coefficient 7y is applied.

The finite element mesh consisting of triangles in two-dimensional and tetra-
hedra in three-dimensional problems is used. The discretized domain is denoted

by Qi’s ; here h denotes the diameter of the largest triangle or tetrahedron. Dis-

crete counterparts for test function spaces are denoted by VP{ and V}’ for fluid and
elastic domains, correspondingly. For these spaces, Lagrangian polynomials of
order m = 1,2,3 are used as basis functions.

Now, let the vector w contain the nodal values of p or 4, so that for the Helm-
holtz problem it has the form w = [py,-- -, p,]", and for the three dimensional
Navier problem it has the form w = [ﬁi‘, ﬁ%, ai, -, 0y, T } . By replacing the
spaces, domains, and boundaries with their discrete counterparts, the following
matrices based on integrals in Eqgs. (44) and (45) are defined as follows:

M/ = fQ£ kzﬁh‘?hd'xl M° = st pswzﬁh . \thdx
L= fQ;; V- Vipdx, L°= st € (¥y,) dx, (46)
cf= - frf Ykpudnds, C = - fr?h ’Y“JPSBsuh Vnds,

ih L

where py, gy, € V]{ , Gy, vy, € V. The system of linear equations of form Aw =
f is obtained. Denoting z; = a1 + B1i, the discretized Helmholtz and Navier
operators have matrix forms

F=L/+iCf —z;M/ and S =z L%+ /ziC° — M°, (47)
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respectively. The complex-valued sparse matrix A is now given by F or S and f is
a vector resulting from a non-zero fy in Eq. (44) or £; in Eq. (45).

Preconditioner

A shifted-Laplacian operator

1 k?
]:d = —V'—V—Zz—, (4:8)
© %

with a complex shift z, = a; + Bi was suggested in [13] as a preconditioner for
the Helmholtz equation. By choosing a; = 1 and B, to be negative, F; is the
Helmbholtz operator (Eq. (10) on page 13) with additional damping. Hence, it is
also called the damped Helmholtz operator. Using the matrices defined in Eq.
(46), the discretization of F,; leads to a matrix

F, =L +ic/ — z,Mm/. (49)

With moderate damping, it is much easier to solve systems with F; than those
with F and the conditioning of FFd_1 is good. Here, an algebraic multigrid ap-
proximation is considered for F;l.

Similar physical damping can also be employed to construct an efficient
preconditioner for the Navier equations, as suggested in [II]. Damping in elastic
materials can be modelled by a complex Young modulus. Multiplying the origi-
nal Young modulus E(x) by a complex z; leads to a preconditioning operator

Sy = —w?pst — 2,V -0 (4). (50)

The coefficient z; also appears in the impedance boundary condition (Eq. (20) on
page 15) as follows

iYwps/z2Bl + 20 () ns =0 on I%. (51)

Using the matrices in Eq. (46), the discretization of S; leads to the damped Navier
preconditioner
S; = zoL° + \/Z_ziCS — M°. (52)

Algebraic multigrid method in damped preconditioning

The multigrid method (see Section 3.2) is not used here to solve the entire prob-
lem, but, rather, only to approximate the inverse of the damped operator B~1. The
approximation given by one cycle of a multigrid method is denoted by BX/}G. An
algebraic multigrid method (AMG) based on [30] is utilized, with modifications
that make it suitable for vector valued problems, such as the Navier equation.

The employed AMG method uses a graph to construct coarse spaces in or-
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FIGURE 5 A mesh for a two-dimensional cross-section of a car cabin. Grey nodes are
selected to next coarse level in the algebraic multigrid method.

Displacement [m]

1.10e-16
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=6.00e-17
—4.00e-17

=2.00e-17

2.60e-19

FIGURE 6 A cross-section of an example solution of the Navier equation for cube prob-
lem at frequency f = 40kHz. Arrows illustrate the displacement on the
cross-section surface. The magnitude of displacement is depicted by the
color.

der to solve the error equation. Here, the graph is based on the discretization
mesh. An example of the coarsening procedure is shown in Figure 5. For vector-
valued elasticity problems, the graph is formed without connections between
displacement components. The graph for these problems consists of separate
disconnected graphs, one for each displacement component.

4.2 Numerical measurements and comparison of performance

In the following, the performance of the damped preconditioner is demonstrated
with some numerical results. First, the method is compared to modified incom-
plete Cholesky (MIC) factorization-based preconditioner [39], see Section 3.2. A
three-dimensional cube problem (0.3 m)’ with a point source in the middle is
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TABLE 2 The iteration counts for the cube problem for the Helmholtz and Navier equa-

tions.
Helmholtz
f [kHz]| AMG MIC(0) | MIC(1)
order— 1 2 3 1 211 2
0.5 10 13 16| 13 17| 8 11
1.0 12 15 18| 18 41|11 17
2.0 19 21 24| 31 126 |16 28
4.0 35 42 55| 50 29
Navier
order— 1 2 1 211 2
5 20 5 24 70|11 16
10 22 10 38 196 |15 25
20 33 20 67 24 48
40 66 107 40

used as an example problem. In Figure 6, a cross section of an example solution
at frequency f = 40kHz is shown for the Navier equation. The algorithm pre-
sented in [21] is used for the MIC(/) approximation of A~1 where the parameter
| describes the level of fill-in in the factorization. The performance is measured
by the number of GMRES iterations and the total number of floating point oper-
ations (FLOPs) required by the preconditioning. The number of FLOPs is a fair
measure of the performance, as it includes the initialization process in addition
to the GMRES iteration.

The results are presented in Tables 2 and 3. MIC(1) requires fewer iterations
than AMG, whereas MIC(0) requires more iterations. Particularly with linear fi-
nite elements, the convergence with MIC(1) is faster than with AMG and MIC(0),
as can be seen in Table 2. However, Table 3 shows that the number of FLOPs with
the MIC(1) preconditioner is about twice the number with AMG. This is mainly
due to the expensive factorization process before the iteration. With quadratic el-
ements, the MIC preconditioner seems to perform much worse than AMG, both
in terms of iteration counts and in FLOPs. This is true for both the Helmholtz
and Navier problems. MIC(1) also uses more memory than AMG, although the
difference is not substantial.

In summary, the AMG-based damped preconditioner is more efficient, as its
initialization requires much fewer computations than the expensive incomplete
factorization procedure. Especially with quadratic finite elements, the AMG pre-
conditioner is clearly faster.

As another example, the method is compared to the exact controllability
method (see Section 3.2). The comparison for the Helmholtz problem is made
in a two-dimensional square domain with a crescent-shaped scatterer, that is il-
lustrated in Figure 7; mesh is depicted in Figure 2a. Angular frequencies w =
127t,247,487,967, 1927 are used for element orders r = 1,3. The scattering
problems are solved by using the constant wh, implying approximately 10 space
discretization points per wave length. For tests in the homogeneous domain, the
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TABLE 3 The number of millions of floating point operations (MFLOPs) for the Helm-

holtz and Navier equations.

Helmbholtz
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FIGURE 7 Solution of the scattering problem in homogeneous and heterogeneous do-

= 4871.

mains at angular frequency w



34

107 : : 107 . ‘
--@- SL method, r=1 --@- SL method, r=1
-4 SL method, r=3 -4 SL method, r=3
—©— Control method, r=1 [ A —&— Control method, r=1 ® A
. —£— Control method, r=3 . —£— Control method, r=3
£10° £10°
£ £
e o
£ £
o o
Qo o
2 5 2 5
510 510 P
5 5 o«
= = A
oi o's
10° 1 o S v 3 vy 5 6 10 0 . v 3 v 5 6
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
CPU time CPU time
(a) Homogeneous (b) Heterogeneous

FIGURE 8 Memory usage with respect to CPU time (in seconds); comparison between
the damped preconditioner method (SL method) and the exact controllabil-
ity (control method). On each line, there are points for angular frequencies
w = 127, 247,487,967, 19271 when wh is a constant, giving approximately
10 discretization points per wavelength.

value ¢ = 1 is used. In the heterogeneous test case, the parameters are the same,
except ¢ = 1.5 in narrow region in the middle, as seen in Figure 7.

The CPU times and maximum memory usage is shown in Figure 8. The
damped Helmholtz preconditioning method is can be seen to be substantially
faster than the exact controllability on all of the tested frequencies, with respect to
CPU time. It can also be seen that, at higher frequencies, the damped Helmholtz
preconditioner method uses more memory, which is due to the Krylov subspace
stored by the GMRES method.

4.3 Spectral analysis and numerical study of eigenvalues

The eigenvalue spectrum of the preconditioned matrix AB~! can be used to esti-
mate the convergence of an iterative method such as GMRES, see [57]. Using the
formulations in Eq. (46), the discretized matrices of the Helmholtz and Navier
equations and their damped equivalents are

F=L/+iC/ —z;M/, (53)
F, =L/ +iC/ — z,M/, (54)
S = 7L + /z1iC° — M, (55)
Sy = 2oL + /23iC° — M. (56)

Here, matrices L/* and C/* are symmetric positive semi-definite and M/ are
symmetric positive definite, and z; = &y + B1i, z2 = &3 + Boi are complex num-
bers.
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Problems without absorption

When there are only natural boundary conditions and the material is not absorb-

ing, it holds that C/5 = 0. With this assumption matrices F, S simplifies to
F=L/—z;M/, (57)
S =z L° — M. (58)

For the Helmholtz equation, the preconditioned eigenvalue problem AB~1§j =
i is equivalent to Ay = TBy, where y = B}, so

(Lf — M/ ) y=1 (Lf — M/ ) y. (59)
By moving terms and substituting A = #—22, the eigenvalue problem can be

written as
L'y = AM/y. (60)

As the matrix L/ is positive semi-definite and M/ is symmetric positive definite,
the eigenvalues A are real. The eigenvalue 7 is a function of A given by
A— Z1

= . 1
T pp—— (61)

For the Navier equation, the preconditioned eigenvalue problem similarly
reads

(z1L° = M®) y = 7 (zL° —M°) y. (62)
. . 1= . .
By moving terms and replacing A" = 7.1, the eigenvalue problem can be writ-
ten as
L’y = AM’y. (63)

In addition, the matrix L*® is positive semi-definite and M® is symmetric positive
definite, and thus the eigenvalues A are real. The eigenvalue 7 is a function of A
given by

_Zl/\—Zl_l
= = -
22A -z,

(64)

With the change of variable A’ = A1, an identical relation to Eq. (61) is obtained.

The eigenvalues A can be regarded as a real parameterization of curves in
Eq. (61) on the complex plane where the eigenvalues T of the preconditioned
system are located. These curves are determined by substituting T = 7 + i7; into
Eq. (61), treating the real and imaginary parts separately and then substituting
the relation for A from either one to another. Finally, the following relation is
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obtained:

Bot — (B1+ B2) Tr + Potf + (a1 — ) T = —Pa. (65)

The following theorems hold for the preconditioned Helmholtz eigenvalue
problem. The theorems are introduced in [57]. A corollary for the preconditioned
Navier eigenvalue problems, for one, is presented in [II].

Theorem 1. Let B, = 0 and let L be symmetric positive semi-definite and M be sym-
metric positive definite real matrices. Then the eigenvalues T = T, 4 iT; of

(L-z1M)x = t(L-zoM)x (66)

are located on the straight line in the complex plane given by
—B1% + (a1—a2)Ti + 1 = 0. (67)
Proof. This follows from substituting B, = 0 in Eq. (61). O

Theorem 2. Let B, # 0 and let L be symmetric positive semi-definite and M be sym-
metric positive definite real matrices. Then the eigenvalues T = T, + iT; of Eq. (66) are
located on the circle given by

(Tr - ﬁz+ﬁ1)2+ (Ti _ u)z _ () —w)

2B, 26> (2B2)*
The center of the circle is at ¢ = 21 ~2 gnd the radius is R = |2=2L|,
2722 Zp—2Zp
Proof. Divide Eq. (61) by 2, and complete the square. O

Theorem 3. If 182 > 0, the origin is not enclosed by the circle defined by Eq. (68).

Proof. The origin is not enclosed by the circle if the distance from the center to the
origin is larger than the radius. This is true, as

(B2 + ,81)2 + (ap — oq)z S (B2 — ﬁl)z + (a2 — “1)2 (69)
(28)° (262 (2p2)°

]

Corollary 4. Theorems 1-3 also hold for the eigenvalues T = T, + iT; of the generalized
eigenvalue problem

(z1L-M)x = 7(zL-M)x. (70)

This is clear, as the relation Eq. (61) also holds for this eigenvalue problem.
The results can hence be applied to the damped Navier preconditioner.
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The problems with absorption

The eigenvalue problems of the preconditioned Helmholtz and Navier opera-
tors, with impedance boundary conditions when absorption coefficient v # 0,
ie. C/* # 0, are discussed next. Due to the complex eigenvalues arising from
C/#, it is not possible to locate eigenvalues on a straight line or on a circle of the
complex plane, as earlier, but useful theorems are still established in the follow-
ing. The theorems are introduced in [57], in which proofs are also given, and the
conjecture for the preconditioned Navier eigenvalue problems is presented in [II].

Theorem 5. Let B, = 0, and let L and C be symmetric positive semi-definite and M be
symmetric positive definite real matrices. Then the eigenvalues T = T, + iT; of general-
ized eigenvalue problem

(L+iC—z1M)x = t(L+iC-z;M)x (71)
are located in the half-plane

—B17 + (a1 —a2) T + 1 > 0. (72)

Theorem 6. Let By < 0 and let L and C be symmetric positive semi-definite and M be

symmetric positive definite real matrices. Then the eigenvalues T = T° + it' of Eq. (71)
are inside or on the circle with the center at ¢ = % and the radius R = ‘%’ If

B2 > 0, the eigenvalues T = 1" + iT' of Eq. (71) are outside or on the same circle.

It is not evident that Theorems 5 and 6 are applicable for the Navier equa-
tion. However, the numerical experiments reported in [II] suggest that similar
behavior also holds here. This is stated in the form of the following conjecture.

Conjecture 7. Let L, C and M be matrices that are constructed for the Navier problem
as in Eq. (46). For the eigenvalues T = T" 4 iT' of the generalized eigenvalue problem

(z1L° 4+ /z1iC°-M®)x = T(zL° 4 1/22iC°-M°)x (73)

the following statements hold. If B = 0, the eigenvalues are located in the half-plane
BT+ (a1 — &) T + By > 0. (74)
If B2 > 0 the eigenvalues are inside or on the circle with the center at ¢ = % and the

22721

radius R = —

. If B2 < 0, the eigenvalues are outside or on the same circle.

Numerical experiment

As an example of the above results for the eigenvalue spectrum of the damped
Helmholtz and Navier problems, results of an example problem are presented
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FIGURE 9

next. The three-dimensional cube of size (0.3 :rn)3 is discretized by using linear fi-
nite elements for both the Helmholtz and Navier problems. For the Navier prob-
lem, the frequency f is 5kHz and for the Helmholtz problem, the frequency f is
500 Hz. In Figure 9, the eigenvalues of AB~! are plotted. The circle of Eq. (68) is
drawn in these figures. In Figures 9a, 9b, 9¢, and 9d, the numerical results are con-
sistent with Theorem 2, Theorem 6, Corollary 4, and Conjecture 7, respectively.
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problems with absorbing boundary conditions.



5 SOUND CONTROL PROBLEMS

Machine generated noise is an increasing problem in many modern environ-
ments. Rotating and constantly moving parts such as wheels, engines, and cooler
fans are typical noise sources. It is often possible to achieve a significant reduction
in noise levels by implementing different noise control methods. Noise reduction
is important in factories, engineering vehicles, and passenger cars. Moreover, re-
ducing transmitted noise in ductworks, such as exhaust mufflers or ventilation
systems, is often desirable.

Generally, the most effective technique for noise reduction is to remove or
reduce important noise source mechanisms with suitable design choices. A de-
sign may have resonant modes at critical frequencies, which further amplify the
noise. Optimization can be performed, with respect to shape or materials in order
to remove these resonances and reduce noise. However, there are circumstances
in which it is not possible to alter a design or in which a design is influenced by
factors more significant than noise.

Two basic approaches for noise attenuation are passive and active noise con-
trol methods. Passive noise control methods fall into two categories: dissipative
and reactive methods. Dissipative noise control employs noise absorbing and in-
sulating material and it is best suited for high frequency noise. It is less effective
for low frequency noise, as long waves require large elements. Reactive noise
control exploits the shape of a passive element in order to obtain useful wave
reflections that reduce noise. These methods are better suited at low frequencies
and are mainly used in reactive mufflers, as in Section 5.2.

Active noise control (ANC) [46] is an approach that is suitable particularly
for low frequency noise reduction. Active attenuation is based on generating
antisound with actuators, such that the original noise is canceled. The antisound
must have the same amplitude as the noise to be canceled, but the opposite phase
such that destructive interference occurs. The idea of this technology was pre-
sented in a patent by Paul Lueg [36] in 1936, but there have not been many suc-
cessful applications until recent times. Due to the development and decrease in
cost of digital signal processing audio circuits, more and more active noise con-
trol applications have appeared in recent years. This has promoted the research
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FIGURE 10 A front of Pareto optimal solutions (thick blue line) in a feasible region S
(grey area).

interest on the field.

This chapter is organized as follows: In Section 5.1, an introduction to solv-
ing optimization problems is given; In Section 5.2, the noise control in duct sys-
tems by optimizing the shape of the reactive muffler component is discussed,
on the basis of article [V]; In Section 5.3, a selection of other shape optimization
articles that deal with Helmholtz problems are reviewed; In Section 5.4, a com-
putational method utilizing a stochastic domain to estimate the effectiveness of
an active noise control method is described, on the basis of article [IV].

5.1 Solving an optimization problem

The purpose of optimization is to find the best solution to a problem within all
possible solutions. Optimization is performed with respect to a specified objec-
tive. If there are many objectives, the problem is called a multiobjective optimiza-
tion problem. The general formulation of a multiobjective optimization problem
reads as follows:

min f; (x)

i , 75
where f; : R” — IR are objective functions that depend (often indirectly) on x €
S, a vector consisting of design variables x; that are optimized in a feasible region
S of design space R". For example, when shape optimization is considered, the
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vector x defines the shape of the optimized design.

In a single-objective optimization problem, the optimal solutions have ob-
vious definition. When there are many objective functions, the optimal solution
is more ambiguous and the concept of Pareto optimality is needed. A solution is
called Pareto optimal if no other solution exists that is better with respect to all of
the objective functions.An illustration of Pareto optimality is presented in Figure
10. Similarly, a solution is called non-dominated, if no other solution within a
group of (possibly non-optimal) solutions exists that is better with respect to all
of the objective functions.

There are various different approaches in solving optimization problems.
Genetic algorithms [50] are stochastic evolutionary optimization algorithms [6]
that mimic genetic drift and the Darvinian struggle for survival. The methods
are based on evolving a population of solutions that are applied with operators
originating from a natural evolutionary process: selection, crossover and muta-
tion. Unlike traditional gradient-based optimizers [51] that need the derivatives
and a good starting point, genetic algorithms have a good opportunity to locate
the global optimum in a near-optimal manner. However, the optimality is not
guaranteed with these methods. The non-dominated sorting genetic algorithm,
NSGA-II [7], is a popular multiobjective genetic algorithm and it is used as an
optimization method in Section 5.2. Other techniques for multiobjective opti-
mization are discussed in [43], for example.

5.2 Shape optimization of a reactive muffler

A method for improving the attenuation properties of reactive mufflers by shape
optimization is considered. The objective is to simultaneously minimize trans-
mission of acoustic waves at multiple frequency ranges simultaneously. This task
is formulated as a multiobjective optimization problem.

The sound transmission loss function is defined as the ratio of the transmit-
ted to incident sound powers

PA E;B:() YmHm |Bm |2
Pc ZZB:() /\mlm |Fm|2

TL(x,f) = —10log, (76)

where I, = [; |®,|* dx and H,, = Jr, |¥,,|* dx, using the notations introduced
in Section 3.4. The function 7 (x, f) is defined as

T(x,f) = min(TL (X, f), TLmax) - (77)

Here, parameter TL,,,y is a limiting value for transmission loss, which is neces-
sary due to the possible narrow infinite peaks in transmission loss function that
inhibit good convergence of the optimizer.

The multiobjective optimization problem is defined as a minimization of
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objective functions

f1(x) = _nll Zw:T (x, w;) and fr(x) = _nlz ZlT (x,4), (78)
i=1 i=1

where the shape vector x = [x, ..., Xy,,,.] contains design variables that are used
to alter the shape of the muffler component, w = [wy, ..., wy, ] and t = [1, ..., 1y]
are vectors of frequencies in which sound transmission loss is maximized. The
optimization is made with the non-dominated sorting genetic algorithm, NSGA-
IT [7], which is an optimizer well suited for multiobjective problems. The acous-
tics of the muffler component is evaluated with the hybrid numerical method that
is described in Section 3.4.

Numerical experiment

As a numerical example problem, the shape optimization of a muffler compo-
nent consisting of five variable-radius cylinders is investigated. In Figure 11a, a
schematic illustration of the problem is presented. In addition to the radius of
each cylinder, the length of inlet and outlet ducts are optimization variables as
well. The length of the muffler component is L = 1000 mm and the diameters of
inlet and outlet ducts are d = 100 mm. The length of inlet and outlet ducts x1, x»
can vary between [20,900] mm and the diameter of each cylinder x3_7 is between
[120,240] mm. Transmission loss is optimized in two frequency ranges: between
200-300 Hz and 500-600 Hz.

In Figure 12, there are four non-dominated fronts of objective functions in
Eq. (78) that are obtained by NSGA-II after 120 generations. The fronts can be
seen to converge at the same line. Before optimization, the average fitness func-
tions values of the randomly generated initial population were f; = —13 dB and
f» = —15 dB. In Figure 13, the transmission loss as a function of frequency is
plotted for an optimal solution, which is chosen from the non-dominated front at
f1 = —43.16 dB, f, = —42.97 dB. The optimal parameters are used in example
solution, Figure 11b. In Figure 13, it can be seen that the transmission loss level
improved significantly at both frequency ranges.

5.3 Other shape optimization problems

The optimization of an acoustic horn has been discussed in [2, 58, 59]. The objec-
tive of the study is to implement a general method for designing acoustic horns
with a prescribed set of properties. In [2], the shape of the horn is optimized to
improve impedance matching between the horn and the surrounding air at spec-
ified frequencies, implying efficient sound radiation from horn to the surround-
ings. This work is extended to include topology optimization in [58]. In [59],
both shape and topology optimization techniques are performed simultaneously
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FIGURE 11 In the left figure, there is a diagram of the muffler component used. In
the right figure, the pressure time average of optimal solution is plotted at
frequency f = 600 Hz.
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in order to construct an optimal acoustic horn-lens combination with optimized
transmission efficiency and directivity properties. A significant performance im-
provement of the acoustic horn is reported in these studies.

Multidisciplinary shape optimization of an airfoil, with respect to drag and
electromagnetic backscatter, is studied in [41]. The drag coefficient is calculated
by CFD analysis and the electromagnetic backscatter calculation requires the so-
lution of the two-dimensional Helmholtz equation. Optimization is performed
with a multiobjective genetic algorithm.

The shape optimization of an ultrasonic transducers have been considered
in [23, 24]. The transducers are of the Langevin type, which is a standard com-
ponent in high-power ultrasonics, used to perform, e.g. ultrasonic cleaning and
chemical processing. In both articles, a two-dimensional axisymmetrical finite el-
ement discretization of piezoelectric equations is used to model the transducer.
In [24], the piezoelectric equations were coupled to the Helmholtz equation in
order to model the transmission of acoustic vibrations to water. In [23], a single-
objective shape optimization is performed using the SQP method, with respect
to three objective functions separately. In [24], a multiobjective NIMBUS method
is used to optimize all three objective functions simultaneously. Significantly im-
proved transducer designs are reported in the study.

5.4 Active noise control estimation in a stochastic domain

Since there are several low-frequency noise sources in a car cabin environment, an
active noise control (ANC) [46] system could provide significant noise reduction.
There are several ways of implementing a three-dimensional ANC system, but
they are not very effective or universally applicable yet. Numerical simulation
and optimization can be used to study and improve ANC systems. Examples
on the use of finite element modelling are presented in articles [3, 52]. In [52],
the resonance modes for a mining vehicle are studied by modal coupling analy-
sis and anti-noise is optimized by using an FEM model in order to obtain global
noise control in the cabin. In [3], a local active noise control method based on the
finite element method is described, which minimizes noise locally in the micro-
phone locations. A method for determining the optimal locations for anti-noise
actuators is also presented. In [60], an optimal active noise control implementa-
tion based on quadratic programming and boundary element method (BEM) is
presented.

In ordinary finite element analysis, it is assumed that the model geometry
and boundary conditions are accurately known. In reality, this is rarely the case
and there is considerable uncertainty in the specification of models. This mo-
tivates stochastic treatment of the problem, i.e. letting inaccurate measures be
random variables. Stochastic finite element methods [19, 8, 20] can be used to ad-
dress this issue in modelling. In [10], for example, the solution of stochastic PDE
is represented in an outer product form, which allows a generation of various
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statistical quantities with moderate computation.

In this section, a novel modelling method for the local control of sound by
anti-noise actuators is introduced in a stochastic domain, based on article [IV].
The method can be used to assess the possibilities of active noise control in en-
closed acoustic spaces such as vehicle cabins. The anti-noise is optimized by
minimizing the expected value of the noise computed using the finite element
method. By including the stochasticity of the cavity domain in the model, the
optimal performance of a local sound control can be determined more accurately
and reliably than with the earlier methods.

Optimal actuator signal evaluation in a stochastic domain

An acoustic model in an enclosed stochastic domain Q) (r) is considered, where
r = (r,7r2,- -, rn)T is a random variable that conforms to a known probability
distribution F (r). The complex pressure amplitude p (x,r,y) (see Eq. (9) on page
13) is the sum of the sound pressures caused by noise and # anti-noise sources:

p(x1,y)=po(xr)+) 7P (x1), (79)
j=1

where the pressure amplitude py is due to the noise source, p; is due to the jth
anti-noise source, and 7y; is a complex coefficient defining the amplitude and
phase of the jth anti-noise source. The noise and anti-noise sources are located on
the boundary surfaces of (). The anti-noise defined by the coefficients 7; is opti-
mized so that the noise is minimized in a subdomain denoted by Z (r) C Q (r).
For this, a noise measure is defined as

N = [ 1pbnml g dx

=)
[l

(r)
[ penmpxngas 0
(r)

where ¢ (x) is a weighting function and p is the complex conjugate of p.

As the domain () is stochastic, the expected value of the noise measure is
given by

E(N(57) = [ Nwy) F(r) (81)

where F (r) is the probability distribution of r. The objective function | for opti-
mization is chosen to be an approximation of the integral Eq. (81) and it is given
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by the numerical quadrature
m
J(v) =) wN (rj,7) F(r;), (82)
j=1
where the pairs (rj, ;) give the quadrature points and weights. The optimization

problem is defined as

min (7). (83)

In order to formulate the objective function in a compact form, the following
notations are introduced:

A= i w;F (rj) / pr (x, rj) p(x, r]-) g (x) dx, (84)

where p is the elementwise complex conjugate of the vector p and the superscript
T denotes the transpose. By expanding the terms and by using the notations in
Eq. (84), the objective function in Eq. (82) can be expressed in the form

J(7) = Y"Ay + 4 b+ by 44, (85)

where superscript 7 stands for the Hermitian conjugate. Optimal complex coeffi-
cients v; that give phases and amplitudes for anti-noise actuators, are now given
by the optimality condition V] = 0. This leads to a system of linear equations
A« = —b, which has the solution

v =—A"1b. (86)

Local noise control inside the car cabin

As a numerical example application, the local noise control inside a BMW 330i
car cabin is studied, see Figure 14. The domain Q) (r) is the interior of the car,
excluding the driver. The objective of the noise control is to minimize noise in the



47

FIGURE 14 A three-dimensional model of the car cabin of a BMW 330i.

driver’s ears. Thus, E is defined as a set
B (r) = {e, &} COQ(r), (87)

where e; (r) and e, (r) are the coordinates of the left and right ear, respectively.
The noise measure in Eq. (80) has now the expression

N (r,7) = |p (e, t, 7)|* + |p (er, 1, 7)|*

It is assumed that there is only the driver and no other passengers or significant
objects in the car that would influence the sound propagation. The driver’s vari-
able properties, such as shape and posture, have an impact on the reflections and
propagation of sound, and must therefore be taken into account. The posture and
position of the driver’s head particularly affect the sound audible to the driver.
As the posture varies to some extent, it is better to minimize the expected value
of the sound level in the driver’s ears. This leads to a stochastic domain in the
computation.

Three parameters are considered here: rq is the driver’s sideways bending
angle, r; is the forward bending angle, and r3 is the driver’s head rotation angle
to left/right. These parameters are illustrated in Figure 15. The random variable
r = (1’1,1’2,1’3)T determines the posture of the driver, where the value of each
parameter is limited by condition L; < r; < H;, i € {1,2,3}. The expected value
in Eq. (81) reads now

H, H, Hs
E(N (1,7)) = / / /N(r,'y)F(r)drgdrzdrl. (88)

r1=Lyrp=Ly 13=L3

The numerical integration gives the objective function

J (1) = E(N (r,7)) = iwiw (v, 7) F (r;), (89)
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(@)r (b) 2 (e)r3

FIGURE 15 Diriver’s posture parameters: (a) r1 is the driver’s sideways bending an-
gle, (b) 7 is the forward bending angle, (c) r3 is the head rotation angle to
left/right. The upper figures correspond to the lowest value of the parame-
ter and the lower figures correspond to the highest value of the parameter.
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FIGURE 16 The expected value of attenuation in the left and right ears and standard
deviation o (shaded region).

where w; is a weight coefficient from the numerical integration rule of the proba-
bility distribution function F and r; is the coordinate triplet of the ith quadrature
point.

To evaluate the objective function in Eq. (89), the pressure amplitude —
caused by each noise and anti-noise source — in the driver’s ears is needed for
each driver sample r;. Here, the acoustic reciprocity principle (Section 2.1) allows
a significant computational saving, since it is sufficient to solve acoustic problems
using only sound sources from the driver’s ears.

Numerical experiment results

In Figure 16, the expected value of the noise attenuation and its weighted stan-
dard deviation have been plotted at each of the driver’s ears. Two door loud-



49

numm
ouaws
00163
000841
000435
000225

000116

0000599

o X

0.000310

0.000160

«4!/" -y 4

FIGURE 17  The noise control at frequency f = 300 Hz for the basic driver’s parameters
r1 = rp = r3 = 0. The modulus of pressure amplitude |p| is plotted on
the logarithmic color scale. In the left plots, the acoustic field is depicted
without noise control. In the right plots, the noise control is enabled. The
attenuation at both ears in this case is approx. —30dB. The front door
loudspeakers are used in the noise control.

speakers are used as anti-noise actuators. A good noise control is obtained within
the engine noise frequency range, below 500 Hz. By this choice of anti-noise ac-
tuators, however, the noise reduction result is not good at higher frequencies,
although the expected value of the attenuation stays negative; i.e. the noise is
reduced. By adding more anti-noise actuators, the noise reduction is improved at
higher frequencies, as reported in [IV].

Figure 17 demonstrates the effect of active noise control with two actuators
at a single frequency f = 300Hz. The method can be seen to effectively reduce
noise near the ears and also in a wider region around the ears. At higher fre-
quencies, the silent area is smaller and the noise is increased in other parts of the
car.



6 CONCLUSIONS

The dissertation discussed numerical methods for sound and vibration simula-
tion and simulation-based optimization and control. The first part of the disser-
tation introduced an effective method for computational modelling of acoustic
and elastic wave propagation. The second part investigated two methods for de-
signing efficient noise control systems: a method for designing optimal reactive
muffler components by shape optimization and a numerical method for optimiz-
ing the local control of sound in a stochastic domain.

The first part of the dissertation was based on articles [I, II, III]. The fo-
cus was on introducing an efficient numerical solver for time-harmonic acoustic
and elastic wave equations — the Helmholtz and Navier equations. The solver
was based on preconditioning the discrete wave equation with a damped vari-
ant of the equation. This approach was a generalization of a shifted-Laplacian
preconditioner for the Helmholtz equation that was introduced in [12], where
tinite difference discretizations were used on rectangular domains and a geomet-
ric multigrid was used to solve the preconditioner equation. The method that
was introduced here used finite element discretizations and an algebraic multi-
grid method to invert the preconditioner operator, which gave two major advan-
tages: complicated three-dimensional problems could be solved and higher-order
finite elements could be used to provide higher accuracy. The method appeared
to be particularly efficient for both the Helmholtz and Navier problems at low-
frequency and mid-frequency scales.

The second part of the dissertation concentrated on two different noise con-
trol problems, based on articles [IV, V]. First, multiobjective shape optimiza-
tion with respect to sound transmission loss was examined in a reactive muffler
component of a duct system. A hybrid numerical method was used to solve the
acoustic field in a ductwork with a non-uniform muffler component. This method
matches modal representations of the solution with a finite element approxima-
tion in the muffler. Because of the mode matching, the hybrid method provided
accurate and realistic modelling of acoustics in the muffler component. The trans-
mission loss was maximized simultaneously at multiple frequencies and a mul-
tiobjective genetic algorithm was used as an optimizer. The method offered an
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advanced, generic and robust approach to complicated three-dimensional muf-
fler shape optimization problems.

Second, a method to assess the effectiveness of optimal anti-noise was in-
troduced for local sound control in stochastic three-dimensional enclosures. The
acoustic modelling was performed in the frequency domain using a sequence
of finite element discretizations of the Helmholtz equation. The optimization of
anti-noise was performed by minimizing the expected value of the noise at each
frequency. This led to a robust and accurate noise control in varying domains.
The method was demonstrated on a three-dimensional car cabin (BMW 330i) and
significant noise reduction was obtained, particularly at low frequencies.

The numerical methods presented herein offer useful tools for many practi-
cal acoustic applications. Efficient solvers are required for modelling large-scale
acoustic fields, and ever more difficult acoustic optimization problems are be-
coming solvable by efficient numerical methods and the increasing performance
of modern computer technology. The solver and noise control techniques pre-
sented in this dissertation offer a competitive tool in many acoustical simulation
and noise control design applications.



YHTEENVETO (FINNISH SUMMARY)

Viitoskirjan suomenkielinen otsikko on “Laskennallisia menetelmid akustisiin
ongelmiin ja melunvaimennukseen”. Vaitostyo kasittelee tietokonemallinnukseen
perustuvia laskennallisia menetelmid, joiden avulla voidaan ratkaista akustisten
ja elastisten ddniaaltojen etenemiseen liittyvid ongelmia ja suunnitella tehokkaita
melunhallintajédrjestelmia.

Viitoskirjan ensimmaéisessd osassa esitellddn tehokas ratkaisumenetelms,
jonka avulla voidaan ratkaista aikaharmonisia aaltoyhtéloita akustisissa ja elasti-
sissa alueissa. Adnivardhtelyn etenemistd mallinnetaan matemaattisesti osittais-
differentiaaliyhtdldiden avulla: akustisessa materiaalissa Helmholtzin yhtélolla ja
elastisessa alueessa Navierin yhtalolld. Yhtalot ratkaistaan likimé&ardisesti ddrel-
listen elementtien menetelmalld, joka johtaa lineaariseen yhtaléoryhmaan. Esitel-
lyssd menetelmaéssd alkuperdiselle yhtédlolle muodostetaan pohjustin, joka vastaa
aaltoyhtédlod sopivalla vaimennuksella. Tatd pohjustinta kdytetddn tehtdvén rat-
kaisemisessa Krylovin aliavaruusmenetelmilld (kuten esimerkiksi GMRES). Vai-
mennettua aaltoyhtdlod vastaavan kerroinmatriisin kddnteismatriisia voidaan te-
hokkaasti arvioida algebrallisella monihilamenetelmalld. Tutkimuksessa osoit-
tautui, ettd menetelmé on tehokas erityisesti matala- ja keskitaajuusalueilla. Me-
netelmd soveltuu monimutkaisiin kolmiulotteisiin tehtédviin, joissa materiaalin
ominaisuudet vaihtelevat laskenta-alueessa.

Viitoskirjan toinen osa kasittelee melunvaimennukseen soveltuvia mene-
telmid. Melunhallintamenetelmét jakautuvat kahteen paaryhmaan: aktiivisiin ja
passiivisiin menetelmiin. Aktiiviset melunhallintamenetelméat pyrkivat kumoa-
maan alkuperdisen melun ldahettimalld vastakkaisvaiheista vastamelua, ottaen
aktiivisesti sensorien avulla huomioon tilassa vallitsevan melun. Passiiviset me-
lunhallintamenetelmét toimivat vallitsevan melun suhteen passiivisesti ja perus-
tuvat yleensa erilaisiin ddnenvaimennuselementteihin. Passiivisiin menetelmiin
lukeutuvat putkijarjestelmissa kdytettavat ddnenvaimentimet, kuten esimerkiksi
auton pakoputki. Nama toimivat joko dissipatiivisesti, eli vaimentamalla melua
sopivalla ddntd absorboivalla materiaalilla, tai reaktiivisesti, eli kumoamalla me-
lua sopivien muotojen avulla saatavien heijastusten avulla. Vaitdstyossa tarkas-
tellaan yksityiskohtaisesti kahta erilaista melunhallintamenetelmaa: reaktiiviseen
passiiviseen melunhallintaan perustuvaa menetelmaa ja aktiiviseen melunhallin-
taan perustuvaa menetelmaa.

Ensimmaiseksi tarkastellaan menetelmés, jolla voidaan suunnitella optimaa-
lisia reaktiivisia melunvaimennuskomponentteja putkirakenteisiin. Adnen etene-
minen putkijdrjestelmdssd mallinnetaan hybridimenetelmalld, jossa vaimennus-
komponentissa kédytetddn &darellisten elementtien menetelméd ja sddnnollisessa
putkiosassa hyddynnetddn tunnettua analyyttistd aaltomuotoa. Hybridimenetel-
maén ansiosta vaimennuskomponentin akustiikka mallinnetaan tarkasti ja realisti-
sesti. Vaimenninkomponentin muotoa optimoidaan sen aikaansaaman melunvai-
mennuksen suhteen. Vaimennus maksimoidaan samanaikaisesti usealla taajuu-
della sddtdmalld reaktiivisen ddnenvaimenninkomponentin muotoa. Melunvai-
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mennuksen optimointiongelma on muotoiltu monitavoiteoptimointiongelmana
ja se ratkaistaan monitavoitteisella geneettiselld algoritmilla (NSGA-II). Menetel-
maé osoittautuu soveltuvaksi monimutkaisten kolmiulotteisten vaimenninkom-
ponenttien muodonoptimointiin.

Toiseksi tarkastellaan menetelmés, jolla voidaan arvioida aktiivisen melun-
hallinnan tehokkuutta satunnaisessa laskenta-alueessa. Menetelmaa kaytettdessa
kolmiulotteisen suljetun tilan akustiikka mallinnetaan taajuusavaruudessa kayt-
tden &ddrellisten elementtien menetelmalld saatavaa sarjaa Helmholtzin yhtalon
ratkaisuista. Vastamelu optimoidaan minimoimalla melun odotusarvoa halutus-
sa taajuusalueessa. Esimerkkitehtdvdna tydssd on esitelty melunvaimennus au-
ton (BMW 330i) sisdtilassa. Sisdtilaan on sijoitettu akustisia vastameluaktuaatto-
reita mddrattyihin paikkoihin. Esimerkissd laskenta-alueen satunnaisuus johtuu
kuljettajan asennosta, jonka oletetaan muuttuvan satunnaisesti noudattaen tun-
nettua satunnaisjakaumaa. Menetelmilld saadaan aikaan merkittdvd danenvai-
mennus erityisesti matalilla taajuuksilla.

Esitellyt laskennalliset menetelmdt tarjoavat kadyttokelpoisia tyokaluja mo-
niin kdytannollisiin akustiikkasovelluksiin. Tehokkaita ratkaisijoita tarvitaan suu-
ren mittaluokan akustisten kenttien numeeriseen ratkaisemiseen. Tulevaisuudes-
sa yhd vaikeampia akustisia optimointiongelmia voidaan ratkaista tehokkaiden
ratkaisijamenetelmien sekd yha tehokkaampien tietokoneiden ansioista. Viitos-
kirjassa esitellyt ratkaisija- ja melunhallintamenetelmait tarjoavat kilpailukykyi-
sen tyokalun useissa akustiikkasimuloinnin sekd melunvaimennuksen suunnit-
telun sovelluksissa.
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Abstract

A preconditioner defined by an algebraic multigrid cycle for a damped Helmholtz operator is proposed for the Helm-
holtz equation. This approach is well suited for acoustic scattering problems in complicated computational domains and
with varying material properties. The spectral properties of the preconditioned systems and the convergence of the
GMRES method are studied with linear, quadratic, and cubic finite element discretizations. Numerical experiments are
performed with two-dimensional problems describing acoustic scattering in a cross-section of a car cabin and in a layered
medium. Asymptotically the number of iterations grows linearly with respect to the frequency while for lower frequencies
the growth is milder. The proposed preconditioner is particularly effective for low-frequency and mid-frequency problems.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Algebraic multigrid method; Finite element method; GMRES; Helmholtz equation; Preconditioner

1. Introduction

Acoustic scattering problems have applications in many disciplines. These problems can be typically mod-
eled using wave equation and often it is sufficient to consider only time-harmonic solutions which are
described by the Helmholtz equation (reduced wave equation). For numerical simulation the equations can
be discretized using the finite difference method or the finite element method, for example. The solution of
resulting systems of linear equations can be a computationally challenging problem.

During the past few decades, numerical methods for acoustics have been under active research. Finite element
method has emerged as a generic tool for discretizing the Helmholtz equation in complex geometries. A recent
review [1]offers a glance at research efforts in this field. The efficiency of these methods still often limits the feasible
size of scattering problems in mid-frequency and high-frequency regime. Particularly the phase shift (pollution)
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error in discretizations necessitates finer meshes for high-frequency problems [2]. The finite element method have
been used successfully for interior problems like scattering in a car cabin [3] as well as for exterior problems. Since
the paper [4]the research on the construction of absorbing boundary conditions and absorbing layers at the trun-
cation boundary of the exterior domain has been active; see [1] and references therein.

The resulting systems of linear equations from the discretization of the Helmholtz equation are non-Hermitian
and indefinite. Furthermore, for mid-frequency and high-frequency problems, the systems can be extremely
large. These reasons make them a challenge for the current solvers. Often it is feasible to use direct methods
for solving these systems for two-dimensional problems, but three-dimensional problems lead to systems which
cannot be solved by these methods with affordable computing effort. Hence, it is necessity to use iterative methods
such as the GMRES method [5] or the BICGSTAB method [6]. However, these methods require a good precon-
ditioner for the discretized Helmholtz equations in order to have reasonably fast convergence.

Various preconditioners and iterative solution techniques have been proposed for the discrete Helmholtz
equation. Several domain decomposition methods have been proposed; see [7-11], for example. Multigrid
methods have been considered in [12-14]. With multigrid methods, it is difficult to define a stable and suffi-
ciently accurate coarse grid problems and smoothers for them. For problems in homogenous medium, domain
imbedding/fictitious domain methods in [15-17] have been fairly effective. An incomplete factorization pre-
conditioner has been considered in [18], for example, and in [19] a tensor product preconditioner is used.
An alternative iterative approach for solving the Helmholtz equation has been proposed in [20] and further
studied in [21]. The basic idea is to find a time-periodic solution to the wave equations using a controllability
method, which leads to preconditioned conjugate gradient iterations for initial data.

In this paper, we consider shifted-Laplacian preconditioners which are obtained from the Helmholtz oper-
ator by adding damping. A recent review [22] gives a glance at this class of preconditioners utilizing the prop-
erties of the differential equation rather than the algebraic form of the discretized problem. The Laplace
operator was proposed as a preconditioner for the Helmholtz equation in [23]. A shifted-Laplacian precondi-
tioner obtained by changing the sign of the zeroth-order term in the Helmholtz operator was described in [24].
As a generalization the Laplacian with a complex shift was studied in [25]. Following this approach a multi-
grid preconditioner based on a damped Helmholtz operator was considered in [14]. There, the scattering prob-
lems were posed in a rectangular domain, they were discretized using low-order finite differences, and a
geometric multigrid method was used. In [26], this preconditioner was used with a finite element discretization
and in [27] with an absorbing perfectly matched layer. This paper extends this approach for general shaped
domains using linear, quadratic, and cubic finite element discretizations. Particularly quadratic and cubic
finite elements help to reduce the number of unknowns in order to reach prescribed accuracy, as they have
much smaller interpolation and phase shift errors than linear basis functions [2]. Our preconditioner is based
on an algebraic multigrid method which can be constructed fully algebraically when the matrix for the zeroth-
order terms is also available.

There is a wide range of applications for acoustic scattering in the industry and sciences. In many applica-
tions the aim is to reduce the noise level. As an example of such a problem we consider the noise in a car cabin;
see also [3]. Geophysical surveys employ acoustic/elastic backscattering from different layers to reconstruct a
model for the subsurface. These problems lead to very large-scale scattering problems. We consider a three
layer wedge model [19,14] in our numerical experiments. Acoustic scattering simulations have also many appli-
cations in medicine, sonar, and sound preproduction, for example.

This paper is organized as follows. In Section 2 we describe the Helmholtz model problem and its discret-
ization. The iterative solution and preconditioning based on shifted-Laplacian preconditioners are discussed in
Section 3. The algebraic multigrid method employed in the preconditioning is described in Section 4. Then
numerical results are presented in Section 5 and finally, conclusions are given in Section 6.

2. Scattering problem and finite element discretization

Under suitable assumptions on medium, acoustic scattering can be described by the wave equation

1 1 &
AV.—vp - P

0 ; atz :07 (1)
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where p(x, ?) is pressure field, p(x) is the density of the material, ¢(x) is the speed of sound and ¢ is time. For a
time-harmonic pressure p(x, #) = u(X)e ', where  is angular velocity and i = v/—1, (1) leads to the Helm-
holtz equation
2
—V-qu—k—u:Q (2)
P 14
where k(x) = w/c(x) is the wave number. In inhomogeneous medium the wave number k varies depending on
location as the sound speed ¢ varies.
We consider three types of boundary conditions. In order to describe them, we decompose the boundary
I' = 0Qinto three non-overlapping parts I'y, I'y, and I', such that I' = I' ;U I'y U I',. Some of these boundary sets
can be empty. The first type of boundary is sound-soft which is described by the Dirichlet boundary condition

u=g(x) on I, A3)

where g describes the sound source, for example, an incident field. The second type is the impedance boundary
condition

Ou

On
where y(x) is an absorbency coefficient in the range [0, 1] describing the amount of absorption on the boundary
I',. The specific case y = 0, leading to a Neumann boundary condition, corresponds to a sound-hard boundary
without any absorption.

Exterior problems are truncated into a bounded domain Q with I'y as the truncation boundary. The bound-
ary condition on I’y should let outgoing waves propagate out of the domain without any reflection, as the
Sommerfeld radiation condition describes. Such a perfect absorbing boundary condition is a non-local oper-
ator which is computationally difficult. Instead, it is usual to approximate it by a local operator [28,29,4]. Here
we use an absorbing boundary condition

Ou
—=1ku on I}. 5
on " )
The methods studied here can be also used with higher-order absorbing boundary conditions.
For the weak formulation of the Helmholtz equation, we define the test function space

=iyku on I, 4)

V={veH'(Q):v=0o0n Iy} (6)
and the solution space
Ve={veH(Q):v=_g(x) on I';}. (7)
Now the weak form of (2) reads: Find u € V, such that
/ l(Vu Vo — KFuv)dx — / l(iykuv) ds — / l(ikuv) ds=0 (8)
QP r. P I
forallve V.

For a finite element discretization, we define a triangulation given by a set of non-overlapping triangles K,
such that @, = |J,«, 7. Here & denotes the diameter of the largest triangle and €, is an approximation of Q. An
example of a coarse triangulation (also called mesh) for a cross-section of a car cabin is shown in Fig. 1. For
the finite elements of order m a discrete test function space is

Vy= {Uh EH](Q;,) : Uh‘,[ er7V‘E cKy,v= 0 on Fd,h}a (9)

where P" denotes polynomials of order m. A discrete solution space V), is obtained similarly by approximat-
ing g on I',y, instead of zero. In this paper, we employ linear, quadratic, and cubic finite elements, that is,
m=1, 2, or 3.

In the following, we discuss briefly the errors in the finite element solutions and the influence of order of

finite elements. The best approximation u{™ on ¥}, for u is given by
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Fig. 1. A mesh for a cross-section of a car cabin. Gray nodes are selected to next coarse level.

u™ = argmin ||v, — . (10)
€V
Here and in the following, we use the L*-norm. According to error estimates [30,31,2] for the finite element
solution u, and the best approximation u;"', we have

en = |lup — ul| < Ck(kh)™ and [u™ —ul| < C(kh)™, (11)

where C is a constant. The additional k in the right-hand side for the finite element error ¢, is caused by the
pollution error. In order to have the error ¢, below some given E < C, the mesh step size 7 must satisfy

h < (C/E)™k™"k="/@m (12)

The last term &~ /?™ is due to the pollution error. Based on this inequality higher orders of the finite elements
allow us to attain the same level of accuracy with larger mesh steps. Furthermore, it shows that the pollution
error has reduced influence on the maximum mesh step size for larger m, that is, higher-order elements help to
decrease the pollution error.

We use Lagrangian basis functions for the spaces Vj, and V, . Let the vector u contain the nodal values of
u. Then using the discrete spaces instead of ¥ and V, in (8) and integrating over the discrete counterparts of
the domain and boundaries, we obtain a system of linear equations

Au=f, (13)

where A is a sparse matrix and f is a non-zero vector due to the inhomogenous Dirichlet boundary condition.
The approximation properties of such finite element discretizations for the Helmholtz equation have been
studied in [2]. For an algebraic definition of the preconditioner described in Section 3, we define a mass matrix
like M which includes the term k*/p, that is, it corresponds to the integral

2

— Uply dx s ( 14)

Q

where u;, € V,, and vj, € V). Furthermore, we define the matrix K= A + M which contains the rest of the
terms in the weak form.

3. Iterative solution and shifted-Laplacian preconditioner

The matrix A in (13) is indefinite and symmetric, but not Hermitian. Hence, the generalized minimal
residual (GMRES) method [5] and the BICGSTAB method [6] are suitable iterative methods for the solu-
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tion of the system (13). For these and other applicable iterative methods, see [32], for example. At each
iteration, the GMRES method minimizes the norm of the residual vector on a Krylov subspace associated
to the iteration. This is a desirable property leading to a monotonic reduction of residual norm over iter-
ations, but a disadvantage is that a basis for the Krylov subspace needs to be formed and stored. Due to
this the computational cost of the GMRES methods grows quadratically with iterations and the memory
requirement grows linearly. With the BICGSTAB method the computational cost grows linearly and the
memory requirement is independent of number of iterations, but convergence can be erratic and slower
than with the GMRES method. In the numerical experiments we use the full GMRES method without
restarts.

For medium- and large-scale scattering problems, the system (13) is badly conditioned, which leads to a
very slow convergence of Krylov subspace methods when applied directly to the system (13). In order to
improve the conditioning and the speed of convergence, we use a right preconditioner denoted by B. This leads
to a preconditioned system

AB li=f. (15)

Once 1 is solved from this system, the solution u is obtained as u = B~'a. Our aim is to find such a precon-
ditioner B that the matrix AB™! is well conditioned and that vectors can be multiplied by B™', that is, solve
systems with B, with a small computational effort. These properties would lead to a fast convergence of the
iterative method and to a small overall computational cost.

In 2004, Erlangga et al. suggested in [25] to construct a preconditioner Bg by discretizing a shifted-Laplace
operator

2

Bo= VoV (i) (16)

; )
where we have added the density p(x) in the operator. Using the notations defined in Section 2, the precon-
ditioner can be defined algebraically as

Bs, =K — (B, + )M (17)

which includes boundary term in K.

By choosing 5y =1 and f, to be positive, %gp is the original Helmholtz operator with some additional
damping. Such damping leads to good conditioning of ABg, and it is easier to solve systems with Bg; than
with A [25]. In [14], Erlangga et al. approximated the inverse of the shifted-Laplacian preconditioner Bg; using
one cycle of a geometric multigrid method; see [33], for example. We denote such multigrid based precondi-
tioners by Byg. This leads to a good conditioning of ABy,; for low-frequency problems, while the number of
BICGSTAB iterations appeared to grow linearly with frequency for high-frequency problems. They also
showed that this preconditioner is well suited for problems with a highly varying speed of sound. In this paper,
we replace the geometric multigrid method with a more generic algebraic multigrid method described in
Section 4.

For the GMRES method, convergence estimates can be derived based on the spectrum of a matrix and its
non-normality [5,32]. Similarly to [25,14], we study numerically the spectrum of the preconditioned matrices.
For small problems, it is possible to compute the spectrum, while for larger problems we can only approximate
it. The GMRES method forms the basis for a Krylov subspace using the Arnoldi iteration. After m iterations
it has generated an m x m upper Hessenberg matrix which is usually denoted by H,,,.. The eigenvalues of H,,,
approximate the eigenvalues of the system matrix.

4. Algebraic multigrid method

The preconditioner By is based on an algebraic multigrid (AMG) method which approximates the multipli-
cation by the inverse of Bg;. We use an AMG method introduced by Kickinger in [34] with modifications pro-
posed in [35]. This method uses a graph based on the system matrix to construct coarse spaces. Furthermore,
it eliminates the degrees of freedom associated to the Dirichlet boundaries after forming the matrices for the
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coarse spaces. Under these choices, the AMG method can be constructed in such a way that the coarse problems
coincide with the ones obtained using a geometric multigrid method on a hierarchical linear finite element mesh.

The AMG initialization procedure is described by Algorithm 1. For linear finite elements, the initial graph
Gy is the graph defined by the sparse matrix Bg. Alternatively it can be seen as the graph defined by the tri-
angulation. For quadratic and cubic elements, the graph is defined by a refined triangulation in which qua-
dratic elements are divided into four triangles, and cubic elements are divided into nine triangles. The
reason not to use directly the graph defined by Bg; for higher-order elements is that the coarsening procedure
would coarsen the graph too much, leading to a slower convergence, that is, to not so well conditioned ABng.
The nodes (vertices) in the graph G, associated with the Dirichlet boundaries are marked. On the coarser
graphs also the nodes which were marked as Dirichlet nodes on the finer graphs are marked.

The nodes onto a coarser graph Gy are chosen from the nodes of Gy as follows. Find the node in G, which
has the smallest degree, that is, the smallest number of edges associated to it. If there are several such nodes,
choose the first one according to the used node numbering. This node is included onto the graph Gy ;. Elim-
inate this node and all its neighbors from the graph G. There is one exception to this: if the node has a Dirich-
let marked neighbor then the neighbor is not eliminated from Gy. This increases the stability of the procedure
by making sure that there are sufficiently many Dirichlet nodes selected to the coarse levels. Repeat this pro-
cedure until there are no nodes left in Gy. Fig. 1 shows an example of this coarsening strategy when all bound-
aries are of Dirichlet type.

After choosing the nodes on Gy, they are numbered following their order on Gy. Then the restriction
matrix Ry, is defined by

1 for a fine node j which is a coarse node i,
for a fine node j which is a neighbor of coarse,

=

Ry).. =
Re); node i and has & neighboring coarse nodes,

0 otherwise,

where fine and coarse refers to the graphs Gy and Gy, respectively. The edges of the coarse graph Gy are
formed using the restriction matrix R,. Each coarse graph node corresponds to a row in the restriction matrix
and there is an edge between two nodes if and only if the corresponding rows of the restriction matrix have a
non-zero element in the same column.

The prolongation matrix is the transpose of the restriction matrix, and a coarser grid system matrix is con-
structed by Galerkin method, that is, the fine grid matrix is multiplied by Ry from the left side and by R} from
the right side. The AMG cycle described by Algorithm 2 is a usual multigrid cycle given here in the general
p-cycle form. The choices p =1 and u =2 correspond to V-cycle and W-cycle, respectively. When the algo-
rithm is used in preconditioning it is called with the approximate solution x, being zero.

Algorithm 1. AMG initialization

Input: Matrix B, initial graph G, the maximum size of the coarsest system 7,.
1.k=0
2. Do while the size of By is greater than n,

3. Select the set of coarse nodes from the graph Gy

4.  Form the restriction matrix R,

5. Create the graph G4

6.  Calculate the next system matrix B, = R;B;R}

7. Eliminate the rows and columns of B, marked in the graph G;
8. Eliminate the columns of R, marked in the graph G;

9.  Eliminate the rows of R, marked in the graph G4,

10. k=k+1

11. End do

12. Eliminate the rows and columns of B, marked in the graph Gy
13. Factorize By
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Algorithm 2. Recursive algorithm for the AMG cycle

Input: Matrix B, approximate solution x,, right-hand side vector f;
Output: Improved approximate solution x;,
1. If on the coarsest level, that is, /[ =k

2. Solve x; from Bx;=f;

3. Else

4. Presmooth x; = x; + S/(x,f))

5. Restrict the residual f,;; = R(f; — Bx))

6. Set x.4; =0 and call u times the cycle for the next level /+ 1
7. Prolong the correction x; = x; + R,Tx,+1

8. Post-smooth x; = x; + S/(x,f))

9. End if

5. Numerical results
5.1. Model problems with homogenous medium

We use two different model geometries with homogenous medium: the unit square and a cross-section of a
car cabin. Fig. 2 shows typical solutions for these geometries. The same problem in the unit square was con-
sidered also in [14]. It has a point source at the middle and the absorbing boundary condition (5) is posed on
all boundaries. The car cabin problem with a non-convex geometry resembles more real-world applications.
The height of the car cabin is 1.5 m and its width is 3 m. The noise source is modeled using the Dirichlet
boundary condition (3) with g =1 on the wall behind pedals and on other boundaries the impedance bound-
ary condition (4) with y = 0.2 is used. The meshes for the car cabin problem were generated using Netgen [36]
by refining a coarse mesh depicted in Fig. 1.

5.1.1. Eigenvalue study

We study the eigenvalues for both problems by computing both the full spectrum and Arnoldi approx-
imations discussed in the end of Section 3. First we consider the Helmholtz problem with k& =20 in the
unit square domain discretized on a 31 x 31 structured mesh. Figs. 3 and 4 demonstrate the influence of
B, that is, the amount of damping to the spectrum of ABg'. We use the values > =0.5 and f, = 1.0. In
these and all following results we have ff; = 1. Fig. 3 shows that with the Neumann boundary condition
the real parts of the eigenvalues are between zero and one with both f,s, while the density of eigenvalues
near zero is higher with , = 1.0. The differences are more pronounced with the absorbing boundary con-
dition. With a smaller f,, the matrix AB;{ is closer to identity and this is seen as tighter clustering around

Fig. 2. In the left plot a solution for the unit square problem. In the right plot the solution for the car cabin problem with the wave number
k = 18.3 which corresponds to the frequency /'~ 1 kHz.
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Fig. 5. The eigenvalues of Bs By,; for the unit square problem with the absorbing boundary condition. The left and right plots are
computed using linear and quadratic elements, respectively.
one in Fig. 4. The spectrum of AByg! is very similar with quadratic and cubic elements to one with linear

elements shown in these figures.
Next we study the AMG approximations of the inverse of the discrete shifted-Laplacians. We consider the

quality of these approximations and the influence of order of finite elements. For this, we use one W-cycle
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Arnoldi approximations with x. The left and right plots are based on f/, = 1.0 and f3, = 0.5, respectively. The discretizations have been
performed using linear (plots on the top), quadratic (plots in the middle), and cubic (plots on the bottom) finite elements.

based on one presmoothing and postsmoothing iteration performed by the underrelaxed Jacobi with the relax-
ation parameter chosen according to Table 2. Fig. 5 plots the spectrums of BSLB;,IIG for linear and quadratic
finite elements with , = 1.0. With linear elements these eigenvalues are more clustered around one than with
quadratic elements which indicates that the AMG approximation of the inverse is better with linear elements.

Fig. 6 depicts the eigenvalues of ABKA]G with the absorbing boundary conditions for linear, quadratic and
cubic finite elements when the parameter , = 0.5 and 1.0. The eigenvalues are fairly similar for different ele-
ments and with f/, = 0.5 some of them are closer to the real axis than with 5, = 1.0. For the car cabin problem
with k =15, similar plots of eigenvalues are given in Fig. 7. The figures show that the spectrums are fairly
similar for the unit square and car cabin problems. This suggest that the quality of the AMG preconditioner
is not particularly sensitive to the geometry.
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5.1.2. Performance analysis

We mainly use the car cabin problem to study the performance of the iterative solver while we also report
some results for the unit square problem. Fig. 2 shows usual time-harmonic scattering patterns for these prob-
lems. Table 1 describes the different meshes used with the car cabin problem.

The preconditioner By, is defined by one algebraic multigrid cycle described in Section 3. Our aim is to
choose the parameters defining the preconditioner in such a way that the overall performance is optimal.
We use the value ff; = 1 while for , we examine the values 0.5 and 1.0. There are several choices related
to the AMG method. Our smoother is the underrelaxed Jacobi iteration with the relaxation parameter @ cho-
sen according to Table 2. These relaxation parameters minimize the overall solution time in numerical tests.
We use the W-cycle in the AMG method as it leads to shorter solution times than the V-cycle and F-cycle in
experiments. The V-cycle led to five times and the F-cycle to slightly less than two times greater overall CPU
consumption in our tests.

In Table 3, the number of iterations are reported for the unit square problem. We have chosen the wave
numbers k and the mesh step sizes / to be the same as in [14]. With higher-order elements we could have used
larger i without reducing accuracy. Their discretization was performed using a finite difference method and
they employed a tuned geometric multigrid method instead of the AMG method used here. Furthermore, they
used the BICGSTAB method with a slightly more strict stopping criterion. The number of iterations required
here are higher. We need up to 1.5 times more iterations with & = 40 while the difference grows with k. Nev-
ertheless the results in here and in [14] suggest that for higher frequencies the number of iterations roughly
doubles when the frequency is doubled. The AMG preconditioner leads to particularly good results with cubic
finite elements.

The convergence results for the car cabin problem are presented in Tables 4 and 5. In these tables, the wave
number doubles from a row to the next and the mesh step size / is halved from a column to the next. Thus, the
columns correspond to refined meshes in which the mesh step /2 is 27" times smaller than in the coarsest mesh.
This leads to constant kis on diagonals. Along them, we can again observe that for higher frequencies the
number of iterations roughly doubles when the wave number is doubled. The lower triangles of the tables cor-

Table 1
The number of elements and nodes in the car cabin meshes

No. of refinements, n,

0 1 2 3 4 5 6
Elements 82 328 1312 5248 20,992 83,962 335,872
Nodes, linear 62 205 737 2785 10,817 42,625 169,217
Nodes, quadratic 205 737 2785 10,817 42,625 169,217 674,305

Nodes, cubic 430 1597 6145 24,097 95,425 379,771 1,515,265
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Table 2
The optimal choice of the Jacobi relaxation parameter  for different finite elements and different values of f, found by extensive

numerical experiments

Ba ®

Linear Quadratic Cubic
0.5 0.4 0.4 0.4
1.0 0.8 0.7 0.7
Table 3

The number of iterations for the unit square problem for different element types when the iterations are terminated once the norm of the
residual is reduced by the factor 107°

Element type b2 k=40 k=150 k=80 k=100 k=150
Linear 1.0 43 51 76 93 137

0.5 37 47 82 111 210
Quadratic 1.0 44 53 79 97 140

0.5 32 41 70 95 177
Cubic 1.0 45 56 83 103 149

0.5 31 37 59 71 126
Table 4

For the car cabin problem discretized with linear elements, the number of GMRES iterations required to reduce the norm of the residual
by the factor 107 as a function of the number of refinements 7, and the wave number k

k p=1.0 =05
n=0 nm=1 n=2 nmn=3 n=4 n=5 n=6 n= m=1 nm=2 n=3 nmn=4 n=5 n==6
2 11 11 11 11 11 10 10 8 12 13 13 13 12 12
4 19 19 18 18 17 16 15 13 14 15 15 15 14 14
8 32 35 34 34 34 32 30 20 25 22 21 21 21 20
16 40 84 65 63 65 64 59 32 58 52 43 35 34 35
32 8 125 184 130 127 133 127 7 144 172 124 91 75 73
64 4 9 366 409 264 262 270 4 13 433 408 279 194 148
Table 5

For the car cabin problem discretized with quadratic (left table) and cubic elements (right table), the number of GMRES iterations
required to reduce the norm of the residual by the factor 107° as a function of the number of refinements r, and the wave number k

k Quadratic elements Cubic elements
n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=0 nm=1 n=2 n=3 n=4 n=5 n==6

2 12 13 13 14 13 12 12 16 15 15 15 15 15 15

4 15 15 15 15 14 14 13 20 17 17 16 16 16 16

8 27 23 21 21 21 20 19 33 25 23 22 22 21 21
16 61 59 45 35 34 35 33 71 56 46 37 36 38 34
32 172 190 141 95 75 71 66 193 195 123 87 70 70 69
64 17 496 464 315 199 148 149 250 >500 459 234 161 149 137

In both tables, f, =0.5.

respond to discretizations which do not have sufficiently high number of nodes per wavelength to capture the
oscillatory behavior of solutions. This shows up as unusually high number of iterations. Based on these results,
the value 5, = 0.5 leads to much faster convergence on higher wave numbers.

With a large number of iterations, the time spent in forming the basis vectors in the GMRES method takes
a larger part of the CPU time. This effect is seen in Table 6 which reports the time spent in different parts of the
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Table 6
The time spent in the solver with the car cabin problem discretized using quadratic elements on the n, = 5 mesh

GMRES iterations % of time spent in AMG

Wave number k CPU time in seconds

2 10 8 93.9
8 29 23 87.4
32 126 129 64.6

The AMG uses W-cycle and f8, = 1.0.
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Fig. 8. The plot on the left shows the mesh for the frequency f= 5 Hz and the definition of the problem. On the middle and right the
solutions for f'= 30 Hz and f= 50 Hz, respectively, are shown.

Table 7
For the wedge problem the number of GMRES iterations required to reduce the norm of the residual by the factor 10~° as a function of

the frequency
Element type f=5Hz f=30Hz f=50Hz

Linear, , = 1.0 24 97 148
Linear, , =0.5 17 83 124
Cubic, i, =1.0 24 105 171
Cubic, ,=0.5 19 62 97

solver for three problems discretized using quadratic elements; linear and cubic elements lead to similar
results. The computations were performed on a PC with an 1.2 GHz Intel Core Duo U2500 processor.

5.2. Wedge problem with inhomogenous medium

The wedge problem is defined by three layers with different speed of sound ¢ in the rectangle 600 x 1000 m?,
as shown in Fig. 8. This model problem was considered in [14,19]. Meshes for different frequencies were con-
structed with Comsol Multiphysics mesh generator in such a way that the mesh step size & was approximately
one tenth of one wavelength, that is, # ~ 4/10. The wedge model has a point source at the middle of the top
boundary. The absorbing boundary condition (5) is posed on all boundaries. A coarse mesh for the frequency
f=15Hz and the solutions for the frequencies f= 30 Hz and f= 50 Hz are shown in Fig. 8.
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Fig. 9. The eigenvalues of AB;,‘IG marked with o and their Arnoldi approximations marked with x for the wedge problem with the
frequency f'= 5 Hz discretized using linear elements. The left and right plots are based on f, = 1.0 and f, = 0.5, respectively.

The performance results for different frequencies are presented in Table 7. According to these iteration
counts, the convergence with f/, = 0.5 is about 15% faster than with f/, = 1.0 with linear elements and over
40% faster with cubic elements. We need again more iterations when compared to the results in [14], but
our finite element discretizations have three advantages over the finite differences used in there: we can accu-
rately model the interface between layers, we can use coarser meshes with higher-order elements, and we can
use coarser mesh where the speed of sound is higher. Fig. 9 plots the eigenvalues of the preconditioned system
for the low frequency f'= 5 Hz with f/ = 1.0 and f, =0.5.

6. Conclusions

We have studied a preconditioner based on an algebraic multigrid (AMG) approximation of the inverse of
a shifted-Laplacian for the Helmholtz equation. This is a generalization of the preconditioner proposed by
Erlangga et al. in [14]. They used finite difference discretizations on rectangular domains and a geometrical
multigrid. With our finite element discretizations and the AMG method we can solve problems in complicated
domains and use higher-order finite elements. A big advantage of the AMG method is that the solver does not
need hierarchical meshes nor operators discretized on different meshes. When the matrix for the zeroth-order
term in a discretized Helmholtz equation or the mass matrix for a constant wave number problem is also avail-
able, the preconditioner can be constructed fully algebraically. Thus, in this case the preconditioned iteration
can be seen as a “‘black box solver”.

The numerical results demonstrated the capability to solve efficiently problems in complicated domains and
varying wave numbers using the proposed preconditioner. Furthermore, the preconditioner was shown to be
effective with linear, quadratic, and cubic finite elements. The proposed approach is especially well suited for
low-frequency and mid-frequency problems while for high-frequency problems the number of iterations
roughly doubles when the frequency is doubled. The same behavior was also observed in [14].
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1. Introduction

Developing efficient methods to solve acoustic and elastic scattering problems has proved to be challenging by mathe-
matical and computational means. These problems have a wide range of applications in different disciplines, and therefore
there is a big interest to find efficient methods to solve these problems numerically. Modeling is done by acoustic or elastic
wave equation, depending on the material, and it is often sufficient to consider only time-harmonic solutions. For incom-
pressible fluids, the reduced wave equation is the Helmholtz equation. For linearly elastic material, the Navier equation
can be applied. An approximate solution can be obtained by discretizing these equations using, for example, a finite differ-
ence or finite element method.

Finite element methods have become a popular technique to discretize partial differential equations in complex geom-
etries. It has successfully been used for interior scattering problems like acoustic scattering in a car cabin [1] as well as
for exterior problems. A review [2] gives an overview of recent research on finite element methods for acoustic problems.
Since the paper [3] the research on the construction of absorbing boundary conditions and absorbing layers at the truncation
boundary of the exterior domain has been active; see [2] and references therein. The size of the scattering problems is often
limited in high-frequency problems because the methods become ineffective as the frequency grows. Particularly the finite
element phase shift (pollution) error necessitates finer discretizations for high-frequency problems [4] and thus an increas-
ing memory and computational requirements.
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The resulting systems of linear equations from the discretization of the Helmholtz equation and the Navier equation are
non-Hermitian and indefinite, and for mid-frequency and high-frequency problems, they can be extremely large. These
properties make them a challenge for the current solvers. For two-dimensional problems, it is often feasible to use direct
methods for solving these systems, but three-dimensional problems lead to systems that can not be solved by these methods
with an affordable computing effort. Hence, it is necessary to use iterative methods such as the GMRES method [5] or the Bi-
CGSTAB method [6]. However, these methods require a good preconditioner for the discretized equations in order to have
reasonably fast convergence.

Several preconditioners and iterative solution techniques have been proposed for the discrete Helmholtz and Navier
equations. Domain decomposition methods have been proposed for Helmholtz problems in [7-12], and for elastic problems
in [13-16]. Controllability methods have been proposed for both Helmholtz and Navier problems in [17,18]. Multigrid meth-
ods have been considered for acoustic and elastic problems in [19-22]. With multigrid methods, it is difficult to define a sta-
ble and sufficiently accurate coarse grid problem and smoother for it. For acoustic and elastic problems in homogenous
medium, domain imbedding/fictitious domain methods in [23-26] have been fairly effective, but these methods are pretty
restrictive and not well-suited in general, complicated domains. An incomplete factorization preconditioner has been con-
sidered in [27], for example, and in [28] a tensor product preconditioner is used.

So called natural preconditioning techniques are applicable for many problems including time-harmonic wave equa-
tions [29]. The class of preconditioners based on damped operators that are considered here, is an example of this ap-
proach. A shifted-Laplacian preconditioner with a complex shift, which is called here a damped Helmholtz
preconditioner, was first considered in [30] for the Helmholtz equation. This was a development over the shifted-Laplacian
preconditioner with a real shift previously described in [31]. Already in [32,33] a complex shift was employed, but for a
completely different way and purpose: it was used to transform a singular problem into a non singular one. Here the pur-
pose to introduce a complex shift into a preconditioner for a non singular problem is to enable the effecient use of mul-
tigrid methods.

A damped Helmholtz preconditioner with geometric multigrid was considered in [21]. There, the scattering problems
were posed in a rectangular domain and they were discretized using low-order finite differences. Our earlier study [34]
extended this approach to general shaped two-dimensional domains using linear, quadratic, and cubic finite element dis-
cretizations by applying an algebraic multigrid (AMG) instead of the geometric multigrid to approximate the inversion of
the damped Helmholtz operator. In [35], this method was compared with the previously mentioned controllability
method.

In this paper, a generalization will be proposed to the preconditioner described in [34], an AMG-based damped precon-
ditioner for time-harmonic wave propagation problems in elastic media, i.e. the Navier equation. This preconditioner will be
called a damped Navier preconditioner. Results considering the eigenvalue spectrum of the shifted-Laplacian preconditioned
discretized Helmholtz equation were given in [36] and some of these will be generalized to the Navier equation. Simulations
are carried out in two-dimensional and three-dimensional computational domains including complicated geometries for
both Helmholtz and Navier problems.

This paper is organized as follows. In Section 2 acoustic and elastic wave scattering models and their discretizations are
described. The iterative solution and preconditioning are discussed in Section 3 and mathematical results on the eigenvalue
spectrum are given in Section 4. The algebraic multigrid method employed in the preconditioning is described in Section 5.
Then numerical results are presented in Section 6 and finally, conclusions are given in Section 7.

2. Mathematical formulation
2.1. Wave scattering in fluids

For a time-harmonic pressure of the form p(x,t) = p(x)e~* with an angular frequency ® and imaginary uniti = v—1, the
wave scattering in a fluid domain ' can be described by a Helmholtz equation

1. K.
-V —Vp——p=Ff;, 1
p ot M
where k(X) = w/c(X) is the wave number, f;(X) is a time-harmonic sound source and p(X) is fluid density. In inhomogeneous

medium, the wave number k varies depending on location as the sound speed c varies. The boundary of the fluid domain @
is decomposed into a Dirichlet boundary I‘f; and an impedance boundary F{. The associated boundary conditions are given by

p:gf onffi (2)
and

B _ s g

a:l,kp on I, (3)

where g;(X) describes a sound source and n(x) is the outer normal vector. Choosing the absorbency coefficient y to be zero
leads to the Neumann boundary condition and y = 1 gives a low-order absorbing boundary condition.
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2.2. Wave scattering in elastic materials

For time-harmonic displacements u(x, t) = e~ta(x) in a domain €’ consisting of elastic materials, the scattering of time-
harmonic waves can be described by a Navier equation
—w*pt—V-ou) =f;, (4)

where o is the stress tensor, f; is a force term, and p,(x) is the density of the material. Hooke’s law gives a relation between
displacements, and stress and strain forces, thus describing strain tensor ¢ and stress tensor o:

g(u) = % (Vu+(Vu)"), o(u)=AV-u)+ 2ue(a). (5)
Here Lamé parameters Z and yu are defined as follows:

e E B Ev

AX) = 20+ M(X) = [0k (6)

These depend on Young modulus E(x) and the Poisson ratio v(x) that characterize the elastic behavior of the material. The
speed of pressure wave, ¢,, and shear wave, ¢;, can be expressed as functions of Lamé parameters:

o= |2 ;2", = %E @)

Wavelengths and wave numbers for pressure and shear waves are

. 21 w
Ips = Cps—, kps=—. (8)
0] Cps

For elastic material in the domain ¢, the following boundary conditions are applied: a Dirichlet boundary condition on I
and an impedance boundary condition on I';. As with the fluid domain, the boundary of elastic material I"* = 8¢’ is decom-
posed into two non-overlapping parts I = I'y U I'; such that either boundary set can be empty. The Dirichlet boundary con-
dition on I is described by

a=g only, 9)
where g;(x) describes the vibration source. The impedance boundary condition on I} is approximated by the equation
iyopBa+c(@n=0 onIlj, (10)

where 7 is the absorbency coefficient, i = v—1,B is a 2 x 2 matrix for two-dimensional problems (D = 2) and a 3 x 3 matrix
for three-dimensional problems (D = 3). Choosing the absorbency coefficient y = 0 leads to natural boundary condition and
y =1 gives an absorbing boundary condition. In component form B has expressions

By = c,min; + cstit;, for D=2 and

11
B; = comin; + Gstitj 4 ¢5si8;  for D=3, an

where ¢, and ¢, are the speeds of pressure and shear waves given by (7) and n = (n, ..., np)" is the normal vector pointing
out of elastic domain, and t = (t;, ..., tp)" and s = (51, ..., sp)" are tangential vectors on the boundary.

2.3. Weak formulation and finite element discretization
For the weak formulation of the Helmholtz equation, we define a test function space V{) and a solution space Vg as
VIi={qeH(?):§=gx) on I} (12)

The weak form of (1) reads: Find p € V{l such that

1 . = 2.z /1 s / .
~(VD-Vq-Kpgydx — [ —(iykpg)ds = d 13
'/pr( p-Vq-k'pq)dx ﬁpw pq)ds ‘foqu (13)

forall g e V{,. Similarly, for the Navier equation, we define a test function space V; and a solution space V; as
Vi ={veH (@) : v=gx) on I'}}. (14)
Now, the weak form of (4) reads: Find @ € V; such that

/(7psw2ﬁ<\3+0'(ﬁ):£(‘:r))dx—/ iyprBﬁ-éds:/ f; - vdx (15)
fod I @

for all v € V3.
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For a finite element discretization, a mesh K}, is defined such that Q, = UIEK,, 7. The mesh consists of triangles 7 in two-
dimensional and of tetrahedra in three-dimensional problems. Here h denotes the diameter of the largest triangle or tetra-
hedron and Q’,’f is an approximation of @*. For the finite elements of order m discrete test function spaces are

Vi ={qgeH Q) @, e P"VTeKy:g=00nI7,} and (16)

Vi = {ve[H (@) : Vul, € P"PVT €Ky : v =0o0n I7,}, (17)
where P" denotes polynomials of order m. Discrete solution spaces Vf;fh are the same except the zero boundary value on I';}},
is replaced by approximations of g and g,. In this paper, linear, quadratic, and cubic finite elements are employed, i.e.
m = 1,2, or 3. For the spaces V;, and V,}, Lagrangian polynomials are used as basis functions.

For the analytical study of eigenvalue spectra in Section 4, it is practical to define the following matrices based on the

integrals in (13) and (15):

M = fgﬁ %f?héhdx-, M = f();l PPy, - Vidx,

U= Jog 3Vbn- Vandx, L= [, o(@) : o(Vi)dx, (18)

d= —f,.fh }—)(ykﬁ,,f],,)ds, C= Iz, Yoo B, - Vds,

where p, € V’grvh, u, € Vg, qn € V{], and v, € Vj. Furthermore, let z; = o4 + f,i. Similarly to [36], the discretized Helmholtz and

Navier operators have matrix forms

F=U +iC —zW and S=zL +ZiC — M, (19)
respectively.
Now, let the vector w contain the nodal values of p or a, so that for the Helmholtz problem it has form w = [p;, ..., f),.]T,
and for the two-dimensional Navier problem it has form w = [i&f, 1), ..., i}, ﬂ{n]T.

By replacing the spaces, domains, and boundaries in (13) or (15) by their discrete counterparts, the system of linear
equations

Aw=f (20)

is obtained. The complex-value sparse matrix A is given by F or S in (18) and f is a vector resulting from an inhomogeneous
Dirichlet boundary value and/or a non-zero f; in (13) or f; in (15).

The approximation properties of such finite element discretizations for the Helmholtz equation have been studied in [4].
Due to the pollution (phase shift) error, a non-optimal L? error estimate

en = ||up — ul| < Crk(kh)®™ + Cy(kh)™ (21)

is obtained, where C; and C, are constants. Based on this estimate, larger mesh step sizes can be used when higher order
finite elements are being used, in order to reach the same accuracy level.

3. Iterative solution and damped preconditioner

The matrix A in (20) is indefinite and symmetric, but not Hermitian. For example, the generalized minimal residual
(GMRES) method [5] and the Bi-CGSTAB method [6] are suitable iterative methods for these equations. These and other
applicable iterative methods are described in [37]. The GMRES method minimizes the 2-norm of the residual on Krylov sub-
spaces. This is a desirable property leading to a monotonic reduction of the norm of the residual over iterations, but a dis-
advantage is that all basis vectors for the Krylov subspace needs to be stored. This makes the computational cost of the
GMRES methods grow quadratically with iterations and also causes linear growth in memory requirement. The computa-
tional cost of the Bi-CGSTAB method grows linearly with the iterations and the memory requirement is constant, but the
convergence can be erratic and slower than with the GMRES method. In the numerical experiments, the full GMRES method
is used without restarts.

The convergence of Krylov subspace methods for the system (20) is very slow for medium- and large-scale scattering
problems due to the ill conditioning of A. To improve the conditioning and the speed of convergence, a right preconditioner
denoted by B is introduced. This leads to a preconditioned system

AB ' =f. (22)

Once 1 is solved from this system, the solution u is obtained as u = B™"@. The goal is to find such a preconditioner B that the
matrix AB™' is well conditioned and that vectors can be multiplied by B™, i.e. solve systems with B with a small computa-
tional effort. These properties would lead to a fast convergence of the iterative method and to a small overall computational
cost.
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A shifted-Laplacian

2
%d:—V%V—zz%, (23)

with a complex shift z, = a, + ,i was suggested in [30] as a preconditioner for the Helmholtz equation. By choosing o, = 1
and B, to be negative, 7, is the Helmholtz operator in (1) with some additional damping. Using the matrices defined in (18),
the discretization of % leads to a matrix

Fi=U +iC —z,W. (24)

With sufficient damping, systems with F, can be solved much more easily than with F and the conditioning of FF,' can
still be good. The use of different approximations for F;' have been studied in [30,21,38,34]. Here an algebraic multigrid
approximation described in Section 5 is considered.

Our hypothesis is that a similar physical damping can be employed to construct an efficient preconditioner for the Navier
equations. Damping in elastic materials can be modelled by using a complex Young modulus. Multiplying the original Young
modulus E(x) by a complex z, leads to a preconditioning operator

g =—0*pi— 2,V - a(0). (25)
The coefficient z, appears also in the impedance boundary condition (10) as follows

iywp,v/zZoBU +z,0(@)n; =0 on I35 (26)
Using the matrices in (18), the discretization of %, leads to the damped Navier preconditioner
Si = ,L° + /75iC° — M°. (27)

4. Spectral analysis for the preconditioned Navier equation

Studying the eigenvalue spectrum of the preconditioned matrix AB™' is an usual way to estimate the convergence of an
iterative method like GMRES. In [36], Theorems 3.1-3.6 give useful information of the eigenvalue spectrum of the precon-
ditioned Helmholtz operator. Some of these results can be generalized to the Navier equation, as will be shown in the
following.

As defined in (19), the matrix of the discretized Navier equation is

S =zL’ + /ziC — M. (28)

Here matrices L and C° are symmetric positive semi-definite and M® is symmetric positive definite, and z; is a complex num-
ber. The case that there are only natural and/or Dirichlet boundary conditions, i.e. C = 0, and the material is not absorbing, is
analyzed first. Thus, the matrix S simplifies to

S=z7L - M. (29)
The eigenvalue problem AB™'y = 1y is equivalent to

Ay = (z;l’ - M)y = 1(z,L° — M’)y = 1By, (30)
where y = B™'y. From this, the eigenvalue problem

1-1

L’y = \M° A=
y ’ Z1 — T2

@31

can be derived.
As the matrix L’ is positive semi-definite and M’ is symmetric positive definite, the eigenvalues / are real. The eigenvalue
7 is a function of /1 given by

zy A—z7!
= . 32
2 A— z; 1 ( )
By the change of variable /' = 4, the form
Z1 — v4
T= 33
Zy — i ( )

is obtained. This is the same equation of a circle in the complex plane that was found in [36] for the eigenvalue spectrum of
the preconditioned Helmholtz equation. Due to this, the following corollary of Theorems 3.1-3.3 in [36] can be formulated.
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Corollary 1. For the eigenvalues T = 1" + it! of the generalized eigenvalue problem Sy = tSyy, the following statements hold:

o If B, = 0, the eigenvalues are located on straight line in the complex plane given by the equation

=BT+ (0 — )T+ = 0. (34)
o If p,70, the eigenvalues are located in complex plane on the circle given by
(Tr b +/}1>2 I (.L.i 02— O‘1>2 _ (P B + (o2 — 9‘1)2' (35)
2B, 2B, (2B,)?

The center of the circle is at ¢ = % and the radius is R = |% |, where z1 5 = 02 + fy 1.
o If B, > 0, the origin is not enclosed by the circle defined by (35).

The case of impedance boundary conditions with 70 in (10), i.e. C’+0, is considered next. It is not evident that the results
presented in [36] for the Helmholtz equation with C'0 are applicable for the Navier equation. However, numerical exper-

iments in Section 6 suggest that similar behavior to the one described by Theorems 3.4-3.6 in [36] holds also here. The fol-
lowing states this as a conjecture.

Conjecture 2. For the eigenvalues T = 1" + it! of the generalized eigenvalue problem Sy = 1Syy, the following statements hold:
e If B, = 0, the eigenvalues are located in the half-plane
—B1T" + (0 — 02)T 4 By = 0. (36)

e If B, > 0 the eigenvalues are inside or on the circle with the center at ¢ = % and the radius R = |2-Z4|. If 8, < 0, the

-z
. . . Z,-25
eigenvalues are outside or on the same circle.

5. Algebraic multigrid based damped preconditioners

The approximation of the inverse of the damped operator B! given by a multigrid method is denoted by B,;,};. In [21],
Erlangga, Oosterlee, and Vuik used one cycle of a geometric multigrid method for this. For low-frequency problems the con-
ditioning of AB,,.. is good. For high-frequency problems the conditioning deteriorates so that the number of Bi-CGSTAB iter-
ations appeares to grow linearly with frequency in [21]. They also showed that this preconditioner is well-suited for
problems with a varying speed of sound. In [34], the geometric multigrid method was replaced by a more generic and more
flexible algebraic multigrid method (AMG). In this paper, an AMG-based on [39] is utilized, using the implementation that is
described in [34], with modifications that make it suitable for vector valued problems, like the Navier equation.

The employed AMG method uses a graph to construct coarse spaces. Here the graph is based on the discretization mesh.
Alternative approach would be to build the graph based on the matrix B. When using linear elements in a scalar problem,
both approaches result in the same graph. For an elastic solid modelled by the Navier equation, the graph is formed without
connections (edges) between displacement components. This choice is made for two reasons: Adding these connections
would cause too rapid coarsening process. Secondly, the error behaves smoothly for each component separately and the
AMG method is especially efficient at reducing smooth error components. The graph therefore consists of separate discon-
nected graphs, one for each displacement component.

For linear finite elements, the initial graph G, is the graph defined by the triangulation. For quadratic and cubic elements,
the graph is defined by a refined mesh. In two-dimensional domains, quadratic triangle elements are divided into four tri-
angles by connecting the midpoints of the edges, and cubic triangle elements are divided into nine triangles. In three-dimen-
sional domains, quadratic tetrahedron elements are divided into eight and cubic tetrahedra into 26 tetrahedra. If the graph
defined by B was used directly with high-order elements, the coarsening procedure would coarsen the graph too rapidly,
leading to an impaired conditioning of AB,,; and a slower convergence of the GMRES method.

The nodes onto a coarser graph G, ; are chosen from the nodes of Gy as follows. Find the node in G, which has the smallest
degree, i.e. the smallest number of edges associated to it. If there are several such nodes, choose the first one according to the
node numbering. This node is included onto the graph G.,. Eliminate this node and all its neighbors from the graph Gy. Re-
peat this procedure until there are no nodes left in G. After choosing the nodes on G, they are numbered following their
order in the numbering of the nodes on Gy.

On coarse levels, different displacement components are chosen to be disconnected. Thus, the restriction matrix is de-
fined blockwise as

R} 0
Rk = T i . (37)
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The elements of the diagonal blocks of the restriction matrix are defined by the rule

1 for a fine node j which is a coarse node i,
(Rf()ij =<¢ 1 for a fine node j which is a neighbor of coarse node i and has n neighboring coarse nodes,
0 otherwise,

where fine and coarse refers to the graphs G, and G, , respectively. The edges of the coarse graph Gy, are formed using the
restriction matrix R,. Each coarse graph node corresponds to a row in the restriction matrix. There is an edge between two
nodes if and only if the corresponding rows of the restriction matrix have a non-zero element in the same column.

The coarse level matrices are now defined as follows

B' --- B’
Bi.i =RB(R,)", where B, = |: . : | (38)
B! ... BX
The usual multigrid W-cycle is used with the AMG method. For preconditioning, the initial approximate solution is zero in

the multigrid algorithm.
At each level, presmoothing and postsmoothing is performed by one underrelaxed Jacobi iteration. At the coarsest level, a

direct solver is used instead of an iterative method.

6. Numerical results

Numerical simulations were carried out on selected example problems. In Subsection 6.1, the eigenvalues of two-dimen-
sional Navier problems are studied and compared with the results presented in Section 4. In Subsection 6.2, the performance
of the method is considered for two-dimensional and three-dimensional Helmholtz and Navier problems by measuring iter-
ation counts required to satisfy a convergence criterion.

The following material parameters are used in tests unless specified otherwise. The Helmholtz problems have domain &
consisting of air, with the density p; = 1.2 kg/m? and the speed of sound ¢ = 344 m/s. The Navier problems are posed in a
domain ©° consisting of aluminum with the density p, = 2700 kg/m?, Young modulus E = 7.00 x 10'® Pa, and Poisson ratio
v = 0.33. Meshes were generated using Comsol Multiphysics 3.3 in such a way that the maximum element size is h = /10,
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Fig. 1. Eigenvalue plots for the Navier problem in the unit square. The upper plots are for Dirichlet boundary value problems and on the lower plots, the
absorbing boundary conditions are posed. On the left plots, the eigenvalues of AB™' are shown. On the right plots, the eigenvalues of AB,{,}C are shown. The
circle is defined by (35). The damping parameters are z; = 1.0 and z; = 1.3 +0.7i.
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where / is the wavelength of slowest wave mode. In the Helmholtz problems, 4 is the length of acoustic waves, and in the
Navier problems, it is the length of shear waves.

6.1. Eigenvalues

In [34], the eigenvalue spectra of the preconditioned system matrices were examined for several two-dimensional
Helmholtz example problems. Here the eigenvalue spectra will be studied, when the system is preconditioned by a damped
preconditioner for two-dimensional and three-dimensional Helmholtz and Navier problems. Two-dimensional problems are
studied in the unit square domain like in [21,34] for the Helmholtz problem. A three-dimensional cube domain will also be
considered for both Helmholtz and Navier problems. Estimates for the eigenvalue spectra of the preconditioned Navier equa-
tion, when Dirichlet or absorbing boundary conditions are posed on boundaries were presented in Section 4. These estimates
will be compared to the numerically obtained eigenvalues.

First, the unit square problem will be considered for the Navier equation. The frequency 2.2 kHz is used in the eigenvalue
study. The eigenvalues of AB™! for the unit square problem with the Dirichlet and absorbing boundary conditions are pre-
sented in Fig. 1. Also the eigenvalues of AB,. are plotted for the same problem, where By, is the algebraic multigrid approx-
imation of B, The eigenvalue spectrum for the Navier problem with Dirichlet boundary conditions is distributed exactly on
the circle as (35) describes. It is also seen that the algebraic multigrid does not spread the spectrum much. Most of eigen-
values seem to move slightly closer to the center of the circle.

For the eigenvalue spectra of the problems with the absorbing boundary conditions, it will be shown that the inequality
(36) holds in numerical examples. Similar inequality was proven in [36] to hold for Helmholtz problems. According to the
inequality (36), the eigenvalues should lie inside or outside of the circle depending on the sign of ,. For better conditioning,
B, is always chosen positive. Thus, according to (36), the eigenvalues should lie inside the circle. For the unit square problem
with the absorbing boundary conditions, the conjecture seems to be valid, as can be seen in Fig. 1. The algebraic multigrid
approximation changes the spectrum, but the eigenvalues seem to still lie inside the circle.

For three-dimensional experiments, the cube (0.3 m)? is discretized by using linear finite elements for both Helmholtz
and Navier problems. For the Navier problem, the frequency f is 5 kHz and for the Helmholtz problem, the frequency f is
500 Hz. In Fig. 2, the eigenvalues of AB™' are plotted and in Fig. 3, the eigenvalues of the system with the AMG approximation
of the inverse of the damped operator, AB,;,, are plotted. Also the circle (35) is drawn in these figures. It is clearly seen in
Fig. 2, that both Corollary 1 and Conjecture 2 holds for this problem.
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Fig. 2. The eigenvalues of AB™'. The upper plots are for the Helmholtz problems and the lower ones are for the Navier problems. The left plots are for the
Dirichlet boundary value problems and the right ones are for problems with absorbing boundary conditions. The damping parameters are z; = 1.0 and
2, = 1.0 + 0.5i for the Helmholtz problems, and they are z; = 1.0 and z; = 1.0 + 0.8i for the Navier problems.
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Fig. 3. The eigenvalues of ABM'G. The upper plots are for the Helmholtz problems and the lower ones are for the Navier problems. The left plots are for the
Dirichlet boundary value problems and the right ones are for problems with absorbing boundary conditions. The damping parameters are z; = 1.0 and
2, = 1.0 + 0.5i for the Helmholtz problems, and they are z; = 1.0 and z, = 1.0 + 0.8i for the Navier problems.

6.2. Performance of the preconditioner

The performance of the damped preconditioner with the algebraic multigrid will be reported for several different test
problems. First, a two-dimensional Navier problem is studied in the unit square and three-dimensional Helmholtz and Na-
vier problems are studied in a cube domain. Then, the method is tested on complicated three-dimensional problems: For the
Helmholtz equation, a three-dimensional car cabin domain and a layered wedge domain with a varying speed of sound are
considered. For the Navier equation, a crankshaft geometry defined by a Comsol Multiphysics 3.3 example problem is con-
sidered. The iteration counts give the number of iterations needed to reduce the relative residual to 107°.

In all performance studies with the unit square problems, the absorbing boundary condition given by (10) with y = 1 was
posed on the boundaries. For the Navier equation, the best value for 8, was determined as follows. With several different
frequencies and test problems, solutions were computed using the values 0.1,0.2,...,1.0. The value g, = 0.8 was selected
as it gave the best convergence among the values which lead to a reliable preconditioner. The value appeared to be rather
problem independent within the selected test problems and frequencies. The Jacobi relaxation parameter w = 0.5 was deter-
mined similarly. For the Helmholtz equation, the parameter values 8, = 0.5 and @ = 0.5 given in [34] were used, unless
specified otherwise. The same parameter values were used for all element types.

6.2.1. Unit square

The first benchmark for the Navier equation is performed in the unit square domain with a point source in the middle. The
solution was obtained at five different frequencies given in Table 1. The Navier equation was solved with linear and quadratic
finite element discretizations. In Fig. 4, the solution is shown for the four lowest frequencies.

6.2.2. Cube problem

The Helmholtz and Navier problems were solved in the cube (0.3 m)3 with a point source in the middle. The performance
of the damped preconditioner was compared to a modified incomplete Cholesky factorization (MIC) preconditioner [27]. The
algorithm presented in [40] is used for the MIC(I) approximation of A~!, where the parameter I describes the level of fill-in in
the factorization. The values I = 0 and 1 have been used as bigger Is were uncompetitive as forming incomplete factorization
required much more computation. The performance was measured by the number of GMRES iterations and the total number
of floating point operations (FLOPs) required by the preconditioning. The number of FLOPs is a good measure, as it includes
the initialization process in addition to GMRES iteration. The results are presented in Tables 2 and 3.
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Table 1
The results for the unit square elasticity problem. Iteration counts are given for linear and quadratic finite elements.
f(kHz) Element order

1 2

49 26 21
9.8 40 30
19.6 92 60
39.2 213 141
78.4 417 415

Fig. 4. The solution of the unit square elasticity problem at frequencies 4.9 kHz, 9.8 kHz, 19.6 kHz, and 39.2 kHz. The absorbing boundary conditions are

posed on the boundaries.

Table 2

The iteration counts for the cube problem for the Helmholtz and Navier equations. Some counts are missing as the computations were too demanding.
Helmholtz

f(kHz)| AMG MIC(0) MIC(1)

Order— 1 2 3 1 2 1 2
0.5 10 13 16 13 17 8 11
1.0 12 15 18 18 41 11 17
2.0 19 21 24 31 126 16 28
4.0 35 42 55 50 29

Navier

f(kHz)| AMG MIC(0) MIC(1)

Order— 1 2 1 % 1 2
5 20 5 24 70 11 16
10 22 10 38 196 15 25
20 33 20 67 24 48
40 66 107 40

MIC(1) seems to require fewer iterations than AMG, whereas MIC(0) requires more iterations. Especially with linear finite
elements, the convergence with MIC(1) is faster than with AMG and MIC(0), as can be seen in Table 2. However, Table 3
shows that the number of FLOPs with the MIC(1) preconditioner is about twice the number with AMG. This is mainly due
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Table 3
The number of millions of floating point operations (MFLOPs) for the Helmholtz and Navier equations. Some numbers are missing as the computations were too
demanding.

Helmholtz
f(kHz)| AMG MIC(0) MIC(1)
Order— 1 2 3 1 2 1 2
0.5 0.5 7.4 43 0.4 13 0.5 35
1.0 Al 31 170 22 110 29 270
2.0 17 210 1100 24 1800 32 3600
4.0 170 2000 12,000 260 390
Navier
f(kHz)| AMG MIC(0) MIC(1)
Order— 1 2 1 2 1 2
5 6.8 130 71 390 8.9 870
10 29 490 47 3700 63 7000
20 230 3500 530 88,000 760 93,000
40 2400 5900 9400
Fig. 5. The solution of the Helmholtz equation at the frequency f = 880 Hz in the three-dimensional car cabin.

Table 4
The number of iterations for the three-dimensional car cabin problem for the Helmholtz equation.
f(Hz) Element order

1 2 3
110 14 17 22
220 17 23 29
440 26 34 46
880 51 72 97

to expensive factorization process before the iteration. With quadratic elements the MIC preconditioner seems to perform
much worse than AMG, both in iteration counts as well as FLOPs. This is true for both Navier and Helmholtz problems.
MIC(1) is also using more memory than AMG, although the difference is not substantial.

6.2.3. Three-dimensional car cabin problem

The car cabin problem is a three-dimensional generalization of the two-dimensional car cabin problem in [34]. The sound
source is modelled as the Dirichlet boundary condition p = 1 posed on the wall behind pedals. The impedance boundary con-
dition (3) with y = 0.2 is posed on the other boundaries. The height of the car cabin is 1.5 m, the width is 1.5 m, and the
length is 3 m. An example solution is plotted in Fig. 5. Iteration counts are reported in Table 4. For this problem also, the
number of iterations grow roughly linearly with respect to the frequency.

6.2.4. Three-dimensional wedge problem for the Helmholtz equation
The three-dimensional wedge problem [41] in the unit cube [0, 1]? is a generalization of a two-dimensional problem stud-
ied in [28,21,34]. In this acoustic scattering problem, the material is inhomogeneous leading to a piece-wise constant speed
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Fig. 6. The solution of the Helmholtz equation at f = 2.5 Hz for the three-dimensional wedge problem.

Eleﬂietesration counts for the three-dimensional wedge acoustic scattering problem.
f(kHz) Element order

1 2 3
1.25 23 26 30
25 40 53 88
Table 6
The GMRES iteration counts for the crank shaft vibration problem.
f(kHz) 3 6 9 12 15
Iterations 231 263 223 187 347

Fig. 7. The propagation of elastic waves in a crankshaft at f = 3 kHz. The color scale indicates the amplitude of the displacement, with blue corresponding
to small displacement and red corresponding to large displacement.

of sound. The domain has three layers separated by two planes defined by the equations z=0.1x + 0.2y + 0.6 and
z=-0.2x - 0.15y + 0.4. The speeds of sound from the top layer to the bottom layer are ¢; = 1,c; =1, and ¢; = 2. A point
source is placed at (0.5,0,0.5) and the absorbing boundary conditions are posed on the boundaries. In the AMG method,
the Jacobi relaxation parameter is @ = 0.3.

The solution of the Helmholtz equation at f = 2.5 Hz is shown in Fig. 6. The iteration counts are reported in Table 5. The
same linear growth can be observed as in the previous problems.

6.2.5. Crankshaft vibration problem
The Navier equation is solved in a complicated three-dimensional domain defined by the crank shaft model from Comsol
Multiphysics 3.3. The length of the crankshaft is 1.0m and it is made of structural steel defined by: the density
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p = 7850 kg/m?, Young modulus E = 2 - 10'"" Pa, and Poisson ratio v = 0.33. A tangential vibration source on the left end is
given by the Dirichlet boundary condition u = (1,0, 1). The right end is rigid, i.e. the Dirichlet boundary condition u = (0,0, 0)
is posed on there. Other boundaries have natural boundary conditions, i.e. the impedance boundary condition (10) with
y = 0. The mesh is made of quadratic finite elements and 300,000 nodes.

The GMRES iteration counts on a range of frequencies are given in Table 6. As there is no absorption, the problem is sin-
gular at some frequencies. Due to this the iteration counts do not behave linearly with respect to the frequency. The solution
at f = 3 kHz is illustrated in Fig. 7.

7. Conclusions

A damped Navier preconditioner based on an algebraic multigrid method was introduced for time-harmonic elasticity
problems. This is a generalization of a shifted-Laplacian preconditioner for the Helmholtz equation. These preconditioners
are efficient for Helmholtz and Navier problems in complicated two-dimensional and three-dimensional domains. High-
er-order finite elements can be used for the discretization and Helmholtz problems can have variable coefficients. The pro-
posed approach is especially well-suited for low-frequency and mid-frequency problems. For high frequencies, iteration
counts grow roughly linearly with respect to the frequency. The same behavior was also observed in [34,21].

The performance was compared to a modified incomplete Cholesky (MIC) preconditioner. The AMG-based damped pre-
conditioner was more efficient as its initialization requires much less computations than the expensive incomplete factor-
ization procedure. Especially with quadratic finite elements, the AMG preconditioner was clearly faster.

The eigenvalues of the preconditioned system were also studied. The earlier results for the Helmholtz equation in [36]
were generalized for the Navier equation. It was shown that the eigenvalues of the preconditioned system with the damped
Navier preconditioner are on a circle in the complex plane for Dirichlet and Neumann boundary value problems. When one
algebraic multigrid cycle is used instead of the exact inverse of the damped Navier operator, the eigenvalues are spread to
some extent, but the conditioning is still fairly good.
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ARTICLE INFO ABSTRACT

Articl_e history: Processes that can be modelled with numerical calculations of acoustic pressure fields
Received 30 November 2007 include medical and industrial ultrasound, echo sounding, and environmental noise. We
Received in revised form 9 April 2008 present two methods for making these calculations based on Helmholtz equation. The

first method is based directly on the complex-valued Helmholtz equation and an algebraic

MSC: multigrid approximation of the discretized shifted-Laplacian operator; i.e. the damped
ggfooss Helmbholtz operator as a preconditioner. The second approach returns to a transient
65N30 wave equation, and finds the time-periodic solution using a controllability technique.
65N35 We concentrate on acoustic problems, but our methods can be used for other types of
Helmbholtz problems as well. Numerical experiments show that the control method takes
Keywords: ) more CPU time, whereas the shifted-Laplacian method has larger memory requirement.
Helmholtz equation © 2009 Elsevier B.V. All rights reserved.

Computational acoustics
Algebraic multigrid method
Preconditioner

Exact controllability

Finite element method
Spectral element method

1. Introduction

The many applications of computational acoustics in industry range from medical measurement to machinery design.
Computational acoustics enables the simulation of situations that would be difficult to explore experimentally. Compared
to experiments, computer simulations provide a safe, fast, and cost-efficient way of providing guidelines for acoustical
applications. Nevertheless, solving problems arising from real life acoustic applications by computer demands a considerable
amount of time and memory. In particular, high-frequency phenomena are computationally demanding. This is because
the resolution of the spatial discretization needs to be adjusted to the frequency to achieve accurate results. Furthermore,
solutions with high frequency suffer from numerical dispersion. This the so-called pollution effect [1] cannot be avoided in
two- and three-dimensional problems [2], but it can be reduced by using higher-order polynomial basis [3,4], among other
methods. However, the pollution error in discretizations necessitates finer meshes for high-frequency problems.

Our aim is to develop efficient iterative solution methods for acoustic problems, which are modelled by the Helmholtz
equation presented in Section 2. Element methods, such as the finite element method (FEM) and the spectral element
method (SEM), have emerged as generic tools for discretizing the Helmholtz equation. The review [5] describes research
efforts on this field (see also [6,7]). Finite element discretizations of the Helmholtz equation are non-Hermitian and
indefinite. For mid-frequency and high-frequency problems, the resultant matrix can be extremely large, which often limits
the feasible size of the scattering problem under consideration. As a result, the finite element discretizations of the Helmholtz
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equation are a challenge for the current solvers, and require the use of iterative methods such as the GMRES method or the
BICGSTAB method [8]. These methods, in turn, require a good preconditioner for the discretized Helmholtz equations in
order to have reasonably fast convergence.

In Section 3, we consider a shifted-Laplacian preconditioner that is obtained from the discretized damped Helmholtz
operator. A preconditioner based on approximating a damped Helmholtz operator by a geometric multigrid cycle was
considered in [9]. There, the scattering problems were posed on a rectangular domain and they were discretized using
low-order finite differences, and a geometric multigrid method was used. Quadratic and cubic finite elements in particular
helped to reduce the number of unknowns in order to reach prescribed accuracy, as they have much smaller interpolation
and pollution errors than linear basis functions [1]. The preconditioner used in this paper, employs an algebraic multigrid
(AMG) method in the approximation of the damped Helmholtz operator. In particular, the preconditioner can be constructed
purely algebraically when the matrix for the Oth-order terms is also available.

An alternative iterative approach suitable for solving the Helmholtz equation via the time-dependent wave equation is
presented in Section 4. The basic idea is to find a time-periodic solution to wave equations by using a controllability method.
This leads to preconditioned conjugate gradient iterations for initial data. This technique was introduced for the Helmholtz
equation in [10,11]. They used low-order finite elements for space discretization and second-order central finite differences
for time discretization. Since low-order discretizations lead to poor accuracy, we have made improvements to the method.
In [12], we used higher-order spectral elements for space discretization. We noticed that second-order time discretization
limits the accuracy with elements of order r = 3 or higher, unless very fine time steps are used. That is why the fourth-
order Runge-Kutta time discretization was applied to the method in [13]. Higher-order discretizations in both space and
time domain provide high accuracy. However, with higher-order discretizations the computational cost is larger than with
lower-order discretizations.

Comparison between the shifted-Laplacian and the controllability methods is presented in Section 5 with respect to
CPU time and memory usage. Although the computational grids are not the same for both methods, the same number
of discretization points is used for both methods to make comparisons reasonable. The accuracy of the discretizations is
compared as well.

The methods that we use are not restricted to a certain application but can be suited to simulate several real life problems.
Hence, our examples do not focus on a specific application. However, geometrical shapes similar to those used in our
scattering examples can be used in several applications in audio technology and echo sounding. For example, noise barriers
with cross sections as presented in our scattering examples can be used in environmental noise attenuation. In this setting,
simulation results show where the noise is reduced to a certain level. In echo sounding, one can determine the location of
the highest echo signal.

2. The Helmholtz equation and boundary conditions

Acoustic scattering can be described by the Helmholtz equation
1 k(x)?
gk
p(X) P(X)
where u denotes the complex-valued time-harmonic acoustic pressure field, k (X) = w/c (x) is the wave number, p (X) is
the density of the material, w is the angular frequency of the sound, c (x) is the speed of sound, and x = (x, x,) € R? is the
space variable. The wave number k varies depending on location as materials change.
We consider two different boundary conditions: the Dirichlet boundary condition and the absorbing boundary condition.

We decompose the boundary I" = 92 into two parts, I'y and I, such that I' = I';U I';. The Dirichlet boundary I is sound-
soft and is described by the Dirichlet boundary condition

u=0, (1)

u=gy; only, (2)

where function g, gives the sound source.

The absorbing boundary condition should let outgoing waves propagate out of the domain without reflections, as the
Sommerfeld radiation condition requires. Considering a perfect absorbing boundary condition as a non-local operator is
computationally difficult, but it can be approximated by a local operator [ 14]. We use here the absorbing boundary condition

8u_
on

with the imaginary unit i = 4/—1, outer normal vector n, and source term g,.

—ik(xX)u + g on Iy, (3)

3. The finite element method and preconditioning with the shifted-Laplacian

In the finite element method, the weak formulation of the Helmholtz equation is used to form the discretized version

of the equation. The weak form and corresponding spaces that are used here are identical to the ones described in [15].
The finite element discretization is made on a triangulation given by a set of non-overlapping triangles K, such that



1798 T. Airaksinen, S. Monkold / Journal of Computational and Applied Mathematics 234 (2010) 1796-1802

2 = UTGKh 7. Here h corresponds to the largest distance between discretization nodes and £2, is an approximation of
the computational domain £2. In this paper, linear and cubic finite elements are employed. They correspond to the first- and
third-order Lagrangian polynomials as basis functions of elements, respectively. Ultimately, a system of linear equations

Au = f, (4)

is obtained, where A is a sparse matrix, u is the vector that contains the values of u on triangulation nodes and f is a non-zero
vector arising from the sound source.

In this case, A is indefinite and symmetric but non-Hermitian. Hence, the generalized minimal residual (GMRES)
method [8] is a suitable iterative method for the sparse matrix equation (4). In the numerical experiments we use the full
GMRES method without restarts.

Except for very small-scale problems, the system (4) is generally badly conditioned, and it leads to very slow convergence
of Krylov subspace methods when applied directly to the system (4). To improve the conditioning and the speed of
convergence, we right-precondition (4) by B~! and solve the preconditioned system

AB li=f u=Bla (5)

The goal is to find a preconditioner B such that the matrix AB~! is well conditioned and multiplication of vectors by B~!,
i.e. solving systems with the matrix B, can be done with a small computational effort. These ideal properties would lead to
a fast convergence of the iterative method at a small overall computational cost.

In this paper, the preconditioner is based on a discretized form of the shifted-Laplacian operator Bs; = —V - ﬁ —
(B1 + Boi) k’fgg, as originally presented in [16]. By choosing 81 = 1 and B, to be positive, Bs; corresponds to damped

Helmholtz operator. In [15], the algebraic multigrid method (AMG) was used to approximate inversion of Bs;. We use this
preconditioner here and denote it by By;c. When evaluating B,‘_,,é with the AMG method, we use one W-cycle with under
relaxed Jacobi method with relaxation parameter wj,c = 0.4 as the smoothener. One iteration of the Jacobi is used as a pre-
and post-smoothener. The damping parameter 3, is chosen to be 0.5, which was found to be a good choice in [15].

4. A control based approach with spectral elements

An alternative approach to solving the Helmholtz equation is based on finding a time-periodic solution of the associated
transient wave equation via an exact controllability technique. To obtain the time-harmonic solution, we minimize the
difference between initial conditions and the corresponding variables after one time period T = 2r /w. Proceeding this
way, the problem of time-harmonic wave scattering can then be cast as a least squares problem

(1 /
min | -

2 Ja
where the initial conditions are contained in a vector (eg, e;)" = (U(0), %—‘[’(O))T, and U(t) = Re(e~u) satisfies the time-
dependent equations associated with the system (1)-(3).

The time-dependent wave equation and the function to be minimized in (6) are discretized in space domain with the
spectral element method [3]. We use higher-order Lagrange interpolation polynomials as basis functions, and the nodes of

these functions are placed at the Gauss-Lobatto discretization points. The integrals in the weak form of the equation are
evaluated with the corresponding Gauss-Lobatto quadrature formulas. This leads to semi-discretized state equation

() 2

at

e

dx+1/ |V(U(T)—e0)|2dx>, (6)
2 Jo

M32U+58U+KU—F (7)
at2 at o
where U is the global vector containing the values of the pressure U(t) at the Gauss-Lobatto points of the quadrilateral
mesh, M is the mass matrix, S is the matrix arising from the absorbing boundary condition, K is the stiffness matrix, and F
is the vector due to the source functions Re (e g,) and Re (e~™g,). The least squares problem, where the function to be
minimized is semi-discrete form, is

(1 . 1 (9U(T) T /3u(T)
min 3 (U(T) —ep) K(U(T) —ep) + = ( — el) M( — el> .

2 ot at

For time discretization we use the fourth-order Runge-Kutta method. The discretized minimization problem is solved by a
preconditioned conjugate gradient (CG) algorithm. We use a block-diagonal preconditioner diag (K, M). The linear systems
with the stiffness matrix K are solved by the algebraic multigrid method [17,15,13]. As a smoother for the AMG, we apply the
successive over relaxation (SOR) method with relaxation factor equal to 1.2. One iteration of the SOR is used for a pre- and
post-smoothener. Additionally, at the beginning of every multigrid iteration, four iterations of the SOR are used to smooth
the solution initially. The so-called W-cycle [18] is utilized as a multigrid iteration until the residual norm of the solution is
smaller than 107S.
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Table 1
Number of nodes and number of space discretization points for different element orders in the coarsest meshes.
SL method Control method
Element order 1 3 1 2 3 4
Mesh step size h 0.025-0.084 0.097-0.252 0.050 0.100 0.143 0.200
Number of nodes in mesh 5075 610 5040 1320 672 360
Number of space discretization points 5075 5142 5040 5040 5544 5040

5. Numerical experiments

We compared the efficiency of the methods, presented in Sections 3 and 4, by performing tests considering accuracy,
computational cost and memory requirement. In both methods, the overall accuracy of the discrete solution depends on
spatial discretization (performed by higher-order element methods with mesh step size h and element order ), the stopping
criterion ¢ of the iterative method (GMRES or CG), approximation of the geometrical boundaries, and approximation of the
radiation condition.

In the shifted-Laplacian method, we used an unstructured triangular mesh generated with Comsol Multiphysics 3.3. For
the control method, a mesh consisting of polygonal elements was created by a mesh generator from Numerola Ltd. The
meshes are built such that approximate number of discretization points is same for both methods. Since good efficiency
can be achieved with higher-order elements by using sufficiently large mesh step size, we have used constant spatial
discretization between different element orders (i.e., r/h is constant).

In [15,12,13], it is shown that the number of iterations needed to achieve a given stopping criterion is independent of the
element order. Since with lower-order elements we can save CPU time by using rougher stopping criterion without loss of
accuracy, we have used stopping criterion ¢ = 10~ with both methods for element order r, unless otherwise mentioned.
In accuracy tests, we have used polygonal boundaries to avoid the error from approximating the geometry, in connection
with a test problem that satisfies the absorbing boundary condition. Errors between the real parts of the analytical solution
and the computational result are reported as L°°-norms.

Time discretization, performed by the fourth-order Runge-Kutta scheme, affects the accuracy of the control method. To
eliminate the temporal error, for elements of order r we use a timestep of length At = o, hpin/Cmax, Where ¢y = 2/3, oy =
1/5, a3 = 7/80, and g = 5/90. Here, hpj, denotes the minimum mesh step size and cp,x denotes the maximum sound
speed.

Throughout the tests, we have chosen to use the propagation direction (—1, 1), which is determined by wave vector
k = % (—1, 1) k. The starting values (eg, e;)" for the control method are set by the procedure presented in [13]. All

computations have been carried out on an AMD Opteron 885 processor at 2.6 GHz. In the figures and tables, we use the
abbreviation SL method for the shifted-Laplacian method.

5.1. Accuracy

The domain £2, consisting of a fluid with density p = 1, is defined so that its outer boundary, I, coincides with the
boundary of the rectangle [0, 4] x [0, 4]. We have set a square obstacle, having a side length of 2 and boundary I'; in the center
of the domain §2. The error arising from the approximation of the absorbing boundary condition is eliminated by solving the
Helmbholtz problem with g = e®* and g, = i (kyny + kyn, — k) e*. The function u = e!** satisfies this problem, and the
solution of the corresponding time-dependent equation is U = cos(kt — Kk - X). The accuracy of the methods is compared
with a series of tests where mesh step size is halved consecutively, starting from the meshes introduced in Table 1.

In the first accuracy experiment, we used angular frequency w = 27 and wave speed c(x) = 1 corresponding to the
constant wave number k = 2m. As mesh refinement with a constant wave number leads to more accurate results, we
also refine the stopping criterion in this particular test, as opposed to the usual stopping criterion ¢ = 10~"+? for rt-
order elements. Theoretically, the asymptotic maximum error between the analytical solution and the computed solution
is divided by four for the element order r = 1 and by sixteen for r = 3, when the total number of elements in the mesh
is multiplied by four (i.e., the mesh step size is divided by two). To guarantee that the stopping criterion does not limit
the accuracy, we have used stopping criteria e = 1073,5 x 107%,107%,5 x 107>, 107> for r = 1 with increasing mesh
density. Respectively, within each mesh refinement for r = 3, we have divided the stopping criterion by ten. The results
with element orders r = 1 and r = 3, plotted in Fig. 1, are in line with the theoretical consideration, and they show that
using higher-order elements is better then refining the mesh when high efficiency is needed. With the control method in
particular, the computations with fine grids are inefficient since small time steps need to be used to satisfy the stability and
accuracy demands. Consequently, to obtain the prescribed level of the residual for the three smallest values of h and At with
spectral elements and r = 3, more than 1000 iterations (our maximum number of iterations) are required.

Because solving acoustic problems with large frequencies is of special interest, we have performed another set of
experiments by doubling the angular frequency with every mesh refinement. In these tests, we have set wh constant for
angular frequencies w = 2, 47, 87, 167, 327, and the number of space discretization points has been approximately
20 per wavelength. The results presented in Fig. 2 for the shifted-Laplacian method with r = 1, 3 and the control method
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Fig. 1. Errors with respect to CPU time (in seconds). On each line, mesh step size is divided by two, consecutively, and angular frequency @ = 27 is kept
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Fig. 2. Errors with respect to CPU time (in seconds). On each line, there are points for angular frequencies w = 2m, 4w, 87, 167, 327 when wh is a
constant giving approximately 20 discretization points per wavelength.

with r = 1, 2, 3, 4 show how the pollution error deteriorates the accuracy as the frequency becomes larger. The lowest-
order elements (r = 1) become useless with both methods as the angular frequency increases. The higher-order methods
appear to be the most effective in both respects. We see that better accuracy is gained by the control method with spectral
element discretization, but the shifted-Laplacian method with triangular finite elements appears to be faster. Due to the
comparatively large discretization error in connection with our triangular space discretization, the pollution error is not
clearly visible for the cubic elements (r = 3) within the frequency range used in this experiment. However, it is possible to
improve the accuracy at the expense of computational time with triangular elements by using denser discretization mesh.

5.2. Scattering

We illustrate acoustic scattering by solving the Helmholtz problem with gy = 0 and g, = i (kyny + kony — k) e** in both
homogeneous and heterogeneous domains. The outer boundary of the domain coincides with the boundary of the rectangle
[—3/4, 3/4] x [—3/4, 3/4]. Density is assumed to be constant p(x) = 1. For tests in homogeneous domain we have used
c(x) = 1.In the heterogeneous test case, parameters are the same, except c(x) = 1.5 forx; & [—3/20, 3/20]. Our methods
can be applied to complex geometries as well, and as an example of such a geometry we have chosen a crescent-shaped
scatterer. The scatterer can be described as the set of points inside the closed disk of radius 3+/2/20 centered at the origin
but outside the open disk of radius 3ﬁ/20 centered at (3/10, 0). See Fig. 4.

In these tests, we have used angular frequencies w = 12m, 24w, 487, 967, 1927 for element orders r = 1, 3. The
scattering problems are solved by using constant wh, implying approximately 10 space discretization points per wave length
in the homogeneous domain and for x; € [—3/20, 3/20] in the heterogeneous domain. Respectively, the number of space
discretization points per wave length is approximately 15 for x; ¢ [—3/20, 3/20] in the heterogeneous domain. The mesh
is refined every time the angular frequency is doubled, as in the previous test measuring the influence of the pollution error.
An example of a solution, computed by the shifted-Laplacian method with r = 1, at angular frequency w = 48 is plotted
in Fig. 5.

The CPU times and maximum memory usage for these scattering tests are shown in Fig. 3. It can be seen that memory
requirement is almost equal between the methods when the frequency is low. As the frequency increases, the GMRES
iterations increase in the shifted-Laplacian method. At the same time, the memory needed for storing the Krylov subspace
grows as well. The memory requirement of the control method stays constant regardless of the growing number of
iterations. Replacing GMRES method with another method, such as BICGSTAB, would remove this linearly growing memory
requirement.
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Fig. 3. Memory usage with respect to CPU time (in seconds). On each line, there are points for angular frequencies w = 12x, 247, 487, 967, 192 when
wh is a constant giving approximately 10 discretization points per wavelength.
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preconditioning.

Fig. 4. Geometry and the coarsest meshes for both methods with r = 3 in scattering tests.

(a) Homogeneous. (b) Heterogeneous.

Fig. 5. Solution of the scattering problem in homogeneous and heterogeneous domains at angular frequency w = 48 with the method with shifted-
Laplacian preconditioning and r = 1.

6. Conclusions

From the numerical tests we can conclude that the control method gave more accurate results but it took more CPU time
than the shifted-Laplacian method. One reason for the lower accuracy with the shifted-Laplacian method is the unstructured
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mesh with changing step size h, as seen in Table 1. It is worth mentioning that the shifted-Laplacian method has quadratic
CPU time and linear memory requirement due to the necessity to build Krylov subspace at each GMRES iteration. Choosing
some other iterative method, such as BICGSTAB, to the outer iteration could lead to better performance as measured by
CPU time. In addition, quadrilateral spectral elements require fewer discretization nodes than triangular finite elements to
obtain the same accuracy level.
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Active noise control in a stochastic domain
based on a finite element model

Tuomas Airaksinen*  Erkki Heikkola’  Jari Toivanen*

Abstract

The optimization of active noise control based on a finite element model
for acoustic field is considered. Fixed number of actuators are located on the
boundary of a three-dimensional enclosed acoustic space which could be ve-
hicle interior, for example. Actuator signals are used to minimize known har-
monic noise at specified locations. Noise control system needs to be robust with
respect to many randomly varying parameters such as small variations in the
acoustic space. In vehicle acoustics, these variations could be changes in the
posture of vehicle driver. The treatment of this aspect is studied by using a
stochastic computational domain in the finite element model. This leads to a
quadratic optimization problem. Numerical results show significant noise re-
ductions in drivers ears in a realistic car interior.

1 Introduction

Many machines generate disturbing noises to their users. Rotating and constantly
moving parts such as wheels, engines and cooler fans are typical noise sources.
Noise control applications are found especially in factory environment, engineering
vehicles and passenger cars. It is possible to reduce noise significantly by different
methods. Probably the most effective way to control noise is to remove or reduce
important noise source mechanisms by suitable design choices. In many cases, how-
ever, this is not possible or the design is limited by other more important factors than
noise. Then there are two basic approaches for noise attenuation: active and passive
methods [1, 2].

Passive noise reduction by absorbing and insulating acoustic elements is effective
for high frequency noise but typically less effective for low frequency noise, as long
waves require large elements. On the other hand, active noise control (ANC) is
most effective for low frequency noise. Active attenuation is based on generating
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antisound with actuators, such that original noise is cancelled. The antisound must
have the same amplitude as the noise to be cancelled, but the opposite phase so that
destructive interference occurs. If the noise contains both high and low frequency
components, the best noise attenuation is obtained by combining both active and
passive methods together.

There are different ways to implement ANC system - some are applicable only to
specific problems while others are more general. If the sound propagation is essen-
tially one-dimensional, specific controller circuits can generate signal for an actuator
minimizing sound at a sound sensor. These methods are reviewed in [3]; applica-
tions feature, for example, ANC modules integrated to air conditioning ducts [4]
and exhaust pipes [5].

It is more difficult to implement ANC system that reduces the noise in a com-
plicated three-dimensional domain. The noise control in passenger cars and other
vehicles is a challenging future ANC application. In the passenger car, low fre-
quency noise sources are mainly due to structural vibration from engine and tires
[6]. Especially structure-borne noises are low frequency, whereas airborne noises
often have higher frequencies. Tires cause high frequency noise due to aerodynamic
phenomena. The mechanical vibratory noise from tires is mainly below 1 kHz. The
most important noise components originating in the passenger car engine are below
500 Hz. The resonanse of car cabin is also an important low frequency noise source.

As there are low-frequency noise sources, ANC system could provide a signifi-
cant noise reduction to the car cabin environment. There exists several approaches
to implement a three-dimensional ANC system, but they are not very effective or
general yet. More advanced methods employ numerical simulation and optimiza-
tion. ANC methods that use finite element modeling, are presented in articles [7, 8].
In [7], resonance modes for mining vehicle are studied by modal coupling analysis
and antinoise is optimized by using FEM model to obtain global noise control in the
cabin. In [8], a local active noise control method based on the finite element method
is described which minimizes noise locally in microphone locations. A method to
determine the optimal locations for antinoise actuators are also presented. In [9], an
optimal active noise control implementation based on quadratic programming and
boundary element method (BEM) is presented.

Here, a novel approach on active noise control is considered. It is based on acous-
tic modeling in a stochastic domain. The antinoise is optimized by minimizing the
expectation value of the noise. It is important that the ANC system tolerates random
variations in the noice control environment. The stochasticity of the cavity domain
implies that the ANC method presented here provides more reliable noise attenua-
tion than earlier methods. The numerical example, ANC in a car cabin, shows the
efficiency of the presented method.

This article is organized as follows. In Section 2, a mathematical model of sound
propagation, the Helmholtz partial differential equation, and a numerical method
to solve it are briefly presented. In Section 3, the local noise control in a stochastic
domain is formulated as a quadratic optimization problem. In Section 4, an example
of local noise control in car driver’s ears is described. In Section 5, the numerical



results of ANC performance in three-dimensional car cabin problem are studied
and analyzed. In Section 6, conclusions are given.

2 Acoustic model

The time harmonic sound propagation can be modelled by the Helmholtz equation
for the complex pressure amplitude p (x) which defines the amplitude and phase
of the pressure. The sound pressure at time ¢ is obtained as e~“p, where w is the
angular frequency of sound and i = v/—1. In a differential form, the Helmholtz
equation reads

1 2
—V--Vp—2p=f inQ, 1)
p p

where p (x) is the density of the material at location x, ¢ (x) is the speed of sound in
the material and f (x) is the sound source term. A partially absorbing wall material
is modelled by the impedance boundary condition

dp inw

on
where 7 (x) is the absorption coefficient depending on the properties of the surface
material. The value = 1 approximates a perfectly absorbing material and the value
1 = 0 approximates a sound-hard material (the Neumann boundary condition).

An approximate solution for the partial differential equation (PDE) Eq. (1) can be
obtained using a finite element method [10]. The finite element discretization trans-
forms Eq. (1) into a system of linear equations Ax = b, where the matrix A is gen-
erally symmetric, large, and sparse. Due to the large size and structure of A, direct
solution methods are computationally too expensive. Instead an iterative solution
methods like GMRES [11] needs to be used. Solving the system with a reasonable
number of iterations is, however, challenging as the matrix A is badly conditioned
and especially so when the calculation domain is large and the frequency is high.
In the numerical example in Section 5, the solutions are computed after the systems
are preconditioned by a damped Helmholtz preconditioner described in [12, 13].

on 012, 2)

3 The noise control problem

An acoustic model in an enclosed stochastic domain 2 (r) is considered, where
r = (r,79,--- ,7,)" is a random variable that conforms to a known probability dis-
tribution F (r). The pressure amplitude p (x, r,~y) is the sum of the sound pressures
caused by noise and n antinoise sources

p (Xv r, ’7) =DPo (Xv I‘) + Z ViPj (Xv I‘) ) (3)

J=1



where the pressure amplitude pj is due to the noise source, p; is due to the jth anti-
noise source, and v; is a complex coefficient defining the amplitude and phase of the
jth antinoise source. The noise and antinoise sources are located on the boundaries
of Q. The antinoise defined by the coefficients -, is optimized so that the noise is
minimized in a subdomain denoted by = (r) C €2 (r). For this, a noise measure is
defined as

Nmﬂ:/@&mw%&mx
=(r)

N / p(x,r,9)p (% r,7) g (x) dx, )
=(r)

where ¢ (x) is a weighting function and p is the complex conjugate of p.
As the domain 2 is stochastic, the expectation value of the noise measure is given
by

Ewum»=/wmwFuMn 5)

where F'(r) is the probability distribution of r. The objective function J for opti-
mization is chosen to be an approximation of the integral (5) and it is given by the
numerical quadrature

J(y) = JwN (r;,7) F (r)), (6)
=1
where the pairs (r;, w;) give the quadrature points and weights. The optimization

problem is defined as

n};n J(v) . @)

In order to give the objective function in a compact form, the following notations
are introduced:

p(x,1r) = (p (x,1),p2 (X,1), - ,pa (x,1)) "

a= ijF (r)) / Po (X, rj)2g (x) dx,

E(r))

b=>wF () [ mxr)plxe)g(dx and

E(ry)

A=) wF (1) / p’ (x,1;) P (x,15) g (x)dx, 8)



where p is the elementwise complex conjugate of the vector p and the superscript
T denotes the transpose. By expanding terms and by using the notations in Eq. (8),
the objective function in Eq. (6) can be expressed in a compact form

J(7) =v"Ay +~"b + by +a, ©)

where superscript # stands for the Hermitian conjugate. Optimal complex coef-
ficients v; that give phases and amplitudes for antinoise actuators, are now given
by the optimality condition V~J = 0. This leads to a system of linear equations
A~ = —b, which has the solution

~=—-A"b. (10)

Figure 1: A three-dimensional model of BMW 330i car interior.

4 Car interior noise control

As an example application of the ANC method, the noise control in BMW 330i car
interior is studied, see Fig. 1. The interior of the car excluding the driver is the
domain Q2 (r). The objective of the noise control is to minimize noise in driver’s ears.
Thus, = is defined as a set

E(r)={e,e.} CQ(r), (11)

where ¢; (r) and e, (r) are the co-ordinates of the left and right ear, respectively. The
noise measure in Eq. (4) has now the expression

N (r,7) = [p (e, r, %) > + |p (e, r, )|

It is assumed that there is only the driver and no other passengers or significant
objects in the car that would influence the sound propagation. Driver’s variable
properties like shape and posture have an impact on reflections and propagation

5
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Figure 2: Driver’s posture parameters: (a) r; is driver’s sideways bending angle, (b)
19 is the forward bending angle, (c) r3 is head rotation angle to left/right. Upper fig-
ures correspond to the lowest value of the parameter and lower figures correspond
to the highest value of the parameter.

of sound, so they must be taken into account. Especially the posture and position
of head affect the sound heard by ears. As the posture varies to some extent, it is
better to minimize the expectation value of the sound level in ears. This leads to a
stochastic domain in the computation.

The driver is modeled by using the freely available Animorph library, that is
based on ideas and algorithms presented in [14]. With Animorph, it is possible to
model driver’s geometry with a rich set of parameters changing the posture and
shape. Three parameters are considered here: r; is driver’s sideways bending an-
gle, o is forward bending angle, and r; is head rotation angle to left/right. These
parameters are illustrated in Fig. 2.

Now the random variable r = (ry, r2,r3)T determines the posture of the driver,
where the value of each parameter is limited by condition L; < r; < H;,i € {1,2,3}.
The expectation value in Eq. (5) reads now

Hy Hoy Hs

E(N (r,v)) = / / / N (r,~) F (r) drsdradry. (12)

ri1=Li ro=Larg=Lg

The probability distribution function F' is given by a piecewise trilinear function
defined by the nodal values on the lattice {L,, Cy, H1} X {Ls,Cs, Ho} x {L3, Cs5, H3}
and elsewhere by trilinear interpolation. The integral in Eq. (12) is estimated by the
three-dimensional generalization of the trapedzoidal quadrature rule. The numeri-



cal integration of expression in Eq. (12) gives the objective function

J(v) = E(N(r,v) = szN (rj,7) F(r;) , (13)

where w; is a weight coefficient from the trapezoidal rule for the integral of the prob-
ability distribution function £ and r; is the co-ordinate triplet of the ith quadrature
point.

To evaluate the objective function in Eq. (13), the pressure amplitude caused by
each noise and antinoise source is needed in ears for each driver sample r;. The
acoustic reciprocity principle allows here a significant computational saving, which
is explained in the following. First, a finite element model which has a point noise
source at the ear e; is set up. Then, the pressure amplitude is studied in a noise or
antinoise surface S. By the reciprocity the following holds: the sound emitted by
the source S measured at the ear e; has the same pressure amplitude as the sound
emitted from the ear e; measured over the surface S. Thus, the sound pressure am-
plitude caused by many different sound sources can be resolved by just performing
one simulation. The pressure amplitude heard at the ear e; is given by the integral

ps () = / Pe, (%) fs (x) dx, (14)

S

where pg (e;) is the sound pressure propagated from the surface S that is heard at
the ear e;, f5(x) is the force term for the sound source S, and pe, (x) is the sound
pressure propagated from the ear e; at the point x on the surface S. With a point
antinoise source S, the integral in Eq. (14) is replaced by the point value at x = S.

- APLOAPLL2 *ALBACK
Pl

“/APLS Ve

ps >

" *ALDOOR

Figure 3: In the left figure, the noise source and planar antinoise sources are marked
and labeled. In the right figure, there are point antinoise sources; only left side
actuators are marked and labeled. The corresponding actuators on the right side are
defined symmetrically on the right side of the cabin.



5 Numerical experiments

5.1 Definition of the model

In the numerical example model, the stochasticity of the domain €2 (r) implies that
the Helmholtz equation Eq. (1) is solved many times with the driver in different
postures. Table 1 lists the sampled values for the parameters ry, 75, and r5. The
center of the probability function F is at C = (0,0,0) and the corners are at L =
(—25,—-7.5,—62.5) and H = (25,17.5,62.5). On the boundaries of the rectangular
prism [Ly, Hy| x [Lq, Hy] X [L3, Hs], the probability function is set to zero, f (r) = 0.

Table 1: The parameter values for driver’s stochastic variables r; are given on the
second column. The third column gives the identification of the parameter used in
Animorph library.

Parameter | Values[°] | Animorph parameter

r1, sideways bending | -20,-10,0,10,20 360_torso/ROT1

r9, forward bending -5,0,5,10,15 360_torso/ROT?2

r3, head rotation -50,-25,0,25,50 300_head /ROT2

To solve the Helmholtz equation in Eq. (1) with the finite element method, a col-
lection of meshes consisting of linear tetrahedra and triangles were generated with
Ansys ICEM CFD. Each mesh corresponds to different driver posture and they were
generated so that there are at least 10 nodes per wavelength at f = 1000 Hz. The to-
tal number of meshes is 5° = 125 which is the number of parameter combinations
(7” 1,72,T 3) .

The noise and antinoise sources are presented in Fig. 3. The noise source is mod-
elled by a uniformly vibrating surface behind the leg room, which is a simplification
of the real noise source. The antinoise sources are labeled as follows. Antinoise pan-
els on the roof are labeled as Axx, where xx is 00, 01, 10, and 11. Point actuators
are labeled as AXDOOR, AxBACK, APx2, APx5, APx7, APx9, APx12, APx14, where
x is here L for the left side sources and R is for the right side sources. Actuators
AXxDOOR are located on front doors and actuators APxxx are located on front side
window frames, see Fig. 3. On inner surfaces, the absorbing boundary condition in
Eq. (2) is posed with the absorbency coefficient n = 0.2. The study was done in the
frequency range 50-1000 Hz with 25 Hz steps.

5.2 Actuator quality evaluation

It is possible to enhance the noise control by choosing good locations for antinoise
actuators and by increasing their number. However, increasing the number of actu-
ators also increases the costs and complexity of the noise control system. Thus, it is
worthwhile to remove the actuators that have only minor contribution to the noise
reduction of the ANC system. The graphs in Figs 4-6 study the quality of noise
control and evaluate how each actuator contribute to the noise control quality.
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Figure 4: The expectation value of attenuation in left and right ear with standard
deviation o (shaded region). The antinoise actuators are used as follows: (a) Axx,
(b) AXDOOR, AXBACK, Axx, (c) AXDOOR, Axx, (d) AXDOOR, (e) AXDOOR, APx2,
APx5, APx7, APx9, APx12, APx14, (f) AXDOOR, AXxBACK.



In Fig. 4, the expectation value of the noise attenuation and its weighted stan-
dard deviation have been plotted at each driver’s ear with different actuator com-
binations. By using two door loudspeakers (AxXDOOR) as antinoise actuators, a sat-
isfactory noise control is obtained within the engine noise frequency range, below
500 Hz, as Fig. 4 d shows. By this choice, however, the noise reduction result is not
good at higher frequencies, although the expectation value of the attenuation stays
negative, i.e. noise is reduced. In Fig. 4 e, 12 additional point antinoise actuators
have been placed on side window frames. By these additional actuators, a good
attenuation of ca. 10 dB is obtained over the whole studied frequency range.

In Figs 4 a and ¢, it can be seen that by using only planar actuators on the roof
(Axx), the attenuation at low frequencies is not good, but at higher frequencies (700-
900 Hz) it is reasonable. When comparing Figs 4 c and d, it is clear that the planar
roof actuator (Axx) together with the side door actuators (AxDOOR) is significantly
better than the side door actuators (AXDOOR) alone. The attenuation profile is more
flat, and even at high frequencies (600-1000 Hz) more than 5 dB expected attenua-
tion is obtained.

If the antinoise itself is very loud, it may cause high sound pressure levels in
some parts of the car cabin. By good placement, the amplitude of each actuator
can be kept comfortable. In Fig. 5, the amplitude of each antinoise actuator is plot-
ted to evaluate the actuator selections. Fig. 5 a shows that the amplitude of planar
roof loudspeakers (Axx) is over 10 dB louder than the amplitude of front door loud-
speakers (AXDOOR), especially at high frequencies. In Fig. 5 b, it is seen that the
amplitude of back window loudspeakers (AXBACK) is significantly lower than the
amplitude of front door loudspeakers (AXDOOR). However, when comparing Figs
4 d and {, it is seen that the contribution of back window loudspeakers (AXxBACK)
is insignificant for the noise control.

10 10
5 5
0 FRA e, 0
o —5/\ g -
° 5 KA e W | °
2-10 - 2
‘s — ALDOOR s
£71°| - ARDOOR N Sl L (T
_o0l| - A0O I _20![ — ALDOOR
- AOL : --- ARDOOR
_os|| — A10 25| ALBACK
- All ARBACK
3035 300 500 700 300 3035 300 500 700 300
frequency, hZ frequency, hZ

(@) (b)

Figure 5: The amplitude of antinoise actuators is plotted in dB with the unit value
|7:| = 1 being 0 dB. The antinoise actuators are used as follows: (a) AXDOOR, Axx,
(b) AXDOOR, AxBACK.
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In Fig. 6, the contribution of each actuator to the noise control is plotted in the
following way. The noise levels are compared in both ears when the chosen actuator
is enabled and when it is disabled, i.e. 7; = 0. For each examined frequency, the
worst attenuation result is selected from left or right ear. From Fig. 6, the benefit of
each actuator can be evaluated. As already has been suggested, it is seen from Fig. 6
d that the contribution of back window actuators (AxBACK) is less significant than
of other actuators, and at high frequencies it is negligible.
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el el
g ¢ -10
o o
2 2
E — ALDOOR B
o --- ARDOOR © ;
- AOO -20; — ALDOOR
- AOL --- ARDOOR
A10 25}, - ALBACK
/ - A1l / ARBACK
3050 300 500 700 900 3013 300 500 700 900
frequency, hZ frequency, hZ
(o) (d)

Figure 6: The contribution of each actuator to the noise control system. The noise
level is compared between the case when the inspected actuator is enabled and
when it is disabled, i.e. 7; = 0. For each examined frequency, the worst attenuation
is selected from left or right ear and it is plotted in the graph in dB. The antinoise

actuators are used as follows: (a) Axx, (b) AxDOOR, AxBACK, Axx, (c) AxXDOOR,
Axx, (d) AxDOOR, AxBACK.
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5.3 Error due to inaccurate actuator signals

The quality of noise control may suffer from inaccurate actuator signals. Such errors
can be reduced by calibration. Figs 7 and 8 show attenuation results when there are
small inaccuracies in the amplitude and phase of the actuator signals. The antinoise
signals are first optimized for a specific noise. In the plotted attenuation graphs, the
original noise amplitude is modified by scaling it and keeping the actuator signals
unchanged, thus generating some error. By comparing Fig. 4 d to Fig. 7 a, it is
noticed that a measurement error of +0.2 dB causes more than 10 dB deterioration
at lowest frequencies. On higher frequencies, the influence of error reduces and at
1000 Hz error is insignificant. When the amplitude error is +0.4 dB, the attenuation
at lowest frequency deteriorates 3 dB more.

10 10
5
0
m =5 m
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£-10 s
ks ks
%-15 =
- -
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©_25 ©_25
-30 i -30 i
_35 — Right ear _35 — Right ear
--- Left ear --- Left ear
—40 160 300 500 700 900 —40 160 300 500 700 900
frequency, hZ frequency, hZ

Figure 7: The influence of amplitude error in the actuator signals to the noise re-
duction. Actuator signals are first optimized for a specific noise. In the attenuation
graphs, the original noise amplitude is modified by scaling it and keeping the actu-
ator signals unchanged, thus generating some error. Two antinoise actuators (Ax-
DOOR) are used. In the left plot, there is +0.2 dB error and in the right plot there is
+0.4 dB error in the amplitude.

The phase error is caused by latency of the noise control device and it can be de-
creased by calibration and realtime computations. The study in Fig. 8 was carried
out as follows. The antinoise was first optimized for a specific noise. In the atten-
uation graph, the phase of original noise was shifted and the antinoise was kept
unchanged. In Fig. 8, there are attenuations with phase errors caused by latencies of
0.75ms, 1.0 ms, 2.5 ms, and 5 ms. At low frequencies, the influence of phase error is
smaller than at high frequencies. Below 500 Hz, the influence of phase error is rather
small, if the latency is below 2.5 ms. With 5 ms latency, the noise control attenuation
deteriorates significantly, especially at frequencies higher than 500 Hz.

12



attenuation, dB
attenuation, dB

_ — Right ear _ — Right ear
33 - Left ear 33 - Left ear

—4013p 300 500 700 300 —4013p 300 500 700 300
frequency, hZ frequency, hZ
(a) (b)
10 10
5
0

m =5 m
el el
£-10 s
S S
©-15 =
- 4 - 4
520
®_25 ©

-30 . .

_35 — Right ear _35 — Right ear

--- Left ear --- Left ear
—4013p 300 500 700 300 —4013p 300 500 700 300
frequency, hZ frequency, hZ
(0) (d)

Figure 8: The phase error influence to the quality of noise control. The antinoise
was optimized for a specific noise. In the attenuation graph, the phase of original
noise was shifted and the antinoise was kept unchanged. Two antinoise actuators
(AXDOOR) are used. The phase error in each figure is as follows: (a) 0.75 ms, (b) 1.0
ms, (c) 2.5 ms, (d) 5 ms.

5.4 Attenuation plots

In Fig. 9, there are example plots of the attenuation when the driver is at different
postures. The two front door loudspeakers (AXDOOR), the back window (AXxBACK)
and the planar roof (Axx) loudspeakers are used as the antinoise actuators. When
the frequency is less than 400 Hz, there is more than 10 dB attenuation in almost
every posture. The ANC method covers very extensively the lowest frequencies. At
frequencies higher than 400 Hz, there is mostly significant, over 5 dB attenuation,
but there are also occasional postures that lead to noise amplification, i.e. additive
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interference of sounds. However, strong noise peaks are unlikely and on average

the noise is reduced significantly.
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Figure 9: Examples of attenuation graphs at different postures as a function of fre-
quency. The front door (AXDOOR), the back window (AXBACK), and the planar
roof (Axx) antinoise actuators are used in the noise control.

Fig. 10 demonstrates the effect of active noise control with two actuators (Ax-
DOOR) at single frequency f = 300Hz. It is seen that the method reduces noise
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effectively near the ears and also in a wider region around the ears. At higher fre-
quencies, the silent area is smaller and the noise is increased in other parts of the
car.

Figure 10: The noise control at frequency f = 300 Hz for the basic driver’s param-
eters 1y = ro = r3 = 0. The modulus of pressure amplitude |p| is plotted on the
logarithmic color scale. On left plots, the acoustic field is depicted without noise
control. On right plots, the noise control is enabled. The attenuation at both ears
in this case is ca. —30dB. The front door (AXDOOR) loudspeakers are used in the
noise control.

6 Conclusions

A method to determine the optimal antinoise for local active noise control (ANC)
of sound have been presented by using finite element acoustic modeling. The opti-
mization of antinoise is performed by minimizing the expectation value of the noise
in a stochastic domain. The noise is assumed to be decomposed into time harmonic
components and therefore the time harmonic wave equation, the Helmholtz partial
differential equation, is used to model the sound propagation.
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ANC in a car interior is considered as an example and numerical results are stud-
ied. The pressure amplitude is solved separately with 25 Hz steps on the frequency
range 50-1000 Hz and the solutions are used to optimize the amplitude and phase
of the antinoise.

The noise control is studied by considering the expectation value of attenuation
as a function of frequency. The method gives good results for low frequency noise
already with a few antinoise actuators: by using two front door loudspeakers as
antinoise actuators, over 10 dB attenuation is obtained at frequencies below 300 Hz,
over 5 dB attenuation is obtained at frequencies between 300-500 Hz, and at 500-
1000 Hz, some attenuation still occurs. The results at higher frequencies are signif-
icantly better if more actuators are used: with 14 antinoise actuators there is about
10 dB attenuation even at highest studied frequencies (1000 Hz).

The minimization of expectation value in a stochastic domain is an effective ap-
proach in active noise control. In the example problem, very good attenuation is
obtained for probable postures. In addition, the occurrence of uncomfortable noise
peaks is unlikely at usual postures. At higher frequencies, the silent area is smaller
and additive interference (noise peaks) also occur.
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Multiobjective muffler shape optimization
with hybrid acoustics modelling

Tuomas Airaksinen* Erkki Heikkola®

Abstract

Shape optimization of a duct system with respect to sound transmission loss
is considered. The objective of optimization is to maximize the sound transmis-
sion loss at multiple frequency ranges simultaneously by adjusting the shape
of a reactive muffler component. The noise reduction problem is formulated
as a multiobjective optimization problem. The sound attenuation for each con-
sidered frequency is determined by a hybrid method, which requires solving
Helmbholtz equation numerically by finite element method. The optimization is
performed using non-dominated sorting genetic algorithm, NSGA-II, which is a
multi-objective genetic algorithm. The hybrid numerical method is flexible with
respect to geometric shapes, material parameters and boundary conditions. Its
combination with multiobjective optimization provides an efficient method to
design muffler components.

1 Introduction

Physical phenomena encompass many forms of wave propagation and thus bring
a great interest to understand wave propagation and its interaction with the envi-
ronment. Acoustical applications reside in many disciplines, and often the goal is
to reduce undesired acoustic noise. Sound propagation especially in waveguides is
a fundamentally interesting topic. Ventilation ducts are an example of waveguide
where noise reduction is of a special interest.

There are several methods to reduce noise in ducts. The noise reduction is achieved
by mulfflers, that are of either passive or active type. Passive mulfflers fall into two
categories: dissipative and reactive. Dissipative mufflers employ noise absorbing
material and they are best suited for high frequency noise. Reactive mufflers exploit
the shape of muffler component to obtain useful wave reflections and they are best
suited at low frequencies. Active mufflers, for one, implement noise reduction by
creating antinoise of the same amplitude but opposite phase to the original noise,
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see for example Egena et al.[1] and Lee et al[2]. They are effective at low frequency
noise cancellation.

The study of acoustical sound propagation in ducts is possible by several means.
Experimental acoustical study is often not feasible, whereas analytical or numerical
methods can often be considered. There is a introduction to one dimensional duct
acoustic modeling in Munjal[3]. Four-pole transfer matrix method, that is based on
plane wave theory, offers an approximative way to make a one-dimensional model
of muffler acoustics. This approach has been used for transmission loss optimization
in duct system in Yeh et al[4]. However, the method is limited to simple geometries
and boundary conditions.

The finite element method (FEM) is a general approach to solve approximately
partial differential equations. By FEM, it is possible to obtain approximate, yet ac-
curate solution of Helmholtz equation with appropariate boundary conditions. It
is also possible to consider problems with complex geometry and varying material
properties. By using suitable preconditioner, such as one introduced in Airaksinen
et al.[5], it is possible to solve effectively large Helmholtz problems.

In this article, the modelling of an acoustic reactive mutffler is based on a hybrid
numerical method[6]. This method provides realistic modelling of acoustics in a
mulffler component, which is located between uniform inlet and outlet ducts. In the
uniform parts, acoustic solution can be obtained by modal analysis, where individ-
ual propagating modes are solved numerically or in special cases, analytically. For
example in circular ducts, solution of the Helmholtz equation can be represented
in terms of Bessel functions. Finite element method is used to solve the Helmholtz
equation in the non-uniform muffler part of the ductwork. Mode matching[7] is
used to couple the different solutions in the muffler and inlet/outlet ducts. The
generality of finite element method is thus provided to the acoustics simulation and
complicated shapes and configurations can be treated accurately.

The objective of optimization here is to maximize the sound transmission loss
(STL) of the mulffler by utilizing shape optimization at two frequency ranges simul-
taneously. In book by Haslinger and Méikinen[8], an introduction to shape opti-
mization has been given. In addition to shape optimization, material parameters,
especially absorption of the boundary material could also be optimized by applying
the method of this paper.

As an optimization method, a genetic algorithm (GA) is considered, which is a
stochastic optimization algorithm that mimics genetic drift and the Darvinian strife
for survival. Unlike traditional gradient-based optimizers that need the derivatives
and a good starting point, GA has a good opportunity to locate the global optimum
in a near optimal manner. In Mékinen et al. [9], a genetic algorithm approach to
multiobjective aircraft wing shape optimization has been proposed. Here, the opti-
mization is made with the non-dominated sorting genetic algorithm, NSGA-II [10],
which is an optimizer well suited for multi-objective problems.

The article is organized as follows. In Section 2, the mathematical formulation of
the acoustics in the muffler component is given. Hybrid numerical method is de-
scribed in Section 3. In Section 4, numerical experiments are performed and results



are reported. In Section 5, the concluding remarks are given.

2 Mathematical formulation

Figure 1: The crosscut illustration of a duct system in a general case: inlet pipe (2,4,
muffler component of arbitrary shape €5 and outlet pipe .

Sound propagation is governed by the acoustic wave equation

1 10%
°V - -Vp— -——2 = 1
VvV pr o 0, @
where p (x,1) is the pressure field at location x and time ¢, p (x) is the density of
the material, ¢ (x) is the speed of sound. Assuming time-harmonic pressure field
p(x,t) = p(x) e, where w is angular frequency and i = v/—1, Eq. (1) leads to the
Helmbholtz equation

1
-V.-Vp——p = 0, 2)
p p

where k = w/c is the angular wavenumber.

The duct system is illustrated in Fig. 1. It consists of three parts: inlet duct
domain 4, muffler component domain Q5 and outlet duct domain Q¢. Inlet and
outlet ducts must have uniform but arbitrary cross-section. Inlet and outlet ducts
are connected to a general, arbitrarily shaped muffler component on interfaces I' 4
and I'c. The wall of the mulffler is denoted by domain I',,, thus 0Qp =T, UL, UT¢.
Non-absorbing sound-hard boundary is considered on I',, and it is modelled by
Neumann boundary condition

n-Vp = 0 onl,, 3)

where n is the outer normal vector on boundary I',,.

The solution of Helmholtz equation Eq. (2) in muffler component domain €2 is
obtained by finite element method, which is described later in Section 3. In duct
domains 24 and €2¢, Helmholtz solution can be obtained by modal analysis. In cer-
tain special cases such as circular or rectangular duct, analytical form of the solution

3



can be derived, whereas in general shaped duct, eigenfunctions have to be solved
numerically. The expansion of the acoustic pressure in duct domains Q4 and (¢ is
represented in cylindrical coordinates as a sum over the eigenmodes

ma ma
Pa(r6,2) = 3 A% (r6)e™™ 4+ Fd;(r6)e™  and

Jj=0 j=0
mg 4 mc 4

o) = 3500y 3 0
=0 s

where @, (r,0) and V; (r,0) are transverse duct eigenfunctions corresponding to the
cross-section of the pipe, F;, A;, B; and C; are the modal amplitudes correspond-
ing to eigenfunctions ¥;, ®;, and };, v, are axial wavenumbers along z-axis. As the
evanescent modes can be truncated, sums in Eq. (4) have only finite number propa-
gating modes, denoted by m 4, m¢. Coordinate systems in uniform ducts are chosen
such that z-coordinate gives the axial direction of the duct with positive direction
away from the nonuniform domain Q5. The origin of coordinate system in domain
(24 is located on the interface I' 4, and the origin of )¢ is located on I'c.

Coefficients F; determine the incoming sound from inlet pipe. The equal modal
energy density (EMED) assumption, i.e. |Fn|2 I, = |F,,L|2 1, for all m, n, has been
chosen for the inlet as incident sound source, as it is a good representation of the
sound field emanating from a fan in a ventilation system; see Kirby and Lawrie[11].
For EMED, the incoming modal amplitudes can be calculated from the formula

_ T
I3 o Am

Modal amplitude coefficients A; correspond to the sound that is reflected back from
the muffler, B; correspond to the sound propagating to the outlet pipe and C; cor-
respond to the sound that is reflected back from outlet pipe. By setting C; = 0 for
all j, a perfectly non-reflecting boundary is imposed on I'c.

The sound transmission loss function is defined as the ratio of the transmitted to
incident sound powers

|EJ* = ©)

PA Z:;B:() WmHm |Bm|2
Pc EZB:O Aml'm, ‘Fm|2 ’

where I,, = fFA |®,,|* dx and H,, = fFB |V, | dx. By considering the EMED assump-
tion Eq. (5), we can write the ratio the transmission loss in a simpler form

PA ZZE’:O Y Hm |Bm|2

TL(x,f) = —10logy, (6)

TL(x, =—-101o 7
(x, f) g10 ool @)

Next, function 7 (x, f) is defined as
(. f) = min(TL (% f),T L) ®)
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Here, parameter 7'L,,,, is a limiting value for transmission loss, which is necessary
due to possible narrow infinite peaks in transmission loss function that inhibit good
convergence of the optimizer.

The multiobjective optimization problem is defined as a minimization of objec-
tive functions

fi(x)=— ! i’f (x, w;) and fo(x)=— ! iT (x, i), )
i=1 i=1

ny Na

where the shape vector x = [z1, ..., z,,,,.| contains parameters that are used to alter
the shape of the muffler component, w = |wy,...,w, |and ¢ = [iy,. .., i, | are vectors

of frequencies where sound transmission loss is maximized.

2.1 Eigenfunctions in a circular duct

In circular duct, the eigenfunctions ®; (r,0) and ¥, (r, §) are represented by modes

(I)j (Tv 9) = Jm]‘ (krjr) eimﬂ’ (10)
where J,,,, (x) is order m; Bessel function of the first kind and k,; is the radial
wavenumber. The radial wavenumber £,; is obtained by considering sound-hard
wall boundary condition n - Vp = 0, which here implicates that at r = a, where « is
the radius of the duct wall,

I, (krja) = 0. (11)
Axial wavenumber k.; is evaluated from the effective wavenumber £ and the radial
wavenumber k,; by

ky = (/K- K2 (12)

The axial wave propagation is determined by term ¢™*+i* (see Eq. (4)), which im-
plicates that imaginary axial wavenumber k,; leads to exponential decaying of the
wave mode. Thus, the evanescent modes with k,; > k are neglected. Modes are
denoted by index j that starts from zero and is ordered according to the radial
wavenumbers k,;. The radial wavenumbers are calculated from Bessel derivative
roots k,; = b;/a according to Eq. (11) (see Table 1), where b; is the root of Bessel
derivate of order m; and « is the radius of the duct.

Table 1: First roots of Bessel derivative function, J;, (b;) = 0.

j |1 2 3 4 5
m; 0 1 2 0 3
b, | 0.0 1.84 3.05 3.83 4.20




3 Hybrid numerical method with mode matching

In the hybrid numerical method, the modal representations in 24 and (2 are cou-
pled to the finite element representation in Q25 by mode matching. The weak formu-
lation of the Helmholtz equation Eq. (2) is the following: find pp = p, + p;i, where
p, € H (Qp), pi € H' (), such that

1 1
/ - (VpB - Vv — k‘Qva) dxr — / -n-Vpgovdr =0 (13)
Qg P o0g P

for any v € H' (23); n is outward normal vector. Solution p4 and pc are coupled to
pp by the boundary conditions

n-Vpg=n-Vpy on 'y, (14)
n-Vpg =n-Vpc on I'¢, (15)
DB = DA on I'y, (16)
PB = PC on I'c. 17)

The first two conditions Eqs. (14) and (15) and Neumann condition Eq. (3) can be
incorporated in the weak form Eq. (13), leading to the equation

1 1 1
/ f(VpB-Vv—k?va)dx—/ fn-VpAvdm—/ -n-Vpcvdr=0. (18)
Qp P L P e P

In mode matching, the two other conditions Eqs. (16) and (17) are imposed in weak
forms: find pa € Za, pp = p, + pii, where p, € H' (Q5), pi € H* (Qp) and pc € Z¢
such that

/ (pp —pa) ®idr = 0and

Ta

[ o)tz = 0 (19)
I'e

for any o, € Z, and ¥; € Z,, where test function spaces are defined as Z, =
span,_, . {®;(r,0)} and Zc = span,_,  {V;(r,0)}. In summary, the hybrid
formulation of the acoustic problem in the waveguide is given by the Egs. (18) and
(19).

Finite element discretization proceeds by approximating the acoustic pressure in
Q B by



where N; (z) are global trial functions for finite element mesh, p; are the nodal val-
ues of the acoustic pressure at node j and n is the number of nodes in 2. Galerkin
method of weighted residuals proposes that NV, () are used as test functions v. The
approximation Eq. (20) is next replaced in Eq. (18) to form a matrix equation

1 1 1
/ —(VN-VN" - i’NN")dzp— | -Nn-Vpsde— [ -Nn-Vpcdz =0 (21)
Qp P ry P re P

The modal representations of the solutions p4 and p¢ in Eq. (4) are replaced into
Eq. (21), where the normal derivatives of p4 and p¢ are of the form

6 . mA ) mA
n-Vpa(r,0,0) = 5-pa(r.0.0) = =iy NAD; Y NP,
j=0 j=0
) o
n-Vpe (1,0,0) = 5-pe (r,6,0) = —i) B, (22)
j=0

These derivatives are substituted in Eq. (21):

1 1 ma ma
/ = (VN VNT - i>2NNT) dxp—/ SN =Y O NAD i Y NP | da
5 Ta P =0 i=0

P
1 mgo

—/ =N (=Y 7B | de=0.(23)
Ic P =0

This is expanded in component form

nA ma
Z/ %(VNi-VNj — K NiN;) dpj +i ) A lNZ@j dx A,
j=0 /5

j=0 “Ta
. ma 1 ' mgc 1
§=0 Fa =0 T'e

If we use the matrix notations

HZJ = Z/\] fFA %qu)J dl’ IA(U' = 7/')/] ch %Nzlpy di’
fi == Zz;n;}) )‘j fFA %NZ(D] d!L‘F} Gij fQB % (VNZ . VN] - ]fZNlNJ) dCC,
(25)
we can write (24) in matrix form

Ha+ Gp +Kb= f, (26)

where a contains m4 complex modal amplitudes of interface I'4, b contains mp
complex modal amplitudes of interface I'p.
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Egs. (4) and (20) are next replaced in Eq. (19):

ma ma
Ta j=0+“/Ta j=0+“Ta

mc
/ U,NT dz p > / U, W, dz B;. (27)
I's j=0“/Ta

Expanded to components, this reads

n mAa ma
j=0“Ta j=0“/Ta j=0+“/Ta

mc
Z/ U,N;dep; = Z/ U, V, dx B;. (28)
I's j=0+“/Ta

J=0

By using matrix notations

Hy = [, ®®;do Kj = Jio U0, de
fi = —Z;n:’% L4 (Dj(I)Z dx F;,

Eq. (28) can be written in matrix form

Ha+Hp = f
Kb+Kp = 0. (30)

Now, the Egs. (26) and (30) can be written as a single block matrix equation

H H 0

a] [f
HGKI||[p|=|f] (31)
0 KK||b 0

4 Numerical experiments

In this section, the multiobjective minimization of the functions f; and f, in Eq. (9) is
tested in four different cases. In each case, the shape of the muffler is controlled with
certain shape parameters x and the goal is to improve attenuation at given frequen-
cies. The test problem #1 represents a non-symmetric three-dimensional muffler
component optimization. The test problem #2 is chosen because similar optimiza-
tion has been considered in Barbieri and Barbieri [12]. The test problem #3 has been
chosen as an example of a problem that has many parameters defining the shape.
The last test problem #4 is Helmholtz resonator that has been considered in Selamet
et al[13]. It has been chosen as second example that represents non-symmetric three-
dimensional geometry.



4.1 Technical details

The non-dominated sorting genetic algorithm[10] (NSGA-II) is used as a generic
multi-objective optimizer. It is chosen as an optimizer due to local minima and
non-linear nature of the problem. The following parameters are used in genetic al-
gorithm. The population size n,,, = 50 is used in examples #1 and #2 and 7n,,,, = 100
in examples #3 and #4. At the beginning of optimization, a random population of
size 10 n,,, is generated, and then the best candidates are chosen to initial popula-
tion. The crossover probability is set to p. = 0.9. The mutation probability is set to
Pm = 1/Nyars, Where ny,,s is the number of optimization variables in the problem.
Binary selection is used and simulated binary crossover (SBX) operator and polyno-
mial mutation operator [14] are utilized with distribution indices 7. = 20, n,, = 10,
respectively.

The three-dimensional tetrahedral meshes for test problems are generated by
freely available Netgen mesh generator[15] and the finite element approximation
of the pressure field in muffler component is evaluated by a code written in Nu-
merrin language[16], which is a modelling language developed by Numerola Ltd.
Quadratic tetrahedral elements are used in order to reduce the error from approx-
imation of rounded surfaces and finite element pollution effect [17]. The shape of
the muffler component is altered with respect to chosen variables in order to obtain
optimal transmission loss for the muffler component at chosen frequency ranges.
The problem is formulated as a multiobjective optimization problem, as described
in Section 2. In numerical experiments, meshes are generated such that there are at
least ten elements per wave length at the highest considered frequency. The number
of elements in test problems are around 2000. The limiting value T'L,,,, = 50 dB (see
Eq. (8)) is used in all examples.

4.2 Test problem #1

The dimensions and a schematic illustration of the muffler component are presented
in Fig. 2a. The length of the chamber is L = 500 mm. The radius of inlet and out-
let ducts are 7 = 30 mm. The problem has three variables that are optimized: the
location of inlet duct z; € [0.1,0.5], the location of outlet duct z, € [0.25,0.5] and
the radius of muffler chamber x5 = [0.04,0.08]. Transmission loss is optimized in
frequency ranges 800-900 Hz and 1700-1800 Hz. Two sets of frequencies are opti-
mized according to the formulation in Eq. (9): w = [800, 825, 850, 875, 900] Hz and
¢ = [1700, 1725, 1750, 1775, 1800] Hz. The objective function values in initial popula-
tion are on average f; = —14.6 dB and f, = —11.7 dB.

In Fig. 2b, there are four non-dominated fronts (approximations of pareto op-
timal fronts) that are obtained by NSGA-II algorithm after 100 generations. The
different fronts in the figure are obtained by using different random number gener-
ator seed numbers. It is seen, that different fronts are mostly converged to the same
line. This implicates that the algorithm is behaving robustly. It is also seen that after
optimization, the objectives are over 20 dB better than before optimization.



In Fig. 3b, the transmission loss as a function of frequency is plotted for an opti-
mal solution that is chosen from the non-dominated front at point f; = —38.3dB, f» =
—33.4 dB which is given by shape parameter vector x = [0.16,0.37,0.08]. It is seen

that the transmission loss is significantly greater at optimized frequency ranges than
elsewhere.
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Figure 2: In the upper figure, there is a diagram of a muffler component cross section

used in test case #1. In the lower figure, there are non-dominated solution fronts for
test case #1, four different random seeds.
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Figure 3: In the upper figures, there is the time average of pressure for optimal
solution of test problem #1. The frequency is f = 1800 Hz and optimized parameters
are x = [0.16,0.37,0.08) mm. The solution is chosen from non-dominated front at
point fi = —38.3dB, f» = —33.4 dB. In the lower figure there is the transmission
loss as a function of frequency. Transmission loss is maximized in frequency ranges
800-900 Hz and 1700-1800 Hz.

2000

4.3 Test problem #2

The second numerical example problem is illustrated in Fig. 4a. The geometry of the
problem is the same as in Barbieri and Barbieri[12]. The diameter of the chamber is
D = 153.2 mm and the length of the chamber L = 282.3 mm. Inlet and outlet
duct diameters are d = 48.6 mm. The problem has two variables to be optimized:
lengths of the inlet and outlet ducts inside the muffler chamber 1,2, € [10,250]
mm, respectively.

In Barbieri and Barbieri[12], the tests were reduced to two dimensional domains
using axisymmetry, whereas our similations are performed in three-dimensional do-
mains. As an optimizer, the Zoutendijk’s feasible direction method was used in Bar-
bieri and Barbieri[12], whereas NSGA-II is considered here. The NSGA-II method
brings two obvious advantages: the problem may be formulated as a multi-objective
optimization problem and there is no need to choose a good starting point for the
algorithm.

Transmission loss is optimized around frequency ranges 600-650 Hz and 1200-
1250 Hz. Two sets of frequencies used in Eq. (9) are w = [600, 625, 650] Hz and
¢ = [1200,1225,1250] Hz. The objective function values in initial population are on
average f; = fo = —10dB.
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The Fig. 5 shows the non-dominated fronts of objective functions in Eq. (9) given
by NSGA-II after 50 generations for the problem when using four different seed
number for random number generator. It is seen that fronts have converged to same
line and that significant improvement in transmission loss values have been gained
atboth frequency ranges. It is obvious that the best compromise of the optimal value
is found at the edge at point f; = —32.0 dB, ,f, = —35.4 dB in Fig. 5. The optimal
solution is obtained with parameters 2; = 125 mm and 2z, = 58 mm. In Fig. 6, the
transmission loss as a function of frequency is plotted. It is seen, that at optimized
frequency ranges, there are improvement in transmission loss.

The results obtained in Barbieri and Barbieri[12] (Example 2 in Section 4.2) are
very similar to the results obtained here. The optimization method finds a solu-
tion where a transmission loss peak in both optimized frequency ranges occur. The
method described here is more general and easily used in general three-dimensional
problems.

L
(@) (b)

Figure 4: On the left figure, there is the diagram of a muffler component used in
test case #2. On the right figure, the time average of pressure for optimal solution is
plotted. The frequency is f = 1225 Hz and optimized parameters are z; = 125.2 mm,
2 = 58.1 mm. The solution is chosen from non-dominated front at f; = —32.0, f, =
—35.4.
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Figure 5: The non-dominated fronts for test case #2, four different random seeds.
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Figure 6: The transmission loss as a function of frequency is plotted. Transmission
loss is maximized in frequency ranges 600-650 Hz and 1200-1250 Hz. The optimal
parameters x; = 125.2 mm, 2, = 58.1 mm that are chosen from non-dominated front
at fi = —32.0dB, f, = —35.4 dB are used.

4.4 Test problem #3

As an example of a problem that has more optimization variables, a muffler com-
ponent that consists of five cylinders with variable radii is considered. In Fig. 7a,
a schematic figure of the problem is presented. In addition to the radius of each
cylinder, the length of inlet and outlet ducts are variable as well, similarly to the
test problem #2. The length of muffler component is L = 1000 mm and the di-
ameters of inlet and outlet ducts are d = 100 mm. The length of inlet and outlet
ducts x;, x2 can vary between [20,900] mm and the diameter of each cylinder z3_;
is between [120, 240] mm. Transmission loss is optimized in two frequency ranges:
between 200-300 Hz and 500-600 Hz, and the frequency sets (see Eq. (9)) are set to
w = [200, 233,266, 300] Hz and ¢ = [500, 533, 566, 600] Hz. The population size was
set to n,,, = 100 due to larger number of optimization variables.
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In Fig. (8), there are four non-dominated fronts of objective functions in Eq. (9)
that are obtained by NSGA-II after 120 generations. Also here it is seen that fronts
are converged to the same line. Before optimization, the average values of the fitness
function values of randomly generated initial population were f; = —13 dB and
f = —15dB.

In Fig. 9, the transmission loss as a function of frequency is plotted for an optimal
solution that is chosen from the non-dominated front at f; = —43.16 dB, f, = —42.97
dB. The optimal parameters for the chosen solution are x = [35.6, 35.3, 21.0, 24.0,
12.0, 24.0, 14.8] mm. The same parameters are used also when plotting the example
solution in Fig. 7b. It is seen in Fig. 9 that both frequency ranges significantly
improved transmission loss level.

Figure 7: On the left figure, there is a diagram of a muffler component used in test
case #3. On the right figure, the pressure time average of optimal solution is plotted
for test case #3 at f = 600 Hz. The figure is rotated 90°, such that inlet appears on
the bottom of the figure.
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Figure 9: The transmission loss as a function of frequency. Transmission loss is
maximized at frequency ranges 200-300 Hz and 500-600 Hz.

4.5 Test problem #4

Fourth example is a Helmholtz resonator component similar to the example used in
Selamet et al.[13], that represents an example of true three-dimensional geometry.
The dimension of the component are presented in a schematic figure in Fig. 10a.
As in Selamet et al.[13], the diameter of the duct is d, = 4.859 cm. The optimization
variables are as follows. The diameter of the resonator chamber z; can vary between
[1,15] cm, the diameter of connecting pipe z; can vary between [1,4] cm, the length
of the connecting duct z; can vary between [0.1,8.5] cm and the length of the res-
onator chamber z, can vary between [1,15] cm. Transmission loss is optimized in
two frequency ranges: between 80-100 Hz and 160-180 Hz, and the frequency sets
(see Eq. (9)) are set to w = [160, 170, 180] Hz and ¢ = [70,80,90] Hz. As in previous
test problem, the population size is set to 1n,,, = 100.
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In Fig. 11, there are four non-dominated fronts of objective functions in Eq. (9)
that are obtained by NSGA-II after 30 generations. Also here it is seen that fronts are
converged to the same line. Before optimization, the average values of the fitness
function values of randomly generated initial population were f; = —3.3 dB and
fy = —1.4dB.

In Fig. 12, the transmission loss as a function of frequency is plotted for selected
optimal solutions. The example solutions for these points are also plotted in Fig.
10b. It is seen in Fig. 12 that in this case, that within the chosen frequency range,
it is not possible to obtain significant transmission loss at both frequency ranges
simultaneously, as only one peak in transmission loss curve occur. A good solution,
however, is obtained for both frequency ranges separately.

dp
(b)

(@)

Figure 10: On the left figure, there is a diagram of a Helmholtz resonator compo-
nent used in test case #4. On the right figure, the pressure time average of selected
optimal solutions is plotted for test problem #4. The figures are plotted at 170, 170
and 90 Hz, correspondingly.
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Figure 11: The non-dominated fronts for test case #4 are plotted, four different ran-
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Figure 12: The transmission loss as a function of frequency. Transmission loss is
maximized at frequency ranges 80-100 Hz and 160-180 Hz. The solution 1 has been
chosen at point f; = —33.8 dB, f, = —5.9 dB, solution 2 at f; = —6.5dB, f, = —11.2
dB and solution 3 at f; = —2.5, fo, = —26.6 dB.

5 Conclusions

Multiobjective shape optimization in a muffler with respect to sound transmission
loss has been considered. The shape of the muffler component in a duct system is
optimized. NSGA-II has been used as an multiobjective optimization method and
acoustics has been simulated by finite element method. A hybrid method has been
considered to match the acoustical solution of the muffler with analytical multi-
modal solution in inlet and outlet ducts.

Two frequency ranges were optimized simultaneously. For each test problem,
example solutions were chosen from the non-dominated front that was given by
NSGA-II optimizer algorithm. The transmission loss as a function of frequency was
plotted for them and the time average of pressure was plotted to a single frequency.
A good sound transmission loss, from 30 dB to 50 dB, was obtained at chosen fre-
quencies in each test problem. The optimization significantly improved the objective
functions when compared to the initial random designs.

The robustness of the method was tested by considering test problems with four
different random number generator seed numbers. It was found that similar results
were found for all tested seed numbers, which implicates that the method converges
to a near-optimal solution and that the solution does not depend on initial solutions
with considered test problems.

Because of the mode matching that was considered on inlet and outlet bound-
aries, the hybrid method provides accurate and realistic modeling of acoustics in
muffler component. The method can be used with any frequency that the com-
putation time and memory allows. Finite element method allows almost arbitrary
three-dimensional shape of the design and boundary conditions, which brings ver-
satile possibilities to the formulation of muffler component optimization. Combined
with the NSGA-II optimization algorithm, the method offers generic, robust and ad-
vanced approach to many three-dimensional muffler optimization problems.
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