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USING RATIONALE TO ASSIST STUDENT COGNITIVE 
AND INTELLECTUAL DEVELOPMENT 

 
 
 
 
 
 

 
Abstract: One of the questions posed at the National Science Foundation (NSF)-
sponsored workshop on Creativity and Rationale in Software Design was on the role of 
rationale in supporting idea generation in the classroom. College students often struggle 
with problems where more than one possible solution exists. Part of the difficulty lies in 
the need for students to progress through different levels of development cognitively and 
intellectually before they can tackle creative problem solving. Argumentation-based 
rationale provides a natural mechanism for representing problems, candidate solutions, 
criteria, and arguments relating those criteria to the candidate solutions. Explicitly 
expressing rationale for their work encourages students to reflect on why they made their 
choices, and to actively consider multiple alternatives. We report on an experiment 
performed during a Data Structures course where students captured rationale. 
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RATIONALE AS A METHOD FOR BUILDING 
CREATIVITY AND COGNITIVE MATURITY 

 
One of the orienting questions for the National Science Foundation (NSF)-sponsored 
workshop on Creativity and Rationale in Software Design in 2009 was, “How can design 
rationale be used in the classroom to motivate and instruct students about reflection, idea 
generation, and evaluation?” (Daughtry, Burge, Carroll, & Potts, 2009). At the heart of this 
question is an implicit claim about creativity, that is, “creativity” in software design seems to 
involve not just idea generation itself, but also the iterative process that moves the designer to 
reflect, evaluate, and generate more ideas multiple times before committing to a final design. 
 Carroll’s (2009) workshop manifesto, “The Essential Tension of Creativity and Rationale 
in Software Design,” emphasized this by pointing to liminality as a key aspect of the creative 
design process. The manifesto described liminality as “Thinking and acting on the border 
between two contrasting concepts or rules, such as rapid switching between convergent and 
divergent modes of thinking.” 
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We see a direct link between a student’s cognitive development and the ability to engage in 
creative processes. Perry (1970) identified nine positions of development starting with duality, 
where answers exist for everything and where they can be right or wrong, into multiplicity, 
where all answers are valid, into relativism, where they begin to evaluate solutions based on the 
context, and continuing through several levels of commitment, where students can begin to 
integrate knowledge and make their own choices based on that information.   
 Students in the first two years of college tend to display dualistic and multiplistic 
tendencies. Though Perry pointed out that most college students are not pure Stage 1 dualists, 
few students in his study reached even the lowest levels of commitment until their junior year (p. 
155). Similarly, Marcia B. Baxter Magolda reported (1992, p. 71) that more than 80% of juniors 
are “transitional knowers,” (those that recognize relativism in some knowledge domains, but are 
still dualistic in others), and more than 40% of sophomores were still mostly dualistic.  

This understanding of the epistemic styles of our students should inform our thinking 
about teaching design. Dualistic cognition is inherently opposed to the liminal state of mind 
that is so characteristic of creativity in design. We believe that students who come to a design 
problem with the attitude that there is a “right answer” to be discovered by analysis will 
commit to a design without engaging in reflection or iteration. They will commit too early, 
before they have a chance to be creative. Students in multiplicity or the early stages of 
relativism may be unable to distinguish between the good designs and poor designs that 
emerge in their thinking. Some evidence to support these claims can be found in the work of 
Atman, Cardella, Turns, & Adams (2005), who showed that senior engineering students 
spend 2 to 3 times more time on a design problem than freshman engineering students. This 
also correlates highly with the quality of the final solution, though their results do not directly 
address our claim that these effects are due, in part, to student epistemic styles. 

We propose that requiring students to generate design rationale prior to implementing 
their solutions is a mechanism for encouraging reflection and delaying commitment to their 
initial design choices. Design rationale, the reasons behind decisions made while designing, 
is a way to represent design alternatives and the deliberation that produced them. In a sense, 
the rationale can be considered a language of design (Dym, Agogino, Eris, Frey, & Liefer, 
2005), much like sketching (which captures structural aspects of design) or mathematics 
(which expresses constraints the design must conform to). In the case of rationale, this is a 
language that captures the design intent and its relationship to the design. The ability to 
analyze and evaluate design alternatives in terms of their success at achieving design goals 
(intent) requires higher order thinking skills. 
 In response to our orienting question, we claim that design rationale help to motivate and 
instruct students in the creative process by putting off the moment of commitment to a 
design. The time spent in the liminal phase of design, iterating from idea to evaluation and 
back, can be lengthened by the use of design rationale. A prospective design rationale (that is, 
design rationale built before implementation, as a method of exploring possible designs) 
serves as a way of documenting the designer’s process of design.  
 This lengthening of the time the student spends in ambiguity and reflection should also 
lead to cognitive development, by forcing the student to experience the kinds of reflection 
and switching between modes of thought that are characteristic of higher levels of cognition. 
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 In the rest of this paper we explore more fully the following two questions: 
1) What are the links between creativity in design and cognitive level, and how can 

rationale assist in developing a student’s capacities for each?  
2) How can we assess whether or not use of rationale has had the intended effect? 

In the balance of this first section we explore the first question. First we describe the 
motivation for teaching creativity in software development, and then expand on our proposition 
that “liminality” links software design with cognitive development. Next we discuss the use of 
design rationale as a pedagogical tool for encouraging cognitive development through 
reflection, and describe some prior applications of rationale to education.  
 Later in the paper we describe an experimental assignment we designed based on our 
ideas, and provide some initial assessments of our approach. In the final two sections we 
outline areas for future work and other ways that design rationale may be used to stimulate 
student cognitive development. 

 
Creativity in Software Development 
 
Software development is, at its core, a creative enterprise. Given a problem, there are many 
possible solutions. For some practitioners, this is what attracts them to the field—software 
development as an exercise in creative design. For others, especially as college students, the 
multitude of solutions, where there is often no clear “right” answer, can be a source of 
frustration. With the many demands on their time, both curricular and extracurricular, there is 
significant pressure to find the, or a, correct solution in as little time as possible. The skill of 
being able to understand just enough about the material to come up with an answer serves 
them well in some of their earlier courses, where a program is correct if it produces the 
correct set of outputs given a set of inputs. But they run into difficulty in their later courses, 
where solutions need to be analyzed on multiple dimensions. These difficulties are 
exacerbated in courses such as Software Engineering and Human–Computer Interaction, 
where the system design is influenced not only by the technology available but by how 
people intend to use it. 

It is essential that computer scientists, and computer science students, think creatively in 
order to successfully develop software. Glass (1995) described several aspects of software 
development where creativity is critical: determining how to translate the customer/business 
needs into a problem that the software can solve; resolving stakeholder conflicts; designing 
solutions to new and complex problems; determining test cases; and enhancing existing 
systems to meet needs that were not initially anticipated by the customer or the developers. A 
student convinced of a single right answer is likely to either insist that the stakeholder(s) 
provide this answer (when the stakeholders may not be approaching the problem with an 
awareness of what is possible with the technology available) or insist that their solution is the 
only one, or the best one, even if it may not be acceptable to the client. 

 
Liminality, Creativity, and Cognitive Development 
 
The workshop manifesto (Carroll, 2009) emphasized three major characteristics of creativity 
in software design: playfulness, empathy, and liminality. We have chosen to focus on the 
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liminal aspects of creativity because it seems to be the most natural fit for freshman- and 
sophomore-level courses.  
 To be sure, many instructors have great luck incorporating playful or empathic 
approaches in their coursework; many such assignments are presented every year at the 
SIGCSE (Special Interest Group on Computer Science Education) conference. But, for most 
students, Data Structures is the first required course that explicitly teaches a set of 
mathematical tools that can be used to compare one solution to another. Here we are speaking 
of the use of asymptotic analysis to compare the time and space requirements of data 
structures. When applied to simple problems, like sorting, such analyses seem definitive: For 
example, “Randomized Quicksort is more efficient than Insertion Sort.” But when designing 
a data structure for a realistic problem, it is often the case that some operations can only be 
made fast if other operations are made slow, or if excessive amounts of memory are used, or 
if auxiliary data structures are used for bookkeeping. This means that, as a data structure is 
designed, there are many opportunities to shift focus from one operation to another, and to 
shift from analysis to idea generation and back. The manifesto links this “rapid switching 
between convergent and divergent modes of thinking” to creativity. 

A concrete example will help clarify our point. In the experimental assignment described 
more fully below, students were asked to design a list-like data structure that needed to 
support dequeue operations (adding and removing items at the ends) as well as searching by 
key. One student, in his initial thinking, considered only arrays and linked-lists as possible 
designs, and selected linked-lists because they support dequeue operations in constant time. 
Upon evaluation of the designs, however, he discovered that search would be very slow, and 
so he returned to idea generation and added hash tables as a third design option. Upon 
evaluating hash tables he discovered that the dequeue operations would be tricky to 
implement, and returned again to idea generation. 
 Inspired by this example, we propose that a Data Structures course is a natural place to 
look for the contrasting concepts that give rise to liminal mental states. In Data Structures we 
teach the theory of algorithm running times, but also how to actually determine algorithm 
performance through experiments to confirm (or not!) the theory. We teach the canonical data 
structures, but we also give students problems for which the canonical data structures are a poor 
fit. We present the material of the class using diagrams and pseudo-code, but require students to 
actually write working programs using a real language. 

We do not wish to define creativity only in terms of liminality, but we feel that much of 
what is creative about the work of students really arises when they are able to synthesize 
seemingly incompatible ideas from two apparently opposing or unrelated ways of thinking. In 
reference to the manifesto (Carroll, 2009), we claim that students are best able to “pursue 
surprise and unexpected outcomes” when they actively embrace and explore the “border 
between contrasting ideas.”  
 We believe the ability to embrace liminal states and cognitive development are directly 
linked. Many useful theories of cognitive development might inform this discussion. We have 
already described the key aspects of Perry’s (1970) model, which undergirds much of our 
thinking in these early sections. In our final section, we also use Bloom’s Taxonomy (Bloom, 
1956), which we found helpful in identifying other pedagogical applications of design 
rationale. The evidence of Perry (1970, p. 55–56) and Baxter Magolda (1992, p. 71) suggests 
that our Data Structures students (who are mostly sophomore computer science majors and 
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junior engineering majors) will still be in transition towards relativism. Baxter Magolda’s 
study showed that more than 40% of sophomores were still noticeably absolute in their 
thinking, and that very few juniors (less than 10%) are independent thinkers. In Perry’s study 
juniors were rated as being in “commitment” (levels 7, 8 or 9) only about 50% of the time, 
and for sophomores it was less than 10%.  

Students stuck in a dualistic way of thinking are unlikely to discover creative solutions, 
because they will be satisfied as soon as they identify any “correct” solution. The traps for 
students in multiplicity or naïve relativism are subtler. At this level, the student is aware that 
there are many viable solutions, but tends to assume that all are equally good. This can again 
block creativity because the student chooses a solution somewhat arbitrarily. When students 
are “stuck” at the lower levels of cognitive development, we suspect that the solution chosen 
is likely to be routine, familiar, or arbitrary, rather than innovative and creative. 
 So we propose that there is a link between comfort with liminal mental states and 
cognitive maturity, and that design activities that cause students to experience rapid switching 
between contrasting ideas help students to build up both cognitive and creative maturity.  

 
Rationale, Reflection, and Liminality 
 
In the experimental assignment sequence presented in the next section, we used prospective 
design rationale to encourage student creativity in an individual design task. As mentioned 
above, a prospective design rationale is one that is created before the design is implemented, 
as part of the design process. Contrast this with retrospective design rationale, which are 
written after the design is chosen, and may serve only to document the chosen design. 
Prospective design rationale fosters both creativity and cognitive development by 
encouraging, and capturing evidence of, reflection.  
 Reflection serves an important purpose in both education and in practice. In education, 
many researchers have proposed a link between reflection and cognitive/epistemic level. 
Dewey (1933, p. 9) defined reflective thinking as “active, persistent, and careful consideration 
of any belief or supposed form of knowledge in the light of the grounds that support it and the 
further conclusions to which it tends.” Reflection guides the learning process as evidence is 
examined and conclusions drawn. Dewey’s claim that reflective thinking is necessary when it 
is not possible to come up with “certain solutions” was the reason why King and Kitchener 
(2002) chose reflection as the basis for their model of student epistemological development. 
The reflective judgment model (King & Kitchener, 1994) defined seven stages of student 
epistemological development, broken into three categories: prereflective thinking, quasi-
reflective thinking, and reflective thinking. 

Schön, in his book The Reflective Practitioner (1983), described the need for 
professionals to move beyond technical rationality, where problem solving is the application 
of theory, to processes that allow for uncertainty and conflict. He described “knowing-in-
action,” where practitioners act based on tacit knowledge, and “reflection-in-action,” where 
practitioners reflect on what they are doing as they do it.  
 Fischer, Lemke, McCall, & Morch (1991) described how design rationale supports 
reflection by capturing the designer’s knowledge about the situation. Similarly, the iteration 
between idea generation (divergent thinking) and design selection (convergent thinking) is a 
reflective process. Design rationale supports both the capture of the alternatives and their 
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exploration by supporting the evaluation of the more promising alternatives and any additional 
decisions required during their elaboration. In the illustrative example above we saw a student 
using the process of building design rationale as an opportunity for critical reflection. 
 We should note, as an aside, that in this study we focus only on the individual design 
projects, not on teamwork. Though we greatly appreciate the role that rationale can play in 
capturing and transferring knowledge in a team setting, we believe that the capture of 
rationale is beneficial even for one individual engaged in an individual design project. 
 So we claim that design rationale can be used to encourage critical reflection about 
software design problems. Further, we claim that such critical reflection, if embraced by the 
student, is likely to lead to greater creativity. Critical reflection and creativity are certainly 
not the same thing; rather, critical reflection tends to provide grist for creative energies to act 
upon. Incorrect assumptions tend to act as roadblocks for creativity, but critical reflection 
helps us to challenge these assumptions. We naturally tend to select designs similar to older 
successful designs with which we are already comfortable, but critical reflection can cause us 
to reject familiar solutions that are actually inappropriate. 

 
Prior Work on Rationale in Education 
 
Moran and Carroll’s (1996) book included two approaches to using rationale in education. 
The first was to provide rationale in the form of templates to assist with user interface (UI) 
design (Casaday, 1996). The templates help designers to “ask the right questions” and assist 
designers with the process by guiding them toward a solution. Carey, McKerlie, & Wilson 
(1996, p. 375) built a library of “exemplary user-interface designs” along with their rationale 
so those examples could be used to teach UI design. Other work using rationale in UI design 
includes using design space analysis (DSA; MacLean, Young, Bellotti, & Moran, 1991) as 
part of the FLUID (framework for learning user interface design) interactive media system 
(van Aalst, van der Mast, & Carey, 1995). The work proposed here uses a more general 
approach (not one aimed at a specific type of design) and supports additional manipulation 
and evaluation of design criteria, as well as using rationale to assist with the definition and 
documentation of new designs.  
 Several software engineering textbooks either teach rationale (Bruegge & Dutoit, 2004) or 
use rationale as explanation for design case studies (Fox, 2006). Rationale is also present in the 
form of “consequences” in the ubiquitous Gang of Four (GoF) design patterns book (Gamma 
Helm, Johnson, & Vlissides, 1995), used both as a reference and as a supplemental textbook. 

 
 

EXPLORING RATIONALE IN A DATA STRUCTURES COURSE 
 

In the previous section we claimed that careful use of design rationale by dualistic and 
multiplistic thinkers should lead them to increases in creativity and cognitive maturity. This 
theory has implications for how one structures “design” projects for lower-level courses. In 
this section we will present a first attempt at such an assignment for a Data Structures course, 
and contrast it with the kinds of design assignments we had used in the past.  
 Our theory also requires some justification through evidence. We have some initial results 
based on our evaluation of the work produced by students for our experimental assignment 
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using design rationale. While the experiment was by no means a controlled experiment, nor 
was it designed to validate our theory (it was, instead, designed to help the students learn), we 
still are able to report on some tantalizing results that point the direction for future work. 
 
SEURAT and Pugh’s Total Design in Data Structures 
 
In the Data Structures course, we chose to use two different methods for capturing prospective 
design rationale. The first was the rationale management system SEURAT and the second was 
based on examples from Pugh’s (1991) Total Design. In order for the reader to understand how 
we think rationale should be used in undergraduate courses, we must first describe what data 
these two types of design rationale capture, and how they support decision making.  
 Let us start with some general observations. Problem solving can be broken into four 
stages: problem definition and analysis, idea generation, idea evaluation and selection, and 
implementation of the selected idea (VanGundy, 1981). Rationale can support some idea 
generation techniques, such as brainstorming, by representing alternatives as generated, and 
attribute listing, a technique developed by Crawford (VanGundy, 1981), where attributes 
listed would be alternatives. Rationale captured in the form of argumentation is especially 
useful, however, during the evaluation and selection stage by capturing criteria, their 
relationship to the alternatives, and supporting evaluation. Some of the techniques described 
by VanGundy (1981) that could be supported by rationale are (a) the advantage–disadvantage 
approach, enumerating the advantages/disadvantages of each alternative with respect to a 
predefined set of criteria; (b) the Battelle method (Hamilton, 1974; VanGundy, 1981), 
dividing criteria into culling, rating, and scoring in order to narrow the field of alternatives; 
and (c) reverse brainstorming (VanGundy, 1981; Whiting, 1958), which is brainstorming on 
the disadvantages of each alternative. Rationale systems that perform evaluation, such as the 
software engineering using rationale (SEURAT) system (Burge & Brown 2004), can be 
considered a type of weighting system (VanGundy, 1981), by allowing weights to be 
assigned to the criteria and using those weights in evaluation.  
 In this work, we use argumentation-based rationale to capture the idea generation, idea 
evaluation, and selection stages of problem solving. We used two methods for representing 
rationale, SEURAT (for one experimental group) and written documents proposed in Pugh’s 
total design methodology (for the other). Both methods require students to list many alternative 
designs, develop criteria by which to evaluate the designs, perform the evaluation, and select a 
solution. Both methods, furthermore, require argumentation to back up both the evaluation 
criteria and the final decision. SEURAT adds the additional capabilities of expressing the 
rationale in a hierarchical format, showing decisions and subdecisions, as well as providing the 
capability to calculate a numerical evaluation of the support for each alternative. 

 
Software Engineering Using RATionale (SEURAT) 

 
The SEURAT system (Burge & Brown, 2004) is a rationale management system (RMS) 
originally developed to assist with software maintenance by providing ways that the rationale 
could be used beyond just its presentation. SEURAT captures rationale as structured 
argumentation (decision problems, decision alternatives, and arguments) and uses both the 
structure of the rationale (syntax) and the content (semantics) to inference over the rationale 
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to detect incompleteness (of the rationale) and inconsistency (of the design). The arguments 
in SEURAT can refer to system requirements, desired qualities, assumptions made, and 
relationships between alternatives. Figure 1 shows some rationale captured in the SEURAT 
Rationale Explorer. SEURAT stores the rationale in a relational database, allowing the 
rationales to be shared between multiple users during collaborative decision-making.  

Figure 1’s example shows three decisions, taken from the rationale for a conference 
room scheduling system. The decisions are displayed using a diamond-shaped icon 
containing a double-headed arrow. The second decision, “How do we know what the 
conference rooms are?” has a warning icon overlaid on it. This is because the alternative 
selected, “ascii file giving a list of room names,” is not as well supported as the other 
candidate alternative, “serialized vector of room objects.” The third decision, “How is the 
user associated with the meeting,” has an error icon because none of the proposed alternatives 
has been selected yet. 
 The students who used SEURAT in the experiment were given a tutorial on how rationale 
are entered into SEURAT and how they could use SEURAT’s ability to evaluate alternatives to 
assist them in their decision-making. The students were instructed to enter the functional and 
nonfunctional requirements that applied to the problem they were solving and then to enter the 
decisions, alternatives, and arguments. They were instructed to use their requirements in 
arguments, rather than utilizing the other types of arguments supported by SEURAT. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  An image of the SEURAT Rationale Explorer, showing the hierarchical view 

of a structured design rationale. 
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 Pugh’s Total Design 
 
The other section of the class used a set of design documents based on Stuart Pugh’s (1991) 
book Total Design. It is not proper to say that we used “his” documents, because Pugh goes 
to great lengths to show many different types of documents that might be useful. In 
particular, we took advantage of three main parts of his approach:  

1. A product design specification (PDS) listed the criteria by which designs should be 
judged. Each student constructed his or her own list of criteria, resulting in a 
bulleted list with argumentation that was very similar to the SEURAT group, but 
created in a word processor instead of the SEURAT RMS. 

2. A Pugh Matrix was used for idea evaluation. The student created a two-
dimensional table in a word processor. Each column corresponded to one of the 
designs, and each row to one of the criteria from the design specification. The 
student selected one design to be the “baseline” design, and then each design was 
compared to the baseline in each criterion. A plus symbol was entered in the table 
if the design in question was superior to the baseline on that criterion, a minus 
symbol if it was worse. We also instructed students to enter their arguments in 
support of their evaluations in each cell. 

3. A short essay summarized the idea selection phase and provided arguments in favor of 
the student’s solution, based on the evaluation in the Pugh Matrix. Note that Pugh was 
very clear that one should not just count up the number of plusses and minuses and then 
select based on the numerical answer that results. We instructed students to use their 
evaluation matrix to support their selection process, but to also use common sense. 

Pugh’s process has many commonalities with SEURAT. Design criteria are explicitly 
listed, and require argumentation. Designs are evaluated based on the criteria, and arguments 
supporting those evaluations are captured. The Pugh process supports a quasi-quantitative 
approach to selecting the final design. 

There are major differences as well. On the negative side, SEURAT requires students to 
learn a new tool (the Rationale Explorer, which is a plug-in for the Eclipse Integrated 
Development Environment) instead of using a familiar tool (Microsoft Word). On the 
positive side, SEURAT forces students to be more careful about linking criteria with design 
decisions. In the non-SEURAT group, some students used arguments in their Pugh Matrix 
that had no relationship to their criteria, something that is much harder to do in SEURAT. 
SEURAT also naturally leads one to represent subdecisions in a hierarchy under the main 
decisions, much like an outline. The Pugh Matrix places all decisions at the same level. 

 
Design in Data Structures Before Design Rationale 

 
For several years we have had design projects in Data Structures similar to the one described 
here. In the past, however, students simply submitted a retrospective design justification. These 
documents took a variety of forms, but none of them were particularly formal, and only in very 
rare cases did the students compose them before implementing their solution. We found the 
quality of the resulting programs written by the students to be quite disappointing. In particular, 
there was some anecdotal evidence that students would not consider all of the important design 
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criteria at the start of the project, but focus on only a few. Theses students tended to select 
familiar or canonical data structures because they never discovered the trade-offs involved in 
the real problem until after the solution was implemented. 
 Our feeling was that by introducing design rationale, and specifically prospective design 
rationale, into the Data Structures course we could cause the students to delay committing to 
a solution, and give them more opportunities to fully understand the problem.  
 
Data Structures Class Experiment 
 
Our main goal was to explore whether or not rationale could be of benefit to students in 2nd-
year computer science coursework. As noted in the manifesto (Carroll, 2009), it could be that 
use of rationale would “limit creativity by anchoring thought”; it could also be that rationale 
would be viewed as busywork, or that time spent building the rationale would take away time 
from honest reflection and other creative activities. We expected, however, that students 
would actually spend more time in reflection if they had to build a full rationale than if they 
simply had to write a brief essay explaining their choice.  
 We designed a classroom activity in which students needed to design a solution to a data 
structures problem based on their understanding of the performance characteristics of various 
common data structures. The assignment was broken into 5 steps (see Table 1), each of which 
had its own delivered artifact.  
 The fifth step of the process is also meant to test whether students overcommit to their 
chosen solution, and refuse to change when criteria change. 
 The experimental subjects were 38 students (34 male, 4 female) in an undergraduate 
course on data structures and data abstraction (most students were in their 2nd or 3rd year of 
college). The difference between the two experimental groups was in Step 3. The first 
experimental group (henceforth the “SEURAT group”) constructed design rationale using the 
SEURAT system. The second experimental group (henceforth the “Matrix group”) used a 
version of Pugh’s total design methodology (Pugh, 1991, Section 4.8). 

 
Table 1.  Description of the Main Problem and Stages of the Assignment Used in the Experiment. 

Problem: Design a list-like data structure that supports the following operations: Adding and deleting 
at the head and tail of the list, searching to find the index of the first data item matching a 
search term, and retrieving an item based on its index in the list. 

Step 1: List the criteria that you want your solution to adhere to. For example, do you want to have 
constant time searching? Do you want to try to minimize time spent coding? 

Step 2: Make a list of possible alternative implementation strategies. For example, a linked list would 
support all the operations, though not very efficiently. A hash table, on the other hand, can be 
made to be very efficient, but most students would find implementing it to be too challenging. 

Step 3: Create a design rationale expressing the tradeoffs between various alternatives in terms of 
how well they meet your criteria. 

Step 4: Select one of your alternatives, and implement it. 

Step 5: Write a paragraph explaining which alternative you would have selected if the “most 
important” criterion was removed. 
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We collected three artifacts from each participant: Their rationale (generated in Steps 1–
3), their computer program (generated in Step 4), and their paragraph explaining their 
response to changing criteria (generated in Step 5). Note that, for the SEURAT group, the 
rationale could be fully captured in SEURAT, but the rationale for the Matrix group consisted 
of a list of evaluation criteria (with argumentation), a list of possible designs, and an 
evaluative matrix (henceforth the “Pugh Matrix”). Table 2 provides the metrics used to 
evaluate both sets of rationale in terms of rationale quality, and Table 3 provides the metrics 
used to evaluate the ideation skills demonstrated. 
 This first set of metrics, R1–R4, is meant to judge student success on the assignment in terms 
of their mastery of course objectives, as defined by the instructor. A score of 3 points or 2 points 
indicates that the student met instructor expectations, 1 or 0 indicates failing to meet expectations. 
 R1, R2, R3, R5 and R6 evaluate the rationale. R4 evaluates the response to changing 
criteria, and R7 evaluates the computer program code. 
 
Examples of Student Artifacts and Reflections 
 
In order to make this discussion more concrete, we present some small examples of student 
work. We will show some examples of creative designs from the experiment, as well as some 
examples of student argumentation. 
 
 What Kind of Creativity is Expected/Possible in Data Structures? 
 
First, we wanted to provide some examples of creative solutions to the design problem. Recall 
that the student needed to design a list-like data structure that supports adding to the head and 
tail, looking up items by index, and searching for the first occurrence of a particular item. 

 
Table 2.  Data Structures Assignment Learning Metrics.  

Metric 
Excellent/High 

(3 pts) 
Good/Medium 

(2 pts) 
Poor/Low 

(1 pt) 

R1: Are all relevant 
alternatives identified 
and provided? 

The student provides 
all the relevant 
alternatives 

The student provides most 
of the relevant alternatives 

The student only 
produces one 
alternative 

R2: Are the criteria 
appropriately mapped 
to the alternatives? 

The student maps all 
the criteria to the 
correct alternatives 

The student maps most of 
the criteria to the correct 
alternatives 

The student does not 
successfully map 
criteria to alternatives 

R3: Did the student 
select an alternative 
based on the 
rationale? 

The student selects an 
alternative based on 
the level of support 

The student selects some 
alternatives based on the 
level of support 

The student did not 
appear to have 
reasons for making 
the selection. 

R4: Did the student 
change the decision 
after the criteria 
change? 

The student looks at 
differences in support 
levels and changes 
the decisions 

The student sometimes 
fails to change the decision 
but instead stays with the 
initial plan 

The student did not 
acknowledge the 
effect of changing 
criteria 

Note: Each student received a score between 3 (for excellent) and 0 (for incomplete). 
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Table 3.  Data Structures Assignment Ideation Metrics. 

R5: Completeness For each alternative in the following list, the student receives 1 point: Array, 
Linked List, Vector (or Array-List), Skip List, Hash Table, and Binary Search 
Tree. These are all of the data structures studied in the class (to that point) that 
would have been reasonable alternatives for the assignment. 

This scale is meant to measure the quantity of a student’s candidate solutions 
(Shah, Smith, & Vargas-Hernandez, 2003). The instructor made a list of all 
canonical data structures that would have been useful in the assignment, and 
awarded one point for each. Students did not receive multiple points for minor 
variations on each data structure, so this scale does not count absolute 
quantity, but the quantity of “different enough” design candidates. 

R6: Creativity For each alternative in the following list, the student receives either 1 point or 
0.5 points: Skip List (1 point), Binary Search Tree (1 point), Linked Lists with 
multi-item nodes (1 point), Extra pointers to speed up list traversal in a linked 
list (0.5 points), Pre-allocation of nodes for a linked list (0.5 points). These are 
all of the ideas that students came up with that did not come directly from 
lecture. Significant ideas received 1 point, and less useful ideas 0.5 points. 

This scale is meant to measure the novelty of student solutions, and our 
approach is very similar to that of Shah et al. (2003). In this case the instructor 
took a list of all design alternatives submitted by students, and eliminated those 
that appeared in most or all student submissions. The instructor then assigned 
point values to the remaining novel solutions based on how different the 
solution approach was from the non-novel approaches. 

R7: Contest rank Student solutions were ranked based on three speed tests. These three tests 
were given to students as part of the assignment description. As part of their 
analysis, they had to decide how heavily to weight these speed criteria, 
compared to other criteria such as ease of coding. 

This scale is meant to measure the quality of student solutions. Students 
received an ordinal ranking in each speed test, and then final rankings were 
based on a standard sum of ordinals. So, for example, a student that received 
1st in two tests and 3rd in the last (sum of ordinals is 5) would beat a student that 
placed 2nd in all three tests (sum of ordinals would be 6). 

 
We have already given the start of an example in the Liminality subsection above. Our 

problem allows for a very wide variety of valid approaches. The most comfortable approaches 
would have been to use an array (the main data structure used in previous classes) or a linked list 
(which they had used on the previous assignment). Students had also seen the approach of 
leaving spare space at both ends of an array to cut down on the time needed for adding and 
removing items, and hash tables. None of these approaches were optimal for all operations: 
Linked lists are slow for searching and indexing, arrays are slow for searching, and a naïve use of 
hash tables would result in either fast searching or indexing (depending on whether one uses the 
value or the array index as the hash key), but not both. Also, many students considered their own 
programming abilities when selecting a design, and so leaned toward array- or linked-list-based 
solutions because these solutions tend to be easier to read, easier to program, and easier to debug. 
 The most creative students found synergistic combinations of the canonical approaches. 

 One student combined arrays with linked-lists to get a solution that had faster 
indexing, but which was similar enough to the linked-list he had previously written 
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that he felt confident he could complete it correctly. He changed his linked-list 
nodes to contain arrays of length 1000, which made his index-based lookups 
several hundred times faster than students with a regular linked list. 

 Several students discovered that they could achieve better performance by keeping 
two separate data structures, one for searching by value and another for index-
based lookups. One student had an array and a hash table, and another had two hash 
tables. One student attempted to combine a binary search tree (something he 
learned in high school) with an array. 

 Two students kept auxiliary pointers to the middle of their linked-lists to speed up 
index-based lookup. They (and others) had considered skip-lists as a potential 
design, but eliminated them as an option for being too complicated. 

 On what grounds do we call these creative solutions? These students all found ways to 
combine apparently contrasting approaches. This is a form of liminal thinking, and also 
suggests that they returned more than once to idea generation. There is plenty of room for 
creativity in data structures classes, because even relatively small problems tend to fit the 
canonical data structures poorly. 
 
 Excerpts from Student Rationale and Argumentation 
 
We also want to present a few concrete examples of student use of rationale, and reflections 
on rationale in our Data Structures course. Our goal here is to briefly indicate to the reader 
the type of argumentation and rationale that students produced. One should not try to make 
any general conclusions from the three anecdotes presented here, but instead we feel this 
should provide a bit of clarity in our discussion of assessment below. 
 Several students explicitly commented on the way that using rationale affected their 
performance on the assignment. One student from the SEURAT group said, 

… I kind of went in biased towards a Doubly Linked list with a Hash Table … [but] the 
Hash-backed Array list still came out on top. This is because, while Doubly Linked list 
has a faster add/remove time, the Array-list has a much faster lookup by index time. … 
The design rational helped me visualize. Without this tool, I might not have fully realized 
that problem until it was too late. 

 Interestingly, this student’s Rationale (see Figure 2) did not take advantage of SEURAT’s 
hierarchical decision-making capabilities, but did make use of its evaluation affordances. 
 A student in the Matrix group similarly noted that,  

The analysis part of this report helped me pick this option. Doing the analysis allowed 
me to compare different options with each other to see the advantages and disadvantages 
of each. In the end the requirements that I found most important to deciding which option 
to go with included having a very fast way to search through the data structure, and 
having am [sic] option that was relatively easy to code. 

 Though the student’s argumentation is very brief (see Figure 3), it captures key 
differences between the various options. The instructor is able to see that the student thought 
through all the criteria, and had reasons (even if incorrect or naïve) behind the choices made. 
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Figure 2.  Excerpt from a student’s SEURAT rationale. 

 
 Of course, there were some students critical of the use of design rationale. One student in 
particular commented about SEURAT that,  

My design rational [sic] helped me … but in the end I don't think I will agree with it. … I 
could have figured this process easier by just writing this all out on paper, … I looked at my 
decisions and realized what was most important to me in this project, learning about the data 
structures. (I didn't put this in the calculations, so maybe they would be different...). 

 What the student is saying here is that he chose not to include his most important decision 
criteria in his rationale and, as a result, the design rationale did not support his eventual 
decision. Several students struggled because they believed that only technical criteria should be 
present in design rationale. For a homework project in an undergraduate course, however, the 
controlling criteria may be completely nontechnical, just as in industry. Most students in the 
course seemed to understand this, and were willing to include nontechnical concerns (like time 
available to code or educational goals) in their list of criteria. 
 
Assessing the Results of the Data Structure Design Assignment 
 
The main purpose of this assignment was to stimulate student creativity and critical reflection 
through the use of design rationale. It will be quite clear to the reader that this was not an 
experiment designed to validate our theory, but rather a first attempt to put our ideas into practice. 

Figure 3.  Excerpt from a student’s Pugh Matrix. 
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 Nevertheless, we provide some assessment of the results of the assignment. We provide some 
evidence that using a RMS (as opposed to simply written rationale) did not negatively impact student 
performance. We also tried to gauge the amount of creativity exhibited by students in the project.  
 
Experimental Results: Student Success and Rationale 
 
As described above, we evaluated student designs using seven rubrics. The first four rubrics 
(R1–R4) assessed student success in assignment tasks, and were initially rated on a scale from 
0 to 3 independently by the two authors. In cases of disagreement, the authors consulted and 
reached a consensus rating. Table 4 shows the results for each of the standard scale metrics. 
 The students showed success as measured by metrics R1, R3, and R4, but were less 
successful with mapping criteria to alternatives. Lacking a control group, we cannot prove that 
using design rationale helped students develop their criteria and alternatives, but we can 
observe that almost all met instructor expectations on these tasks, indicating that the design 
rationale were not an impediment to the intended learning. From the weak scores on R2 
(mapping criteria to alternatives), it appears that students were weakest in the analysis phase of 
the assignment, which is not surprising for students at this level. 
 
 Experimental Results: Comparison of SEURAT to Matrix Results 
 
The use of Pugh-style matrices is well established in engineering design. We wished to 
evaluate whether or not using SEURAT in undergraduate classes was a supportable approach. 
In order to do this, we considered seven hypotheses that compare student performance when 

 
Table 4.  Results for Student Success Metrics. 

  SEURAT Matrix 
Average of 

both groups 

R1: Are all relevant alternatives 
identified and provided? 

%Excellent/High 68 53 61 

%Good/Medium 32 37 34 

%Poor/Low 0 10 5 

R2: Are the criteria appropriately 
mapped to the alternatives? 

%Excellent/High 47 29 38 

%Good/Medium 41 35 38 

%Poor/Low 12 35 24 

R3: Do the students select an 
alternative based on their 
rationale? 

%Excellent/High 83 79 81 

%Good/Medium 6 11 8 

%Poor/Low 11 11 11 

R4: Do the students change their 
decision after the criteria change? 

%Excellent/High 83 74 78 

%Good/Medium 6 5 5 

%Poor/Low 11 21 16 

Note: N = 38, and some columns sum to 99% or 101% due to rounding. 
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using SEURAT to student performance when using the Pugh Matrix method. If students 
using Pugh matrices did substantially better than students using SEURAT, we might 
conclude that SEURAT should not be used with younger students. However, this turned out 
not to be the case: Students using SEURAT performed as well as, or better than, students 
using Pugh matrices in most tasks. 
 We used a two-sided Mann-Whitney U test to compare experimental groups (see Table 5). 
Because we have no reason to believe that any of our rubrics would correspond to a normal 
distribution, we felt that it would be unsound to use, for example, a t-test, because it requires 
the sampled data to be independent and normally distributed. The Mann-Whitney test does 
not suffer from this defect because it works by first ranking all samples, and then evaluating 
the likelihood of there being a marked difference in rank sum between the two experimental 
groups. More information about Mann-Whitney U tests (also known as Wilcoxon rank sum 
tests) may be found in statistics textbooks, such as Rice (1995, pp. 402-410). We set our 
threshold for significance at the  = 0.1 level. 
 

Table 5.  Comparison of SEURAT Users to Matrix Users. 

Alternative hypothesis NS NM SS SM Test result 

Students using SEURAT are more likely to 
present all the relevant alternatives than those 
using the Pugh method. (R1) 

19 19 336 405 Null hypothesis 
accepted,  ≈ 0.32 

Students using SEURAT are more likely to 
correctly map criteria to alternatives than 
those using the Pugh method. (R2) 

19 19 322 419 Null hypothesis 
accepted, α ≈ 0.16 

Students using SEURAT are more likely to 
select an alternative based on their rationale 
than those using the Pugh method. (R3) 

19 19 369.5 371.5 Null hypothesis 
accepted, α ≈ 0.98 

Students using SEURAT are more likely to 
change their selected alterative after criteria 
change than those using the Pugh method. (R4) 

18 19 343.5 359.5 Null hypothesis 
accepted, α ≈ 0.60 

Students using SEURAT will have a more 
complete set of alternatives than those using 
the Pugh method. (R5) 

19 19 322.5 418.5 Null hypothesis 
accepted, α ≈ 0.16 

Students using SEURAT will have a more 
creative set of alternatives than those using 
the Pugh method. (R6) 

19 19 386 355 Null hypothesis 
accepted. (Note : this 
shows a negative 
correlation) α ≈ 0.66 

Students using SEURAT will do better on 
instructor-defined performance criteria than 
those using the Pugh method. (R7) 

17 18 246.5 383.5 Null hypothesis 
rejected, α ≈0.05* 

Notes: Ns is the number of samples in the SEURAT group, and SS is their scaled rank sum. NM is the number in 
the Matrix group, and SM is their scaled rank sum.  is a numerical approximation of the probability of rejecting 
the null hypothesis when it should be accepted, based on a two-sided Mann-Whitney U test. Note that since the 
lowest rank is best (1st place is better than 38th place), the smaller scaled rank sum indicates better performance. 
* Statistically significant 
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 We must take some care in interpreting these results. In particular, look at our result for 
R7. This measures the speed of the student’s solution: The instructor gave students some 
speed-related criteria at the start. Students were free, however, to reject these criteria and 
instead focus on criteria such as ease of coding, ease of debugging, re-use of code, and other 
similar criteria that are contrary to high scores in R7.  

One major threat to the validity of this assessment is due to the way the experimental 
groups were assigned; the SEURAT group comprised all students from one section of the 
course, while the Matrix group composed the other section. The SEURAT group was stronger 
than the Matrix group as measured by homework grades on assignments other than the 
experimental assignment. It is possible that higher ability levels of the SEURAT group masked 
difficulties with using SEURAT that would have been identified if experimental groups were 
allocated in a more careful way. Furthermore, some have suggested (e.g., Amabile, 1983) that 
technical expertise is a key factor that enables creativity. This would mean that the SEURAT 
group might be expected to be more creative than the Matrix group, on these sorts of tasks, 
simply due to their increased technical proficiency. 
 To try to correct for this problem we computed a best-fit line between each experimental 
variable (R1-R7) and final homework grade, and then analyzed the residual values that result 
when subtracting the predicted values from the actual values. The residual values essentially 
tell us how much the student was over- or under-performing on this assignment compared to 
his or her usual performance in the class. When comparing the groups using these residuals, 

 The groups were still not significantly different for rubrics R1, R2 and R4, 
 The differences in R5 and R7 were no longer significant, and 
 The Matrix group outperformed the SEURAT group in R3 and R6, with levels of α 
≈ 0.07 in both cases 

Again, we are not making any strong claims about the validity of this approach, but we 
felt that in the interest of completeness, as well as fairness to the Pugh method, we should 
present a grade-corrected version of the results.  
 
 Experimental Result: Rationale and Creativity 
 
One other interesting trend is the very strong negative correlation, -0.4906, between R1 
(Consider all relevant alternatives) and R6 (Consider a more creative set of alternatives). 
While we cannot make any claims about statistical significance, this relationship seems an 
intriguing topic to explore in future research.  
 We hypothesize that this results from some preconceptions among the study participants 
about the number of alternatives that the instructor expected them to generate. In particular, 
the instructor indicated that each student should have “at least 4-5 alternatives.”  
 Some commentators have suggested that rationale might be inherently contrary to 
creativity (see Carroll, 2009). We do not view our results as supporting that claim, because 
we believe the key problem was the process by which students decided whether or not they 
had considered “a sufficient variety of alternatives.” Students may have been rushing to 
escape the liminal/undecided state, and so simply stopped when they had four alternatives. 
We believe that this is not a problem inherent in rationale, but instead a mistake in the 
instructor’s design of the grading rubric for the assignment. 
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 Summary of Claims 
 
Because of the nature of the experiment, we want to be very careful to precisely state what we 
think our experiment shows. First, our experiment gives some evidence that using a RMS 
instead of a more traditional (writing) assignment does not negatively impact student learning. 
Though it now seems obvious that this would be the case, the course instructor initially had 
serious reservations about using SEURAT in class. 
 Second, the somewhat weaker scores in evaluating alternatives seem to support our claim 
that students in the course have not reached the “commitment” stages (levels 7 to 9) of Perry’s 
(1970) scheme. On the other hand, we would be able to obtain much better data on this topic by 
giving the subjects appropriate critical thinking inventories, and we should do this in the future. 
 Third, our results suggest future experiments on rationale and creativity in education must 
be more careful about the instructions given to students about how to assess their own idea 
generation process. It appears that the use of rationale did indeed inhibit creativity, but probably 
primarily as a result of a poorly designed grading rubric, which focused on quantity instead of 
variety. If our theory, that increasing time spent in a liminal state increases creativity, is correct, 
then it might make more sense to require students to spend a predetermined amount of time on 
idea generation, instead of aiming for a predetermined number of ideas. 

 
 

REFLECTIONS ON VERIFYING THE CONTRIBUTION OF RATIONALE  
TO CREATIVITY IN THE CLASSROOM 

 
In this paper we proposed a theory that use of design rationale with 2nd-year computer science 
students should lead to improved creativity as well as cognitive development. We reported on 
an experimental assignment that put these ideas into practice in a Data Structures course, and 
we reported on our assessment of the impact of this intervention on student learning. It is 
clear, however, that there are many lessons to learn from the first attempt about how one 
ought to try to verify the effects of such an assignment. 
 First, we wished to make claims about student cognitive levels or epistemologies. At the 
most basic level, we assumed that students in our class would exhibit some dualistic 
tendencies, and that few would be contextual or committed knowers. We are particularly 
interested in how students at different levels of cognitive development respond to the 
challenge of creating design rationale, but there was no way for us to assess this because we 
did not collect this data. In the future we are considering applying epistemic inventories, such 
as Baxter Magolda’s (1992) measure of epistemological reflection, as well as attempting to 
develop an inventory that specifically measures the student’s epistemology of knowledge as it 
relates to software design. We hypothesize that students in transition or multiplicity may view 
relativism as normal in humanities classes, but not in engineering classes. 
 It is unlikely, however, that such inventories can directly assess the impact of our 
intervention on students, even if given as both pretest and posttest. Because students take 
many courses, most of which aim to increase student cognitive level, it seems unlikely that 
the effect of our intervention can be teased out from such data. In the future we should 
directly ask the students questions about why they did what they did and how they made 
decisions on our particular assignment. The examples of student reflection presented in 
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earlier in this paper were suggestive, but we did not systematically ask students to comment 
on their processes. So we only have such data for a very small number of students. 
 Similarly, general-purpose measures of ideation similar to those used by Shah et al. 
(2003) should be adopted to make our results on creativity more comparable with results 
presented by other researchers. This would still leave us, however, with the problem of 
discovering why the student produced the set of design ideas that he/she produced. This again 
requires some qualitative methods that we did not use in our initial assessment. We need to 
question students, either on paper or through interviews, as to why and when they stopped 
generating ideas. If, for example, they did not start building their design rationale until the 
hour before it was due, we should not be surprised that the alternatives discussed were 
canonical or familiar. An approach similar to the verbal protocol analysis used by Atman et 
al. (2005) would be most useful. 
 
 

FUTURE WORK—RATIONALE ACROSS THE CURRICULUM 
 
The experiment described in this paper focused on one group of students, those taking the 
Data Structures course (typically sophomore computer science majors and junior engineering 
majors). If the goal is to aid student cognitive development, as shown by their progression 
through the levels of the Perry (1970) scale, appropriate exercises and evaluation measures 
need to be applied at multiple points throughout the curriculum and, ideally, cognitive 
development evaluated both as an aggregate over all students and for individual students as 
they pass through the program.  
 This would require that the exercises be targeted to specific stages of development. At the 
earlier stages of their education, students can be presented with the problems, candidate 
solutions, and the rationale. For example, in a Data Structures course, the students learn many 
different ways to represent collections of objects. The student focus is often on how to 
implement these collections. The implementation is certainly important, but since many of 
these constructs are often supplied with the programming language (and do not require 
implementation), it is often more important that the students understand why they might choose 
a particular data structure for a problem, that is, to analyze the possible solutions by 
determining which criteria are relevant to the specific problem. The students’ emphasis on the 
implementation rather than the selection becomes apparent in later classes, where they tend to 
stick to one or two favorite structures that may or may not be the best choices for the problem 
at hand. Providing rationale in a form that can be easily understood and manipulated may be a 
more effective way to teach the students the tradeoffs involved in selecting between data 
structures. The ability to manipulate the argument criteria can also help the students to explore 
how changing priorities result in different preferred solutions. Rationale can be presented in a 
form where the criteria can be manipulated by modifying their relative importance in order to 
demonstrate how as criteria change, so should the recommended solution. 
 When the students are comfortable with the idea of multiple alternative solutions, the 
next step would be to involve them in exercises where the problems and criteria are provided 
but where the students need to identify (synthesize) the candidate alternatives based on what 
they have learned in class and on their own experience. An example of this would be if 
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students were asked to provide alternative methods for data entry or visualization based on 
usability criteria that they have learned in an HCI course.   
 The ability to identify the problems themselves, propose solutions, and define criteria 
requires evaluation—identifying what aspects of the solutions are important to the problem 
and its context. This is an essential skill in both software requirements analysis and in design. 
The requirements elicitation process is one of defining the problem and the criteria under 
which the solution will be evaluated, while the design process involves identifying and 
selecting solutions to that problem.  
 The movement from dualism through multiplicity and into relativism and commitment is 
more of a challenge. Kloss (1994) recommends several strategies to move students from 
dualism towards relativism that stress the importance of analyzing and structuring different 
points of view. This requires looking at the alternatives and evidence, including understanding 
the role of assumptions. As students move from working with the rationale of others to 
producing rationale themselves, the rationale can serve as both an instructional tool and as a 
means of assessing their intellectual development. 
 Table 6 lists the levels of the Bloom Taxonomy (1956), how the reflection and rationale 
approach should support those levels, and how students at different levels of development, as 
measured by the Perry (1970) scale, would perform on the rationale-supported tasks. 
 Three courses in our department curriculum now contain explicit course outcomes 
regarding analysis of multiple alternatives: CS2 (1st year), Data Structures (2nd year), and 
Senior Design Project (4th year). Using rationale within these courses will provide an 
opportunity for studying how rationale can assist in the students’ progression from dualism 
toward the higher levels of development. 
 
 

SUMMARY AND CONCLUSIONS 
 
Students progress through several stages as they gain knowledge and experience. They run 
into difficulty when they need to operate at higher cognitive levels than they are accustomed 
to. The ability to make decisions when confronted with uncertainty and ambiguity is 
important since the problems they will tackle become more realistic and beyond the point 
where, if they perform the right sequence of actions, they can produce a single correct 
answer. The ability to synthesize and evaluate solutions becomes critical for problem solving 
and creativity. Related to this is the need for students to move beyond duality, where there are 
always right and wrong answers, towards higher levels of thinking where they can begin to 
analyze the evidence and understand that not all criteria are equally valid in every context. 
 Our experiment with using two rationale representations, the SEURAT RMS and Pugh’s 
(1991) total design methodology (as part of a writing assignment), indicated that students at 
the college sophomore level do indeed start out at a fairly low level. The experiment suggests 
that using the RMS does not inhibit creativity when compared to results using the more 
traditional writing assignment. Using rationale, however, did not result in a wider variety of 
ideas. This could be because the students were told how many ideas were required and some 
may have stopped searching once they achieved their “quota.” 
 While not giving definite answers on rationale’s impact on creativity, there were insights 
to be gained from the use of rationale. The rationale provided insight into student thinking for  
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Table 6.  Relating Bloom’s Taxonomy, Reflection and Rationale, and the Perry Scale. 

Bloom Reflection and Rationale Perry 

Knowledge Given a general decision problem, list and define the 
alternative solutions, as described in class. 

Example: What data structures can be used to store 
lists of items? 

Students at all levels should be able 
to do this since it could be directly 
recalled from their lecture notes. 

Comprehension Given a general decision problem, and a set of 
criteria for making a selection, explain why these 
criteria are important. 

Example: Why is it important to be able to efficiently 
remove elements from a list of items? 

Given a set of alternatives for a general decision 
problem, differentiate between them. (This may require 
giving the students the criteria). 

Example: What is the difference between two data 
structures that store lists of items?  

Students at all levels should be able 
to explain the criteria, but students 
still in the dualism stage may show 
biases toward certain alternatives 
(the “right” one) when differentiating 
between options and may not 
explore them in detail. 

Application Given a specific decision problem, give a list of 
possible solutions. 

Example: Given a design that requires sorting and 
searching a list of items, which data structures could 
be used to solve it? 

Students in dualism may have 
difficulty providing more than one 
solution or more than one valid 
solution. 

Analysis Given a specific design problem, provide a list of 
possible solutions and map those to a set of design 
criteria. 

Example: Given a design problem that requires 
sorting and searching a list of items, list the 
appropriate data structures for storing the items and 
how they relate to criteria, such as time required to 
search, time required to add new items, etc.  

Students in dualism may have 
difficulty providing more than one 
solution or more than one valid 
solution. If multiple solutions are 
produced, they may have trouble 
proposing arguments opposing 
solutions they have already 
deemed “correct” or identifying 
arguments supporting solutions 
other than the “correct” one. 

Synthesis Given a specific design problem, define the criteria 
that should be used in order to make a decision. 

Example: Given a design problem that requires 
sorting and searching a list of items, what criteria 
should be used to evaluate candidate data 
structures? Which criteria are more important to the 
specific problem? 

This is not clear. Will students in 
dualism only come up with criteria 
that apply to their chosen 
alternative, discarding any criteria 
that do not support their beliefs? 
Will students in the multiplicity 
stage have issues identifying some 
criteria as being more important 
than others or will they consider all 
criteria equally valid?  

Evaluation Given a specific design problem, define alternatives 
and the key criteria, and use this information to 
select a solution. 

Example: A design problem that requires sorting and 
searching a list of items, what are the candidate data 
structures, what criteria apply in evaluating the 
appropriateness of each data structure to solving the 
problem, and given those criteria, which solution is 
the best choice? 

Students in dualism are likely to 
have the same issues listed above, 
and are likely to have difficulty 
getting to the evaluation stage. 
Students in multiplicity may have 
difficulty in making a selection, even 
after identifying alternatives and 
criteria.  
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the instructor to use to assess both the student’s understanding of the problem at hand and 
where they are likely to be in their development along the Perry (1970) scale. Understanding 
where the students are developmentally, relative to where we want them to go, is important in 
deciding how to help them progress. Rationale can be a valuable tool in both aiding and 
assessing that progression.  
 Our experiment demonstrated that rationale provides a mechanism for students to 
express the results of the analysis, synthesis, and evaluation required to design solutions to 
problems and provides assistance during the process. Explicitly expressing rationale for their 
work encouraged both reflection on why they made their choices and the active consideration 
of multiple alternatives. This experiment demonstrated that students using rationale 
considered all reasonable alternatives and were able to select criteria and evaluate alternatives 
in a way that indicated they were progressing in their intellectual development. 
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