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ABSTRACT 

Rantalainen, Timo 
Neuromuscular function and bone geometry and strength in aging  
Jyväskylä: University of Jyväskylä, 2010, 87 p. 
(Studies in Sport, Physical Education and Health 
ISSN 0356-1070; 148) 
ISBN 978-951-39-3959-5 (PDF), 978-951-39-3948-9 (nid.)
Diss. 
Finnish summary 
 
Osteoporosis, falls and ensuing bone fractures cause individual suffering and 
economical burden. Pharmacological interventions are not cost effective for 
preventing these osteoporosis and aging related bone fractures, and therefore 
non-pharmacological interventions, such as exercise should be considered. The 
purpose of this thesis was to study the associations between body mass, 
neuromuscular performance (impulse and power in different types of jumps) 
and skeletal rigidity in both genders and in young and elderly subjects. The 
results of the studies suggest that tibial rigidity is related to maximal 
neuromuscular performance in young and elderly men and women. The 
association between bone rigidity and neuromuscular performance seemed to 
be moderate, but site and loading specific. Furthermore, neuromuscular 
performance adds to the predictive power of regression models beyond that of 
body mass. The difference in the bone rigidity to loading ratio between young 
and elderly individuals is bigger than one might expect from the delay in bone 
adaptation alone, indicating changes in skeletal mehcanosensitivity. However, 
even in the elderly, habitual explosive exercise seems to be associated with 
more rigid bones. Individual determinants of neuromuscular performance, such 
as specific tension, may contribute to increasing skeletal integrity and can be 
positively manipulated with exercises, which have also shown to be effective in 
fall prevention. 
 
Keywords: Bone, neuromuscular performance, aging, predictors of bone 
strength, bone geometry 
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1 GENERAL INTRODUCTION 

Osteoporosis, falls and related bone fractures cause individual suffering and 
economical burden to the society (Ortiz-Luna et al. 2009, Stevens & Olson 2000). 
It has been estimated that 30 000 to 40 000 osteoporosis related fractures occur 
annually and that 400 000 Finnish people have osteoporosis (Suomalainen 
Lääkäriseura Duodecim 2008). Between the years 1998 and 2000 there were 
roughly 6000 hip fractures (including only those whom suffered their first hip 
fracture) annually in Finland. Out of those 6000, more than 90% were suffered 
by people older than 50 years of age (Kannus et al. 2006, Sund 2006). There are a 
few potential ways of preventing osteoporosis related fractures, i.e. strengthen-
ing bone and/or preventing falls (Ortiz-Luna et al. 2009, Stevens & Olson 2000). 
Preventing falls is of special interest, as a large proportion of fractures (up to 
90%) are caused by falls (Cummings & Melton 2002, Stevens & Olson 2000, 
Wagner et al. 2009). 

Neuromuscular performance (i.e. power production) is related to lower li-
kelihood of falling (Chan et al. 2007, Perry et al. 2007, Sieri & Beretta 2004, Skel-
ton et al. 2002), better functional ability (Foldvari et al. 2000, Runge et al. 2004) 
and higher skeletal rigidity (Ashe et al. 2008). Aging is associated with weaken-
ing of muscles (sarcopenia) (Roubenoff 2000) and bones (osteopenia and osteo-
porosis) (Carmeli et al. 2002). Since it is currently the consensus that bones 
adapt to loading (Frost 2000), it seems rational to assume that osteopenias and 
osteoporoses are a consequence of, or at least partly caused by, sarcopenia 
(Frost 1997a, Gillette-Guyonnet et al. 2000). Furthermore, the responsiveness of 
bone to loading seems to decrease with aging (Bassey et al. 1998, Kohrt 2001, 
Lanyon & Skerry 2001, Suominen 2006). Therefore the purpose of the present 
thesis was to study the relationship between bone and neuromuscular perform-
ance and the effects of aging on this relationship. The studies may be expected 
to bring new insights into designing osteogenic interventions. 
  



 
 

2 REVIEW OF THE LITERATURE 

2.1 Bones 

The adult skeleton comprises 213 bones (Dempster 2006). One of the fundamen-
tal purposes of bones is to provide the body with a rigid and light frame for ef-
ficient locomotion (Frost 2000, Frost 2003). In addition, bones help maintain 
mineral homeostasis and give protection to vital organs (Dempster 2006, Martin 
& Burr 1989). In order to withstand the prevalent loading without breaking 
whilst being relatively light, bones have the ability to adapt their structure to 
functional loading (Frost 2000, Frost 2003). The strength of a whole bone is de-
termined by material and architectural properties (Myburgh et al. 1993, Turner 
& Robling 2003, van der Meulen et al. 2001). It seems that mechanical adapta-
tion to the imposed loads during a creature’s whole life span occurs via adapt-
ing the architectural properties of bone rather than altering the material proper-
ties (Currey 2003). 

2.2 Organization of bone tissue 

Bone consists of bone cells (Currey 2002), bone mineral, collagen (Weiner et al. 
1999) and bone marrow. In addition, there are blood channels in the bone (Cur-
rey 2002). 

2.2.1 Bone cells 

Bone tissue is permeated and lined with specialized cells (Currey 2002). Osteob-
lasts derive from osteoprogenitor cells, which differentiate from mesenchymal 
stem cells in adults. The function of osteoblasts is to produce new bone (Aubin 
et al. 2006). Osteoblasts lay down new collagen matrix, osteoid, which subse-
quently mineralizes to form bone (Currey 2002). 
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Bone-lining cells cover all surfaces of bones including the blood channels 
(Currey 2002). The outer layer of cells on the bone surface is called periosteum. 
Periosteum also includes the collagenous sheet covering the outer surface. The 
layer of cells covering the inner surface of bone is called the endosteum (Mor-
gan et al. 2008). Bone-lining cells are considered to be quiescent osteoblasts and 
are derived from osteoprogenitor cells (Aubin et al. 2006, Currey 2002).  

Osteocytes are the cells in the body of the bone, which are imprisoned in 
the hard bone tissue (Currey 2002). Osteoblasts become osteocytes when they 
get trapped within the osteoids they are producing (Burger & Klein-Nulen 1999, 
Currey 2002). Osteocytes are connected to each other via canaliculi processes, 
forming, together with the bone-lining cells, a three-dimensional meshwork of 
interconnected cells covering the whole bone (Burger & Klein-Nulen 1999). The 
connections between neighboring osteocyte cells are actualized through gap 
junctions (Currey 2002).  

Osteoclasts derive from precursor cells circulating in the blood stream 
(Currey 2002), which have originated from the bone marrow macrophages 
(Ross 2006). The function of osteoclasts is to degrade bone. Osteoclast has a ruf-
fled border under which it can dissolve bone (Currey 2002, Ross 2006). 

2.2.2 Bone collagen 

To a large extent bone is extracellular material, which contributes about 90% of 
the total bone mass (Robey & Boskey 2006). Bone matrix is composed primarily 
of type I collagen (85 – 90% of the total protein content), while trace amounts of 
type III and IV collagen are also present in adult skeleton (Robey & Boskey 
2008). Noncollagenous proteins are numerous and while their functions are not 
well defined, they seem to be multifunctional, participating in mineralization 
and control of bone turnover (Robey & Boskey 2006). Noncollagenous proteins 
are secreted to a large extent by bone cells, but about one fourth of noncolla-
genous proteins are exogenous, mostly serum-derived (Robey & Boskey 2008). 

2.2.3 Bone mineral 

Of the ~1 kg of calcium in the human body, ~99% is found in bones (Favus & 
Goltzman 2008). Calcium is incorporated in the bone extracellular matrix as hy-
droxyapatite. Carbonate, magnesium, acid phosphate and some diet-dependent 
trace elements are incorporated into the bone hydroxyapatite as substituents 
(Robey & Boskey 2008). While bone minerals are used in homeostasis, mechani-
cally the main purpose of bone minerals is to provide the compressive strength 
of the bone composite (Favus & Goltzman 2008, Robey & Boskey 2008). 

2.2.4 Mineralized collagen matrix 

The basic building block of bone is the mineralized collagen fibril. Collagen acts 
as a framework for plate –like carbonited apatite crystals (Currey 2002).  To-
gether with the carbonited apatite crystals the fibril forms a crystal of non-
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uniform structure to all three orthogonal directions (Weiner et al. 1999). Mam-
malian bone can have two forms: woven and lamellar. Woven bone grows ra-
pidly and its collagen is oriented randomly. Lamellar bone grows slowly (Cur-
rey 2003) and the collagen fibrils are stacked as layers with rotation between 
successive layers to produce rotated plywood like structure (FIGURE 1) (Wein-
er et al. 1999).  
 

 

FIGURE 1  Rotated plywood structure seen in lamellar bone material. Illustration on the 
left from Martin et al. (1998), reprinted with permission from Springer. Illustra-
tion on the right from Giraud-Guille (1988), reprinted with permission from 
Springer. 

Secondary remodeling of bone (remodeling is discussed further under heading 
2.3) results in production of Haversian bone (Martin & Burr 1989). In Haversian 
bone much of the bone is occupied by secondary osteons. Primary woven bone 
(fibrolamellar bone) is superior to Haversian bone in mechanical sense when 
fibrolamellar bone is loaded along the grain. If however, fibrolamellar bone is 
loaded transversely against the grain, correctly aligned Haversian bone will be 
superior in sense of mechanical competence (Currey 2003). 

2.2.5 Higher order organization of bone 

Bone macro structure can be divided into cancellous (trabecular) and compact 
(cortical) bone. Compact bone is solid with only spaces being for osteocytes, 
canaliculi, blood channels and resorption cavities. Cancellous bone in turn is a 
meshwork of bone material incorporating spaces void of bone material filled 
with bone marrow (Currey 2002, Dempster 2006). The material making up the 
bone, cancellous and compact is primary lamellar bone or Haversian bone in 
adults (Currey 2002). Bones are covered by a fibrous or membraneous sheath. 
On the outer suface the sheath is called the periosteum and at the inner surface 
it is called the endosteum (FIGURE 2) (Morgan et al. 2008). Both the peri- and 
endosteum contain blood vessels, oseoblasts and osteoclasts. In addition, the 
periosteum contains free nerve endings. Besides the inner surface and trabecu-



17 
 
lar bone, endosteum envelopes the blood vessel canals too (Volkman’s canals) 
(Dempster 2006). 
 

 

FIGURE 2  Structure of long bone. Modified from University of Bristol & University Col-
lege Dublin (2001). 

 
There are two main types of bones: flat bones (e.g. skull, scapula) and long 
bones (e.g. tibia, humerus) (Currey 2002). Long bones consist of a hollow tube, 
the diaphysis, the cone-shaped ends below the growth plates, metaphyses and 
the regions above the growth plate, the epiphyses (Dempster 2006). Long bones 
are hollow and the cavity is filled by marrow fat in adults (Guyton & Hall 2000). 
The marrow fat serves no essential purposes, although it may play a role in 
increasing the ability of bone to withstand compressive loading by preventing 
buckling (Currey 2003). Part of the marrow remains red also in adults and 
produces red blood cells (Guyton & Hall 2000). This kind of arrangement 
decreases the weight of long bones by approximately 15% compared to 
correspondingly stiff solid bone from the same material (Currey 2003).  

2.3 Bone modeling and remodeling 

Bone modeling is the process, which determines the overall shape of the bone 
during growth. In modeling the bone growth is retarded at some places whe-
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reas in other places the bone growth is facilitated. Bone mineral accumulation 
caused by modeling can be facilitated via increased mechanical usage and de-
creased by decreased mechanical usage (Frost 1985). Bone modeling occurs on 
the bone outer surfaces, whereas remodeling occurs within the bone in the mi-
neralized matrix (Martin & Burr 1989). 

In remodeling, bone material is turned over by resorption by osteoclasts 
and formation by osteoblasts (Frost 1985, Martin & Burr 1989). Remodeling 
leads to increased skeletal mass if more bone is produced by the osteoblast than 
what is resorbed by the osteoclasts. In adults remodeling predominates as the 
mechanism responsible for skeletal adaptation (Frost 1985). Remodelling is also 
used to repair microcracks caused by loading and fatigue of the bone material 
(Currey 2003). 

2.3.1 Mechanotransduction 

The translation of physical activity to cellular responses is called mechano-
transduction (Turner & Pavalko 1998). The bone response occurs ultimately at 
the cellular level (Rubin & Rubin 2006). The current view of the mechanism re-
sponsible for mechanosensing is that fluid flow in bone tissue caused by defor-
mation of bone is sensed by the osteocytes (Rubin & Rubin 2006, Turner & Pa-
valko 1998). Local architecture determines the loading a particular bone loca-
tion observes. For example, in bending cortical bone endures higher pressure 
gradient than trabeculae. Furthermore, different bone locations may have dif-
fering loading thresholds or be sensitive to loading in certain directions (La-
nyon & Skerry 2001). 

Bone remodeling cycle is initiated by mechanical signals via cellular me-
chanotransduction. Mechanotransduction consists of four distinct phases: 1) 
mechanocoupling, force applied to the bone is transduced into a local mechani-
cal signal perceived by a sensor cell; 2) biochemical coupling, the transduction 
of a local mechanical signal into a biochemical signal; 3) transmission of signal 
from the sensor cell to the effector cell and 4) the effector cell response, the ap-
propriate tissue-level response (Turner & Pavalko 1998). 

During daily activities multiple mechanical factors arise in the bone tissue 
(Rubin & Rubin 2006). Daily activities cause deformation, pressure, transient 
pressure waves, shear forces and dynamic electric fields. Of these possible 
stressors deformation and shear (strains) have been isolated as the most signifi-
cant mechanical events for bone. All of the bone cells seem to be able to respond 
to mechanical signals (Rubin et al. 2006). However, osteocytes seem to be ad-
vantageously situated (Martin & Burr 1989) and the microarchitecture is fa-
vourable for mechanosensing as the architecture causes amplification of the 
signal (Han et al. 2004, Rubin et al. 2006). The exact type of mechanosensors is 
yet to be revealed in bone cells, but the sensing of mechanical event leads to 
alteration in appropriate ion channel activities which ultimately leads to change 
in the activity of the cell (Rubin et al. 2006, Turner & Pavalko 1998). Mechanical 
signals ultimately activate mitogen-activated protein kinase (MAPK) regardless 
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of the cell (Rubin et al. 2006) and the response depends on the gene patterns 
associated with the target cell (Rubin et al. 2006, Turner & Pavalko 1998). 

2.3.2 Bone remodeling cycle 

Remodelling cycle begins with recruitment of osteoclasts to the bone surface. 
Osteoclasts cause breakdown of the collagen matrix of bone and release of 
calcium and other minerals (Watts 1999). Osteoclastic resorption begins when 
osteoclast attaches to mineralized bone matrix and produces tight ring-like 
sealing zone. The plasma membrane opposite to bone and inside the sealing 
zone becomes ruffled and the resorption lacuna develops between the bone and 
the ruffled border membrane. Osteoclast releases acid to the resorption cavity, 
which will lead to degradation of the bone. Osteoclast endocytoses the 
degradation products (calcium, phosphate and collagen framents) through the 
ruffled border. The degradation products are thereafter released to the 
extracellular space (Väänänen 2005). When osteoclasts have done their 
degrading they presumably die (Currey 2002). 

After osteoclastic resorption the osteoblasts fill the resorption cavity with 
protein matrix called osteoid, which is mineralized subsequently (Watts 1999).  
  

 

FIGURE 3  Bone remodeling cycle advancing from left to right. Adapted from Les Labora-
tories Servier (2005). 

The cells involded in the remodeling are refferred to as a basic multicellular 
unit (BMU). Typically resorption phase lasts 7 – 10 days and formation 2 – 3 
months (FIGURE 3) (Watts 1999). Mineraliztion of the newly formed matrix be-
gins after a lag time of ~two weeks and proceeds rapidly within a few days up 
to about 70% of the mineralization capacity. Then subsequent residual minera-
lization up to the full capacity takes several years (Fratzl et al. 2004). About 10% 
of bone material is replaced annually (Watts 1999). 
 

2.3.3 Non-mechanical factors affecting bone metabolism 

Remodeling is regulated by local and systemic factors, which include: electrical 
and mechanical forces and multiple chemical factors such as hormones (TABLE 
1) (Christenson 1997, Watts 1999). In addition to calciotropic hormones (para-
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thyroid hormone, vitamin D and calcitonin), which play a major role due to 
their role in metabolism, gonadal steroid (sex) hormones, play an important 
modulatory role in modeling and remodeling. Gonadal hormones regulate the 
maturation of the skeleton and the maintenance of bone mass (Venken et al. 
2008). 

 

TABLE 1  Chemical factors affecting bone metabolism. Reproduced from Christenson 
(1997). 

Factor Effect on 
turnover 

Cells effected Mechanism 

Parathyroid 
hormone 

Increase Osteobasts Increased osteoclast activation and accele-
rated bone loss 

Thyroxine Increase Osteoclasts Increased resorption 
Estrogen Decrease[sic] Osteoblasts Deficiency causes accelerated bone loss 
Testosterone Decrease Osteoblasts Deficiency causes accelerated bone loss 
Vitamin D Decrease Osteoblasts Deficiency causes increased activation but 

inhibits mineralization of osteoid matrix 
Cortisol Increase Both Increased resorption and inhibition of forma-

tion leading to accelerated bone loss 
Calcitonin Decrease ? Inhibits resorption 
Insulin Decrease Osteoblasts Increased collagen synthesis 

 
Steroid hormones modulate the bone turnover by influencing osteoclast and 
osteoblast metabolism both by modulating gene expression and nongenomical-
ly by influencing the cell metabolism (Secreto et al. 2006). The important mod-
ulatory role of gondal steroids is highlighted by the menopause related marked 
bone loss in women (Venken et al. 2008). 

From nutritional view point, the needs of bones can be met with balanced 
diet. Of the micronutrients, calcium and vitamin D play crucial roles in bone 
metabolism. Calcium needs can be met by consuming nutrients rich in calcium, 
such as milk and cheese (Nieves 2005). For vitamin D, especially in areas with 
limited sunlight exposure (i.e. latitudes above 40 º latitude) supplementation in 
the form of fortified foods and/or as supplements may be beneficial for bone 
health (Feldman et al. 2008, Nieves 2005). 

2.3.4 Bone turnover 

Bone turnover rate may be estimated from biochemical markers (Watts 1999) 
analyzed from blood or urine samples (Weisman & Matkovic 2005) by compar-
ing the ratio of resorption markers to formation markers (Christenson 1997). 
Bone turnover rate, measured by the rate of bone multicellular unit activation 
frequency is high in childhood, decreases to a minimum towards the age of 35 
years of age rises to a second peak at approximately 60 years of age and thereaf-
ter declines again towards the end of the life span (Martin & Burr 1989).  
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2.4 Assessing skeletal rigidity 

Whole bone strength can be measured directly by mechanically loading the 
bone and measuring the load at which the bone fails. Structural stiffness and 
strength may be obtained by this kind of direct testing. Structural stiffness and 
strength depend on the material properties as well as the geometry of the struc-
ture. Therefore neither material properties nor geometry alone adequately de-
scribes the strength of a whole bone (Myburgh et al. 1993, Turner & Robling 
2003, van der Meulen et al. 2001). 

 The relationship between the applied load and deformation caused by the 
load can be plotted as a load-deformation curve. The curve may be divided into 
two parts, the linear elastic region and the non-linear plastic region. The stiff-
ness of the structure is the slope of the elastic region, yield is the load at transi-
tion from the linear to elastic region and toughness is the area under curve up 
to yield or failure (FIGURE 4) (Currey 2001, Martin & Burr 1989, Turner & Burr 
1993).  

 

 

FIGURE 4  Schematic illustration of a load-deformation curve. 

 
The load-deformation curve may be converted to stress-strain curve by account-
ing for the geometry of the structure and loading situation. The slope of the 
stress-strain curve in turn is the Young’s modulus, i.e. stiffness, of the material. 
The strength of the structure is defined as the load at which the structure either 
yields (yield strength) or breaks (breaking strength, which ~equals ultimate 
strength in bone). As was the case with stiffness, the strength may be reported 
as a material property (yield or breaking stress) or structural property (yield or 
breaking load). Because of the plywood structure of bone material, Young’s 
modulus and breaking stress are different in longitudinal and transverse direc-

Yield

Deformation

Load

dDeformation

dLoad
= Slope =  Stiffness

Area =  Toughness
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tions. Furthermore, bone ultimate stress is different in tension, compression and 
shear. While looking at different types of loadin bending, compression and 
shear, it becomes obvious that the geometry of bone is of utmost importance in 
bending and shear loading (Currey 2001, Turner & Burr 1993). 
 

 

FIGURE 5  Influence of bone geometry on compressive strength, bending stiffness and 
bending strength. Modified from Currey (2001). A: a circular cross-section of a 
tube (~bone). B: The wall thickness is reduced to half of the value in A, while 
the outer radius is identical to A. C: The wall thickness is reduced from the 
outer surface in such a way that C and B have identical cross-sectional areas. M: 
The average values of total and cortical cross-sectional area of tibia from 20-29 
year old men normalized to starture from Riggs et al. (2004) converted to a cir-
cular cross-section. W: the values corresponding to M for women. To produce 
relative values, the values for cross-sections A – C are divided by the values of 
A and the values for cross-sections M and W are divided by the values of M.  

 
It is thought that bones are primarily loaded in bending and compression (Bi-
ewener 1991, Garcia & da Silva 2004, Morgan et al. 2008) and therefore these 
two types of loadings are used as an example. In compression (or tension), the 
stiffness of the structure depends purely on the amount of material in a given 
cross-section and on the Young’s modulus of the material (Currey 2001). In 
bending, however, similar structural stiffness may be achieved with infinite 
number of combinations of amounts material and geometry, when Young’s 
modulus is kept constant. In effect, with the same amount of material, the bone 
is stiffer, the further away from the center of mass the material is situated, and 
furthermore the effect on structural stiffness increases to the square of the dis-
tance from the center of mass. The stiffness of a given structure is directly re-
lated to the cross-sectional moment of inertia (a.k.a. second moment of area, 
area moment of inertia) (Bouxsein 2005). However, if the cortex becomes too 
thin the structure becomes susceptible to buckling, and thus there is a limit how 
far from the center of mass the material can be situated (Currey 2001). Cross-
sectional moment of inertia of a circular cross-section is calculated as: 
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Equation 1 ( )212
24
rrCSMI −= π , 

 
where r2 = outer radius of the cross-section and r1 = inner radius of the cross-
section. The bending strength of a circular tube is dependent on the cross-
sectional moment of inertia divided by the outer radius of the cross-section 
(FIGURE 5). 

Obviously, mechanical testing to failure is not feasible in vivo, and there-
fore indirect ways to estimate skeletal rigidity (e.g. densitometry) are regularly 
employed (Turner & Burr 1993). Assessment of bone strength should take shape 
and size of the bone into account (Myburgh et al. 1993, Turner & Robling 2003). 
Long bone stiffness can be estimated non-invasively by mechanical response 
tissue analysis (MRTA), which predicts relatively accurately the stiffness meas-
ured by three point bending (Roberts et al. 1996). In the indirect imaging based 
estimation methods planar dual energy x-ray absorptiometry (DXA) (Beck et al. 
1990, Järvinen et al. 1998, Sievänen 2000)) or cross-sectional scan/scans such as 
magnetic resonance imaging (MRI) and quantitative computed tomography 
(QCT) are applied. Skeletal rigidity is estimated based on material and architec-
tural properties assessed from the images. Imaging based predictions of skeletal 
rigidity, accounting for both geometry and material stiffness, offer reasonable 
estimates of actual rigidity (Beck et al. 1990, Hudelmaier et al. 2004, Järvinen et 
al. 1998). Ultrasound measurements are also used to estimate mineral quantity 
or material stiffness, but as indicated above, the bone strength estimates based 
solely on material quantity are not as good as the ones also including geometry 
(Hudelmaier et al. 2004). 



 
 

3 NEUROMUSCULAR SYSTEM 

3.1 Organization of skeletal muscle 

The primary function of muscles is to produce force and movement (Lieber & 
Bodine-Fowler 1993). Contraction velocity and the range of motion of a given 
muscle are dependent on the number sarcomeres in series and the strength of 
force of the contraction is dependent on the number of parallel sarcomeres (Lie-
ber & Bodine-Fowler 1993). The way the fibers are arranged is called muscle 
architecture and typical examples found in humans include pennated muscles, 
in which the fibers are arranged at an angle to the longitudinal axis of the mus-
cle (Fukunaga et al. 1997). Muscle architecture affects the force output of the 
muscle as well as the range of motion and the shortening velocity. If two mus-
cles with equal length and volume are considered, the one with smaller penna-
tion angle has longer muscle fibers, less parallel fibers, greater shortening veloc-
ity and larger range of motion whereas the one with the larger pennation angle 
produces more force (Lieber & Bodine-Fowler 1993). 

3.2 Muscular force production 

Force is developed in the muscle via cross-bridge cycling, known as the sliding 
filament theory (Huxley 2000, Rassier et al. 1999). The sliding filaments are actin 
and myosin molecules. Myosin heavy chain froms the cross-bridges between 
actin and myosin, and the force is produced by conformational changes of myo-
sin heavychains during hydroxylation (Huxley 2000). Force is transmitted lon-
gitudinally from Z-band to Z-band, whilst the most distal Z-band is attached to 
the myotendinous junction (Bloch & Gonzalez-Serratos 2003). However, not all 
of the muscle fibers reach the myotendinous junction and moreover, many 
muscle fibers taper towards the ends. If there were no lateral force transmission 
system, the forces produced by the larger cross-section at the fiber mid-section 
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would be wasted as the smaller crossection near the end of the fiber could not 
sustain the force. Fortunately, the forces are transmitted via structural proteins 
(e.g. vinculin, dystrophin) laterally to sarcolemma (Monti et al. 1999). From the 
sarcolemma, the force is futher transmitted laterally to the extracellular matrix 
and to the connective tissues. The sites of lateral force transmission are called 
costamers comprising membrane-cytoskeletal complexes (Bloch & Gonzalez-
Serratos 2003). 

3.3 Neural control of muscular force production 

The smallest unit of force production that can be voluntarily activated is a mo-
tor unit. Motor unit is the final common pathway from central neural system to 
the muscle and comprises a motor neuron and the muscle fibers innervated by 
the motor neuron. There are three basic types of motor units; slow fatigue resis-
tant, fast fatigue resistant and fast fatigable (English & Wolf 1982). Motor units 
are recruited in an orderly fashion from the smallest to the largest, a phenome-
non known as the Henneman size principle (Henneman et al. 1965). According 
to Henneman (1965) the neural circuits at the spinal level are apparently orga-
nized in such a way that each motor unit receives approximately equal excitato-
ry drive regardles of the source (e.g. afferent or efferent pathways) and the re-
cruitment order is determined by the smaller units getting larger excitatory post 
synaptic potentials due to their higher input resistance (Henneman et al. 1965). 
Force output is controlled by recruiting new motor units and modulating the 
firing rate of active motor units. In addition, the amout of firing doublets and 
synchronization (common drive) of motor units affect the force production 
(Kamen 2005). 

3.4 Converting force production to movement 

The force produced by muscles is transmitted to the skeleton via tendons. The 
forces cause movement of bones relative to each other (Moore & Dalley 1999). 
In effect, the forces produced by muscles are manifested as torques, and torques 
depend not only on the force but also on the moment arm (Rassier et al. 1999). 
A similar torque may be produced with infinite combination of torques and 
moment arms and therefore it is impossible to tell whether a strong person has 
large moment arm or if the person’s muscles produce abnormally high force 
unless the moment arm is measured (Lieber & Bodine-Fowler 1993). However, 
in some joints the centre of rotation changes as a function of joint angle because 
of the anatomy of the joint and furthermore the moment arm and direction of 
pull of muscles depends on the joint angle, making defining moment arm a 
challenging task (Maganaris 2004). The active joint range of motion (i.e. the 
range over which the muscle is able to produce force) is defined by the distance 



26 
 
from the insertion of the muscle and the joint axis (Rassier et al. 1999). The fur-
ther away the muscle is inserted the lower is the joint range of motion. Remem-
bering that pennate muscles (with similar muscle length and volume) have 
shorter fibers and therefore shorter range of motion, inserted at a similar dis-
tance from the joint centre will have shorter joint range of motion. However, in 
humans there is a positive correlation between fibre length and the distance 
from the insertion to the joint axis and therefore there is no rule of thumb on the 
physiological role of a given muscle based on its architecture (Lieber & Bodine-
Fowler 1993). 

3.5 Neural control of locomotion 

Controlling even simple locomotor tasks (e.g. walking) requires repetitive coor-
dinated excitation pulse trains to several muscles. If all of these excitation pulse 
trains were voluntarily controlled, little attention could be paid to the surround-
ings because of the constant task of coordinating muscles. Since locomotion has 
been essential for survival, efficient ways to control locomotion have evolved. 
Only rhythmic excitation bursts are required for a locomotory pattern to 
emerge. The volitional load is further reduced by, central pattern generator 
(CPG) neural circuits, which produce the rhythmic excitation bursts required. 
CPGs need only be activated volitionally, after which they are able to produce 
rhythmic excitations independently of peripheral feedback (Capaday 2002, 
Hultborn 2006, Ijspeert 2008). Furthermore, the rhytmic locomotory pattern 
may be modulated by peripheral feedback automatically (i.e. reflexes) or volun-
tarily (Ijspeert 2008).  

Several different afferent pathways exist in humans (i.e. proprioception); 
however, the stretch reflexes are probably the most important for locomotion 
(Yakovenko et al. 2004, Zehr & Stein 1999). The stretch reflex originates from 
the muscle spindle. Muscle spindles are stretch velocity and magnitude sensi-
tive with increasing activity with increasing stretch intensity (Matthews 1933). 
The simplest and quickest modulation of movement occurs with the monosy-
naptic stretch reflex, which travels to the spinal cord via Ia-afferent from the 
muscle spindle and excites an �-motoneuron innervating the homonymous 
muscle (Matthews 1959). The activity of the muscle spindle also facilitates other 
agonists while it inhibits the antagonist and contralateral agonist (Hultborn 
2006). Furthermore, the activity burst originating from the muscle spindle is 
transmitted via polysynaptic pathways up to and including the cerebral cortex, 
which is manifested as long latency activity burst following a stretch (Christen-
sen et al. 2000). Reflexes play an important role in coordinated movements and 
particularly in stretch shortening cycle type dynamic movements, such as run-
ning and jumping (Komi & Gollhofer 1997). Therefore aging/disease (e.g. di-
abetes/polyneuropathy (Bloem et al. 2000), crebrellar ataxia (Morton & Bastian 
2004)) related decline in reflex responses may be manifested in deterioration of 
locomotion and/or postural balance (Bloem et al. 2000, Morton & Bastian 2004). 



 
 

4 EFFECTS OF AGEING ON THE NEUROMUSCU-
LOSKELETAL SYSTEM 

Aging is associated with degeneration of the nervous system (Lexell 1997, Ver-
du et al. 2000), loss of muscle mass, weakening of muscles (sarcopenia) (Roube-
noff 2000) and performance (dynapenia) (Clark & Manini 2008). The degenera-
tion of the nervous system is manifested as reduction in the numbers of motor 
units (Lexell 1997, Verdu et al. 2000) and reduction in the sensitivity of the pro-
prioceptive system (Shaffer & Harrison 2007). The stretch reflex sensitivity de-
creases, which leads into longer reflex latencies and smaller amplitudes asso-
ciated with longer durations of muscle activations (Shaffer & Harrison 2007, 
Tang & Woollacott 1998, Tang & Woollacott 1999). The changes in propriocep-
tion ultimately lead to decline in postural balance with aging (Shaffer & Harri-
son 2007). Beyond 60 years of age muscle mass declines by ~1% per year, 
strength 1.4 to 2.5% per year and power production capacity by ~3.5% per year 
(Faulkner et al. 2007, Vandervoort 2002). At least part of the atrophy is caused 
by deinnervation (Lexell 1997, Verdu et al. 2000). The faster decline in perfor-
mance compared to the muscle mass may be attributed to 1) loss of motor units 
and selective denervation of fast motor units (Faulkner et al. 2007, Vandervoort 
2002), 2) slowing of muscle fiber shortening velocity (Barry & Carson 2004, De-
schenes 2004), 3) decrease in myofiber specific tension (Deschenes 2004), 4) 
changes in muscle architecture (Narici et al. 2003) and 5) decreasing neural acti-
vation (Clark & Manini 2008). 

4.1 Gender differences in skeletal robusticity 

Men have substantially more rigid skeleton than women when normalized to 
body height (Riggs et al. 2004) or muscle mass (Melton et al. 2006). However, 
women exhibit an estrogen related mineral packing during puberty, presuma-
bly to meet the needs of pregnancy and lactation, which causes women to have 
higher bone mineral to lean body mass ratio during the fertile years (Ferretti et 
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al. 1998, Ferretti et al. 2003, Järvinen et al. 2003, Schiessl et al. 1998). The “extra” 
mineral is deposited to endosteal surface and trabecular bone sites (Järvinen et 
al. 2003). Consequently, postmenopausal bone loss is more marked in trabecu-
lar bone (Reid 2008, Sievänen et al. 1999). From mechanical point of view, for 
equally stiff bones between fertile woman and a man of similar size, the extra 
mineral deposited to endosteal surface, would render the endosteal and perios-
teal diameter smaller in fertile woman compared to the man, whereas the cor-
tical wall would be thicker (Schoenau et al. 2002). This also appears to be the 
case, as men have more robust skeletons than women (Melton et al. 2006, Riggs 
et al. 2004). 

4.2 Bones and aging (osteopenia and osteoporosis) 

Bones weaken with age (Riggs et al. 2004) a phenomenom called osteopenia 
(Carmeli et al. 2002). According to the World Health Organization definition, 
osteopenia is defined as a bone mineral density (BMD) or content (BMC) be-
tween one to two and a half standard deviations (SD) below the young female 
average. Osteoporosis in turn is defined as a BMD or BMC more than 2.5 SDs 
below the young female adult average (World Health Organization 1994). Os-
teoporosis is especially prevalent in females, probably because of the female 
reproductive hormone, estrogen, which appears to play a major role in postme-
nopausal bone loss (Type I osteoporosis) (Järvinen et al. 2003, Riggs et al. 2004). 
Postmenopausal bone loss is more marked in trabecular bone, which is reflected 
in early menopausal fractures occurring in areas ritch in trabecular bone. The 
perimenopausal bone loss is driven by accelerated bone turnover with a nega-
tive balance (Reid 2008). There is also an increasing prevalence of male osteopo-
rosis with advanced age (type II, or senile osteoporosis)(Kaufman & Goemaere 
2008). Apart from the postmenopausal bone loss, the mechanisms of age related 
bone loss between men and women appear to be similar. Bone resorption is in-
creased whereas no change or decerease orrcurs in bone formation (Kiel et al. 
2008). 

4.3 Role of neuromuscular changes in skeletal deterioration 

There are several suggestions as to why age related bone loss (type II, or senile 
osteoporosis) occurs. Mechanical reasons have been suggested in the form of 
disuse bone loss. Since it is currently the consensus that bones adapt to loading 
(Frost 2000), it seems rational to assume that osteopenias and osteoporoses are a 
consequence of, or at least partly caused by, sarcopenia (Frost 1997a, Gillette-
Guyonnet et al. 2000). Moreover, during the childhood and adolescence the in-
crease in skeletal rigidity appears to follow the increase in skeletal muscle mass 
rather tightly (Daly et al. 2004, Schoenau & Frost 2002, Schoenau et al. 2002). 
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During aging however, skeletal rigidity appears to decrease less than what 
would be expected from the decline in skeletal muscle mass (Melton et al. 2006), 
which indicates that the responsiveness of bone to loading may decrease with 
aging (Bassey et al. 1998, Kohrt 2001, Lanyon & Skerry 2001, Rubin et al. 1992, 
Suominen 2006). Furthermore, nonmechanical factors also paly a role in age 
related bone loss i.e. nutritional (vitamin D, calcium, caloric malnutrition), 
hormonal (estrogen, androgens) and heritable factors (Kiel et al. 2008). 



 
 

5 SKELETAL LOADING 

The forces applied to bone are primarily caused by muscles. Muscle forces, due 
to the shorther moment arms of the muscles compared to the moment arms of 
the distal joints the muscles are moving, are greater than the forces caused by 
gravitational pull on body weight (Burr et al. 1996). 

5.1 Loading imposed by neuromuscular system 

Bones are loaded in daily activities by muscles, fighting the pull of gravity and 
accelerating and decelerating body segments. It has been demonstrated that 
physical activity in the general population affects more strongly the weight 
bearing skeleton (Mikkola et al. 2008), and therefore, it may be argued that ske-
letal system is loaded mainly in locomotory actions. The loading on bones 
caused by neuromuscular system apparently decreases with aging as a conse-
quence of sarcopenia and decrease in physical activity (Westerterp 2000). Even 
if physical acitivity is maintained as in the case of master athletes, the effects of 
sarcopenia evidently decrease skeletal loading with aging (Faulkner et al. 2007).  

One way of estimating the loading caused by locomotory actions is from 
the ground reaction forces registered during those actions. The ground reaction 
forces during locomotion vary from 1.0 to 2.9 times body weight in walking and 
running at low speeds (up to 6.0 m/s) (Nilsson & Thorstensson 1989), 2 to 2.5 
times body weight in counter movement jump (Fukashiro & Komi 1987, Ni-
kander et al. 2006), to 3 to 4.5 times body weight in running at maximal speed 
(Belli et al. 2002, Nummela et al. 1994) and 4 to 8 times body weight in continu-
ous rebound jumping and drop jumping (Fukashiro & Komi 1987, Ishikawa et 
al. 2005b). In athletic events ground reaction forces in excess of 10 times body 
weight have been recorded (Perttunen et al. 2000). The magnitude of tibial mid-
shaft In vivo strains have been measured during several dynamic activities, e.g. 
300 �� in bicycling (Milgrom et al. 2000b), 300 - 800 �� in walking (Burr et al. 
1996, Ekenman et al. 1998, Lanyon et al. 1975, Milgrom et al. 2000b, Milgrom et 
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al. 2001), 600 – 1400 �� in running (Burr et al. 1996, Ekenman et al. 1998, Lanyon 
et al. 1975, Milgrom et al. 2000a, Milgrom et al. 2000b, Milgrom et al. 2001) and 
700 - 2000 �� in jumping (Ekenman et al. 1998, Milgrom et al. 2000a, Milgrom et 
al. 2001).  

Combining the ground reaction force measurements with tibial mid-shaft 
strain measurements appears to reveal a non-linear relationship, as ground re-
action forces increased four- to five fold from walking to continuous jumping, 
whereas bone strains increase more in the order of two to threefold. Consider-
ing the joint moments in typical locomotory actions for ankle and knee, the 
body weight normalized values vary from 1.5 Nm/kg and 0.8 Nm/kg in walk-
ing (Silder et al. 2008) to 3.1 Nm/kg and 2.2 – 3.7 Nm/kg in running (Belli et al. 
2002) to 1.4 – 4.8 Nm/kg and 1.9 – 6.0 Nm/kg (Fukashiro & Komi 1987, Ste-
fanyshyn & Nigg 1998) for ankle and knee joint respectively. In case of ankle 
joint moments there appears to be a two- to threefold increase from walking to 
running and jumping, which is in line with the respective increase in bone 
strains. For the knee joint moment the increase is three- to fivefold, which is in 
line with the increase seen in the ground reaction forces. 

5.1.1 Ground reaction forces and tibial diaphysis strains 

The relationship between ground reaction forces and skeletal loading is not re-
ally straightforward. The moment arm of the ground reaction forces depends 
on the posture of the body as well as the moment arms of the muscles. Ground 
reaction forces and Achilles tendon force measured in walking are next used as 
an illustrative example (FIGURE 6). Typically two peaks are seen in the vertical 
ground reaction force during walking, the first of which occurs during heel 
strike and weight acceptance and the second during the push-off phase. How-
ever, in Achilles tendon force only one peak is seen, which coinsides with the 
push-off phase (Komi et al. 1992). Furthermore, apparently the bone is loaded 
in a completely different manner during these two peaks observed in the 
ground reaction force. During the heel strike, while there is little or no force 
produced by the ankle extensors, the bone is apparently loaded only by the 
ground reaction force, whereas during the push-off phase the Achilles tendon 
force is summated with the ground reaction force to double or triple the loading 
compared to heel strike a pattern seen in maximum and minimum strain in in 
vivo measurements (FIGURE 6) (Lanyon et al. 1975). Similar discordance be-
tween ground reaction force and tendon forces has been observed in jumping 
for Achilles tendon and for Patella tendon (Finni et al. 2000). While looking at 
joint moments calculated with inverse dynamics from kinematic and kinetic 
measurements (Silder et al. 2008), the ankle joint moment pattern corresponds 
rather closely with the in vivo tibial mid-shaft strain. Interestingly, the 1st and 
2nd peaks in the strain curve, absent in the ankle joint moment seem to corre-
spond to the peaks in hip and knee moments (FIGURE 6). Taken together, the 
aforementioned highlight the difficulties in inferring skeletal loading from 
ground reaction force measurements. 
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FIGURE 6  Left pane: horizontal (antero-posterior) and vertical ground reaction forces and 
Achilles tendon force during strides with different walking velocities. Mod-
ified from Clinics in sports medicine, 11, Komi, P.V., Fukashiro, S. & Järvinen, 
M., Biomechanical loading of Achilles tendon during normal locomotion, 521-
531., Copyright (1992), with permission from Elsevier. Middle pane: joint mo-
ments in walking. Adapted from Journal of Biomechanics, 41, Silder, A., Hei-
derscheit, B. & Thelen, D.G. 2008. Active and passive contributions to joint ki-
netics during walking in older adults. 1520-1527., Copyright (2008), with per-
mission from Elsevier. Right pane: maximum and minimal principal strain 
during one ground contact in walking. Reproduced from Lanyon et al. (1975) 
with permission from Taylor & Francis. 

 

5.1.2 Loading caused by the vibration of the muscles 

Recently it has been observed that bones respond to low amplitude vibration 
delivered at a 15 – 90 Hz frequency, which corresponds with the frequencies 
observed in muscles during voluntary force production (Rubin et al. 2006). The 
firing rates of individual motor units vary from ~5 to ~60 Hz (Connelly et al. 
1999, Roos et al. 1999), and these frequencies are also present in the mechnical 
vibration of the muscle during activation (Orizio et al. 1996). Evidently the tre-
mor observed in total force output is not related to the rate of individual motor 
unit firing rates as physiological tremor occurs at ~10 Hz frequency. Tremor 
apparently originates from the common drive to motor units, from central 
neural circuits (brain) and from peripheral circuits (spinal reflex loops) (Zhang 
& Poignet 2009).  

5.2 Bone and exercise 

Mechanical loading of bone affects the quality and quantity of human bones 
when adequate nutrition and hormonal balance is available (Smith & Gilligan 
1996) causing an appropriate adaptation in bone structure and mass (Frost 2003, 
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Knee
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Lanyon & Skerry 2001). If new forces outside normal loading range are intro-
duced, bones will adapt to accommodate the new loads. If loading remains con-
stant no additional bone formation occurs after bones have adapted to the new 
loading level (Cullen et al. 2000, Frost 2003, Lanyon & Skerry 2001). This adap-
tation to mechanical loading has been demonstrated in numerous studies of 
athletic populations (Haapasalo et al. 2000, Heinonen et al. 2001, Heinonen et al. 
2002, Kontulainen et al. 2003, Nikander et al. 2005, Nikander et al. 2006, Ni-
kander et al. 2009) and interventions in different age groups from adolescent 
(Hind & Burrows 2007) to elderly (Schmitt et al. 2009). Adolescence, especially 
prior to cessation of linear growth, appears to be the most opportune timing for 
manipulating the skeletal rigidity (Guadalupe-Grau et al. 2009, Hind & Burrows 
2007) but skeletal rigidity may be maintained or even increased with exercise in 
the adults and elderly (Schmitt et al. 2009). Effective exercises include explosive 
actions and/or loading from unusual directions (Guadalupe-Grau et al. 2009, 
Heinonen 1997, Hind & Burrows 2007, Nikander et al. 2005, Nikander et al. 
2006, Nikander et al. 2009, Schmitt et al. 2009).  

5.2.1 Osteogenicity of exercise 

The osteogenic effect of exercise increases when the interval between loadings 
is increased inside an exercise bout thus allowing the bone to recover from the 
load (Umemura et al. 2002). In a classic study, Rubin & Lanyon (1984) discov-
ered with rooster ulnas that bone mass can be maintained with only a few os-
teogenic strain cycles (4 cycles per day taking 8 seconds in total) comparatively 
infrequently. Increasing the number of strain cycles / day resulted in increased 
bone formation. However, increasing the number of strain cycles above 36 
cycles / day did not result in any additional bone mineral accrual. The strain 
applied was comparable to normal physiological wing flapping strains (Rubin 
& Lanyon 1984). Bone formation increases with increasing loading cycles when 
the intensity is held constant and the strain magnitude is not high. If intensity of 
the loading is increased the number of loading cycles required for response de-
creases (Cullen et al. 2001). 

5.2.2 Osteogenic index 

An osteogenic index (OI), which is the product of strain magnitude and rate, 
may help estimate the effects of performance technique to the osteogenicity of a 
given exercise (Turner 1998, Turner & Robling 2003, Whalen et al. 1988). While 
osteogenic index is mainly based on animal models, it has been proposed that 
the results may be extrapolated to designing osteogenic exercise regimes for 
humans as follows (Turner & Robling 2003): 
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Where i = the index of a given exercise bout, GRF = the average ground reaction 
force of the exercise in terms of multiples of body weight, N = number of load-
ing cycles, t = time in hours from the previous bout of exercise 

Even though osteogenicity depends on strain magnitude and rate, only 
magnitude is included in Equation 2 and the OI is calculated from ground reac-
tion force instead of bone strains. With certain limitations, for the purposes of 
OI calculations, it may be assumed that bone strains depend on the ground 
reaction forces. Furthermore, again for the purposes of calculating an OI, it may 
be assumed that loading rate depends on the loading magnitude. 

Von Stengel et al. (2005, 2007) have reported some results concerning the 
applicability of osteogenic index in humans. In their study on postmenopausal 
women, better osteogenic results were obtained using higher loading rates, i.e., 
using power training approach instead of strength training approach. In other 
words, power training produced larger gain in skeletal rigidity. Magnitude or 
number of repetitions did not differentiate the exercise regimes from each other, 
whereas osteogenic index was shown to be able to differentiate the power train-
ing from strength training (von Stengel et al. 2005, von Stengel et al. 2007). 

5.3 Assessing skeletal loading 

Skeletal loading may be assessed in several ways: by questionnaires asking how 
much and what types of exercise people do, by measuring body mass or neu-
romuscular performance, by recording accelerations of the body over a period 
of time or by actually measuring the deformation of bone in vivo. Obviously 
directly measuring the deformations would give one the most accurate assess-
ment of the bone loading environment. However, in vivo measurements are 
invasive and limited to only superficial bones (Hoshaw et al. 1997). Question-
naires on the other hand offer a relatively easy way of estimating skeletal load-
ing. However, questionnaires have been shown to be relatively unreliable 
(Westerterp 2009). 

Measuring body mass or neuromuscular performance offers another quick 
and relatively easy way to estimate skeletal loading environment. Moderate 
associations have been observed between neuromuscular performance and in-
dices of skeletal rigidity (Ashe et al. 2008, Blain et al. 2001, Nikander et al. 2006, 
Sandstrom et al. 2000, Sievänen et al. 1996a, Taaffe et al. 1995, Taaffe & Marcus 
2004). Recording accelerations of the body over an extended period of time ap-
pears to be a reasonable way of assessing skeletal loading environment (Heik-
kinen et al. 2007, Vainionpää et al. 2005, Vainionpää et al. 2006, Vainionpää 
2007), especially considering that skeletal adaptation is relatively slow.  
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5.4 Muscle bone interaction 

The association between muscle and bone has been studied by measuring fat 
free mass (Blain et al. 2001, Capozza et al. 2004, Henderson et al. 1995, Petters-
son et al. 1999, Rector et al. 2009, Taaffe et al. 2001, Witzke & Snow 1999), per-
formance (Ashe et al. 2008, Blain et al. 2001, Calmels et al. 1995, Halle et al. 1990, 
Madsen et al. 1993, Pettersson et al. 1999, Sandstrom et al. 2000, Sinaki & Offord 
1988, Snow-Harter et al. 1990, Taaffe et al. 1995, Taaffe et al. 2001, Taaffe & Mar-
cus 2004, Witzke & Snow 1999, Zimmermann et al. 1990) and bone or by devel-
oping regression models, in which neuromuscular performance is included as 
an independent variable in addition to body size (Ashe et al. 2008, Blain et al. 
2001, Capozza et al. 2004, Henderson et al. 1995, Madsen et al. 1993, Nikander et 
al. 2006, Snow-Harter et al. 1990, Taaffe et al. 1995, Taaffe et al. 2001, Witzke & 
Snow 1999). The Pearson correlation coefficients between lean mass and skeletal 
rigidity have been found to range between 0.34 and 0.6 across several age 
groups, while the respective coefficients for neuromuscular performance (max-
imal strength, or power) have ranged between 0.25 and 0.67 (Ashe et al. 2008, 
Blain et al. 2001, Calmels et al. 1995, Halle et al. 1990, Henderson et al. 1995, 
Madsen et al. 1993, Pettersson et al. 1999, Pettersson et al. 1999, Rector et al. 
2009, Sandstrom et al. 2000, Sinaki & Offord 1988, Snow-Harter et al. 1990, 
Taaffe et al. 1995, Taaffe et al. 2001, Taaffe et al. 2001, Taaffe & Marcus 2004, 
Witzke & Snow 1999, Witzke & Snow 1999, Zimmermann et al. 1990). In regres-
sion models, adding neuromuscular performance on top of body size (i.e. body 
weight and/or height) has increased the proportion of variation explained by 
the model in predicting skeletal rigidity. As expected, in regression models and 
correlation analyses, the associations have been higher, when the neuromuscu-
lar variable has been functionally related to the bone site of interest (Ashe et al. 
2008, Blain et al. 2001, Henderson et al. 1995, Madsen et al. 1993, Nikander et al. 
2006, Snow-Harter et al. 1990, Taaffe et al. 1995, Taaffe et al. 2001, Witzke & 
Snow 1999). Interestingly, the associations between neuromuscular perfor-
mance and skeletal rigidity have been lower in athlete groups than in sedentary 
referents (Alfredson et al. 1997, Pettersson et al. 1999, Taaffe & Marcus 2004). 
Another finding of notice is from Taaffe et al (2001) from a population based 
study with 2619 healthy older adults in which the lower limb skeletal rigidity 
was more closely related to knee extension force than femoral neck bone miner-
al density (Taaffe et al. 2001), indicating that the muscle is not necessarily most-
ly loading the bone adjacent to it but rather loading the bone, which it is mov-
ing. 

The effects of aging on the relationship between muscle and bone has been 
studied by calculating the skeletal rigidity to body mass (Capozza et al. 2004, 
Ferretti et al. 1998, Ferretti et al. 2003, Melton et al. 2006) or lean body mass ra-
tios (Ferretti et al. 1998, Ferretti et al. 2003, Melton et al. 2006) in different age 
groups. The bone to body mass ratio has been seen to either decrease or remain 
stable with aging (Capozza et al. 2004, Ferretti et al. 1998, Ferretti et al. 2003, 
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Melton et al. 2006), whereas the bone to lean body mass ratio has either re-
mained stable or increased slightly with increasing age (Ferretti et al. 1998, Fer-
retti et al. 2003, Melton et al. 2006). 



 
 

6  SUMMARY OF THE LITERATURE 

Dynamic performance capacity plays a dual role in preventing falls and en-
suing bone fractures, by having a positive influence on postural balance (Runge 
et al. 2004) and skeletal rigidity (Ashe et al. 2008). Dynamic performance, how-
ever, is especially affected by aging (Clark & Manini 2008). While general rules 
for skeletal adaptation to loading have been unveiled (Turner 1998, Turner & 
Robling 2003, Whalen et al. 1988), it appears that the association between bone 
loading and skeletal rigidity may depend on age and sex (Capozza et al. 2004, 
Melton et al. 2006). The analyses of bone muscle interplay have shown that neu-
romuscular performance is associated with skeletal rigidity and that neuromus-
cular performance increases the variation explained beyond that of body mass 
(Ashe et al. 2008, Blain et al. 2001, Calmels et al. 1995, Capozza et al. 2004, Halle 
et al. 1990, Henderson et al. 1995, Madsen et al. 1993, Pettersson et al. 1999, 
Sandstrom et al. 2000, Sinaki & Offord 1988, Snow-Harter et al. 1990, Taaffe et al. 
1995, Taaffe et al. 2001, Taaffe & Marcus 2004, Witzke & Snow 1999, Zimmer-
mann et al. 1990). However, the change in bone mechanosensitivity with aging 
(Bassey et al. 1998, Kohrt 2001, Lanyon & Skerry 2001, Rubin et al. 1992, Suomi-
nen 2006) has not been unequivocally reflected in the analyses of the effect of 
aging on the bone muscle interplay. The relationship between skeletal rigidity 
and loading indices have eiher increased (Melton et al. 2006), remained the 
same (Ferretti et al. 1998, Ferretti et al. 2003) or decreased (Capozza et al. 2004) 
with aging.   



 
 

7 PURPOSE 

The purpose of this thesis was to study the associations between body mass, 
neuromuscular performance and skeletal rigidity in both genders and in young 
and elderly subjects. This information is expected to facilitate more efficient de-
sign of exercise interventions against bone fragility. More specifically the re-
search questions were: 

 
1) Can a relationship be established between ground reaction force 

and tibial strains? (study I) 
2) Is neuromuscular performance a better indicator of skeletal rigidi-

ty/loading than body mass or muscle mass? (studies II and III) 
3) Does mechanosensitivity change with aging? (studies IV and V) 
4) Are habitual explosive actions sufficient to maintain bone health in 

elderly individuals? (study V) 
  



 
 

8 METHODS 

A series of five studies was conducted in the process of preparing the present 
thesis. Convenience samples were recruited for all five studies, where volun-
teers meeting the inclusion criteria were included as subjects. A total of 241 
premenopausal young women, 21 young men, 82 postmenopausal women and 
45 elderly men participated in the studies. Table 2 shows the descriptive charac-
teristics of the subjects.  

 

TABLE 2  Descriptive characteristics (mean, SD) of the subjects in different studies. 

 Study I Study II Study 
IV Study V 

 Men Wo-
men 

Com-
bined 

Pre- 
meno-
pausal 

Post- 
meno-
pausal 

Elder-
ly 
men 

Vol-
leyball 

Cont-
rol 

 N = 20 N= 20 N = 40 N = 221 N = 82 N = 25 N = 10 N = 10 
Age [yrs] 24 (2) 24 (3) 24 (3) 23 (5) 58 (4) 72 (4) 70 (4) 70 (4) 
Height 
[cm] 178 (6) 165 (7) 172 (9) 168 (7) 163 (6) 172 (5) 175 (4) 174 (5) 

Mass [kg] 77 (11) 62 (9) 69 (13) 63 (9) 72 (11) 75 (9) 78 (7) 81 (9) 
BMI [in-
dex] 24 (3) 23 (2) 23 (3) 22 (3) 27 (4) 26 (3) 26 (2) 27 (3) 

Activity 
level 
[times/ 
week] 

4 (3) 4 (2) 4 (3) NA NA 4 (2) 4 (2) 4 (1) 

 
Inclusion criteria for young subjects (studies I, II and III) were: healthy with no 
history of lower limb fractures and between 18 and 35 years of age. For the 
post-menopausal women (study II) inclusion criteria were: early osteoarthritis 
of grade 1 or 2 on the radiographic Kellgren/Lawrence (K/L) scale in either or 
both knees. The mean K/L grade was 1.2 (0.9). Postmenopausal subjects engag-
ing in vigorous physical activity more than twice a week were excluded (study 
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II). In case of elderly men (studies IV and V) the subjects needed to be healthy 
and their participation in the study was approved by a medical doctor. The vol-
leyball players were measured first and matching controls in terms of age, 
height and weight were subsequently recruited (study V). On the average the 
volleyball players had a history of 35 (12) years of habitual volleyball and parti-
cipated in playing volleyball 3 (1) times/week on the time of measurements. All 
of the studies were conducted in agreement with the Helsinki declaration with 
the approval of the University of Jyväskylä ethical committee. Written informed 
consent was obtained from all participants. 

8.1 Bone structural characteristics assessments  

Peripheral quantitative computed tomography (pQCT, XCT 3000 (study II 
postmenopausal women) and XCT 2000 (all other subjects), Stratec Medizin-
technik GmbH, Pforzheim, Germany) were performed at the distal tibia (d, 5% 
of the tibial length proximal to the distal end plate) (studies I, II, IV and IV) and 
at the tibial mid-shaft (50, 50% of the tibial length proximal to the distal end 
plate) (all studies) of the right leg. The distal end plate (ankle joint line) was 
identified from the scout view of the distal tibia. Tibia length (lt) was measured 
from anatomical landmarks (from knee joint line to medial malleolus) with a 
tape measure. Total area (ToA), cortical area (CoA), total density (ToD), cortical 
density (CoD), the distance of the most anterior point from the bending axis 
corresponding to the maximal cross-sectional moment of inertia (y), density 
weighted cortical maximal moment of inertia (Imax), maximal section modulus 
(Zmax) and maximal density weighted section modulus (SSImax) were ana-
lyzed from the cross-sectional pQCT-images. A threshold value of 169 mg/cm³ 
was used to differentiate trabecular bone from soft tissues (Kontulainen et al. 
2007), and 550 mg/cm³ to differentiate cortical bone from trabecular bone and 
soft tissues (in accordance with (Hangartner 2007)). Dual energy x-ray absorpti-
ometry (DXA) (Lunar Prodigy, GE Healthcare, USA) was performed at femoral 
neck (FN) from the right leg of the subject (study V). Areal bone mineral density 
(aBMDFN) and area covered by bone mineral (CSAFN) were calculated from the 
DXA scan.  

Bone strength indices were estimated for compressive loading (BSId calcu-
lated as the total density (ToDd) squared multiplied by the total area (ToAd)) at 
the distal tibia and for bending loading (SSImax50 density weighted section 
modulus or Imax) at the tibial mid-shaft. The SSImax50 was calculated as: 
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n = number of pixels, i = index of pixel, Di = density of the ith pixel, a = area of 
pixel, and yi = distance of the ith pixel from the bending axis corresponding to 
the maximal cross-sectional moment of inertia. Areal bone mineral density was 
used as an indication of femoral neck rigidity. The in vivo root mean square 
coefficients of variation (CVRMS) for bone structural variables ranged from 0.4 
(for ToDd ) to 1.6% (for cross-sectional moment of inertia) and a coefficient of 
variation of 0.8% has been reported for aBMDFN (Sievänen et al. 1996b). 

The CT-image analysis was conducted with Geanie (Commit Ltd., Espoo, 
Finland) analysis program (studies I, II and V) or using a custom made Matlab 
(MATLAB® the language of technical computing, version 7.0.1.24704 (R14) ser-
vice pack 1, The MathWorks, Inc.) script (studies III, IV and V). The validity of 
the Matlab script was verified by analyzing density weighted polar section 
modulus from the images and comparing the results against the results ob-
tained form XCT 5.50 (Stratec Medizintechnik GmbH, Pforzheim, Germany) 
bone analysis software. The r² was 0.993 for linear fit (y = 1.0074x+23.753, RMSE 
= 51.4 mg/cm3). 

8.2   Evaluation of neuromuscular performance 

8.2.1 Continuous bilateral rebound hopping with extended knees and hips 

Before the jumping test, the subjects were asked to warm up with a bicycle er-
gometer at a freely chosen intensity. Subjects were then instructed to perform 
bilateral jumping on the soles of the feet using the plantarflexor muscles, keep-
ing the hips and knees extended. The subjects were allowed to familiarize 
themselves by performing a few sub-maximal jumping trials. The subjects were 
asked to begin jumping at a low intensity, and gradually increase the intensity 
to maximal jumping height within 10 – 15 jumps. Knee and hip angles were 
controlled visually during jumping, and the subjects were continuously given 
verbal instructions to jump with extended knees and hips, and to avoid ground 
contact with their heels. Maximal performance was determined from two to 
four maximal jump efforts on a force plate (Neuromuscular Research Center, 
University of Jyväskylä, Finland). The effort was accepted as maximal if the two 
highest vertical GRF peaks from different contacts were within 95% of each oth-
er. Three jumps with the highest vertical GRFs were selected for analysis, and 
the average of those three is reported. Any jump performances with obvious 
heel contact were excluded from the analysis (FIGURE 7).   
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FIGURE 7  Representative examples of vertical ground reaction force of a single ground c
 ontact from young and elderly men. 

 
The GRF signals were recorded at a sampling frequency of 1000 Hz. A CVRMS 
of 6.8% was observed for measuring maximal GRF in bilateral hopping for 
young subjects, and a CVRMS of 5.6% was measured for maximal GRF for el-
derly subject. 

The measured GRFs were low pass filtered at 20 Hz using a 2nd order 
Butterworth filter. Maximal ground reaction force was defined as the difference 
between the highest value and the average value, while the subject was in the 
air (study II). Maximal power was extracted from the ground reaction force 
curve following the principles reported by Runge et al. (2004). The landing ve-
locity from the preceding jump was calculated as flight time divided by two (i.e. 
fall time) multiplied by gravitational acceleration (Earth’s gravity 9.81 m/s²). 
Thereafter, the instantaneous vertical velocity (vi) was calculated as follows: 

 

Equation 4 0
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where i = index of the discrete time point of interest, an = the value of accelera-
tion at the discrete data point n from the beginning of ground contact until the 
time point of interest, dt = the sampling interval (1 ms), v0 = landing velocity. 
Instantaneous power was then calculated as the product of the corresponding 
instantaneous force (including body weight) and velocity. Peak instantaneous 
power was used to represent maximal power production in bilateral jumping 
(study IV). Ground reaction force analysis was conducted with Matlab® (MAT-
LAB® the language of technical computing, version 7.0.1.24704 (R14) service 
pack 1, The MathWorks, Inc., Natick, MA) software. Specific tension during 
dynamic activity was estimated as maximal GRF divided by the estimated mus-
cle volume. 
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8.2.2 Counter movement jump 

Subjects were asked to perform a counter movement jump on a force platform 
with hands on the hips. Subjects were instructed to jump as high as possible 
with the preferred counter movement depth and velocity. A commercial force 
plate (Kistler Ergojump 1.04, Kistler Instrumente AG,Winterthur, Switzerland) 
was used for the premenopausal group (study III) and a custom made force 
plate (University of Jyväskylä, Finland) was used for the postmenopausal 
women (study III) and elderly men (study V). Vertical ground reaction force 
was recorded during the whole performance at a sampling frequency of 500 
(study III) or 1000 Hz (FIGURE 8) (study V).   
 

 

FIGURE 8  A representative example of vertical ground reaction force in counter move-
ment jump from a premenopausal woman. 

 
As potential indices of bone loading concentric net impulse and peak power 
during the take-off phase were analyzed from the vertical ground reaction force 
using a custom made Matlab script. Maximal power was extracted from the 
ground reaction force curve following the methodology reported by Runge et al. 
(2004). Briefly, the weight of the subject was subtracted from the recorded ver-
tical ground reaction force and then divided by the body mass of the subject to 
produce vertical acceleration. Thereafter, instantaneous vertical velocity of the 
center of mass was calculated as the sum of acceleration data points multiplied 
by the inverse of sampling frequency from the beginning of the counter move-
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ment until the corresponding time point. Instantaneous power was then calcu-
lated as the product of the corresponding instantaneous force (including body 
weight) and velocity values. Peak instantaneous power was selected to 
represent power production of the lower body musculature. Concentric net im-
pulse was calculated as the integral of the vertical ground reaction force minus 
the gravitational force caused by body weight from the beginning of the counter 
movement to the instant of take-off. Coefficients of variation of 3 – 4% have 
been reported for measuring jump height (Torvinen et al. 2002) and power 
(Rittweger et al. 2004) in counter movement jumping. 

8.2.3 Maximal voluntary ankle extension torque measurement 

The maximum isometric and eccentric muscle torque was measured with cus-
tom made dynamometer (Nicol et al. 1996) during unilateral ankle plantarflex-
ion with knee extended. The subject was sitting comfortably with the upper 
body in an angle of 110º compared to the legs. The legs were in parallel with the 
floor. Isometric torque was measured at various angles with 5º increments be-
ginning from approximately 80º between the sole of the foot and tibia and fi-
nishing at approximately 105º. Torque angle relationship was determined from 
the isometric maximal voluntary contractions (MVC). The subjects were ex-
horted verbally to ensure maximal effort. The angle of the highest isometric tor-
que value was selected as the optimal angle. Eccentric contractions were meas-
ured isokinetically at an angular velocity of 20 °/s. The angular displacement 
started from 115º. The eccentric torque was measured at an optimal angle. The 
CVRMS ranged from 5.6 to 10.2% for the maximal voluntary torque measure-
ments. 

8.2.4 Maximal voluntary leg extension force 

The maximum bilateral leg extension force was measured on a custom made leg 
extension dynamometer (University of Jyväskylä, Finland). The measurement 
was conducted in a seated position. Upper body was approximately at a 110° 
angle from the horizontal plane, knee angle was set at 90° using a goniometer. 
The force plate was directly in front of the subject. The force plate was allowed 
to rotate slightly around the vertical plane to allow for possible anatomical con-
straints of the subjects’ ankle range of motion so that the sole of the foot was 
firmly against the force plate. The maximal force was determined as the differ-
ence between the maximal measured force and the force level when the subject 
was resting feet relaxed against the force plate. One control subject was unable 
to perform the leg extension test and therefore the N=9 for the control group in 
study V.  

8.2.5 Muscle volume estimation 

The volume of the ankle plantar-flexor muscle group was estimated from mus-
cle thickness and limb length (Miyatani et al. 2004). The limb length was deter-
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mined as the length between knee joint line at the lateral side and the lateral 
malleolus of tibia.  

Muscle thickness was obtained from a cross-sectional image of the ankle 
plantar flexor muscle group with ultrasonographic measurement device (Pro-
sound SSD-5500, Aloka, Tokyo, Japan). The thickest part of the muscle was 
used in the determination of muscle thickness. Muscle thickness was measured 
online from still captured ultrasound picture. CVRMS was 10% for the volume 
estimation. The volume of the plantar flexors was estimated from the thickness 
and limb length as follows (Miyatani et al. 2004):  

 
Equation 5 Muscle volume [cm3] = 218.1 * Thickness + 30.7 * Limb length 
– 1730.4  
 

8.2.6 Specific tension estimation 

Relative specific tension was estimated from the ankle plantar flexor muscles. 
The specific tension was calculated as maximum voluntary torque produced 
divided by muscle volume as suggested by Fukunaga et al. (2001): 

 
Equation 6 TQ = MV * ST * MA / FL * cos � 
 

where TQ = torque, MV = muscle volume, ST = specific tension, MA = moment 
arm, FL = fiber length and � = pennation angle. If MA to FL ratio is assumed to 
be constant among subjects and the effect of pennation angle changes on muscle 
force is assumed to be negligible (Fukunaga et al. 2001) it follows that (Lynch et al. 
1999) 

 
Equation 7 ST = TQ / MV [N/m3]  
 

8.2.7 Voluntary activation measurement 

Voluntary activation was measured during eccentric maximal voluntary con-
traction from the ankle plantar flexor muscles using superimposed twitch me-
thod (Kent-Braun & Le Blanc 1996, Merton 1954). The level of activation was 
calculated with the activation level (AL) equation (Babault et al. 2001). 

 
Equation 8 AL = (1 – Superimposed burst torque/Burst torque at rest)·100  
 

The AL was measured at an angle corresponding to optimal angle in isometric 
contraction during maximal eccentric ankle plantar flexor actions. The CVRMS 
for the activation level measurement was 4.2% 

In the eccentric contraction the torque level with stimulation was defined 
as the torque during maximal positive difference between the measured torque 
curve and post-stimulus torque line estimated with linear extrapolation (Allen 
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et al. 1998). The twitch force was defined as the difference between the meas-
ured torque and extrapolated torque (Babault et al. 2001).  

8.2.8 Electrical Stimulation 

Electrical stimulation was conducted to tibial nerve with the stimulation elec-
trode placed over the tibial nerve in the popliteal fossa and the anode (Vtrode 
neurostimulation electrodes 2*4 inch oval electrode, Mettler electronics, Ana-
heim, CA, U.S.A.) placed below the patella. The placement of the stimulation 
electrode was controlled by visually inspecting the twitch response to single 
stimuli. The placement of the stimulating electrode was accepted when the 
twitch response was evenly distributed in plantar flexors and minimal twitch 
response was observed in the tibialis anterior muscle. Once the stimulation site 
was established with a reusable stimulating electrode a disposable electrode 
(Unilect short-term Ag/AgCl ECG electrode) was placed on the established 
stimulation site. Sufficient pressure of the stimulation electrode was applied 
manually.  

A 50 ms submaximal stimulus train at 100 Hz frequency (= 6 stimuli) was 
applied with electrical stimulator (Digitimer constant current stimulator model 
DS7A, Digitimer, Welwyn garden city, England). The intensity of stimulation 
was adjusted to induce in relaxed muscle a twitch response torque of 30 – 40% 
of previously measured isometric MVC torque. The duration of the current 
pulse was 200 μs and the maximum voltage was 200 V. In the eccentric activity, 
the timing of the stimulus was adjusted so that maximal evoked twitch torque 
occurred at the time corresponding to optimal angle. The advance of the stimu-
lus train application was determined from the twitch evoked to active muscle 
and was the time from the stimulus trigger to the peak of the evoked force. In 
practice the stimulus train was applied 50 ms prior to ankle angle reaching the 
optimum angle.  

8.2.9 Osteogenic index in counter movement jump 

The measured GRFs were low pass filtered at 20 Hz using a 2nd order Butter-
worth filter. Maximal power was extracted from the ground reaction force 
curve following the principles reported by Runge et al. (2004). For the osteogen-
ic index (OI) calculation the ground reaction force was divided by the mass of 
the subject to produce acceleration curve. The last bell shaped part above zero 
acceleration was selected for further analysis (FIGURE 9).  
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FIGURE 9  Averaged acceleration curves (black = volleyball, grey = control) of the last bell 
shaped part above gravitational acceleration used for the osteogenic index (OI) 
calculation. Left pane: averaged acceleration curves, Right pane: Amplitude 
multiplied by the respective frequency plotted against the frequency of the av-
eraged traces. 

 
The maximal acceleration was selected to represent the magnitude of the signal. 
A fast Fourier transformation was calculated from the signal and the mean 
magnitude frequency (MMF) was selected to represent the rate of change of the 
signal. OI was thereafter calculated as follows (Turner 1998): 

 

Equation 9 �
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where  , Ai = i:th cosine coefficient of the Fourier series, Bi = i:th sine coefficient 
of the Fourier series, fi = i:th frequency in the Fourier series. Frequency content 
up to 50 Hz was included in the OI analysis. Ground reaction force analysis was 
conducted with MATLAB® (MATLAB® the language of technical computing, 
version 7.0.1.24704 (R14) service pack 1, The MathWorks, Inc.) software. 

8.3 Modeling tibial strains in walking 

A generic lower body musculoskeletal model was built according to several 
anthropometric variables (gender male, height 184 cm, weight 89 kg, age 25 
years and ethnicity caucasian) of the study subject. The subject was asked to 
perform a walking test on a level surface at constant speed. In order to track the 
body motion, visual markers were placed on various locations of the subject 
(FIGURE 10).   

A B
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FIGURE 10  Graphical representation of the lower body musculoskeletal model used in the 
study with schematic illustration of motion capture marker placement. ASIS = 
anterior superior iliac spine, PSIS = posterior superior iliac spine, KNE = lateral 
epicondyle of the knee, THI = lower lateral 1/3 surface of the thigh, ANK = 
lateral malleolus, TIB = lower 1/3 of the shank, TOE = second metatarsal head, 
HEE = calcaneous at the same height as the toe marker. 

 
The motion capture system (Peak Motus 8.10, Vicon Motion Systems, Inc., Cen-
tennial, CO, USA) tracked the markers’ trajectories during the walking perfor-
mance. The trajectories were then used to drive the model in the inverse dy-
namics simulation where the desired muscles shortening/lengthening patterns 
were calculated. Within the constraints applied to the model, each muscle repli-
cated the desired shortening/lengthening pattern obtained from the inverse 
dynamics simulation in the forward dynamics simulation in order to reproduce 
the motion. This was accomplished through a proportional derivative servo 
controller which minimized the error between the desired shorten-
ing/lengthening pattern and the actual one of each muscle obtained from the 
forward dynamics simulation. Using the forward dynamics simulation, the 
lower body model with the flexible tibia was employed to estimate the tibial 
deformations resulting from walking on a level surface. The deformations were 
used to define the tibial strains (musculoskeletal model described in further de-
tail in (Al Nazer 2008)).  

8.3.1 Motion Capture 

The subject was asked to walk barefoot at a constant velocity (1.47 m/s) on top 
of a 10 m long force platform (Raute Inc., Finland) on level ground. The resul-
tant ground reaction force and electromyographic (EMG) activities of the tibia-
lis anterior, soleus, rectus femoris, vastus lateralis, biceps femoris and gluteus 
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medius muscles were recorded from the right side of the body (Mespec 400 
EMG Radio Telemetry System, Mega Lectronics Ltd, Finland). The EMG signals 
were sampled at 1000 Hz and SENIAM recommendations were followed in 
placement of electrodes (Hermens et al. 2000) The walking exercise was record-
ed with four digital video cameras (COHU High Performance CCD Camera, 
San Diego CA, USA) at a 50 Hz sampling frequency. A schematic illustration of 
the measurement set up is provided in FIGURE 11.   

 

 

FIGURE 11  Schematic illustration of the experimental set up. 

 
Visual markers were applied on the lower body of the subject, as shown in Fig-
ure 10. One stride, from the heel strike of the right leg to the next heel strike, 
was selected for the analysis. The video clips from all four cameras were digi-
tized using Peak Motus 8.1.0 (Peak Performance Technologies Inc., USA), and 
the software was used to calculate the three-dimensional coordinates for each 
marker. In order to minimize the digitization error, each of the coordinates was 
filtered with a 2nd order 5 Hz low-pass Butterworth filter (Silva & Ambrósio 
2002). The coordinates were then interpolated so that coordinate data for a total 
of four identical walking cycles were produced. 

8.3.2 Determining tibial strains 

The principal strains and strain rates were obtained from the model at a loca-
tion corresponding to the location defined by Lanyon (1975), Burr et al. (1996), 
Milgrom et al. (2000) and Milgrom et al. (2006) at the anteromedial aspect of the 
right tibial midshaft (Burr et al. 1996, Lanyon et al. 1975, Milgrom et al. 2000b, 
Milgrom et al. 2007). In order to verify the accuracy of the introduced model, 



50 
 
the simulated ground reaction force and muscular forces were compared in 
terms of the cross-correlation coefficient (�) to the measured ground reaction 
force and EMG. Moreover, the model kinematics measured from inverse and 
forward dynamics simulations were compared in order to verify that the model 
was capable of replicating the motion in forward dynamics simulation. This 
was accomplished by comparing the position of the center mass of each seg-
ment in the model in the X, Y and Z directions resulting from inverse dynamics 
simulation to their correspondences resulting from forward dynamics simula-
tion in terms of �. 

8.4 Estimating indices of tibial loading 

The ratio of Achilles tendon force to GRF has been found to be 3.47 (Komi et al. 
1992), 1.49 (Finni et al. 1998) and 2.0 (Ishikawa et al. 2005a) in in vivo walking 
measurements. Using the mean of these values, the Achilles tendon force was 
estimated to be 2.3 times GRF under one foot (GRFone), which represents half of 
the measured peak GRF during maximal bilateral jumping. Achilles tendon 
moment arm (RAchilles) was estimated to be 0.2 times foot length (Giddings et al. 
2000), which was estimated to be 0.152 times height (Winter 2005). Axial com-
pressive stress (�c50) at the tibial mid-shaft was then calculated as the sum of 
GRF under one foot and Achilles tendon force, divided by cortical area at the 
tibial mid-shaft: 

 

Equation 10 
50

50
3.3
CoA
GRFone

c
∗=σ  

 
Given the short distance to the ankle joint, the contribution of stress caused by 
bending to overall compressive stress was assumed to be negligible at the distal 
tibia. Axial compressive stress at the distal tibia was thus calculated as follows: 

 

Equation 11  
d

one
cd ToA

GRF∗= 3.3σ  

 
To estimate tibial mid-shaft normal tensile stress caused by bending (�b50), the 
bending moment was calculated as the estimated Achilles tendon force multip-
lied by the Achilles tendon moment arm. Stress was then estimated for the most 
anterior point of the tibial mid-shaft, by dividing the bending moment by the 
maximal section modulus (Zmax50): 
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Equation 12 
50

50 max
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To produce an estimate of the tensile normal stress at the most anterior bone 
site of the tibial mid-shaft, compressive stress was subtracted from the stress 
caused by bending. Strain equals stress divided by the elastic modulus of the 
material. As the elastic modulus of cortical bone is related to the cube of volu-
metric bone mineral apparent density (Martin 1991), the tensile strain index (�t50) 
at the tibial midshaft was calculated as follows: 

 

Equation 13 3
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As the elastic modulus of trabecular bone is related to the square of volumetric 
bone mineral apparent density (Martin 1991), the compressive strain index (�cd) 
at the distal tibia was calculated as follows: 

 

Equation 14 2
d

cd
cd ToD
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Besides the estimation of load-induced stress and strain, bone rigidity to load-
ing ratios were calculated by dividing estimated bone strength index (BSId or 
Zmax50) by appropriate indicators of loading (body mass, muscle volume, GRF 
and peak power). 

8.5 Statistical analysis 

Mean and standard deviation (SD) are given as descriptive statistics. Normal 
distribution was analyzed with Shapiro-Wilk normality test. Preliminary statis-
tical power analysis was conducted, which indicated that for 0.8 statistical pow-
er an N of 10 in each group is required to detect a difference of 14% when the 
expected standard deviation of the difference is 10% (study V). 

 Associations between the independent neuromuscular variables or pre-
dictors (body mass, maximal ground reaction force, peak power, impulse tor-
que, specific tension, activation level) and dependent bone robusticity variables 
or outcomes (ToD, ToA, CoA, BSId, Imax, SSImax, Zmax, aBMDFN, CSAFN) 
were determined by Pearson product moment correlation (study I and II) and 
Spearman rank correlation coefficient (study IV).  Group comparisons were 
made with independent t-test (study II), Mann-Whitney U (study IV) or related 
samples Wilcoxon test (study V). Forced regression models were developed 
with neuromuscular variables and height and age as the independent variables 
and bone robusticity variables as the dependent variables (studies I and II). The 
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significance limit was set at P  0.05 for all statistical analyses. Statistical ana-
lyses were conducted with SPSS 13.0.1 (SPSS Inc.) statistical analysis program.  



  
 

9 RESULTS 

9.1 Descriptive characteristics of the subjects 

Descpritive characteristics of the subjects are given in Table 2. Young men were 
3% taller than elderly men (P = 0.001) (study IV). Elderly volleyball players 
were 4% lighter than their matched peers (P = 0.041) (study V). Pre- and post-
menopausal groups were not compared to each other due to postmenopausal 
subjects being osteoarthritis patients and the premenopausal subjects being ath-
letes. 

9.2 Bone structural characteristics 

 

FIGURE 12 Distal tibia compressive bone strength index. An asterisk (*) signifies statisticly 
significant difference between groups (P < 0.05). Young men were compared to 
young women and elderly men. Volleyball players were compated to controls.  
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TABLE 3  Bone structural characteristics (Mean, SD).  

  Study I Study II 
Study 
IV Study V 

 Men 
Wo-
men 

Com-
bined 

Pre 
meno-
pausal 

Post 
meno-
pausal 

Elder-
ly 
men 

Vol-
leyball 

Cont-
rol 

  
N = 
20 N= 20 N = 40 N = 221 N = 82 

N = 
25 N = 10 N = 10

ToDd 
[mg/cm
3] 

368 
(46) 

337 
(40) 

352 
(45) 

368 
(37) 306 (32) 330 

(22) 
340 
(36) 

333 
(30) 

ToAd 
[mm2] 

1110 
(170) 

892 
(88) 

999 
(172) 

819 
(137) 899 (142) 1200 

(100) 
1150 
(180) 

1100 
(130) 

ToA50 
[mm2] 

463 
(56) 

375 
(55) 

419 
(71) 

340 
(53) 314 (34) 468 

(38) 
510 
(36) 

479 
(39) 

Imax50 
[mm4] 

2960
0 
(730
0) 

19400 
(5800) 

24500 
(8300) 

26200 
(7700) 

21600 
(5300) 

31200 
(6200) 

35200 
(6900) 

31900 
(6800) 

dwI-
max50 
[mg cm] 

3350 
(780) 

2190 
(620) 

2770 
(910) 

2900 
(840) 2350 (580) 3430 

(670) 
3900 
(770) 

3560 
(750) 

 

 

FIGURE 13  Tibial mid-shaft bending strength index. An asterisk (*) signifies statistically 
significant difference between groups (P < 0.05). Young men were compared to 
young women and elderly men. Volleyball players were compated to controls. 

 
Bone structural characteristics are given in TABLE 3, FIGURE 12 and FIGURE 13. 
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9.3 Neuromuscular performance 

 

TABLE 4  Neuromuscular performance in continuous bilateral rebound hopping.  

Study I Study IV 
Men Elderly men 

  N = 20 N = 25 
Maximal GRF (hopping) [N]  4680 (1020) 3080 (600) 
Jump height (hopping) [cm] 19.9 (8.7) 8.7 (3.7) 
Contact time [ms] 180 (24) 226 (41) 
Power (hopping) [W] 4680 (1280) 2530 (740) 
Tensile stress [MPa] 144 (23) 94 (21) 
Compressive strain [index] 0.484 (0.102) 0.399 (0.078) 
Tensile strain [index] 0.107 (0.016) 0.071 (0.018) 
 
Young men produced higher maximal GRF in hopping (4680 (1020) vs. 3570 
(710) N), had higher maximal voluntary eccentric ankle plantarflexion torque 
(277 (51) vs. 201 (32) Nm) and larger muscle volume (1000 (150) vs. 730 (160) 
cm3) than young women (P < 0.05) (study I). There were no differences in spe-
cific tension (0.280 (0.052) vs. 0.291 (0.064) Nm/cm3) or activation level in max-
imal eccentric ankle plantarflexion between young men and women (P > 0.05). 
Young men had larger muscle volume (1000 (150) vs. 850 (141) cm3), 38% high-
er maximal GRF, higher specific tension (4.71 (1.05) vs. 3.71 (1.11) N/cm3), larg-
er impulse (149 (32) vs. 100 (25) Ns), 128% higher jump height, 20% shorter con-
tact time, 85% higher maximal power, 53% higher tensile stress and 50% higher 
strain indices in hopping than the elderly men (P < 0.05) ( 
TABLE 4) (study IV). 
 

TABLE 5 Neuromuscular performance in counter movement jump.  

Study II Study V 

Premenopausal Postmenopausal Volleyball Control 

  N = 221 N = 82 N = 10 N = 10 

Impulse [Ns] 143 (25) 113 (21) 152 (26) 136 (24) 
Jump height [cm] 27 (6.1) 13.1 (3.3) 19.4 (5.4) 14.3 (2.8) 
Power [W] 2660 (550) 1870 (360) 2570 (450) 2180 (410) 

 
Performance results from counter movement jump test for pre- and postmeno-
pausal women are given in TABLE 5. Elderly volleyball players had 13% larger 
impulse, 37% higher jump height, 19% peak power, higher magnitude (1.02 
(0.21) vs. 0.76 (0.13)g) and higher osteogenic index (5.5 (1.06) vs. 4.09 (0.70) in-
dex) in CMJ than their matched peers (P < 0.05) (Table 5). No difference was 
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observed in maximal voluntary eccentric ankle plantarflexion torque (243 (29) 
vs. 244 (42) Nm), leg extension force (160 (48) vs. 154 (22) kg) or the mean mag-
nitude frequency (3.88 (0.29) vs. 3.70 (0.34) Hz) (P > 0.05) (study V). 

9.4 Associations between neuromuscular performance and indic-
es of skeletal rigidity 

Positive correlation between body mass and net concentric impulse was ob-
served among young men (r = 0.64) and women (r = 0.71) (study I), pre- (r = 
0.75) and postmenopausal (r = 0.68) women (study II) (P < 0.05). Moderate posi-
tive associations were observed between net concentric impulse and bone 
strength indices (BSId, dwImax50) among young men (r = 0.59 – 0.61) (study I), 
pre- (r = 0.47 – 0.54) and postmenopausal women (r = 0.48 – 0.53) (study II) (P < 
0.05). Generally higher correlations were seen between impulse and indices of 
bone strength (mean for studies I,II,IV and V BSId r = 0.40, range 0.26 to 0.59, 
dwImax50 r = 0.49, range 0.24 to 0.71) than between body mass and bone 
strength (mean for studies I,II,IV and V BSId r = 0.26, range 0.08 to 0.42, dwI-
max50 r = 0.35, range 0.08 to 0.63) (FIGURE 14).  
 

 

FIGURE 14  Associations between body mass or impulse in CMJ and bone strength indices 
(compressive and bending strength indexes). Example from the premenopaus-
al group from study II. 
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9.5 Regression models predicting skeletal rigidity 

Between 14 to 36% of the variation in distal tibia compressive bone strength in-
dex was explained by body size (represented by height & body mass), whereas 
the predictive power of the model was increased by 2 – 7%, when neuromuscu-
lar performance was included into the model as an independent variable (TA-
BLE 6 and TABLE 7) (studies I and II). 25 to 60% of the variation in tibial mid-
shaft bending strength (represented by SSImax50) was explained by body size, 
whereas the predictive power of the model was increased by 6 – 12%, when 
neuromuscular performance was included into the model as an independent 
variable (studies I and II). Body mass became a non-significant predictor of ske-
letal rigidity, when neuromuscular performance was accounted for by other 
predictor variables. 

TABLE 6  Regression results for young men and women combined (study I). Percentages 
of variation explained and the total amount of variation explained by the mod-
el. BSId = distal tibia compressive bone strength index, SSImax50 = Density 
weighted section modulus at tibial mid-shaft. The increment of explanatory 
power with the inclusion of a given independent variable is highlighted with 
an asterisk if the added variable had significant independent (* P  0.05) ex-
planatory effect. An asterisk signifies that the explanatory power of the model 
reached significance (* P  0.05). 

 BSId SSImax50 
N = 40   
Height & Body mass 37.6 59.4* 
Muscle volume 1.3 4.2* 
Specific tension 3.1 4.3* 
Activation level 3.7 0.4 
TOTAL 45.8* 68.3* 
   
N = 40   
Muscle volume 35.7* 60.4* 
Specific tension (ankle plantarflexion) 4.8 6.0* 
Activation level 3.2 0.1 
TOTAL 43.7* 66.5* 
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TABLE 7  Regression coefficients (�) and the amounts of variation explained (R2) by the 

regression models at the distal tibia (BSId) and tibial midshaft (SSImax50) for 
pre- and postmenopausal women (study II). Height, body mass and age were 
included in the model in the first step, and impulse was entered in the second 
step. 

BSId [g2/cm4] PreMP PostMP 
 � (P-value) R² (P-value) � (P-value) R² (P-value) 
Step 1     

Constant -0.480 
(P = 0.291) 

0.14 
(P < 0.001) 

0.934 
(P = 0.189) 

0.16 
(P = 0.004) 

Height [cm] 0.00595 
(P = 0.037) 

0.000222 
(P = 0.956) 

Body mass [kg] 0.00853 
(P < 0.001) 

0.00559 
(P = 0.015) 

Age [yrs] 0.00273 
(P = 0.479) 

-0.00911 
(P = 0.085) 

Step 2     

Constant -0.205 
(P = 0.635) 

0.16 
(P = 0.004) 

0.712 
(P = 0.299) 

0.23 
(P < 0.001) 

Height [cm] 0.00359 
(P = 0.19) 

-0.00161 
(P = 0.678) 

Body mass [kg] -0.00134 
(P = 0.649) 

0.0013 
(P = 0.625) 

Age [yrs] 0.00323 
(P = 0.378) 

-0.0027 
(P = 0.626) 

Impulse [Ns] 0.00510 
(P < 0.001) 

0.00404 
(P = 0.007) 

SSImax50 [mm3]     
Step 1     

Constant -2190 
(P < 0.001) 

0.32 
(P < 0.001) 

-1310 
(P = 0.073) 

0.25 
(P < 0.001) 

Height [cm] 17.8 
(P < 0.001) 

14.4 
(P < 0.001) 

Body mass [kg] 6.62 
(P = 0.002) 

3.62 
(P = 0.118) 

Age [yrs] 8.37 
(P = 0.020) 

-1.12 
(P = 0.835) 

Step 2     

Constant -1920 
(P < 0.001) 

0.40 
(P < 0.001) 

-1620 
(P = 0.018) 

0.37 
(P < 0.001) 

Height [cm] 15.4 
(P < 0.001) 

11.9 
(P = 0.002) 

Body mass [kg] -3.26 
(P = 0.229) 

-2.31 
(P = 0.377) 

Age [yrs] 8.86 
(P = 0.009) 

7.75 
(P = 0.156) 

Impulse [Ns] 5.1 
(P < 0.001) 

5.58 
(P < 0.001) 
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9.6 Tibial strains in walking 

The cross-correlation coefficient (�) between measured and simulated ground 
reaction force values was 0.97. As for the muscular forces, a � of 0.94 was ob-
tained for the soleus, 0.75 for the gluteus medius, 0.65 for the vastus lateralis, 
0.39 for the tibialis anterior, 0.33 for the biceps femoris and 0.22 for the rectus 
femoris. In the comparison of the model kinematics between inverse and for-
ward dynamics simulations, the � was higher than 0.99 for the position of the 
center mass of each segment in the model in the X, Y and Z directions. 
FIGURE 15 shows the simulated maximum and minimum principal strains for 
four walking cycles. The numerical maximum and minimum strain magnitudes 
and rates are given in TABLE 6. 

 

FIGURE 15  Maximum (solid line -) and minimum (dotted line - -) principal strain curves 
for four walking cycles. Points 1-4 correspond to the four distinct inflections 
during one walking cycle defined by Lanyon et al. (1975), which are 1) heel 
strike, 2) full foot-heel off, 3) heel off-toe off and 4) forward swing. 

TABLE 6  The principal strain magnitudes and rates. Literature values from in vivo mea-
surements and the values estimated by the model. The principal strains and 
strain rates were obtained from the model at the anteromedial aspect of the 
right tibial midshaft, which is the same location in all of the studies mentioned 
in the table. 

 Principal Strain Magnitude 
[microstrain] 

Strain rate  
[microstrain/s] 

 Maximum Minimum Maximum Minimum 
(Lanyon et al. 1975) 395 -434 Not reported -4000 
(Burr et al. 1996) 437 -544 11006 -7183 
(Milgrom et al. 2000b) 840 -454 3955 -3306 
(Milgrom et al. 2007) 394 -672 4683 -3820 
Simulation results 490 -588 3800 -4100 



  
 

10 DISCUSSION 

The primary finding of the present thesis was that in adults irrespective of age 
and gender, skeletal rigidity is more closely related to neuromuscular perfor-
mance than to body mass. However, the association between neuromuscular 
performance and skeletal rigidity seems to be age dependent. Moreover, the 
sensitivity to loading may change with aging as indicated by the lower values 
in bone stress and strain indices among elderly men compared to young men. 
Furthermore, in all age groups, including performance in regression models 
predicting the skeletal rigidity increased the explanatory power of the model. 
Moreover, within age group, the subject groups with differing skeletal structure 
could be differentiated from each other according to neuromuscular perfor-
mance. 

10.1 Association between neuromuscular performance and bone 
strength indices 

In line with literature (Ashe et al. 2008, Blain et al. 2001, Calmels et al. 1995, 
Halle et al. 1990, Madsen et al. 1993, Pettersson et al. 1999, Sandstrom et al. 2000, 
Sinaki & Offord 1988, Snow-Harter et al. 1990, Taaffe et al. 1995, Taaffe et al. 
2001, Taaffe & Marcus 2004, Witzke & Snow 1999, Zimmermann et al. 1990), it 
was seen in the present results that in young adults muscle volume, maximal 
voluntary eccentric torque, maximal ground reaction force in jumping and spe-
cific tension were significantly related to bone structural characteristics. When 
looking at the pre- and postmenopausal women the primary findings were that 
1) variation in body mass became a non-significant predictor of tibial bone 
strength when a proper index of neuromuscular performance was included in 
the regression model as a predictor. 2) The associations between loading indices 
(body mass, impulse) and bone strength indices (dwImax50, BSId) were similar 
among athletic premenopausal women representing higher skeletal loading and 
osteoarthritic postmenopausal women representing lower skeletal loading. In 
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comparing the young men to the elderly men it was found that young men 
were able to load their bones to a greater extent than elderly men in a similar 
jumping exercise. This was exemplified by lower tibial rigidity to neuromuscu-
lar performance ratio than in the elderly subjects, which may reflect some kind 
of age related dissociation in bone adaptation to loading. Finally, while compar-
ing habitual male volleyball players to their matched peers it was seen that ha-
bitual elderly male volleyball players were able to produce higher osteogenic 
index in maximal counter movement jump performance than their body-size 
and age matched controls. In addition, the habitual volleyball players had supe-
rior performance in counter movement jump and had larger cross-sectional area 
at tibial mid-shaft than their age and body-size matched controls. 

10.1.1 Age effects 

Young men were able to load their bones to a greater extent than elderly men in 
a similar jumping exercise. This was exemplified by lower bone rigidity to neu-
romuscular performance ratio than in elderly subjects, which may reflect some 
kind of age related dissociation in bone adaptation to loading. Melton et al. 
(2006) recently reported similar results, showing an increased ratio of femoral 
neck bending strength index to estimated leg muscle volume with increasing 
age but no change in the respective ratio to body weight, both in men and 
women. Calmels et al. (1995) reported similar observations in women. All of 
these findings are in line with the argument that bone loss lags behind the de-
cline in physical performance in aging (Frost 1997a). An alternative explanation 
for these findings is that the set point of the Mechanostat (Frost 2003) could be-
come lower with age, i.e. the elderly would require less loading than the young 
in order for their bones to reach similar relative bone rigidity. If this were the 
case, one would expect to see a similar association between bone and perform-
ance in both age groups, which evidently was not the case. 

In line with the rationale proposed by Frost (Frost 1997a), the older group 
had a higher ratio of bone rigidity to loading, which was particularly evident 
when the loading was estimated based on neuromuscular performance. Given 
the adaptation of bone to prevalent loading, bone loss should follow, but lag 
behind, the decline in physical performance with aging. Assuming a two year 
delay and a 3.5% annual decline in muscular power (Barry & Carson 2004) as a 
reasonable indicator of the change in dynamic physical performance after 60 
years of age, a 7.4% increase in bone to loading ratio would be expected (the 
effect of mere performance decline on the ratio is calculated as 1/0.9652, which 
equals 1.074). However, even if the lower border of the 95% confidence interval 
of the maximal GRF to Zmax50 ratio was considered, the ratio was still 31% high-
er in the elderly than in the young subjects. Thus, a difference of this magnitude 
cannot be explained merely by the lag in bone adaptation as suggested by Frost 
(Frost 1997a). Regarding the validity of a two-year delay, even a time lag as 
short as one month between decreased activity and the beginning of observable 
bone loss has been reported in bed rest studies (Rittweger & Felsenberg 2003, 
Rittweger et al. 2005). 
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For the distal tibia, it may be argued that the difference between young 
and elderly men was approximately what could be expected by the two year 
delay in bone adaptation used for the calculations. The lower limit of the confi-
dence interval of the maximal GRF to BSId ratio indicated 5.7% higher values 
for the elderly than for the young subjects. More marked changes in trabecular 
volumetric bone mineral density (vBMD) than cortical vBMD have been ob-
served in men during aging (Riggs et al. 2004). Therefore, it cannot be ruled out 
that the tibial midshaft, consisting primarily of cortical bone, is simply metabol-
ically too slow to remove the surplus bone material, or is unable to reduce its 
cross-sectional size, which mainly accounts for the rigidity of the given site. In 
fact, the results from patients with spinal cord injury (Eser et al. 2004a) support 
this suggestion. After paralysis caused by spinal cord injury, changes in bone 
rigidity at the tibial midshaft are smaller than the respective changes at the dis-
tal tibia (Eser et al. 2004a). 

Mechanical properties of cortical bone change little with aging. Zioupos & 
Currey (1998) showed a decrease of about 15% in elastic (Young’s) modulus 
with aging in femoral cortical bone, whereas no such change was seen by Burs-
tein et al. (1976). Load-induced strains within the bone, the apparent key play-
ers in mechanotransduction (Riddle & Donahue 2008, Scott et al. 2008), would 
be similar with equal loading (relative to bone size and geometry) with Young’s 
modulus and material composition remaining the same during aging. While the 
long bones of the elderly may have similar flexural rigidity (the product of 
Young’s modulus and cross-sectional moment of inertia) to those of young sub-
jects, they also have thinner cortices and wider outer diameters (Riggs et al. 
2004). This would mean that similar loading would actually cause greater 
strains in the elderly bone. Furthermore, increasing porosity of cortical bone to 
the order of 10% (indicated by lower apparent BMD measured with pQCT) has 
been observed with aging in tibial cortical bone from twenty to ninety years of 
age (Riggs et al. 2004), which would further accentuate strains in the elderly 
bone by decreasing bone stiffness. In the present thesis, these phenomena were 
accounted for by the tensile strain index, which revealed that young subjects 
were able to produce a 51% higher strain index than the elderly in the bilateral 
jumping test, primarily because of the substantially superior physical perfor-
mance of the young men. Therefore, as also concluded by Melton et al. (2006), 
there is an increase in the bone to loading ratio at the tibial midshaft, which 
may not be accounted for by the Mechanostat hypothesis (Frost 2003). Neither 
can the difference in bone to loading ratio be explained by small age-related 
changes in bone elastic properties or the above discussed delay in bone adapta-
tion. There are several possible explanations which could at least partly account 
for the observed difference between young and elderly subjects. Firstly, bone 
mechanosensitivity may have decreased, which has been suggested to be the 
case in the elderly (Bassey et al. 1998, Kohrt 2001, Suominen 2006). Secondly 
there is a substantial change in the activity pattern with aging (Westerterp 2000), 
and the relationship between maximal physical performance and the actual 
bone loading environment may not be as close in elderly subjects as it is in 
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young subjects. Thirdly, the bone material becomes more brittle with aging and 
its deformability decreases, which may require lower functional strains in order 
to retain the yield strain safety factor with increased age (Akkus et al. 2004, Yer-
ramshetty et al. 2006, Yerramshetty & Akkus 2008). Fourthly, a substantial re-
duction of the bending stiffness of a long bone diaphysis would require bone 
loss specifically from the periosteal surface, which is highly unlikely. Even after 
paralysis periosteal bone loss has not been observed (Eser et al. 2004b). There-
fore, when loading is decreased (e.g. in aging), the relationship between func-
tional loading and bone rigidity may become non-linear (i.e. increased loading 
causes linear adaptations in bending strength, whereas decreased loading is not 
reflected by a linear decrease in bending strength). 

10.1.2 Differences between distal tibia and tibial mid-shaft 

Altogether the results indicate that the structure of tibial mid-shaft is more 
strongly dependent on the muscles moving the tibia than the structure of distal 
tibia. It has been suggested that one of the functions of the trabecular meshwork 
is to work as a shock absorber underneath joints whereas the purpose of the 
shaft of the bone is to provide stiff levers for locomotory actions (Currey 2002). 
The present results seem to support the aforementioned suggestion. Highest 
compressive loadings on distal part of lower limb in daily activities are likely 
caused by impacts, which are not necessarily closely related to muscular force 
production (Komi et al. 1992). In contrast, bending loads on legs are most likely 
caused by the muscles moving the bone during normal daily activities (Van 
Buskirk 1989). In addition, distal tibia has functional task in forming the ankle 
joint. Adult joints and epiphyseal regions are not likely to grow substantially in 
size, which may explain the lower bone-muscle dependency in the distal tibia 
observed in the present study (Frost 1997b).  

10.2 Body mass and neuromuscular performance as indicators of 
skeletal loading 

Body size (height and weight) and muscle mass have been used as indicators of 
skeletal loading. Especially muscle mass has been used interchangeably with 
neuromuscular performance (Blain et al. 2001, Capozza et al. 2004, Henderson 
et al. 1995, Pettersson et al. 1999, Rector et al. 2009, Taaffe et al. 2001, Witzke & 
Snow 1999). In the present thesis, the associations between body mass, neuro-
muscular performance and skeletal rigidity were studied in order to clarify if 
body mass or muscle volume may be used interchangeably with neuromuscular 
performance in estimating the skeletal loading environment. The results of 
these studies indicated that body mass and muscle mass are poorer indicators 
of skeletal loading environment than neuromuscular performance, highlighting 
the role of muscles in loading the bones. Increases in the order of 10% in pre-
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dicting skeletal rigidity were observed on top of the variation explained by 
body mass and/or muscle volume regardless of age group and gender.  

It has conventionally been assumed that body mass is a primary determi-
nant of skeletal rigidity, since a heavier body would impose proportionally 
higher forces on the bones in a given movement (Heaney & Matkovic 1995). 
However, Beck et al. (2009) recently reported that femoral neck rigidity scales in 
proportion to lean mass (Beck et al. 2009). In other words, increased body mass 
is not related to skeletal loading in a linear fashion. In line with this hypothesis, 
the results from pre- and postmenopausal women showed an increase of ap-
proximately 10% in the total predictive power of the regression model of skelet-
al rigidity by including performance in addition to height, age and body mass 
as predictors. Moreover, body mass lost all of its explanatory power when the 
concentric net impulse was included into the models. Therefore, the present 
results, as well as several other studies (Lapauw et al. 2009, Macdonald et al. 
2006, Nikander et al. 2006, Taaffe et al. 1995), clearly indicate that body mass is 
poorer indicator of skeletal loading than neuromuscular performance. 

10.3 Factors contributing to muscular force production 

Muscular force production is determined by muscle volume, specific tension 
and activation level (Fukunaga et al. 2001). Specific tension can vary between 
individuals depending on muscle architecture (Fukunaga et al. 2001), muscle 
fiber distribution (Fitts et al. 1991) and activation level (Narici et al. 2004). The 
results from young adults indicated that activation level played no role in ex-
plaining the bone strength. There seemed to be some variation in activation 
level among individuals, but evidently activation level is not a major determi-
native factor in force production in young adults (Merton 1954, Oskouei et al. 
2003, Stackhouse et al. 2000). As has been shown previously, the results of the 
present thesis also suggest that, in addition to variation in muscle volume, there 
is significant inter-individual variation in specific tension (Ikai & Fukunaga 
1968, Maughan & Nimmo 1984), which also plays a role in determining the 
neuromusucular performance. 

10.4 Relationship between ground reaction forces and tibial bone 
strains 

The tibial bone strain modeling conducted in walking confirmed the disagree-
ment between ground reaction forces and bone strains presented by the litera-
ture, i.e. the patterns of ground reaction forces, joint moments and tibial bone 
strains do not coincide (Komi et al. 1992, Lanyon et al. 1975, Silder et al. 2008) 
(FIGURE 6). Qualitatively it may be speculated that for long bones ground reac-
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tion forces should be related to bone strains during concentric phases of force 
production. The speculation is based on considering that bending forces in the 
order of 1/50th of compressive forces cause identical maximal strains. Ground 
reaction forces during eccentric phase of a dynamic activity may reach much 
higher values than ground reaction forces during the concentric phase (Perttu-
nen et al. 2000). However, a large part of the eccentric phase forces may be 
caused by the supporting plane decelerating the momentum of body segments 
and thus the force may be aligned with the long axis of bone causing compres-
sive loading (e.g. heel strike in walking). On the other hand, even though in the 
concentric phase the ground reaction forces are essentially used to change the 
momentum of the body segments, the forces are caused by muscles and by the 
virtue of having moment arms, will always cause bending forces in addition to 
compressive forces.  

10.5 Osteogenic index 

It has been suggested that osteogenic index may be valuable in estimating the 
osteogenicity of a single repetition, exercise session or even the whole exercise 
regime by including more complexity to the calculation of the index (Turner 
1998, Turner & Robling 2003). Recently, Von Stengel et al. (2005,2007) showed 
that the principles of the osteogenic index, which have been formulated using 
bone strains from animal models (Turner 1998), are applicable to humans by 
estimating strains from contact forces (von Stengel et al. 2005, von Stengel et al. 
2007). In agreement, the results from comparing the habitual elderly volleyball 
players to matched controls indicate that osteogenic index may also be applica-
ble to the indirect estimation of bone loading environment by measurement of 
maximal dynamic performance. 

10.6 Implications 

Keeping in mind that body mass lost all of its explanatory power in predicting 
bone strength indices when neuromuscular performance was included into the 
regression models; let us speculate what would happen, if bone strength could 
be improved by increasing either body mass or neuromuscular performance. 
When extrapolating the regression results from the postmenopausal women 
from regression model 1 (neuromuscular performance not included), it appears 
that an increase of 1% in body mass is associated with a 0.5% increase in skelet-
al rigidity. From regression model 2 (neuromuscular performance included and 
thus no explanatory power for body mass) it appears that a similar increase in 
performance i.e., impulse, is associated with a 0.5% increase in skeletal rigidity. 
Therefore, in order to obtain an improvement of five percent in skeletal rigidity, 
an increase of 10% would be required in either body mass or performance. It is 
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actually known that increase in body mass is not associated with improved ske-
letal rigidity (van der Voort et al. 2001), whereas improvements in neuromuscu-
lar performance have been observed in association with improved skeletal ri-
gidity in exercise interventions (Vainionpää et al. 2007). If we then consider the 
effects of such an increase in body mass in the postmenopausal group in this 
study, body mass index would increase from overweight 27 to obese 30, which 
is clearly an undesirable side effect. Obesity increases mortality (Flegal et al. 
2005) and the risk of osteoarthritis in the knee (Niu et al. 2009). On the other 
hand, improvements of about 10% in physical performance are realistically at-
tainable with exercise, with few counterproductive side effects (Karinkanta et al. 
2007, Korpelainen et al. 2006, Uusi-Rasi et al. 2003, Vainionpää et al. 2007). Fur-
thermore, positive effects on cardiovascular risk factors may ensue (Babraj et al. 
2009, Heinonen et al. 1996, Vainionpää et al. 2007). 

In general, substantial changes in body mass, irrespective of their direction, 
are associated with osteoporosis (van der Voort et al. 2001). Although weight 
reduction has been reported to be associated with decreased DXA derived bone 
density (Shapses & Riedt 2006), a similar association has not been observed in 
skeletal rigidity with pQCT methodology (Uusi-Rasi et al. 2009). In fact, abso-
lute performance appears to remain quite stable with well executed weight re-
duction (Fogelholm 1994, Shah et al. 2008, Uusi-Rasi et al. 2009, Zachwieja et al. 
2001). In combination with unchanged skeletal rigidity (Uusi-Rasi et al. 2009), 
the aforementioned observations further support the role of neuromuscular 
performance in dictating the loading to which bones adapt. The reaction forces 
and subsequent loads imposed on bones appear to be largely attributable to the 
type of physical activity. The relative loads may be easily multiplied by chang-
ing the type of exercise, e.g. from slow walking to brisk walking or running, as 
well as a variety of jumping exercises (Heinonen et al. 1996, Vainionpää et al. 
2006, Weeks & Beck 2008). 

It has previously been shown that power production decreases more mar-
kedly with aging than maximal isometric force production capacity (Izquierdo 
et al. 1999). The results from the habitual volleyball players appear to support 
the observation that power production capacity can be maintained at an above 
average level with habitual explosive, e.g. volleyball, training (Ojanen et al. 
2007) and the maintained power production maintains bone strength above the 
average age level (Daly & Bass 2006). The results imply that including explosive 
actions, i.e. power training, in habitual exercise may have an additional benefit 
over physical activity in general in terms of maintaining bone strength. Fur-
thermore, a large proportion of bone fractures are caused by falling (Stevens & 
Olson 2000, Wagner et al. 2009). Power production capacity is related to lower 
likelihood of falling (Chan et al. 2007, Perry et al. 2007, Sieri & Beretta 2004, 
Skelton et al. 2002) and better functional ability (Foldvari et al. 2000, Runge et al. 
2004) and therefore maintaining power production capacity into advanced age 
may play a dual role in preventing bone fractures. 
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10.7 Limitations 

As is always the case with cross-sectional designs identification of causal rela-
tionship is impossible and only hypothetical suggestions may be raised. The 
relatively small sample sizes in the present studies particularly somewhat limit 
the credibility of the correlation results. 

The parameters used to characterize neuromuscular performance were 
thought to give a comprehensive measure of neuromuscular function. However, 
physical activity level was assessed using self reports, which have been shown 
to be relatively unreliable (Westerterp 2009). The estimation of muscle volume 
was also indirect, and its precision is relatively poor.  Specific tension estima-
tion relied on the indirect muscle volume estimate and was further simplified 
by assuming a constant pennation angle and a constant moment arm to fiber 
length ratio. These assumptions may cause the specific tension estimate to be 
more a measure of torque production relative to body size rather than a meas-
ure of force production relative to physiological cross-sectional area of the mus-
cle.  

It is well established that bone mineral density or content may not accu-
rately predict trabecular bone strength (Bevill & Keaveny 2009, Liu et al. 2009). 
In women, there is a marked change in trabecular structure in the form of re-
duced connectivity and lost trabeculae in aging, while only trabecular thinning 
is generally seen in men (Khosla et al. 2006, Lochmuller et al. 2008). The com-
pressive strength index used in the present thesis fails to account for changes in 
trabecular structure in terms of connectivity and the number of trabeculae. Thus, 
the BSId results may not be comparable between pre- and postmenopausal 
women, whereas they should be comparable between young and elderly men 
and between young men and young women. However, the methodology used 
in the present thesis did not allow for the estimation of trabecular structure. 



  
 

11 PRIMARY FINDINGS AND CONCLUSIONS 

Considering the inaccuracies of the estimations made and the nature of indirect 
measurements conducted, the following conclusions can be drawn: 
 

1) Even though the pattern of ground reaction forces may differ from 
the pattern of bone strains, it seems reasonable to use ground reac-
tion forces in estimating skeletal loading. 

2) Tibial strength is related to maximal neuromuscular performance in 
young and elderly men and women. The dependency of bone adap-
tation to neuromuscular performance seems to be moderate, but 
site, and loading specific. Neuromuscular performance should be 
measured and preferred over body mass when regression models 
for predicting skeletal rigidity are developed and evaluated. 

3) At the tibial mid-shaft, the difference in the bone to loading ratio 
between young and elderly individuals is bigger than expected 
from the delay in bone adaptation alone. 

4) Even in the elderly, habitual explosive exercise seems to be benefi-
cial for the bones. 

 
The results of the present thesis highlight the possibilities for non-
pharmacological interventions, namely physical exercise, in maintaining skelet-
al rigidity. Individual determinants of neuromuscular performance, such as 
specific tension, have contribution in increasing skeletal integrity and can be 
positively manipulated with exercises, which are also effective in bone streng-
thening and fall prevention.  
  



69 
 
TIIVISTELMÄ (FINNISH SUMMARY) 

Neuromuskulaarinen suorituskyky luun geometrian ja voiman selittäjänä 
ikääntymisen yhteydessä 
 
Osteoporoosi, kaatumiset ja niistä seuraavat luun murtumat aiheuttavat kärsi-
mystä ja taloudellista taakkaa. Lääkeinterventiot eivät ole kustannustehokas 
tapa ehkäistä näitä osteoporoosiin ja ikääntymiseen liittyviä luun murtumia, 
joten epäfarmakologisia interventioita, kuten liikunta, on syytä harkita. Tämän 
väitöstyön tavoitteena oli tutkia kehon massan, neuromuskulaarisen suoritus-
kyvyn (impulssi ja teho erilaisissa hypyissä) ja luuston jäykkyyden välisiä yhte-
yksiä molemmilla sukupuolilla ja nuorilla ja iäkkäillä koehenkilöryhmillä. Tut-
kimusten tuloksien perusteella vaikuttaa siltä, että sääriluun jäykkyys on yh-
teydessä maksimaaliseen neuromuskulaariseen suorituskykyyn nuorilla ja iäk-
käillä miehillä ja naisilla. Luun jäykkyyden ja neuromuskulaarisen suoritusky-
vyn yhteys vaikuttaisi olevan kohtuullinen, mutta kohta- ja kuormitusspesifi. 
Lisäksi neuromuskulaarinen suorituskyky lisää luun jäykkyyttä ennustavien 
regressiomallien selitysosuutta kehon massan vaikutuksen lisäksi. Ero luun 
jäykkyyden ja kuormituksen suhteessa nuorten ja iäkkäiden koehenkilöiden 
välillä on suurempi kuin mitä voisi odottaa luun adaptaatioviiveen perusteella. 
Tämä havainto viittaa siihen, että luuston kuormitusherkkyys laskee ikäänty-
misen yhteydessä. Kuitenkin harrastukseen liittyvät räjähtävät harjoitteet vai-
kuttavat olevan yhteydessä jäykempiin luihin jopa iäkkäillä. Neuromuskulaari-
sen suorituskyvyn osatekijät, kuten ominaisjäykkyys, voivat vaikutttaa luuston 
eheyteen ja suorituskyvyn osatekijöitä voidaan manipuloida positiivisesti har-
joitteilla, jotka ovat tehokkaita myös kaatumisten ehkäisyssä. 
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Health counselling, learning to learn. Video-
tapes expressing and developing nurses´
communication skills. 159 p. Summary 6 p.
1997.

47 SIMONEN, RIITTA, Determinants of adult
psychomotor speed. A study of monozygotic
twins. - Psykomotorisen nopeuden
determinantit identtisillä kaksosilla. 49 p.
Yhteenveto 2 p. 1997.

48 NEVALA-PURANEN, NINA, Physical work and
ergonomics in dairy farming. Effects of occu-
pationally oriented medical rehabilitaton and
environmental measures. 80 p. (132 p.) 1997.

49 HEINONEN, ARI, Exercise as an Osteogenic
Stimulus. 69 p. (160 p.) Tiivistelmä 1 p. 1997.

50 VUOLLE, PAULI (Ed.) Sport in social context by
Kalevi Heinilä. Commemorative book in
Honour of Professor Kalevi Heinilä. 200 p.
1997.

51 TUOMI, JOUNI, Suomalainen hoitotiede-
keskustelu. - The genesis of nursing and
caring science in Finland. 218 p. Summary 7 p.
1997.

52 TOLVANEN, KAIJA, Terveyttä edistävän organi-
saation kehittäminen oppivaksi organisaati-
oksi. Kehitysnäytökset ja kehittämistehtävät
terveyskeskuksen muutoksen virittäjänä. -
Application of a learning organisation model
to improve services in a community health
centre. Development examples and
development tasks are the key to converting a
health care. 197 p. Summary 3 p. 1998.

53 OKSA, JUHA, Cooling and neuromuscular
performance in man. 61 p. (121 p.) Yhteenveto
2 p. 1998.

54 GIBBONS, LAURA, Back function testing and
paraspinal muscle magnetic resonance image
parameters: their associations and determi-
nants. A study on male, monozygotic twins.
67 p (128 p.) Yhteenveto 1p. 1998.

55 NIEMINEN, PIPSA, Four dances subcultures. A
study of non-professional dancers´ sociali-
zation, participation motives, attitudes and
stereotypes. - Neljä tanssin alakulttuuria.
Tutkimus tanssinharrastajien tanssiin
sosiaalistumisesta, osallistumismotiiveista,
asenteista ja stereotypioista. 165 p. Yhteenveto
4 p. 1998.

56 LAUKKANEN, PIA, Iäkkäiden henkilöiden selviy-
tyminen päivittäisistä toiminnoista. - Carrying
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out the activities of daily living among elderly
people. 130 p. (189 p.). Summary 3 p. 1998.

57 AVELA, JANNE, Stretch-reflex adaptation in man.
Interaction between load, fatigue and muscle
stiffness. 87 p. Yhteenveto 3 p. 1998.

58 SUOMI, KIMMO, Liikunnan yhteissuunnittelu-
metodi. Metodin toimivuuden arviointi
Jyväskylän Huhtasuon lähiössä. - Collabo-
rative planning method of sports culture.
Evaluation of the method in the Huhtasuo
suburb of the city of Jyväskylä. 190 p.
Summary 8 p. 1998.

59 PÖTSÖNEN, RIIKKA, Naiseksi, mieheksi, tietoisek-
si. Koululaisten seksuaalinen kokeneisuus,
HIV/AIDS-tiedot, -asenteet ja tiedonlähteet. -
Growing as a woman, growing as a man,
growing as a conscious citizen. 93 p. (171 p.).
Summary 3 p. 1998.

60 HÄKKINEN, ARJA, Resistance training in patients
with early inflammatory rheumatic diseases.
Special reference to neuromuscular function,
bone mineral density and disease activity. -
Dynaamisen voimaharjoittelun vaikutukset
nivelreumaa sairastavien potilaiden lihas-
voimaan, luutiheyteen ja taudin aktiivisuu-
teen. 62 p. (119 p.) Yhteenveto 1 p. 1999.

61 TYNJÄLÄ, JORMA, Sleep habits, perceived sleep
quality and tiredness among adolescents. A
health behavioural approach. - Nuorten
nukkumistottumukset, koettu unen laatu ja
väsyneisyys. 104 p. (167 p.) Yhteenveto 3 p.
1999.

62 PÖNKKÖ, ANNELI, Vanhemmat ja lastentarhan-
opettajat päiväkotilasten minäkäsityksen
tukena. - Parents´ and teachers´ role in self-
perception of children in kindergartens. 138 p.
Summary 4 p. 1999.

63 PAAVOLAINEN, LEENA, Neuromuscular charac-
teristics and muscle power as determinants of
running performance in endurance athletes
with special reference to explosive-strength
training. - Hermolihasjärjestelmän toiminta-
kapasiteetti kestävyyssuorituskykyä rajoitta-
vana tekijänä. 88 p. (138 p.) Yhteenveto 4 p.
1999.

64 VIRTANEN, PAULA, Effects of physical activity
and experimental diabetes on carbonic  an-
hydrace III and markers of collagen synthesis
in skeletal muscle and serum.  77 p. (123 p.)
Yhteenveto 2 p. 1999.

65 KEPLER, KAILI, Nuorten koettu terveys,
terveyskäyttäytyminen ja
sosiaalistumisympäristö Virossa. -
Adolescents’ perceived health, health
behaviour and socialisation enviroment in
Estonia. - Eesti noorte tervis, tervisekäitumine
ja sotsiaalne keskkond. 203 p. Summary 4p.
Kokkuvõte 4 p. 1999.

66 SUNI, JAANA, Health-related fitness test battery
for middle-aged adults with emphasis on
musculoskeletal and motor tests. 96 p. (165 p.)
Yhteenveto 2 p. 2000.

67 SYRJÄ, PASI, Performance-related emotions in
highly skilled soccer players. A longitudinal
study based on the IZOF model. 158 p.
Summary 3 p. 2000.

68 VÄLIMAA, RAILI, Nuorten koettu terveys kysely-
aineistojen ja ryhmähaastattelujen valossa. -
Adolescents’ perceived health based on
surveys and focus group discussions. 208 p.
Summary 4 p. 2000.

69 KETTUNEN, JYRKI, Physical loading and later
lower-limb function and findings . A study
among male former elite athletes. - Fyysisen
kuormituksen yhteydet alaraajojen toimintaan
ja löydöksiin entisillä huippu-urhelijamiehil-
lä. 68 p. (108 p.) Yhteenveto 2 p. 2000.

70 HORITA, TOMOKI, Stiffness regulation during
stretch-shortening cycle exercise. 82 p. (170 p.)
2000.

71 HELIN, SATU, Iäkkäiden henkilöiden  toiminta-
kyvyn heikkeneminen ja sen kompensaatio-
prosessi. - Functional decline and the process
of compensation in elderly people. 226 p.
Summary 10 p. 2000.

72 KUUKKANEN, TIINA, Therapeutic exercise
programs and subjects with low back pain.
A controlled study of changes in function,
activity and participation. 92 p. (154 p.)
Tiivistelmä 2 p. 2000.

73 VIRMAVIRTA, MIKKO, Limiting factors in ski
jumping take-off. 64 p. (124 p.) Yhteenveto 2 p.
2000.

74 PELTOKALLIO, LIISA, Nyt olisi pysähtymisen
paikka.  Fysioterapian opettajien työhön
liittyviä kokemuksia terveysalan ammatillises-
sa koulutuksessa.  - Now it’s time to stop.
Physiotherapy teachers’ work experiences in
vocational health care education. 162 p.
Summary 5 p. 2001.

75 KETTUNEN, TARJA, Neuvontakeskustelu. Tutki-
mus potilaan osallistumisesta ja sen tukemi-
sesta sairaalan terveysneuvonnassa.
- Health counseling conversation. A study
of patient participation and its support by
nurses during hospital counseling. 123 p. (222
p.) Summary 6 p. 2001.

76 PULLINEN, TEEMU, Sympathoadrenal response
to resistance exercise in men, women and
pubescent boys. With special reference to
interaction with other hormones and
neuromuscular performance. 76 p. (141 p.)
Yhteenveto 2 p. 2001.

77 BLOMQVIST, MINNA, Game understanding
and game performance in badminton.
Development and validation of assessment
instruments and their application to games
teaching and coaching. 83 p. Yhteenveto
5 p. 2001.

78 FINNI, TAIJA, Muscle mechanics during human
movement revealed by in vivo measurements
of tendon force and muscle length. 83 p. (161
p.) Yhteenveto 3 p. 2001.

79 KARIMÄKI, ARI, Sosiaalisten vaikutusten arvi-
ointi liikuntarakentamisessa. Esimerkkinä
Äänekosken uimahalli. - Social impact
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assessment method in sports planning. - The
case of Äänekoski leisure pool.  194 p.
Summary 3 p. 2001.

80 PELTONEN, JUHA, Effects of oxygen fraction in
inspired air on cardiorespiratory responses
and exercise performance. 86 p. (126 p.)
Yhteenveto 2 p. 2002.

81 HEINILÄ, LIISA, Analysis of interaction
processes in physical education. Development
of an observation instrument, its application
to teacher training and program evaluation.
406 p. Yhteenveto 11 p. 2002.

82 LINNAMO, VESA, Motor unit activation and force
production during eccentric, concentric and
isometric actions. - Motoristen yksiköiden
aktivointi ja lihasten voimantuotto
eksentrisessä, konsentrisessa ja isometrisessä
lihastyössä. 77 p. (150 p.)
Yhteenveto 2 p. 2002.

83 PERTTUNEN, JARMO, Foot loading in normal
and pathological walking.  86 p. (213 p.)
Yhteenveto 2 p. 2002.

84 LEINONEN, RAIJA, Self-rated health in old age.
A follow-up study of changes and
determinants. 65 p. (122 p.) Yhteenveto 2 p.
2002.

85 GRETSCHEL, ANU, Kunta nuorten osallisuus-
ympäristönä. Nuorten ryhmän ja kunnan
vuorovaikutussuhteen tarkastelu kolmen
liikuntarakentamisprojektin laadunarvioinnin
keinoin. - The municipality as an involvement
environment - an examination of the
interactive relationship between youth groups
and municipalities through the quality
assessment of three sports facilities
construction projects.  236 p. Summary 11 p.
2002.

86 PÖYHÖNEN, TAPANI, Neuromuscular function
during knee exercises in water. With special
reference to hydrodynamics and therapy. 77 p.
(124 p.) Yhteenveto 2 p. 2002.

87 HIRVENSALO, MIRJA, Liikuntaharrastus
iäkkäänä. Yhteys kuolleisuuteen ja avun-
tarpeeseen sekä terveydenhuolto liikunnan
edistäjänä. - Physical activity in old age -
significance for public health and promotion
strategies. 106 p. (196 p.) Summary 4 p. 2002.

88 KONTULAINEN, SAIJA, Training, detraining and
bone - Effect of exercise on bone mass and
structure with special reference to
maintenance of exercise induced bone gain.
70 p. (117 p.) Yhteenveto 2 p. 2002.

89 PITKÄNEN, HANNU, Amino acid metabolism in
athletes and non-athletes. - With Special
reference to amino acid concentrations and
protein balance in exercise, training and
aging. 78 p. (167 p.) Yhteenveto 3 p. 2002.

90 LIIMATAINEN, LEENA, Kokemuksellisen oppimi-
sen kautta kohti terveyden edistämisen
asiantuntijuutta. Hoitotyön ammatti-
korkeakouluopiskelijoiden terveyden edistä-
misen oppiminen hoitotyön harjoittelussa.
- Towards health promotion expertise

through experiential learning. Student
nurses’ health promotion learning during
clinical practice. 93 p. (164 p.) Summary
4 p. 2002.

91 STÅHL, TIMO, Liikunnan toimintapolitiikan
arviointia terveyden edistämisen kontekstissa.
Sosiaalisen tuen, fyysisen ympäristön ja
poliittisen ympäristön yhteys liikunta-aktiivi-
suuteen. - Evaluation of the Finnish sport
policy in the context of health promotion.
Relationships between social support,
physical environment, policy environment
and physical activity 102 p. (152 p.) Summary
3 p. 2003.

92 OGISO, KAZUYUKI, Stretch Reflex Modulation
during Exercise and Fatigue. 88 p. (170 p.)
Yhteenveto 1 p. 2003.

9 3 RAUHASALO, ANNELI, Hoitoaika lyhenee – koti
kutsuu. Lyhythoitoinen kirurginen toiminta
vanhusten itsensä kokemana. - Care-time
shortens – home beckons. Short term surgical
procedures as experienced by elderly patients.
194 p. Summary 12 p. 2003.

94 PALOMÄKI, SIRKKA-LIISA, Suhde vanhenemiseen.
Iäkkäät naiset elämänsä kertojina ja raken-
tajina. - Relation to aging. Elderly women as
narrators and constructors of their lives.
143 p. Summary 6 p. 2004.

95 SALMIKANGAS, ANNA-KATRIINA, Nakertamisesta
hanketoimintaan. Tapaustutkimus Nakertaja-
Hetteenmäen asuinalueen kehittämistoimin-
nasta ja liikunnan osuudesta yhteissuun-
nittelussa. - From togetherness to project
activity. A case study on the development of a
neighbourhood in Kainuu and the role of
physical activity in joint planning. 269 p.
Summary 8 p. 2004.

96 YLÖNEN, MAARIT E., Sanaton dialogi. Tanssi
ruumiillisena tietona. - Dialogue without
words. Dance as bodily knowledge. 45 p.
(135 p.) Summary 5 p. 2004.

97 TUMMAVUORI, MARGAREETTA, Long-term effects
of physical training on cardiac function and
structure in adolescent cross-country skiers.
A  6.5-year longitudinal echocardiographic
study. 151 p. Summary 1 p. 2004.

98 SIROLA, KIRSI, Porilaisten yhdeksäsluokkalaisten
ja kasvattajien käsityksiä nuorten alkoholin-
käytöstä ja alkoholinkäytön ehkäisystä. -
Views of ninth graders, educators and parents
in Pori, Finland on adolescent alcohol use and
on preventing alcohol use. 189 p. Summary
3 p. 2004.

99 LAMPINEN, PÄIVI, Fyysinen aktiivisuus, harras-
tustoiminta ja liikkumiskyky iäkkäiden ihmis-
ten psyykkisen hyvinvoinnin ennustajina. 65–
84-vuotiaiden jyväskyläläisten 8-vuotisseuruu-
tutkimus.  - Activity and mobility as associates
and predictors of mental well-being among
older adults. 94 p. (165 p.) Summary 2 p. 2004.
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100 RANTA, SARI, Vanhenemismuutosten etenemi-
nen. 75-vuotiaiden henkilöiden antropo-
metristen ominaisuuksien, fyysisen toiminta-
kyvyn ja kognitiivisen kyvykkyyden muutok-
set viiden ja kymmenen vuoden seuranta-
aikana. - The progress of aging processes. A 5-
and 10-year follow-up study of the changes in
anthropometrical characteristics and physical
and cognitive capacities  among 75-year-old
persons. 186 p. Summary 2 p. 2004.

101 SIHVONEN, SANNA, Postural balance and aging.
Cross-sectional comparative studies and a
balance training intervention. - Ikääntyminen
ja tasapaino. Eri ikäisten tasapaino ja tasa-
painoharjoittelun vaikuttavuus ikääntyneillä
palvelukodissa asuvilla naisilla. 65 p. (106 p.)
Yhteenveto 2 p. 2004.

102 RISSANEN, AARO, Back muscles and intensive
rehabilitation of patients with chronic low
back pain. Effects on back muscle structure
and function and patient disability. - Selkä-
lihakset ja pitkäaikaista selkäkipua sairasta-
vien potilaiden intensiivinen kuntoutus.
Vaikutukset selkälihasten rakenteeseen ja
toimintaan sekä potilaiden vajaakuntoisuu-
teen. 90 p. (124 p.) Yhteenveto 2 p. 2004.

108 KÄRKI, ANNE, Physiotherapy for the functioning
of breast cancer patients. Studies of the
effectiveness of physiotherapy methods and
exercise, of the content and timing of post-
operative education and of the experienced
functioning and disability . - Rintasyöpäleikat-
tujen toimintakyky ja siihen vaikuttaminen
fysioterapiassa ja harjoittelussa. 70 p. (138 p.)
Yhteenveto 3 p. 2005.

109 RAJANIEMI, VESA, Liikuntapaikkarakentaminen
ja maankäytön suunnittelu. Tutkimus eri
väestöryhmät tasapuolisesti huomioon
ottavasta liikuntapaikkasuunnittelusta ja sen
kytkemisestä maankäyttö- ja rakennuslain
mukaiseen kaavoitukseen. - Sports area
construction and land use planning – Study of
sports area planning that considers all the
population groups even-handedly and
integrates sports area planning with land use
planning under the land use and building act.
171 p. Summary 6 p. 2005.

110 WANG, QINGJU, Bone growth in pubertal girls.
Cross-sectional and lingitudinal investigation
of the association of sex hormones, physical
activity, body composition and muscle
strength with bone mass and geometry. 75 p.
(117 p.) Tiivistelmä 1 p. 2005.

111 ROPPONEN, ANNINA, The role of heredity,
other constitutional structural and behavioral
factors in back function tests.- Perimä, muut
synnynnäiset rakenteelliset tekijät ja
käyttäytymistekijät selän toimintakyky-
testeissä. 78 P. (125 p.) Tiivistelmä 1 p. 2006.

112 ARKELA-KAUTIAINEN, MARJA,  Functioning and
quality of life as perspectives of health in
patients with juvenile idiopathic arthritis in
early adulthood. Measurement and long-term
outcome. - Toimintakyky ja elämänlaatu
terveyden näkökulmina lastenreumaa
sairastaneilla nuorilla aikuisilla. Mittaaminen
ja pitkäaikaistulokset. 95 p. (134 p.)
Tiivistelmä 2 p. 2006.

113 RAUTIO, NINA, Seuruu- ja vertailututkimus
sosioekonomisen aseman yhteydestä
toimintakykyyn iäkkäillä henkilöillä.
- A follow-up and cross-country comparison
study on socio-economic position and its
relationship to functional capacity in elderly
people.  114 p. (187 p.) Summary 3 p. 2006.

114 TIIKKAINEN, PIRJO, Vanhuusiän yksinäisyys.
Seuruutukimus emotionaalista ja sosiaalista
yksinäisyyttä määrittävistä tekijöistä. -
Loneliness in old age – a follow-up study of
determinants of emotional and social
loneliness. 76 p. (128 p.) Summary 2 p. 2006.

115 AHTIAINEN, JUHA, Neuromuscular, hormonal
and molecular responses to heavy resistance
training in strength trained men; with special
reference to various resistance exercise
protocols, serum hormones and gene
expression of androgen receptor and insulin-
like growth factor-I. - Neuromuskulaariset,

103 KALLINEN, MAURI, Cardiovascular benefits and
potential hazards of physical exercise in
elderly people. - Liikunnan hyödylliset ja
mahdolliset haitalliset vaikutukset ikäänty-
neiden verenkiertoelimistöön. 97 p. (135 p).
Yhteenveto 2 p. 2004.

104 SÄÄKSLAHTI, ARJA, Liikuntaintervention vaiku-
tus 3–7-vuotiaiden lasten fyysiseen aktiivi-
suuteen ja motorisiin taitoihin sekä fyysisen
aktiivisuuden yhteys sydän- ja verisuonitau-
tien riskitekijöihin. - Effects of physical
activity Intervention on physical activity and
motor skills and relationships between
physical activity and coronary heart disease
risk factors in 3–7-year-old children. 153 p.
Summary 3 p. 2005.

105 HÄMÄLÄINEN, PIIA, Oral health status as a
predictor of changes in general health among
elderly people. 76 p. (120 p.) Summary 2 p.
2005.

106 LIINAMO, ARJA, Suomalaisnuorten seksuaali-
kasvatus ja seksuaaliterveystiedot oppilaan ja
koulun näkökulmasta. Arviointia terveyden
edistämisen viitekehyksessä. - Sexual
education and sexual health knowledge
among Finnish adolescents at pupil and
school level. Evaluation from the point of view
of health promotion. 111 p. (176 p.) Summary
5 p. 2005.

107 ISHIKAWA, MASAKI, In vivo muscle mechanics
during human locomotion. Fascicle-tendinous
tissue interaction during stretch-shortening
cycle exercises. - Venytysrefleksin muutokset
liikkeessä ja väsymyksessä. 89 p. (228 p.)
Yhteenveto 1 p. 2005.
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hormonaaliset ja molekulaariset vasteet voi-
maharjoittelussa voimaurheilijoilla.  119 p.
(204 p.) Yhteenveto 2 p. 2006.

116 PAJALA, SATU, Postural balance and suscepti-
bility to falls in older women. Genetic and
environmental influences in single and dual
task situations.  - Iäkkäiden naisten tasapai-
nokyky yksinkertaisissa sekä huomion jaka-
mista vaativissa tilanteissa ja kaatumisriski-
perimän merkitys yksilöiden välisten erojen
selittäjinä.  78 p. (120 p.) Yhteenveto 3 p. 2006.

117 TIAINEN, KRISTINA, Genetics of skeletal muscle
characteristics and maximal walking speed
among older female twins. -  Lihasvoiman ja
kävelynopeuden periytyvyys iäkkäillä
naiskaksosilla. 77 p. (123 p.) Yhteenveto 2 p.
2006.

118 SJÖGREN, TUULIKKI, Effectiveness of a workplace
physical exercise intervention on the
functioning, work ability, and subjective well-
being of office workers – a cluster randomised
controlled cross-over trial with one-year
follow-up. - Työpaikalla tapahtuvan fyysisen
harjoitteluintervention vaikuttavuus
toimistotyöntekijöiden toimintakykyyn,
työkykyyn ja yleiseen subjektiiviseen elämän-
laatuun – ryhmätasolla satunnaistettu vaihto-
vuorokoe ja vuoden seuranta. 100 p. (139 p.)
Tiivistelmä 3 p. 2006.

119 LYYRA, TIINA-MARI, Predictors of mortality in
old age. Contribution of self-rated health,
physical functions, life satisfaction and social
support on survival among older people.
- Kuolleisuuden ennustetekijät iäkkäässä
väestössä. Itsearvioidun terveyden, fyysisten
toimintojen, elämään tyytyväisyyden ja
sosiaalisen tuen yhteys iäkkäiden ihmisten
eloonjäämiseen. 72 p. (106 p.) Tiivistelmä 2 p.
2006.

120 SOINI, MARKUS, Motivaatioilmaston yhteys
yhdeksäsluokkalaisten fyysiseen aktiivisuu-
teen ja viihtymiseen koulun liikuntatunneilla.
- The relationship of motivational climate to
physical activity intensity and enjoyment
within ninth grade pupils in school physical
education lessons. 91 p. 2006.

121 VUORIMAA, TIMO, Neuromuscular, hormonal
and oxidative stress responses to endurance
running exercises in well trained runners. -
Neuromuskulaariset, hormonaaliset ja
hapettumisstressiin liittyvät vasteet
kestävyysjuoksuharjoituksiin hyvin
harjoitelleilla juoksijoilla. 93 p. (152 p.)
Yhteenveto 3 p. 2007.

122   MONONEN, KAISU, The effects of augmented
feedback on motor skill learning in shooting.
A feedback training intervention among
inexperienced rifle shooters. - Ulkoisen
palautteen vaikutus motoriseen oppimiseen
ammunnassa: Harjoittelututkimus koke-
mattomilla kivääriampujilla. 63 p.
Yhteenveto 4 p. 2007.

123 SALLINEN, JANNE, Dietary Intake and Strength
Training Adaptation in 50–70 -year old Men
and Women. With special reference to muscle
mass, strength, serum anabolic hormone
concentrations, blood pressure, blood lipids
and lipoproteins and glycemic control.
- Ravinnon merkitys voimaharjoittelussa
50–70 -vuotiailla miehillä ja naisilla  103 p.
(204 p.) Yhteenveto 3 p. 2007.

124 KASILA KIRSTI, Schoolchildren’s oral health
counselling within the organisational context
of public oral health care. Applying and
developing theoretical and empirical
perspectives. 96 p. (139 p.) Tiivistelmä 3 p.
2007.

125 PYÖRIÄ, OUTI, Reliable clinical assessment of
stroke patients’ postural control and
development of physiotherapy in stroke
rehabilitation. - Aivoverenkiertohäiriö-
potilaiden toimintakyvyn luotettava kliininen
mittaaminen ja fysioterapian kehittäminen Itä-
Savon sairaanhoitopiirin alueella. 94 p. (143
p.) Yhteenveto 6 p. 2007.

126 VALKEINEN, HELI, Physical fitness, pain and
fatigue in postmenopausal women with
fibromyalgia. Effects of strength training.
- Fyysinen kunto, kipu- ja väsymysoireet ja
säännöllisen voimaharjoittelun vaikutukset
menopaussi-iän ohittaneilla fibromyalgiaa
sairastavilla naisilla. 101 p. (132 p.)
Yhteenveto 2 p. 2007.

127 HÄMÄLÄINEN, KIRSI, Urheilija ja valmentaja
urheilun maailmassa. Eetokset, ihanteet ja
kasvatus urheilijoiden tarinoissa. - An athlete
and a coach in the world of sports. Ethos,
ideals and education in athletes’ narratives.
176 p. Tiivistelmä 2 p. 2008.

128 AITTASALO, MINNA, Promoting physical activity
of working aged adults with selected personal
approaches in primary health care.
Feasibility, effectiveness and an example of
nationwide dissemination.  -   Työikäisten
liikunnan edistäminen avoterveydenhuol-
lossa –  työtapojen toteuttamiskelpoisuus ja
vaikuttavuus sekä esimerkki yhden työtavan
levittämisestä käytäntöön. 105 p. (161 p.)
Yhteenveto 3 p. 2008.

129 PORTEGIJS, ERJA, Asymmetrical lower-limb
muscle strength deficit in older people.
 - Alaraajojen lihasvoiman puoliero iäkkäillä
ihmisillä. 105 p. (155 p.) Yhteenveto 3 p. 2008.

130 LAITINEN-VÄÄNÄNEN, SIRPA, The construction of
supervision and physiotherapy expertise: A
qualitative study of physiotherapy students’
learning sessions in clinical education.
 - Opiskelijan ohjauksen ja fysioterapian
asiantuntijuuden rakentuminen: Laa-
dullinen tutkimus fysioterapiaopiskelijan
oppimistilanteista työharjoittelussa. 69 p.
(118 p.) Yhteenveto 3 p. 2008.
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131 IIVONEN, SUSANNA, Early Steps -liikunta-
ohjelman yhteydet 4–5-vuotiaiden päiväkoti-
lasten motoristen perustaitojen kehitykseen.
 - The associations between an Early Steps
physical education curriculum and the
fundamental motor skills development of 4–5-
year-old preschool children. 157 p. Summary
4 p. 2008.
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