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Abstract

The origin of the electroweak symmetry breaking is unknown and Stan-
dard Model Higgs sector suffers from some theoretical problems. Thus
it is justified to seek other ways to break the symmetry. In this thesis
the focus is in Technicolor models. As a model building tool we review
Witten and gauge anomalies. Constraints from anomalies are used when
Minimal Walking Technicolor model is constructed and we show that the
model is viable in the light of electroweak precision measurements. We
also show that Standard Model has a Z6 symmetry. Requiring Minimal
Walking Technicolor model to be Z6 symmetric leads to doubly charged
leptons. Collider phenomenology of these leptons is investigated.
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Tiivistelmä

Sähköheikon symmetriarikon todellinen alkuperä on hämärän peitossa
ja standardimallin Higgsin sektori kärsii muutamista teoreettisista on-
gelmista. Näin ollen on perusteltua etsiä uusia tapoja rikkoa symmet-
ria. Tässä tutkielmassa tarkastellaan tekniväriteorioita. Mitta-anomaliat
ja Wittenin anomalia esitellään antamaan rajoitteita uusien teorioiden ra-
kentamiselle. Näitä rajoitteita hyväksikäyttäen rakennetaan minimaali-
nen kävelevä tekniväriteoria, joka on toimiva myös sähköheikkojen tark-
kuusmittausten näkökulmasta. Standardimallin osoitetaan olevan invari-
antti myös Z6 muunnoksissa. Vaatimalla Z6 symmetria minimaaliselta
kävelevältä tekniväriteorialta päädytään kaksinkertaisesti varattuihin lep-
toneihin. Lisäksi työssä tarkastellaan näiden tuplasti varattujen leptonien
törmäytinfenomenologiaa.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics describes all known funda-
mental forces, except gravity, in terms of gauge field theories. During
the preceding decades this theory has successfully explained all experi-
mental data with a high precision. After formulation of the SM, many
extensions to it have been constructed. These Beyond Standard Model
(BSM) theories are under intensive investigation nowadays. But before
going beyond SM, one has to argue what is wrong with it. Actually there
is nothing wrong with the SM, because in the light of experimental data
it is a correct low energy effective theory, but it leaves much unexplained.

The strongest experimental result in disagreement with SM is the obser-
vation of neutrino oscillations. Massless SM neutrinos can not oscillate,
so there has to be some mechanism to produce small mass to neutrinos.
Nothing prevents us from writing Yukawa mass terms for the neutrinos
but there are also other possibilities. One popular way to approach this
problem is the so called seesaw mechanism [1], where some additional
new particle allows to write down the Yukawa interaction term between
this new particle, neutrino and the Higgs field. Upon condensation of
the Higgs this interaction generates the mass term for the neutrino. The
neutrino massess can be achieved also in some extra dimensional models
[2].

From the theoretical point of view SM is quite arbitrary since ∼ 20 pa-
rameters are needed to fix the theory, whereas in the ideal case only one
measurable parameter would be needed. Many of these parameters are
related to the scalar Higgs sector, which break the electroweak symme-
try. Because the Higgs particle has not shown up in the experiments, the
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Figure 1.1: The one loop diagram contributing to φ4 theory.

genuine origin of the symmetry breaking is not known. If it is driven by
the fundamental scalar particle, as in the SM, there exists few theoretical
problems

If a theory developes a symmetry when some parameter approaches zero,
the radiative corrections to this parameter are multiplicative. This ensures
that small values of such parameters remain small under quantum correc-
tion. A well known example is the chiral symmetry of massless Quantum
Chromodynamics (QCD). In the case of scalar fields no such symmetry
exists and the corrections are additive instead. A simple example is the
massless φ4-theory

L =
1

2
(∂µφ)2 − λ

4!
φ4. (1.1)

The one loop corretion (figure 1.1) induces a quadratic mass correction

−im2 = −i
λ

16π2
Λ2, (1.2)

where Λ is the cutoff scale. So, there is no reason why scalar particle mass
should be smaller than the cutoff scale. This is called the naturalness
problem. In the case of SM, to keep electroweak scale at vweak ≈ 246 GeV,
tuning of the parameters with high precision is needed, if the cutoff scale
is considered to be of the oder of Planck scale. This is called the fine
tuning problem. Also, nothing explains the great difference of these two
scales. This is called the hierarchy problem.

One of the most popular approaches to solve the problems with elec-
troweak sector is supersymmetry, which relates particles with different
spins [4]. In the supersymmetric SM the Higgs bosons is related with the
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spin 1
2 Higgsino. The symmetry guarantees same masses for the Higgs bo-

son and Higgsino. Thus the theory is natural due to delicate cancellation
between quantum corrections from bosonic and fermionic degrees of free-
dom. Since no supersymmetric partners for the SM particles have been
observed, symmetry has to be broken at low energies. The problem with
this approach is how to break the supersymmetry. For the Grand Unified
Theory (GUT) model building supersymmetry offers an attractive feature,
because in the Minimal Supersymmetric SM coupling constants cross at
the one point. This is not the feature of SM.

In this thesis we investigate Technicolor models (TC) where electroweak
symmetry breaks dynamically, without a fundamental scalar Higgs. We
begin by showing that the ordinary SM has a Z6 symmetry. In the second
chapter gauge anomalies and Witten anomaly are reviewed. Then we in-
troduce basic concepts and consequences of Technocolor in chapter 4 and
discuss precision measurements in chapter 5. In chapter 6 we see how all
these ingredients come together in a concrete model building framework
of Minimal Walking Technicolor (MWTC). We will see that requirements
of Z6 symmetry and anomaly cancellation lead to interesting constraints
on the particle content. In chapter 7 we determine some phenomenologi-
cal consequences and present our conclusions.
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Chapter 2

Z6 Symmetry

2.1 Gauge Fields and Geometry

In a flat space like Rn it is straightforward to compare two vectors just
moving them to the same point. Further thinking is needed when vectors
are in a curved space, because vectors in the different points are defined in
different local coordinate systems. To compare vectors Vµ(x) and Vµ(x,),
the vector Vµ(x) have to be parallel transported to point x,.

Let X|c(t) be a vector field defined along the path c(t). If a vector Xµ

satisfies an equation

dXµ

dt
+ Γ

µ
νλ

dxν(c(t))

dt
Xλ = 0, (2.1)

it is said to be parallel transported along c(t) [3]. In Rn this operation
corresponds to a transport along a straight line. In a flat space the angle
between a line and a vector remains constant when moving from one
point to another. In curved space, on the other hand, this is not the case.
In the equation (2.1) the connection coefficients Γ

µ
νλ tell how the base

vectors change during the movement from one point to another.

One of the crucial differences between flat and curved space is that the
result of parallel transport in the curved space will depend on the path,
as illustrated in the figure 2.1

Equation (2.1) can be formally solved by introducing a propagator for the
parallel transport [5]
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Figure 2.1: Parallel transport along the sphere.

Xµ(t) = W
µ
ρ(t, t0)X

ρ(t0). (2.2)

Because the parallel transport depend on a path, also the parallel trans-
porter W depends on it. Denoting

A
µ
ρ(t) = −Γ

µ
σρ
dxσ

dt
, (2.3)

allows us to write the equation (2.1) in a form

d

dt
Xµ = A

µ
ρX

ρ. (2.4)

Substituting Xµ(t) from (2.2) into this gives

d

dt
W

µ
ρ(t, t0) = A

µ
σW

σ
ρ(t, t0). (2.5)

Integrating both sides and then iterating leads to equation

W
µ
ρ(t, t0) = δ

µ
ρ +

∫ t

t0
dηA

µ
ρ(η) +

∫ t

t0

∫ η

t0
dηdη,A

µ
σ(η,)Aσ

ρ(η) + . . . , (2.6)

where Kronecker delta corresponds to t = t0. Let us now define a path
ordered product in complete analogy to the time ordered product [6]
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∫ t

t0

∫ ηn

t0
. . .
∫ η2

t0
dηndηn−1 . . . dη1A(ηn)A(ηn−1) . . . A(η1) (2.7)

=
1

n!

∫ t

t0

∫ t

t0
. . .
∫ t

t0
dηn . . . dη1P{A(ηn)A(ηn−1) . . . A(η1)}, (2.8)

where P symbolizes the ordering ηn ≥ ηn−1 ≥ · · · ≥ η1. Thus the propa-
gator can be represented in a form

W
µ
ρ(t, t0) = P

{

exp

(

∫ t

t0
dηA

µ
ρ(η)

)}

= P

{

exp

(

−
∫ t

t0
dη

dxσ

dη
Γ

µ
σρ

)}

.

(2.9)

Left hand side of the equation (2.1) can be written as

dxν

dt

[

∂νX
µ + Γ

µ
νρX

ρ
]

. (2.10)

The expression in the parenthesis is the covariant derivative which is a
generalization to the normal directional derivative. In the Yang-Mills the-
ories partial derivative is replaced by the covariant derivative [7]

(Dµψ)i = ∂µψi − ig

2
Aa

µ(Ta)i jψ
j, (2.11)

which allows us to identify the connection with the gauge field

− ig

2
(Ta)i jA

a
µ ∼ Γi

jµ. (2.12)

Thus, in the case of Yang-Mills fields, the propagator can be written as

Wi
j(t, t0) = P

{

exp

(

ig

2

∫ t

t0
dη

dxσ

dη
(Ta)i jA

a
σ

)}

. (2.13)

If the integration path is open, the equation (2.13) is called the Wilson
line. In the case of a closed path it is called the Wilson loop [6].
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2.2 Z6 Symmetry of Standard Model

From the six different SM covariant derivatives, it is possible to form six
different parallel transporters [8, 9]

WLl = P exp(i
∫

c
(Aµ − Bµ)dxµ) = Ue−iθ,

WRl
= exp(i

∫

c
(−2Bµ)dxµ) = e−2iθ,

WLq = P exp(i
∫

c
(Zµ + Aµ +

1

3
Bµ)dxµ) = ΓUe

i
3 θ,

WR1
q
= P exp(i

∫

c
(Zµ +

4

3
Bµ)dxµ) = Γe

4i
3 θ, (2.14)

WR2
q
= P exp(i

∫

c
(Zµ − 2

3
Bµ)dxµ) = Γe−

2i
3 θ ,

WH = P exp(i
∫

c
(Aµ + Bµ)dxµ) = Ueiθ ,

where Ll refers to left-handed leptons, Rl to right-handed leptons, Lq to

left-handed quarks, R1
q to right- handed up-quarks, R2

q to right-handed
down-quarks, H to Higgs field and Zµ, Aµ and Bµ are the SU(3), SU(2)

and U(1) gauge fields. The symbols Γ, U, eiθ correspond to the Wilson
loops of SU(3), SU(2) and U(1).

One can confirm by a direct substitution that the transporters (2.14) are
invariant under Z6 transformation

U → UeiπN,

θ → θ + πN, (2.15)

Γ → Γe
2iπ
3 N,

where N is some integer. It is easy to verify, just transforming six times,
that the (2.15) is really Z6 transformation. Thus the symmetry group
of the SM is actually the quotient SU(3) × SU(2) × U(1)/Z6. This ad-
ditional symmetry does not affect perturbation theory but it can have
non-perturbative effects which manifest e.g. in lattice calculations. Also
the monopole content may change in unified theories when the SM is
embedded into a larger simply connected group [10].



Chapter 3

Anomalies

The symmetries of nature play important role in the quantum field theory
and BSMmodel building. These appear in the theory as invariances of the
lagrangian under corresponding symmetry transformations. Because the
Lagrangian is classical object, symmetries do not automatically survive
the quantization. In this case theory is said to contain an anomaly. A
well defined theory should be free from anomalies, which allows us to
use anomalies as a tool when constructing a physical theory. There are
different kind of anomalies and often the adjective in front of the word
’anomaly’ tells about its details.

3.1 Gauge Anomalies

In the classical field theory for every continuous symmetry there is a con-
served current according to the Noethers theorem 1 [11]. If the gauge
current conservation is broken, theory is said to suffer from a gauge
anomaly. The vector current, jaµ = ψ̄γµτaψ, is always conserved as long
as the spinors satisfy the Dirac equation. Thus for the chiral theories the
question of the conservation of axial vector current

j5aµ = ψ̄γµγ5τaψ, (3.1)

is of particular importance. This is especially interesting in the SM where
an axial vector coupling exists between the fermions and gauge fields.

1However the origin of the conserved quantity can also be topological [7]
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From a historical point of view, axial vector anomaly was first noticed in
connection with the decay of the neutral pion into two photons. Suther-
land [12] and Veltman [13] pointed out that the familiar partial conserved
axial vector current (PCAC) equation

∂µ j5µ
m→0
= 0 (3.2)

leads to a vanishing decay width of aneutral pion in the massless limit.
This is against the experimental result [14]. The problem was solved by
Adler [15], Bell and Jackiw [16] who studied fermion triangle diagrams
with three external gauge bosons. They found that the one loop correction
produces an anomalous term to the equation (3.2)

∂µ j5µ
m→0
= − e2

16π2
ǫαβµνFαβFµν = − e2

16π2
Fαβ F̃

αβ. (3.3)

Let us first consider a connection between Abelian anomaly and topology,
using the Fujikawa method to calculate the anomaly [17, 18]. After that
let us also go trough the calculation of the non-Abelian anomaly which is
essential for the SM. The Fujikawa method uses the path integral formal-
ism and the anomaly emerges from the non-triviality of the Jacobi factor
defining the measure of the path integral.

3.1.1 Abelian Anomaly and Atiyah-Singer Index Theorem

In order to be specific, let us consider a compact space with the Euclidean
signature (like S4). The Dirac operator is an elliptic operator and in com-
pact space it has a discrete spectrum of eigenvalues. Using the metric
{− −−−}, the required gamma matrix algebra can be written as [20]

{γµ,γν} = 2δµν, γ5 = −γ1γ2γ3γ4, (γ5)† = γ5, (γ5)2 = γ5. (3.4)

For the massless Dirac fermions interacting with an external gauge field
Aµ, the effective action is

e−Γ(A) =
∫

Dψ̄Dψe−
∫

d4xψ̄i /Dψ, (3.5)
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where /D = (∂µ + Aµ)γµ. Let us expand ψ̄ and ψ in terms of the eigen-
functions of the Dirac operator

ψ̄ = ∑
i

b̄iψ
†, ψ = ∑

i

aiψi, (3.6)

where ai and b̄i are Grassmann variables and ψi is an eigenfunction i /Dψi =
λiψi. In the compact space these eigenfunctions can be orthonormalized

〈

ψi|ψj

〉

=
∫

d4xψ†
i (x)ψj(x) = δij. (3.7)

After the expansion, the measure of the path integral is

∏
i

db̄idai. (3.8)

The classical action Scl =
∫

d4xψ̄i /Dψ changes under a local chiral trans-
formation

ψ(x) → ψ(x) + iα(x)γ5ψ(x),

ψ̄(x) → ψ̄(x) + iα(x)ψ̄(x)γ5, (3.9)

to the form Scl +
∫

d4xα(x)∂µ j
µ
5 . By varying with respect to α(x), this

naively leads to the conserved axial current. However we have to pay
attention also to the Jacobi factor which proves to differ from unity. Using
orthonormality we can write

a,i = 〈ψi|ψ,〉 = ∑
j

〈

ψi|(1 + iαγ5)ψj

〉

aj = ∑
j

(δij + cij)aj, (3.10)

where cij = iα
〈

ψi|γ5ψj

〉

. Since cij is infinitesimal, the Jacobi factor takes
a form

∏ da,j = [det(δij + cij)]
−1 ∏ dai = exp[tr log(δij + cij)]

≈ exp(−iα ∑
i

〈

ψi|γ5ψj

〉

) ∏ dai.
(3.11)



12 Anomalies

Similar result follows also for the b̄. Now we can write the effective action
as

e−Γ(A) =
∫

∏
i

db̄idai

× exp(−Scl −
∫

d4xα(x){∂µ j
µ
5 + 2i∑

i

ψ†
i (x)γ5ψi(x)}), (3.12)

which yields an anomaly term to the current conservation equation (3.2)

∂µ j
µ
5 = −2i∑

i

ψ†
i (x)γ5ψi(x). (3.13)

However the integral
∫

d4xα(x) ∑i ψ†
i (x)γ5ψi(x) is divergent and it has

to be regulated. In order to achieve connection with the topology, let us
examine the global limit α(x) → α where the dependence on x vanishes.
Using the heat kernel regularization[3, 20] we get

∫

d4x∑
i

ψ†
i (x)γ5ψ(x)i

= lim
M→∞

∫

d4x∑
i

ψ†
i (x)γ5ψi(x) exp[−(λi/M)2] (3.14)

= lim
M→∞

∑
i

〈

ψi|γ5 exp[−(i /D/M)2]|ψi

〉

.

Because the eigenvectors ψi and γ5ψi correspond with the different eigen-
values, the states are orthogonal. For this reason only the states with zero
eigenvalues survive in the equation (3.14). These states can be classified
according to their chirality. The eigenstates of the chirality operator γ5

are ±1, hence we can write

lim
M→∞

∑
i

〈

ψi|γ5 exp[−(i /D/M)2]|ψi

〉

= n+ − n−, (3.15)

where n+ − n− is a difference between positive and negative zero modes
of the Dirac operator. For an elliptic operator, the analytic index can be
defined as
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indi /D = dimker i /D− dimker(i /D)† = n+ − n−. (3.16)

This connects the anomaly to the topology, since the Atiyah-Singer index
theorem allows to express the index of the elliptic operator in terms of
topological invariants [21, 22]:

indi /D = n+ − n− =
∫

M

[

Â(M)ch(F)
]

vol
, (3.17)

where Â(M) is the Dirac genus of the manifold M, ch(F) is the Chern
character and F = 1

2Fµνdx
µ ∧ dxν is a Lie algebra valued 2-form. The

subscript ’vol’ means that we have to take the form whose degree is equal
to the dimension of M.

Thus we can obtain the anomaly using index theorem or expanding the
equation (3.14) in the plane wave basis [18]. Of course in both cases we
end up with the equation (3.3) after a Wick rotation to the Minkowski
space. Integral of (3.3) is called a topological charge density, and it has
important role in the instanton physics and electroweak baryogenesis.

3.1.2 Non-Abelian Anomaly

Let us now move on to consider non-Abelian gauge fields and chiral
theory. Let ψ̃ be a massless Weyl fermion and Aµ = Aa

µT
a an SU(N)

gauge field interacting only with the left-handed fermions. The effective
action for this theory is

e−Γ(A) =
∫

D ¯̃ψDψ̃e−
∫

d4x ¯̃ψi /D+ψ̃, (3.18)

where /D+ = γµ(∂µ + Aµ)P+. The projection operators are defined as

P± = 1
2(1± γ5). From a formal point of view, the right hand side of the

(3.18) can be written as a determinant of the Dirac operator [6, 19].

As the Weyl spinors separate into the different irreducible representations,
a problem emerges: The operator i /D+ maps positive chirality spinors to
negative spinors and for this reason the eigenvalue problem is not well
defined. The problem can be resolved by introducing a spinor ψ with
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e−Γ(A) =
∫

Dψ̄Dψe−
∫

d4xψ̄iD̂ψ, (3.19)

where

iD̂ = iγµ(∂µ + AµP+) =

(

0 i/∂−
i /D+ 0

)

. (3.20)

Now the eigenvalue equation iD̂ψi = λiψi is well defined. The operator
iD̂ is not hermitian and therefore ψ and ψ̄ have to be expanded in terms
of separate eigenvectors

iD̂ψi = λiψi (3.21)

(iD̂)†χi = λ∗
i χi. (3.22)

Again, let us choose an orthonormal basis for the eigenvectors. After the
expansion

ψ = ∑ aiψi, ψ̄ = ∑ χ†
i b̄i, (3.23)

the measure of the path integral can be written as in the equation (3.8).

A crucial point is that the eigenvalues of iD̂ are not gauge invariant

giD̂(A
′
µ)g−1 = giγµ[∂µ + g(Aµ + ∂µ)g−1P+]g−1 6= iD̂(Aµ). (3.24)

However the action is gauge invariant as it should be. Absence of gauge
invariance of the eigenvalues is cured by non-invariance of the ai and bi.

Individual eigenvalues are not gauge invariant but the product of the
eigenvalues is invariant, because the operator

det(iD̂)det((iD̂)†) = det(i/∂−i/∂+)det(i /D+i /D−) (3.25)

is up to a normalization constant the ordinary Dirac operator

[det(i /D)]2 = [det(i /D+i /D−)]2. (3.26)
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This implies that the real part of the effective action is gauge invariant,

exp (−Γ(A)) exp (−Γ(A)) ∝ det(i /D+i /D−), (3.27)

and only the imaginary part can contribute to the anomaly.

Under an infinitesimal gauge transformation

Aµ → Aµ −Dµv, Dµv = ∂µ + [Aµ, v], v = vaTa (3.28)

the effective action changes as

Γ(A) → Γ(A−Dv) = Γ(A) +
∫

d4x tr

(

vaDµ
δΓ(A)

δAa
µ

)

. (3.29)

This again leads to naive current conservation, since

δΓ(A)

δAa
µ

= 〈iψ̄γµT
aP+ψ〉A = 〈jaµ〉. (3.30)

In the similar way as was done in the equations (3.10) and (3.11), we now
get

∏ da,i ≈ exp (−tr(〈χ†
i |(vP+)ψi〉)) ∏ daj, (3.31)

∏ db̄,i ≈ exp (−tr(〈χ†
i |(−vP−)ψi〉)) ∏ db̄j, (3.32)

and the Jacobi factor takes a form

exp

(

∫

d4xtr v(x) ∑ χ†
i (x)γ5ψi(x)

)

. (3.33)

The integral in the Jacobian is divergent, so employing again the heat
kernel regulator and the completeness relation we get

∫

d4x lim
M→∞
x→y

tr v(x)γ5 exp (
−(iD̂x)2

M2
)δ(x− y). (3.34)
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The trace can be written as

tr[vγ5 exp (
−(iD̂)2

M2
)] = tr[v(P+ − P−) exp (

−i/∂−i /D+ − i /D−i/∂+

M2
)]

= tr[vP+ exp (
i/∂−i /D+

M2
)]− tr[vP+ exp (

i /D−i/∂+

M2
)].

(3.35)

These two traces can be calculated in the plane wave basis, when the
indegrand in equation (3.34) transforms to a form

lim
M→∞

tr
∫

d4k

(2π)4
e−ikx[vP+ exp (

i/∂−i /D+

M2
)− vP− exp (

i /D−i/∂+

M2
)]eikx. (3.36)

Using the identity f (∂µ)eikx = eikx f (ik + ∂µ), the exponential function on
the right hand side can be moved next to the exponential on the left hand
side. Furthermore let us scale the integration variable as k → Mk, which
leads to equation

lim
M→∞

trM4
∫

d4k

(2π)4
[vP+ exp (− (ikM + /∂−)(ikM + /D+)

M2
)−

vP− exp (− (ikM + /D−)(ikM + /∂+)

M2
)]. (3.37)

Since M → ∞ only the first four powers give a contribution when the
exponential functions are expanded. Despite of that there are still lot of
terms to deal with. Exponents can be expanded directly or by modifying
the arguments first, as Fujikawa does in the case of the Abelian anomaly
[18]. In the direct expansion there are fewer terms, but the traces are
harder to calculate. Using the latter method, traces are easy but there are
lot of more terms to calculate. After a careful calculation, the anomalous
divergence of the current takes a form

Dµ〈jµa〉 =
1

24π2
trTaǫαβµν∂α[Aβ∂µAν +

1

2
AβAµAν]. (3.38)
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3.2 Witten Anomaly

Let us consider an Euclidean SU(2) Yang-Mills theory in the compact
space S4. Using Witten’s approach, the global SU(2) anomaly is based on
the observation that the fourth homotopy group of SU(2)

Π4(SU(2)) = Z2 (3.39)

is nontrivial [23]. Before going further let us familiarize ourselves with
the homotopy groups to understand what this equation means. We need
the following definitions [3, 11]:

Definition 3.1. Let X be a topological space and α, β : I → X closed paths
(loops) at x0 ∈ X. Paths α and β are said to be homotopic, α ∼ β, if there
exists a continuous map F : I× I → X so that

F(s, 0) = α(s), F(s, 1) = β(s), for all s ∈ I

F(0, t) = F(1, t) = x0, for all t ∈ I.

The map F is called a homotopy between the loops.

A simple interpretation for this definition is that the loops that can be
deformed one to another continuously are homotopic. Relation α ∼ β is
an equivalence relation which equivalence class, [α], is called a homotopy
class. Let us define a product for the loops.

Definition 3.2. Let X be a topological space and α, β : I → X loops so
that α(1) = β(0). The product α ∗ β is a path in X defined by

α ∗ β(s) =

{

α(2s), when 0 ≤ s ≤ 1
2

β(2s− 1), when 1
2 ≤ s ≤ 1

The product of the loops induce a product which acts as a group multi-
plication for the equivalence classes.

Definition 3.3. Let X be a topological space. The set of homotopy classes
of loops at x0 ∈ X is called a first homotopy group Π1(X, x0). The product
of the homotopy classes is

[α] ∗ [β] ≡ [α ∗ β].
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If a space X is arcwise connected Π1(X, x0) is isomorphic to Π1(X, x1) for
any pair x0, x1 ∈ X. Thus we do not need to specify the base point for
the loops. In physics path-connectedness is enough, since in Hausdorff
space arcwise connectedness follows from the path-connectedness.

Another, and more illustrative, way to define the first homotopy group is
to denote the set of all homotopy classes of continuous maps from X onto
Y by [X,Y]. Then the first homotopy group is

[S1,Y] = Π1(Y). (3.40)

More generally

[Sn,Y] = Πn(Y). (3.41)

is the nth homotopy group.

Homotopy groups are invariant under a homeomorphism, hence they are
topological invariants [3]. The homeomorphism classify spaces according
to whether can they be continuously deformed one to another. Thus ho-
motopy groups offers a less restrictive way to classify spaces since spaces
that have same homotopy groups are not necessarily homeomorphic. In
physics homotopy groups are usually used to classify maps rather than
spaces.

The group manifold of the SU(2) is S3. Thus the gauge transformations
are maps U(x) : S4 → S3. Based on a discussion about the homotopy
groups, the equation (3.39) can be interpreted so that there exists different
types of gauge transformations which approach unity at infinity2. The
fact that fourth homotopy group is Z2 means that there is a topologically
non-trivial gauge transformation that cannot be smoothly deformed to
the identity but when the transformation is done twice it can be deformed
to the identity.

Due to the topologically non-trivial mapping, for the every gauge field
there is a conjugate field

AU
µ = U−1AµU − iU−1∂µU. (3.42)

2S4 is achieved from the R4 with the one-point compactification R4 ⋃{∞}. Thus the
gauge transformations have to possess a constant value at the infty.
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Figure 3.1: Eigenvalue flow under the non-trivial mpping.

And they both give exactly the same contribution to the functional inte-
gral

Z =
∫

dψdψ̄dAµ exp

(

−
∫

d4x[
1

2g2
tr(F2) + ψ̄i /Dψ]

)

, (3.43)

where ψ denotes a single left-handed fermion doublet. The Dirac operator
i /D is hermitian, thus the eigenvalues of the operator are real. Since the
gamma matrices γµ and γ5 anticommute, for every eigenvalue λ there is
an eigenvalue −λ

i /Dψ = λψ, i /D(γ5ψ) = −λ(γ5ψ). (3.44)

If the doublet ψ contains Weyl fermions, the integral over the fermion
field is

∫

dψdψ̄ exp

(

−
∫

d4xψ̄i /Dψ

)

=
√
det i /D, (3.45)

where the determinant is the product of eigenvalues. The product is
satisfactorily defined [19]. The square root stands for the product of the
half of the eigenvalues.

We can choose that the square root of the eigenvalues is the product of
positive eigenvalues. The key point is that there exists a possibility for
the positive and negative eigenvalues to interchange their places under
the non-trivial gauge transformation. One possible eigenvalue flow is
represented in the figure 3.1.

If the number of flows interchanging positive and negative eigenvalue
pairs is odd, it follows that
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det i /D(A) = −det i /D(AU). (3.46)

The gauge fields Aµ and AU
µ contribute equally to the functional integral

(3.43), which means that it vanishes in this case.

In order to show that this kind of eigenvalue flow happens, Witten defines
an instanton-like gauge field

A
t(τ)
µ = (1− t(τ))Aµ + t(τ)AU

µ , 0 ≥ t(τ) ≥ 1 (3.47)

and considers a five dimensional Dirac equation

/D(5)
Ψ =

5

∑
i=1

γi

(

∂i +
3

∑
a=1

Aa
i T

a

)

Ψ = 0. (3.48)

The fifth component is the path parameter τ so that t(τ) = 1 when τ →
+∞ and t(τ) = 0 when τ → −∞. Since Aa

5 = 0 and the gamma matrices
are real and symmetric we can write the equation (3.48) as

dΨ

dτ
= −γτ /D4

Ψ, (3.49)

where /D4 is a four dimensional Dirac operator for each τ. To solve this
we write

Ψ(x, τ) = F(τ)φτ(x), (3.50)

where φτ(x) is the eigenfunction of the operator γτ /D4. In the adiabatic

limit
dφτ(x)
dτ = 0 and the equation (3.49) simplyfies to a form

dF(τ)

dτ
= −λ(τ)F(τ). (3.51)

The solution to this equation is

F(τ) = F(0) exp

(

−
∫ τ

0
dxλ(x)

)

. (3.52)
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Now the logic goes as follows: According to mod 2 index theorem [24],
the five-dimensional Dirac operator has an odd number of zero eigenval-
ues. This impose that equation (3.49) has an odd number of solutions.
On the other hand equation (3.52) is normalizable only if λ(τ) is positive
for τ → +∞ and negative for τ → −∞. This implies that there have to
be odd number of eigenvalue pairs interchanging their places confirming
the equation (3.46) to hold in this case.

Vanishing path integral (3.43) causes a problem, because for each gauge
invariant operator the vacuum expectation value is

〈0|W|0〉 =

∫

D[A, ψ̄,ψ] W e−S

∫

D[A, ψ̄,ψ] e−S
=

”0”

0
, (3.53)

which is not well defined. Thus the SU(2) gauge theory with odd number
of Weyl fermion doublets is inconsistent.

The hypothesis of adiabaticy is crucial in this derivation and criticism
against this point is represented in the reference [28]. However, there
are also two other ways to state the SU(2) anomaly. One is based on the
U(1) anomaly and the rotation in the center of the SU(2), which is free
from perturbative anomalies [25]. In the third approach SU(2) group is
embedded into SU(3) group and the global anomaly result from the non-
abelian anomaly of the group SU(3) [26, 27]. These alternative derivations
confirm the existence of the SU(2) anomaly.

3.3 Anomaly Cancellation

The Witten anomaly causes no problem in the SM since the number of
left-handed fermion doublets is even. In the case of gauge anomalies we
have to work a little more. First it is usefull to rewrite the equation (3.38)
in a form

Dµ〈jµa〉 =
1

24π2

1

8
tr[Ta{Tb, Tc}]ǫαβµν∂α[A

b
β(8∂µA

c
ν + fcdeA

d
µA

e
ν)]. (3.54)

This implies that the anomalies cancel when
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dabc = tr[Ta{Tb, Tc}] = 0. (3.55)

If the generators iTa and (iTa)∗ are equivalent,

(iTa)∗ = S(iTa)S−1, (3.56)

then the representation corresponding to these generators is said to be
real or pseudo-real. By a direct substitution

dabc = 0, (3.57)

for the real or pseudo-real representations.

Let us now consider the SU(3), SU(2) and U(1) generators to see the
anomaly cancellation in the SM. Every representation of SU(2) is real
or pseudo-real and the anomaly factor for fermions in the fundamental
representation of SU(N) is cancelled by its conjugate [7, 6]. Thus the non-
trivial cases in the SM are: Two SU(3) generators and one U(1) generator

dabc3,3̄ = 2tr(tatbY) = ∑
q

Yq = (−2
1

6
+

2

3
− 1

3
) = 0, (3.58)

two SU(2) generators and one U(1) generator,

dabcdoublet = 2tr(τaτbY) = 3(−1

6
)− (−1

2
) = 0, (3.59)

three U(1) generators

dabcYYY = 2(3(2(−1

6
)3 + (

2

3
)3 + (

1

3
)3)− 2(−1

2
)3 + (−1)3) = 0. (3.60)

This shows that the SM is free from gauge anomalies as well.



Chapter 4

Technicolor

Electroweak symmetry can also be broken dynamically, without a funda-
mental scalar Higgs field. In technicolor theories new massless fermions,
so called techniquarks, are included into the SM without Higgs sector.
They feel a new QCD-like strong force, corresponding with a gauge group
SU(NTC), which causes the formation of techniquark condensate. The
condensate breaks a global chiral symmetry of the massles techniquarks,
G→H. In order to achieve breaking of the electroweak sector, SU(2) ×
U(1) have to be included in G but not in H. In addition, the right breaking
pattern SU(2) ×U(1) → U(1)em requires the condensate to be invariant
under SU(3) and U(1)em. Attractive feature of this approach is that new
strong dynamics solve the naturalness, hierarchy and triviality problems
of SM.

4.1 Minimal Technicolor

In the simplest tecnicolor theory, two techniquarks are in the fundamental
representation of the SU(NTC) [29, 30]. Let us put them into the left-
handed doublet and right-handed singlets

QL =

(

U
D

)

L

, UR, DR (4.1)

and give SM-like anomaly free hypercharges. Let us also assume that
the electroweak and color interactions are turned off. The techniquarks
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are massless, so the theory has a chiral SU(2)L × SU(2)R flavor symmetry.
Technigluon exchange forms a fermion bilinear condensate

〈ŪU + D̄D〉 6= 0, (4.2)

which breaks the chiral symmetry into its subgroup

SU(2)L × SU(2)R ⊃ SU(2)L ×U(1)Y → SU(2)V ⊃ U(1). (4.3)

Symmetry breaking gives rise to three Goldstone bosons, which are ex-
actly massless when there are no other forces. Let as call these fields
technipions πTC

a , a = 1, 2, 3, in analogy with the QCD. Now the axial
current can be represented in terms of techniquarks or technipions

J
µa
5 = Q̄γµγ5 τa

2
Q = FTCπ ∂µπa, (4.4)

where τa is the Pauli spin matrix and FTCπ the decay constant of the tech-
nipion. The decay constant is defined as

〈0|Jµa
5 |πTC

b 〉 = iFTCπ qµδab. (4.5)

Turning the SM interactions on, electroweak gauge fields appear in the
kinetic terms of techniquarks. Thus the couplings between electroweak
gauge fields and technipions can be written as

g2
2
FTCπ W+

µ ∂µπ+
TC +

g2
2
FTCπ W−

µ ∂µπ−
TC +

g2
2
FTCπ W0

µ∂µπ0
TC +

g1
2
FTCπ Bµ∂µπ0

TC,

(4.6)

where the neutral and charged pions are defined analogously with the
QCD pions. The above-mentioned couplings produce a vacuum polariza-
tion correction to the propagators of the gauge bosons [7]

D(q) =
−igµν

q2
→ −igµν

q2(1− Π(q2))
. (4.7)

In the case of charged bosons, W±, the vacuum polarization becomes



4.1 Minimal Technicolor 25

Π(q2)
q2→0−→ g22F

TC
π

4q2
. (4.8)

This leads to the massive bosons, because the massless poles of W± and
technipion unite into massive pole1. Considering also the neutral bosons,
we can write the mass matrix as

M2 =









g22 0 0 0
0 g22 0 0
0 0 g22 g1g2
0 0 g1g2 g21









. (4.9)

Interpreting the eigenvectors of the mass matrix to be physical fields

mW =
g2F

TC
π

2
, mZ =

√

g21 + g22
FTCπ

2
, mA = 0. (4.10)

Defining the Weinberg angle θW as in the SM, we get the familiar relation
between the gauge boson masses

mW = mZ cos θW . (4.11)

If there were different decay constants for different pions, (4.11) would de-
pend on theses constants. Nevertheless this not going to happen since the
symmetry SU(2)V ensures the same decay constants for the technipions.

Imposing the technicolor scale parameter ΛTC to be same as the vacuum
expectation value of the Higgs field

FTCπ = v ≃ 246 GeV, (4.12)

the gauge bosons receive masses with right magnitude.

Dynamical symmetry breaking can be achieved as well by adding more
than one techniquark doublet and it is also possible to give techniquarks
non-SM-like hypercharges. The only restriction is that the anomalies have
to cancel. If ND doublets are added into the theory, its chiral symme-
try group is SU(2ND) × SU(2ND). When the symmetry breaks 4N2

D − 1

1If the technipion is not exactly massless, the gauge boson remains massless
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Goldstone bosons are formed and three of them are absorbed into the lon-
gitudinal components of the gauge bosons. Some of the remaining Gold-
stone bosons receive mass when the electroweak interactions are turned
on. These are called pseudo-Goldstone bosons. In the light of observa-
tions, problematic are the neutral Goldstone bosons that remain massless
although the other interactions are turned on [31].

Although this simple model seems promising, it can not give masses to
the SM fermions. Gauge symmetry forbids explicit mass terms to the La-
grangian and also the SM-like Yukawa couplings are not renormalizable
in the case of composite scalars. Thus we need some other mechanism to
generate masses for the fermions.

4.2 Extended Technicolor

4.2.1 Effective Couplings and Mass Terms

Let us extend the symmetry of the theory so that above the scale ΛETC >

ΛTC the symmetry group of the theory is GETC [32]. Accommodating
technifermions and fermions into a same irreducible representation of
GETC, there are new gauge bosons connecting ordinary fermions to tech-
nifermions. When the symmetry breaks

GETC → GTC × GSM, (4.13)

gauge boson E of the GETC become massive. Possible four-fermion cou-
plings between fermions are

αab

(Q̄γµT̄
aψψ̄γµT̄bQ)

Λ2
ETC

+ βab

(Q̄γµT̄
aQQ̄γµT̄bQ)

Λ2
ETC

+ γab

(ψ̄γµT̄
aψψ̄γµT̄bψ)

Λ2
ETC

,

(4.14)

where T̄ includes the chiral factors. Using Fierz transformation, we get

αab
(Q̄LT

aQRψ̄RT
bψL)

Λ2
ETC

+ βab
(Q̄TaQQ̄TbQ)

Λ2
ETC

+ γab
(ψ̄LT

aψRψ̄RT
bψL)

Λ2
ETC

+ . . . ,

(4.15)
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from which the first term gives masses for the SM fermions

m f ∼
g2ETC
M2

E

〈Q̄Q〉ETC. (4.16)

In the preceding equation gETC is ETC-coupling constant, ME ETC gauge
boson mass and 〈Q̄Q〉ETC techniquark condensate in the ETC-scale. The
mass hierarchy can be achieved breaking GETC using one or several steps

GETC → Gn → · · · → G1 → GTC × GSM. (4.17)

During the every step some of the gauge bosons become massive and
produce a mass term for desired fermions.

Using the second term in (4.15) we can induce mass for the pseudo-
Goldstone bosons and also mass for the neutral bosons [32]. Thus the
mass term for the technipions is

m2
πTC

∼ g2ETC
F2πΛ2

E

〈(Q̄Q)2〉ETC. (4.18)

Connection between two scales is achieved using the renormalization
group equations [6]:

〈Q̄Q〉ETC = exp

(

∫ ΛETC

ΛTC

d(ln µ)γ(α(µ))

)

〈Q̄Q〉TC, (4.19)

where γ is the anomalous dimension of the operator Q̄Q. The model
under investigation is QCD like asymptotically free, hence γ ≪ 1 for the
large energies and 〈Q̄Q〉ETC ∼ 〈Q̄Q〉TC. Scaling from the QCD [32], mass
terms can be written as

m f ∼
g2ETCF

3
π

Λ2
ETC

, mπTC
∼ gETCF

2
π

ΛETC
. (4.20)
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4.2.2 Flavor Changing Neutral Current

Finally consider γab-terms in (4.14) and (4.15). These allow flavor chang-
ing neutral current processes. One possibility is to generate interaction

£|∆S|=2 =
4g2ETCV

2
ds

Λ2
ETC

d̄γµPLsd̄γµPLs + h.c., (4.21)

which effects on the mass difference, ∆MK , between the mixed eigenstates
of the neutral kaons [33, 34]. In the above equation Vds is the mixing factor
of the quarks and PL is the projection operator. Using a vacuum satura-

tion approximation
〈

0|d̄γµγ5s|K̄(q)
〉

= i
√
2 fKqµ, where fK ≈ 110MeV is

the decay constant of the kaon, we get an equation for the mass difference

∆MK = 2Re
〈

K|£|∆S|=2|K̄
〉

=
4g2ETCRe(V

2
ds)

Λ2
ETCMK

〈

K|d̄γµPLsd̄γµPLs|K̄
〉

(4.22)

≈ g2ETCRe(V
2
ds)

Λ2
ETC

f 2KMK

Experimental value for this is ∆MK ≈ 3.5× 10−15GeV [35]. Assuming the
mixing factor to be same oder of magnitude as the corresponding Cabibbo
angle Vds ≈ 0.1, we can obtain numerical estimate for the technipion mass
using (4.20):

mπTC
. 10GeV. (4.23)

A particle with this small mass should have been seen in the experiments,
thus the mass has to be bigger. We can increase the mass by making ΛETC

to be smaller. On the other hand large suppression of the flavor changing
neutral currents requires just the opposite. Hence the production of the
realistic masses is troublesome in ETC.

4.2.3 Walking Dynamics

Intuitively the problem can be solved, if there is a great difference be-
tween condensate at scales ΛTC and ΛETC, since m f ∝ 〈Q̄Q〉ETC. Then we
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can achieve large enough masses and suppressed flavor changing neutral
currents at the same time. In the context of the Grand Unified Theories
the large hierarchy can not be explained but in the absence of the scalar
fields, the great hierarchy can be constructed naturally [50].

The coupling constant of a given Yang-Mills theory can behave also dif-
ferently than in the QCD, if its β-function has a non-trivial fixed point
α∗. At this point the scale evolution of the theory stops β(α∗) = 0. If
the quantum field theory is scale invariant it is almost always conformal
2. If we formulate the theory such that it almost reaches the fixed point,
its scale evolution slows down near fixed point but does not stop. If in
the technicolor theory β(µ) ≪ 1 between ΛTC ≤ µ ≤ ΛETC, it is called
walking technicolor theory.

It is also important that α∗ & αc, where the subscript refers to critical
value at which the condensate forms. If the fixed point is achieved first,
scale evolution stops and the condensate can not form. On the other hand
formation of the condensate can effect the behavior of the β-function, and
drive the evolution away from the vicinity of the fixed point too soon.

Schwinger-Dyson Analysis

In order to figure out the value of the critical coupling, let us examine the
Schwinger-Dyson equation

/p −m + C2(r)
∫

d4k

(2π)4
α(p, k)γµGµν(p− k)S(K)Λν(p− k; k, p)

= iS−1(p),

(4.24)

which gives a relation between fermion propagator S(p), gluon propaga-
tor Gµν(p− k) and three point function Λν(p− k; k, p) [36]. C2(r) denotes
the Casimir invariant of the fermion representation. Equation (4.24) is
presented pictorially in the figure 4.1. Note that the coupling constant
and the generator of the fermion representation are taken out of the three
point function. Writing fermion propagator in a form

iS−1(p) = Z(p)/p − Σ(p), (4.25)

2But not exactly always [38, 39]
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= +
-1 -1

p p k

p-k

Figure 4.1: Schwinger-Dyson equation for the fermion propagator.

where Z(p) is the wave function renormalization factor and Σ(p) is the
self-energy, yields

Σ(p) + [1− Z(p)]/p =

m + C2

∫

d4k

(2π)4
α(p, k)γµGµν(p− k)

Z(k)/k + Σ(k)

Z(k)2k2 + Σ(k)2
Λν(p− k; k, p).

(4.26)

Let us approximate the gluon propagator with the free propagator in
the Landau gauge and the three point function with the tree level vertex
factor. Writing the substitutions explicitly, we can identify equations for
the self-energy and the renormalization factor

Σ(p) =m + 3C2

∫

d4k

(2π)4
α(p, k)2

1

(p− k)2
Σ(k)

Z(k)2k2 + Σ(k)2
(4.27)

Z(p) =1+ C2

∫

d4k

(2π)4
α(p, k)2

1

p2(p− k)2
Z(k)

Z(k)2k2 + Σ(k)2
[

k · p(p− k)2 + 2p · (p− k)k · (p− k)

(p− k)2

]

.

(4.28)

The angular integrals can be done using complex analysis. Integrands in
the both equations depend on the angle between k and p. Thus only the
integral over one of the angles is nontrivial; the measure becomes

∫

dΩ = 4π
∫ π

0
sin2 θdθ. (4.29)

When moving to the complex plane, the angular integral of the equation
(4.27) change into a form
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∫

dΩ
1

(p− k)2
= 2π

∮

c
dz

i

8

(1− z2)2

z3
1

p2 + k2 − 2pk(1+z2

2z )
, (4.30)

where z = eiθ and the integration contour is the unit circle. The integrand

has poles at the points z = 0, z =
p
k and z = k

p . Hence the poles that are

inside the contour depend on the relative magnitude of k and p. Calculat-
ing the residues of the poles that are inside the contour, gives according
to the residue theorem

∫

dΩ
1

(p− k)2
=

{

2π2

p2
, when p > k,

2π2

k2
, when p < k.

(4.31)

Residues of the equation (4.28) are all zeros and so in this approximation
Z(p) = 1. Now the equation of the self-energy can be written as

Σ(p) = m +
3C2

2π

∫ p

0
dkα(p, k)

k3

p2
Σ(k)

k2 + Σ(k)2

+
3C2

2π

∫ ∞

p
dkα(p, k)k

Σ(k)

k2 + Σ(k)2
.

(4.32)

When we consider technicolor theories, mass term drops out, since tech-
niquarks are massless. To solve this equation let us make a further as-
sumption that the largest contribution to the integral (4.32) comes from
the interval ΛTC < k < ΛETC where

α(p, k) = α∗ (4.33)

and that the contribution outside of this region is negligible. Equation
(4.32) can be linearized assuming k ≫ Σ(k) [40]

Σ(p) =
3C2α∗

2π

∫ p

0

dk

p2
Σ(k)

+
3C2α∗

2π

∫ ∞

p

dk

k2
Σ(k).

(4.34)
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Two solutions can be found for the equation

Σ(p) = Σ(µ)

(

µ2

p2

)b±

, (4.35)

where

b± =
1

2

(

1±
√

1− 3C2

π
α∗
)

. (4.36)

When α∗ exceeds over the value π
3C2

one of the powers b± change from

real to complex and the other from complex to real. The situation when
the powers coincide can be identified with the chiral symmetry breaking
[40]. The value of the critical coupling is thus αc = π

3C2
. When α∗ ≈ αc,

the anomalous dimension of the condensate is γ ≈ 2b+ = 1.

Let us return to consider the renormalization group analysis (4.19), when
β(µ) ≪ 1 during the interval ΛTC ≤ µ ≤ ΛETC. The anomalous dimen-
sion of the operator Q̄Q is in this case γ ≈ 1. This leads to the following
relation between the techniquark condensates

〈Q̄Q〉ETC ≈ ΛETC

ΛTC
〈Q̄Q〉TC. (4.37)

Note the enhancement in relation to QCD like case with γ ≪ 1, yielding a
correction to the fermion and technipion mass terms (4.20). Walking over
two orders of magnitude, produces an upper limit for the technipion mass

ΛETC

ΛTC
∼ 102  mπTC

. 1TeV, (4.38)

which is large enough to be out of range of the todays accelerators.



Chapter 5

Electroweak Precision
Measurements

The mathematical consistency is not enough to guarantee the validity of
a given beyond standard model theory construct. It also has to agree
with the available experimental information. Standard model and its ex-
tensions can be tested with the electroweak precision measurements. As
stated in the introduction, SM agrees with all to date observations. This
can be seen from the table 5.1, where experimental and theoretical values
of some precision observables are given.

The effects of the new physics are commonly studied using oblique cor-
rections [42]. These corrections do not couple to the external fermions;
that is the explanation for the term oblique. Let us first define a vacuum
polarization tensor

µ ν

I J
= iΠ

µν
I J (q),

where I and J may be the gauge boson γ, W or Z. Dividing according to
the only possible tensor structures gµν and qµqν yields [6]

Π
µν
I J (q) = ΠI J(q

2)gµν − ∆(q2)qµqν. (5.1)
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Table 5.1: Measurements of the observables with the SM fit values from
the reference [41]. The pull is deviation of the values divided by the error
of deviation.

Quantity Experimental Value Standard Model Pull

∆α
(5)
had(m

2
Z) 0.02758± 0.00035 0.02768 −0.3

mZ [GeV] 91.1875± 0.0021 91.1875 0.0
ΓZ[GeV] 2.4952± 0.0023 2.4958 −0.3
σ0
H[nb] 41.540± 0.037 41.478 1.7
R0
l 20.767± 0.025 20.743 1.0

A0 l
FB 0.0171± 0.0010 0.0164 0.7

Al (Pτ) 0.1465± 0.0033 0.1481 −0.5

sin2 θ
lep
eff (Qhad

FB ) 0.2324± 0.0012 0.23139 0.8
Al(SLD) 0.1513± 0.0021 0.1481 1.6

R0
b 0.21629± 0.00066 0.21582 0.7

R0
c 0.1721± 0.0030 0.1722 0.0

A0 b
FB 0.0992± 0.0016 0.1038 −2.9

A0 c
FB 0.0707± 0.0035 0.0742 −1.0
Ab 0.923± 0.020 0.935 −0.6
Ac 0.670± 0.027 0.668 0.1

mW[GeV] 80.399± 0.025 80.377 0.9
ΓW[GeV] 2.098± 0.048 2.092 0.1
mt[GeV] 172.4± 1.2 172.5 −0.1
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The latter term is not essential when we are dealing with the precision
measurements. The vacuum polarization amplitude can be written using
expectation value of a pair of currents. Since the currents, connecting with
the gauge bosons, can be divided into pieces according to the generators
T1, T3 and Q, also the vacuum polarizations can be expressed making
use of these quantum numbers

Πγγ = e2ΠQQ,

ΠγZ =
e2

sWcW
[Π3Q − s2WΠQQ],

ΠZZ =
e2

s2Wc2W
[Π33 − 2s2WΠ3Q + s4WΠQQ], (5.2)

ΠWW =
e2

s2W
Π11,

where sW = sin θW and cW = cos θW . It is also possible to replace the
electric charge with the hypercharge through

Π3Q = Π33 + Π3Y. (5.3)

Let us now define the parameters characterizing the oblique corrections
as in [37]

S = −16π
Π3Y(m2

Z) − Π3Y(0)

m2
Z

,

T = 4π
Π11(0)− Π33(0)

s2Wc2Wm2
Z

U = 16
[Π11(m

2
Z)− Π11(0)] − [Π33(m

2
Z)− Π33(0)]

m2
Z

.

(5.4)

5.1 Precision Parameters Via Perturbative Calcu-

lations

In this section the aim is to calculate precision parameters up to one loop
for the SU(N) fermions (ψ1,ψ2), with the hypercharges
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ψL =

(

ψ1L

ψ2L

)

, ψ1R, ψ2R,

Y, Y + 1
2 , Y− 1

2 ,
(5.5)

In order to make thing easier, it is useful to define general vacuum polar-
izations according to handedness of the currents

µ νL L
= iΠLL(q

2),
µ νL R

= iΠLR(q2).

The above two diagrams are everything that we have to calculate because
ΠLL(q

2) = ΠRR(q2) and ΠLR(q2) = ΠRL(q
2) [6]. We use dimensional

regularization in the calculations. Using the Feynman gauge, we can
write

iΠLL(q
2) = (−1)

∫

d4k

(2π)4
tr

[

(iγµPL)
i(/k + m1)

k2 −m2
1 + iǫ

(iγµPL)
i(/k + /q + m2)

(k + q)2 −m2
2 + iǫ

]

= −
∫

d4k

(2π)4
tr[γµ/kγν(/k + /q)]

2(k2 −m2
1 + iǫ)((k + q)2 −m2

2 + iǫ)
.

(5.6)

There are no available antisymmetric tensor structure with respect to µ
and ν, so the terms proportional to γ5 have to drop out. We can Wick
rotate to the Euclidean space and go to the d-dimensions to calculate the
integral. After the Feynman parametrization and change of variables

1

(k2 + m2
1)((k + q)2 + m2

2)
=
∫ 1

0
dx

1

(l2 + ∆̄)2
, (5.7)

where

l = k + xq, ∆̄ = xm2
2 + (1− x)m2

1 + x(1− x)q2, (5.8)
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we get

iΠLL(q
2) = −i

∫ 1

0
dx
∫

ddk

(2π)d
( 2d − 1)l2gµν − 2x(1− x)qµqν + gµνx(1− x)q2

(l2 + ∆̄)2
.

(5.9)

Integrating, going back to Minkowski space, denoting 4 − d = ǫ and
picking up only the terms that are proportional to the metric tensor give

iΠLL(q
2) = − i4

(4π)2

∫ 1

0
dxΓ

( ǫ

2

)

(

∆

4πµ2

)− ǫ
2

[

x(1− x)q2 − 1

2
(xm2

2 + (1− x)m2
1)

]

,

(5.10)

where ∆ = xm2
2 + (1− x)m2

1 − x(1− x)q2. With the similar calculation
one obtains

iΠLR(q2) = − i2

(4π)2

∫ 1

0
dxΓ

(ǫ

2

)

(

∆

4πµ2

)− ǫ
2

[m2m1] . (5.11)

We can epand the terms depending on the epsilon, when we return to
four dimensions

Γ
(ǫ

2

)

=
2

ǫ
− γE +O(ǫ),

(
∆

4πµ2
)−

ǫ
2 = 1− ǫ

2

(

log

(

∆

µ2

)

− log(4π)

)

+O(ǫ2).
(5.12)

If we require renormalizability of the theory, divergent terms can be
dropped out. Denoting
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b0(m
2
1,m

2
2, q

2) =
∫ 1

0
dx log

(

∆(m2
1,m

2
2, q

2)

µ2

)

,

b1(m
2
1,m

2
2, q

2) =
∫ 1

0
dxx log

(

∆(m2
1,m

2
2, q

2)

µ2

)

,

b2(m
2
1,m

2
2, q

2) =
∫ 1

0
dxx(1− x) log

(

∆(m2
1,m

2
2, q

2)

µ2

)

,

(5.13)

the vacuum polarizations can be written as

ΠLL(q
2) =

−4

(4π)2

[

1

2
(m2

2b1(m
2
1,m

2
2, q

2) + m2
1b1(m

2
2,m

2
1, q

2)) − q2b2(m
2
1,m

2
2, q

2)

]

,

ΠLR(q2) =
2

(4π)2

[

m1m2b0(m
2
1,m

2
2, q

2)
]

.

(5.14)

Note that we have employed the identity b0(m
2
1,m

2
2, q

2)− b1(m
2
1,m

2
2, q

2) =
−b1(m

2
2,m

2
1, q

2). Using the above results and calculating the needed Feyn-
man parametrization integrals, the precision parameters can be written
as

S =
Nc

6π

{

2(4Y + 3)x1 + 2(3− 4Y)x2 − 2Y ln

(

x1
x2

)

+

[(

3

2
+ 2Y

)

x1 + Y

]

G(x1) +

[(

3

2
− 2Y

)

x2 − Y

]

G(x2)

}

,

T =
Nc

8πs2Wc2W
F(x1, x2), (5.15)

U = −Nc

2π

{

x1 + x2
2

− (x1 − x2)
2

3
+

[

(x1 − x2)
3

6
− 1

2

x21 + x22
x1 − x2

]

ln

(

x1
x2

)

x1 − 1

6
f (x1, x2) +

x2 − 1

6
f (x2, x2) +

[

1

3
− x1 + x2

6
− (x1 − x2)

2

6

]

f (x1, x2)

}

,

where xi =
(

mi
mZ

)2
, Nc is the number of colors1 and Y is defined in the

1For the leptons Nc = 1



5.2 Weinberg Sum Rules and the S-parameter 39

equation (5.5). Functions G(x), F(x1, x2) and f (x1, x2) can be found from
the appendix A.

5.2 Weinberg Sum Rules and the S-parameter

Quantifying the precision parameters for the strongly coupled theories,
also the non-perturbative effects have to be handled. For this purpose we
need to derive the dispersion relation for the difference of vector-vector
and axial-axial current correlations, since Π3Y ∝ ΠVV − ΠAA. Derivation
follows the reference [49].

5.2.1 Dispersion Relation

Let us write the vacuum polarization in terms of the current algebra as

Πab
µν(q) ≡

∫

d4xe−iqx[
〈

0|Jaµ,V(x)Jbν,V(0)|0
〉

−
〈

0|Jaµ,A(x)Jbν,A(0)|0
〉

]

= igµνδabΠ(q2) + (qµqν terms),
(5.16)

where a, b = 1, . . . , N2 − 1. The equation (5.16) is Fourier transformation
of the two point function, thus the Π(q2) possesses a Källen-Lehmann
spectral representation [6], which guarantees that it is an analytic function
with a branch cut on the positive real axis. Using the Cauhcy integral
theorem we can write

Π(Q2) =
1

2π

∫

c
ds(s + Q2)−1Π(s), (5.17)

where Q2 = −q2 and the contour c is represented in the figure (5.1)

Assuming Π(Q2) to fulfill the assumptions of the Jordan’s lemma, when
|s| → ∞, the integral (5.17) reduces to a form

Π(Q2) =
1

2πi

∫ ∞

q2min

ds(s + Q2 + iǫ)−1Π(s + iǫ)

− 1

2πi

∫ ∞

q2min

ds(s + Q2 − iǫ)−1Π(s− iǫ),
(5.18)
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−Q2

q2min

c

Figure 5.1: Contour of integration involved with the dispersion relation.

where q2min is the branch point. When we are away from the real axis, the
vacuum polarization has a property

Π((q2)∗) = [Π(q2)]∗. (5.19)

This is due to the fact that in the Källen-Lehmann representation the only
imaginary parts are the factors iǫ, which can be omitted outside the real
axis. The above identity leads to the dispersion relation

Π(Q2) =
1

π

∫ ∞

q2min

ds(s + Q2 + iǫ)−1ImΠ(s). (5.20)

In the chiral limit q2min = 0, meaning that the branch cut covers the whole
positive real axis.

5.2.2 Weinberg Sum Rules

Walking technicolor theories are asymptotically free and thus Π(Q2) scales
like in QCD, i.e. Q−6, at high momenta [43]. Setting q2min = 0 and expand-
ing the right hand side of the equation (5.20), this information leads to
two Weinberg sum rules
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1

π

∫ ∞

0
dsImΠ(s) = 0,

1

π

∫ ∞

0
ds sImΠ(s) = 0. (5.21)

In reference [43] the range of the integration is divided in three parts.
First is the region of low lying resonances where the first integral can be
saturated with the zero width approximation, retaining only the poles of
massless goldstone boson, massive vector state and massive axial vector
state. The scale of the region is set by the dynamical mass of the fermion.
Its zero momentum value can be related to the decay constants by

Σ(0) ≈ 2πFπ√
N

. (5.22)

The spectral function can be written as

ImΠ(s) = πF2Vδ(s−M2
V)− πF2Aδ(s−M2

A)− πF2πδ(s). (5.23)

Substituting this into the first sum rule yields

F2V − F2A = F2π . (5.24)

This holds with the running and walking dynamics.

With the walking dynamics, the second integral in (5.21) can not be sat-
urated only with the low lying resonances, as also the effects form the
approximate conformal region have to be accommodated. Assuming that
the fermion self-energy can be approximated, in the conformal region, by
employing the linearized SD-equation, the second sum rule takes a form
[43, 44]

F2VM
2
V − F2AM

2
A = a

8π2

d(r)
F4π , (5.25)

where a is positive and of order O(1) in walking TC models and d(r) is
the dimension of the fermion representation. The S parameter can be
determined using the results from the sum rules
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S = −16π
d

dq2
Π3Y(q2)|q2=0 = 4

∫ ∞

0

ds

s
ImΠ̄(s) = 4π

[

F2V
M2

V

− F2A
M2

A

]

= 4πF2π

[

1

M2
V

+
1

M2
A

− a
8π2

d(r)

F2π
M2

VM
2
A

]

,

(5.26)

where ImΠ̄ is ImΠ without the Goldstone boson contribution. Two defi-
nations of the S parameter are related via [42]

d

dq2
Π3Y(q2)|q2=0 ≈

Π3Y(m2
Z)− Π3Y(0)

m2
Z

, (5.27)

which is good approximation when we are mass scales above mZ. Since
parameter a is zero for the running theory, walking dynamics tends to
reduce the value of the S parameter.



Chapter 6

Minimal Walking Technicolor

6.1 The Conformal Window

The lack of full understanding of the dynamics in the walking regime,
where the perturbation theory is not valid, makes model building a chal-
lenging problem. Lattice calculations allow us to probe this regime, but
before doing some time consuming calculations, it would be nice to know
what is worth calculating. The size of the conformal window can be de-
termined using the results from the SD-analysis. Nevertheless, let us
introduce another way to do this, which is actually based on an educated
guess on the form of the full nonperturbative β-function.

Similarly with the exact Novikov-Shifman-Vainshtein-Zakharov (NSVZ)
β-function for the SU(N) super Yang-Mills theory, Ryttov and Sannino
have proposed an all-order β-function for the non-supersummetric SU(N)
theory [45]. The β-function of Ryttov and Sannino is of the form

µ
dg

dµ
= β(g) = − g3

(4π)2
β0 − 2

3T(r)N f γ(g2)

1− g2

8π2C2(G)(1 +
2β′0
β0

)
, (6.1)

where

β′
0 = C2(G) − T(r)N f ,

β0 =
11

3
C2(G) − 4

3
T(r)N f .

(6.2)
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Table 6.1: Group theoretical quantities. Representations are written in
terms of Young tableaux.

r T(r) C2(r) d(r)
1
2

N2−1
2N N

G N N N2 − 1
N+2
2

(N−1)(N+2)
N

N(N+1)
2

In the preceding equations tr[Ta
r T

b
r ] = T(r)δab, Ta

r T
b
r = C2(r) is the quadratic

Casimir, γ is the anomalous dimension of the fermion mass and N f is the
number of fermions. The Casimir-operator and the normalization factor
T(r) satisfy

C2(r)d(r) = T(r)d(G), (6.3)

where d(r) is the dimension of the representation and symbol G denotes
the adjoint representation. The group theoretical factors needed in this
work are gathered in the table 6.1. Because the β-function coefficients
are independent of the renormalization scheme only up to two loops, we
have to assume that there exists a procedure leading to the proposed β-
function. Expanding (6.1) to O(g6), we end up with the correct two-loop
β-function, as we should.

Next we find the limits for the conformal window. If the first coefficient
of the β-function is positive, the theory can not be asymptotically free.1

In the limiting situation β0[N
I
f ] = 0 the number of flavors is

N I
f =

11

4

C2(G)

T(r)
. (6.4)

For the conformal theory, scale evolution has to be stopped. Thus, the
other limit for the conformal window comes from the non-trivial fixed
point (IR-fixed point) β(g∗) = 0, where

γ(g∗) =
11C2(G) − 4T(r)N f

2T(r)N f
. (6.5)

1Theory can be asymptotically free when we consider the regime right from the UV
fixed point, but this is not important in this case.
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The dimension of the fermion condensate at the IR-fixed point is 3 −
γ. In order to avoid the negative norm states, the lower bound for the
dimension of the condensate is 1. This limiting case gives

N I I
f =

11

8

C2(G)

T(r)
. (6.6)

The number of flavors achieved with the SD-equations is

N I I
f SD =

17C2(G) + 66C2(r)

10C2(G) + 30C2(r)

C2(G)

T(r)
. (6.7)

.

The conformal windows for the fundamental and two-index symmetric
representation are showed in the figure 6.1. The size of the conformal
window is a little smaller for the SD-approximation. However it is good
to notice that in the all-order β-function conjecture, nothing prevents the
actual size of the window to be smaller. If we take the anomalous dimen-
sion to be 1 also in the all-order β-function case, the conformal windows
almost coincide.

6.2 Fermion Content and Global Symmetry

The walking Thechnicolor theory with two techniquarks in the two-index
symmetric representation of SU(2) is called Minimal Walking Technicolor
(MWTC). The two-index and adjoint representation are the same for SU(2).
From the phase diagrams in figure 6.1 we see that this theory is almost
conformal or is in the conformal region according to how the conformal
window is imposed. Existence of the non-trivial fixed point in this theory
is supported by lattice calculations [46]. In order to achieve the walking
dynamics we do not want the theory to be conformal. So, in the case that
theory lies in the conformal window, we have to disturb it somehow.

Let us arrange the techniquarks into left-handed doublet and right-handed
singlets

Qa
L =

(

Ua

Da

)

L

, Ua
R, Da

R, (6.8)



46 Minimal Walking Technicolor

Figure 6.1: Phase diagram for SU(N) theory with fermions in the fun-
damental (upper lines) and two-index symmetric representation (lower
lines). Dashed line is the lower bound achieved via SD-analysis.

where a is the adjoint color index. To saturate the Witten anomaly, odd
number of left-handed fermion doublets have to added. Since the increas-
ing number of techniquarks drives the theory away from the vicinity of
the conformal window, the simplest possibility is to add a new lepton
generation with technicolor and color singlet leptons

LL =

(

N
E

)

L

, NR, ER. (6.9)

Techniquarks are in the adjoint representation, which is real, and thus
the global symmetry group is SU(4) instead of SU(2)×SU(2) [48, 47]. The
techniquarks can be arranged to the fundamental representation of SU(4)

Q =









UL

DL

−iσ2U∗
R

−iσ2D∗
R









. (6.10)

Since both symmetric and antisymmetric product of the adjoint repre-
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sentation with itself contains a singlet, there are two possible maximal
subgroups of SU(4) which are SO(4) and Sp(4). If we consider a situation
where SU(4) breaks to its maximal diagonal subgroup, in both cases it is
possible to achieve the right breaking pattern for the electroweak gauge
sector

SU(4) ⊃ SU(2)L × SU(2)R ×U(1)

↓ ↓
SO(4), Sp(4) ⊃ SU(2)V ×U(1)

(6.11)

but for the Sp(4) this does not happen with all possible hypercharges [47].

Taking SO(4) to be the maximal subgroup, the spontaneous breaking of
SU(4) is driven by the condensate

〈

Qα
i Q

β
j ǫαβE

ij
〉

. (6.12)

The matrix Eij is symmetric for the SO(4) symmetric condensate and can
be written as

E =

(

0 1

1 0

)

. (6.13)

The number of generators is 15 for SU(4) and 6 for SO(4). Thus, after
symmetry breaking, there are 9 Goldstone bosons corresponding with the
nine broken generators. Three of them will be eaten by the longitudinal
components of the electroweak gauge bosons.

6.3 Limits for Hypercharge Content

Like in the SM, absence of the gauge anomalies depend on the hyper-
charge content of the fermions. Equation (3.55) imposes the following
conditions for the anomaly cancellation
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3YQL
+YLL

=0

−2YQL
+ YUR

+YDR
=0 (6.14)

−2Y3
LL

+ Y3
NR

+ Y3
ER

− 3(2Y3
QL

−Y3
UR

− Y3
DR

) =0.

This system of equations is fulfilled by the hypercharges:

YQL
=
y

2
, YUR

=
y + 1

2
, YDR

=
y− 1

2
,

YLL
=
−3y

2
, YNR

=
−3y + 1

2
, YER

=
−3y− 1

2
, (6.15)

where y is any real number. One can get SM-like hypercharges using
y = 1

3 . If we assume that the Z6-symmetry of the SM is not accidental,
also the MWTC model have to obey Z6-symmetry. This further reduce
the possible values for the hypercharges [9], as we now show.

The parallel transporter for the technicolor group is

Θ = P exp(i
∫

c
Dµdxµ). (6.16)

Hence we have to enlarge the Z6-transformation (2.15) with

Θ → Θe
( 2πi
NTC

)N
, (6.17)

where NTC is the number of technicolors. The parallel transporters corre-
sponding with the techniquarks and new leptons are

WLL
= Ue−i3yθ ,

WNR
= ei(−3y+1)θ,

WER
= ei(−3y−1)θ,

WQL
= ΘUeiyθ , (6.18)

WUR
= Θei(y+1)θ ,

WDR
= Θei(y−1)θ .
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Because the techniquarks are in the adjoint representation, the above par-
allel transporters are invariant under the transformation (6.17). Requiring
invariance also under the other Z6-transformations, we get



















−1− 3y = 0 mod 2,

1− 3y = 0 mod 2,

− 1− y = 0 mod 2,

1− y = 0 mod 2,

(6.19)

which is fulfilled when y = (1− 2k), k ∈ Z. This implies that the SM-like
hypercharge content is not allowed in the Z6-symmetric MWTC model.
The simplest possible choice is y = 1, leading to hypercharges

YQL
=
1

2
, YUR

= 1, YDR
= 0,

YLL
=
−3

2
, YNR

= −1, YER
= −2. (6.20)

A notable feature of this model is existence of the doubly charged lepton.
Larger values of y lead to even higher charges. We fix y = 1 here.

6.4 Leptons and Electroweak Precision Measure-

ments

Also the new leptons effect on the electroweak precision parameters S,
T and U. The U parameter is typically small for this kind of theory, for
example U≈ 0.04 when mE = 2mZ and mN = mZ. Taking U= 0 allowed
values for the S and T parameters are plotted in the figure 6.2 with the
masses of the sigle and doubly charged leptons taken from mZ to 10 mZ.

In the left panel of the figure perturbative estimate

Spert =
1

2π
(6.21)

for the contribution to the S parameter from the techniquarks is used. In
the right panel of the figure non berturbative contribution, calculated in
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Figure 6.2: The perturbative S and T parameter values with the lepton
masses varying from mZ to 10 mZ. The left panel has been obtained using
perturbative contribution 1

2π to the S parameter from the techniquarks. In
the right panel non-berturbative contribution acording to reference [51] is
used. The ellippses represent the 68% confidence level contour.

the freference [51] using the operator product expansion, is taken into ac-
count. The 68% confidence region for the S and T parameters is obtained
from the plot represented in the reference [52]. Since ellipse and allowed
value for the S and T parameters overlap, our theory is consistent with
the electroweak presision measurements. Similar analysis for the Dirac
leptons with SM like hypercharge assigment is done in the reference [53],
for the leptons with majorana mass in [54] and for Dirac-Majorana mixing
case in [55].



Chapter 7

Phenomenology with New
Leptons

Due to Witten anomaly fourth generation of leptons is an irremovable
part of the MWTC. Thus these leptons are like a probe for this model
in the colliders. In this chapter composite objects are omitted and the
possible effects of the new leptons at Large Hadron Collider (LHC) are
considered. If we want to consider also effects of the composite sector,
effective theory for the composites has to be constructed first [44]. Ac-
cording to latest timetable, the first beam should travel around LHC in
mid November. In 2010 the plan is to operate 3 months with 3.5 TeV beam
energy and 5 months with 4-5 TeV beam energy [56]. Due to problems
with magnets a 7 Tev beam is not possible before the all magnets are
updated, not only the broken ones. Schedules is of course preliminary,
because no one knows how long it takes to get equipments work so well
that beam really stays in the beam pipe.

Since new leptons, E(−−) and N(−), are charged, they are both Dirac
particles. Had we adopted the SM like hypercharge content, the new
massive neutrino could also be a Majorana particle or a mixed one. The
neutral and charged current interactions are
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L =
g√
2

(

W−
µ ĒLγµNL +W+

µ N̄LγµE
)

+
g

cos θW
Zµ

[

N̄Lγµ

(

1

2
+ sin2 θW

)

NL + N̄Rγµ
(

sin2 θW

)

NR

+ĒLγµ

(

−1

2
+ 2 sin2 θW

)

EL + ĒRγµ
(

2 sin2 θW

)

ER

]

+ eAµ [N̄γµ(−1)N + Ēγµ(−2)E] .

(7.1)

The new leptons and their interactions are implemented in the CalcHep
program [57], which is used to produce numerical results. In the follow-
ing calculations doubly charged lepton mass is taken to be ME =200 GeV
and MN =100 GeV for the singly charged one, allowed by the electroweak
precision measurements as can be obtained from the figure 6.2.

7.1 Production of New Leptons

A simple way to produce the new leptons is by a lepton pair production.
In figure 7.1 the production cross-section σ(pp → ĒE) is plotted as a
function of doubly charged lepton mass. The solid line is production
cross-section without the vector boson fusion (VBF) mechanism. The red
dots include the effect from the VBF with the Higgs mass of 120 GeV. We
can see that for light masses the effect from the VBF is negligible.

In the left panel of figure 7.2 production cross-section σ(pp → N̄N) as
a function of MN is presented. The right panel presents charged current
production cross-sections with different single charged lepton massess.
Table 7.1 represents number of events with the integrated luminosity 100
fb−1 and beam energies 3.5 TeV and 7 TeV. Both charged and neutral
production channels are considered.

7.2 Mixing with SM Leptons

These new leptons can not be used to produce SM neutrino massess via
seesaw mechanism because effective Yukawa couplings between new lep-
tons and SM neutrinos are forbidden. However it is possible to write
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Figure 7.1: Production cross-section for doubly charged leptons. The
solid line is without VBF and red dots with VBF included.
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Figure 7.2: Left Panel: The production cross-section for σ(pp → N̄N).
Right Panel: The production cross-section σ(pp → N̄E) for MN = 100
GeV (upper curve) and MN = 200 GeV (lower curve).
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Table 7.1: Number of events for boubly charged lepton production with
integrated luminosity 100 fb−1 and beam energies 3.5 and 7 TeV

Process Beam energy mE Events

pp → ĒE 3.5 TeV 200 GeV 10584
500 GeV 130
1000 GeV ∼0

pp → N̄E 3.5 TeV 200 GeV 6859
500 GeV 224
1000 GeV 4

pp → ĒE 7 TeV 200 GeV 35425
500 GeV 981
1000 GeV 28

pp → N̄E 7 TeV 200 GeV 22581
500 GeV 1206
1000 GeV 62

down effective coupling between doubly charged lepton and charged SM
lepton. For simplicity let us assume that the doubly charged lepton cou-
ples only with the muon,

L = −λL̄′L(iτ2Φ∗)e′R + h.c., (7.2)

where Φ is an effective Higgs field with the same quantum numbers as
the SM Higgs. This yields a charged current interaction term which mixes
the doubly charged lepton with muon.

LEµ = − g√
2
|VEµ|W−

µ ĒLγµeL + h.c., (7.3)

where |VEµ| is the mixing factor. Limits for this factor can be obtained
from the electroweak precision data as is done in the reference [58] for
the vector like extra leptons. Even though we consider chiral leptons, let
us study the effects of this mixing assuming |VEµ| = 0.05. This seems to
be realistic quess for the upper limit of mixing according to [58].

Both of these new leptons are charged, so they should be seen in detec-
tors, if any is produced in the collider. The mixing allows processes in
which all the external particles are SM particle but doubly charged lepton
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Table 7.2: Cross-sections and number of events for trilepton production
channels

Final state Mixing σ( f b) Events/100 f b−1

µµµ̄ν̄µ 0.05 1.53·10−2 0
µµµ̄ν̄µ 0.5 11.20 1113

µµµ̄ν̄µ+2 jets 0.05 9.09·10−4 0
µµµ̄ν̄µ+2 jets 0.5 4.85 720

takes part in the process. Let us examine the effect of mixing considering
trilepton production via channels

pp → µ̄E → µ̄µµν̄µ,

pp → ĒE → µ̄µµν̄µ + 2 jets.
(7.4)

Trilepton production is often used to study the seesaw models, because
SM background can be supressed in making the event selection. We only
require that the transverse momentum of two like-sign leptons is larger
than 30 GeV, which is also used for event pre-selection in the references
[59, 55]. Cross-sections and the number of events with 100 f b−1 integrated
luminosity are presented in table 7.2. Cutting more, SM background can
be reduced to the level of femtobarns for trilepton final state processes.
Thus it seem that the effect of mixing is very weak, since using VEµ =
0.05 cross-sections with doubly charged leptons are at least two orders
of magnitude smaller than the background. An integrated luminosity of
10000 f b−1 is needed to get two events with this mixing. Calculations
with VEµ = 0.5 are presented to stress that an unrealistic large mixing is
needed for sizable contribution.

Until now we have taken mE to be bigger than mN. One consequence
is that doubly charged lepton decays so fast that a direct observation is
impossible. If we select just the opposite, mN > mE, E decays only via
mixing. Because decay width is proportional to the square of the mixing
factor, the lifetime of E is inversely proportional to the mixing. Thus
lifetime grows when mixing decreases. If we take mE = 100 GeV and
mixing VEµ = 0.05, lifetime for E is

τ ≈ 5 · 10−21 s, (7.5)
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which is yet too small for direct detection in colliders. But if the mixing
is negligible lifetime can be very long. Advantage of taking mN > mE is
that we do not have new stable leptons, since N decays to E and W+ and
E decays further via mixing.



Chapter 8

Conclusions

In this thesis Minimal Walking Technicolor model was studied adopting
the Z6 symmetry.

We reviewed the gauge and Witten anomalies. Using the constraints from
anomalies MWTC model was constructed. Standard Model is showed to
possess Z6 symmetry and requiring also MWTC to respect this symmetry,
interesting consequance follows: One of the fourth generation leptons,
needed to overcome Witten anomaly, is doubly charged. Another of these
leptons is also charged in contrast with the other MWTC scenario where
new leptons have SM like hypercharges. Thus these new leptons shoud
be in view of detectors if they are produced.

There is a possibility that doubly charged lepton mixes with the charged
SM lepton. But this mixing seems to effect very weakly. On the other
hand if mixing is very small, long lifetime for the doubly charged lepton
can be achieved. Also other phenomelogy with new leptons was under
investigation with CalcHep program. A theoretical problem with possi-
ble new collider signals at LHC is that how to distinguish which model
explains these signals. Since similar features can be found from different
kind of BSM theories.

Due to our choice for the hypercharge assignment, one of the techni-
quarks is neutral. Thus a corresponding neutral technibaryon is a can-
didate for Dark Matter [60].
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Appendix A

Functions for Electroweak
Precsion Parameters

F(x1, x2) =
x1 + x2

2
− x1x2

x1 − x2
ln

x1
x2

, (A.1)

G(x) = −4
√
4x− 1 arctan

1√
4x− 1

, (A.2)

f (x1, x2) =















−2
√

∆
[

arctan x1−x2+1√
∆

− arctan x1−x2−1√
∆

]

, (∆ > 0)

0, (∆ = 0)√
−∆ ln x1+x2−1+

√
−∆

x1+x2−1−
√
−∆

, (∆ < 0),

(A.3)

∆ = 2(x1 + x2)− (x1 − x2)
2 − 1. (A.4)
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