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ABSTRACT

Ivannikov, Andriy

Extraction of Event-Related Potentials from Electroencephalography Data
Jyvéaskyld: University of Jyvaskyld, 2009, 108 p.(+included articles)
(Jyvaskyla Studies in Computing

ISSN 1456-5390; 109)

ISBN 978-951-39-3742-3

Finnish summary

Diss.

The research work reported in this thesis addresses the issues related to denoising
of event-related potentials (ERP) in multichannel electroencephalography (EEG)
data. The main idea behind the ERP denoising methods presented in this the-
sis lies in separating ERP and noise subspaces according to the linear instanta-
neous mixing model. When subspaces are extracted, the denoising of the chan-
nels of measurements is reached by the inverse transformation of the previously
obtained ERP components ignoring components related to the noise subspace.
The emphasis of the thesis is on finding appropriate problem-specific criteria,
which allow ERP and noise components in multidimensional EEG data space
to be reliably distinguished and, thus, for the separation of ERP and noise sub-
spaces by finding the basis vectors that span them. The criteria that have been
studied are based on exposing the data to some modification that influences sig-
nal and noise subspaces or, more precisely, signal and noise constituents of the
data, differently. We explore those subspace-specific changes that are seen on the
level of second-order statistical properties of the data. Namely, the two covari-
ance matrices of data before and after the modification are compared. Moreover,
we concentrate our attention on those modifications that exploit the data which
have three dimensions of variability: channels, time samples, and trials. Yet the
scope of this thesis goes beyond a sole proposition of the subspace separation
criteria and touches also on such topics as (1) practical aspects of application of
the denoising methods, (2) validation of the data and results, (3) developing a
comparison framework, (4) analysis and interpretation of the results, (5) elabora-
tion of suggestions and recommendations for improving the performance of the
denoising methods.

Keywords: Component analysis, Electroencephalography, Event-related poten-
tial, Signal processing, Signal-to-noise ratio, Source separation, Spa-
tial denoising
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PREFACE

The work reported in this thesis has been carried out at the Department of Math-
ematical Information Technology of the Faculty of Information Technology of the
University of Jyvéskyld in close collaboration with the Department of Psychology
of the Faculty of Social Sciences of the University of Jyvaskyld during the years
2003-2009.

The work presented in this thesis is at the interface of two disciplines: signal
processing technology and psychophysiology, thereby implementing the strat-
egy of multidisciplinary research designed to produce innovative approaches by
merging advanced knowledge from two different domains of research. This work
promotes the problem-specific approach to the research, where the stage of in-
vestigating the relations between the concepts and the parameters of the problem
acquires critical importance. This thesis comprises six articles which have been
published in international conferences and journals presenting original contribu-
tions to the area of ERP denoising.
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1 INTRODUCTION

The main issue addressed in this thesis is the denoising of Event-Related Poten-
tials (ERP) in ElectroEncephaloGraphy (EEG) data. The EEG data are measure-
ments of the electric fields produced by the brain. These fields are captured with
the aid of electrodes positioned on the scalp. A channel of measurement is as-
sociated with each pair of active electrode and its reference electrode, by means
of which a signal is measured. Therefore, put formally, channel is a dimension
of data variability physically related to space. Analysis of EEG provides invalu-
able opportunities for both basic brain research and clinical applications, like di-
agnosis, monitoring of the patient’s condition, and assessment of drug effects
[dSvLR87, Lip01, LJ04, NdSO05].

ERPs are electric potentials which originate in the brain and arise as a conse-
quence of brain activity related to the processing of stimuli. Event-related poten-
tials are an interesting object for investigation, because they reveal an important
and efficient tool for studying cognitive processes [Nad92, Han04, Luc05, CTB07].
The understanding of mechanisms of cognition and the forms of their mani-
festation provides a basis for studies in applied fields related to, for example,
reading, learning, and language skills development [Mol00, LAE*04a, KMRO6,
HS07, MMB™ 08]. ERPs are time- and heavily phase-locked to a stimulus. Besides
ERPs, EEG measurements are contributed to also by spontaneous EEG activity
and artifacts (potentials related to various biological and external phenomena).
All of these artifactual sources plus spontaneous EEG activity mixed with time-
phase-locked signals complicate the determination of the parameters of the ERP
waveform and, therefore, are treated as noise in the context of ERP investigation.
Typical magnitudes of ERP signals range from less than a microvolt to tens of
microvolts. The level of noise may exceed that of ERP by hundreds of microvolts
resulting in a poor signal-to-noise ratio (SNR) in a single measurement of brain
response to a stimulating event.

The conventional method to improve the accuracy of the ERP estimate is the
averaging of repeated measurements from the same electrode (see Section 2.5).
However, the performance of traditional averaging is often not satisfactory, es-
pecially when the number of single measurements is decreased. Consequently,
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a number of more efficient methods built on top of the basic averaging were de-
veloped (see Section 3.1). Although these techniques are effective in denoising of
ERP, the accuracy of ERP estimates produced by them may still be insufficient.

For the past few decades, since blind spatial decomposition methods gained
significant attention and became widespread, EEG analysis research has devel-
oped rapidly (see Section 3.2). In particular, methods of this type can be applied
to separating spatio-temporally distinct sources contributing EEG measurements
and ERP denoising. Compared to the methods which consider channels only
separately, the spatial component separation techniques benefit also from the in-
formation contained in the relationships between channels. These methods offer
a good performance in source separation averaged over a wide-range of real-life
problems. Nevertheless, there have been relatively few studies carried out with
the focus on developing the specialized methodologies for spatial ERP extraction.
Traditionally, source separation techniques used in the context of ERP denoising
are applied to raw EEG segments in order to isolate artifacts prior to the aver-
aging. Another target application of these methods appears in the context of
ERP analysis and consists in decomposing ERP waveform into simpler and psy-
chophysiologically interpretable subcomponents. This problem usually assumes
that the estimates of the channel-wise ERP waveforms obtained after averaging
have already sufficiently good accuracy. Our study focuses on extracting two
subspaces spanned by ERP and noise sources.

Since ERP denoising is a many-sided and rapidly developing area, the fol-
lowing considerations are limited mainly, but not only, to denoising approaches
based on spatial component extraction in the framework of the linear instan-
taneous mixing model. Moreover, the denoising on the level of a single chan-
nel without exploiting the spatial information is also discussed. Even more we
further narrow the focus of our attention to seeking for consistent and reliable
problem-specific criteria that are able to discriminate between signal and noise
components or constituents in the framework of the assumed models. The ef-
fectiveness of the implementations of the denoising algorithms based on these
criteria has been paid less attention. When it is possible, our realizations rely on
explicit solution methods, like Eigenvalue decomposition. Partially they are done
using basic gradient descent/ascent search procedure. The problem-specific cri-
teria are found based on analysis of the problem area and underlying brain pro-
cessing mechanisms. Furthermore, we generalize on the ideas contained in the
attached articles in the form of a framework for separating the ERP and noise
components in multidimensional EEG data using the linear transformation and
the subsequent dimension reduction by neglecting the components related to the
noise subspace during inverse transformation.

Often, when a new real problem arises, standard and well-known tech-
niques designed for a class of similar problems are tried in order to solve it.
For example, it is commonly accepted to apply Independent Component Anal-
ysis (ICA; see, e.g., [Hyv99c, HKOO01]) techniques to EEG data for source sepa-
ration [MBJS96, MJB97, MWT 99, JMH 00, JMM 01, Vig97, MVMZ04], which
are also applied for solving wide range of other real-life source separation prob-



17

lems including acoustics, speech processing, telecommunications etc. In general,
ICA methods try to separate maximally independent sources. However in prac-
tice assumptions made about the ICA model and input data are usually not com-
pletely valid, and the criteria stressing independence do not necessarily lead to
the most unmixed sources, i.e. when each component contains the largest part
possible of one source and minor possible contributions from the other sources.
Nevertheless, in almost every real-life problem some specific additional features
and data properties exist. Such extra domain knowledge can be taken into ac-
count as part of the search criteria by the optimization procedure. This has an
effect of regularization or specialization of the problem and, finally, may increase
the accuracy of the solution.

Therefore in the given research we adhere to the following strategy of the
research process. First, we consider how similar problems are solved in the cur-
rent source separation research. Then the specific features of EEG/ERP data
are plugged into the existing source separation methodology to result in new
problem-specific algorithms.

The structure of the work is organized as follows. First, in Chapter 2 we ex-
plain the problem area and introduce the notations. This creates a basis in terms
of which the following discussion is built. Then, in Chapter 3 an overview of the
literature is made presenting the issues, state-of-the-art methodologies, and ob-
tained achievements related to (1) denoising methods (Sections 3.1 and 3.2), (2)
their application to EEG data (Section 3.3), and (3) the validation of the obtained
results (Section 3.4). In Chapter 4 a short review of the results obtained in the
research reported in this thesis is presented first (Section 4.1). It is then followed
by a brief description of the attached articles (Section 4.2). Then, an extended
overview of the contributions of the thesis is presented (Section 4.3). A discus-
sion of issues that are encountered in practice that may prevent optimal subspace
separation as well as some suggestions to overcome potential problems are given
in Section 4.3.3. The conclusions and possible extensions of the work for further
research are described in Chapter 5.



2 DESCRIPTION AND FORMALIZATION OF
RESEARCH AREA

2.1 Brain functioning and EEG components

The brain is the anatomical organ of the nervous system responsible for control
of the human organism and management of the unconscious and conscious op-
erations comprising higher nervous activity [Nol01, Res01, BCP06]. Brain matter
is composed of biological cells called neurons. On a higher level of the structural
model, the brain can be divided into many areas specialized for performing their
designated functions. The structural model of brain functioning is theoretically
explained in terms of functional brain segregation, specialization and integration
[Zek78, Bla90, You90]. According to this common neurophysiology assumption,
certain cortical areas are specialized for processing of some specific aspects of
perception or motion, and this specialization is segregated within the cortex. The
functional integration mediates different specialized areas to form the cortical in-
frastructure responsible for a single function.

The EEG and ERP data are measurements of the electric potentials (usually
measured in microvolts, #V) along the scalp arising as a consequence of brain
activity. Thus, analysis of EEG data provides an understanding of the underly-
ing brain processes if data properties are interpreted correctly. At the same time,
certain numerical indicators computed from EEG can be used to quantify psy-
chophysiological phenomena [FLA106, TT09]. For this purpose, pre-processing,
to extract relevant information, is often required [LJYHH95]. The EEG data are
collected with the aid of electrodes positioned on the scalp. The standardized
International 10/20 Electrode Placement System developed by Jasper in [Jas58]
is recommended by the International Federation of Electroencephalography and
Clinical Neurophysiology and provides guidance for placement of 21 electrodes
on the scalp(see Figure 1). As the need for higher spatial resolution has increased,
other high-density electrode positioning configurations have been proposed to
extend the original 10/20 system. Among these are the 10/10 system that defines
locations for 81 electrodes [CLN85] and 10/5 configuration enabling the use of
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FIGURE 1 Schematic illustration of the International 10/20 System of Electrode Place-
ment. Here the capital letters stand for: F - Frontal lobe, T - Temporal lobe, C
- Central lobe, P - Parietal lobe, O - Occipital lobe. The small letter 'z” refers
to an electrode placed on the mid-line.

more than 300 electrode locations [OP01]. We will also use the term channel of
measurement or just channel to associate a measured signal with the pair of elec-
trodes, with the aid of which the signal is acquired. As in this thesis only unipolar
measurements are used, the channels are always labeled by the name of the cor-
responding non-reference electrode. For the same reason we may use the term
electrode location instead of the channel.

As the EEG signal, we may assume one of the three following interpreta-
tions: (1) the real electric signal captured by the electrode, (2) its abstraction, when
the physical meaning is ignored, or (3) its sampled, recorded, and visualized ver-
sions. However, a specific meaning should either be clear from the context or
mentioned explicitly. Normally, if we talk about processing and visualization of
a signal, we assume that it is digitized, i.e., discrete. Otherwise, when we discuss
the nature of a signal as the derivative of a process, we assume that the signal
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has a continuous form, i.e., whatever fine resolution in time-frequency domain is
available.

Besides the electrode cap, the measuring system includes a number of other
components: amplifiers, hardware filters, recording devices, etc (see Figure 2).
First, the differential amplifiers amplify the voltage between each active electrode
and its reference. The amplified signal is then usually digitized via an analog-to-
digital converter, after being passed through an analog anti-aliasing filter.

FIGURE 2 Elements of the measuring system: (a) participant’s place, (b) electrode cap
being fitted on a participant, (c) main unit of the data acquisition system
including amplifiers, hardware filters, recording devices, etc.

The spontaneous EEG signals are composed of different brain activities,
which can be categorized in particular by their frequency content [Dau02, SJ05,
Buz06] !:

Delta (9) waves occupy 0.5 — 4 Hz frequency band. They are normally observed
in adults during slow wave sleep and in infants. Pathologically, they are
also observed from different lesions and metabolic encephalopathy hydroce-
phalus.

Theta (0) waves have the frequency range 4 — 8 Hz. In normal conditions, they
arise in young children and during drowsiness or arousal in adults and
older children. Abnormally theta oscillations may occur during certain le-
sions and disorders, metabolic encephalopathy and hydrocephalus.

Some differences in the definition of these bands may appear in the literature.
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Alpha () waves are found in 8 — 12 Hz frequency range. They are normally
seen during eyes closed and relaxation. Alpha waves can be abnormally
observed during coma.

Beta (8) waves appear in 12 — 30 Hz frequency range. Normally, beta waves
manifest when the participant is in a state of active concentration and the
process of excited, anxious, or busy thinking. Abnormally, beta waves ac-
company different pathologies and drug effects.

Gamma () waves: reveal themselves in frequency band 26 — 100 Hz. Gamma
oscillations are supposed to reflect certain cognitive and motor functions.
Gamma waves are also associated with stress.

Since the time courses of these brain activities reveal certain oscillations, they
are called oscillatory activities, or brain oscillations, or brain rhythms. As follows
from the above brief descriptions of the oscillatory activities, the actual frequency
content of real EEG signals depends heavily on the level of attentiveness and
concentration of the participant 2.

From the psychophysiological perspective, the brain activities can also be
classified according to induced and ongoing (spontaneous) brain activities.

The ongoing brain activity is a sort of brain activity that is only weakly or
not at all related to processing of external stimuli and is not a consequence of
other specific events according to our consciousness. Although this type of activ-
ity is considered as noise in the stimulus-related brain research, it still possesses
the information with regard to the current mental state of a patient (e.g., alertness,
wakefulness). Some types of oscillatory activity, like alpha waves, are character-
ized as ongoing brain activity.

The induced brain activity is associated with the processing of a stimulus
or the occurrence of some event coming from the external environment or body
parts. The induced activity is thus always time-locked to a stimulus or event,
but is not always phase-locked. For example, event-related potentials (ERPs) re-
lated to the induced brain activity are both time- and heavily phase-locked by
definition [Nd492, Han04, Luc05, CTB07] (see Figure 3). In contrast, certain types
of oscillatory activity, like gamma waves, are time-locked to the event but not
phase-locked.

Event-related potentials are defined as electrophysiological brain responses
associated with processing of an external event. The event can be, for example, a
sensory stimulus or an absence of an expected sensory stimulus. The ERP com-
ponents are divided into brainstem components (occurring approximately at the
range 0 — 12 msec after stimulus onset), middle-latency components (occurring
approximately at the range 12 — 50 msec after stimulus onset), and long-latency
or cognitive ERP components (occur starting approximately at 50 msec and typ-
ically last to 500 msec after stimulus onset). Long-latency ERPs are associated
with cognitive processes, like execution of memory, emotion, or attention tasks.
The evoked potentials (EPs) reveal a class of ERPs that are not directly related

2 In the literature, synonyms patient, subject, probationer, individual, and person may occur.



22

to cognition but to the execution of basic functions of perception, e.g., forming
an internal representation of a stimulus and passing the retrieved information to
cortex centers involved in the execution of cognitive functions. Therefore EPs in-
clude the ERP components that occur first with the latencies shorter than with
those of ERPs associated with the execution of cognitive functions. The EPs are
originated at the brainstem level. The EPs can not be elicited by the omission of
an awaited stimulus, i.e. the physical presence of the stimulus is the necessary
prerequisite for EPs to occur. The definition of EPs may vary, but in many cases
it is appropriate to say that EPs encompass brainstem components and middle-
latency components. By the stimulated sensory system the EPs are divided into
the following types: auditory evoked potentials (AEP), visual evoked potentials
(VEP), and somatosensory evoked potentials (SEP).

As our attention in this thesis is focussed on event-related potentials, let us
discuss the nomenclature, nature, and properties of ERPs in more detail. Event-
related potentials occur in a series of successively appearing deflections forming
a so-called ERP waveform. Therefore the ERP waveform is comprised of several
peaks or ERP components which have different functional explanations. In the
following, we call the ERP component in abbreviated form simply as ERP. How-
ever, when a sentence is related to all ERP components, we tend to use the term
ERP waveform. A schematic illustration of the ERP waveform typical for auditory
modality is presented in Figure 3.
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FIGURE 3 Schematic view of the averaged ERP waveform typical for auditory modality
and indication of the related concepts

The three important characteristics of the ERP components are amplitude,
latency, and polarity. The amplitude is the maximum voltage level of the ERP
component with respect to a baseline. The latency is defined as the time elapsed
from the stimulus onset to the place where the maximum voltage of the ERP
component is reached. The polarity corresponds to a sign of the voltage of the
ERP component. Moreover, besides the amplitude, latency, and polarity, ERPs
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are characterized by the spatial distribution  of the underlying activated areas
over the cortex.

There is continuing debate regarding the nature of ERPs in the scientific
literature. One group of researchers adhere to the opinion that ERPs are ob-
tained, when many neurons are activated simultaneously. Another group hold
the opinion that ERPs reveal themselves due to the phase resetting and syn-
chronization of numerous ongoing oscillatory activities. Recent studies suggest
that the nature of ERPs is more likely comprised of both models playing a sig-
nificant role in generating ERPs [FDG'04]. For more information on this issue
see [RC96, Bas99a, Bag99b, SS08] and follow the included references. Note, how-
ever, that both physiological bases or physical explanations of ERP phenomena fit
the mathematical model commonly assumed for ERPs (see Section 2.5) and thus
the real nature of ERPs does not matter in the framework of our research goals.

To facilitate the exchange of knowledge, the nomenclature of ERP compo-
nents is standardized and used in the scientific literature accordingly. The polar-
ity of the potential is denoted by the leading letter ‘N’ for negative and P’ for
positive. The following number denotes either ordinal number of the component
in the ERP waveform along the time or its typical observed latency. For exam-
ple, N1 (or N100) is the negative potential that manifests at latency around 100
ms (70 to 200 ms), P3 (or P300) is a positive component that exhibits latencies
in the time window from 300 to 500 ms. For some potentials, special names are
attributed. Thus, mismatch negativity (MMN) is the negative component of ERP
waveform that is found mostly at the latencies 150-250 ms. The EEG data used
in numerical studies described in this thesis were collected in the scope of exper-
iments designed to elicit MMN in particular. A comparable typology associated
with positive/negative deflections at latencies from 50 to 500 msec is used in, for
example, auditory and visual domains, although the processes they reflect may
not be similar. Moreover, all data sets used in this thesis come from experiments
related to auditory modality. Therefore the presentation has a tendency to dis-
cuss phenomena in the context of this modality. However the results should not
be limited only to auditory ERPs.

Some of the ERP characteristics, such as amplitude and latency, are modu-
lated by the properties of the stimuli and the internal state of the nervous system.
The two groups of ERP subcomponents - exogenous and endogenous - are dis-
tinguished by the character of the conditions stipulating their properties. The
exogenous components are modulated by physical properties of external stimuli,
whereas the properties of endogenous components are affected by the internal
state and capabilities of the subject (e.g., attention, arousal, memory performance
etc). Since the ERP components can be contributed by several generators, they
can be partially both exogenous and endogenous at the same time. The earlier
ERP components (e.g., N1 and P1) are believed to be more exogenous in contrast
to the components coming later in time (e.g., P3 and N4). Thus, properties of the
ERPs can be important indicators of internal conditions of a participant including
also those that are pathological in nature and therefore are potentially useful for

3 In the literature, terms topography and spatial map may appear.
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the purpose of medical diagnosis and monitoring.

The EEG data are collected during an experiment under some conditions
called an experimental paradigm. Referring to ERP experiments the use of the
term paradigm usually refers to stimulus presentation methods and parameters.
The oddball paradigm is one of the most often used and characteristic to exper-
iments in which mismatch negativity is recorded [N&492]. This consists of the
infrequent and unpredictable presentation of a target (deviant) stimulus within a
relatively long series of non-target (standard) stimuli (see, for example, Figures 5
and 7 illustrating the schemes of some oddball paradigms). The target stimulus
deviates from the standards in a property such as duration, magnitude, rise time,
frequency, color, intensity related to some sensory modality, auditory, visual, or
somatosensory, - the auditory being the most "native" modality of MMN theory
and experiments. For more detailed description of ERP elicitation paradigms
used in data collection experiments with outcomes used in this thesis and the
following data processing see Section 2.3.

Below we explain in more detail some of the ERP components that are elu-
cidated in measurements used in the research presented in this thesis:

N1 or N100: The N1 wave is a fronto-central negative deflection that is elicited by
an abruptly commencing stimulus [NP87]. In particular, within the oddball
paradigm, N1 appears as a response to any change of the stimulation inde-
pendently of whether it occurs in the standard sequence or reveals the expo-
sition of a deviant. It is not a unitary component but rather is composed of
several functionally distinct subcomponents. In part, the properties of N1
are determined by specific physical or sensory properties of a stimulus (this
is related to transient detection of an event) but also by a so-called modality
non-specific subcomponent that is associated with the level of arousal and
attention. This subcomponent participates in initiation of the involuntary
orienting response (OR) to a novel stimulus.

P3 or P300: The P3 wave can be elicited during the selective attention experiment
carried out within the framework of an oddball paradigm. During this dis-
criminating task, the participant is instructed to detect a deviant stimulus
within a sequence of standard stimuli and to react in some way to this event
(pressing a keyboard or mouse button or simply mental counting and con-
centration on the event). From the psychophysiological perspective, the
P3 is thought to represent activity related to evaluation of the target stimuli
with the performance conditional on attentional capacity (see [PK95, HM03]
for the theories on the rationale behind the P3). The latency of P3 reflects the
speed of cognitive processing and the amplitude corresponds to the amount
of allocated brain resources [Kok97]. The P3 itself is composed of the two
subcomponents P3a and P3b, which represent different aspects of the infor-
mation processing. The P3a is related to the attention mechanisms (cogni-
tive equivalent of an orienting response), and P3b is the canonical P3 wave.

MMN: is an important tool for studying mechanisms of cognition process in
its early stages. MMN is viewed as the manifestation of pre-attentive in-
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formation processing related to the formation of memory traces represent-
ing incoming information and involuntary attention switching mechanisms
[N&4d92, WS95, Sch96, EAWN98, NW99, NJWO05]. For more detailed discus-
sion on interpretations and the rationale behind MMN one is referred to
[WC98, Win07]. A review on the MMN and its role in basic research of cen-
tral auditory processing can be found in [NPRAO7]. The MMN elicitation
experiments are built on top of the oddball paradigm. In principle, MMN
can be elicited by stimulation of any type of the human sensory systems.
However, most studies associated with MMN have focused on the audi-
tory modality. The auditory MMN was first discovered by Nédtianen et al.
[NGM78]. Lately visual MMN was disclosed by Cammann [Cam90]. MMN
arises in response to a presentation of infrequent random deviant stimulus
within a sequence of standard stimuli. For example, in auditory paradigms
the deviant tone can differ from the standards by frequency (pitch), dura-
tion, intensity, etc [PAO™00]. The deviance between the stimuli in the visual
case can be expressed through such perceptual features as size, color, or du-
ration of the presented images. It is commonly accepted that the increase
of deviancy (from the standard) produces MMN with larger amplitude and
smaller latency (see, e.g., Figure 5). However, the statement regarding the
magnitude of deviance effect on the MMN amplitude was questioned by
[HCJ08], with authors suggested that this relationship does not hold. Re-
ferring to Figure 3 MMN should be thought to appear approximately at the
same latency window as N1. In fact MMN and N1 are usually temporally
overlapped. As MMN is a response to a deviant stimulus, and N1 occurs
in response to both standard and deviant stimuli, MMN can be obtained by
subtracting the ERP response to standard from the ERP response to deviant
(see Section 2.2 for more details).

At this point, it is useful to discuss in more detail the clinical and psychophysi-
ological relevance of ERP recordings. An illustrative example is related to stud-
ies in language skills development and speech processing. ERPs are shown to
be characteristic indicators of auditory processes involved in speech perception.
Therefore, they provide means to uncover neuronal prerequisites of language
problems such as dyslexia, impairment of reading acquisition [LGH"05]. Dysle-
xia is entailed by abnormal processing of speech and visual language at their
interface. It was shown that, even at a very early age, years before reading skills
are developed, ERPs to speech sounds can be used to discriminate between chil-
dren with and without risk for dyslexia and reliably determine predisposition to
later language development and reading acquisition [LAE" 04a, LAET 04b]. Since
ERPs reveal the interface to understanding the underlying auditory processes,
systematic differences between ERP characteristics among groups may reflect
certain deficits or differences in associated processes. In the language-related
psychophysiology studies, long-latency or cognitive ERP-responses to auditory
and speech stimuli has received more attention. The auditory ERP components
associated with language-related processes, which are most relevant to reveal dif-
ferences between participants with and without language or reading impairment



26

are N1, MMN, and P3. Among these MMN earned a priority attention in recent
psychophysiological studies of language problems, in part due to the apparent
potential to use it as an attention-independent measure of auditory cognition.
As mentioned above, MMN is assumed to reflect the detection of the deviation
from the memory representation of preceding repeated standard stimuli. Hence,
if MMN does not appear, this can be interpreted as a consequence of problems
in the auditory sensory memory, or in the auditory discrimination process. As
seen from this example, MMN can be used to make early diagnosis of potential
language problems to prescribe a preceding treatment.

Moreover, EEG measurements are contributed to by many other sources,
including biological and non-biological ones, which are called artifacts (see Fig-
ure 4) [SJ05]. Below we present a list of artifacts with short descriptions of their
nature and artifactual character.

Biological artifacts:

Cardiac: electric potentials that appear due to the heart beats and propa-
gate to the electrodes mounted on the head. They are also analyzed
in electrocardiography (EKG, ECG). These artifacts are typically repre-
sented by a series of repeated spikes synchronized to the contraction
of the heart muscle and to the electrocardiogram. In fact, they are ECG
measured by the electrodes placed on the scalp.

Ocular: electric potentials that are caused by the movements of eyes, sac-
cades, and blinking. The electric activity due to the contraction of eye
and eyelid muscles is measured also in electro-oculography (EOG).
These potentials usually reveal very large peaks (up to hundreds of
microvolts) and thus are one of the major sources of artifactual behav-
ior in EEG measurements.

Myographic: electrical signals produced by muscles that contaminate the
EEG data. These disturbances occur when body parts being moved
result in high frequency fluctuations comparable in amplitude to the
ongoing background EEG. These potentials are also studied in elec-
tromyography (EMG) recordings.

Respiratory: artifacts result from body movement due to breathing. Res-
piratory artifacts originate in phase with respiration, and thus reveal a
cyclic-appearing low-frequency baseline sway.

External artifacts:

Equipment: artifacts are stipulated by properties of components of the mea-
suring system. For example, if an EEG signal exceeds the dynamic
range of the amplifier, then the resulting measurement appears to be
cut at its lower or upper bound. Also, the internal electrical circuits of
the measuring equipment may cause distortions to the signal while it
is being passed through and processed.
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Electrode: artifacts arising due to the poor attachment or sudden discon-
nection of an electrode that significantly increases the impedance. The-
se artifacts are identified as rapid and large changes in the voltage of
EEG measurements. Therefore, they look like high magnitude and of-
ten flattened signals. The flattening occurs as a result of the signal ex-
ceeding the dynamic range of the amplifier. Such artifacts have single-
channel affiliation since only one channel is influenced by each of these
corruptions.

Power supply noise: delivered by the alternating currents of the main po-
wer supply, e.g. 50 Hz noise.
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FIGURE 4 Examples of biological and other artifacts: (a) normal EEG signal; EEG sig-
nals corrupted with (b) eye blinking artifact, (c) eye movement artifact, (d)
amplifier artifact, (e) motion artifact, (f) power line noise 50 Hz, and (g) elec-
trode artifact. All signals are centered, except (d) and (g), which are shown
with their original means.

Typically, ERPs have amplitudes much lower than those of the spontaneous EEG
activity (from less than a microvolt to several microvolts against the tens of mi-
crovolts) [Luc05]. Moreover, the summed magnitude of ongoing EEG activity
and artifacts may exceed that of the ERPs by hundreds of microvolts.
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2.2 Preprocessing of ERP data

In the context of psychophysiology research, one is often interested in reliable
estimation and the following analysis of ERP constituents of EEG data. Therefore,
all other signals emitted by either brain, body, or external sources are treated as
noise. In this thesis, we hold the same view point.

As has been mentioned above, the voltage levels of ERPs are significantly
lower than those of spontaneous EEG and artifacts and thus the ERP characteris-
tics are usually indeterminable reliably from a single measurement. The conven-
tional procedure to increase the SNR of ERP estimate consists of collecting many
single measurements, also called trials 4 obtained while repeating the stimuli and
the following averaging of the EEG-segments stored during such trials for the
study (see Section 2.5). Since all other activities except ERP associated with the
stimulus eliciting the recorded changes of EEG should obey random temporal
structure across repeated measurements, they are decreased by averaging. The
reliability of the ERP estimate obtained after averaging depends heavily on the
number of trials used for averaging.

In psychophysiology studies, the averaging is usually followed by a base-
line correction, during which the mean of a pre-stimulus interval in the aver-
aged response is subtracted from the estimate of the ERP waveform. Since in the
present work we are not going to make any psychophysiological interpretations
of the obtained results, the baseline correction is not used in the following discus-
sion and computations. However, we always correct estimates of ERP waveform
to zero mean, i.e., center them.

Moreover, some of the ERP components can only be seen when the averaged
response to standard stimuli is subtracted from the averaged response to deviant
stimuli. This procedure is called the difference wave approach and is used when
the component of interest is temporally overlapped with some other components.
For example, MMN deflection appears in the response to the deviant and is over-
lapped with the N1 component. Therefore, when MMN is studied, researchers
typically proceed with the difference wave approach to cancel the N1 deflection
after averaging (see, e.g., Figure 5(c,d)).

Some experimental settings may reduce the overlap between the MMN and
N1 or reduce the N1 itself. For example, in contrast to N1, which is the response to
the stimulus onset, MMN arises in response to detection of deviance. Therefore,
MMN can be obtained beyond the latency window of the basic N1 peak by using
duration deviants (by varying interstimulus interval (ISI)) [NPR89].

The problem of MMN and N1 overlapping can also be partially solved by
using so-called uninterrupted sound paradigms, in which there are no silent pe-
riods between stimuli, with short (e.g., 100 ms) ISI. In this case, it is possible to
significantly reduce the N1 amplitude that is useful for MMN analysis. One of the
data sets used in this thesis and proposed by Pihko and colleagues in [PLL95] be-
longs to this type of paradigm (see Figure 5 and the description of the paradigm

4 In the literature, synonyms sweep, epoch, segment, trace, and episode may occur.
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in the next section).

2.3 ERP experiments and data

In our computations, we used two sets of EEG data that were collected in the
scope of ERP-related psychophysiology studies. These data were introduced and
studied in [PLL95] (see Figures 5 and 6) and [HLGL07, HLGLOS] (see Figures 7
and 8).
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FIGURE 5 Uninterrupted sound paradigm for MMN elicitation proposed by Pihko and
colleagues in [PLLI95]: (a) grand average ERP waveforms in Cz channel for
two deviants 30 ms and 50 ms, (b) schematic illustration of the experimen-
tal paradigm, (c) difference wave approach for 50 ms deviant, (d) difference
wave approach for 30 ms deviant. In (c) and (d) time for the deviant respon-
ses starts at deviant tone offset.

The first data set was primarily collected for the purpose of analysis of mis-
match negativity. The paradigm by Pihko and colleagues [PLL95] is based on a
sequence of standard stimuli consisting of uninterrupted alternated sounds of 600
Hz and 800 Hz, each lasting 100 ms (see Figure 5(b)). Two types of deviant stimuli
are randomly presented at a probability of 0.15 (each 0.075) in this sequence by
shortening the 600 Hz tone to a duration of 30 ms or 50 ms. The measured trials
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contain 300 ms of recordings before the start of the deviant tone and 350 ms after
the start of the deviant tone. Measurements were collected with the sampling
rate 200 Hz, thus giving 130 time points for each trial. There were 102 partici-
pants involved in the data collection experiment. Overall the 700 trials data were
collected for each of the 102 participants (350 trials for each of the two deviants).
Measurements were recorded using a nine-electrode scheme, i.e., C3, C4, Cz, F3,
F4, Fz, Pz, M1, M2 electrode locations were used. The nose electrode was used as
reference.

T T T T
M2} YN
M1 M’/-/\/\
Pz W\N
(0]
el
=
‘c
g F4r
=
% 2uv
c
S F3
o
Cz Mv
c4 Wf\,\/\/\/
cs /\v/\,/\'_/\-\/\/\/
L L L L L
-300 -20 -100 0 100 200 300 350
Time, ms

FIGURE 6 The grand averages of the ERP waveforms for nine EEG channels in the
paradigm proposed by Pihko and colleagues in [PLL95]. Negativity is up.

In Figure 5(a) the grand averages (GA; the average across all participant av-
erages) of 102 participants for 30 ms and 50 ms deviants in Cz channel are shown.
GA reveals the average shape of the time-locked brain responses in a channel for
all participants involved in the experiment. In contrast to the participant average,
GA is almost noise-free if the number of participants is sufficiently large. How-
ever, the participant-specific features such as amplitudes and latencies of the com-
ponents of ERP waveform are lost in GA, which is only an average approximation
of the ERP waveform across all participants. The large peak around 175-200 ms
is the sum of MMN deflection and the response to standard stimulus [KGJ*07].
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The series of repeated responses to standard stimuli is a so-called steady-state re-
sponse (SSR) [N&d92]. In Figure 6 the typical spatio-temporal distribution of ERP
activity for Pihko’s paradigm is shown by using the GA waveforms for nine EEG
channels. One can see that the polarities of MMN and SSR are positive in M1 and
M2 electrode locations that is opposite to the negative polarities observed in the
other channels. Moreover, even the grand average shows poor quality of the ERP
waveform estimate in the Pz channel that has probably the lowest initial single

trial SNR among channels.
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FIGURE7 Oddball paradigm for ERP elicitation from [HLGL07, HLGLOS]:

(@)

paradigm with short 10 ms ISI and pitch deviant, (b) paradigm with short
10 ms ISI and rise time deviant, (c) paradigm with long 255 ms ISI and pitch
deviant, (d) paradigm with long 255 ms ISI and rise time deviant. In all sub-
figures, the left pair of tones represents the standard stimulus and the right
pair of tones is the deviant stimulus.

The second data collection experiment was intended to elicit the following
ERP components: MMN, P3a, and late discriminative negativity (LDN) obtained
from difference waves, and P1 and N250 that can be seen in the standard wave-
form [HLGL07, HLGLO08]. The two oddball paradigms were used in the frame-
work of this study, both remarkably similar and differing only by the ISI between
the pairs of tones (see Figure 7). In both paradigms, the standard and deviant
stimuli consist of the pairs of tones. In the first paradigm, the interval between
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FIGURE 8 Grand averages of ERP waveforms and difference waves in Fz channel (av-
erage referencing) for the paradigm from [HLGL07, HLGLOS8]: (a) short ISI,
frequency deviant, (b) short ISI, rise time deviant, (c) long ISI frequency de-
viant, (d) long ISI rise time deviant.

tones in every pair was set to 10 ms, and in the second paradigm, a 255 ms in-
terval separates the two tones. The pairs of tones are separated by an interval of
610 ms. The first tone in all pairs was identical: with 300 Hz fundamental fre-
quency and composed of four sinusoids 300, 600, 900, 1200 Hz, and was 100 ms
in duration (linear 80 ms rise time, 5 ms fall time). The second tone in the stan-
dard pair was 150 ms long (linear 130 ms rise time and 5 ms fall time) with 500
Hz fundamental frequency and composed of four sinusoids 500, 1000, 1500, and
2000 Hz. The number of standard sweeps collected for each participant was 1010.
In each of the two paradigms, two types of deviant stimuli were used: rise time
change (second tone 150 ms long with linear 10 ms rise time and 5 ms fall time)
and pitch change (the second tone has a fundamental frequency of 750 Hz with
three harmonics). For every deviant stimuli, 125 trials were collected. The data
were sampled with frequency 500 Hz. The length of the sweep was 870 ms or 435
samples for the paradigm with a short 10 ms ISI, and 1115 ms or 557 samples for
the long 255 ms ISI paradigm. The recordings were collected using 128-channel
sensor net. The locations of electrodes were set approximately according to 10/5
electrode placement system. The vertex (Cz) was used as the reference electrode
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during recording. In Figure 8 the ERP waveforms and the corresponding differ-
ence waves are demonstrated for each of the four combinations of standard and
deviant stimuli.

2.4 Problem formulation from psychophysiology viewpoint and
the road map

The ultimate goal of our research is to shorten the time for data collection exper-
iments that are carried out within the electroencephalography studies intended
to elicit and analyze ERP appropriately for observing brain and mind activity.
Typical experiments are usually relatively long because SNR is very low in a sin-
gle measurement of a brain activity following the stimulus event and therefore,
many trials synchronized to the same stimulus need to be collected in order to
increase SNR by the following trial averaging procedure done channel-wise (see
Sect. 2.5). The shortening of the treatment time is important in order to keep the
participant within an approximately stationary internal physiological state, - an
additional aspect that influences the results of the experiment. If the experiment
is not too long, the stationarity assumption of the background physiological con-
ditions is closer to truth and they can be considered as not overly dependent on
the time variable. Furthermore, some groups of participants, such as infants and
clinical patients, may not be able to tolerate long-lasting experiments.

Another goal of the research is to increase the reliability of the obtained
estimates of ERP parameters for a fixed number of trials. In fact, increasing SNR
or the reliability of the ERP estimate is, actually, equivalent to shortening the time
of the experiment. This is because, when SNR is increased, the number of trials
necessary for reliable ERP identification can be reduced. One way to increase the
reliability of the estimates of ERP characteristics is to apply denoising/filtering
methods, which are able to extract the ERP from EEG data more efficiently than
does the conventional averaging technique. This will allow for extraction of the
desired accuracy of the estimates of ERP features using fewer trials and hence,
shorten the time of the experiment.

Another set of recommendations for improving the determinability of ERP
relates to the equipment and experimental design as pre-processing mechanisms.
In addition to the qualitative equipment, which can predetermine a higher level
of SNR in the raw EEG data, the carefully-designed experimental paradigms may
provide data with desired and known patterns and properties which can be uti-
lized as certain indicators for the methods to distinguish the sources of inter-
est from the others. For example, the repeatable responses to standard stimuli,
which the ERP waveform possesses in a paradigm from [PLL95], as depicted in
Figure 5(a), reveal a good ERP-affiliated criterion in the spatio-temporal domain.

In the present work, we focus our attention on the advanced denoising
methods that are able to reliably separate ERP from noise. In particular, such
methods should effectively operate across different data representation domains,
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where signal and noise are separable (e.g., temporal, frequency, and spatial). In
addition, these methods preferably should use as many dimensions of data vari-
ability (channels, time samples, trials, deviants) and inter-dimensional relations
as possible in order to capture the larger amount of information on separability
of ERP and noise and thus, improve the results of averaging. According to the ex-
ploited data dimensions, the separation methods can be classified as one-channel
or multi-channel. The examples of one-channel techniques are traditional aver-
aging and weighted averaging (see, e.g., [PIII]), i.e., those that do not use spatial
information. The denoising algorithms developed in the scope of our research
(e.g., [PLPIV,PV,PVI]) mainly belong to the class of multi-channel techniques,
i.e., those that utilize the inter-channel discriminating information.

2.5 Single channel data model

In this subsection, (1) the basic data notations are introduced, (2) the one-channel
model of EEG recording containing the ERP signal is considered, (3) the tradi-
tional averaging approach to increase the SNR of an ERP estimate is described,
and (4) the underlying assumptions and constraints imposed on data are dis-
cussed.

The overall data obtained during the EEG/ERP experiment is usually five-
dimensional and, thus, can be indexed as xﬁf (t), wherei=1,...,N,t=1,...,T,
k=1...,Kp=1...,P,andq = 1,...,Q. Here N denotes the number of
measured trials, T is the number of time points per trial, K stands for the number
of measured channels, P denotes the number of the participants, and, finally,
Q is the number of different types of stimuli including standard and deviant.
Basically, for different stimuli g different numbers of trials N can be collected
during the experiment. However, we do not indicate this relation explicitly in
order to facilitate the notations.

Since the discussed methods will operate subject-wise and stimulus-wise
and, thus, do not use the subject and the stimulus dimensions, in the following
discussion we skip the p and g indices. Moreover, we omit the channel index k,
when between-channel relationships are not concerned, and only within-channel
data are considered. Likewise, the use of the trial index i is avoided, if we are in-
terested in phenomena related to spatial dimension and not in relations between
trials. A specific case should either be clear from the context or, otherwise, men-
tioned explicitly. If, however, both trial and channel dimensions are important
we prefer to use a vector notation as x;(t) = [x;1(t) xia(t) ... xix(t)]T. In general,
we use the vectorial form to hide the channel index whenever it is appropriate.

One commonly accepted model, which is also assumed here, assumes that
each recorded trial x; () can be represented as the sum of a time-locked brain

signal ¢ (t) with variance 0¢ and a noise 7; (t) having variance 0’%:

xi (1) = ¢ () +1i (), O
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where ¢ (t) is assumed to be trial invariant. The signal term ¢ (¢) stands for a mix-
ture of the time-locked brain responses corresponding to a channel. Correspond-
ingly, the noise realization term 7; (t) represents a mixture of the noise sources,
such as spontaneous EEG and artifacts, at the same channel. In the case of the
linear mixing model the mixture is a linear combination of the sources. The con-
ventional averaging operation is performed for each channel separately and is
described by the formula:

R \

N
c(t) =xn f%* X: B =¢(t) +7n (1), 2
where ¢ (t) is the time-locked ERP constituent (signal of interest) and 77 (t) is the
noise constituent in the average. Term ¢ (¢) denotes the estimate of the ERP signal.
Let us define SNR in the average as the variance of ERP constituent divided by
the variance of the noise constituent, that is

SNRy = 2ot} _ o 3)
oar{y() ~ o2
where (7,7 denotes the variance of the noise in the average. The resulting average
in (2) is assumed to have higher SNR than a single trial. For this to be true, several
assumptions must be met. First of all, it is required that the time-locked signal
¢(t) is deterministic, i.e. that it does not change over trials. Second, noise #;(t) is
supposed to be a zero mean ergodic process, and, as a consequence, we have

E[ni(t)]=0,Vt=1,...,T, and 4)
E[p(H] =0,¥i=1,...,N, )

where E [.] denotes the expectation operator. In equation (4) the averaging is car-
ried out over realizations (trials) and equation (5) assumes averaging over time.
Third, signal ¢(t) and noise #;(t) must be uncorrelated:

Efg(t)ni(t)] = E ()] E [:()] = 0. (6)

The expectation of the sum of two random variables equals to the sum of their
expectations and, thus, the expectation of the data either across time or realiza-
tions should equal the expectation of the signal, provided that the expectation of
noise is zero. Since the averaging over trials provides estimates of the true means
of the data in every time point, it converges to signal values at these points, when
the number of trials goes to infinity:

E{C(H)} =c()+ = ZE{m O} =¢(t). 7)

Therefore, if the above conditions are satisfied, the averaging operation reduces
noise and estimates the signal with the level of accuracy depending on the num-
ber of averaged trials. Namely, the standard error (SE) accompanying the esti-
mate (2) reads as

SE = \/E{(&(t) — c(1))?} = (8)

ﬁ
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The SE as given by this formula represents the amplitude of residual noise in
ERP estimate that is proportional to the noise amplitude in the raw EEG data. SE
diminishes proportionally to the square root of the number of trials N included
in the averaged signal. The noise power SE? = (7% diminishes proportionally to
N. Therefore, SNR as in (3) increases after averaging by N.

A realistic perspective, however, suggests that the above-mentioned assump-
tions are violated to some extent in practical situations. As a consequence, meth-
ods that are based on these assumptions and, in particular, plain averaging, may
lose their accuracy.

2.6 Problem setting from the source separation perspective and
model of the multichannel data

The general form of the non-stationary model of the physical process/system can
be represented as

x(t) = £(s(£),0(t)), )
where function f with parameters 8(t) = [01(t) 6»(t) ... 0k,(t)]" transforms
the input sources s(t) = [s1(t) s2(t) ... sk, (t)]T at time t into the output vector
x(t) = [x1(t) x2(t) ... xg,(t)]T. Here K, denotes the number of channels, K is

the number of sources, and Ky stands for the number of free parameters.

Regarding our specific domain, s(t) are realizations of the electromagnetic
generators/sources located mainly in the human brain but also in other parts of
the body and in the external environment. The components of x(t) represent the
measurements of the mixed emissions of the sources captured at certain locations
(electrodes) on the scalp. Finally, f denotes a function, which mixes the sources
in places where electrodes are positioned.

For practical usage of the model (9), the form of the function f and free
parameters 0(t) should be defined explicitly together with the underlying con-
straints and assumptions imposed on input data. These specifications have an
effect of adjusting the model to the problem being investigated.

We narrow the model (9) therefore for our problem area by specifying the
form of the mixing function. Namely, we assume that the linear instantaneous
mixing model with additive noise, which has acquired a considerable reputation
in the research practice for being sufficiently accurate and reliable and yet simple,
holds. [MBJS96, VO99, MP95]:

x(t) = As(t) +7(t), (10)

where A denotes the mixing matrix. Here () = [171(t) 72(t) ... 5k, (t)]7 is the
channel-wise additive noise usually assumed as having the covariance matrix of
the following form Chierome = 0’%5TI with the variance of the noise (7% and ¢
denoting Kronecker delta, i.e. additive noise is modeled as zero mean, stationary;,

and spatio-temporally white [HKOO1]. Note that sources s(¢) include ERP and
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the other noise sources that follow the linear mixing model, and the term #(t)
describes the noise that does not fit to the spatial model.

The generic non-stationary Blind Source Separation (BSS) problem defined
on the model (9) consists in recovering parameters () and sources s(t) based
on the measurement vector x(t). In psychophysiology research it is common to
consider stationary BSS problem that is defined on the model (10). In this case
the mixing matrix A plays the role of unknown parameters. For simplicity let us
assume now that the number of sources equals the number of simultaneous mea-
surements, and realizations of both sources and their mixtures without additive
noise form linearly independent subsets. These assumptions guarantee that the
time course of any source can be obtained by the linear projection of the mixtures
to a unique spatial direction associated with the source. Then the latter problem
can be considered as solved successfully, if the inverse matrix A~! is found.

Independent Component Analysis (ICA) is intended to solve the relaxed
BSS problem. Provided that the sources are statistically independent, the pur-
pose of ICA is to find the components, which can be scaled and negated versions
of the original sources. Moreover, the order of the components or rows in the
separation matrix B is an additional ambiguity. Thus, the ICA problem is con-
sidered to be successfully solved, if the estimated separation matrix in equation
y(t) = Bx(t) can be decomposed to B = QPA~!, where y(t) denotes the vector
of estimated components, Q is the diagonal sign/scaling matrix, and P stands for
the permutation matrix. Note that each column of the inverse matrix B! reveals
energy contributions of the corresponding component to the channels. Therefore
the columns of the inverse of B are called spatial distributions, spatial maps, or
topographies of the respective components.

To be able to solve the traditional ICA problem the linear instantaneous mix-
ing model (10) is equipped with two additional assumptions:

Source independence: Sources are assumed to be statistically independent, i.e.
their joint probability density function (pdf) is of the factorial form:

p(s) = l;[p(sk)- (11)

Non-Gaussianity of the sources: At most one source may have Gaussian distri-
bution. The reason for this is that in the subspace spanned by Gaussian
sources the mixtures of sources cannot be distinguished from the sources
themselves, if only independence is assumed.

Usually there are additional constraints imposed on probability distribution func-
tions of the sources (see Sect. 3.2). Since the target criteria used by ICA methods
for estimating the separation matrix B are designed to obtain as much statistically
independent components as possible, they are called independent components.
In the context of psychophysiology, our goal is ERP denoising in multichan-
nel EEG data. As a fulcrum we intend to estimate such B that gives two sets of
components spanning ERP and noise subspaces. The denoising is carried out by
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projecting back to the electrode field only the components related to ERP sub-
space and neglecting noise components. Therefore, compared to the relaxations
made in ICA, we relax the BSS task even further by requiring only subspace sep-
aration. In this case the solution gets additional degrees of freedom. Namely, the
angles between the components inside one subspace can be arbitrary. Therefore,
the subspace separation problem is assumed to have been solved successfully, if
the resulting separation matrix can be expressed as B = MA~!, where matrix M
allows for mixing of the sources that belong to the same subspace.

In analogy to BSS problem, the equivalent term related to subspace sepa-
ration problem can be termed Blind Subspace Separation. It is to be noted that
neither source nor subspace separation can be totally blind. Rather sources and
subspaces are distinguished based on (1) some subspace- or source-specific fea-
tures or (2) mutual relationships, e.g. statistical independence. Similarly as ICA
is related to BSS, the analogous Independent Subspace Analysis (ISA) concept is
introduced for Blind Subspace Separation problem [Car98, HH00, HHIO1]. ISA is
a natural extension of ICA that additionally implies possible dependencies be-
tween the components inside one group (subspace), whereas the components
from different groups are mutually independent. Other basic assumptions and
indeterminacies in ISA are similar to those implied for ICA. Some additional as-
sumptions may also be imposed by a specific methodology [The06]. The ISA
concept has several closely related terms and interpretations appearing in liter-
ature that differ in methodology and constraints (see [The06] for a short review
of ISA models). For example, the term Multidimensional ICA (MICA) was first
introduced by Cardoso in [Car98]. Depending on the methodology, an additional
restriction may be imposed on the group size or dimension of the subspaces as in
[The04, HHO0]. This is called k-ISA, where k is the dimension of the subspaces.
The term Independent Feature Subspace Analysis was used in [HHO00] to denote
a technique that is a special case of MICA or k-ISA. In this method, the authors
model the dependencies explicitly within a k-tuple.

From one side, the subspace separation problem in the psychophysiology
context that is pursued here can be viewed as more specific compared to the
standard ISA problem, since it includes additional problem-specific assumptions,
which allow for discrimination between the signal and noise subspaces. On the
other hand, some of the ISA assumptions, e.g., those related to probability distri-
butions of the sources and independence (a weaker uncorrelatedness assumption
is enough), are in general superfluous for our problem and can be excluded from
consideration.

Formally, our goal is to find a transformation matrix B of size K x K on data
x;(t) so that the components of the vector y;(t) obtained as y;(t) = Bx;(t) can be
unambiguously divided into the two groups related to ERP and noise subspaces.
In practice, however, we expect that the subspaces are overlapped and can not
be completely separated by a linear transformation, i.e. some components can
only be mixtures of signal and noise sources. In this case we aspire to extract
such components that for any dimensions of the signal (maximal SNR) and noise
(minimal SNR) subspaces defined after the transformation there exists a division
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of the components to subspaces that provides optimal (in the sense of SNR) sep-
aration of the signal and noise. A specific proportion between the dimensions of
the subspaces defines in this case the amount of ERP energy that is lost (passed to
the noise subspace) after the dimension reduction. Therefore the smaller the size
of the signal subspace is, the larger SNR and ERP energy loss are, and vice versa.

It is to be remembered that the overall data are of the form xp q( ) (see
Section 2.5). However, the most important dimensions that should be empha-
sized are channels k, time samples ¢, and trials i. Correspondingly the real-
izations of the sources contributing measurements x;(t) are denoted as vector
si(t) = [si(t) sin(t) ... sk, (t)]T. Additionally, we assume that the mixing matrix
A in (10) is stationary, i.e. the same mixing model holds for all trials:

xi(t) = As;(t) +n,(t), Vi=1,...,N. (12)

Basically, this assumption means that all sources are spatially stable. It is unlikely
that this can be completely true in practical applications. Nevertheless we make
this approximation that seems to be rather close to real circumstances and is sup-
ported by the theory of functional brain segregation, specialization, and integra-
tion discussed in Section 2.1. Thus, for example, the averaging procedure initially
defined for one channel in (2) naturally transforms to multichannel averaging as:

Z = As(t) +7(t), (13)
i=1

— N —
where5(t) = § - Ty s; (1) and 7(1) = § - Ly 7(1).
Moreover, throughout the thesis we assume that x;(t) have zero mean, i.e.
they are centered:

xi(t) — x(t ;i 1,...,N. (14)



3 REVIEW OF RELATED METHODS

In this chapter we review the literature related to the development of one-channel
denoising methods (Section 3.1) and source separation methods (Section 3.2) as
well as their application to EEG data, (Section 3.3) and approaches to the valida-
tion of quality of data and results of ERP denoising (Section 3.4). This chapter
does not pretend to be a complete review of the related methods. Therefore some
approaches which might be expected by the reader may be missing. The main
purpose of the chapter is to give to the reader an idea of the variety and breadth
of the research efforts undertaken towards the considered problem and immerse
the reader into the topic before we turn to reviewing the results of the thesis.
Since the focus of the thesis is concentrated on spatial denoising approaches, of
which ICA is probably the most prominent example, significant attention is paid
to ICA-related methodologies. This disproportion is motivated by the intention
to place the discussion within the context to which the proposed methods are
most closely related.

3.1 Single-channel methods for ERP denoising

The single-channel ERP denoising methods are based on separating signal and
noise in, e.g., time, frequency, or time-frequency domains.

A well-known example of the method that performs denoising in the tem-
poral domain is traditional averaging. Other methods operating in the time do-
main are mainly targeted on modifying the data so that they more closely fulfil
the declared properties, e.g., determinism of the signal and stationarity of the
noise. Let us consider some of the temporal-domain methods in more detail.

In [LKSO05] trimmed estimators for robust averaging were reviewed. In
[DS00] an averaging algorithm based on orthogonal projection of the measure-
ment vector to signal subspace was proposed. Also a version of the running
noise-to-signal ratio (NSR) estimate for a single trial was considered in the same
article. Weighted averaging is another important approach for improving con-
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ventional averaging [HRWL84, DM92, Les02, LG04]. In weighted averaging, each
trial is multiplied by a weight inversely proportional to the noise estimated in the
considered trial. The weighting allows for faster noise reduction during the av-
eraging following. For more detailed discussion on this topic the reader can also
refer to article [PIII].

Another large branch of methodologies that improve the performance of
traditional averaging takes into account the variability of ERP amplitude and la-
tency among trials. Since the assumption of unconditional determinism of ERP
waveform across trials is unlikely to be fulfilled in practice, and variable am-
plitudes and latencies take place, some temporal synchronization of the trials
to improve the quality of ERP estimate proves useful before averaging. Thus
in [PMKGS87] the assumed data model allows variable latencies over trials:

xi(t) = g(t+ 1) +7i(t). (15)

The authors propose to find latency variations 7; by using the maximum-likeli-
hood approach and by employing the so-called iterative Fisher-scoring after trans-
forming this model to the frequency domain. For the first time this model was
proposed in [Woo67], where the method for estimating the latency of every single-
trial event-related activity using a matched filter was also introduced. The laten-
cies were determined there as time delays 7; providing maximal cross-correlation
between the averaged ERP template and a single trial. After that individual tri-
als were adjusted to account for the latency variability prior to averaging. The
problem of variable latencies was also addressed in [MKGP88], where the same
method as in [PMKG87] for obtaining estimates of single latency shifts was dis-
cussed, and statistical test on the presence of latency jitter was proposed.

In [JV99] a more general model of the data was considered, where variable
amplitudes were also taken into account:

xi(t) = aig(t +7) +1i(t). (16)

The authors used an extension of the maximum-likelihood approach from
[PMKGS87] to estimate the parameters of ERP waveform variable across trials.

In [MTG84] two new statistical tests were proposed for testing (1) the vari-
ability of amplitude and (2) slowly changing signal model. Thus the first consid-
ered variability model is expressed as follows

xi(t) = aig(t) + ;. (17)

The second model assumes that ¢;(t) is markedly different from ¢;(t) for large
li — j| and close to ¢;(t) for j = i+ 1. In [MGT90] the three statistical tests
from [MTG84] and [PMKG87, MKGP88] for analyzing signal variation were sum-
marized. See also [MGPK87] and [MGKS88] for information on amplitude and
latency jitter.

In [GMTS96] a method based on nonlinear alignment of pairs of local EP
estimates and successive averaging of the aligned local averages was proposed to
compensate for variable latencies. The method does not make prior assumptions
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about the properties of the EP waveform, while benefiting from accounting for
the nonlinear character of latency distortions.

Methods related to denoising in the frequency domain consist in applying
some filters either to the averaged response or to a single trial. Thus, in [Wal69]
a Wiener filter based on estimated signal and noise spectra was proposed. An
extensive discussion on the theory and practice of the application of a posteriori
Wiener filter to averaged evoked potentials is presented in [dWM78]. A time do-
main a posteriori optimal filter was proposed for application to averaged respon-
ses in [BF88]. In [FB91] another optimal a posteriori time domain filter for average
evoked potentials was derived based on the proposed estimators of signal and
noise autocorrelations. In the study reported in [KGJ"07] optimal digital filtering
is compared with the difference wave approach with both applied for mismatch
negativity estimation within the paradigm from [PLL95]. In addition, authors
estimate optimal parameters, i.e. cut-off frequencies, of the digital filter for mis-
match negativity denoising within the specified paradigm.

Denoising in the time-frequency domain is often associated with wavelet
decomposition methods and Gabor transform, which offer time-frequency rep-
resentation of the signal [Mal99]. The denoising is performed in the following
three steps: (1) the signal under consideration is decomposed into a wavelet do-
main consisting of coefficients that reflect contributions of the wavelet basis func-
tions localized differently in the time-frequency plane, (2) the noise-associated
coefficients are zeroed or shrunk, and (3) the time-frequency areas affiliated to
the signal are transformed back to the temporal domain. The wavelet-based de-
noising methods can offer advantages over pure temporal or frequency domain
methods, because various wavelet-like basis functions specialized in certain data
patterns allow for better capturing of specific signal activities localized in the
time-frequency plane. Specialization and double-domain localization properties
of wavelet basis functions together result in better separability of the signal and
noise. There are numerous studies related to multi-resolution wavelet analysis of
EPs in the time-frequency domain, see, e.g., [TXrYCH93, AMTI97, ELG"00].

Another direction of research in filtering is related to nonlinear filtering
methods [Jaz70, HLN94, Lip99]. The use of nonlinear approaches may be more
appropriate compared to linear ones, if one assumes that nonlinear relationships
underlie real processes. Then the nonlinear techniques allow for more accurate
modeling of phenomena and capturing of data structures. The application of
nonlinear procedures leads, in turn, to increased reliability of the results. There
are numerous research studies completed and publications in this field [Ahm98].
For example, in [CCC"96] some of the nonlinear algorithms for processing bio-
logical signals are reviewed, which can be applied particularly to EEG processing
and ERP denoising.

One of the earliest and the most straightforward approaches for improving
the accuracy of EP estimate is related to data selection strategies and called ar-
tifact rejection. According to this method, measurements that are corrupted with
artifacts are excluded from the averaging. Essentially the artifact rejection tech-
nique is based on artifact detection criteria. It is to be noted that when a trial
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is rejected, the relevant information may also be lost. Moreover, trial rejection
decreases sample size for averaging and, therefore, also reduces the accuracy
of the EP estimate. Hence when making a decision about artifact rejection one
should always evaluate what is more appropriate - rejection or preservation of the
trial. One possible solution for this evaluation problem is given by the method
of sorted averaging proposed in [MvS99]. More details can be found, e.g., in
[Bar86, ARS1t99, BCM 03, KGK*08] and articles therein.

Summary: The developed methods for ERP denoising, which exploit data
from each channel separately, allow for significant improvement of the reliability
of ERP estimates. Nevertheless it seems that methods of this type have almost
reached saturation point in their effectiveness. To further increase the perfor-
mance of ERP denoising techniques additional information, like that encrypted
in between-channel relationships, should be employed.

3.2 Source separation methods

In this section, we discuss the approaches and criteria developed to solve the
relaxed BSS problem defined on the model (10). Since this is an extremely large
and rapidly growing area, we consider only the main milestones of the work done
in this direction. Moreover we further concentrate our attention on the issues
related to the formalization of the separation criteria, rather than on the effective
implementations of the algorithms based on these criteria.

First, we introduce the classification of the source separation methods. Then
in Section 3.2.1 we discuss both the Principal Component Analysis (PCA) tech-
nique and whitening procedure based on eigenvalue decomposition. Afterwards,
in Sections 3.2.2 and 3.2.3 we present a detailed overview of the BSS methods ac-
cording to the previously defined classification.

The source separation methods can be classified into four basic categories
by the a priori information or criteria they use to find a solution [CA02]:

Mutual independence, Non-Gaussianity, ICA: within this category the separa-
tion criteria employ some measure of mutual independence or non-Gaussia-
nity of signals. In this case the higher-order statistics (HOS) are extensively
exploited in solving the BSS problem. Only one Gaussian source is allowed,
under the assumption of statistical independence, to be able to successfully
solve BSS problem.

Temporal structure: the criteria of this category exploit the fact that, if sources
have a temporal structure, then they also have non-zero autocorrelations. In
this case, the assumption of uncorrelatedness of the sources, that is weaker
than the independence assumption, can be used. As a consequence, second-
order statistics (SOS) are enough to estimate mixing matrix and sources.

Diversities of the signals: these include different characteristic a priori known
properties of the signals in temporal, spatial, and frequency domains or in
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combinations of these domains. The sources are thus initially divided into
several categories by their discriminative properties in the chosen domains.
The separation method, that must be aware of this division, automatically
classifies found components into defined groups. The methods developed
during our research belong to this class of source separation methods, that
utilize diversities between groups of signals (see Chapter 4).

Non-stationarity: the second-order non-stationarity is usually considered within
this category, which means that the variance of signals changes in time. The
source separation problem under the variance non-stationarity assumption
is solved within the framework of the second-order statistics, so that decor-
relation is able to separate sources (see Section 3.2.2).

3.2.1 Principal component analysis and whitening

Principal Component Analysis [Jol86, Oja92, HKOO01] is an orthogonal linear com-
ponent decomposition technique that has two main interpretations of its opti-
mized cost function.

From one side, PCA estimates components y(t) = w;x(t), where k =
1,...,K, wy = [wq wgp ... wig], and x(t) = [x1(t) x2(t) ... xx(t)]T, one
by one by maximizing the variance of each component

TP (wy) = E{} = E{(w}x)?} = wiE{xxTwy = wlCowy, (1)

subject to unit norm and orthogonality (with respect to previously found com-
ponents) constraints wzl Wi, = Ok, VK1, k2 = 1,..., K, where 6y, stands for the
Kronecker delta, and Cy is the covariance matrix of the data x.

On the other hand, PCA components can be found by minimizing the func-
tion of mean-square error (MSE) between the original data and the data described
by m-dimensional subspace

m
Tiise (Wi, win) = E{[[x = Y (wix)wi[*}, (19)
k=1
subject to orthogonality and unit norm constraints, where ||.|| is the Euclidean

norm.

In either case the optimization problems are solved in terms of eigenvectors
and eigenvalues of the covariance matrix Cx. Namely, to find the eigenvalues one
needs to solve the characteristic equation det(Cx — AI) = 0 in variable A. Here,
I is the identity matrix, and det(B) is the determinant of the matrix B. The so-
lutions A of the characteristic equation are called eigenvalues. For K x K square
matrix Cy, there are K eigenvalues, which may have less than K distinct values
in general. The column K-element eigenvector e, associated with eigenvalue A
is found by solving the equation Cxe, = Aiex. Therefore all pairs of respective
eigenvalues and eigenvectors satisfy Cx = EAET, where E is a matrix of K unit
length pairwise orthogonal eigenvectors placed at columns and A is the diagonal
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matrix of corresponding eigenvalues ([HKOO1]). Note that this form of decompo-
sition is suitable for real symmetric matrices, which is what the covariance matrix
is. In the general case transpose is replaced with matrix inverse.

One can see that PCA transformation ETx transforms the data x so that the
covariance matrix of the transformed data is diagonalized to A. This means that
all principal components are pair-wise uncorrelated. The eigenvalues are nothing
else than the variances of the data projected to corresponding eigenvectors. The
principal components are conventionally ordered according to decreasing eigen-
values, i.e. by reduction of their energy (variance) importance.

Often PCA is used as a preprocessing step for dimension reduction of the
data by skipping the components explaining smallest data variations and assum-
ing that the most important features of the data are described by the few compo-
nents with the largest eigenvalues.

In the context of source separation, eigendecomposition plays an important
role, since it is a composite part of another important preprocessing step called
whitening or sphering. The data are said to be whitened if their covariance matrix
is the identity matrix C, = E{zz'} = I, i.e. the individual spatial components of
the data vector are uncorrelated and have unit variances. Since the PCA transfor-
mation diagonalizes the covariance matrix, all that is left to make data whitened
is to scale the PCA components to unit variance. Thus, for example, the following
transformation of the initial (centered) data x(f) leads to whitened data z(t):

z(t) = Vx(t) = EA"2ETx(t) = VAs(t), (20)

where V = EA~!/2ET denotes the whitening matrix, and A~'/2 is a componen-
twise inverse square root operation that implements division of the PCA com-
ponents by the corresponding standard deviations to enforce unit variance. In
the above whitening procedure, final multiplication by E can be skipped, since it
does only the backward rotation of the scaled PCA components.

The utility of the whitening consists in making independent sources orthog-
onal that reduces the subsequent independent component decomposition search
to finding an orthogonal basis [HKOO01]. Note that any orthogonal transforma-
tion applied to the whitened data results in whitened data again. Moreover, since
whitening makes independent sources orthogonal, it allows orthogonalization
to be used as a solution for preventing the convergence of the sequentially esti-
mated components to the same point. Many ICA algorithms use whitening as a
preprocessing step, e.g. FastlICA [HO97, Hyv99a].

Basically the capabilities of PCA are limited with respect to the solution of
the independent component separation problem, since it searches for spatially or-
thogonal and temporally uncorrelated components and focuses on the variance
maximization / MSE minimization criteria that are unlikely to underlie real sour-
ces. In addition, even uncorrelated sources cannot be found by means of pure
PCA - all that whitening does is just making uncorrelated sources orthogonal in a
new coordinate system. To estimate the sources themselves the following orthog-
onal transformation (rotation) must accompany whitening. This further rotation
is determined by using additional priors on sources such as temporal structure,
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non-stationarity, non-Gaussianity etc. Elaboration of this rotation is addressed
by numerous algorithms, like AMUSE, SOBI, TDSEP, JADE, and FastICA that are
described more thoroughly in the following sections.

3.2.2 Exploiting the temporal structure, non-stationarity, and diversity

The source separation methods based on the second-order statistical properties
assume that the sources either exhibit temporal structure or they are
non-stationary.

More precisely, if the temporal structure is implied, it is assumed that the de-
layed cross-covariance matrix of the initial sources reads as Cg 1, )s() = E{s(t+
T)s(t)T} = diag(1(7) ¥2(7) ... Yk (7)) with auto-covariance of s (t) denoted as
Pr(T) = E{si(t + T)sk(t)}, i.e. sources si(t) are mutually uncorrelated, but non-
zero inner-source auto-correlations exist. The assumptions underlying additive
noise are taken as in Section 2.6. If pre-whitening is done as z(t) = Vx(t) (see
Section 3.2.1), sources become orthogonal in the whitened data space with the
orthogonal separation matrix B = A1V ~1. Since the delayed cross-covariance
matrix of the sources is diagonal, to estimate sources one needs to find an orthog-
onal transformation on whitened data that diagonalizes C,(; 1),) = E{z(t +
7)z(t)T}. The diagonalization is carried out by eigendecomposition. This is the
basic principle of AMUSE algorithm [TSHL90].

In SOBI (Second Order Blind Identification) [BAMCM97] and TDSEP (Tem-
poral Decorrelation source SEParation) [ZM98] algorithms the same idea is ex-
ploited, but instead of one estimate of the time-delayed cross-covariance ma-
trix for predefined 7, several cross-covariances for different T are computed and
jointly diagonalized approximately. This approach is considered to produce more
robust results, and is, basically, a generalization of the AMUSE procedure. The
overall cost function that is minimized by both methods has, therefore, the fol-
lowing form:

Jrpsep(W) = Z(—Zt 1]%( Z ) ( Zt 19y 1(t k) )% (21)

i#] =1i#j

Here, the first term minimizes the sum of off-diagonal elements of the correlation

matrix with zero time lag; likewise, the second term does the same for the set

of time-delayed second-order correlation matrices. The separation matrix W is

included in (21) by taking y;(t) = wx(t). Both methods take advantage of the

whitening as the first step that explicitly minimizes the first term. Afterwards the

approximate simultaneous diagonalization of several time-delayed second-order
correlation matrices is carried out by using several Jacobi rotations [CS96].

The second-order statistics can also be used as discriminative indicators for
source separation, when sources undergo variable variances. Thus, in [Man99]
it was shown that in order to separate the instantaneous mixture of independent
non-stationary sources the second-order statistics are sufficient. Namely, the di-
agonalization of the auto-correlation matrix separates the non-stationary signals.
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SOS have limited capacity however for separating sources, and in many cases
the distinguishability between different sources can only be defined in terms of
higher-order statistical independence formalized by means of HOS and informa-
tion theoretic concepts such as entropy and mutual information.

The concept of differential BSS assumes that the source signals obey two dif-
ferent features or values of some property, by which they can be distinguished.
For example, the authors in [DBA04, TDHO07] introduced the differential kurto-
sis measure that was intended for distinguishing the non-stationary sources from
stationary ones. This approach also offers a partial solution to underdetermined
problem, i.e. when the number of channels is less than the number of sources.
The method is constructed so as to extract maximally clean non-stationary sour-
ces, while leaving the stationary sources out of interest, i.e., considering them as
an inseparable subspace. This approach reveals an example of using the diver-
sities between the two sorts of sources. The methods developed in the scope of
this thesis belong to the same category: namely the subspace of the deterministic
signal sources is contrasted with the subspace of the random noise sources (see
Chapter 4). In general, the differential approaches can be considered as being
optimal in the SNR sense, if the target class of the sources is considered as signal
and other sources as noise.

3.2.3 Independent Component Analysis

The concept of Independent Component Analysis was introduced first in
[Com94], where the search criteria related to the information theoretic viewpoint
have also been proposed. Nevertheless the first pioneer work that yielded exten-
sive explorations in the BSS area is considered to be the paper by Herault and
Jutten [HJ86]. Their technique was based on a recurrent neural network model
with a modified Hebbian learning rule and was able to separate mixtures of sub-
Gaussian sources, that is to say those that have kurtosis less than that of the Gaus-
sian distribution with the same mean and covariance. This approach was further
advanced in [JH91, KJ94, CURY4].

Generally, there are two basic approaches to ICA: the projection pursuit and
the information theoretic ([Hyv99c]). The slightly intuitive approach to ICA is the
projection pursuit [Hub85, Fri87], where the components are estimated based on
some pursued property they should possess. For example the central limit theo-
rem says that the distribution of a sum of independent identically distributed ran-
dom variables tends towards Gaussian distribution. Conversely, the most mutu-
ally independent components are obtained, when the sum of their dissimilarities
to Gaussian distribution is maximized.

Several measures of non-Gaussianity can be used. One of them is the kur-
tosis - the fourth-order cumulant of a random variable. Kurtosis is zero for the
Gaussian random variable and nonzero for most non-Gaussian variables. Nega-
tive kurtosis is an indicator that the distribution is sub-Gaussian. On the contrary,
the super-Gaussian distributions have positive kurtosis. Therefore, the absolute
value or square of kurtosis can be used for measuring the non-Gaussianity of
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the components and in the capacity of separation criterion. However, kurtosis as
a statistic is highly sensitive to outliers when approximated by a finite sample.
Another measure of non-Gaussianity is negentropy. It is based on differential en-
tropy and is more robust to outliers, since good approximations of it are available.
See [CT91, Pap91, HKOO01, Hay09] for possible approximations of negentropy.

There are a number of algorithms that employ kurtosis and negentropy as
projection pursuit indexes. Both the sequential and simultaneous component es-
timation versions are available. For example, FastICA algorithms are widely used
[HKOO01, HO97, Hyv99a].

Another way to approach the independence of the components related to
information theoretic viewpoint is to maximize the log-likelihood function with
respect to a linear transform B [GL90, PG97, PP96, Car97]:

K
%log L(B) = E{}_ log px(b}x)} + Tlog|detB|, (22)
k=1

where B = QPA~! = [by,...,bg]T. There exist a number of different viewpoints
that approach maximization of (22) per se, e.g., by maximizing the joint entropy
of the outputs of a neural network [BS95, Car97], by minimizing the mutual infor-
mation or maximizing the sum of negentropies/non-Gaussianities of individual
components [HKOO01, LGBS00, GF97], using the maximum-likelihood (ML) para-
metric density estimation and the Kullback-Leibler divergence [PP96], or starting
from the negentropy perspective for projection pursuit [GF96].

While the basic algorithms are sharpened to separate specific types of sour-
ces (e.g., sub- or super-Gaussian), the extensions were proposed to deal with
mixtures of sources having various distributions. For example, in [LGS99] an
extended Infomax algorithm was proposed. It is suitable for separating mixtures
of super-Gaussian and sub-Gaussian sources thanks to a parameterized proba-
bility distribution switching between sub- and super-Gaussian modes using the
stability analysis proposed in [CL96]. The technique uses the natural gradient
proposed by [Ama98] to speed up the convergence compared to the normal gra-
dient search used in the original Infomax algorithm [BS95]. A similar method
was also proposed by [GF96]. However, the authors used the sign of the kurtosis
to switch between sub- and super-Gaussian regimes.

In [CS93] independence between components is addressed by neutralizing
the correlations of the second and fourth orders. The algorithm called JADE (Joint
Approximate Diagonalization of Eigenmatrices) consists of two steps: whitening
of the multichannel data and the subsequent joint approximate diagonalization
of a set of eigenmatrices of the fourth-order cumulant tensor. The fourth-order
cumulant tensor is a four dimensional array with entries containing fourth-order
cross-cumulants cum(x;, Xj, Xk, x7) [HKOO1]. The overall cost function that is min-
imized by JADE has the following from

i)y, (t)
Jjape(W) = Z(%)z + Y cum(yi i v ) (23)
iz ijkIZiiki
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where y = Wx. Intrinsically this technique is similar to the maximization of the
absolute value of kurtosis that is advocated by one of the implementations of
the FastICA algorithm [HKOOQ1]. Despite the theoretical validity, methods based
on HOS exhibit inevitable problems. Namely, HOS are sensitive to outliers and
require larger data samples for estimation.

An extension of the TDSEP algorithm to HOS called JADETD is a combi-
nation of TDSEP and JADE techniques [MPZ99]. This method uses the time
structure and information carried by the higher order moments to separate la-
tent sources. The resulting cost function minimized by JADETD can be obtained
by combining basic criteria Jrpsgp (21) and Jjapk (23):

3 vyt +
Jjaperp(W) = ,{2 §(Zt1y;)_]/]1( Tk))2+
—0i7j

Yo cum(yi,yi v vi)® (24)
ijkl;éiikl

where 19 = 0. The delayed second-order correlations (first term) account for
the information about temporal structure and allow for second-order correlations
between components to be neutralised; whereas higher-order cumulants (second
term) ensure the higher-order decorrelation.

Another approach to ICA is nonlinear PCA that provides type of nonlinear
decorrelation [KJ94, KJ95]. The minimized cost function is adapted from (19) by
changing linear terms to nonlinear:

Tnist (Wi, wm) = E{[[x = ) gr(wix)wi*}, (25)
k=1

where g are properly chosen nonlinear functions. It can be shown that after
whitening and with certain choices of g this criterion becomes equivalent to ICA
approaches based on, e.g., kurtosis and maximum likelihood [HKOO01].

Moreover, a number of connected issues and models related to ICA have
been addressed in numerous studies and publications, e.g. nonlinear mixtures,
convolutive mixtures, noisy ICA [CC00, Hyv99b], and underdetermined mix-
tures [HKOO1]. The problem of recovering sources under the underdetermined
conditions, i.e. when the number of channels is less than the number of sources,
is one of the most important and challenging ones addressed. This problem has a
straightforward connection to the problem of finding the optimal data represen-
tations within overcomplete bases also called dictionaries [MZ93]. Although the
representations of data are not unique within such bases, they may offer more
efficient coding of data or more compact data representations. This is because the
overcomplete number of basis functions designed to represent numerous spe-
cialized data patterns allows for better and more specific capturing of the data
structure.

Referring to model (10) with the same number of channels as sources (mix-
ing matrix A is a square matrix), the measurements x(t) can have a unique repre-
sentation within the complete basis formed by sources s(t), and each element a;;
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in matrix A defines the coefficient or amount of contribution of a corresponding
basis function s;(t) to the channel x;(t). However, in the case where more sources
than observed mixtures are (mixing matrix A is not square, but rather has dimen-
sions d; x dy, where dq < dy) the data x(t) have multiple representations within
the overcomplete basis s(t). In principle, using a basic ICA algorithm it is possible
to find a square matrix A’ such that the inverse of it will estimate the same amount
of the most independent basis components as channels y(t) = (A’)~!x(t), but
these components can only be mixtures of the original sources. In the normal
mixture model finding the inverse of the mixing matrix also leads to estimating
the sources. However, in the underdetermined case, one cannot estimate sources
uniquely by inverting the rectangular mixing matrix A, since it is only pseudo-
invertible. Therefore in underdetermined problems one needs to perform two
separate tasks: estimate the mixing matrix and sources. Thus, the source separa-
tion methods intended to solve underdetermined ICA problem are designed to
have two separate steps each solving one part of the problem.

Usually the source separation methods within the underdetermined mix-
ture model assume that sources also have sparse representation in some domain.
In the time domain sources are unlikely to be sparse, so one needs to transform
data first to a domain where this assumption may hold better, e.g. the time-
frequency (TF) domain. For example, in [LAC'06] the mixing matrix is found
based on ratios in the TF domain obtained by the wavelet transform. At the sec-
ond step of the two-stage approach the authors estimate sources based on solving
a linear programming problem. Also the recoverability analysis is presented to
answer the question of which circumstances allow sources to be accurately esti-
mated by solving the linear programming problem.

The probabilistic approach for solving the underdetermined problem was
proposed in [LS00]. In the case of a square matrix A and zero additive noise the
derivations of the authors converge to a standard ICA algorithm [BS95]. In the
underdetermined case a different learning procedure is developed. In [LLGS99]
empirical results from separating speech signals using this approach are pre-
sented.

An interesting approach to tackle the underdetermined problem was pro-
posed in [KY04], where the underdetermined BSS problem was converted to the
conventional problem by generating the missing channels. The algorithm is a
two-step iterative procedure: (1) first, virtual channels are generated to maxi-
mize their conditional probability given the existing observations and unmixing
matrix, then (2) based on the current estimates of the sources running parametric
estimates of probability densities of the components are obtained, and unmixing
matrix is updated using the extended Infomax algorithm.

Hence, there are many of approaches, viewpoints, and interpretations on
ICA, but many of them are actually based on the same core principles and even-
tually converge to the same algorithms.
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3.3 Application of Source Separation Methods to EEG

In this section, we briefly introduce the main milestones of the work done within
the scope of application of the source separation methods to EEG data. The treat-
ment is divided between ICA (Section 3.3.2) and other major approaches (Sec-
tion 3.3.1).

3.3.1 Basic artifact removal approaches

The first attempts to remove eye activity artifacts from EEG recordings were
based on regression between EEG and EOG channels either in the time [HG70,
VGMS82, GCD83] or frequency domain [WLM78, WVS83]. According to this ap-
proach, properly weighted data from EOG channels are subtracted from EEG
channels. The weaknesses and problems of this method include: (1) dependence
on having good reference EOG measurements and (2) potential loss of relevant
EEG data. The EEG signal loss takes place because besides ocular activity EOG
measurements contain EEG traces, and, thus, portions of EEG are also removed
from EEG channels during subtraction. In order to reduce the cerebral activity
in EOG channels used for computing regression coefficients, authors in [LPBS93]
proposed low-pass filtering of EOG measurements.

Another set of techniques for removing EOG artifacts is related to fitting the
spatiotemporal dipole models that explicitly model positions and orientations of
dipoles representing sources [BS91b]. This approach, however, exhibits a number
of bottlenecks. For any type of eye activity (blinks, movements, saccades) dif-
ferent dipole models need to be elaborated and fitted. Constructing the mixing
model requires prior knowledge about the location and orientation of each dipole
source or some method to estimate these from measurements. The estimation of
the locations of sources based on measurements is related to finding the solu-
tion for the inverse problem [Cuf85, Sar87] that is difficult to address accurately,
because of the simplified and roughly approximated models used in practice.

The method presented in [BS91a, BS94] avoids explicit estimation of the lo-
cations and orientations of the dipole sources by using PCA for direct computa-
tion of the topographies related to different EOG activities. Since the topogra-
phies are computed individually for each subject, this approach offers a good
tailoring of the estimated model that takes into account features (head and brain
topologies, and positions and orientations of the dipole sources) specific for a
person. The EEG activity still needs to be modeled using the dipoles as before.
For all that, PCA cannot completely separate eye activity from EEG, because it
groundlessly restricts sources to be spatially orthogonal. In addition, it searches
for temporally uncorrelated components that is a much weaker condition than
the more physically-grounded independence assumption. All this makes esti-
mates of ocular topographies inaccurate, although PCA offers clear advantages in
performance over regression and pure spatio-temporal dipole models as shown
in [LPBS93]. Moreover, PCA is effective mainly, when EOG is markedly bigger
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than EEG, and fails when they both have comparable variances [LSB97]. In addi-
tion, use of PCA - similarly to the pure spatio-temporal dipole models - requires
a preliminary learning step, for which high-quality data samples containing dif-
ferent patterns (with and without eye artifacts) need to be obtained.

All the above mentioned methods share common inherent disadvantage re-
lated to the narrowness of the applicability area. For example, some artifacts, like
those related to muscle activities, cannot be removed by these approaches, since
no reference channels usually exist for them.

Another possible direction of artifact removal research is linked to spatial
component decomposition methods. According to this approach, data are first
decomposed to spatial components and artifactual components are identified.
After that, EEG data are reconstructed back from the components, avoiding those
related to artifacts.

For example, in [Har90] authors argue for the usefulness of PCA spatio-
temporal components for EEG data analysis and interpretation. In their opinion,
PCA components described by spatial distribution, temporal distribution, and
amplitude represent spatio-temporal features that are physiologically meaning-
ful and interpretable. Intuitively, PCA can be used, for example, for isolating
ocular potentials. If the variance of a PCA component exceeds some threshold
indicating abnormal concentration of energy in one component, this component
is classified as artifactual and removed during inverse transformation. However,
for other smaller artifacts and EEG activities the use of the maximal variance
criterion for optimization is not grounded. Therefore bad sides of PCA in this
application include: (1) orthogonality of the components that is unlikely natural
to real sources, and (2) in general, motiveless maximal variance optimization cri-
terion. Due to these reasons, PCA can not completely isolate ocular activity from
other sources, and, thus, the loss of relevant EEG as well as incomplete removal
of artifacts is possible during inverse transform.

3.3.2 Separation of EEG sources using ICA-based approaches

Recently developed ICA techniques are free from the numerous disadvantages
inherent in the traditional specialized artifact removal methods. ICA algorithms
can be applied to a variety of artifacts and not only eye-related ones. Moreover,
the processing of different artifacts is unified within ICA, since the same model
applies to all cases. ICA is capable of finding separation matrix without prelim-
inary step, when calibration data are involved. In addition, ICA is an almost
purely empirical and data-based solution and does not require modeling the lo-
cations and orientations of the generators in the head.

The results reported in [MB]S96] provide one of the first evidences that
the application of ICA techniques to EEG data can be of benefit for the analy-
sis of underlying processes. The basic Infomax algorithm from [BS95] was ap-
plied to both raw EEG data and averaged ERP responses. When applied to raw
EEG, ICA was able to isolate different overlapping oscillatory activities and arti-
facts. Application to averaged ERP responses provided division of the complex
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ERP waveforms to more psychophysiologically meaningful, temporally overlap-
ping but spatially-separable subcomponents. In [MJB*97] the Infomax algorithm
equipped with natural gradient [ACY96] and super-Gaussian prior was applied
to decompose averaged auditory event-related brain responses into components
with fixed scalp distributions and sparsely activated, maximally independent
time courses. Each of these components were shown to appear at certain ex-
perimental conditions and, thus, associated with specific brain-processing mech-
anisms.

The extended Infomax algorithm [LS97] equipped with natural gradient,
suitable for separating both super-Gaussian and sub-Gaussian sources, was ap-
plied to real EEG data for removal of different types of artifacts in [JHL97]. In
this work, authors compare performance of the ICA with the multiple-lag re-
gression method [KMVS91], in order to show the advantages of ICA. Removal
of electroencephalographic artifacts was also addressed in [[MH"00], where the
extended Infomax was used. The successful results reflecting isolation and fol-
lowing removal of artifacts by ICA are presented in comparison to regression and
PCA methods to demonstrate their drawbacks. The results reported in [[MM01]
prove one more time the usefulness of ICA for analyzing EEG, Magnetoencepha-
lography (MEG), and functional Magnetic Resonance Imaging (fMRI) data. While
the extended Infomax algorithm with natural gradient was used to decompose
averaged ERP brain data into simpler physiologically meaningful subcompo-
nents, authors also pay attention to separating sources of the raw EEG segments.
Besides isolating artifacts, this allows patterns and phenomena that have varying
temporal and spatial characteristics to be captured. Considering spatio-temporal
dynamics may provide information about changes in subject’s performance or
state, and about complex interactions between different physiological processes
and mechanisms. The "ERP-image" visualization tool was employed to show and
analyze trial-to-trial variabilities. This visualization scheme enables the linkages
between properties of EEG activity and specific tasks, events, and conditions to
be found. In [[MWT01] ICA was also applied to raw EEG data, and similar tech-
nique for visualization of variations between trials was used. The results showed
that ICA was able to separate distinct sources and activities, allowing: (1) re-
moval of artifacts, (2) identification and segregation of stimulus- and response-
locked EEG/ERP components on a single-trial base, (3) temporal synchroniza-
tion of the response-locked activities from single trials before averaging to deal
with the problem of latency jitter, (4) capturing and identifying context-sensitive
and interpretable EEG dynamics by investigating the spatio-temporal variability
between trials, and (5) segregation of spatially overlapping but temporally sepa-
rable EEG activities that may be related to different task events and conditions.

In [Vig97] the FastICA algorithm developed in [HO97] was applied to sep-
arate ocular artifacts from other activity with promising results. In [VO99] the
same method was applied to MEG data and resulted in successful removal of
different types of artifacts. Moreover, another numerical study in the same paper
was related to the application of ICA to averaged ERP responses. As a result, ICA
allowed to separate complex ERP waveforms into simpler independent subcom-
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ponents, which were functionally distinct and reflected different psychophysio-
logical processing mechanisms and phenomena. In [VHO96] and [KHV"97] the
use of ICA for isolating and the subsequent removal of artifacts from EEG is also
demonstrated by the example of the FastICA algorithm. In addition, authors
attempt to provide clear psychophysiological interpretations of the obtained re-
sults. The report in [VSJT00] reviews the results and shows the use of FastICA
for both the identification and removal of artifacts from raw EEG/MEG data and
for the decomposition and analysis of event-related brain signals.

In [WSST04] SOBI algorithm was successfully applied for ERP denoising on
a single-trial level. This offered clear advantages in the following ERP classifi-
cation step used in both basic psychophysiology and Brain Computer Interface
(BCI) research. In [HYCKO7] the results of SEP signals extraction from a single
trial using SOBI were reported. The authors used artificially generated data, in
which the SEP template obtained after ensemble averaging was mixed with dif-
ferent types of noises modeling EEG and power-line at various SNR levels. The
correlation coefficient between the SEP template and the SOBI-extracted SEP esti-
mate was used for the purposes of performance evaluation. In [TPZC00] authors
have chosen SOBI for decomposing real MEG data from different subjects and
tasks, because it provided sufficient accuracy of the solution at a reasonable com-
putational cost compared to other methods. They demonstrate that, without us-
ing any specific domain knowledge and assumptions on the dipole/head model,
SOBI was capable of separating (1) artifacts and EEG, (2) neuronal responses from
different sensory modalities, and (3) neuronal responses from different process-
ing stages within a given modality. Therefore, the obtained neuronal components
received physiological and anatomical interpretations.

The ICA algorithm considered in [ASMO03] provides a generalization of pre-
viously used ICA methodologies by considering EEG sources as spatio-temporal
activity patterns and allows for better capturing of the dynamics of brain signals.
With this approach sources are assumed to be spatially unstable and capable of
changing their locations. The above assumptions lead to a convolutive mixture
model in the temporal domain that is equivalent to multiplicative mixing of the
complex signals in different bands of the frequency domain. The EEG data trans-
formed into the spectral domain are decomposed to independent components
using the complex or convolutive Infomax ICA algorithm. This approach ap-
plied to EEG data from the visual attention experiment has shown a better level
of independence between sources compared to the standard ICA. Found sources
explained spatio-temporal dynamics of brain data, had limited spectral extent,
and were connected to the subject’s behavior. In [ADSMO06] a similar technique
of complex ICA was successfully applied to fMRI recordings to extract patterns
of spatio-temporal dynamics of brain activity.

In [MIFMO7] the joint use of wavelet transform and ICA (WICA) for arti-
fact removal from EEG is studied. In contrast to previous approaches combining
wavelets and ICA, where wavelet denoising was only used on a pre- or post-ICA
processing basis [ZG04], in the proposed multiresolution ICA method wavelet
transform is on the other hand an integral part of ICA. According to the proce-
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dure under consideration, extended Infomax is applied only to wavelet coeffi-
cients representing frequency ranges, where artifact is present. This allows for
possible loss of relevant information to be avoided, since the entire data are not
processed by ICA. Indeed, if wavelet and ICA denoising methods are applied in
a sequence, on every stage there is a danger of losing the relevant signal, because
subspaces of signal and noise are partially overlapped in both the time-frequency
and spatio-temporal domains. On the contrary, the combination of the two meth-
ods, when one method provides only a specialized noisy subset of its data repre-
sentation domain to the second method, allows for localization of the area, where
signal and noise overlap. The proposed technique takes into account the four
major EEG rhythms (alpha, beta, delta, theta, see Section 2.1) by decomposing orig-
inal data into the four wavelet ranges corresponding to each of the rhythms. The
method thus allows for advantage to be taken of the a priori known characteristic
features of EEG and artifacts in the frequency domain. WICA was compared with
two other methods, where wavelet denoising was done only as a pre- or post-ICA
processing step. The investigated data were obtained by mixing real EEG with
synthesized artifacts of common types. Correlation between the artificially gen-
erated artifact and the artifactual component extracted by a method was used
for quantitative assessment of the methods’ performance. Results showed that
WICA outperforms two other methods for all types of modeled artifacts. A sim-
ilar idea of joint localization of the noisy data subset was employed in [CMO06],
where a different order of methods was used: wavelet thresholding was applied
to independent components. The proposed technique (WICA) was compared
with pure ICA on semi-simulated and real EEG data sets. The distortions of cere-
bral activity after ICA and wICA artifact suppressions were analyzed in time and
frequency (amplitude and coherence/phase characteristics) domains. The results
showed that wICA preserves characteristics of cerebral activity better than ICA
alone.

Many studies have been done to compare different ICA algorithms between
each other and with other techniques. For example, in [AIF"04] Infomax [BS95],
extended Infomax [LS97], FastICA [Hyv99a], nonlinear ICA algorithms [YAC9S,
JK03], and MISEP [AImO03b, AlIm03a] are reviewed, and the relative performances
of these methods are compared against one another and, in particular, for their
application to EEG data. Another comparative study is reported in [JHL"98],
where an extended Infomax algorithm is compared with PCA as applied to ar-
tifact removal in EEG data. The results show the superiority of ICA. The draw-
backs of PCA related to orthogonality of the components and an inconsistent
maximal variance optimization criterion are discussed and explained. In
[KJK*05] various ICA algorithms, MS-ICA [MS94], OGWE [MFBTGS03], JADE
[Car99], SHIBBS [CBF96], Kernel-ICA [B]J02], and RADICAL [LMI03], are brought
into comparison in the removal of ocular artifacts from EEG. The independence
between components is assessed using a mutual information estimator, which is
based on k-neighbor statistics and does not require prior knowledge about den-
sity functions [KSG04]. According to the results, the RADICAL algorithm has
shown the best performance at separating the source signals from the observed
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EEG measurements. In [IZ07] an iterative ICA technique (iICA) is set against
the ensemble averaging and wavelet transform (WT) applied to EEG data for EP
denoising. Methods were tested on both simulated and real EEG data sets. As
results show, iICA outperforms other methods when applied to single trials and
averaged responses. Performance of the methods was quantified using the aver-
age root-mean-square error and average correlation before and after processing.

The study reported in [CGACO08] focuses on removing muscle artifacts. The
performance of four ICA algorithms, AMUSE, SOBI, Infomax, and JADE, was as-
sessed at separating myogenic activity from EEG during sleep. The algorithms
were applied to semi-simulated data, in which real sleep EEG measurements
were combined with EMG of different powers. The efficiency of ICA algorithms
was graded using three scores: computational time, Pearson’s correlation co-
efficient, and mean-square error. According to the results, JADE showed the
worst performance among used algorithms for temporal area. On the other hand,
AMUSE was considerably faster than other methods and showed evenly good
results independently of the power of muscle artifact for non-temporal regions.
AMUSE was further applied to real EEG data and was successful at separating
EMG from spontaneous EEG arousals at different sleep stages.

In the study presented in [GBO01] the joint cumulant- and correlation-based
(JCC) algorithm is developed. This algorithm is similar to that of JADETD and
uses joint information obtained from higher order statistics and delayed cross-
correlations to separate sources. The technique operates by simultaneous di-
agonalization of the set of time-delayed cross-correlation matrices used in SOBI
and quadricovariance eigenmatrices as in JADE thereby combining the optimiza-
tion criteria of both methods. The carefully designed experiment allowed for
EEG/EOG data with properties that facilitated comparative evaluation of the per-
formance of the three analyzed algorithms (SOBI, JADE, and JCC) to be obtained.
The results and discussion showed the advantages and drawbacks of SOBI and
JADE, and the usefulness of combining their beneficial properties within JCC.
Thus, this study empirically proves that combining second- and higher-order in-
formation can offer better performance at separating EEG and artifacts than using
these approaches separately.

In [GFFT04] a framework for evaluating ICA methods as applied to eye
blink artifact removal from multichannel EEG data was proposed. The perfor-
mances of two algorithms, Infomax and FastICA, were compared at various syn-
thetic configurations of data properties. The covariance between original blink-
free and ICA-filtered EEG data was used as a quantitative metric for assessing
the quality of the artifact extraction. Moreover, the averaging of filtered seg-
ments time-locked to blinks followed by visual inspection of the resulting time
courses and topographies provided an additional qualitative characteristic of the
cleanness of the filtered data from artifacts.

In [DSMO7] the utility of ICA for improving the detection of artifacts is
explored. Three methods, Infomax, SOBI, and FastICA, were used to decom-
pose multidimensional EEG data into independent components revealing differ-
ent sources contributing EEG measurements. Five techniques for detecting vari-
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ous types of artifacts were tested on EEG data with integrated artifacts of different
kinds and levels of magnitude. As was shown, artifact detection techniques ap-
plied to ICA-decomposed data perform much better than if applied to raw data.

Several studies have focused on developing consistent and reliable crite-
ria for automatic detection of artifactual, noisy, and study-relevant independent
components. In [CV0O0] three classification criteria were explored with applica-
tion to both simulated and real single trial EEG data: kurtosis, linear predictor,
and Hurst exponent. In [VCO02] the same criteria were also used to characterize
independent components. The authors use modified CII algorithm [CACCRO00]
for component extraction. After useful components are selected using detection
methods, they are filtered using the Wiener filter [Hay96] with parameters es-
timated using only signal subspace and projected back to electrodes. The ap-
proach was tested on both simulated and real EEG data and demonstrated ad-
vantage over ICA and filtering applied separately. The authors also show the
principal necessity of performing ICA before applying signal detection mecha-
nisms. In [DMS01] kurtosis and Shannon’s entropy were used jointly as mark-
ers for component classification; whereas in [GMMVO05] authors attempt to de-
velop more efficient component classification criteria and empirically argue that
the joint use of kurtosis and Renyi’s entropy is more effective and allows some
failures appearing when Shannon’s entropy is used to be avoided. They use the
extended Infomax algorithm in their computations on real EEG data.

The work reported in [BPZ04] presents a framework for identification and
removal of artifacts from MEG consisting of three steps: (1) the application of the
ICA algorithm, (2) the application of methods for automatic detection of artifac-
tual activities based on statistical (kurtosis, entropy) and spectral (Power Spec-
trum Density correlation) characteristics of independent components, and (3) a
control cycle on discrepancy between original and ICA-filtered data in order to
avoid occasional loss of relevant data when rejecting “artifactual’ ICA compo-
nents. The authors used the ICA algorithm called Cumulant-based Iterative In-
version in Signal Subspace (CIISS) that is an extension of the Cumulant-based
Iterative Inversion (CII) algorithm [CACCR00, CACRCO02] designed for noisy
mixtures equipped with robust whitening procedure [BC00]. The approach was
successfully tested on simulated data with sources modeling different EEG and
artifactual activities as well as real MEG data.

3.4 Validation and assessing the quality of the results

In this chapter, we discuss how to evaluate and measure the quality of data or the
results of source separation. We will consider the general-level suggestions to val-
idation (Section 3.4.1) as well as the existing numerical techniques related to this
issue (Section 3.4.2) and some practical limitations and advances (Section 3.4.3).
Here, we examine only those approaches, which are applicable to real EEG data.



58

3.4.1 Quality evaluation measures: general overview

Properties of data known a priori from a problem area can be used either for per-
forming the denoising (e.g., as contrasts for component extraction and selection
procedures) or for validation purposes. For example, interesting characteristic
features of the data can be considered as a specific content affiliated either with
signal or noise in the temporal or the frequency domain (see, e.g., the temporal
structure of ERP waveform in Figure 5). A specific probability distribution linked
to a source is also an important property that can be used for distinguishing be-
tween sources. Basically, denoising or component extraction and validation cri-
teria should form a complete set incorporating all knowledge available on data,
in order to check all possible aspects of a method influencing the data.

The quality evaluation methods can be classified according to their nature
as visual or manual and numerical or formal. All criteria can be evaluated ei-
ther manually or numerically. In manual methods the qualitative validation is
obtained based on an opinion of an expert or a pool of experts that possess a
specific domain knowledge to exclude the subjective factor from the evaluation
results. The expert knowledge is usually based on special data properties (e.g.,
waveform), whose quantification leads to numerical assessment.

For MMN studies, the following properties can be used for assessing the
quality of data before and after a method application:

Polarity reversal. In data obtained using some specific experimental setups the
polarity of the signals coming from the same source can be reversed in dif-
ferent channels. This may happen due to specific respective locations of the
source, measuring sensors, and the reference sensors, and the specific ori-
entation of the source dipole. For example, in our first data set from the
study reported in [PLL95] MMN deflection is positive in mastoids M1 and
M2 channels (see Figure 6). In contrary, MMN is negative in all other chan-
nels, except maybe Pz channel, where the polarity of MMN may vary. This
spatial property of the data can be used (1) as a part of a component sepa-
ration criterion, (2) to pick out correct components related to MMN after a
transformation, and (3) for validation purposes.

Discriminating deviants. It is well-known in the theory and practice of elec-
troencephalography research that a stronger deviant elicits a larger MMN
peak with shorter latency. Some recent studies have indicated that the
stronger deviant does not necessarily produce MMN with larger ampli-
tude (see e.g., [HCJ"08]). We believe, however, that in many paradigms
including the one from [PLL95] this relation holds, since it is supported by
a substantial number of publications and observations [PLL95, HHKL07,
KGJ*07]. Since 30 ms deviant is stronger (shorter in our case) in the men-
tioned paradigm, it should elicit MMN with larger amplitude and shorter
latency than the deviant with 50 ms duration (see Figure 5). This crite-
rion can be used mainly to verify the validity of a denoising technique that
should strengthen the underlying relations between deviants. Moreover, if
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the difference between the two deviant responses is well formalized, it can
be used as part of a separation criterion to regularize the solution and for
component selection purposes.

SNR. SNR is a natural indicator of the quality of data and the success of de-
noising. If the SNR estimate increases after the method application, this
serves as a partial confirmation of a successful denoising and the beneficial
effect of the method. However the SNR considered alone presents an in-
complete characteristic of the performance of denoising, since it does not
provide information about possible loss of signal that may take place after
denoising. The stronger requirement for the results of a denoising method
to be counted successful is formulated as noise reduction, while retaining
the signal power at the original level. Therefore when SNR is employed as a
measure of quality of the denoising it should be accompanied by a properly
chosen estimate of the signal loss (see Section 3.4.3). Moreover, target crite-
ria of the component separation methods, which are optimal in the sense of
SNR, can be used for validation purposes (see Section 4.3.2).

Group differences. This indicator is mainly used for validation purposes. If the
two groups of participants (e.g., target and control) are known to deviate
significantly at values of some ERP characteristic (e.g., amplitude or la-
tency), the successful denoising should reveal the group difference in terms
of the indicative characteristic.

Temporal structure. If the signal of interest has some known specific shape or
regular structure in the temporal domain, this can be used for component
separation as well as for validation (for example, see the temporal struc-
ture of the ERP waveform in Figure 5). For instance, in MMN studies the
grand average possesses a known average pattern of the temporal structure
across participants. Basically correlation between the subject average and
the grand average can be used as a numerical criterion for component sep-
aration or validation. However, this criterion is overspecified, because be-
sides the temporal pattern common for all participants it also contains and
specifies the values of the amplitude and latency parameters that should,
in fact, differentiate between the participants. As a result, subject specifics
can be lost during the denoising based on this criterion and they can be
disregarded during the validation process.

3.4.2 Estimating signal-to-noise ratio

The natural and most widely used measure of the quality of data is SNR [Pap91].
Therefore, in this section we consider methods for estimating SNR together with
the powers of signal and noise as its composite parts.

Many techniques for estimating SNR in single trial/averaged responses
have been developed [vdV00, Sch67, SRC74, MGT84, MTG84, RBH 02, ODYs,
FB91], which essentially are based on the assumptions underlying the averaging
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(see Section 2.5). In [Sch67] the (=£)-reference method was proposed for estimat-
ing the noise power in the averaged response. The (+)-reference is computed
just as normal averaging, but half of the trials are taken with the negative sign:
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If we have small odd number of trials N, it is desirable to use all of them in com-
puting the estimates of signal and noise powers in the average for better accuracy.
Thus, the following estimate of noise in the average can be used:

(t) = 1 (Eiimod2=1%i(t)  Yiimod2=0%i(t)
7 2 Ny Na ’

(27)

where the two numerators in the above equation represent the summations of N;
odd-numbered and N> even-numbered trials. N7 and N> will, thus, differ at most
by one trial.

In [SRC74] it has been shown that the variance of 1’ (t) approximately equals
to the variance of noise in averaged response of N trials:

o2
var{y'(t)} ~ (7% ~ ﬁﬂ’ (28)

if the assumptions imposed on signal and noise properties in Section 2.5 are sat-
isfied. The variance of noise in the averaged response should decrease propor-
tionally to the number of averaged trials N. Therefore, the following formula can
be used for signal-to-noise power ratio estimation in the averaged response:
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where ﬁg is the estimate of the signal power, and I% stands for the estimate of the
noise power in the average. The estimate of SNR measured in decibels (dB) can
be computed using the result of formula (29) as:

(SNRy)gs = 10log,y SNRy. (30)

A similar procedure was proposed in [ED84], where the ratio of variances
F; is calculated based on a single point reference in the evoked potential:

2
Fe= (;) (31)
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where 02 = -1 YT | %3 (t) is the variance of the averaged response Xy (), and
2 is the variance of the background noise, estimated at t = T

2=1 i(xi(f) .S %X{(T))Z - %(xi(ﬂ —an(7))% (32)
N5 N3 NiA

The time point T can be arbitrarily chosen. It is, thereby, sensitive to time-locked
artifacts. On the other hand, this allows for the investigation of the reproducibil-
ity of individual ERP features. F; reveals the estimate of average SNR in a single
trial.

In [MGT84] the following set of formulae for estimating signal and noise
powers, and SNR in a single trial, was proposed:
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In [RTF88] the asymptotic distribution of the SNR estimator (36) was analyzed
and method for constructing confidence intervals was proposed. In fact, quality
measure F; is very closely related to ST\I\Rl proposed in [MGT84] (see [ODY6)).
The respective estimates of SNR in averaged responses SNRy can be obtained
from single trial estimates (31) and (36) by multiplying SNR; and F; by N.

In [OD96] a running SNR estimator for averaged response optimized for
on-line usage and based on formulas (33)-(36) was reported:

(14 5) Le(Xixi ()% — T i x2(t)
Va2 (h) — i (Tix()?

In [RHB"97] this estimator was used for identification of the quality of ERP tem-
plates used for direct brain interface (DBI). However, this estimator lacks accu-
racy for small numbers of trials, because of some mathematical simplifications
made in the derivation. Namely, it is biased towards underestimating the noise
power and, thus, towards overestimating the signal power as shown in, e.g.,
[RBH'02]. In the latter work a more robust version of this running SNR esti-
mator was used for quality assessment of ERP estimates:

— () L X 22 ()
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(38)



62

3.4.3 Remarks about the practical limitations of SNR estimation approaches,
signal loss estimation, and relation of the subspace separation criteria to
the SNR estimation

Unfortunately, all of the considered methods start to output sufficiently accurate
results only after a sufficiently large number of trials are collected [OD96]. This
happens because the assumptions underlying these methods are close to being
met only with large data samples. In particular, finite sample estimates of the
signal and noise suffer from the influence of the present non-zero signal-noise
and noise-noise cross-correlations, which are assumed to be zero by the methods
and tend towards zero when the sample size increases.

To understand better the intimate reasons for the lack of accuracy, when the
number of trials is small, let us decompose the estimate of the variance of the
average into four additive components taking into account (1):

1 N
var{xn(t)} = WWV{; xi(t)} =

1 [N
N2 (Z var{x;(t)} —i-ZZCovxixj) =

i=1 i<j

Mz

02 +2Covgy, + a,%.) +

N-1 N
2 Z (%2 + Covgy, + Covgy; + COU?M,')) =
i=1 j=it1
) 1 N 2 N 2 N-1 N
0; + Z; o2 nt N Z; Covgy, + 2 Z; 21 Covyyy;- (39)
i= i= i=1 j=i+

Here, Covg,¢; = iyt Zi(t)¢j(t) denotes the estimate of the covariance between
the two quantities ¢;(t) and ¢;(t) that depend on time variable. One can see
that the variance of the average consists of the following four terms: signal vari-
ance (Tg, variance of the noise N2 N, ,7 , cross-covariance between signal and
n01se N ): 1 Covgy;, and cross-covariance between noises from different trials
NZ Z Z] i+1 Covyy;. All methods assume that the sum of the two last terms
equals to zero. This is approximately true when only large data sample is avail-
able. Otherwise, the cross-correlation terms are essentially large to degrade the
accuracy of SNR estimate significantly. The influence of cross-correlation terms
on SNR estimate manifests differently depending on whether they are counted as
being signal or noise by the estimation procedure.

To visualize how the cross-correlation terms influence the estimates of SNR
we did a numerical simulation illustrated in Figure 9. The simulated data con-
sisted of 200 trials with 130 time samples each obtained by summing the ran-
domly generated noise realizations #;(t) with variance (7,% = 103 and the deter-
ministic waveform ¢(t) with variance (ng = 8. Hence, the SNR (SNR;) was kept

at 8- 1073 on average over trials. Figure 9(a) contains the theoretical SNR in the
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FIGURE9 Illustration of the performance of SNR estimation: (a) SNR estimate by Oz-
damar formula (solid line), theoretical SNR (in dashed), real SNR (with
crosses); (b) noise-noise cross-covariance term (solid line), signal-noise cross-
covariance term (in dashed), sum of the noise-noise and signal-noise cross-
covariance terms (with crosses).

average computed according to (28) and (29) as SN Rﬁheomi“‘l = 1-SNRy, the es-
timate of SNR computed according to Ozdamar’s formula (38), and the real SNR
computed by accounting for the cross-correlations as
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In this formula all cross-correlation terms are designated as noise variance.

One can see that the real SNR and the estimate of SNR by Ozdamar re-
veal approximately symmetric behavior around the theoretical SNR curve (Fig-
ure 9(a)). Moreover, real and Ozdamar’s SNR curves correlate with the cross-
covariances shown in Figure 9(b). The positive correlation for Ozdamar’s SNR
estimate is explained by fact that the energy of the cross-correlations is mainly
assigned to the estimate of the signal energy by formulas (33) and (34), and, thus,
this energy is placed to the numerator of SNR definition formula (3). On the con-
trary, all cross-covariances are treated as noise in the real SNR formula (40) and
stand in the denominator of SNR definition formula (3). These observations ex-
plain the symmetry between Ozdamar’s and real SNR curves with respect to the
theoretical SNR curve.

Based on the above discussion we draw a conclusion that the accuracy of
SNR estimates can be improved, if one is able to segregate the powers of signal
and noise from cross-covariances. This is, however, impossible in the framework
of our assumptions and can be done only within an extended and augmented set
of assumptions of a more specialized problem.
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Nevertheless, often the main purpose of the quality estimates such as SNR
is not assessing the absolute quality of data, but the comparison of different de-
noising methods and data sets. If the purely comparative goal is pursued, we do
not need to find exact values of either SNR or signal and noise energies. Instead,
if an SNR estimation method provides equally biased SNR estimates for any two
data sets (e.g., before and after denoising), then the difference between these es-
timates will provide an unbiased estimate of the difference between the SNR of
the two data sets.

Additionally, we would like to note that the optimization criteria of the
methods presented in Chapter 4 can be used for SNR estimation, because they
are targeted at discriminating between signal and noise components essentially
in the same way as in the SNR estimation. The values of the optimized crite-
ria affiliated to found spatial components are used for comparison between the
quality of the components. These criteria can naturally be adapted for quality
assessment in a single channel. This can be done by replacing the estimates of the
variances along a spatial direction before and after data modification (e.g., aver-
aging) by the estimates of the variances of single trial and modified response in
the analyzed channel. For example, the criterion p,(w) (see equation (49)) can be
adapted to estimate SNR individually for each channel as follows

vor{an()}
FEN var{x(1)}

Here, in the numerator the estimate of variance of data after the averaging along a
spatial direction is replaced by the estimate of variance of the averaged response
at a single channel. Correspondingly, in the denominator the estimate of the sin-
gle trial variance along a spatial direction is replaced by the estimate of the single
trial variance in the channel. This estimator classifies data as of better quality, if
the reduction of the variance after the averaging with respect to the variance in a
single trial (raw data) is smaller. One can notice that the SNR estimate (41) is sim-
ilar to one defined by formulas (33)-(36). This simple demonstration shows that
principles of estimating SNR can be used to build criteria for spatial component
separation and vice-versa. The problem with indeterminacy of cross-correlations
remains, however, unsolved with the basic component separation criteria consid-
ered later (see Chapter 4 for further discussion).

As it was mentioned in Section 3.4.1, the SNR estimate cannot provide com-
plete evaluation of the denoising results, since it does not tell us whether a signal
loss takes place after the denoising or not. And if signal loss does take place, then
to what extent. Therefore the issue of signal loss must be addressed separately.
Let us consider possible approaches to validate a denoising method with respect
to the signal loss.

If the number of trials available for one subject is so large that it allows for
an almost noise-free ERP estimate, then the following strategy can be used. First,
the set of trials is divided into the nonintersecting subsets, and the denoising is
applied to each subset separately. Then the denoising results obtained for sepa-
rate trial subsets are averaged. This averaged ERP estimate is then compared to

SNR; =

(41)
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the average of all trials to evaluate the signal loss.

However if the reliable ERP estimate cannot be constructed using all trials of
one participant, the concept of grand average introduced in Section 2.3 can be em-
ployed to evaluate the signal loss tendency. First, a denoising method is applied
to each subject’s data separately. Then the signal loss is verified by comparing the
two grand averages made before and after denoising. The discrepancy between
the two grand averages signifies the disturbances introduced to the signal by the
denoising procedure. This approach was approbated in article [PI].



4 THESIS CONTRIBUTION

4.1 Introduction to the proposed methodology

The major idea encompassing the various ERP denoising methodologies
discussed in this thesis consists in separating by a linear transformation ERP and
noise subspaces in multichannel EEG data, assuming that data follow the lin-
ear instantaneous mixing model with electrode additive noise (12). By projecting
back to the channel space only the components related to the signal subspace and
neglecting noise components the denoising of the measurements is accomplished.

The main accent is put on developing consistent and reliable problem-
specific criteria for distinguishing between the ERP and noise components in
multidimensional EEG data space. The proposed approach to generate the cri-
teria is to expose the data to some modification that changes signal and noise
subspaces in different ways. Thus the signal and noise components are distin-
guished using these component-specific changes or the differential behavior they
exhibit as a response to the induced perturbation.

We concentrate on those characteristic differences that are shown on the
level of second-order statistical properties of data. Namely, the variances of data
along a direction before and after performing the action on data are compared.
Since the covariance matrix of the data contains all information regarding vari-
ances along different directions, we can also consider the process of comparing
the two covariance matrices to identify the signal/noise discriminative features.
Moreover, we focus attention on those modifications that exploit the data which
have three dimensions of variation: channels, time samples, and trials. The dif-
ferences between the two pre- and post-processing covariance matrices can be
viewed on an additive or multiplicative level (see Figure 10). When referring to
the additive differences we assume the subtraction of the variances of the original
and modified data both projected to a direction wr:

pa(w) = WICsw — wiC,w = WT(C;( —Cyw = WIAC,w, (42)

where the matrix ACy contains the additive difference between the covariance
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matrix of the original (initial) data Cx and the covariance matrix of the modified
data Cx. Here, the data x(t) is projected to a direction w as y(t) = w'x(t), and
the variance of the component y(t) is obviously equal to w!Cxw. Therefore, the
difference wIAC,w between the two variances shows how the variance of the
original data changed along the direction w after modification. We will see fur-
ther (see Section 4.3) that variance changes after certain modifications depend
on the SNR of data projected to w. Therefore, this relation allows the directions
explaining high SNR and those that describe low SNR to be distinguished.

Both the original x(t) and the modified X(¢) data must be considered in an
abstract sense that goes beyond the single trial or average (13) (see continuation of
this section). As original data we can, for example, treat a single trial x(¢) = x;(t)
or all single trials considered together as one data sample or long sequence of
concatenated channel-wise multidimensional trials x(t) = [x1(t) xa(t) ... xn(t)]
etc. Correspondingly, the modified data in the simplest case can be the average
X(t) = X(t) or many leave-one-out averages considered as one entity etc.

Note that additive differences of the variance as separation (source discrim-
ination) criteria are valid only for whitened data, when source vectors form the
orthogonal system (see Sections 3.2.1 and 4.3.1). When the multiplicative changes
are analyzed, correspondingly, the ratio between the two variances is considered

Tc.
p.(w) = &GV (43)

- wIiCw’

where p.(w) describes the multiplicative changes in variance of the data along
the direction w.

The principle of constructing the criteria pp(w) and p.(w) is demonstrated
in Figure 10, where the traditional averaging is used as data modification. The
simulated data were obtained by randomly generated four realizations of the
two sources s;(t) = [s;i(t) sp(t)]T, i = 1,...,4 (Figure 10(a)). Then four trials
x;(t) = [x;1(t) x2(t)]T of the simulated data were obtained by mixing the sources
x;(t) = As;(t) using randomly generated matrix A (Figure 10(b)). The contours of
the scatter-plots of the original x;(¢) and averaged X, (t) data are indicated in Fig-
ure 10(c) together with the signal/noise directions and the variance components
w!Cxw, w! C,w of the criterion p:(«) for an arbitrary direction w. In Figure 10(d)
the values of the criterion p.(«) for different angles a corresponding to direction
w are shown. Here, a5 denotes the angle corresponding to the signal direction,
where p.(a) is maximized, and «,, is the angle of the noise direction, where p.(«) is
minimized. In Figure 10(e) the same information is plotted as in Figure 10(c), but
the initial and averaged data are whitened z;(t) = Vx;(t), Z4(t) = VX4(t). The
variances of the initial and averaged whitened data are depicted as w'C,w and
wTCzw, correspondingly. One can see that signal and noise directions become
orthogonal in the whitened data space and, thus, the additive criterion p, («) can
be applied. It is again maximized for signal direction (at ;) and minimized along
noise direction (at a;;) as shown in Figure 10(f).

Here, the estimate of the covariance matrix of the original data is computed
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FIGURE 10 Schematic demonstration of the determination of signal/noise subspaces

in EEG data by averaging: (a) sources s;(t) = [si1(t) sp(t)]T, i =1,...,4
(b) trials x;(t) = [xi1(t) x2(t)]T, x;(t) = As;(t); (c) contours of the origi-
nal x;(t) and averaged X4(t) data, signal/noise directions, and indication of
the criterion p.(«) along w; (d) behavior of the criterion p.(«) depending on
the rotation angle «, a; denotes the angle corresponding to the signal direc-
tion and a,, is the angle of the noise direction; (e) contours of the whitened
z;(t) = Vx;(t) and whitened averaged data Z4(t) = Vx4 () with indication
of the signal /noise directions and criterion p, («); (f) values of the criterion
pa(a) for different angles a corresponding to direction w; the eigenvalues of
the PCA components (for Cz) corresponding to the signal and noise sources
are denoted as bars.
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as

. 1 M T
Cx= x;(1)x;()", (44)
WT—1) & 40
where x; ( ),j =1,...,M, are some data samples obtained from the original sin-

gle trlals which preserve the original mixing model. Basically, the procedure of
constructing samples of original data should consist of linear operations applied
to K-dimensional initial trials or K-dimensional time samples of the initial trials.
For example, in the simplest case these data samples can be just all single trials
xi(t) = xj(t),j = 1,...,N,and M = N. Similarly the N leave-one-out subaver-
ages X(j)(t) = 1 Zﬁu;ﬁj xi(t), j =1,...,N, can be used as the data samples
composing the original data x;(t) = X(;)(f),j = 1,...,N,and M = N.

Thus, single trials are used to construct the samples of the original data.
When the construction procedure is linear, the hypothetical sources that con-
tribute these samples are obtained from the original sources in a similar way
that samples of the original data are composed from the single trials. The im-
portant thing is that these samples should contain the information that is needed
to obtain the separation matrix, i.e., preserve source-discriminative features over
space. Therefore, the term original data is related to a reference point or origin
from which the modification is started and to which the modified data are com-
pared. The data samples of the original data, in turn, play the role of building
blocks to obtain the modified data.

Correspondingly, the estimate of the covariance matrix of the modified data
is obtained as follows

L T
Cx = i (H%;()" 45
x — ]; Y% (H)x;(H)T, (45)
where L denotes the number of different pieces of the modified data. For ex-
ample, if single trials were our original data and if we use the traditional aver-
aging as the data modification, then the modified data consist of only one piece
x1(t) = X(t), and L = 1, resulting in covariance matrix of the average Cx = Cx.
Similarly one can also compute the N leave-one-out subaverages Then the mod-
ified data consist L = N pieces X;(t) = X(;)(t), j = 1,...,N. Alternatively the
average of the resulting separation matrices obtained on separate runs of a sub-
space separation algorithm for all j = 1, ..., N can be used as a solution.
If the non-stationarity of the data properties is strong, then data should be
segmented to smaller time periods satisfying the approximate stationarity. Spe-
cific solution corresponding to each of such segments can then be found.

4.2 Brief summary of the articles

ERPSUB algorithm presented in article [PI] was the first attempt to apply the
problem-specific modification-based criterion to ERP and noise sources separa-
tion. ERPSUB exploits the additive differences found in whitened data before
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and after the averaging. The method appeared to be closely related to the De-
noising Source Separation framework proposed by Sireld and Valpola [SVO05].
Namely, ERPSUB can be considered as a particular derivative of the more gen-
eral framework. ERPSUB was validated on EEG data obtained in the scope of the
mismatch negativity study described in [PLL95, KGJ 07, HHKLO07]. The results
of tests have shown that the proposed technique essentially overcomes the tradi-
tional averaging procedure with regard to the effectiveness of ERP denoising.

From the algorithmic point of view, averaging is exploited twice in ERPSUB:
first for a single channel denoising and then on multichannel level, where the
spatial denoising is governed by the results obtained after the averaging. Namely,
the two covariance matrices before and after the averaging are compared and
the difference between them contains the information about the locations of the
subspaces. From the methodological point of view, the main idea of ERPSUB is to
utilize the information contained in all data dimensions: channels (spatial), time
(temporal), and trials (synchronized temporal).

In [PII] we employed the classical SNR score as the cost function for the
component extraction procedure instead of its traditional utilization as a valida-
tion utility. The results of the application of the obtained denoising procedure to
the 9-dimensional EEG data have shown to be equivalent to the results of ERP-
SUB applied to the same data. This numerical study practically proved that both
methods are optimal in the sense of SNR and are interchangeable. As a conse-
quence of this conclusion the optimization criteria of both methods can be used
not only for the component extraction, but also for the component selection and
validation purposes, which are important components of the inter-methods com-
parison framework.

The goal of the research work presented in [PIII] was to study the possi-
bilities of improving the performance of the averaging technique based on the
problem-specific assumptions. The formalization of SNR concept was applied
to solve explicitly the weighted averaging problem resulting in an averaging
technique optimal in the SNR sense. Moreover, the weighted averaging and
traditional averaging techniques, which belong to the class of methods for one-
channel ERP denoising, were compared with the ERPSUB method operating on
multi-channel level. The results of the comparison have shown that ERPSUB pro-
vides better quality of the ERP denoising, meaning that spatial information is an
effective add-on that allows for more precise separability of the signal and noise.

In [PIV] the alternative subtraction data modification was used to design
the subspace separation criterion used by the resulting DETSRC method. Sim-
ilarly to ERPSUB it operates in whitened data space and employs the second-
order changes in data appearing on the additive level. The application of the
method to 9-dimensional EEG data set from mismatch negativity experiment
[PLL95, KGJ*07, HHKL07] has shown that DETSRC outperforms the conven-
tional averaging technique in the sense of ERP denoising.

The main purpose of the study reported in [PV] was to exclude the whiten-
ing step from ERPSUB algorithm. Since the estimation error is accumulated on
each step of the algorithm containing approximations, it seems reasonable to re-
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duce the number of computational steps to increase the final accuracy of the
solution. For example, the assumption that the subspaces are orthogonal after
whitening that is taken as fact for the subsequent component extraction proce-
dure, cannot be absolutely valid, because of the unavoidable errors in estimating
the covariance matrix of the data. The resulting method utilizes the differences
observed on the multiplicative level and shows better performance than the tra-
ditional averaging with regard to the quality of ERP denoising. The method was
tested on the same 9-dimensional EEG data as ERPSUB and DETSRC.

In [PVI] a generalized view on the previous approaches and the utilized
criteria with and without whitening was presented. This allowed to systemat-
ically connect all previously developed methods in a form of a framework for
methodology representation. The high-density 128-channel EEG data from ERP
experiments reported in [HLGL07, HLGLO8] were used for extensive analysis of
the performance of the proposed methodology by example of DETSRC method.

Moreover, in [PVI] the benefits of switching between temporal and fre-
quency domains are also illustrated. Namely, considering the problem in the fre-
quency domain results in a dual effect. First, by making summation/subtraction
data modifications (see Section 4.3.1) in the time domain and analyzing how dif-
ferent frequency bands are affected by these procedures, it should be possible to
identify in which frequency bands signal is present. Specifically, by observing
how different frequency bands lose or gain energy as a result of these operations
and employing the ideas similar to those used for constructing the separation cri-
teria in the spatio-temporal domain (see Section 4.3.1) one is able to determine
the dominant location of the signal in the frequency domain. This, in turn, allows
the optimal parameters (cut-off frequencies) of a band-pass filter, that reduces
noise in the frequency domain, to be fixed. On the other hand, by performing an
appropriate filtering using the filter parameters identified on the previous stage
one can easily determine which spatial directions are affected by the filter and
also the level of this affectedness. Since signal and noise directions should be af-
fected differently in the sense of losing energy, they can be discriminated. Here
band-pass and stop-band filtering are equivalent data modifications in the fre-
quency domain to the proposed summation and subtraction data modifications
in the synchronized time domain. This has a straightforward connection to the
Denoising Source Separation framework proposed by Sareld and Valpola [SV05],
where sources are distinguished based on their different behavior with respect to
denoising.

4.3 Extended overview of the results

First, in Section 4.3.1 we introduce different forms of criteria for separating signal
and noise subspaces in the framework of methodology sketched in Section 4.1.
Then, in Section 4.3.2 we consider practical aspects of the exploitation of the pro-
posed criteria and their properties. In Section 4.3.3 we analyze and discuss draw-
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backs of the proposed criteria and present possible extensions and improvements
to the basic approaches.

4.3.1 Separation criteria

We propose the two basic data modifications that can be applied to three-
dimensional data:

1. Trial summation: x.(t) = YN x;(t) or X4 (t) = 4x.(t) = x(t) (optional
version with averaging).

2. Trial subtraction: x_(t) = YN, (—1)x;(t) or X_(t) = &x_(t) (optional ver-
sion with averaging).

Let us first consider the trial summation option. Furthermore, let us compare
the two arbitrary directions wy and wy, such that the SNR of the original data
projected to wy is larger than the SNR of the original data projected to wy. It is
clear that the ratio between the variances of modified and initial data along the
direction wy should be larger than for the direction wy:

T T
wiCwi . wy, G wo

’ 46
w?Cxwl wngwz (46)

T T
wiG.w; . wy, Cgowo

w{Cxwl wngwz ' (47)
This takes place, because in the direction wy the proportion of the deterministic
signal is larger, and, therefore, variance increase after summation is larger also
(variance reduction is smaller in case of averaging).
Conversely, larger SNR is obtained in data projected to a direction where
a larger ratio between the variances of modified and original data is observed.
Formalization of the above-mentioned ideas leads to the following criteria:

wTCX+w
— X+ 4
P1(w) wliC,w’ (48)
wTCg+w
— X+ 4
o2(w) wiC,w ' 49)

which should be maximized to find the maximum SNR components and mini-
mized to locate the components describing minimum SNR (see Figure 10(c) and
(d) for schematic illustration of pp(w) criterion). Here the criterion p; (w) stands
for the summation data modification and the criterion py(w) is used for averag-
ing. Term C. denotes the covariance matrix of data denoted by the subscript (see
Section 4.1).

Since the purpose is to extract subspaces and not sources, only the angle
between the subspaces is important to determine. The angles between the com-
ponents inside subspaces do not matter and, thus, can be restricted for example
to be orthogonal thereby preventing convergence of consequently estimated com-
ponents to the same point. The separation of the subspaces using the criteria (48)
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or (49) can be done without preliminary whitening of the data similarly as de-
scribed in [PV] by maximizing/minimizing them with respect to w subject to the
orthogonality and unit norm constraints of the resulting components.

For the subtraction-like data modifications the reasonings and explanations
are similar, except that they are reversed. With respect to noise, subtraction and
summation have equivalent impact: both result in increase (decrease when aver-
aged) of the noise variance. However, on the contrary to the summation type of
data modification, after the subtraction-like modification the relative to the origi-
nal level variance increment in data is smaller (decrement is greater for averaging
options) for those directions, where a larger deterministic signal is present, since
its energy vanishes after the subtraction. Therefore, larger SNR is indicated by a
smaller ratio between the variances of modified and original data along a direc-
tion.

The formal expressions for the criteria related to the subtraction type of data
modification, which are equivalent to the summation-like criteria (48) and (49),
are as follows:

WTCLW

p3(w) = WICw (50)
wliCy w

pa(w) = WICw (51)

The cost function p3(w) stands for the subtraction, and the criterion ps(w) is
used for averaged subtraction. For both options, the respective criteria should
be minimized to estimate maximum SNR components and maximized to find
components with minimum SNR.

The criteria (48)-(51) can be further simplified by whitening the original
data first, and performing the summation/subtraction modifications on these
whitened data. Since whitening standardizes data to similar variances along all
directions, the denominator in all criteria vanishes:

wiC, w

p12(W) = wiCw = wiC,, w, (52)
p2(W) = m =w'Czw, (53)
P32 (W) = m =w'C, w, (54)
012(W) = m =w'Czw. (55)

The equivalence relation = here means that arg max,, or arg min, operator ap-
plied to criteria on the both sides produces equal results. In particular, the equiv-
alence relation specifies to equality, if ||w|[2 = 1 or the projection is orthogonal.
The criteria (52) and (53) are used in ERPSUB method in [PI], and criteria (54) and
(55) serve as a core of the DETSRC method in [PIV].

When data are whitened, we do not need to compare the covariance ma-
trix of the modified data with that of the original data in order to locate the
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signal/noise components, as it is implemented in criteria (48)-(51). Instead, to
solve the separation problem we analyze the absolute values of variance of mod-
ified whitened data along different directions in the search space. Indeed, since
the whitened data are standardized to similar variances along all directions, the
modified whitened data become self-comparable or self-sufficient in the sense
that they alone contain all the necessary information for separating the subspaces.
This idea is similar to one used in Denoising Source Separation framework devel-
oped by Séreld and Valpola [SV05].

Note that the maximization vs. minimization of criteria (48)-(51) subject
to orthogonality and unit norm constraints of the resulting vectors, as shown
in [PV], lead to the extraction of different components and, thus, this approach
finds non-orthogonal angle between the two subspaces. The situation is, how-
ever, different with the criteria (52)-(55): maximization vs. minimization of these
criteria subject to orthogonality and unit norm constraints of the resulting vectors
are nothing else than PCA and Minor Component Analysis (MCA) procedures.
It is well known that they produce the same sets of pair-wise orthogonal com-
ponents ordered differently: by a convention the components produced by PCA
are ordered by their corresponding variances or eigenvalues in decreasing order,
while the components of MCA are ordered in increasing order. In this case to find
signal/noise directions we can use either PCA or MCA alone with only ordering
difference. Thus, subspaces extracted by PCA and MCA using the criteria (52)-
(55) are orthogonal. This shows that maximal/minimal SNR subspaces become
orthogonal after whitening independently of whether they overlap (for example
the problem is underdetermined) or not.

One possible variant of the resampling strategy for subtraction data modifi-
cation may consist in subtracting from every multidimensional trial the average
of all trials. The cumulative covariance matrix of such subtracted data is defined
as:

Y (xi(t) = X(6) (xi(t) = x(t))". (56)

1
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Then the resulting criterion for estimating the subspaces is a special case of (50):

T

ph(w) = T, 7)
This criterion can be interpreted as clearing out the data variation due to the
signal components by subtraction. Therefore, the ratio between the variances of
subtracted and original data in the signal subspace should be minimal compared
to the noise subspace. The simplified version for whitened data analogous to (54)
is expressed as:

05, (W) = W' Cyzw. (58)

Using the latter criterion, signal subspace is extracted by minimizing the sum
of N mean-square errors between the trials and their average, formally written
argmin,, YN, var{w'(z;(t) — Z(t))}. This is equivalent to minimizing the inte-
gral of variances (computed over trials) at all time points, formally expressed as
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argmin,, Y.L, var{w'z;(t)}. When minimized, these criteria maximize the av-
erage similarity between the trials and their average or the average similarity
between trials. In this definition each trial participates in forming the average
pattern, to which it is then compared to test for similarity. To avoid the self-
comparison one can subtract from each trial the leave-one-out subaverage com-
puted without this trial argmin,, YN ; var{w" (z;(t) — Z(;)(t))}. A similar crite-
rion can be derived by approaching from an observation that adding a new trial
to the average of sufficiently large number of trials should not change the average
significantly, if this trial is not artifactual. Accordingly the signal directions are
those where new trials introduce the least changes to the corresponding leave-
one-out averages on the whole. To measure the change introduced by a new trial
to the average, one can use MSE between the average of all trials and the aver-
age without the trial. Therefore the signal directions can be found by minimizing
the sum of N mean-square errors between the leave-one-out subaverages and the
average of all trials yielding to the cost function argmin_, YN | var{w!" (Z(t) —
Z(t))}. Moreover this idea can be used in testing for trial non-uniformity or vari-
ability (individually and as a whole). In other words the obtained individual MSE
values measure the quality of each trial separately, and the mean of MSE values
is a measure of average uniformity or stationarity of data.

The resampling option (56) is worthy of notice, in particular, because it has
an interesting connection to the criterion of ERPSUB. Namely, consider the nu-
merator of (57):

N
wliC, yw = N(Tl— 0 t:Zli:Zl(wal(t) —wix(t))? =
! 23 WX 2 _owlx ()X (Hw wix 2) =
N 1) L L) 2 (05T (0w + (w'x(0)?) =
T N
wICw — ZWT(% t;(;] izzlx,-(t))iT(t))w +wICw =
wl(Cx — Cx)w. (59)

Comparing (57) and (49) and taking into account (59) it follows that the crite-
rion (57) is equivalent to the negated criterion (49) in the sense of the optimal
argument. Therefore, the criterion (58) should produce the same set of the com-
ponents as ERPSUB using the criterion (53), but the order of the components is
reversed: the components of ERPSUB with the largest eigenvalues correspond to
the components obtained using (58) with the lowest eigenvalues and vice versa.

4.3.2 Properties of the optimization criteria

The important benefit of using the suggested problem-specific criteria for opti-
mization is their equivalence with estimates of quality measures similar to SNR
(see e.g. comparison of formulae (33)-(36) and (41), (49) in Section 3.4.3). This
happens because both the optimization criteria and methods for estimating qual-
ity measures like SNR are based on the same assumptions. In particular this
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means that the developed criteria are most effective in the sense of SNR under
satisfied underlying data assumptions (i.e., (1)-(2), (4)-(6), (12)). Therefore, pro-
vided that the ERPSUB and DETSRC algorithms converge globally (the solution
is explicit), they also provide a solution that is optimal in the sense of SNR. If,
however, the assumptions are violated to some extent, then the criteria and the
methods based on them are optimal rather in the sense of the estimate used to
compute a quality measure. This property allows for exploiting the proposed cri-
teria for optimization, validation, and classification purposes. In the following
discussion, we explain this in detail.

The values of the proposed criteria in the directions of the found compo-
nents correspond to the estimates of the proportion of signal or noise in raw data
projected to these directions. From these estimates of proportions the estimates
of SNR and NSR can be derived. Thus, for example, for the ERPSUB method the
eigenvalues corresponding to the components reflect the estimates of proportion
of the signal in data along the estimated directions. In other words, the rate of
variance reduction after averaging of N trials can be used as a quality indicator.
Similarly, for the DETSRC procedure the eigenvalues represent the estimates of
the proportion of the noise in the data. Again the rate of variance reduction or
increase after a subtraction indicates the quality of data. Therefore, the values of
the criteria can be used for assessing the quality of the found components and de-
noised channels. Because of the interchangeability of the component separation
and validation criteria, the traditional SNR estimates used in the psychophysi-
ology context can also be used for separating the subspaces as it was practically
tested in [PII].

In addition, since the nature of the problem-specific criteria used for com-
ponent separation consists in discriminating between the properties of the signal
and noise, the same criteria can also be used on the component selection or clas-
sification stage. Namely, the values of the target criterion corresponding to the
estimated components naturally suggest the ordering of the components by the
grade of their membership to either signal or noise class. For example, in the
ERPSUB and DETSRC methods the output components are ordered by the corre-
sponding eigenvalues or variances. In order to divide the extracted components
into the two classes, a set of components from the beginning of the ordered se-
quence are assigned to the first class, and the rest to the second class. The specific
meanings of the first and second class (i.e., signal or noise) depend on the con-
text. For example, in ERPSUB the components with larger eigenvalues are more
signal-like. On the contrary, in DETSRC these components have stronger noise
affiliation.

If the components are extracted by a method (e.g., FastICA) that is unaware
about the problem-specific categories signal and noise, external criteria that have
knowledge about these concepts must be applied to solve the component classi-
fication problem. In this case the components can be sorted and classified using
one of the proposed criteria (48)-(55).

The optimal performance of the proposed criteria in the validation and clas-
sification tasks allows for the creation of a framework for comparing the effective-
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ness of different methods in the sense of solving the subspace separation problem.
Specifically, to compare methods the component classification procedure based
on the designed criteria is applied first. The validation of the denoised channels
using the same criteria is conducted afterwards. This scheme ensures uniform
and fair treatment of the compared methods.

Furthermore, the values of the criteria corresponding to the found compo-
nents can be used for estimating the dimensions of ERP and noise subspaces. In
an ideal case there is a clear division of the components into the two groups -
one having significantly larger respective values of the target criterion than the
other. Each of these two groups corresponds to either ERP or noise subspace with
the actual correspondence determined by the type of criterion used. In practical
cases the clearness of the division of the components into the two sets is blurred
and the border between the subspaces deteriorates. This situation may appear
if the subspaces overlap or high signal-and-noise cross-correlations over sources
or noise-and-noise cross-correlations over trials are present. The possible reasons
that can lead to overlapped subspaces are as follows: the problem is underde-
termined, an inaccurate mixing model, and non-stationarity of model properties.
Therefore in the case of overlapped subspaces components become mixtures of
both signal and noise sources. In this case analysis of the ordered sequence of
values of a criterion allows one to consider a compromise between the amount
of noise rejected and the amount of the signal loss. The smaller the number of
the closest ERP-like components assigned to ERP subspace is, the larger the SNR
obtained in the filtered channels, and the more noise is rejected, but also the more
the signal is filtered out together with noise, and vice versa. Basically one needs
to choose such proportion between the numbers of components designated to
ERP and noise subspaces that provides a satisfactory trade-off between the SNR
in the denoised channels and the amount of the signal loss.

Moreover the clearness of the difference between the two groups of compo-
nents can be used for assessing the quality of the separation. On the other hand,
taking into account the point that the problem-specific method performs opti-
mally with regard to the set assumptions this clearness also reflects the quality of
data, or the extent to which the underlying assumptions (e.g., (1)-(2), (4)-(6), (12))
are satisfied /violated.

Notice that when subspaces are overlapped, the proposed methods in gen-
eral perform optimally in the sense of SNR estimate, but not in the sense of ERP
energy loss. In particular the components ordered by using the suggested criteria
may be ordered incorrectly in the sense of the ERP energy they contain. Imagine
a situation where a component has poor SNR, but contains a lot of the signal en-
ergy. The correct ordering in the sense of ERP energy can be obtained by taking
into account the original variances of the extracted components before whiten-
ing. On the other hand, if we additionally assume that the cleaner signal is (the
larger its SNR) along a direction the larger also is its energy, then our algorithms
become optimal in both SNR and ERP energy loss aspects. The latter assumption
is rather reasonable, and is supported by practical studies. For example, in [PI]
it was demonstrated that taking the first three maximal SNR components for re-
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projection results in insignificant signal loss.

The main problem with the proposed criteria remains the impossibility of
segregating the signal-noise and noise-noise cross-correlations over space and
trials (expected to be zero by the criteria) from the pure signal and noise ener-
gies without additional assumptions. During averaging and other manipulations
with data these cross-correlations may occasionally exhibit behaviors similar to
those expected from either signal or noise constituents, that makes them indis-
tinguishable from the true signal and noise components. (See Sections 3.4.2 and
4.3.3 for more detailed explanations of this issue.)

4.3.3 Suggestions for avoiding the cross-correlations

As already mentioned, the main drawback of the proposed methods is their lia-
bility to the influence of empirically observed cross-correlations between sources
in signal-noise and noise-noise categories. The reason for both types of cross-
correlations to appear is the finite size of the time samples. Here we consider tech-
niques that may partially overcome the harmful effect of these cross-correlations.
The following considerations assume that ERPSUB is used with its averaging
data modification [PI]. Moreover, we limit our attention only to those cross-
correlations that weaken the contrast between subspaces and, thus, mislead sep-
aration methods based on second-order statistics in the case of the determined
problem and zero additive noise.

Signal-noise correlations reveal their presence when applying a cost function to
find a proper linear transformation. This includes the stages of (1) whiten-
ing and (2) seeking for signal and noise directions in the multidimensional
data space, that is to say after the data are modified. For example, if a mix-
ture of averaged noise sources has nonzero second-order correlation to sig-
nal sources, the weight of false direction is increased. To reduce the influ-
ence of cross-correlations of this type, the optimality of the solution can be
assessed not only using the second-order but also the higher-order statis-
tics. In other words when the assumptions on second-order statistical prop-
erties are violated, the similarity between the components of different trials
needs to be estimated on the level of higher-order statistical information
also. To incorporate the higher-order statistical similarity in the search pro-
cedure, the optimization criteria must take this information into account.
The straightforward solution is related to the use of the mutual information
concept. Following this idea, to maximize the similarity between different
trials projected onto the same direction, one can maximize the sum of the
mutual information between all pairs of trials ) ;.; I (whx;(t), whx;(t)) or
between all trials and their average Y; [(wTx;(t), wIx(t)) with respect to w.
The solution of this problem requires estimation of the probability densities
of the sources. In fact, minimizing the average variance of between-trial
differences used by the proposed methods is equivalent to the maximiza-
tion of mutual information without priors on probability density functions
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of the sources (nothing more specific than the Gaussian distribution is in-
trinsically assumed). Indeed, if the variance of differences between trials is
zero along a direction, the mutual information is maximized independently
of what the distributions of the sources are. Exploiting the information on
the probability densities has an effect of nonlinear weighting of the data
points when estimating the similarity.

Noise-noise correlations appear when data are being modified, i.e., between tri-
als. More specifically, this second type of undesirable cross-correlations is
related to positive correlations between realizations of the noise sources
from different trials. Considered together these noise sources may occa-
sionally demonstrate behavior similar to that expected from signal sources,
for example preserving relatively large variance while averaged. The differ-
ence to the previous case is that the resulting average of the noise sources
may not necessarily correlate to the signal. We can say also that these are
artifactual correlations over trials. In contrast, the signal-noise correlations
are correlations over space. One solution to improve the performance of
the separation in this case may be to exploit more robust estimates of the
signal, for example weighted averaging and median instead of averaging
[LKS05]. These functions are, however, non-commutative with respect to
a linear transformation, and, thus, it is no longer possible to obtain simple
solutions in terms of eigenvectors. In addition, median operation is non-
differentiable, and the derivative of the cost function using weighted av-
eraging seems complex and time consuming, if one tries to use the formal
expressions of weighting coefficients directly.

Additional problems can be related to the phenomenon of additive noise that
does not fit to the mixing model as other sources do. That is to say that the
additive noise components may also exhibit correlations to the signal and noise
sources either over time or trials.

Let us have a closer look at an example of a possible approach for reducing
the harmful effect of undesirable noise-noise cross-correlations over trials. One
way to accomplish this is to transform the original data to a domain where the
influence of correlations on the results of the subspace separation is less strongly
pronounced. The largest and, thus, the most harmful noise-noise cross-
correlations are usually met in a lower-frequency band. Large higher-frequency
noise-noise correlations are less probable in practice, and, hence, they are less
important to address. To implement the domain transformation approach with
focus on cancelation of lower-frequency noise-noise cross-correlations, we pro-
pose to use the first-order difference of the original signals instead of signals
themselves during the computation of a separation matrix. Indeed, since dif-
ferentiation highlights rapid changes (cf. image segmentation), that is to say it
has an effect of a high-pass filter, trends and other lower-frequency noise be-
havior are reduced and, hence, have less opportunities to influence the results
of a subspace separation procedure incorrectly. In contrast, systematic higher-
frequency behavior is emphasized with respect to determining the solution of
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the subspace separation problem. Note that although differentiation increases
the relative weight of higher-frequency noise components, they are unlikely to
be synchronized over trials, and, hence, can be discriminated by a subsequently
applied component extraction procedure. Therefore, in general, when combined
with a deterministic component extraction technique, differentiation emphasizes
higher-frequency deterministic components. This approach can hence be poten-
tially useful for lowering the effect of noise and increasing the weight of signal in
determining the solution in the cases when ERP waveform features also higher-
frequencies compared to the suppressed lower-frequency noise, as is often the
case, as in the example considered below.
Formally, the first-order difference is obtained from the initial data as

Axi(t) = xi(t) — x;(t = 1). (60)

It is clear that the mixing model of the differentiated data does not change com-
pared to the initial data, i.e.

Ax;(t) = AAs;(t) + Ay, (t), (61)

where As;(t) = s;(t) —s;(t — 1) and Aw;(t) = #;(t) — 5;(t —1). In other words,
finding the separation matrix in the domain of the first-order difference also pro-
vides the separation matrix for the initial data. Referring to adjusting, for exam-
ple ERPSUB to include the differentiation step, the differentiation should be done
first before all other steps. Then whitening, averaging, and PCA are carried out
successively in a normal way.

Consider an example that demonstrates in which situations this procedure
may help to improve the performance of the basic ERPSUB algorithm and in
which fashion. For the purposes of demonstration we selected one participant’s
data collected using Pihko’s paradigm [PLL95].

We compared the ERP estimates obtained by the three different procedures:
(1) traditional averaging, (2) basic ERPSUB, and (3) ERPSUB with the differen-
tiation step (ERPSUB-DIFF). Both estimates of ERPSUB were computed by pro-
jecting the first two components to the electrode field. The respective denoised
channels for each of the three methods under discussion are shown in Figure 11.
One can see that the traditional average comprises a very noisy estimate of ERP
waveform. On the other hand, the ERPSUB operating in the domain of first-order
difference provided estimates which are closer to our expectations and poten-
tially more reliable than the estimates by two other approaches: (1) the standard
parts tend to be approximately similar for both deviants as it should be, (2) on
the other hand, the deviant responses differ in a way that also fits closer to the
expected results. The respective components of ERPSUB for both cases and the
corresponding eigenvalue distributions are illustrated in Figure 12. By analyzing
components one notices that (1) for ERPSUB-DIFF most of ERP energy is con-
centrated in the first component for both deviants as we expect in an ideal case,
(2) for basic ERPSUB the first components for both deviants contain mostly the
contribution of a large trend and insignificant ERP energy, whereas most of ERP
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FIGURE 11 Comparison of ERP estimates obtained by (a) averaging, (b) basic ERPSUB,
and (c) ERPSUB-DIFF for 50 ms deviant (dash-dotted) and 30 ms deviant
(solid). One vertical tick marker is 4 uV. Negativity is up. The vertical
scale bars and legend are related to all three subfigures. The data belong
to one participant and were collected using Pihko’s paradigm [PLL95]. The
ERP estimates by ERPSUB were produced by projecting first two spatial
components to the channel field. The respective components are shown in
Figure 12.

energy is redistributed over the second and third components. The basic ERPSUB
was able to extract a more or less clear ERP component and provide satisfactory
denoising only for the 30 ms deviant, for which the raw responses should have
theoretically larger SNR.

Based on this demonstration we conclude that large trial-to-trial noise cor-
relations may get dominant priority in determining the solution. Even if the ERP
component is almost correctly found, it might be ordered incorrectly, i.e. receive
smaller weight compared to other noise-related components. As a result, the
automatic component classification can fail. In general, large noise-noise corre-
lations may reveal an attraction center for the search procedure and disorientate
the optimization process. Therefore, the search procedure is less focused on the
real signal, and ERP components extracted contain more noise.

Another simulation related to SNR estimation is demonstrated in Figure 13.
We analyzed the behavior of the running SNR estimates in the averages of orig-
inal and differentiated data in Fz channel. The SNR estimates were computed
using the set of formulae (33)-(36) proposed by [MGT84]. The usefulness of these
estimates consists not only in the factual quantitative estimation of the quality
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The eigenvalues diag(D) are shown for the components in original (c) and
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FIGURE 13 SNR in ERP estimates obtained by averaging original and differentiated
data of a single participant from Fz channel and 30 msec deviant. The data
were collected using Pihko’s paradigm [PLL95]. The estimates of SNR were
computed using the formulae (33)-(36).

of the averaged or raw data expressed in terms of SNR. Namely, analyzing the
behavior of the running SNR estimate as the function of the number of trials pro-
vides an insight to the level, to which the assumptions regarding data are met, i.e.,
how uniform data are. In order averaging to work well, the running SNR estimate
should increase linearly. The faster the running estimate of SNR in the average
degenerates to a line-like behavior, the faster the underlying estimates of the sig-
nal and noise powers in raw data converge. From Figure 13 one can see that in
the original data domain the SNR estimates are negative almost everywhere that
means that whether the signal is underestimated or noise is overestimated. In
contrast, for the differentiated data SNR estimates are correctly positive after a
stabilization period in the beginning. Moreover, the stabilization period is more
smooth in case of differentiated data. We may say that the whole running SNR
estimate for the original data undergoes the stabilization period, because the lo-
cal variations are too large and comparable to the main positive trend. In general,
the running SNR estimate for the differentiated data reveals (1) a more steep pos-
itive trend that (2) faster becomes more regular, which means that (1) the SNR in
the raw differentiated data is estimated higher than in the original raw data, and
(2) the estimate of SNR in a single trial of differentiated data converges faster. All
this indirectly supports our conjectures regarding the statement that in the do-
main of the first-order difference assumptions on data are met closer. This also
means that more trials contribute to the increase of SNR while averaged. In other
words, noise-noise correlations over trials have lesser chances to incorrectly af-
fect the course of the optimization process and the final solution of the subspace
separation problem.

We carried out also a preliminary validation of the proposed improvement
using visual inspection and comparison of the results obtained for all subjects
from the considered database. The results showed that the preprocessing by the
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first-order difference provides a systematic improvement over basic approaches.
Nevertheless, the proposed approach needs to be verified more thoroughly. This
is one of the directions in which we are going to develop in future research.

4.4 Author’s contribution in joint publications

All major work reported in this thesis and related to (1) method development,
(2) implementation, (3) analysis and interpretation of the results, and (4) docu-
menting, has been done by the author of the thesis. The exceptions include (1)
data collection and (2) conversion of the data to Matlab-readable format, which
have been carried out primarily by colleagues and co-authors. The comments
and suggestions of the colleagues and co-authors were useful in all stages of the
preparation of the thesis. For an extended article-by-article description of the
author’s contribution see Appendix 1.



5 CONCLUSION

As a resume we emphasize the main achievements of the work reported in this
thesis:

¢ A series of criteria for performing the separation of ERP components from
other noise components in spatio-temporal domain have been proposed.
These criteria are presented in a form of a framework reflecting the con-
nections between different cost functions. Moreover, this framework and
the history of its development highlight the ways that can be used to de-
velop new criteria within the developed methodological and conceptual
basis. The resulting methods based on the proposed criteria are (1) rela-
tively simple, (2) fast, (3) robust with regard to different types of noise, and
(4) possess a potential for further development and improvement.

¢ The application of the developed methods to real EEG data sets has shown
significant gain in the sense of SNR in obtained ERP estimates as compared
to the traditional averaging technique used as the reference. This improve-
ment in ERP identification brings, in turn, benefits for psychophysiology
research. From one side, the proposed methods provide more reliable esti-
mates of ERP for a fixed number of trials. On the other hand, this allows
the time of the experiment to be shortened, since a smaller number of trials
is needed to obtain a reliable estimate of ERP waveform. The importance of
shortening the time of the treatment stems from the need to keep the partici-
pant under approximately stationary conditions. Moreover some groups of
probationers, like patients and infants, cannot tolerate long-lasting experi-
ments.

e Practical aspects related to application of the developed techniques, valida-
tion, and interpretation of the results have also been considered. As a result,
the obtained conclusions allowed a basis to be created for well-founded and
sensible ways of application of the developed methods, as well as for elab-
oration of fair comparison framework for comparing performance of differ-
ent methods and the quality of the results.
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* A set of recommendations and guidelines for improving the reliability and

robustness of the basic ERP extraction procedures was given based on prac-
tical and theoretical analysis, which discovered weak points peculiar to the
discussed methods.

The second part of the conclusions is devoted to perspectives of the future work:

e Probably the main drawback of the proposed basic methods consists in

the impossibility of segregating the non-zero estimates of signal-noise and
noise-noise cross-correlations from the actual variance of the signal and
noise components. These correlations may occasionally exhibit behavior
similar to that expected from either signal or noise, and, thus, bias the re-
sults of the separation methods that may misinterpret these correlations as
discriminative indicators. Therefore, further attempts must be made in or-
der to avoid the erroneous influence of undesirable cross-correlations. One
way to approach the solution of this issue is to consider the overall problem
within some additional constraints or domain, where affiliation of differ-
ent parts (variances and cross-correlations) of the total energy can be de-
termined. In other words, our methods based on second-order statistics
assume that these cross-correlations are zero, and we need to develop such
approaches that are aware of the non-zero cross-correlations and are able
to separate them from the rest of the energy of the data. This can also be
viewed as a certain regularization or refinement of the problem that allows
cross-correlations to be dealt with.

Difficulties stipulated by non-zero signal-noise and noise-noise cross-
correlations are also met during the validation stage. Since all SNR esti-
mation methods assume that these correlations are zero, their presence also
biases SNR estimates. Similarly to the problem discussed in the previous
paragraph, to address this issue, data must be considered in some domain
or equipped with additional assumptions, so that the cross-correlations can
be separated from the variances of signal and noise components.

Currently, in our implementations the component classification / selection
process is carried out by taking for inverse transformation a predefined
number of the first most ERP-like components determined from an ordered
sequence of the eigenvalues. However, it is appealing to flexibly determine
the most suitable number of ERP-affiliated components based on the qual-
ity of the separation explained by the eigenvalue distribution. This would
provide a classification that is case-sensitive. To realize this, one obviously
needs to construct a quantitative measure of the quality of the separation
that is based on the distribution of the eigenvalues.

Another possible advance, which we consider as being one of the potential
perspective directions for further research, is the development of a fusion of
the proposed ERP-tailored methods and general-purpose ICA algorithms.
The motivation for this becomes clear, if we realize that (1) general-purpose
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ICA techniques are able to separate sources of various kinds from each other
with often satisfactory but not always optimal performance, (2) the pro-
posed techniques, like ERPSUB, specialize in segregating the ERP from the
other noise sources, but are not able to separate individual ERP subcom-
ponents comprising ERP waveform. Therefore a combination of these two
approaches, in which the advantages of both methodologies are combined
for mutual benefits, would be interesting to study:.

Another perspective direction of the research is to consider other models of
data than the linear instantaneous mixture model, which may be more nat-
ural and accurate for describing the considered phenomena. In particular,
there is evidence that the mixture model is more close to being convolutive
rather than linear (see, e.g., [ASMO03]). The motivation for using convolutive
models becomes apparent if we take into account the multiple reverbera-
tions of the electromagnetic waves from the skull tissue. This means that
every sensor measures a sum of the delayed and attenuated versions of the
same sources at each instance of time that grounds applications of convolu-
tive models. To solve the ERP /noise separation problem for these models,
the developed criteria must be properly adapted for frequency domain.

In the future research we should consider a possibility to develop on-line
versions of the proposed algorithms, which are more efficient implementa-
tions in the sense of saving computational resources.



YHTEENVETO (FINNISH SUMMARY)

Viitoskirjassa, suomenkieliseltd otsikoltaan "Herédtepotentiaalien laskennallinen
eristiminen EEG-havaintoaineistosta", tarkastellaan monikanavaiseen EEG (Elec-
troEcephaloGraphy) mittaukseen perustuvien ERP-signaalien (Event-Ralated Po-
tential) kohinanpoistoa. Esitetty metodologia ERP-signaalin estimaatin luotet-
tavuuden parantamiseksi perustuu kiinnostavan signaalin ja taustakohinan erot-
teluun eri aliavaruuksiin lineaarisen sekoittumamallin mukaisesti. Kiinnostavan
signaalin sisdltimédn aliavaruuden projisointi takaisin alkuperdisen mittauksen
elektronikentélle tuottaa luotettavamman ERP-estimaatin kuin mittausaineiston
perinteinen keskiarvoistamiseen perustuva tarkastelu.

Tyon keskeisend tavoitteena oli etsid johdonmukaisia ja luotettavia ongelma-
spesifeja kriteereja, joiden avulla kiinnostavan signaalin spatiaalinen vaihtelu ja
taustakohina erotetaan toisistaan. Lisdksi tyossd kehitettiin johdonmukainen ja
objektiivinen vertailukehys eri ERP-laskentamenetelmien testaamiseksi. Vertai-
lukehystutkimus liittyi kiintedsti my0s aineiston luotettavuuden empiiriseen ar-
viointiin. Kehitetyt kohinanpoistomenetelmit pystyvéat harvoin saavuttamaan
ideaalista lopputulosta, silld niiden taustalla olevat perusolettamukset eivat ole
sellaisenaan voimassa kdytannon mittausaineistoille. Tarvitaankin lisdd systema-
attista ymmarrystd menetelmékehityksen tueksi, ja timéntyyppinen systemaat-
tinen tarkastelu sekd suuntaviivoja mahdollisille ratkaisuille on tytssa esitetty.

Kuten todellisille EEG-mittausaineistoille saadut laskennalliset tulokset os-
oittavat, pddstdan esitetyilld menetelmilld luotettavampaan lopputulokseen kuin
perinteisesti psykofysiologiassa kdytetylld keskiarvoistamisella. Saaduilla tulok-
silla voi olla merkittava vaikutus kokeelliselle psykofysiologialle, silld niiden avu-
lla on mahdollista pddstd lyhentdm&an mittaustilanteiden kestoa ja ndin vahen-
tdmé&dn irrelevanttien tekijoiden vaikutuksia saatuihin tuloksiin. Talld on eri-
tyistd merkitystd lasten ja mm. neurologisista hdiridistd kérsivien testaukselle.
ERP-estimaatin luotettavuuden paraneminen voi ndin mahdollistaa yksittdisen
koehenkilon diagnosoinnin aiempaa nopeammin. Toisaalta testiaikojen lyhen-
tyminen mahdollistaa laajempien aineistojen kerdamisen.
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Article PI- The author of the thesis is the principal author of this article. All ma-
jor ideas related to elaboration of the method were proposed by the first au-
thor, whereas the co-authors made an important contribution to the prepa-
ration of the article during discussions and at the stage of scientific writing.

Article PII - All major work related to the preparation of the article including
method development, implementation, testing, and scientific writing was
conducted by the first author. At all stages of the development of the article
the first author received important suggestions and recommendations from
the co-authors.

Article PIIT - While the contribution of the first author was dominant with re-
spect to method development, implementation, validation, and scientific
reporting, the comments and suggestion of the co-authors contributed sig-
nificantly to the preparation of the article.

Article PIV - The article was written primarily by the first author in close coop-
eration with the other authors. At all stages of the preparation of the article,
from the proposal of the idea and method development to the implementa-
tion and scientific reporting, the co-authors provided important comments.

Article PV - The contribution of the first author was dominant in all aspects of
the preparation of the article except the aforementioned data collection and
preprocessing.

Article PVI- The article has been written by the first author in close collabo-
ration with the other authors. The design of the statistical analysis was
proposed by Igor Kalyakin. Moreover, Section 2.2 of the article related to
experimental data description has been primarily provided and supervised
by the co-authors from the Department of Psychology.
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