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1 Introduction

The following are lecture notes to a course "Probabilistic Analysis of Sorting
Algorithms” that I gave as a special topics course at Drexel University in the
summer of 2002, and at the University of Jyvaskyla, Finland, in the fall of the
same year. The original intent of the course was to cover large parts of an
excellent monograph on the topic, namely, a text by Hosam M. Mahmoud Sort-
ing: A Distribution Theory, Wiley 2000. It turned out, however, that his text
assumes a solid knowledge of a graduate level probability theory, a rather de-
manding assumption for most of Drexel’s (and, as it turned out, the University
of Jyvaskyla’s) students potentially interested in such a course. As a conse-
quence, almost half of a 10 week long course at Drexel was spent on developing
necessary tools from the probability theory (the ultimate goal was the central
limit theorem). The notes reflect that: the first part consists of a brief introduc-
tion to probability theory. The development was based largely on an excellent
monograph by P. Billingsley Probability and Measure, Wiley (1995), 3rd Ed.
(A.N. Shiryaev’s Probability, Springer (1995), 2nd Ed. is a good alternative).
It should be emphasized, however, that the notes are far from a comprehensive
treatment of even basic probability; the goal was to get to the central limit
theorem as quickly as possible. Either of the texts just mentioned or, on a
non—measure theoretic level, books like S. Ross, A First Course in Probabil-
ity, Macmillan, or M. H. DeGroot, Probability and Statistics, Addison—Wesley,
should be consulted for a much more complete development. The second part
of the notes is closely based on selections from Mahmoud’s Sorting. Again,
we would like to emphasize, that because of a very limited time left for the
algorithmic part, the selections are very constrained and even for the topics in-
cluded here, discussions rather brief. Thus, the original text of Mahmoud’s book
(or D.E. Knuth’s 3rd volume of The Art of Computer Programming. Sorting
and Searching, Addison-Wesley (1973)) should be consulted for a much more
detailed analysis. Since I will refrain from providing historical references and
credits in the text, I refer to Mahmoud’s texts for references (up to, roughly,
2000). As one exception I would like to mention a paper H.—K. Hwang and
R. Neininger "Phase change of limit laws in the quicksort recurrence under
varying toll functions” SIAM J. Computing (2003), 1475-1501, which contains
a quite complete, and perhaps, essentially final discussion of quicksort type of
recurrences.

Someone who wishes to learn more about general methods used in discrete
mathematics (they are used throughout the notes in a very limited way), will
find plenty of methods in Concrete Mathematics: A Foundation for Computer
Science, Addison-Wesley (1989), by R.L. Graham, D.E. Knuth, and O. Patash-
nik.

As I mentioned above, one occasion on which this course was taught, was
during fall 2002 semester, which I spent as a visiting professor at the University
of Jyvaskyla, Finland. I would like to thank the Department of the Mathematics
and Statistics of the University of Jyvaskyla for the invitation and to Christel
and Stefan Geiss for their hospitality during that visit.



Finally, I would like to thank Rainer Avikainen for his help with final prepa-
ration of the notes in June of 2003, for a careful reading of most of these notes,
and for preparing hints to the solutions of the exercises.



2 Complex Numbers

Real numbers, as good as they are, do not suffice for all purposes. For example,
some very simple polynomials do not necessarily have real roots. To bypass that
problem we need to consider more general system of numbers, namely complex
numbers. This is done by introducing the number 7, called an imaginary unit,
by letting 4 = /=1 (or by saying that ;> = —1). We then define a complex
number z by

z = a+ bi,

where a and b are real numbers. These are referred to as the real and imaginary
part of z, respectively, and are denoted by a = R(z), and b = I(z). A complex
conjugate of z is a complex number z defined by z = a — bi. The absolute
value of z is a nonnegative number defined by |z| = Va2 +b2. Arithmetic
operations on complex numbers are defined as follows: addition and subtraction
are coordinate-wise

z1 + 29 = (a1 + az) + (bl + bz)'i,
and multiplication by expanding the product

zZ129 = (a1 + bli)(ag + bgl) = a1as + blbzi2 + (albg + agbl)i
(alaz — blbz) + (albg + agbl)i.

Division is performed by first removing imaginary part from the denominator;
for any complex number z = a 4 bi we have

2Z = (a + bi)(a — bi) = a® +b* = |2|°.

Hence,
ay + bll _ (a1 + bli)(a2 - bg’L) _ (alag + blbz) + (bla.z - albz)i
as + bz’b o (az + bzl)(az — bg’L) o a% + b;
@10z +b1by iblaz — a1bs
- al+ b3 a3 + b3

We will need a complex valued function of a real variable, namely, z — €'®
The following provides heuristics behind the definition: consider Taylor series
of e¥ with y = iz. By grouping together even and odd powers and taking into
account the defining property of i we get

P i ('L:c)" Zi +Z )‘)k—l—l
LuTnl T A (k)] (2k + 1)!
_ o (_1)kz2k ) o (_ )k$2k+1



We now notice that the first sum is just the Taylor series of cosx while the
second is the that of sinz. In view of this we set: the function z — €** is

defined by ‘
e =cosz +isinz.

The following lemma lists the basic properties of €*®:
Lemma 2.1 We have

(i) le®| =1

(ii) € - e = izt

(iii) (€)' = ie™®

(w) [ei®dz = —ie®®

Proof: We begin with (ii). Using the formulas for the cosine and sine of the sum
of two angles, we see that:
¢t = cos(z +y) +isin(z +v)
= coszcosy —sinzsiny + i(sin z cos y + sin y cos z)
= coszcosy + i sinzsiny + i(sin z cos y + sin y cos )
= (cosz+isinz)(cosy + isiny)

el . ety

as required. Part (i) follows from (ii), the fact that |z| = V2%, and that

el = cosz — isinz = cos(—z) + isin(—z) = e~ .

For part (iil) write

3 7 .. 7 . . . . .
(e') = (cosz+isinz) = —sinz+icosz =i sinz +icosz

= i(cosz +isinz) = ie'®.

Finally, (iv) follows from (iii) and the fact that that 1/i = —i. O

3 Probability Space

Let © be a set. A family A of subsets of Q is called a o—algebra (or a o—field)
of sets if it satisfies the following conditions:

e QcA,
o for every set A, if A € A, then its complement A°is in A,

e if A, As,... is a sequence such that Vi > 1 A; € A then their union
U;czl A; € A.



A triple (2, A,P) is called a probability space if Q is a set, A is a o—field of
subsets of €2, and P is a function defined on A satisfying the following conditions
(axioms of probability):

e VA€ A P(A) >0,
e P(Q) =1,

° P(U;i1 Aj) = E;’il P(Aj), whenever A;, Ao, ... is a sequence of pairwise
disjomnt sets in A (i.e. A; N Ay =0 for all j # k).

This function P is called a probability measure (or just probability) on 2. Two
basic examples are:

1. Discrete uniform space: Let £ be a finite set and let N be the number of
elements in €. Let A be a o—field of all possible subsets of Q and let P
be defined by:

1
YaeQ, P = .
ac®, P(a}) =+
Then (£, .A,P) is a probability space and for every A C €,
A
P4y =12,
N

where # A denotes the number of elements in A. Such probability measure
is usually called the discrete uniform measure on £2.

2. Let © be a subset of a real line (typically an interval, or a positive half-line).
Let A be a Borel o-algebra (i.e. the smallest o—algebra containing all
subintervals of ). Let f be a piecewise continuous, nonnegative function
on R such that

/ f(z)dz = 1.
If P is defined by
P(4) = [ f(a)is,
A
then (2, A,P) is a probability space, and the function f is called the
probability density function of P.

Note: Because these two examples are by far the most important for us, and
in both there is a “canonical” choice of A, from now on the role of A will be
diminished to a point that it will be usually ignored. This will free us of certain
technical issues.

Theorem 3.1 (basic properties of probability)

(1) P(0) = 0.



(i1) for any finite sequence of pairwise disjoint sets A1, ..., An

C=

P(|J 4= ZP(Aj)a

j=1

(iii) for any set A€ A, P(A) =1—P(A°).
(iv) for any sets A, B € A such that A C B we have P(A) < P(B),
(v) for any sets A,B € A, P(AUB)=P(A)+P(B) - P(ANB).

Proof: To prove (i) set A; =0, 7 =1,2,.... Then A;’s are pairwise disjoint and
their union is the empty set. Hence, by the third axiom, we have

P() =3 P®),
7j=1

which means that we must have P()) = 0. Once we know (i), (ii) follows by
extending the finite sequence Ay, ..., A, to the infinite one by setting A; = 0, for
j=n+1,n+2,.... Then U;il A= U?:l A; and E;o:l Aj = 2?21 A;j and (ii)
follows from the third axiom. The remaining properties are direct consequences
of axioms and (ii). For example to see (iii) notice that A, A® are disjoint and
their union is 2. Hence

1=P(Q) = P(AU A°) = P(4) + P(4°),

which gives (iii). Similarly, for (iv) write B = AU (A°N B) with A and A°N B
disjoint. Thus,

P(B) = P(AU (AU B)) = P(A) + P(A°N B) > P(A),

since by the first axiom P(A°N B) > 0. A proof of the last part is similar and

is omitted. O
The following is a useful observation.
Disjointification: Let A;, As,..., be a sequence of sets. Define their disjoin-
tification Bi, Bs, ... as follows:
Bl = Al ’
B, = ATNnAsn---NnAj_;NAg, fork>2.

Then, the sets Bi, Ba, ..., have the following two properties:
(i) P(UjZ, 45) =P(U;Z, B)), and

(i1) Bi,Bs,..., are pairwise disjoint.



4 Conditional Probability

Let (Q, A,P) be a probability space and let A, B € A, P(B) > 0. Then the
conditional probability of A given B (denoted by P(A|B)) is defined by

P(AN B)

P(AIB) = —5 5

Note: The above formula is also frequently used in another form, namely, to

compute the probability of the intersection of two sets:
P(ANn B)=P(A|B)P(B).

We say that a (possibly finite) sequence of pairwise disjoint sets Aj, As,... is a

(measurable) partition of € if
(i) Vj>1A4;€A,
(i) V5 >1P(4;) >0, and
(i) Uj=, 45 = Q.

For example, if A € A is such that 0 < P(A) < 1, then A, A¢ is a partition of
Q.

Theorem 4.1 (the law of total probability) Let Ay, A,,. .., be a (possibly finite)
partition of Q. Then for every set A € A we have

P(A) =Y P(A|4,)P(4;).
i>1

Proof: Let Bj = AN A;j. Then Bj’s are pairwise disjoint (since A;’s are) and
their union is A (because the union of all 4;’s is Q). Therefore,

P(4)=P(|J Bj) =) P(Bj) =) P(ANA4;) = P(A|4;)P(4;),

i>1 i>1 i>1 i>1
where the last equality follows from the definition of the conditional probability.
O
5 Independence
Two sets, A, B € A are independent if
P(ANB)=P(A4)-P(B).

Two sets that are not independent are called dependent.



Note: This definition and the definition of the conditional probability imply
that A, B are independent iff P(A|B) = P(A) (and thus also P(B|A) = P(B)).
If one thinks of the conditional probability of A given B as the probability of
A once we have information contained in B, then the last equation simply says
that the information contained in B is totally irrelevant as far as chances of A
occurring are concerned.

We also note the following: if A, B are independent then so are A, B¢ (and thus
also A°, B¢, and A€, B). Indeed,

P(A)=P(ANB)+P(AN B°) =P(A)P(B) + P(AN B°),
by independence. Hence,
P(A4 N BY) = P(4) - P(A)P(B) = P(4)(1 - P(B)) = P(A)P(B"),

i.e. A and B¢ are independent.

For more than two sets the definition becomes as follows: sets Ay, As,..., A,
are independent if for any choice of any number of them, the probability of the
intersection is equal to the product of probabilities, that is, if

V2<m<n, V1< <g2< < Jm <mn,
P(4;, nA;,N---NA; ) =P(4;) P(4;,) - P(4;,).

Note: This means, in particular, that three sets A, B, C are independent if all
of the following hold:

P(ANB)=P(4A)P(B), P(ANC)=P(A)P(C),
P(BNC)=P(B)P(C), P(ANBNC)=P(A)P(B)P(C).

It is not enough that just the last equality holds.

6 Random Variables

A random variable X is a real valued function whose domain is a probability
space, 1.e.

X: (Q,AP)—R.

Note: In general we need more, namely that this function X is measurable
which means that inverse image of any interval in R belongs to A, i.e. X7 1(I) €
A for any interval I. Since practically all of the functions we will consider
will satisfy that, (for example a random variable defined on a discrete uniform
probability space is automatically measurable since in this case A contains all
subsets of Q) it will simplify our discussion if we just ignore that requirement.

In our study of random variables we are usually interested not in the random
variables themselves, but, rather, in their distributions.



Definition: Let X be a random variable on (€2, A, P). Then, its distribution
function F is a function F : R — [0,1] defined by

VzeR, F(z)=P(X <uz).

Note: Distribution function is frequently called the cumulative distribution
function (abbreviated as c.d.f.). Also, sometimes we write Fx to emphasize that

F is the c.d.f. of X.

Theorem 6.1 (basic properties of the c.d.f.)
(i) F is increasing in the sense that if z; < x5 then F(z1) < F(z2),
(i) limg oo F(z) =1,

(#3) limg oo F(z) =0,

w) F is right continuous. That is, for every x and for every decreasing se-
g Y Y g
quence (zy,) such that im,,_,o ,, = z we have lim,_, o F(z,) = F(z).

Note: F does not have to be continuous in general.

Two special classes of random variables are: discrete and continuous. A
random variable that takes on countably (or finitely) many values, each with
a positive probability, is called a discrete random variable. For such a random
variable we define its probability mass function p as follows:

Thus, p(z) is equal to 0, unless z is one of the values taken on by X. Suppose,
for simplicity that z; < z2 < ... are all the possible values of X and set
pr = P(X = z}). Then we have the following relationship:

Fz)= Y ;.
Ji i<z

Thus the c.d.f. of a discrete random variable is a step function, with steps
occurring at the points zp, k=1,2,....

We say that a random variable X is continuous if there exists a function f :
R — R such that

(i) Yz €R, f(z) > 0.

(ii) Y z < y we have
Y
Pz< X <y)= / f(t)dt.

10



In that case the function f is called a density of X. Note that the left hand

side above can be expressed in terms of the c.d.f. of X as F(y) — F(z). This is
because

X<y} = ({X<ypn{X <z U({X <ypn{X <z}°)
{X <z}u({X <ypn{X >a}).

Since the sets {X < z} and {X < y} N{X > z} are disjoint, for probabilities
we get

P(X<y)=P(X<2)+P(z< X <y),

which means that

P(z < X <y)=F(y) — F(z).

In particular, letting z - —oo we obtain
ek F= [ s

This is similar to a formula expressing the c.d.f. of a discrete random variable in
terms of its probability mass function. In any case, the point is that if we know
the density (in the continuous case) or the probability mass function (in the
discrete case) then we can determine the c.d.f. and vice versa, if we know the
c.d.f. of a discrete (or continuous) random variable X, then we can determine
the probability mass function (or density) of X.

Examples of the most important random variables (note that all of them are
described through their c.d.f’s — or densities/probability mass functions):

(I) Discrete:

(i) discrete uniform: A random variable which takes on each of a finitely
many values z1, T2, ..., T, with equal probability (necessarily 1/n)
is called a discrete uniform random variable.

(ii) Bernoulli with parameter p, 0 < p < 1: A random variable X which
is equal to 1 with probability p and is equal to zero with probability
1—p,ie.

P(X=0)=1-p, P(X=1)=p,

is called Bernoulli (with parameter p) random variable.

(iii) Binomial: Let an experiment resulting either with a “success” with
probability p or a “failure” (with probability 1 — p) be repeated in-
dependently n times. A random variable X that counts the number
of successes in these n trials is called binomial with parameters n,p.
Thus, for any £k, 0 < k < n,

n

P(X =k)= (k>Pk(1 -p)" "

11



(iv)

(1)
()

(iif)

Geometric with parameter p, 0 < p < 1: Suppose that the experi-
ment in (iii) is repeated independently until a success is obtained for
the first time (and then it is stopped). A random variable X that
counts how many repetitions are needed until this happens is called
a geometric random variable (with parameter p). Thus,

PX=k)=0Q-p)*1-p, for k=1,2,....

Note: sometimes geometric random variable is defined as the num-
ber of failures before the first success. In that case the formula for
the probability mass function becomes:

PX=k=0—=p)"-p, for k=0,1,2,....

Poisson with parameter A, A > 0: Let A be a positive number. A
random variable X whose probability mass function is given by:

k

P(X =k)= AL

R for k=0,1,2,....

is called a Poisson random variable with parameter \.

Continuous:
uniform on [a,b]: Let a < b be real numbers. A random variable X

whose density is given by:

, A ifa<z<b
_) =g HazTx
f(@) _{ 0 otherwise
is called a uniform random variable on the interval [a, b].

exponential with parameter A, A > 0: let X be a positive number. A
random variable X whose density is given by

Xe ™ ifz>0
f(z) _{ 0 otherwise

is called a exponential random variable with parameter .

Gaussian (or normal random variable with parameters p,o: Let p
be a real number and let ¢ be a positive number. Then a random
variable X whose density is given by

202

for —oo < z < o0,

1
f(w) = \/ﬂa exp{—

is called a normal (or a Gaussian) random variable with parameters
u and o?.

12



7 Expectations of Random Variables

Let X be a random variable on a probability space (£2, A, P). Then the expected
value EX is defined by

Ej21 z;P(X = z;), if X is discrete with values z1,z5,...
EX =
7 zf(z)dz, if X is continuous with density f(z);

—o0

provided that the sum

>z P(X =),

j21

or, respectively, the integral

[ lals@yas,

is finite.

Example:

(i) if X is a Bernoulli random variable with parameter p, then

EX=0-P(X=0)+1-P(X=1)=0-(1—-p)+1-p=p.

(i) if X is exponential with parameter 1, then its expected value is

/ zf(z)dz = / ze ®dr = / e %dr =1,
—oo 0 0

where the next to last equality is justified by integration by parts.

Linearity of expectation: The expected value is linear, that is, if X and Y
are two random variables and a, b are two constants then

E(aX +bY) =aEX + bEY.

Let X be a random variable on (2, A,P) and let h be a function (say, piecewise
continuous) h : R — R. Then the composition ¥ = h(X) : 2 — R is again
a random variable. Thus, we can talk about its expected value. We have:

2321 h(z;)P(X =z;), if X is discrete
EY = Eh(X) =
ffooo h(z)f(z)dz, if X is continuous with density f(z);

provided that the corresponding sum or integral is finite.

Example:

13



(i) (linearity) if X is a binomial random variable with parameters n,p, then
X =", X;, where

X = { 1, if there is a success on the ith trial,
;=

0, otherwise.

We usually write X; = I(X; = 1) and call it the indicator function (of the
set {a success on the ith trial}). Hence,

EX=E() _ X;)=> EX;=) p=n-p
j=1 j=1 j=1

(ii) if X is uniform on [0,1] and h(z) = z*, then

EY:EX3=/

— o0

1
: 1

$3f(a:)d$=/ idr = ~.
0 4

A few functions of particular importance:

(i) h(z) = z?, or more generally h(z) = z?, or h(z) = |z|?, p > 0. Then EX?
and E|X|?P are called the pth and the absolute pth moment, respectively.

(ii) if for a random variable X, h(z) = (z — EX)? then
Eh(X) =E(X —EX)?,

is called the variance of X and is denoted by var(X), or D?(X). By
squaring out the term under the expected value sign and using linearity
we see that var(X) = EX? — (EX)2.

(iii) if h(z) = ¥ then the function ¢t — M(t) = Ee*X is called the moment
generating function of X. Its domain is the set of all ¢ for which the
corresponding expression is finite.

(iv) (outside of real valued functions but barely) for a real ¢ consider h(z) =
e*® where 7 is the imaginary unit. Then the function ¢(t) defined by

¢(t) = Ee™™,

is the characteristic function of X. Note that if Y = a X + b where a,b are
constants then

¢Y (t) — Eeit(aX+b) — eitheitaX — eitb¢X (at)

Note: The advantage of the characteristic function over the moment generat-
ing function is that the former always exists and its domain is always the whole
real line R.

14



8 Independent Random Variables
Two random variables X and Y are called independent if for all z,y we have
PH{X <z}n{Y <y}) =P(X <z)P(Y <y).

The left hand side is usually written as P(X < z,Y < y) and the function
Fxy(z,y) : R xR — R is called the joint distribution function of X and Y.
The equation becomes

F_xyy(l‘,?;) = Fx(z) - Fy(y),

i.e. the joint distribution function is the product of individual c.d.f’s. If we
denote the joint probability mass function of two discrete random variables
X,Y by

pX,Y(xay) = P(X = an = y)ﬂ
then if z; < z2... and y; < ys ... are values taken by X and Y, respectively,
then we have

pxy(zj,yx) = P(X = z;,Y = yi).
Expressing the latter in terms of the c.d.f.’s by using

{(X=2;Y =y} ={X < z;} N{X < z; 1} N{Y <y} 0 {Y <yin )5,
and using independence we obtain that

pxy(z,y) = px(z)py (y).

By a similar argument using the fact that relationship for the joint density is
given by
0*Fx,y(z,y)

0xdy

at every point z,y at which the joint c.d.f. is differentiable, we see that in the
continuous case, if X and Y are independent then

Ixy(z,y) = fx(z)fr(y).

fxy(z,y)=

As a consequence we obtain that whenever X,Y are independent then
E(X-Y)=E(X) -E(®Y),

whenever E|X - Y| < oo. What is more, if A : R x R — is a function such that
h(z,y) = h1(z) - ha(y), and X,Y are independent then

Eh(X,Y) = Ehy(X) - Ehy(Y),

15



provided E|h(X,Y)| < co. For discrete X,Y the argument goes like this:

Eh(X7 Y) = Z h(xjayk)P(X = '73j7Y = yk)
i>1,k>1
= Y h@)he(u)P(X =2;)P(Y =yy)
i>1k>1
= D ) hi(z)P(X = z))ha(yx)P(Y = )
iZ1k>1

= > I(e))P(X =) [ D ha(yn)P(Y = 1)

i>1 E>1
= EXEY

where the second equality is by the property of the function h and independence,
while the third one is by rearranging the order of summation (that’s where the
assumption E|h(X,Y)| < oo is needed). For continuous variables, the argument
is essentially the same - one needs to replace the summation by integration.
Two key examples of functions h with that property are functions related to the
moment generating function or characteristic function of the sum of independent
random variables,

h(z,y) = o) = et = et o = by (2) - ha(y),

or
h(m’y) — eit(z+y) — eitm+ity — Citz A eity — hl (I) A h2 (y)

Thus, we have the following statement:
Theorem 8.1 If X,Y are independent random variables then

(i) the moment generating function of a sum X +Y is the product of the
moment generating functions of X and Y (for those t for all three exist)

(ii) the characteristic function ¢ x4y (t) of the sum is the product of the char-
acteristic functions ¢ x(t) of X and ¢y (t) of Y, i.e.

dx+y (t) = dx(t) - dy(t), forallt € R.

The concept of independence for more than two random variables (say, X1, Xa,...,X,)
1s defined by requiring that for all choices of z1,z2,...,z, the events

{X1 <z}, { X < 2o}, { X <20},

are independent. We then have the same property: the joint p.d.f. (or density)
is the product of individual p.d.f.’s (or densities) and thus, if

h:R" — R

16



has the property that
hzy, 22, ..., 2n) = hi1(z1) - ha(za) -+ - ho(zn),
then for independent random variables X, Xs,..., X,, we have
Eh(Xy,Xs,...,Xy) = Ehy(X1) - Eho(X3) - - - Eh,(X,).

In particular, the characteristic function of the sum of independent random vari-
ables is the product of their characteristic functions. That is, if X7, X5,..., X,
are independent random variables then

bx + X4+ X, () = dx, (1) - bx, (1) - bx, ().

9 Inversion Formula

Theorem 9.1 (inversion formula) Let X be a random variable with distribution
F and characteristic function ¢. Then for all a < b such that P(X = a) =
P(X =b) =0, the following holds

T —ita —1i
F(b) = F(a) = lim i/ #qﬁ(t)dt.

T—o0 2T

Proof: First, write Taylor expansion of the exponential function (with the re-
mainder in the integral form):

k 'n—l—l T )
= Z m) / (z — s)"e*ds.
0

By integration by parts we have

Hence
and since
combining those two expressions we obtain:
z . n .
/ (z — s)"e*ds = —,/ (z —s)""t(e™ — 1)ds.
0

x
2 Jo
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Substituting this integral into our Taylor’s expansion for ¢*® we obtain another
expansion:

(w)k " * 1/ is 1
Z 1)'/ (z — s)""1(e" — 1)ds.

If 2 > 0 then the absolute value of the last term on the right is no more than
(recall that |e**| =1 for real s)

z— )" (e —1)ds

1 £ .
< . —s)" et — 1|ds.
(n—l)" = n—l)!/ﬂ (@ —=8)""e |ds

Since |e?* — 1| < |e*®*| + |1] < 2, this is further upper-bounded by

2 z 2z
——— [ (z—s)" tds = iy
(n=1"J, n!

Essentially the same computation can be repeated for z < 0 and we get

v m(m — )"l — 1)ds| < 2J|"
(n—1!J, - nl
Repeating the same argument for the remainder in the first expansion of e® we
get
1+ 1 T . n+1
! / (z — s)"e*ds| < L
n! Jo (n+1)!

Hence, combining those two bounds we derive a useful bound on the expansion
of the function €** (we will need it later !):

(W)" 2" 2]z
Z = {(n+1)!’ n! }’

valid for all n > 0. In particular, letting n = 0 we obtain

le®® — 1| < min{|z|,2}.

We now return to the proof. For simplicity we will prove it for continuous
random variables So, suppose that X has density f. Thus its characteristic

function is ¢(¥) f_ e'*® f(z)dz, and therefore the expression
1 T e-ita _ g—itb
— [ ()t
2 J_p it ’
becomes T ] ”
1 ‘—'Lt(l _ ,_Zt) oo
_T —oo
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Rewriting this as a double integral and multiplying out we get

1 T oo _it(z—a) _ it(z—b)
— / / ¢ ¢ F(z)dzdt.
2 J_p J_ it

By our previous estimates

eit(mfa.) _ eit(z—b)

it

’eit(sz) (eit(mfaf(sz)) _ 1)|
- ]
eit(b—ﬂ) — ]_’ < nnn{lt(b — a)|, 2}
It] = It]

S |b_a|’

which is bounded independently of ¢ and z. Therefore, the double integral
can be computed as iterated integrals in any order. Exchanging the order of
integration we see that it is:

1 oo T eit(m—a) _ eit(m—b) )
— dt dz.
o7 < / . it f(z)dz

—oo \/—

For the inner integral use the fact that e’ = cosu + 4sin v and linearity of the
integral to get

1 T cos(t(z — a)) 1 T cos(t(z — b))
e
T sin(t(z — a)) T sin(t(z — b))
o Gy [ Ry,

Since the interval of integration is symmetric about 0 and the first two integrands
are odd functions (and thus their integrals are zero) while the last two are even,
this expression is equal to

T _ T -~
2/ sin(¢(z a'))dt—Z/ sin(t(z b))dt.
0 t 0 t
Let us denote for T > 0

. T sinz
S(T) = dz
Jo

T

and let sign(u) be a function which is +1 if w > 0, is —1 if v < 0, and is 0 if
u = 0. By change of variables, for any v

T . T|v|
s 43 .
/ SI) 1 an(v) - /
0 t 0

Thus, substituting this into inner integral gives the following value for the double
integral

(= gy - D gy ) oy

— 00

Slzydy = sign(v)S(T|v|).
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It remains to take the limit as T" — oco. It is known from calculus that

T .
lim / TR Pdr =2, thatis lim S(T)= =
0 2 T—o0

T—oo x 5
Therefore the function

sign(z — a) s( sign(z — b)
7 T

Tz —al) — S(T|z —bl|)

converges to 0if z < a or z > b and to 1if a < z < b. (It also converges to 1/2
if £ =a or z = b, but this is irrelevant.) Thus,

lim / (Sig“(ii_“)smx —al) - Sign(ﬂﬂsmx - b|)) F(z)dz

T—oo

b
= / f(z)dz = F(b) — F(a).

—0o0

This proves the inversion formula. O
Note: The inversion formula, allows one to recover the distribution function
of a random variable from its characteristic function (in principle at least).
But, even more importantly, as a consequence, we have the so-called uniqueness
theorem, namely if two random variables have the same characteristic function
then they have to have the same distribution function as well. Since, obviously,
two random variables with the same distribution function have to have the
same characteristic function, this is an “if and only if” statement. In other
words, characteristic function uniquely determines the distribution of a random
variable.

10 Convergence in Distribution

Definition. Let X be a random variable with c¢.d.f. F(z), and let X1, X>... be
a sequence of random variables with c.d.f’s Fi(z), F»(z),..., respectively. We
say that the sequence (X,,), n > 1 converges in distribution to X if

F,.(z) — F(z), as n — oo,
for all z € R at which F(z) is continuous. We write
X=X

to indicate the convergence in distribution.

Note:

(i) Since F is nondecreasing it can have at most countably many points at
which it is not continuous. Furthermore, in the most interesting cases F
is, in fact, continuous.
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(ii) The definition is really about the convergence of distribution functions
of random variables, rather than random variables themselves. In partic-
ular, the random variables X;, X5,... need not be defined on the same
probability space. For that reason we will often speak of convergence of
distributions and write

F, = F.

Example: Let X, X5,... be i.i.d. (independent and identically distributed)
random variables, each having an exponential distribution with parameter 1
(and thus the common c.d.f. is F(z) = 1—e~®). Let M, = max{X1, Xa2,..., X, },
let F,, be the c.d.f. of M,, and set b,, = Inn. Then we have

P(M, —b, <z)=P(M, <b,+z)=F,(b, + z).
Since {M,, < z} = {X; < zV1 < j < n} by independence F,(z) = F"(z). Thus

Fn(bn+m) = Fn(lnn+m)=F"(]nn+I)= (l_e—lnn—m)”
e t\" e
= (1 — ) ye ¢ .
n

. —e™ T . —e %
lim e¢ =0, lime™® =1,
T— —00 z—00 :

Since

and this function is continuous and nondecreasing, it is a c.d.f. (called a maximal
value distribution). Thus,
M, —Inn=Y,

where the c.d.f. of Y is the extreme value distribution.

The following observation is very useful.

Lemma 10.1 Let F, Fy,F»,... be distribution functions such that F,, =— F.
Then there exist Y,Y1,Ys ... defined on the common probability space (2, A, P)
and having distributions F, F1, Fs, ... respectively, and such that Y, (w) = Y (w)
for all w € Q.

Proof: We take as the common probability space the interval (0,1) with Borel
o-algebra (i.e. o-algebra generated by all intervals) and the Lebesgue measure
(i.e. the unique measure P satisfying P((a,b)) = |b — a|). Define Y, and Y by

Yo(w)=inf{z: w < F,(z)}, Y(w)=inf{z: w < F(z)},

(it helps to draw a picture; these are essentially inverse functions of F,,’s and F,
except that F and F,’s need not be strictly increasing and thus may not have
the "real” inverses). Then we have w < F,(z) iff Y,(w) < z with the similar

statement for Y. Hence

P({w: Yo(w) <2}) =P({w: w < Fu(2)}) = Fu(z),
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where the last equality holds by the definition of our (£2,.4,P). Thus, Y, has
F,, as its c.d.f. and the same argument shows that Y has c.d.f. F. It remains to
show that Y,,(w) — Y (w) for all w € (0,1) (again, if one thinks of ¥;, as inverses
of F,,’s then the fact that F,, converge implies the the inverses converge, too).
For the general case there is a bit more to say: Let 0 < w < 1 and let € > 0.
Pick an z such that

Y(w) —e <z <Y(w) and such that F' is continuous at z,

(since F is nondecreasing it has at most countably many points of discontinuity).
Then F(z) < w and since F,,(z) converges to F(z) it follows that for sufficiently
large n’s we will have F,(z) < w as well; hence,

Y(w) —e <z <Yy(w),

which implies that liminf,, ¥,,(w) > Y (w). To show that lim sup,, ¥,,(w) < Y (w),
pick any w’ such that w < w’ and for a given ¢ choose a y such that

Y(w') <y <Y(w')+e andsuch that F is continuous at y.

Then we have
w<w <FY (W) < Fly),

and since F,(y) converges to F(y) for sufficiently large n’s we also have w <
F,(y) and thus Y, (w) <y < Y(«') 4+ €. Since ¢ is arbitrary, this implies that
lim sup,, Y, (w) < Y ('), whenever w < w’. Letting ' — w we conclude that
lim sup,, Y, (w) < Y (w), provided Y is continuous at w. Since Y is nondecreasing
it has at most countably many points of discontinuity. At any such point we
can redefine Y,,(w) = Y(w) = 0. This does not change the distributions of ¥’

or Y,,’s (since they are changed at at most countably many points) and makes
Y, (w) converge to Y (w) for all w € (0,1). O

Theorem 10.2 Let X, X1, X5,... be random variables with distribution func-
tions F,Fy, F5 ..., respectively. The following two conditions are equivalent:

(i) X, = X.
(1) Ef(X,) — Ef(X), for every bounded, continuous real valued function
f.

Proof of (i)= (ii). Suppose F,, = F' and consider random variables Y, and

Y given by the above lemma. Let f : R — R be a continuous function such
that |f(z)| < K, for z € R. Since Y, (w) = Y(w) for all w € (0,1) and f is
continuous, f(Y,(w)) = f(Y(w)) for all w € (0,1) as well. That is,

VYw € (0,1) Ve > 0 3k Vn > k, we have |f(YV,(w)) — f(Y(w))| < e.

Letting ¢ = #, m =1,2,..., and defining the sets
. 1
Anm = {w s [f(Ya(w)) = fV (W) 2 —},
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the above quantification can be restated as
N U N A== 01,
m>1k>1n>k

That means that

vm>1 ] () A%, =2=(0,1)
E>1n>k
and since the sets

ﬂ AL k=12,
n>k

form an increasing sequence whose union is the whole 2 we must have

dm P[] 4 | =1
n>k

This means that for any ¢ > 0 there exists a k¢ such that for any k& > kg we

have
Pl () 4s.]|>1-¢
n>k

and thus for the complement

2=

Pl J{w: [f(Ya(w) - f(Y ()] >

b <e
n>k )

Ef(Y,) =Ef(Y)+E(f(Yn) - f(Y))

and its enough to show that the second term goes to 0. We have

[E(f(Yn) = SOV S E[f(Yn) — f(Y)]

Therefore,

= BI7() — FOI | () ~ Fr@))] 2 )

n>k

+E|f(Ya) = FOIT | (I (Ya(w)) = f(¥Y (@))] < %}

n>k

(since | f(z) = f(y)| < [£(@)| + £ (4)] < 2K)
< 2KP (U {If (Ya(w)) = f(Y(@))] 2 %}) b

n>k
(provided n > ko)

1
<2Ke+ —
m

(since m and ¢ are arbitrarily large and small, respectively)

— 0.
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This proves that part. (A moments reflection on the order of choices of various
parameters might be helpful: to show that E|f(Y,) — f(Y)| goes to zero, we
have to show that for an arbitrary n > 0 there exists an ng such that this
quantity is no more than 7 for all n > ng. For our 7 pick m such that 1/m < n/2,
then pick € > 0 such that 2Ke < /2 (K is given in advance.) For that e there
exists a kg with the properties described above. Now we may take ng > ko.)
Proof of (ii)=>(i). Let z < y and define the function f(¢) as follows

1 ift<z
fy=9 L& ifz<t<y
0 ift>y

Then F,(z) < Ef(X,,) and Ef(X) < F(y). Therefore, limsup,, F.(z) < F(y),
and letting y — = we get limsup,, F,(z) < F(z), provided F is continuous at
z. Similarly, for v < z F(u) < liminf,, F,,(z) and again, letting u — z we get
F(z) < liminf,, F,,(z), provided F is continuous at z. Thus lim,, F,,(z) = F(z)
for any z at which F is continuous. This completes the proof of the theorem.
O We will need a few more results before the main theorem

Theorem 10.3 (Helly selection theorem) For every sequence of c.d.f’s F,,, n =
1,2,... there exists a subsequence ni, k = 1,2... and a nondecreasing, right-
continuous function F such that limy_,o Fy,, (z) = F(z) at all points z at which
F is continuous.

Proof: Let 71,72,... be an enumeration of rational numbers. Then F,(r;) n >
1, £ > 1 is a doubly indexed bounded sequence. We will use what is called
a diagonal method to find a subsequence n,, such that F, (ry) converges as
m — oo for all k > 1. First, since F,(r1) is bounded, there exists a subsequence
ni,ni, ... such that Fo (r1) converges as m — oco. Look at the values of F’s
at r along that subsequence, i.e. at Fy,1 (r2), m > 1. It is a bounded sequence
and thus there exists a subsequence n? , m > 1 such that Fy2 (r2) converges as
m — oo. Look at the values F: (r3) and continue the same argument. This
produces an array:

Fn} (71) nl (Tl) Fné (Tl)
Fo2(r2) Foa(r2) Fpa(ra)
Fn? (T3) an (T3) an (’I”3)

This array has the property that the sequence converges in every row, and
that the sequence of indices in every row (except the first one, of course) is a
subsequence of those in the previous one. Choose a diagonal (hence the name)
Ny = niv,m = 1,2,.... Then the sequence F,, (ry) converges as m — 0o
for all £ > 1. Indeed, for a given k look at n,, for m > k. All of them are a

subsequence of the indices in the kth row, and since F, x (7}) converges as j — 0o
J
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it does so along any subsequence as well. Thus, for every rational number 7,
the limit lim o0 Fh,, (1) exists; let’s call it G(r). Now define

F(z)=mf{G(r): z <r}.

It is obvious from the definition that F is nondecreasing. To show that it is right-
continuous, pick any z and for an arbitrary € > 0 find a rational r,» > x such
that G(r) < F(z)+e. We have to show that F(y) — F(z) as y tends to z from
the right. But, for any y such that z < y < 7 we have F(y) < G(r) < F(z) +«.
Since ¢ is arbitrary, and F(z) < F(y) (F is nondecreasing) it follows that
F(y) - F(z) as y \y z. Finally, to show that F, (z) converges to F(z) at
any continuity point z of F, for an € > 0 first pick a y, y < z and such that
F(z) — e < F(y) and then rational r» and s such that y < r < z < s and
G(s) < F(z) +&. We have

F(z) —e< G(r) <G(s) < F(z)+e, and F,(r) < F,(z) < F,(s).
Hence,

limsup F,,, (z) < limsup F,,_ (s) =lim F,, (s) = G(s) < F(z) + ¢,

and
liminf F,, (z) > liminf F,, (r) =lm F, (r)=G(r)> F(z)—e.
Since ¢ is arbitrary, it follows that lim,, F,, (z) = F(z). This completes the

proof. O

Note: Clearly, we have 0 < F(z) < 1, but F need not be a c.d.f. because
we may fail to satisfy lim, o F(z) = 1, for example. (Consider for instance
F,(z) =0if x < nand 1if z > n; then F given by Helly’s theorem is identically
0.) It would, therefore, be nice to have a condition that would guarantee that
this F' is, indeed a c.d.f. Hence the following concept:

Definition. A sequence of c.d.f’s F,,, n =1,2,... is tight if

Ve > 0 dz,y VYn > 1 such that F,(z) < e, and F,(y) > 1 —¢.

Theorem 10.4 Let F,, be a sequence of c.d.f’s. Then the following conditions
are equivalent:

(i) Fn, n=1,2... is tight,

(ii) for every subsequence ny, there exist a further subsequence ny,, and a c.d.f.
F such that F,,, = F.
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Proof of (i)=(ii). (that’s all that will be needed). Let F,, n > 1, be tight.
Pick any subsequence and apply Helly’s theorem to that subsequence to get
a nondecreasing, right-continuous F such that (a further) subsequence of F,,’s
converges to F at its continuity points. Call this final subsequence n;, j > 1.
All we need to do is to show that F is indeed a c.d.f., i.e. that we have

lim F(z) =0, and lim F(z)=1.

To this end pick an ¢ > 0. By tightness, pick z¢ and yo such that F,(z¢) < e,
and F,(yo) > 1 — ¢ for all n. By monotonicity of F,’s, decreasing zo and
increasing vyo if necessary, we can assume that both are continuity points of F'.
Thus, since Fy,;(z9) = F(z¢) and F,,;(yo) = F(yo) as j — 0o we must have
F(zp) < ¢ and F(yg) > 1 — ¢, which, since ¢ was arbitrary, implies that

lim F(z) =0, and lim F(z)=1.

T—r00 T—r 00

as required.
lim F(z)=0, and lim F(z)=1.

Proof of (ii)=>(i). Suppose F,,,n > 1, has the property that every subsequence
has the further subsequence which converges in distribution to a c.d.f. We will
show that F,, n > 1, has to be tight. Suppose it is not. Then there exists an
€ > 0 such that for all a,b there exists an n such that F,(b) — F,(a) < 1 — «.
For that e choose a subsequence ny, such that F,, (k) — F,,, (—k) <1 —e. This
subsequence had a further subsequence ny,, such that along that subsequence
F,, converges to a c.d.f F. Pick ag,by such that F(bo) — F(ag) > 1 —¢, and
again, by decreasing aq and increasing by if necessary we can assume that both
are continuity points of F. Then F,, (bo) = F(bo) and Fy, (ao) — F(ao)
as m — oo, and since for m large enough —k,, < a¢ and k,, > by we have
Fo, (=km) < Py, (ao) and Fy, (km) > Fy, (by). Therefore,

L—e> Py (kn) = Fay, (—k) > Fuy. (b0) = Fu(a0) — F(bo) = Flaq).

But that would mean that F(by) — F(ag) < 1 — ¢, which gives a contradiction,
and thus proves that Fj,, n > 1, is tight. O Finally,

Corollary 10.5 If F,,, n > 1 is a tight sequence of c.d.f’s with the property
that each subsequence that converges in distribution converges to the same dis-
tribution F, then

F, — F.

Proof: Suppose it is not true that F,, = F. That means that there is a
continuity point of F zq such that F,(x¢) does not converge to F(zq). But then,
there exists an ¢ > 0 and a subsequence ng, k > 1 such that |F,, (zo) — F(z¢)| >
€. By tightness and previous result, this subsequence has a further subsequence,
say, ng,, along which F,, ~converges, and by the assumption it must converge
to F. But this is impossible, since |F,,, (z¢) — F(z0)| > €. That finishes the
proof. a
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11 Continuity Theorem

The following result is a major tool in establishing the convergence in distribu-
tion
Theorem 11.1 (continuity theorem) Let X, X1, Xs,... be random variables

with characteristic functions ¢(t),d1(t), d2(t),..., respectively. The following
two conditions are equivalent

(i) X,=— X, asn — oo,
(i1) for allt € R, ¢, (t) — ¢(t) as n = oco.

Proof of (1)= (ii). This follows from the Theorem 10.2 applied to the functions
z = R(e*®), and z — I(e**®) (both continuous and bounded for every t).
Proof of (i)= (i1). Let F, be the c.d.f of X,,. We first show that F,,, n > 11is
tight. We have

%/u(l — ¢ (t))dt = l/u(l — BetXn)dy

U

—u —u

1 ,
= E (—/ (1 —e“Xn) dt.
u —u

To compute the inner integral, write e®*%» = cos(tX,,) +isin(tX,,), use the fact
that cosine is even and sine is odd, to get

- / (1—e*X)dt =2 — 2~ / cos(tX,)dt = 2 — pSIn(uXn)
U f_, U Jo uXy,
Therefore,
E (1 (1- e“Xn)) d = o WX,
U J_y UXn
sin(uX,)

2 2E(1- (| Xn| > 2/u)

uX,,
1 2
2 2EQ1 - )I(|Xa] 2 2/u) =P(|Xa| 2 )
U
. 2. 2
= PX,>-)+P(X,<—-)
U U
2 2
Z 1_Fn(_)+Fn(__)
U U
2 2
= 1- (Fn(_) - Fn(__))
U U
Now ¢(0) =1 and ¢ is continuous at zero, which follows from
[6(h) = $(0)] = |E(*¥ —1)| < E[e* —1| < Emin{|hX], 2}
Emin{|hX|,2}1(|X| < 1/Vh)

+E min{|hX|,2}I(|X| > 1/Vh)
Vh42P(|X| > 1/vh) — 0

IA
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as h = 0. Therefore, for any € > 0 there exists a v > 0 such that

1 /u (1= $(t))dt < e.

UJ_o

Since ¢, (t) = ¢(t) for all t € R, and the functions |1 — ¢, (t)| are bounded by
2, it follows that

S gandt — [ (1— ()t <,

and hence we will have
1 u
L[ =i <,

—u

for n > ng. Combining this with the earlier computation we see that, for n > ng
we have

2 2
F.(-)—F,(——)>1—¢,
U U

for n > ny. Decreasing u if necessary we may assume that the above inequality
holds for n less than ny as well so that it holds for all n > 1. And, since the
above inequality and the fact that 0 < F,,(z) < 1 imply that

2 2
Fo(=)21—¢, and F(—=) < ¢,
U U

the tightness is proved. Now we can use the first part and the previous corollary
to complete the proof: pick any subsequence nj such that F,, converges in dis-
tribution. Then by the first part ¢, (t) converge to ¢() and by the uniqueness
theorem we must have that F,,, = F. Hence, by the corollary F,, = F. O

12 Lindeberg’s Central Limit Theorem
Let foreach n > 1 X, 1, X5 2,..., X0, beindependent random variables. Put
Sp = Xn,l + Xn,z + -+ Xn,rns

and suppose that
Tn
EX,,=0, var(X,) = Jiﬁk, and set s2 = Zaiﬁk.
k=1

Finally suppose that the following condition (usually referred to as Lindeberg
condition) is satisfied:

RN
Ve >0 nl;mm; FEX (X0 k| > es0) = 0.
=1 "

Then we have:

28



Theorem 12.1 Under the above assumptions:

50— N0, ),

n

where N(0,1) denotes the standard normal (i.e. with mean zero and variance
1) random variable.

Note:

(i) the assumption EX, ; = 0 is inessential since we can always replace X,

by Xn,k - EXn,k-

(ii) the most common application is in the case when X, Xs,... is a one
sequence of random variables and S,, is a sequence of partial sums, i.e.
Xk = X and 7, = n.

Proof: The plan is to use the continuity theorem. Let’s begin with a simple
lemma:

Lemma 12.2 Let z1,...,25 and wi,...,w, be complex numbers such that

|zj] <1 end |w;| <1 forj=1,...,m. Then

m
|z1-22---zm—wl-w2...wm|§Z|zj—wj.
=1

Proof of Lemma 12.2: The proof is by induction over m. For m = 1 the
statement is obvious. Assuming it’s true for all 1 < k£ < m — 1 write

|21 - 22+ 2 — W1 - Wa .. Wiy
=21 22 Zm — 21 W2 Wt 21 W2 e Wy, — WY - W3 e Wy,

< |21(2’2-.-zm—w2-.-wm)|—I—l(zl _wl)‘wz"'wm|

N

m m
<zl Y1z — wil + |21 — wi] - |wa] -+ fwm| <7 |25 — w;
=1

=2

completing the proof of the lemma.

Coming back to the proof of the theorem, let us assume without loss of
generality that s, = 1, and let ¢, and ¢ be the characteristic functions of
Xn,k, Xn, respectively. By the continuity theorem we need to show that

VEER ¢n(t) — e /2,

Since we assume that

Tn

2 _ 2 _

sn—E Unﬁk—].
k=1
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it follows that
87t2 /2

Therefore, by Lemma 12.2

Tn t20_2
() — e 5| mnk ST e >
k=1 k=1
Tn tZUZ
_ Z EettXnk _ o=—3=%
k=1
Tn tZ 2 1252 )
:ZE 1+itXn,k—T"’k—c_ T etk 1 itX,
k=1
Tn ) t2X72L & B ‘2"3,,}6
< E|l1+iX,5— ! —e 2
k=1 2
Tn . t2X2 .
+ E <e’“§X"*’“ —1—itX, . + 2"”‘
k=1
Tn t20'2 1252 Tn ) 2X2
=Y |1- T"’“ —e” + Y B |k — 1 =it X g —
k=1 k=1

We will show that each of the two sums goes to zero. For the first sum, we use

the fact that for every real (or complex) number z we have

|z| 2 _
12 <3 B ||2(+2),_||2

ji>2

|2 |z

Applying the above to each of the terms and using the fact that o2 , < s2 =

we get that the sum is bounded by

Tn t4 n X tzl,;’k # tz Tn
> =7 Z T
k=1

Lindeberg condition (recall that s2 = 1) implies that

max Unk—)O as n — oo.

1<k<r,
Indeed, for every ¢ > 0 and every 1 < k <7y,

ooy = EX., =EX]  I(|Xnk| <e)+EX]  I(| X ] > ¢)

< s—I—ZEX W (| X k] > ).
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By the Lindeberg condition, the second term goes to zero, and since ¢ is arbi-
trary, the whole expression vanishes as n — oo. Hence,

E ot < max o2 E o2, = max o> — 0, asn — o0
k=, R nk = G Onk ’

which implies that the first sum goes to zero for every real . For the second
sum, we use the following estimate (see the proof of Theorem 9.1):

. 1 3
e — (1 +iz — —z?)| < min ﬁ 2
2 3!’

Then

2 v2

‘ 2X2 X p°
E|6“X"*’“ -1 —itka + 5 k| < Emm{%’ﬁ){ﬁ_’k}

t X k]2 \
S Emin {%?t2X’?L,k} I(an,kl < E)

t X il
+E min {%a t2szL,k} I(| Xkl 2 €)

t
<E| | kI(|Xn7k| <€)+t‘EX‘ LI(|Xnk| >€)
|t|36 o2 2 2 3
S 3' n k +f EXn,kI(|Xn7k| Z E)v

and by adding the terms we see that the second sum is bounded by

Tn

t3
€|3| Yo k+t~ZEX (Xl > ),
k=1

which goes to zero because € > 0 is arbitrary and because of Lindeberg’s condi-
tion. The proof is completed. a

The following is a useful corollary to the Lindeberg’s CLT. The condition below
(referred to as Lyapunov condition) assumes that the higher moments than the
second exist, but is usually easier to check than Lindeberg condition.

Corollary 12.3 Let X, 5, n > 1,1 <k < Tn, be random variables such that
EX,r = 0 and var(X,, 1) = Ji’k, and set s2 = Y " 10'nk Suppose further
that the following condition is satisfied for some p > 2:

Tn

1
lim — ZE|Xn s|P =

n—)oos
" k=1

Then
— = N(0,1).
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Proof: We have

X kP72 X, kP
X2 I(|1 X k| > esn) = 1- X2 1 (¢ > 1) < 1 Xnxl”

—, p2 2 S
ep—2gh P20

so that, summing up over k gives

1 & , . 1 1 &

5_2 Z EXn,kI(|X7hk| 2 6.) < p—2 s_p Z E|X"ak|p7

T k=1 " k=1
which shows that Lyapunov condition implies Lindeberg’s condition. O
13 Random Permutations
Let # = (m1,72,...,m,) be a permutation i.e. an order of {1,2,...,n}. There
are n! different permutations of {1,2,...,n}. By a random permutation of
{1,2,...,n} we mean a permutation chosen according to the discrete uniform
probability measure on the set II,, of all permutations of {1,2,...,n}.

Let # = (71, 7a,...,7,) be a permutation of {1,2,...,n}. We define a
sequence of sequential ranks, sq(m;),7 = 1,...,n as follows: sq(m;) = 7 if and
only if m; is the jth smallest element among my,ms,...,m;. For example, if
m=(3,5,2,1,4) is a permutation of {1,2,3,4,5}, then the sequence of sequential
ranks is sq(7) = (1,2,1,1,4).

Lemma 13.1 There is a one-to-one correspondence between permutations of
{1,2,...,n} and n-long feasible sequences of sequential ranks.

Proof. We first observe that every permutation has a unique sequence of sequen-
tial ranks. Thus, it is enough to show that there is at most one permutation
corresponding to a sequence of sequential ranks. We will prove it by induction
on n. For n = 1 the statement is clear since there is only one sequence of
sequential ranks and only one permutation. Assuming the statement true for
1 <k <n —1 consider a sequence (s1,...,s,) of sequential ranks and suppose
that 7 = (m1,...,7,) and ¢ = (01,...,04,) are two permutations corresponding
to (s1,-..,8n). Find a position of the letter n in both m and o; specifically
assume m; = n = o0;. We claim that necessarily + = j. If not, then suppose
that 7 < j. But m; = n and 7+ < j means that 7; is not the largest among
m1,...,m; and thus s¢(7;) = s; < j. On the other hand, since o; = n we have
sq(oj) = s; = j, a contradiction.

Having proved that the letter n is at the same position in both 7 and ¢ we can
now remove it. What is left are two permutations 7 and & of {1,2,...,n — 1}
with sequence of sequential ranks (s1,82,...,8;—1,8i+1,---,8,). By inductive
hypothesis we must have 7 = ¢ and inserting back n on its original place we
see that m = ¢, thus completing the proof. a
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Theorem 13.2 Let m = (m1,...,7,) be a random permutation of {1,2,...,n}.
LetY; = sq(m;), 7 =1,...,n be a sequence of sequential ranks. ThenYi,... Y,
are independent and Y; is a discrete uniform random variable on {1,...,7}.

Proof. Clearly, the values of Y; are in {1,...,5}. To show that Y; is uniform
pick a k such that 1 < k£ < 7. Then, by the law of total probability

=Y P(Yj=k|mj=m) P(r;=m)

m=k

To compute the conditional probability notice that, given that m; =m, Y; =
k means that exactly £ — 1 numbers less than m are on the first 7 — 1 positions.
There are (7;:11) choices of k—1 numbers less than m and there are (i:i) (k—1)!
ways of arranging those numbers on the first (j — 1) positions. Next, we fill the
remaining j — k positions among the first (j — 1) with numbers larger than m.

This can be done in (”_m) - (7 — k)! ways. Finally, we arrange the remaining

i—k
(n — j) numbers on the](n — 7) unoccupied positions. There are (n — j)! ways to
do that. Now using the fact that given 7; =m, (m1,...,7j_1,Tj41,...,7y) is
a random permutation of {1,...,n} \ {m}, and putting the pieces together we
see that our conditional probability is

Py =k lm=m =t (21 ) (1 0) (5 D) Gt

which, after using
i=1\_ G-
kE—1 (k—=1)I(j — k)!

and cancellation, becomes

Py = k| m=m) = LSRR (),

Hence,

. 1< (G=Dln=5!m-1 n—m

m=k
Dt (1) ()
ey () (5
:j-l(?)ﬂ;c(z’l:ll) | (2:7)
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and the proof of this part will be complete once we realize that

Zn: (m— 1) (n—m) _ <n)

= k-1 7—k 7

But this is true since the left-hand side counts the number of j-element subsets
of {1,...,n} by first picking an integer m between k and n and then choosing
k — 1 integers less than m and 7 — k integers larger than m. Thus, we have
proved that Y; is uniform on {1,...,5} for j = 1,...,n. Given that, a proof
that they are independent is easy. Let (s1,...,sn) be a feasible sequence of
sequential ranks. Then, since there is only one permutation with that sequence
of sequential ranks, we must have

[

P ﬂ{Yj=5j} =7

i=1

On the other hand, since Y} is uniform on {1,..., 5},

L1
P(Y =S ) = —.
J J j
Hence,
HP(}@=sg~)=1‘[;=m=P (Y5 =55},
=1 J=1 Jj=1
which shows independence. |
The last theorem has a number of useful consequences two of which are
given below. Let m = (71, 7a,...,7,) be a permutation. We say that 7 is a

record if k =1 or mp > mj for all 1 < j < k. A pair (m;,7;) is an inversion
if 1+ < j and m; > 7;. Clearly, a permutation of n letters can have up to n
records and (;) inversions. Let R, (7) be the total number of records in 7. For
example, if 7 = (3,1,2,4,6,5) then Rg(7) = 2, namely, 4, and 6 are the records.
Similarly if V,,(7) denotes the total number of inversions then in this example
we would have Vg(n) = 3 since (3,1), (3,2), and (6,5) are the only inversions.
Suppose now that 7 is a random permutation. In that case R,, may be viewed
as a random variable on the probability space of all permutations of n letters
equipped with the discrete uniform probability measure and the same applies
to V,,. What can we say about the distribution of these two random variables?.
The following gives a rather complete answer.

Theorem 13.3 Let m be a random permutation of n distinct letters. Then, as
n — oo, we have

(i) the total number of records, R, satisfies

R, —Inn
Vinn

= N(0,1).
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(i1) the total number of inversions, V., satisfies

V., —n?/4

————1 = N(0,1).
713/2/6 (7)

Proof of (i): The argument rests on the following simple observation; 7y is a
record if and only if sq(7;) = k. Hence,

ZI sq(mp)=k) = def ZI’“’
k=1

where, by the previous result, Ij’s are independent and P(I}) = 1/k. It follows
that

n n n

1 1 1
ER, = Z P Inn, and var(R,)= Zvar(lk) = Z Z (1 - Z) ~Inn,

k=1 k=1 k=1

and the conditions for the CLT hold since the I’s are bounded.
Proof of (i1): The proof follows the same idea, namely we will link inversions to
sequential ranks. Specifically, we have

Vo= i Wi,
k=1

where Wy, is the number of my, 7, ..., 7 that are larger than 7. Clearly, W, =
k — sq(my). Thus, Wy, is uniform on {1,...,k — 1} and they are independent.
Therefore,

n

ﬁé 2:1 k—1)k (n—1)n
ko2 47
k=1 k=1
Similarly,
(k- 1)(k + 1) n3
(Va (W) = —.
var(V,,) = Zvar )= Z ~ 35
Finally,
1852, 1 [*
EW’?:E;f < L_/O Pdr =0 (k)
j=

which implies Lyapunov’s sufficient condition for the CLT. O

14 Trees

A tree is a hierarchical structure of nodes arranged in levels. The very top
(we tend to picture trees upside down) level has only one node called a root.
Immediate descendants of any node (linked to it by edges) are called the children
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of that node and a node directly above a given node is referred to as a parent or
a father. A node without children is called a leaf or an external node; any other
node is an internal node. The depth, dj, of a node k is the distance (counted in
terms of levels) between the root and that node. The height h,, of a tree on n
nodes is the maximal depth of a node, i.e. h,, = max{d}, : k is a node} (clearly
it is enough to consider leaves only).

We will be exclusively interested in binary trees, i.e. trees with the property
that every node can have at most two children. In such a tree, there can be
at most 2¢ nodes on any level £ and if this is the case for a particular level
we say that that level is saturated. If all levels except possibly the last one
are saturated, the tree is called complete, and if the last level is saturated as
well the tree is called perfect. It will be convenient to consider a notion of an
extended binary tree. If T is a binary tree then its extension T is obtained by
adding nodes so that every original node of T has exactly two children. We will
use the symbol T, to indicate that a given extended tree T is an extension of
a tree on n nodes. Thus, the subscript n refers to the size of the original tree.
Also, h,, will denote the height of an extension of a tree T on n nodes. Figure
1 depicts an extended, complete binary tree on 6 nodes.

Figure 1: Extended complete binary tree on 6 nodes

We now make a few observations about binary trees that will be useful later:

Lemma 14.1 Let T, be a binary tree on n nodes. Then, the height of its
extension satisfies

Ng(n+ 1)1 < by < n,

where [z] is the smallest integer no less than z, and lg denotes the base 2
logarithm.

Proof: The upper bound is trivial since a height of any tree on n nodes is at
most n — 1 and extending it increases the height by 1. For the lower bound we
first note hy, is at least as large as h*, the height of an extension of a complete
tree on n nodes, so it is enough to show it for such a tree. Since all the levels
0,1,...,h%_, are saturated (these are all but the last level of the original, non
extended tree), h}, is the smallest integer satisfying

1+21+“'+2h:‘712n7
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ie. 2" —1 > n, which gives h¥ > lg(n + 1), and since h% is an integer the
inequality is also true with the ceiling. O

Lemma 14.2 For any tree T,, on n nodes Ty, has ezactly n + 1 nodes leaves.

Proof: Let £,, be the number of leaves of T,.. Then T,, has exactly n +£,, nodes.
We will count all the children in T, in two different ways. On one hand, every
node except the root is a child; thus there are n+ ¢,, — 1 children. On the other
hand, every internal node of T has exactly two children. Since there are exactly
n nodes like that, there must be 2n children. Thus

2n=n+4, — 1,

which gives the lemma. O

14.1 Decision Trees

A decision tree is a tree in which internal nodes represent queries and leaves
represent outcomes.

(213) \wzgwg\
N Y

Y/ /[ W
(132) (812) (231) ((321)

Figure 2: Decision tree for an algorithm sorting three elements

Here is an example of a decision tree which represents an algorithm that
sorts a permutation (71,72, m3) of {1,2,3} (see Figure 2). It begins by inquiring
if m; < ms and proceeds to compare my with 73 or m; with m3 according to
whether the answer to the first query is “yes” or “no”. It then decides what the
order is, or continues to the next query. We note that this decision tree is an
extended tree (namely, it is an extension of the tree of queries), and that leaves
represent all possible permutations of {1,2,3}. Thus there are 6 = 3! leaves.
The depth of a given leaf is exactly equal to the number of queries needed to find
out the permutation represented by that leaf. Thus, the height of this tree is
the the largest possible number of queries needed to find any permutation. This
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1s usually called the worst case performance of an algorithm. In this example,
3 is the largest possible number of comparisons needed to find out which of
the 6 permutations is 71,7, 73. Let us now look at a general situation. All
of these observations remain true: a decision tree for a particular algorithm
would be an extension of a tree of queries, and its height would be the worst
case performance of that algorithm. Now comes a key observation: no matter
what algorithm is used, the decision tree will have n! leaves (each corresponding
to a particular permutation). Thus, by the previous lemma the query tree (of
which our decision tree is extension) has n! — 1 nodes so its height is at least
[lg(n!—1+41)] > 1g(n!). This gives us the following lower bound on any sorting
algorithm based on comparisons.

Theorem 14.3 The worst case performance of any comparison based sorting
algorithm is at least nlgn — O(n) on an input of size n.

Proof: At this point the proof is no more than a simple calculation. Since the
function 1g z is increasing we have

n n—1
lg(n!) = Zlg n > / lgzdr = (n —1)1g(n — 1) — O(n) = nlgn — O(n).
k=1 1

O
Thus we cannot hope to sort a permutation of {1,...,n} any faster than in
nlgn comparisons in the worst case. However, the worst case behavior, although
informative does not tell the whole story. We will therefore consider the average
case behavior. What is meant by that is the following: let a comparison based
sorting algorithm be given. Let C,,(7) be the number of comparisons required
to sort a permutation m. Now, suppose that 7 is a permutation randomly chosen
from the set IL, of all permutations of {1,2...,n}. Viewed like that, C), is a
random variable defined on the probability space II,, equipped with the discrete
uniform probability measure P, and the average case behavior of our algorithm
is simply the expected value EC), of C,,. We have

Theorem 14.4 The average case behavior of any comparison based sorting al-
gorithm is at least nlgn — O(n).

Proof: Consider a decision tree of a given sorting algorithm. Label leaves by
permutations; then the depth of a given 7 is the number of comparisons required
to sort m. Since the measure P is uniform on II,, we get

EC, = Y d.P(n) =;—! > da,
well,, well,

so that the proof will be complete once we show that

Z dr > nllgnl.

7ell,
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But this is a general fact, that is true for any extended tree T. As a matter
of fact, for a tree T the quantity ) dg, where the sum extends over all leaves of
T (that is exactly what we have on the left side) is referred to as the external
path length and is usually denoted by X (T"). We claim

Lemma 14.5 For any tree Tj, on k nodes we have

X(Tx) > (k+1)lg(k + 1).

Proof of Lemma 14.5. We first note that X (7') > X(T}), where T} is a an
extension of a complete tree on k nodes. This is because if T} is not complete
then there must be a level with index smaller than hj; that is not saturated.
Moving now a node from the bottom level hy to that level will decrease the
external path length in the extended tree. This process can be continued (each
time decreasing the external path length) until all the levels, except possibly
the last one, are saturated.

It remains to find X (T}). Let h} be the height of T} and Ly be the number
of leaves on the hjth level. The leaves are on the last two levels and there are
k + 1 of them altogether. Thus,

X(Ty)=hiLr+ (b — 1)(k+1—Ly) = (b —1)(k+ 1) + L.

But Ly, is twice the number of internal nodes on the (h} — 1)th level and since
all the earlier levels are saturated, it is

hp—2
Li=2 k- Y 2 =2(k—(2h2—1—1))=2(k+1)—2h2.

=0

We now use hj = [lg(k+1)] to get

(Ng(k +1)] — 1) (k + 1) + 2(k + 1) — 28+
(k+1) ([lg(k+ 1)] + 1) — 2Me+D1
(E+1D)(Ig(k+1)+1+42z) - olg(k+1)+z

= (b4 DIgk+1) + (k+1)(1+2 -2,

X(T3)

where we have set z = [lg(k + 1)] — lg(k + 1). It is now enough to check that
f(z) = 14 z — 2% is nonnegative on [0,1] which is true since f(0) = f(1) =0
and f is concave on [0, 1]. O

15 Insertion Sort
Insertion sort algorithm is the simplest and most direct sorting algorithm. The

output will be given as a list, A[1..n]. We begin with an empty list and at the kth
step we will have an already sorted list A[1..k—1] and we will insert the next key,
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7, into its the proper position in that list, creating an ordered list A[1..k]. At
each stage we will have an insertion strategy indicating successive comparisons
we are going to make to insert a key. These are conveniently represented by
insertion trees; for example a tree in Figure 3 represents a strategy to insert w7
that consists on first comparing it with A[4] and then, depending on whether 77
is smaller than A[4] or not, comparing it with A[3] or A[6], and continuing until
a proper position is found. In principle, one can follow very different strategies
to insert different keys; in practice one does the same type of insertion at every
stage. We will insist, however that strategies to insert keys are deterministic.
Let T; be an insertion tree for the ith key and let h; be the height of T;. Let
X, be the number of comparisons required at the ith stage. Then, the total
number of comparisons, C,, is simply the sum of X;’s,

n
C, = Zxk,
k=1

and by the properties of random permutations Xy, ..., X, are independent. The
following theorem is a fairly general sufficient condition for the CLT

Figure 3: Insertion tree for A[7]

Theorem 15.1 With the above notation, suppose that max hi, = o(y/var(Ch)).
1<k<n

Then, the central limit theorem holds:
C, —EC,

y/var(Ch,)

Note: Our condition max hy = o(+/var(C,,)) is sometimes phrased as h,, =
1 n

= N(0,1).

o(y/var(C,,)) under the ;ss:mlption that the heights hj are nondecreasing (which
reasonable strategies would satisfy).
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Proof: We will check Lyapunov’s condition for the centered random variables
X = X — EX}. Since the number of comparisons to insert a given key is
at most the height of a corresponding insertion tree, we have X3 < hy; hence
|X 1| < 2hy. Let p > 2 be any number. Then,

E[X P = E|X [P 2X, < (2h)? 2EX..

Summing up we obtain

ZE|X}c|p < 2p~2 (max hP= )ZEXL = op~2 (1mlflé( hy- ‘) var(Ch),

k=1

in view of our assumption, Lyapunov’s condition is evident. a
We will now see how it works on two examples.

15.1 Linear Insertion Sort

Linear sort corresponds to a very naive strategy, namely at the kth stage we
start comparing 7 with A[k — 1], then (if necessary) with A[k — 2] and so on
until we encounter an entry smaller than 7 or exhaust the list (perhaps the
easiest way to avoid an innesential nuisance caused by exhausting the list is to
start not with an empty list but with a list consisting of A[0] = 0 before the
first insertion). The corresponding insertion tree is depicted in Figure 4.

Alk — 1]

Figure 4: Insertion tree for linear sort

The number of comparisons needed is the number of elements in the list
A[l..k —1] that are larger than 7y, plus 1 (to encounter an element smaller than
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7). In other words,
X =1+ (k—sq(my)) =1+ Wy,

where Wy, is uniform on {0,...,k — 1} as discussed in Theorem 13.3. But this
means that Xy is uniform on {1,...,k}. Hence, by exactly the same compu-
tations as in Theorem 13.3 we obtain that EC,, ~ n?/4 and var(C,,) ~ n®/36.
Since the height of the kth insertion tree satisfies hy, < k < n = o(n®/?) the
CLT holds:

Theorem 15.2 The number of comparisons C,, required to sort a random per-
mutation of {1,...,n} satisfies

C, —n?/4

This is clearly worse performance than the lower bound we know. Quite
likely, it is due to a very poor inserting strategy; the fact that at the kth stage
A[l..k — 1] was sorted was not fully taken advantage of. We will now try to
improve on that.

15.2 Binary Insertion Sort

This algorithm as an insertion strategy uses a binary search tree. A binary
search on an ordered list is a search that compares an element to be inserted to
the “middle” element in a (sorted) list and then, recursively, proceed to the left
or right “half” according to whether m; was smaller or larger than the element
it was compared to. Specifically, if a list of length m is to be searched the
algorithm compares with the [m/2]th element in that list. It follows that the
insertion tree for the kth element, k& > 2, is an extension of a complete binary
tree on k£ — 1 nodes, and thus has height [lg(1 + (k — 1))] and it has k leaves.
Figure 5 shows an example of a binary insertion tree. Furthermore, the leaves
are only on the last two levels [lg k] — 1 and [lgk]. It will be convenient to use
the fact [lgk] = |lg(k — 1)] + 1. Thus, the number of comparisons to insert
is either |lg(k — 1)] or one more than that, depending if 7, falls into a leaf on
the next to last or the last level. By the properties of random permutations, 7y
is equally likely to fall into any of the k leaves. It follows that the number of
comparisons X}, satisfies

Xy = [lg(k —1)] + By,

where By, is a Bernoulli random variable with parameter pj and py, is the propor-
tion of leaves on the last level. In particular, EBy, = pj and var(Bg) = pr(1—pk)-

To compute py, let Lj, denote the number of leaves on the last level, so that
pr = Li/k. This number is twice the number of nodes on the level |lg(k — 1)
in the nonextended complete tree on k& — 1 nodes. Since all the previous levels
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Figure 5: Insertion tree for a binary insertion sort

are saturated we count:

2 (k= 1) = (20 +2! 4 4 2ls0-0I1)
9 ((k —1)- (nggw—m _ 1))

= 2 (k _ 2ng<k—m) .

Ly,

Hence the expected value of the number of comparisons is

EC, = Y EXp=)» {llg(k—1)]+pi}
k=2 k=1
-y {ng(k ~ 1]+ k- 2“g<'°—1”)} ~ S I+ O(n)
k=2 k=1

~ nlgn+ 0(n),

by the same argument as used, for example, in 14.3. Asymptotic evaluation of
the variance follows the same pattern. Let m = |lg(n — 1)| so that n = 2™+,
where 1 < r < 2™ Then, by independence of X}’s we have

n 2m r
var(C,) = Z var(Xy) = Z var(Xg) + Z var(Xam4;)

k=2 k=2 i=1
m—1 2F T

= var(Xony ;) + Zvar(sz_H)
k=0 i=1 i=1
m—1 2* T

= P2k+i(1 _P2k+i) +ZPZM+1‘(1 — Pamii)
k=0 i=1 i=1
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‘We now recall that
sz +L

2k 44’

Dok =

and .

Loty =2 (2’c i olls? +H>J) =2 (2 +i — 2%) = 2i.
Substituting yields

—1 2% r

Z(sz+z Pays) + Z(pZ"”+i — Pamyi)

1=1 7=1

3

var(C,) =

I

—1

2 g 2" 2 \?
- {szH_Z(zkﬂ')
] 1=1 7=1
(>

% A 2%\’
12m+i_;<2m+i) }

3

ES
Il

_l_

We now calculate

A N A
;2’“+i 22’“—1-7: Z;Qk_H (Hatr 2k )5
where, H; = 5:1 1/i is the jth harmonic number. Similarly, letting HJ(Z) =

le 1/i* we obtain
ok i 2 ok ) ok 22k

ok 1 - = 1— — =
;<2k+i) 2_;( 2’“+1) Z( 2’~+z (2k+i>2)

= 2% =My — Hop) + 225 (HYLL, — HYY).

Hence, the term within the first sum for the formula for the variance of C,, is

2(2% — 2%(Hyisr — Hyr)) — 4(2% — 25T (Hyrsr — Hor) + 22H(HD, — HY))
—3. 2k+1(H2k+1 — Hy)) — gk+1 _ 22(k+1)(H(?) _ H(Z)))

The same reasoning applies to the last term and yields
32" (Hymy, — Ham)) — 20 — 227D (HZ) . — H)Y).

As we will see in a minute, this last term contributes an interesting, albeit not
uncommon for binary structures, feature. Using approximations

. 1 2 1 1
H=wjr+0(5) e B =T Tvo(5).
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we obtain that

m—1 2k+1 _ 2k
var(Cp) = {3 Lok+ln g — gk+l _ g2(k+1) <W> + 0(1)}
k=0
+3 - 2" (In(2™ +7) — mIn2) — 2r
1 1
—2(mHD) [ = _ o1
2m M 4y +0@)
m—1
= (6In2—-4) Y 25 4+6-2"(Ig(2™ +7) —m)In2—2r —4.2™
k=0

m

+4 +O(m)
2m +r
= (6ln2-6)2" —-2(r+2™)+6-2"(1g(2" +7) —m)In2
+ O(m).

m

+4

2m + g

Now recalling that n = 2™ 4 r and letting f, =1g(2™ +7) —m, 0 < f, <1, s0

that
n

m _ 9lg(2™+r)—fn —
2M =2 = of

we see that the variance is

var(C,,) (6ln2—6)2"+6-2"f,In2 —2(r +2™)
2
n
4-—— 4+ Ol
Hm g e T Onn)

1 n)n2 — -
" +f2f)n 0~ on 4 220-M)n 4 O(lnn)

Q(fn) -n+ O(Inn),

where 6((1 e 1

Q(IE) — (( +T2)mn — ) _2+22(1—E).
Note that Q(z) is nonconstant and that Q(0) = Q(1), and thus, var(Cy,)/n has
an oscillatory behavior, depending on how far n is from a perfect power of 2
(these oscillations are small at the level a bit higher than 0.15...). This does

not change the fact that max;<x<n, ht, = o(y/var(Cy)), so that we have

Theorem 15.3 The total number of comparisons C,, required to sort a random
permutation of {1,...,n} by a binary insertion sort satisfies

C,—nlgn

— N(0,1).
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16 Heap Sort

Heap sort is mathematically interesting (and challenging) sorting algorithm.
Remarkably, it is designed so that its worst—case behavior is of optimal order
O(nlogn). As is quite common in such situations, the average case analysis is
quite complicated. As a matter of fact, the expected number of comparisons
was found, asymptotically, as late as 1993 by Schaeffer and Sedgewick. The
asymptotics of the variance is not known at this time, and neither is the limiting
distribution function. So, in this section we will focus on the worst—case analysis.

A heap (or more precisely a bottom-up heap) is a complete binary tree
whose nodes are represented by numbers and are arranged so that the following
heap property is satisfied: for any subtree its root is the largest element of that
subtree. Since heap is a complete binary tree, all its levels except possibly the
last one are saturated. By convention, the last level is filled from left to right.
The reason for this is that we often identify a heap on n nodes with a list H[1..n]
where H[1] is a root of a heap and for every k the entries H[2k] and H[2k + 1]
are the children of H[k] (if they are in the list). Our convention about the last
level guarantees that there are no “holes” in the list H. A heap corresponding
to the list

[10,9,7,5,8,3,6,2,4,1]

is depicted in figure 6.

Figure 6: Heap representing [10,9,7,5,8,3,6,2,4,1]

Sorting via heap is a two stage process. Let us think of a permutation 7 as a
list [my,...,m,] and represent it as a tree with mof and a1 as children of .
This tree obviously is not a heap in general since it may fail the heap property.
The first step is to rearrange the nodes so that the result is a heap (we will call
it a heapifying process), represented by a list H[1..n]. Once this is done we will
take advantage of the heap property: the largest element is at the root. With
that given, sorting proceeds according to the following argument: exchange H|[1]
and H[n] (that’s where H[1] belongs) and consider the list H[l..n — 1]. This
list is not a heap in general, since the root may not be the largest element, but
once we heapify it, we could repeat the same process over and over again, each
time reducing the size of a heap by 1 until we reach size 1, at which point the
array will be sorted. It remains to find an efficient way to construct a heap and
then to heapify at every stage of the sorting process.
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16.1 Construction Stage

Let m = [mr1,...,m,] be given and let h,, = [lg(n+1)] —1 = [lgn| be the height
of the corresponding (complete) tree. The construction begins at the very end.
Suppose for simplicity that n = 2k + 1 is odd and look at the subtree of size 3
[Tk, T2k, T2r+1] (if n were even this subtree would have size 2, but as will be seen,
this would not affect the process). This subtree does not have to be a heap. In
order to heapify it, we need to exchange m; with the larger of its two children
mor and magy1, if necessary. That requires two comparisons (one if n were even)
and at most one data move. This results in creating a small heap of height one
at the very end of our list. We refer to the process of moving up the larger of
the two children as promotion. We now continue in the same fashion until we
heapify the last two levels. At this point the nodes on the levels h,, — 1 and
hy,, form heaps of height 1. For example, consider a list [3,8,6,2,1,7,10,5,4,9]
which corresponds to a tree in Figure 7. As Figure 8 shows, once the nodes
indicated by the arrows are exchanged, the result will be a partially heapified
tree with heaps of heights 1 at the bottom. We now move to the level h, — 2.
Consider any node at that level and a subtree of height at most 2 rooted at that
node. As before, it does not have to be a heap, but we can heapify it by what is
usually referred to as a sift down process. First, exchange the root of our subtree
with the larger of two children (two comparisons and at most one exchange).
The result may not be a heap since a new subtree of height one rooted at the
node we just promoted is not guaranteed to be a heap, but if it is not we can
complete heapifying process by exchanging with the larger of the two children
once again. We then complete heapifying at the (h,, — 2)nd level and move to
the next one. In our example, this stage is depicted in Figure 9. In general, at
every stage we are dealing with a subtree whose all proper subtrees are already
heaps, and all we need to do is sift down the root to its proper position.

Figure 7: Tree corresponding to [3,8,6,2,1,7,10,5,4,9]

Let us see now how many comparisons we need. As a matter of fact it is
more convenient to count the number of data moves and remember that there
are at most two comparisons for every move. In the worst case scenario at every
stage of the sift down process a node may have to be moved all the way down
to the bottom of the tree. The height of a tree is h, = [lgn|. Thus, in the
first step, a node at the root may have to be moved up to h,, times, each of the
two nodes on level one up to h,, — 1 times, and so forth. Adding over all nodes
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Figure 9: Heaps of heights 2

through the levels 0,1,...,h, — 1 we obtain an upper bound

hn
1‘hn+21‘(‘h/n_1)+‘+2hn—2.2+2hn—1‘1=Zk‘2hn—k
k=1

<M N k2R <ot o < otHEn <o,
k=1

Remembering that there are at most two comparisons for every data move,
yields an upper bound of 4n comparisons for the construction stage. This is
well below our “benchmark” of nlogn level. It remains to analyze the sorting
process.

16.2 Sorting Stage

We consider a heap H[1..n] and will analyze the sorting phase. As we indicated
at the beginning we start by exchanging H[1] with H[n] and consider a n — 1
long list

Ai[l.m—1]=[H[n],H[2],...,H[n —1]].

We heapify this list by sifting down the element H[n] to its proper position,
obtaining a heap Hi[l..n—1]]. We now repeat the same procedure; we exchange
H;[1] with Hi[n — 1], and then heapify the list

As[l.n —2] = [Hi[n — 1], H1[2],...,Hi[n — 2]],
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by sifting down Hj[n — 1]. The process is continued until the length of an
unsorted part is reduced to 1. The first iteration of the sift down process for
our example is shown on figure 10

Figure 10: Sift down process

The analysis of the number of moves is very simple. In the worst case
scenario at every stage a current root will have to be sifted down all the way to
the bottom. When k keys are left, £ = n,n — 1,...,2, the corresponding tree
has height |lg k]| so that in the worst case scenario the number of moves is no
more than

n+
2

n n 1
> ligk] ngng/ lg zdz = nlgn + O(1).
k=2 k=2

By a naive argument, the number of comparisons is therefore at most 2nlgn +
O(1). Actually one can do better by utilizing the following observation: at every
stage all the proper subtrees of a tree are heaps, and thus, the nodes of any path
starting at the level 1 are in a decreasing order. If a specific path was given
we could perform a binary insertion in that path (note that that our naive sift
down uses effectively a linear insertion, which we know has poor performance).
When k keys are left the height of a tree is |lgk]| so that the insertion can
be done with [lg (|lgk])] comparisons (see a discussion in section on a binary
insertion sort). It remains to identify a path along which a root will be moved.
But that is easy: at every stage a node is moved toward the larger of its two
children, and it takes only one comparison (namely, compare the children) to
identify which is larger. Thus, for example, in a heap depicted in figure 11 the
path of maximal sons is identified by first comparing the two nodes on level 1,
then the two children of the larger node, 9, and so on). The path of maximal
sons is: 9, 8, 1.

Thus, to sift down the root when k nodes are left requires hi = |lgk|
comparisons to identify the path (called the path of maximal sons) along which
the root will be moved, and then [lg (|lgk])] comparisons to find its proper
position along that path. Summing up over k yields:

> {lgk] + Mg (llg k))1} + O(1) = nlgn + O(nlg(lgn)).

k=2

Hence we have:
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Figure 11: Path of maximal sons

Theorem 16.1 Heap sort will require no more than nlgn+ O(nlg(lgn)) com-
parisons to sort any permutation of n letters.

Note: One of the reasons for which the average case analysis poses a challenge
is that the heapifying process at does not preserve randomness. Specifically, it
is known that if 7 is a random permutation of n distinct keys, then after the
construction phase the resulting heap is also random (that is to say, that each
of all heaps on n nodes is equally likely to be obtained as a result). However, it
is also known, that after sifting down the root not every heap on n — 1 keys is
obtained with the same probability.

17 Merge Sort

Merge sort is an algorithm that tries to utilize what is known as a divide and
conquer idea: split the list to be sorted in two sublists, sort each of them and
then merge the two (already sorted) lists together. There are two issues to
consider here, one is a merging method, the other is the relative lengths of two
sublists to be merged. Fortunately, it turns out that if the two lists are of
essentially the same length (or more precisely they differ in length by at most
one) then the very simplest merging algorithm, called linear merge will produce
an optimal result. Let us begin, however, by general considerations. Suppose
that L1(m) and Lo (k) are two sorted lists, of lengths m and k, respectively, that
are to be merged. Let n = m+ k and we assume without loss of generality, that
m < k. Denote by S, 1 the worst—case scenario number of comparisons needed
to merge these two lists. Consider a decision tree for a merging algorithm. No
matter what merging method is used, the algorithm will have to be able to find
each of the possible configurations of the merged lists. There are (::b) different
ways to do that (since there are that many ways to place the elements of L;(m)
on the n positions). Consequently a decision tree will have that many leaves,
and thus the height no less than lg (::1) Suppose now that both lengths are

essentially the same, that is m = [n/2]| and k = [n/2]. Then, using Stirling’s
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approximation n! ~ v/2mn(n/e)™ we get

( n ): n! N V2rn(n/e)™ V2
[n/2] [r/2]![n/2] (W(n/(%))n/z)z Vin

and hence

1
S\n/2),[nj2] 21— §1gn +0(1).

It is now time to describe how the linear merge merges two lists. It is con-
venient to think of removing elements from the lists once their proper position
on the merged list is found. With that convention, merging works like this: we
just compare the smallest elements in the two lists, the smaller is removed from
its list and becomes the first element on the merged list. We then continue in
that manner until one of the lists is exhausted, at which point we just transfer
the leftover from the other list. For example if L; and Ly are given by

L, =[3,6,8,9], and Ly =][1,2,4,5,7],

linear merge would compare first 3 and 1 (removing 1), then 3 and 2 (removing
2), then 3 and 4 (removing 3 from L;), then 6 and 4 (removing 4), etc. until,
after comparing 8 and 7 (and removing the latter) Ly became empty. We then
transfer 8 and 9 from L;. How many comparisons does it take? We simply
observe that as long as neither of the lists is empty, moving an element to the
new list requires one comparison. Thus letting L., ; denote the leftover on the
other list at the time that the first becomes empty, we have

Smpg=n—Lpr<n—1,

since clearly, 1 < Ly, x < k (recall that & > m). This is asymptotically the same
as the lower bound for any merging if the two lists are balanced. Specifically,
we have

1
n — Elgn—{—O(l) < S\_n/ZJ,fn/Z,] <n-—1.

This gives enough information to perform a competent worst case behavior
analysis. Letting W, be the largest number of comparisons required to sort any
permutation of {1,2,...,n} by a linear merge sort. We then clearly have the
following recurrence:

Wn =Wns2) + Wiy +n— L

To get a better feel, let us consider first the case when n is a perfect power of
2, say n = 27. The recurrence becomes

sz = 2W2j—1 + 2] - 1,
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and can be easily iterated to yield

Wai = 2Wai1 +27 —1=2"Wa > +2(2971 = 1)+ 27 — 1
= PWy s +2220 2 1) 4202 1) +2 -1
j—1 j-1
= =2Wi+ ) 22T 1) =42 =) 2t =20 — (27— 1)
=0 =0
= nlgn—(n—-1),

which is of optimal order. What about a general n? The trick is to find a right
formulation of the last formula. It turns out that the following is true:

Theorem 17.1 The worst—case number of comparisons, W,, required to sort
any permutation of n distinct keys by a linear merge sort satisfies

W, =nllgn] — (27871 —1).

Proof: The proof is by an easy induction on n considering separately case of n
even or odd to remove the ceilings. For example, if n = 2¢ then

Wae = 2We+20—1=2(¢lgl] — (28° 1)) +2¢—1
= 2U[g20—1]— 28 L9041 =2¢lg20] — 21 — 27821 y 2741
= 2g20] —2Me2T 41,

and the same argument works for n = 2¢ + 1. O
Note: Writing z,, = [lgn] — lgn the formula for W,, can be rewritten as

W, =n(z, +lgn) — (278" —1) =nlgn+nf(z,) + 1,

where f(z) =z — 2%, for 0 < z < 1. Thus, the coefficient in front of the linear
term has a small periodic oscillation depending how far n is from a perfect power
of 2.

18 Quick Sort

Quick sort is an extremely convenient appealing sorting algorithms. It is con-
sidered to be one of the algorithms ”with greatest influence on the development
of science and engineering in the 20th century” by Dongarra and Sullivan in
their introduction to Computing in Science & Engineering 2 (2000), 22-23. It
is based on a very simple (once you know it) but powerful observation. To sort
an array, pick an arbitrary element from the list (called pivot) and compare all
other elements of the list to the pivot; if a given element is smaller, put it to
left of the pivot and if not put it to the right. This process creates two lists
(one of them may be empty). While neither of them is sorted, the “left” array
consists of elements smaller that the pivot, and the “right” of elements larger
than the pivot. Consequently, it suffices to sort each of the two sublists. This is
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now done recursively. The first question is how to pick a good pivot. If nothing
is know a priori about the order, then there is no reason why any particular
choice would be better than the other, so choosing pivot uniformly at random
from the elements on the array might not be a bad choice. Since we will be
sorting a random permutation of {1,2,...,n} the the distribution of the first
element is uniform over the range; thus we might as well pivot around the first
entry of a given list. Below is a Maple code of a procedure (called firststep)
that illustrates just that together with an example:

firststep:=proc(4)
local L,R,B,k;
if nops(A)<=1 then RETURN(A)
else
L:=[1;R:=[]; for k from 2 to nops(4)
do
if A[k]<A[1] then L:=[op(L),A[k]]
else R:=[op(R),A[k]]
fi;
od;
RETURN(L,A[1],R);
fi;
end;

firststep([6,4,7,9,3,5,2,8,10,1]);
[4, 3, 5, 2, 11, 6, [7, 9, 8, 10];

The procedure constructs the two lists L and R and returns them with the
pivot A[1] in between. Of course, if we wanted to sort the array A rather than
asking for L and R we would have asked for the sorted L and R. That is easy
enough to do. Here is the code for quick sort

gsort := proc (&)
local L, R, B, k;
if nops(A) <= 1 then RETURN(A)
else L := [1; R := [1;
for k from 2 to nops(4)
do
if A[k] < A[1] then L := [op(L), A[k]I]
else R := [op(R), A[k]]
end if
end do;
B :=[op(gsort(L)), A[1], op(gsort(R))];
RETURN(B)
end if
end proc;
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and here is our example:
gsort([6,4,7,9,3,5,2,8,10,1]);
[1, 2, 3) 4) 5’ 6’ 7, 8’ 9; 10];

It is perhaps worth reiterating a nice property of random permutations: if A
was a random permutation, so was each of the L and R.

The analysis of the number of comparisons is facilitated by the following
observation; let C, be the number of comparisons needed to sort a random
permutation of length n. If the value of the pivot were & this number would
satisfy the following recurrence:

Cn = Ck—l +En—k +n— 1,

with the initial condition C(0) = 0 and with the understanding that the se-
quences (C,,) and (C,,) are independent and they have the same distribution.
The reason is that if the pivot is k, then the left and right sublists have, respec-
tively, k — 1 and n — k elements, and we need n — 1 comparisons to create these
lists. As we said earlier, pivot’s value is random, and its distribution is uniform
on {1,2,...,n}. Thus, letting U,, be such a random variable, and writing C'(k)
instead of Cj we obtain the following recurrence for the distribution of C'(n):

Cin)=CU,-1)+C(n—-U,)+n—-1, n>1, C(0)=0.

This recurrence is instrumental in the analysis of quick sort. We will first find
the expected value and the variance.

18.1 Expected Value and Variance
We have

Theorem 18.1 Let C(n) be number of comparisons required to sort a random
permutation of {1,2,...,n} by quick sort. Then, as n — oo, we have:

(i) EC(n) = 2nlnn + O(n),

: 272
(11) var(C(n)) ~ (7 - %) n?.
Proof: We begin with part (i). Write

EC(n)=E(C(U,—-1)+C(n—-U,)) +n—1,
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and then consider the expectation of the first term. We have

EC(U,—-1) = zn:EC(Un - DI(Un =)
j=1
1= m
]:1 m
j=1 m
- EZZmP(Cj—l) ZECJ—l),
Jj=1 m

and, since U,, — 1 has the same distribution as n — U,, and C,, the same as 6m,
we obtain exactly the same expression for EC'(n — U,,). This gives a recurrence

2 n 2n 1
EC(n) = EZEC(j—1)+n—1= ;ZEC(j)+n—1.
=0

j=1
To solve it we multiply both sides by n to get

nEC(n) =2 Z EC(j) +n(n - 1),

=0
write a similar expression for (n — 1)EC(n — 1)

(n—1)EC(n—1)=2 Z EC(5) + (n — 1)(n — 2),

j=0
and subtract side by side, to get:
nEC(n) — (n —1)EC(n —1) =2EC(n—-1)+n(n—-1) — (n —1)(n — 2).

Rearranging terms and dividing by n(n + 1) yields,

EC(n) _ EC(n-1) g M~ 1
n+1 n n(n+1)
EC(11—2)+2 n—Z n—l.,
n—1 (n—1)n n(n+1)’

which can be further iterated, and since EC(0) = EC(1) = 0, gives

n+1 22](]+1) Z{]—}-l Tl)}_ﬂnn—}_o(l)’

j:Z =2
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which gives

EC(n) =2nlnn+ O(n),

as claimed.
Proof of (ii). The proof of the second part rests on a similar argument. We
first introduce the following concepts: for two integer valued random variables,
X and Y we let
E(X|Y) =) 1Y = HEX]Y =),
J

where

E(X[Y =j) =) mP(X =m|Y = ).

The second notion is called the conditional expectation of X given Y = 7 while
the first is called thee conditional expectation of X given Y. Both are very
common in any undergraduate course in probability. Note that E(X|Y) is a
discrete random variable taking value E(X|Y = j) on the set {Y = j}. For that
reason we have:

E (E(X]Y)) Y P(Y = HEX]Y =)
J

Y PY =4)) mP(X =m|Y =j)
7 m

> mP(X =m|]Y = j))P(Y =j) =) mP(X =m,Y =)
Jym 7,m

= EX.
This is really nothing more than the law of total probability. We now can write:

var(X) = E(X-EX)’=E(X —-E(X|Y)+E(X|Y) -EX)’ =
E{(X —E(X|Y))? + (B(X|Y) — EX)?

+2(X — E(X[Y))(E(X|Y) - EX) }

EE(X - E(X|Y))?|]Y)+E(E(X|Y) - EX)?
+2E ((X — E(X|Y))(E(X]Y) — EX)).

Since EX = EE(X|Y) the second term is simply the variance of E(X|Y). Fur-
thermore, the term inside the first expectation would be the variance of X if
the conditional expectations E( - |Y') were used rather than “usual” (or uncon-
ditional) expectations. This is usually referred to as the conditional variance
given 'Y and we will denote it by vary ( - ). Thus, the first term can be written as
Evary (X), where vary (X) = E((X — E(X|Y))?|Y). It remains to consider the
last term. We claim that it is 0. To see this, insert the conditional expectation
given Y to obtain

EE((X - E(X[Y))(E(X]Y) - EX)|Y),
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and observe that on each of the sets {Y = j} the second factor is constant.
Thus, it can be pulled in front of the conditional (but not the unconditional)
expectation. Hence the last expression is equal to

E(E(X|Y)-EX)E((X — E(X|Y))|Y).

But now the second factor is 0 since EX = E(E(X|Y)). Thus we obtain a
formula

var(X) = Evary (X) + var(E(X|Y)),
which, as a matter of fact is true for general random variables as well. We will
use it with X = C(U,, — 1)+ C(n —U,,) and Y = U,,. One more property of
variance that will be used is that it is invariant under shifts, i.e. for any constant
a var(X + a) = var(X). We now can write:
var(C(n)) = var(C(U,—-1)+C(n—-U,)+n—1)
= var(C(U, — 1)+ C(n —-U,))
= Evary, (C(U, — 1)+ C(n —U,))
+var(E(C(U,, — 1) + C(n — U,)|U,.))

Now, given U,,, C(U,, — 1) and C(n — U,,) are independent so that
Evary, (C(U, — 1) + C(n — U,)) = Evary, (C(U, — 1)) + Evary, (C(n — U,)),

and just as before for the conditional expectations, we get

Evary, (C(U, — 1)) > Bvary, (C(U, — VI(U, = j))

= ZEvarUn:j(C(Un - 1)P(U, = j)

= _ZEvarU =;( —-1)=- Zvar (j-1))

Once again, the same expression is valid for Evary_ (C(n —U,,)), and letting for
simplicity vy = var(C(k)) we obtain a recurrence for v,

vy = % > vy + var(B(C(Us — 1) + T~ U)|Un)),

which is the same form of recurrence that we had for expected value, except that
the term n — 1 there is replaced by a more complicated expression var(E(C(U,, —
1)+ C(n—U,)|Uy,)). As we examine how we went about solving that recurrence
we realize that most of the argument could be easily carried over to our present
situation. In fact, if we consider a recurrence

n—1
2
Un = E Zovj +tn
‘7:
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for any sequence t, (usually called the toll function) and repeat exactly the
same steps as before, we get that

Un, Vp—1 tn n—1

= — tn—1.
n+1 n +n+1 nn+1) "

Iterating this recurrence, rearranging the terms in the resulting sum, and mul-
tiplying by n + 1 at the end, yields

vy = (n+ 1)vg +tn+2(n+1)im, (1)

=2

where, in our case, vg = 0. In order to proceed we need some information on
the values of the tolls ¢,,. We know from the computations for expectations that
E(C(U, —1)|Uy,) ~ 2U, In(Uy,). Substituting this into our expression for ¢, we
get (we do have the exact expression for the expected value, so it can be checked
by quite lengthy but straightforward calculations, that the error terms are of
smaller order; we will omit that in order to keep the analysis as unobstructed
as possible)

var(E(C(U,, — 1) + C(n — U,))|Uy) ~ 4var(U,, n(U,,) + (n — U,) In(n — U,,)).
Now we have

U,In(U,) + (n—U,)In(n — U,)
=U,(n(U,) —Inn)+(n—U,)(In(n - U,) —Inn)+ U,lnn+ (n - U,)Inn

=U,In (%) +(n—-U,)ln (71_ Un) +nlnn
n n

=n(%ln (%) + (1—%) In (1—%> -I-lnn).
n n n n

As n — 0o U, /n becomes effectively U — the uniform random variable on [0, 1]
and since uInw is bounded on (0, 1], the variance becomes

4n? (var(Uan +(1-U)ln(1-0))+0 (%))
— 4n? (E(Uan +(1-0U)In(1 - U))?
(B(UIU + (1 - U)In(1 — U)))z) +0(n).

Now,

1
EUan:/ clnods = — 1.
0 4

and

&l

EUhU+ (1-U)ln(1-0))* =

| ot
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giving

This in view of (1) yields

7 on? 22 2m?
Uy Lo n? +2 Z—L n? = 7—L n?,
3 9 3 9 3

and thus completes the proof. |
How about the limiting distribution? This turns out to be more difficult issue
than what we have encountered so far and requires new techniques. Since some
of these would require a substantial mathematical background we will restricts
ourselves to an informal argument (which, however, can be made rigorous).

18.2 Limiting Distribution: Heuristics

As usually, the first step is to normalize; to avoid writing the factor /7 — 272 /3
we divide by n and let
C(n)—2nlnn
C(n)" = C) —2nlnn .
n
Applying our basic recurrence and performing a sequence of algebraic manipu-

lations, pretty much along the same lines as before, we get
W CWU,—1)+C(n-U,)+n—1-2nlnn
C(n)* = —

n
cU, —1)-2U, —1)In(U, — 1)+ C(n —U,) —2(n —Uy,)In(n — U,)
n
+2(Un —1)In(U,, = 1)+ 2(n=Up)In(n—-U,)+n—1—2nlnn
n

C(Un —1) = 2(Up = )In(Up —1) Up —1

U, -1 n
Cln—-U,) —2(n—-U,)In(n-U,) n-U,
_I_ .
n—U, n
+2Un—11n(Un—1>+2n—Unln(n—Un)+n—l—lnn
n n n n n
U -1 — on-U,
= CU, —1)*- Y Cn—U,) 2=
n n

U,—-1 U, -1 n—U, n—U, n—1—Inn
+2 In + 2 In + .
n n n

n n

It is now tempting to pass to the limit with n. Since U,,/n = U, assuming that
C(n) did converge in distribution to C*, it would seem that this limit would
have to satisfy:

C*LUC*+(1-U)C +2UlU +2(1-U)In(1 - U) +1,
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d
where ”="

means equality in distribution. This is actually the case, although
formal argument is much more involved then what the outlined heuristics sug-
gests. The main reason for being cautious is that, unfortunately, convergence
in distribution does not share some of the properties of other types of conver-
gence that we take for granted. For example, the product of two sequences each
of which converges in distribution, does not have to converge in distribution.

Nonetheless, as we mentioned earlier, the result itself is true. Hence,

Theorem 18.2 The limiting normalized distribution C* of the number of com-
parisons that it takes quick sort to sort a random permutation of {1,...,n} is
the unique distribution with finite second moment which satisfies the following
distributional equation:

CLUC*+(1-U)C +2UlU +2(1-U)In(1 —U) +1,

where C is an independent copy of C* and U is a uniform random variable on
[0,1], independent of both C* an C".
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Exercises

1. Prove the following properties of probability (those that are not proved in
the lecture notes).

(1) P(®) =o0.
(ii) for any finite sequence of pairwise disjoint sets A;,..., A, P(U;.L:1 Aj) =
E?:l P(A])a

(iii) for any set A€ A, P(A) =1 —P(A°).
(iv) for any sets A, B € A such that A C B we have P(A4) < P(B),
(v) for any sets A,B€ A, P(AUB)=P(A)+P(B)—P(AN B).

2. Use a concept of disjointification to show the subadditivity of the probability:
for any (not necessarily pairwise disjoint) sets A;, As, ..., we have:

P(U 4) < ZP(AJ-).

3. Show that an exponential random variable with parameter A has a memory-
less property i.e. that for all s,¢ > 0 we have:

P(X >s+1tX >t) =P(X > s).

4. Let X be uniform random variable on [a,b] and let ¢ satisfy a < ¢ < b. Show
that the random variable X conditioned on the event {X < ¢} is uniformly
distributed on [a,c]. (This amounts to finding P(X < z|X < ¢).)

5. Show by appropriate substitution that if X is a normal random variable with
parameters u, 02 then the random variable Y defined by

_X-m
o a

Y

has a normal distribution with parameters 0, 1.
6. Show that an geometric random variable with parameter p has a memoryless
property i.e. that for all natural numbers k, m we have:

PX =k+m|X >m)=P(X =k).

7. Find the characteristic functions of the following random variables:
(1) uniform on the interval [0, 1].

(ii) Poisson with parameter .
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(iii) binomial with parameters n,p (keep in mind that it is the sum of n inde-
pendent Bernoulli random variables with parameter p).

(iv) normal with parameters 0, 1, and then, by change of variables normal with
parameters p,o2.

8. Show that

(i) the variance of the sum of two independent random variables is the sum
of their variances i.e., that var(X +Y) = var(X) + var(Y) if X, Y are
independent (just square out inside the integral sign).

(ii) Extend this to an arbitrary number of independent random variables, i.e.
if X1,...,X,, are independent with finite variances then

var(X; + -+ + X,,) = var(X7) + - - - + var(X,,).

(iii) Find the variance of the binomial distribution with parameters n,p (see a
comment for exercise 7(iii)).

9. Let X and Y be independent Poisson random variables with parameters A
and p, respectively. Find the characteristic function of the sum X + Y and
argue by the uniqueness of the characteristic function that the distribution of
X +Y is Poisson with parameter A + p.

10. Let X,, be a discrete uniform random variable on [0, 1] taking on n values,
ie.

1
PX,=—-)=—, fork=0,1,...,n—1.
n

(i) Find its characteristic function ¢, (t) (note that the resulting sum is the
sum of a geometric progression so it has a closed form).

(ii) Find the limit
d(t) = lim ¢n(t), forallt € R,
n—roo

and identify it as a characteristic function of a certain random variable.

11. Let X,, be a binomial random variable with parameters n,1/2.

(i) Find the characteristic function ¢, (t) of Y, = X\"/%;LZ/Z.

(ii) Find the limit
o(t) = lim ¢,(t), forallteR,
n—roo

and identify it as a characteristic function of a certain random variable.
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12. Let X,, be a Bernoulli random variable with parameter p,, n > 1 and X
a Bernoulli random variable with parameter p. Find a necessary and sufficient
condition for X,, — X.

13. Let y,, n > 1 be a sequence of points, and let F,, n > 1 be a sequence of
distributions given by

[0 iz <y
Fn(m)_{l ifz >y,

Show that F,, converge in distribution iff y,, = y and that in this case F,, = F,

where
0 fz<y,
F(z) = { 1 ifz>y

14. Let X, X, X5,..., be a sequence of random variables such that X,, = X.

Let ¢,c1,¢2,... be a sequence of positive numbers such that lim,,, ¢, = ¢ and
let b,by,bs,... be a sequence of any numbers such that lim, . b, = b. Show
that

Xn—bn X-b
= .

Cn, c

15. Let X,,, n > 1 be exponential random variables with parameters A,,, n > 1.
Show that the sequence of their c.d.f’s is tight if and only if there exists a ¢ > 0
such that A, > ¢ for all n > 1.

16. Show that for arbitrary sequence of random variables X,,, n > 1, there
exist constants a,,, n > 1 such that

a, X, = 0.

17. (classical central limit theorem). Let X,,, n > 1 be i.i.d. random variables
such that EX,, = 0 and var(X,,) = 1,foralln > 1. Let S,, = X1+ Xo+-- -+ X,,,
n > 1. Use continuity theorem (and properties of characteristic functions) to
show that
Sn
Vn

where N(0,1) denotes the normal random variable with parameters 0 and 1.

= N(0,1),

18. Let X1, X5,..., be a sequence of independent random variables such that
P(X,=1)=1/nand P(X,, =0) =1—1/n, and let

s
k=1

Show that the expected value and the variance of S,, are both asymptotically

Inn, and show that

n— 1
SaInn o no,1),
Inn
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19. Let X1, X5,..., be a sequence of independent random variables such that
X}, is discrete uniform on {0,1,2,...,k — 1}, i.e.

1
P(szj)zg, fOI‘jZO,]_,....}k_]..

Let S, = EZ:1 X. Show that the expected value and the variance of S,, satisfy

n2 3

ES, = T var(S,) = —

and use Lindeberg’s CLT to show that

S, —n?/4
20. Let (m,m2,...,7T,) be a random permutation of n distinct numbers. Let
1< <12 < -+ <ip <n be fixed. Show that (m;,,m;,,...,m, ) is a random
permutation of k distinct numbers. (That’s extremely useful property of random
permutations.)

21. Design a comparison based algorithm that finds a median (the 3rd largest
element) in a permutation of 5 distinct numbers (a good one would make no
more than 6 comparisons). Assuming that the permutation is random find the
expected number of comparisons made by your algorithm.

22. Let T) be an insertion tree for a kth element in any insertion sort algorithm.

(i) Prove that the average number of comparisons needed to insert the jth
key is
X(13)

J

(ii) Prove that for a binary insertion sort each insertion tree is a complete
binary tree and thus that the binary insertion sort minimizes the aver-
age number of comparisons needed to sort a random permutation by an
insertion sort.

23. Find the smallest and the largest number of comparisons needed to sort
any permutation of {1,...,n} by a linear insertion sort, and find a permutation
giving these values. How many comparisons will a binary insertion sort need to
sort each of these two permutations?

24. Carry out a step—by-step construction of a heap from the list

[1,12,8,4,7,10,9,3,13,2,6,11,5].
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25. Consider a construction stage of heap sort. Find a permutation of {1,...,10}
that gives the worst possible performance during that stage. How many com-
parisons does it make?

26. Consider the list
[$13$23$374757233387 779]

which is a permutation of {1,...,10}.

(i) Partially out a heap construction for that data (that is you should end up
having heaps on all levels except the Oth and the 1st).

(i1) Now, assuming that the above permutation was chosen at random find

the expected number of moves needed to complete the heap construction.

27. (merge sort) Consider the leftover random variable L, i, discussed in section
about merge sort algorithm.

(i) Prove that for a natural number r

m+tk—r mtk—r

where m + k = n.

(ii) Prove that for any random variable X with values in the set of natural
numbers, one has

EX = iP(X >r),

r=1
and use it to show that
k m
ELpp=—— .
L R |
(iii) Let n = 27 and let C, be the number of comparisons needed to sort a

random permutation of n distinct numbers by a merge sort (with splits in
equal lengths at every stage). Show that

j—1
i j—1 1
Eng == 22 (2‘7 (1 — W)) 5

i=1

and conclude that in that case EC,, ~ nlgn+ O(n).

28. The following list is a permutation of the set {1,...,8}.

[$17236787$274737 1]
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Assuming that this permutation was chosen at random find the expected number
of comparisons needed to sort this list by quick sort.

29. (FIND) Consider the following FIND algorithm that finds, say, the smallest
element in an unsorted list (and which together with quick sort was designed
by Hoare): create two lists, L and R just as in quick sort. Since the smallest
element has to be in L continue recursively until the list is reduced to a single
element or to an empty list. Let C,, be the number of comparisons needed to
carry out this search on a list of n distinct elements.

(i) Assuming that the original list is a random permutation, write down a
recurrence for C,,.

(ii) Use that recurrence to show that the expected value of C,, satisfies
EC, =2n —2H,, ~ 2n,
where H,, =)~ 1/i is the nth harmonic number.

(iii) By a similar argument, show that

nZ

var(C,,) ~ CR

(iv) Now consider the normalized random variable

C, —2n
n

Cr =

Use the same heuristics as for quick sort to derive a distributional equation
for the limiting distribution C* of C*, as n — oo. (It is, in fact, the unique
distribution having second moment that satisfies this equation.)

Note: This is NOT the most efficient way to find the smallest (or the
largest element on a list. A simple linear scan comparing with a current
minimum needs exactly n — 1 comparisons).

19 Hints to exercises
1. Properties (i)-(iv) are already proved. In (v), notice that for all sets A;, Ay €

2. One-line consequence of disjointification and properties of a probability mea-
sure.

3. Definitions of conditional probability and exponential random variable.

4. Using only definitions you should get

0, z<a,
P(X<z[X<e)=(¢222 a<z<cg,
1, T > c.
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5. Notice that P X—;’i < a:) = P(X < oz + p), use the definition of normal

random variable and make a substitution that gives integral from —oo to z.

6. Similar to exercise 3. Notice that P(X > m) is a geometric series and easy
to compute in closed form.

7. Parts (i)-(iil) are straightforward computations.
(i) _
et —1

it

b(t) =

(i) _
$(1) = MY

(i) ‘
¢(t) = (1+p(e” —1)"

(iv) Complete square in the exponent, make a change of variable and remember
that
o 2
/ e ® Pdz = 2r.
You should get
o(t) = e~ /2 with parameters 0,1,
and by change of variables

o(t) = Mt (a0 /2 wiph parameters p, o2.

(i) Remember that var(X) = E(X — EX)? = EX? — (EX)2.
(ii) Result (i) and induction.
(i) var(X) = np(1 — p).

9. Independence is essential.

10.
()

_1-—e't
¢n(t) — ] n(1—eit/n)’ t ?é 0,
1 t=0.
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eit‘—l t# 0
t — 72t 9 )
o) {1, t=0.

11.

(i) Using 7(iii) ¢x, (t) = (1 +€*)/2)", so that

2 2

zz_zn n —it/\/n it/\/n
qsn(t):e—m(lﬂ_f) z(—e It etive

(ii) Expand exponential functions in (i) and use (1+z/n)"™ — e*, for any real

z, to get ¢p(t) = et /2.

12. The condition is p, — p.

13. Definition of convergence in distribution.

14. If F, is the c.d.f. of Xa—ta prove that F,(z) = Fx,(c,z + by), take the

limit and show that it’s equalﬂ to F(z).

15. Use the definition of tight sequence. If the sequence is tight, indirect proof
leads you to the contradiction that there always exists n such that F,(y) < 1—e.
To the opposite direction, requirement F(z) < ¢ is trivial and F,(y) > 1 —¢

follows easily from the assumption.

16. Since the c.d.f. of X = 0 is the unit step function, you must find sequence
(ay) that draws F,,_x, close to the origin faster than the F,,’s get wider (in case
they do). For example, pick a,, = 27"b,, where b,, > 0 is a number such that

max{Fx, (—by,),1 — Fx_(by)} < 1/n.

17. First, dg,/m(t) = (dx, (t/v/n)" = (Ee#X1/v™)™ Now use the estimates
for the exponential function obtained in the proof of Theorem (9.1) and EX; =0

to get

2 y2 2 y2 3 2
e“Xl/‘/T_‘—(1—tX1>‘SEmin{tX1 [ }:t—Emin

b)
2n n  6n3/2 n

E

The last expectation goes to 0 as n — oo. Hence

. 2\" 2
I t)=lm(1-—] =e /%
im bs,/ym=(t) im ( Qn) e

18. It is known that H, = Y.,_, 1/k is asymptotically Inn. Use this and

Lindeberg’s CLT.

19. Formulas

~ . n(n+1)
2 i=""
j=1
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and
n

Z]Q _ n(n + 1)6(2n +1)

i=1

are useful. Lindeberg’s sum converges to zero because of the indicator functions.

20. Straightforward consequence of the definition.

21. Take two pairs of numbers, sort both pairs and throw the greatest of the
four out. Then take the number that was left out of the original two pairs and
put it to the place of the number that was thrown out. Now you need only three
more comparisons to find the median.

22,

(i) An insertion tree has already inserted elements as nodes and possible
places at which the next element can be inserted as leaves.

(i1) Follows easily from the definition of binary sort.

23. The smallest number of comparisons is n — 1 and the largest is "22_". The

number of comparisons in binary sort does not depend on permutations.
24. Just do it!

25. It takes 15 comparisons to sort the worst case, which is not the obvious
one, but quite close to it.

26.

(i1) Probably the easiest way is to go through all possible permutations of the
three unknown positions. The expected number of moves is 2%.

27.

(i) Remember that m 4+ k = n, and notice that if the r greatest numbers are
in one list, then the elements of the other list must be chosen from the
n — r smallest numbers.

(i1) The first equation follows from the definition of expected value, once you
rearrange the terms in the sum. In the second question you may find the

following formula helpful:
kZ—O m m + 1

(iil) Compute the expected number of comparisons on each merging level, use
the previous result and sum up all these terms.

J
Ay 1 . .
Eng = 221 (2]_1 (1 —_ m)) = ]2‘7 + 0(2‘7)

=1
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28. Choose the pivot to be the first number, and go through the sorting process
in the two possible cases. The expected number of comparisons is 16.

29.

(i-iii) These are simplified versions of the corresponding computations in the
quick sort section. In (iii), the recurrence relation is

n—1

1 . N
n = — ; E(C(U, -1)|U,)).
v n;:(]:vﬂryar( (W = |Uw)

=:itn

Iteration then gives
n—1 1
Uy, = tp + —t;.
; j+17

Now use (ii) to conclude that t,, ~ 4var(U,,) ~ "?2 and deduce the result
from the iterated relation above.

(iv) C*L2UC* +2U — 1.
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