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ABSTRACT 

Dalla Bella, Peretz, and Aronoff studied the effects of musical 

familiarity on melody recognition by comparing performance between 

musicians and nonmusicians in a melody gated-presentation (MGP) 

task. They identified three events in this task which were the 

familiarity emergence point (FEP), the isolation point (IP), and the 

recognition point (RP). The FEP occurred earlier in musicians than 

nonmusicians, but the IP occurred earlier in nonmusicians. Finally, 

the RP occurred slightly earlier in musicians. We simulated the 

qualitative results of the MGP task using a connectionist simulation of 

the cognitive processes underlying the emergence of these three events. 

We call this a melody cohort network (MCN). Separate neural 

networks modeled musicians and nonmusicians where the musician 

network represented a larger corpus of stored melodies. The MCN 

consisted of a core network which modeled the IP and meta-level 

networks which used the core network as input to model the FEP and 

RP. Our MCN captures the qualitative results of the MGP task and 

shows how stored memory size may affect the melody recognition 

process. We also used the simulation to predict the effects of two 

levels of severity of acquired amusia characterized by elevated 

thresholds for perceiving changes in pitch. 

I. INTRODUCTION 

Music shares several features with language including a 

hierarchy, temporal structure, vocabulary, and tonal properties 

(Limb, 2006). There are cases of disorders involving double 

dissociation between music and language (e.g. aphasia without 

amusia, and amusia without aphasia), suggesting specificity for 

music and language in the brain (Peretz, 2002). However, both 

domains share neural correlates for subcortical processing 

as well as a large amount of cortical processing. 

Neuroscientific literature supports left hemispheric dominance 

for language, and right hemispheric dominance for tonal music 

while processing melodies, in right-handed people (Maess, 

Koelsch, Gunter, & Friederici, 2001; Zatorre & Belin, 2001). 

Melody recognition involves processes similar to spoken-word 

recognition, such as consolidating temporal input into a 

higher-order percept using working memory. Hence, as a 

starting point, musical notes may be considered to be 

functionally analogous to phonemes in spoken words. 

Based on this analogy to spoken-word recognition, and the 

existence of established experimental paradigms in 

spoken-word recognition, Dalla Bella, Peretz, and Aronoff 

(2003) used Marslen-Wilson’s cohort model (Marslen-Wilson, 

1987) and gating procedures (Grosjean, 1980; Cotton & 

Grosjean, 1984) to study melody recognition in musicians and 

nonmusicians. They presented gated melodies selected from a 

repertoire of French traditional songs (Berthier, 1979) and 

identified gated familiarity and recognition points consistent 

with the cohort model. These melodies were divided into 

familiar and unfamiliar melodies based on previously 

established norms (Peretz, Babaï, Lussier, Hébert, & Gagnon, 1995). 

This melody gated-presentation (MGP) task consisted of two 

experiments. In the first experiment participants judged 

whether the melody was familiar after each increment of a gated 

presentation. The Familiarity Emergence Point (FEP) was 

defined as the point at which the participant began to correctly 

consider that a melody was familiar. The FEP was measured by 

the note number in the melody where the participant first 

correctly judged that the melody was familiar. The FEP was 

measured only for familiar melodies. The FEP occurred earlier 

in musicians than nonmusicians. For the FEP to occur earlier in 

musicians, they must have a stronger feeling of knowing at that 

point in the melody than nonmusicians. Dalla Bella et al. 

explained this finding based on (a) Marslen-Wilson’s cohort 

model, and (b) Koriat and Levy-Sadot's (2001) proposal that 

the feeling of knowing is in part based on the total amount of 

accessed information in long-term memory (LTM). The 

musician, given his or her training and greater exposure to 

music than the nonmusician, will have more melodies stored in 

LTM than the nonmusician. Thus, the musician will access a 

larger initial cohort of melodies, leading to a stronger feeling of 

knowing, and an earlier FEP. 

In their second experiment, Dalla Bella et al. studied the time 

course of melody recognition. Participants sang the melody 

they thought was being presented beyond the presented gate, 

and indicated their confidence level on a scale from 1 to 7, 

where 7 indicated maximum confidence. For this experiment, 

Dalla Bella et al. established two points in the time-course. The 

Isolation Point (IP) was defined as the point at which the 

participant demonstrated a correct insight into the identity of 

the melody.  This was measured by the note number at which the 

participant correctly sang the next three consecutive notes of 

the melody beyond the presented gate, and did not change his or 

her response for the remainder of the trial. The Recognition 

Point (RP) was defined as the point at which the participant was 

completely confident about his or her judgment. This was 

measured by the note number at which the participant not only 

sang the melody correctly, but also indicated a maximum 

confidence rating of 7 in his or her judgment. 

 

 

Figure 1.  Time-course of melody recognition in musicians and 

nonmusicians (Adapted from Dalla Bella et al., 2003). 
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On average, the IP occurred earlier in nonmusicians than in 

musicians but the RP occurred earlier in musicians than in 

nonmusicians. Dalla Bella et al. proposed that since musicians 

access a larger initial cohort than nonmusicians, they must 

examine and assess a larger number of candidates before 

isolating the correct melody. This accounts for the earlier 

occurrence of the IP in nonmusicians. The summarized results 

of Dalla Bella et al. are in Figure 1. We developed a simulation 

to model the hypothesized cognitive processes underlying the 

FEP, the IP, and the RP with the intention of capturing the 

qualitative configuration of these six points. 

II. METHODOLOGY 

We built a melody cohort network (MCN) for simulating the 

events in the time-course of the MGP task. The MCN consisted 

of a core network and two meta-level units. The core network of 

the MCN was designed by adapting a Tank & Hopfield (1987) 

sequence recognition neural network (SRNN) meant to detect 

temporal sequences. This core network was used to model the 

IP. A meta-level unit referred to as the familiarity unit 

monitored the core network to model the FEP. A second 

meta-level unit called the recognition unit used inputs from the 

core network and the familiarity unit to model the RP. The 

nonmusician MCN consisted of a corpus of five melodies 

whereas the musician MCN consisted of a corpus of 20 

melodies. 

A. Motivation for using the Tank & Hopfield SRNN 

The Tank & Hopfield (1987) SRNN was designed to 

recognize noisy and time-warped sequences unfolding in time, 

such as phoneme sequences in spoken words. The network 

consisted of detectors, sequence recognition (SR) neurons, and 

delay filters. The detectors represented input, and were 

connected to a bank of delay filters which enabled the input to 

be stored until sequence completion and combined into one 

single percept. Input weights to each SR neuron were preset to 

match outputs of delay filters, thereby associating a specific SR 

neuron with the recognition of a specific input sequence. 

Several influential computational models of spoken-word 

recognition exist, some of which are TRACE (McClelland & 

Elman, 1986), Shortlist (Norris, 1994), Shortlist B (Norris & 

McQueen, 2008), Merge (Norris, McQueen, & Cutler, 2000), 

NAM (Luce & Pisoni, 1998), and PARSYN (Auer & Luce, 

2005). However, we used the Tank & Hopfield SRNN for 

modeling the MGP task because it satisfies five key 

requirements of the cohort model. (1) The SRNN has a parallel 

processing architecture enabling multiple candidates to be 

accessed and assessed based on input. (2) The SRNN satisfies 

the cohort model’s LTM representational specificity 

requirement by assigning separate, computationally active 

recognition SR neurons to specific temporal sequences stored 

in LTM. (3) The SRNN is an activation-based network where 

each SR neuron is activated based on bottom-up sensory input 

and not top-down contextual feedback, as specified in the 

cohort model. (4) The cohort model requires the recognition 

system to be tolerant to noise in the input signal. The SRNN is 

designed for detecting noisy and time-warped sequences. (5) 

The SRNN uses a time-evolving winner-take-all (WTA) 

mechanism among SR neurons, satisfying the cohort model’s 

requirement that each SR neuron should take into account the 

behavior of competitor neurons. The winner-take-all 

mechanism is implemented through inhibitory feedback 

connections from competitor SR neurons to each SR neuron. 

This allows only the SR neuron with the strongest activation to 

win. 

B. Core Network Design and Architecture 

The network was implemented in Java and its simplified 

architecture is shown in Figure 2. The network consisted of 

pitch detector neurons, delay filters, connection weights, and 

SR neurons. Pitch detector neurons, as shown in Figure 2 and 

Figure 3, detected the pitch tones in the input melody, and had 

binary outputs of 0 or 1 depending on the absence or the 

presence of the pitch tone at a particular time step in the input 

sequence. All input melodies fell within a two-octave range. 

Each octave had 12 notes: C, C#, D, D#, E, F, F#, G, G#, A, 

A#, B. Hence, the core network consisted of 24 pitch detectors 

to detect pitch tones of the stimuli, which were limited to the 24 

total pitch tones. Pitch detectors for tones in the first octave 

were denoted by the note name followed by the suffix 1 (e.g. 

C1, C#1, D1). Pitch detectors for the second octave were 

specified by the suffix 2 (e.g. C2, C#2, D2), as shown in 

Figure 3. Melody sequences were represented using a 

notation that captured quarter note, half note, whole note, 

and rest durations as prefixes to the note name or rest. One 

limitation of the notation was its inability to capture 

rhythmic nuances based on onsets, such as the difference 

between one half note and two quarter notes. The duration of 

each melody sequence was computed as the sum of quarter 

note time steps. All melodies were transposed to the key of 

C. 

 

 

Figure 2.  Core nonmusician network with pitch detectors, delay 

filters, connection weights, and SR neurons/units. 

 

 

Figure 3.  Pitch detectors and delay filters. 
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Each pitch detector was connected to a bank of smoothing 

and delay filters, as shown in Figure 2 and Figure 3. The delay 

filters provided a method of simulating short-term memory. 

Outputs of the delay filters were specified by continuous delay 

functions of the form ƒk(τ) = β(τ/k)
n
 e

-n(τ/k)
, where k is the 

number of time steps remaining for the melodic sequence to 

complete, τ is the duration of the sequence, and β and n are 

constants. Tones occurring closer to the beginning of the 

sequence have longer durations (ks) and peak later than 

tones occurring closer to sequence completion. n determines 

the position of the peak with respect to sequence duration τ 

for a given k. For our simulations, n was set to 5, and β was 

set to e
n
. The delay functions enabled the peaks of pitch 

tones within a melody sequence to synchronously reach their 

maximum at the end of the input sequence. 

The core network uses a recurrent inhibitory network of 

leaky integrator neurons called SR neurons/units. Each SR 

neuron, as shown in Figure 2 and Figure 4, has an input voltage 

ui and an output activation Vi. The output voltage is also the 

neuron’s activation. It is a sigmoidal activation function of the 

input voltage, as shown below. It has a range between 0 and 1. 

 
 

The RC circuit acts as a leaky integrator. The Si triangle applies 

a logistic-sigmoid transformation.  

 

 

Figure 4.  SR neuron/unit. 

 

The LTM representations for each melodic sequence were 

coded by the connection weights positioned between the delay 

filters and the SR neurons, at the line intersections in Figure 2. 

The connection weights, Ti,X,k, for each SR neuron i, are set to 1 

or 0, in order to enable the SR neuron to detect its 

corresponding melody sequence in combination with the delay 

functions.  X represents the pitch tone input such as C1, D1 and 

so forth, and k denotes the time units remaining until sequence 

completion. The method used to preset connection weights may 

be explained with an example. Assume SR neuron i is built for 

recognizing the specific melody C E G C, where all tones are in 

the first of the two octaves, and all tones last for one time unit 

(quarter note). When the melody is input to the network, pitch 

detector C1 will have an output of 1 in the first time unit, pitch 

detector E1 will have an output of 1 in the second time unit, and 

so forth. Since C1 is the first entry in the four-note sequence, 

Ti,C1,3  = 1. This allows a delayed input to SR neuron i centered 

on 3 time units. Since C1 is also in position 4 of the four-note 

sequence, Ti,C1,0  = 1 provides additional input to SR neuron i 

with no delay, because k is 0. So, we set connection weights for 

SR neuron i as follows: Ti,C1,3  = Ti,E1,2  = Ti,G1,1  = Ti,C1,0  = 1. In a 

similar fashion, each SR neuron/unit in the musician network 

and the nonmusician network was preset with connection 

weights based on the melody it needed to recognize.  

The connection weights for each SR neuron are analogous to 

stored long-term memories. These memories were associated 

with low energy states. Therefore, the dynamic evolution of the 

network during sensory input, represented by the circuit 

dynamics equation below, tended to converge to a stored 

memory. 

 

 
 

Here, C is the membrane capacitance, and R is the membrane 

resistance. C was set to 1, and R was set to 0.5. The 

summation-integral contributes to an increase in the input 

voltage ui when input matches the neuron's expectations. The 

neuron's expectations are based on the strength of the 

connection weights Ti,X,k for an input tone DX. The SR neurons 

in the musician and nonmusician core network are connected to 

each other by means of inhibitory links, represented by the 

dotted intersections on the left of each SR neuron in Figure 5. 

These inhibitory connections implement a time-evolving WTA 

competition among the SR neurons, provided by the summation 

of αVj. α was set to 2.5. γ is a global inhibition term used to 

provide an activation threshold in order to prevent 

inappropriate melodies from activating the network. β is a term 

used to scale the excitatory inputs for the summation integral 

term in the circuit dynamics equation. γ was set to 2.5, and β 

was set to 0.6. This equation was implemented using the 

forward-Euler method using a step size of 0.1. 

 

 

Figure 5.  Inhibitory connections among SR neurons. 

C. Corpus Selection for Nonmusicians and Musicians 

Separate networks were used for the musician and the 

nonmusician to differentiate their levels of musical training. 

Both core networks had the same architecture but different 

corpus sizes in their LTM, determined by the number of 

melody-specific SR neurons. The musician’s corpus was four 

times larger than the nonmusician’s corpus. The nonmusician’s 

core network consisted of five SR neurons designed to detect 

five popular melodies. The musician’s core network consisted 

of 20 SR neurons. Five of these 20 SR neurons were designed to 

detect the same five popular melodies, common to both 

networks. The remaining 15 SR neurons were designed to 

detect 15 additional melodies in the musician’s corpus. The five 
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common melodies were considered to be familiar melodies 

similar to the familiar French melodies in Dalla Bella et al.’s 

study. These melodies were selected on the basis of sales and 

popularity from best-selling artists listed in Recording Industry 

Association of America (2008) and Billboard.com (2008), 

under the assumption that both musicians and nonmusicians are 

familiar with these five melodies. Our intention was to use the 

musician core network to represent a jazz musician. We 

selected 15 melodies from jazz standards recommended by two 

sources (Schoenberg, 2002; Hal Leonard Corporation, 2002), 

based on the premise that a jazz musician knows several jazz 

standards. The corpus of 20 melodies and their corresponding 

SR neurons is listed in Table 1. Each melody sequence was a 

small subset of the song from which it was selected. It captured 

an essential part of the song (e.g. chorus, the initial few notes, 

bass line). Each sequence lasted 10-25 time units, with each 

time unit being set to a quarter note. All melody sequences were 

transposed to the key of C. During simulation, both networks 

were turned on for a period of 30 time units. Stimulus 

presentation started at time unit 3. 

Table 1.  Corpus and corresponding SR neurons for musician and 

nonmusician. 

SR 

Neuron 
Melody Musician Nonmusician 

s0 Banana Boat Song yes yes 

s1 Beat It yes yes 

s2 Hound Dog yes yes 

s3 
We Don’t Need No 

Education 
yes yes 

s4 Sound of Silence yes yes 

s5 12th Street Rag yes no 

s6 Autumn Leaves yes no 

s7 Blue Horizon yes no 

s8 Boplicity yes no 

s9 Haitian Fight Song yes no 

s10 
I Got a Right to Sing 

the Blues 
yes no 

s11 Lullaby of Birdland yes no 

s12 Opus 1/2 yes no 

s13 
Sweet Georgia 

Brown 
yes no 

s14 Well You Needn’t yes no 

s15 The Man I Love yes no 

s16 West End Blues yes no 

s17 Cottontail yes no 

s18 Reflections yes no 

s19 Joy Spring yes no 

 

 

D. Meta-level Familiarity Unit 

As described in Section I, Dalla Bella et al.’s explanation for 

the earlier occurrence of the FEP in musicians, was that 

musicians access a larger initial cohort of melodies than 

nonmusicians because of a having a larger corpus of stored 

melodies in  their LTM. This results in a stronger feeling of 

knowing, and hence an earlier FEP. We extended the Dalla 

Bella et al. explanation by proposing that the initial cohort 

of accessed melodies activated a set of familiarity neurons 

correlated with a feeling of familiarity. Such a familiarity set, 

called the Familiarity Unit, would need to be activated 

above a certain threshold to create a sense of familiarity. If 

the musician accesses a larger initial cohort than a 

nonmusician, then the total activations of the neurons 

representing the initial cohort, serving as input to the 

familiarity unit, would be larger for the musician. This 

would drive the familiarity unit above threshold earlier for 

the musician. We extended the core network by adding a 

familiarity unit, as shown in Figure 6. The feeling of familiarity 

was evoked by the activity of this unit. The sum of output 

voltages Vi of the SR neurons was sent as input to the familiarity 

unit at each time step. The familiarity unit uses a sigmoidal 

activation function as shown below. The output value of the 

familiarity unit was in the interval (0, 1). 

 
 

 

Figure 6.  Melody cohort network with the added familiarity unit 

(Adapted from Tank & Hopfield, 1987). 

E. Meta-level Recognition Unit 

The RP is the point where the participant is both accurate and 

confident in his or her recognition of the melody. Experimental 

studies showing dissociations between confidence and accuracy 

suggest the role of other factors in determining the confidence 

level, besides the strength of the memory trace (Busey, Turnicliff, 

Loftus,  & Loftus, 2000; Chua, Schacter, Rand-Giovannetti, & 

Sperling, 2006). In an experimental task where subjects chose 

an answer to a question with two alternatives, Koriat (2008) 

found that a higher level of familiarity about the question’s 

domain can increase the subject’s confidence level, 

independent of response accuracy. Based on the hypothesis 

that greater familiarity causes a higher level of confidence, 

we assumed that a meta-level recognition unit computes the 
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recognition point by monitoring the core WTA network used 

in finding the IP, as well as the familiarity unit for measuring 

confidence. The recognition unit computes the RP using the 

following equation:  

 

RP = IP + ((li – IP) α (1 – Fam)) 

 

Here, li is the length of melodic sequence presented to the 

network in time units. α is a constant. Fam is the familiarity unit 

output at the IP. The second term in the equation computes a 

cost in time units based on the strength of the familiarity unit 

output and the amount of evidence already presented to the 

network in reaching the IP. This cost is added to the IP to 

compute the RP. The greater the strength of the familiarity 

output, the lesser the cost. Likewise, the greater the amount of 

evidence already presented, the lesser the cost. α was set to 2.  

III. MGP TASK SIMULATIONS AND 

RESULTS 

A. Modeling the FEP 

Input and output voltages of all SR neurons were initialized 

to 0. Test melodies were presented to the network after three 

time units, allowing the network time to reach a steady state. 

The five familiar melodies were presented to both MCNs. Both 

networks recognized all five melodies. The melody-specific 

SR neurons corresponding to the presented melody sequence 

responded most strongly with activation levels above those of 

their competitor neurons in both musician and nonmusician 

networks. Vi outputs of both networks for melody 3 are 

shown in Figure 7 and Figure 8. The corresponding SR 

neuron for melody 3 is s2. As shown in Figure 7, in the 

nonmusician network, s2 shows a high level of activation for 

melody 3. In the musician network (Figure 8), in addition to 

a high level of activation shown by s2, competitor SR 

neurons show partial activations to melody 3. The activation 

levels of these competitor neurons are based specifically on 

how the musician’s network evaluates similarity of melodies 

represented by these neurons to melody 3 coupled with the 

time-evolving WTA mechanism. Activations of the 

familiarity units for both networks are shown in Figure 9. 

The musician familiarity unit shows higher activation, 

thereby modeling an earlier FEP.  

 

 

Figure 7.  Vi activations of SR neurons in nonmusician for melody 

3. 

We used a familiarity unit output threshold of 0.65 for 

signaling the FEP. The results for all five tests are in Table 2. 

The mean FEP for the nonmusician network occurred 11 time 

units after the beginning of the melody. The mean FEP for the 

musician network occurred at 9 time units into the melody, 

giving the musician network an FEP 2 time units earlier than the 

nonmusician network. These results were comparable to Dalla 

Bella et al. who obtained results where the musician’s FEP 

occurred 0.8 to 0.9 notes earlier than the nonmusician. 

 

 

Figure 8.  Vi activations of SR neurons in musician for melody 3. 

 

 

Figure 9.  Familiarity unit activations in nonmusician and 

musician networks for melody 3. 

Table 2.  FEP results for musician and nonmusician networks. 

 FEP measured in time units from 

melody commencement 

Melody 

Presented 

1 2 3 4 5 Mean 

FEP 

Nonmusician 10 10 11 11 13 11 

Musician 9 9 9 9 9 9 

 

B. Modeling the IP 

The IP was identified in the core network by carefully 

comparing activation levels of SR neurons at each gate/time 

unit of the input. The IP was defined as the time unit at which 

the activation level of the correct SR unit (a) was at least 0.7 and 

greater than the activation levels of other competitor SR 

neurons in the network, and (b) continued to remain higher than 

its competitor neurons for the next three consecutive time units 

or until sequence completion. After the start of the input 

melody, output Vis of all SR neurons were compared to find 
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the SR neuron with the highest Vi, at each time unit. If the SR 

neuron’s Vi was at least 0.7, the time unit t1 was also noted. 

If the SR neuron’s Vi continued to be higher than the Vis of 

all other SR neurons for the next three time units of melodic 

input or until sequence completion, then t1 was the IP. 

The results for all five melodies are in Table 3. The mean 

IP for the nonmusician network occurred 12.4 time units 

after the beginning of the melody. The mean IP for the 

musician network occurred at 13 time units into the melody, 

giving the nonmusician network an IP 0.6 time units earlier 

than the musician network. These results were qualitatively 

comparable to Dalla Bella et al.’s results where the 

nonmusician’s IP occurred 0.3 to 0.4 notes earlier than the 

musician. 

 

Table 3.  IP results for musician and nonmusician networks. 

 IP measured in time units from 

melody commencement 

Melody 

Presented 

1 2 3 4 5 Mean IP 

Nonmusician 11 12 12 12 15 12.4 

Musician 12 12 12 13 16 13 

 

C. Modeling the RP 

The results for both networks are in Table 4. The mean RP 

for the musician network occurred at 14.9 time units after 

melody commencement. The mean RP for the nonmusician 

network occurred at 15 time units after melody commencement. 

These results indicated that the musician required lesser 

information than the nonmusician to reach the RP after the IP, 

despite reaching the IP 0.6 time units later, because of a higher 

level of confidence indicated by the level of familiarity. 

Table 4.  RP results for musician and nonmusician networks. 

 RP measured in time units from melody 

commencement 

Melody 

Presented 

1 2 3 4 5 Mean 

RP 

Non- 

musician 

13.8 13.7 14.6 14.7 18 15 

Musician 13.6 13.7 14.4 14.6 18.1 14.9 

 

D. Melody Similarity Measurements 

To evaluate the core network’s realization of melodic 

similarity, we needed a mathematical measure for computing 

the melodic similarity of the input melody to the melodies 

corresponding to SR neurons in the musician and nonmusician 

networks. According to a study conducted by Müllensiefen 

and Frieler (2004), edit distance measurements with a rich 

symbolic representation compared well with human similarity 

judgments.  

Our symbolic notation captures important aspects of each 

melody such as pitches, pitch durations, and rests, despite its 

inability to capture note onsets. Hence, we computed 

normalized edit distances (Wagner & Fischer, 1974) of all the 

melodies associated with the SR neurons. These edit distances 

were then converted into similarity values whose output values 

fell within 0 and 1, where 0 indicates no similarity, and 1 

indicates maximum similarity as in the case of an identical 

melody. A comparison between similarity values and activation 

levels of SR neurons in musician and nonmusician networks for 

input melody 5 is provided in Figure 10. As shown in the figure, 

the network’s realization of melodic similarity matched the edit 

distance measurements well. 

 

 

Figure 10.  Similarity and activation comparison for melody 4. 

E. Summary of MGP Task Simulations  

The summary of MGP task simulation results for the 

musician and nonmusician MCNs showing the FEP, the IP, and 

the RP as points in the time-course of melody recognition are 

provided in Figure 11. A comparison between Figure 1 and 

Figure 11 indicates that our simulation results captured the 

rank ordering of the FEP, the IP, and the RP, and 

qualitatively matched Dalla Bella et al.’s results. 

  

 

Figure 11.  Time-course of simulation results in musician and 

nonmusician networks. 

IV. EFFECTS OF INCREASING CORPUS 

SIZE 

We conducted an initial test to see how well the MCN would 

scale with increased corpus size. 10 additional jazz melodies 

were added to the 20 melody corpus (used for the musician 

network), and an MCN with 30 SR neurons was built. 

Simulations for the FEP, the IP, and the RP as described in 

Section III, were run on this 30 corpus network. These results 
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along with the previous results of the 20 melody musician 

network are provided in Tables 5, 6, and 7. The results indicate 

that although there is no noticeable difference in the mean IP 

and RP values, the FEP values changed considerably with an 

increase in corpus size by 10 melodies. This is also reflected in 

the familiarity outputs of the 5-melody, 20-melody, and 

30-melody corpus networks, in Figure 12. 

Table 5.  FEP results for 20 and 30 corpus networks. 

 FEP measured in time units from melody 

commencement 

Melody 

Presented 

1 2 3 4 5 Mean 

FEP 

20 corpus 

MCN 

9 9 9 9 9 9 

30 corpus 

MCN 

6 6 7 7 6 6.4 

 

Table 6.  IP results for 20 and 30 corpus networks. 

 IP measured in time units from melody 

commencement 

Melody 

Presented 

1 2 3 4 5 Mean 

IP 

20 corpus 

MCN 

12 12 12 13 16 13 

30 corpus 

MCN 

12 12 13 13 16 13.2 

 

Table 7.  RP results for 20 and 30 corpus networks. 

 RP measured in time units from melody 

commencement 

Melody 

Presented 

1 2 3 4 5 Mean 

RP 

20 corpus 

MCN 

13.6 13.7 14.4 14.6 18.1 14.9 

30 corpus 

MCN 

13.6 13.7 14.5 14.6 18 14.9 

 

 

 

Figure 12.  Familiarity unit activations in 5-melody, 20-melody, 

and 30-melody corpus networks for melody 3. 

Increasing the corpus size increases the initial familiarity 

output value, even prior to stimulus presentation. Eventually, 

the FEP measure of 0.65 would become irrelevant for a corpus 

size greater than 40-50 melodies. This indicates that a future 

improvement for measuring the FEP would involve using a 

normalized total sum of Vi activations of all the SR neurons as 

input to the familiarity unit instead of the actual total sum of Vi 

activations. 

V. SIMULATING ACQUIRED AMUSIA 

Since we had an MCN that could model melody recognition, 

we wanted to use it to simulate the effects of acquired amusia on 

a subject with an intact set of melodies in his or her LTM which 

were learned and stored in LTM prior to being affected by the 

condition of amusia. The MCN allows us to represent 

previously acquired melodies stored in LTM through the 

melody-specific SR neurons and their connection weights. We 

wanted to simulate a specific kind of amusia attributed to a 

deficit in pitch processing (Peretz et al., 2002). One possible 

reason for this pitch processing deficit in amusics is impaired or 

elevated pitch perception thresholds than normals (Patel et al. 

2008). We conducted two experiments on the 30-melody 

corpus network to simulate two severity levels of this kind of 

acquired amusia.  

In the first experiment, the threshold for perceiving a change 

in pitch by the amusic was assumed to be greater than one 

semitone (Severity level 1). Therefore, for detection by the 

amusic, the minimum change in pitch should at least be a whole 

note, irrespective of direction. The five familiar melodies were 

again fed as input sequences to the network. Based on this 

severity level, pitches/features in melodies M1, M2, and M5 are 

perceived to be the same as for a normal subject. However, 

pitches/features in M3 and M4 are perceived differently by the 

amusic. The perception of melody M3 by the amusic prior to 

being affected by amusia and after being affected by amusia is 

provided below. 

Pre-amusia M3: 

E2, 2D#2, E2, 2D#2, E2, 2D#2, E2, 2C2, C2, 2R, C2. 

Post-amusia M3: 

E2, 2E2, E2, 2E2, E2, 2E2, E2, 2C2, C2, 2R, C2. 

 

In the second experiment, the threshold for perceiving a 

change in pitch by the amusic was assumed to be greater than 

two semitones (Severity level 2). Therefore, for detection by the 

amusic, the minimum change in pitch should at least be three 

semitones, irrespective of direction. The five familiar melodies 

were again fed as input sequences to the network. Based on this 

severity level, all five melodies are perceived differently by the 

amusic. The perception of melody M4 by the amusic prior to 

being affected by amusia and after being affected by amusia is 

provided below. 

Pre-amusia M4: 

C2, 2D2, 2D#2, 2D2, R, 2C2, D2, 2D#2, 2D2, R. 

Post-amusia M4: 

C2, 2C2, 2D#2, 2D#2, R, 2C2, C2, 2D#2, 2D#2, R. 

 

In both experiments, the amusic-perceived sequences were 

input to the network. The FEP, IP, and RP results are provided 

in Table 8 and Table 9. For severity level 1, the FEP results 

from Table 8 may be compared with Table 5. The impaired 

perception of melody M3 causes the FEP to occur one time unit 

later. Given that M3 is 16 time units in duration, the IP results in 
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Table 8 when compared with Table 6, indicate that isolation of 

the melody barely occurred at the time of sequence completion. 

The IP affects the RP as well. For melody M4, the network takes 

one time unit longer for isolation, although recognition is not 

affected. Overall, there is a noticeable effect of severity level 1 

of acquired amusia in the network’s performance with respect 

to melody recognition. 

Table 8.  Results for 30 corpus amusic network for severity level 1.  

Melody 

Presented 

1 2 3 4 5 

FEP 6 6 8 7 6 

IP 11 12 16 14 15 

RP 13.4 13.7 16 15 17.8 

 

Table 9.  Results for 30 corpus amusic network for severity level 2.  

Melody 

Presented 

1 2 3 4 5 

FEP 6 6 8 6 7 

IP 13 14 16 No 6 

RP 14 14.5 16 No 18.5 

 

For severity level 2, the FEP, IP, and RP results from Table 9 

may be compared with Tables 5, 6, and 7. The network takes 

longer to reach the FEP for melodies M3 and M5. However, it 

reaches an earlier FEP for melody M4. One possible reason for 

this could be the impaired melody M4’s similarity to other 

melodies in the corpus. The impaired perception of melody M4 

may cause the network to have stronger partial matches with 

competitor neurons allowing them to have higher activation 

levels, thereby resulting in a higher summed activation, and an 

earlier FEP. This is illustrated in the Vi outputs of SR neurons 

for input melody M4, in Figure 13. A competitor SR neuron s15 

has a higher activation level than the corresponding 

melody-specific SR neuron s3. 

 

 

Figure 13.  Vi activations of SR neurons in amusic network with 

severity level 2 for melody 4. 

Because of this competition, the network was unable to 

isolate and recognize melody M4, as indicated in Table 9. 

Although the activation level of s15 was strong, it was not 

strong enough for the network to incorrectly isolate melody 

M16 corresponding to neuron s15. Again, the isolation of 

melody M3 barely occurred at the time of sequence completion. 

Overall, there is a greater effect of severity level 2 of acquired 

amusia on the network’s performance with respect to melody 

recognition. 

VI. CONCLUSIONS 

Our goal was to model the qualitative results of Dalla Bella et 

al.’s MGP task, using a connectionist simulation of the 

cognitive processes underlying the FEP, IP, and RP events in the 

time-course of melody recognition. We used the Tank & 

Hopfield model to build a melody cohort network (MCN) 

because of its relevance to the cohort model. We designed two 

MCNs representing different levels of musical training to 

model the IP. We extended each MCN with two meta-level units 

to model the FEP and the RP. Our simulation results 

qualitatively matched Dalla Bella et al.’s results by capturing 

the rank ordering of the FEP, the IP, and the RP. We also used 

the MCN to simulate melody recognition for two severity levels 

of acquired amusia. 

In its current form the MCN has limitations, and offers room 

for various improvements.  All melody sequences in LTM  have 

the same strength. Higher probabilities need to be associated 

with melodies that are heard more often. This may be 

implemented in the form of higher activation rates for melodies 

with higher prior probabilities. The MCN does not show the 

facilitatory effects of top-down melodic context based on 

syntactic information. In addition, each melody is processed in 

a single layer of the network, as one single percept instead of a 

combination of melodic chunks. To account for these effects, 

the network design needs to be refined to allow hierarchical 

stages of processing. Another limitation is concerned with 

acquisition of melodies. Although the network models the 

recognition of melodies by SR units for an existing LTM 

state, it does not learn novel melodies. The connection 

weights in their current low energy state may be considered 

to be stable states of a learning algorithm. New melodies 

may be acquired by randomizing the initial weights, and 

applying the learning algorithm to train the weights to their 

final low energy states. 
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