

ISSN: 1795-6889

Volume 4, Number 1, May 2008

SPECIAL ISSUE ON PSYCHOLOGY

 OF PROGRAMMIING
Jorma Sajaniemi, Guest Editor

 Pertti Saariluoma, Editor-in-Chief

An Interdisciplinary Journal on Humans in ICT Environments Volume 4, Number 1, May 2008

Contents

From the Editor-in-Chief: The Problems of Professionals pp. 1–3
Pertti Saariluoma

Guest Editor’s Introduction: Psychology of Programming: pp. 4–8
 Looking into Programmers’ Heads

Jorma Sajaniemi

Original Articles:

A Coding Scheme Development Methodology Using Grounded Theory pp. 9–25
For Qualitative Analysis of Pair Programming

Stephan Salinger, Laura Plonka, and Lutz Prechelt

Usability Assessment of a UML-Based Formal Modeling Method pp. 26–46
Using a Cognitive Dimensions Framework

Rozilawati Razali, Colin Snook, Michael Poppleton, and Paul Garratt

Spatial Ability and Learning to Program pp. 47–61
Sue Jones and Gary Burnett

A Roles-Based Approach to Variable-Oriented Programming pp. 62–74
Juha Sorva

From Procedures to Objects: A Research Agenda for the pp. 75–91
Psychology of Object-Oriented Programming Education

Jorma Sajaniemi and Marja Kuittinen

Human Technology: An Interdisciplinary Journal on Humans in ICT Environments

Editor-in-Chief:
Pertti Saariluoma, University of Jyväskylä,

Finland
Board of Editors:

Jóse Cañas, University of Granada,
Spain

Karl-Heinz Hoffmann, Technical University
Munich, Germany

Jim McGuigan, Loughborough University,
United Kingdom

Raul Pertierra, University of the Philippines
and Ateneo de Manila University, the
Philippines

Lea Pulkkinen, University of Jyväskylä,
Finland

Howard E. Sypher, Purdue University,
USA

Human Technology is an interdisciplinary, scholarly
journal that presents innovative, peer-reviewed
articles exploring the issues and challenges
surrounding human-technology interaction and the
human role in all areas of our ICT-infused societies.

Human Technology is published by the Agora
Center, University of Jyväskylä and distributed
without a charge online.

ISSN: 1795-6889
Submissions and contact: humantechnology@jyu.fi
Managing Editor: Barbara Crawford

www.humantechnology.jyu.fi

An Interdisciplinary Journal on Humans in ICT Environments ISSN: 1795-6889

www.humantechnology.jyu.fi Volume 4 (1), May 2008, 1–3

1

From the Editor in Chief

THE PROBLEMS OF PROFESSIONALS

When we discuss interaction and communication technology (ICT) usability, the images of
ordinary users facing difficulties in getting things to work come easily to mind. People who
struggle to use digital applications or find mobile services, or feel lost or frustrated when
trying to use all of the features of a remote controller seem to form the very stereotype of
users that interaction research should help. How my auntie, elderly neighbor, or disabled
brother could survive in an ICT-infused world is a recognized problem today, although not
that long ago, their problems were not a priority. The main focus of the research had been on
early middle-aged families with Western backgrounds (Czaja, 1997; Newell & Gregor, 1997).
 Of course, concentration on the “ordinary” people is acceptable on several grounds.
Consumers form the widest audience and markets for new ICT products. They also may have
the least amount of time for learning new environments and gadgets. Finally, they often
possess the lowest level of computing skills or technical know-how. This is why emphasis on
the usability of applications is understandably of great importance among interaction
researchers. However, it would be a mistake to think that usability should be directed only
toward solving the challenges of ordinary people.
 The interaction challenges of the professional are a much less clearly recognized problem
than the concerns for everyday consumer interaction. One might think that technology
professionals easily understand what other professionals need and that professionals in
general do not make similar mistakes in using technologies or solving interaction problems
via ICTs as do to individuals with everyday technology use. Moreover, professionals appear
to have the time and the skills, are often within an appropriate age group to be familiar with
various types of technologies, have expertise in what they should do with computing or other
ICT devices, and are usually willing to invest the time and energy to learn new devices or
applications. They are generally educated and experienced enough so that they can be
systematically trained to use new software or technologies, and it is easier for and more
typical of them to seek and obtain the needed support when they confront interaction problems.

© 2008 Pertti Saariluoma and the Agora Center, University of Jyväskylä
URN:NBNfi:jyu-200804151348

Pertti Saariluoma
Cognitive Science, Department of Computer Science and Information Systems

University of Jyväskylä, Finland

Saariluoma

2

While many of these assumptions may be true, nevertheless these arguments miss one
important point: The tasks of professionals via ICTs are far more complex and critical than
the tasks in everyday computing and ICT use.
 Take, for instance, surgeons or other medical professionals, for whom losing time or
information as a consequence of poorly constructed interaction systems is safety critical.
Similarly, officers at the helm of a huge ship or, perhaps more importantly, workers at a
nuclear power plant, still must be thoroughly familiar with—and have easy access to and use
of—all essential, even if even rarely used, features of their complex, contemporary
technologies. Because professional ICT-facilitated interaction is constantly increasing and
becoming more ubiquitous, it is essential that interaction researchers give specific attention to
how experts use technology. While human factors researchers have done much work in this
area, much still remains to be done. For example, when it can take a business professional
untold hours over the course of a year to complete and submit travel expense documents, or
when someone is expected to read a hundred-page-long users’ instruction manual in order to
store a couple of numbers in a computing program, it is easy to see that this area is
underestimated and underresearched. These interaction realities are complex issues.
 A classic example of this interaction complexity challenge is computer programming.
This complex task requires immense cognitive energy and skills. This reality has not been
lost on a community of researchers who initiated some of the earliest attempts to make
technologies simpler for users, and the professionals who create the technologies. The first
programming languages were designed to help programmers remember the code. Similarly
programming paradigms, such as structured programming or object-oriented programming,
were intended to make programs easier for the programmers to comprehend and remember.
Thus psychology was employed to help improve the work conditions for professional
programmers, and thus opening a new field of research: the psychology of programming. The
very foundation of this work points to the need to observe and address the challenges of
professionals—whether they are computer programmers, or medical or business
professionals. The outcomes of the field of computer programming reflect the emphasis on
good expert-computer interaction. Furthermore, the rich tradition of this field offers a large
body of knowledge that can be transferred to other professional fields.
 We are pleased to have a special issue on the psychology of programming in Human
Technology because few areas of professional interaction research have equally developed
the practices of discourse, analysis, and developmental design. The papers of this issue reflect
not only concerns about computer programming, but also topics that can provide the
foundation for exploring many other aspects of expert-technology interaction. From this
research foundation, knowledge about the psychology of expert interaction with technology
can feed ongoing expert-technology research in more diverse fields, such as medicine,
education, aeronautics, business, energy, and transportation.

REFERENCES

Czaja, S. (1997). Computer technology and the older adult. In M. Helander, T. Landauer, & P. Prabhu (Eds.),

Handbook of human–computer interaction (pp. 797–812). Amsterdam: Elsevier.

 The Problems of Professionals

3

Newell, A. F., & Gregor, P. (1997). Human computer interfaces for people with disabilities. Handbook of
human–computer interaction (pp. 813–824). Amsterdam: Elsevier.

All correspondence should be addressed to:
Pertti Saariluoma
University of Jyväskylä
Cognitive Science, Department of Computer Science and Information Systems
P.O. Box 35
FIN-40014 University of Jyväskylä, FINLAND
psa@it.jyu.fi

Human Technology: An Interdisciplinary Journal on Humans in ICT Environments
ISSN 1795-6889
www.humantechnology.jyu.fi

An Interdisciplinary Journal on Humans in ICT Environments ISSN: 1795-6889

www.humantechnology.jyu.fi Volume 4 (1), May 2008, 4–8

4

Guest Editor’s Introduction

PSYCHOLOGY OF PROGRAMMING: LOOKING INTO

PROGRAMMERS’ HEADS

Psychology of programming (PoP) is an interdisciplinary area that covers research into
computer programmers’ cognition; tools and methods for programming related activities; and
programming education. The origins of PoP date back to late 1970s and early 1980s, when
researchers realized that programming tools and technologies should not be evaluated based
on their computational power only, but also on their usability from the human point of view,
that is, based on their cognitive effects. The hope of such a new approach was that
programmers would make fewer errors, produce better software, and work more efficiently.
In the first Workshop on Empirical Studies of Programmers, Ben Shneiderman listed “several
important destinations for researchers: refining the use of current languages, improving
present and future languages, developing special purpose languages, and improving tools and
methods” (Shneiderman, 1986, p. 1). During the past two decades, the flow of new
languages, tools, and methods has increased rapidly, the scope of programming work has
expanded, and research interests have extended to cover group activities. Yet the main goal of
PoP—to assist programmers through the benefits of cognitive research—has remained.

The PoP research community consists of cognitive psychologists and computer scientists.
The main motivation for computer scientists is the improvement of current tools and the
development of new ones, as well as the discovery of general principles concerning humans
in the context of programming tasks. Psychologists are interested in new theories of human
cognition applicable in other domains too. For them programming—a highly complicated
task—provides good opportunities to study high-level cognitive processes in a complex
setting. This dual character of PoP manifests itself also in the skills required from
researchers: a good knowledge of both cognitive psychology and programming or, better still,
psychology, social sciences, and software engineering.

On the other hand, PoP research results are not necessarily limited to the programming
domain, but can be applied in other domains that involve design activities in a formal
environment. As an example, consider cognitive dimensions (CDs), which were introduced
by Green (1989) to describe, compare and control how programming language features affect
program design strategies. The dimension role-expressiveness, for example, relates to how
well a piece of program code (e.g., “+”) reveals its meaning without a need to study the context

© 2008 Jorma Sajaniemi, and the Agora Center, University of Jyväskylä
URN:NBNfi:jyu-200804151349

Jorma Sajaniemi
Department of Computer Science and Statistics

University of Joensuu, Finland

Looking into Programmers’ Heads

5

of the piece (addition, string catenation, etc.). Later, CDs were developed further and applied
to many types of cognitive artifacts, such as educational theorem provers (Kadoda, Stone, &
Diaper, 1999), prototyping techniques (Dearden, Siddiqi, & Naghsh, 2003), and music
notations (Blackwell & Green, 2003).

Even though the area of PoP seems to be quite narrow—computer programming—it
covers a large variety of phenomena, from novices’ problems to experts’ tacit knowledge,
from program design to testing and maintenance, and from short individual programs to huge
software systems. Consequently, research methods vary as well. Most often, research
methods have been adopted from cognitive psychology (e.g., controlled experiments run in
laboratory settings) or social sciences (e.g., field studies with qualitative analysis techniques),
but it seems that in many subareas appropriate research methods are yet to be discovered. As
many researchers are also computer science educators, they have instant access to novices
and, therefore, studies on novices’ problems and programming education are frequent. A new
source of research materials is provided by various open source communities that make their
program code, change logs, and discussions among program developers freely available on
the net. These materials represent expert programming in state-of-the-art contexts.

During the past two decades, two important workshop series have been fully devoted to
PoP: the Workshop on Empirical Studies of Programmers (ESP), based primarily in the USA,
and the Psychology of Programming Interest Group Workshop (PPIG), having a European
character. The first ESP workshop was held in 1986 in Washington, DC, the eighth and last
one in 1999. Later, this workshop series was incorporated into the IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), which, however, has a broader
scope than pure PoP and includes implementation aspects and the like. The European
conference series, PPIG, started in 1989, and continues to be organized annually. It is more
informal in nature than ESP; in addition to fully developed research papers, PPIG
proceedings include position papers and suggestions for individual studies. Many of the best
papers have later been published in more formal conferences and journals.

The organization behind PPIG workshops, the Psychology of Programming Interest
Group, was established in 1987 and—just like the workshop—is informal in nature. For
instance, there is no formal committee: Decisions are discussed in an open business meeting
held during every workshop. The interest group publishes an electronic newsletter and hosts
two mailing lists, a low-volume announcements list plus another list for discussions. In
essence, the interest group is an informal collection of people who are enthusiastic about
psychological aspects of programming and software engineering1.

The latest PPIG workshop was held in Joensuu, Finland in July 2007. The scientific program
consisted of four half- or full-day tutorials, a doctoral consortium, two keynote addresses, 18
technical presentations, and two discussion sessions. All paper submissions were reviewed by at
least two—usually three—anonymous reviewers and papers were accepted in two categories:
Full Papers and Work in Progress Reports, as decided by the Program Committee. This special
issue of Human Technology contains five of those papers, selected based on the reviewers’
statements. The papers were re-reviewed and improved for publication in this journal. These
papers demonstrate the variability in themes and research methodologies of PPIG workshops.

The first two papers deal with research methodology. In the article “A Coding Scheme
Development Methodology Using Grounded Theory for Qualitative Analysis of Pair
Programming,” Stephan Salinger, Laura Plonka, and Lutz Prechelt consider the analysis of

Sajaniemi

6

rich video data that is typical for programming protocols. They have used grounded theory
(Strauss & Corbin, 1990), in which the whole coding is based totally on protocol data, and
developed a specific coding scheme to be used in the context of pair programming. The
article provides guidance for the use of grounded theory in the analysis of rich protocol data
when the purpose of a study is to understand cognitive phenomena within a design process.
The principles described in the paper apply to domains outside programming, as well.

Rozilawati Razali, Colin Snook, Michael Poppleton, and Paul Garrat have used two
methods to evaluate the usability of a semiformal notation that combines UML (Object
Management Group, 2007) with B (Abrial, 1996), the latter being a formal notation for
describing semantics. The evaluation methods include CDs and the results were analyzed
using grounded theory. This paper, “Usability Assessment of a UML-based Formal Modeling
Method Using a Cognitive Dimensions Framework,” thus demonstrates how one can use
several research methods for the usability analysis of tools within formal domains that
involve design activities.

The next two papers concentrate on specific details within programming. Sue Jones and Gary
Burnett tackle a popular problem: how to predict students’ success in learning programming.
Earlier work on this area has looked at correlation between programming success and some other
property, for example, field dependence (e.g., Mancy & Reid, 2004), inclination to systematic
behavior (e.g., Dehnadi, 2006), or self-efficacy (e.g., Wiedenbeck, LaBelle, & Kain, 2004). Jones
and Burnett study spatial ability and find a positive correlation between mental rotation ability
and programming success in their paper “Spatial Ability and Learning to Program.”

Juha Sorva looks at variable-oriented programming paradigm (Sajaniemi & Niemeläinen,
1989) and combines it with the notion of roles of variables (Sajaniemi, 2002). This results in
a data-flow description of programs that explicitly classifies variables using a fixed set of
categories found in expert programmers’ tacit knowledge (Sajaniemi & Navarro Prieto,
2005). The article, “A Roles-Based Approach to Variable-Oriented Programming,” also
demonstrates how the new notation can be used for mental exercises even without a fully
functional implementation.

The final paper, “From Procedures to Objects: A Research Agenda for the Psychology of
Object-Oriented Programming Education” by Jorma Sajaniemi and Marja Kuittinen, presents
an overview of PoP research in novice education and debates whether existing research
literature, which deals mostly with procedural programming, can be applied to current
educational practice that is based on object-oriented programming (de Raadt, Watson, &
Toleman, 2002). The authors point out fundamental differences that make the use of existing
research results in the current context dubious and suggest areas that should be studied if
programming education is to be based on research results rather than intuition.
 The five papers included in this special issue of Human Technology represent studies in
research methodology and in small scale programming. Programming in the large, that is,
production of complex software systems, is not represented in this set. The reason is simple:
There were very few papers on that area in the 2007 PPIG workshop. This is also typical for
PoP research in general. Research into the construction of large systems, although highly
important, is very expensive and industry partners willing to use their time for such research
are hard to find.

There is still a long way to go before PoP can provide an extensive picture of
programming and software engineering in general.

Looking into Programmers’ Heads

7

ENDNOTE

1. For more information on the Psychology of Programming Interest Group, see http://www.ppig.org

REFERENCES

Abrial, J. R. (1996). The B-Method: Assigning programs to meanings. Cambridge, UK: Cambridge University
Press.

Blackwell, A., & Green, T. (2003). Notational systems: The cognitive dimensions of notations framework. In
J. M. Carroll (Ed.), HCI models, theories, and frameworks: Toward a multidisciplinary science (pp. 103–
133). San Francisco: Morgan Kaufmann Publishers.

Dearden, A., Siddiqi, J., & Naghsh, A. (2003, April). Using cognitive dimensions to compare prototyping
techniques. Paper presented at the 15th Annual Workshop of the Psychology of Programming Interest
Group, Keele, UK.

Dehnadi, S. (2006). Testing programming aptitude. In P. Romero, J. Good, E. A. Chaparro, & S. Bryant (Eds.),
Proceedings of the 18th Annual Workshop of the Psychology of Programming Interest Group (PPIG ’06;
pp. 22–37). Brighton, UK: University of Sussex.

de Raadt, M., Watson, R., & Toleman, M. (2002). Language trends in introductory programming courses. In
E. Cohen & E. Boyd (Eds.), Proceedings of Informing Science and IT Education Conference (InSITE ’02;
pp. 329–337). Santa Rosa, CA, USA: Informing Science Institute.

Green, T. R. G. (1989). Cognitive dimensions of notations. In A. Sutcliffe & L. Macaulay (Eds.), People and
Computers V (pp. 443–460). Cambridge, UK: Cambridge University Press.

Kadoda, G., Stone, R., & Diaper, D. (1999, January). Desirable features of educational theorem provers: A
cognitive dimensions viewpoint. Paper presented at the 11th Annual Workshop of the Psychology of
Programming Interest Group, Leeds, UK.

Mancy, R., & Reid, N. (2004). Aspects of cognitive style and programming. In E. Dunican & T. Green (Eds.),
Proceedings of the Sixteenth Annual Workshop of the Psychology of Programming Interest Group (PPIG
’04; pp. 1–9). Carlow, Ireland: Institute of Technology.

Object Management Group (2007). Introduction to OMG’s Unified Modeling Language (UML). Retrieved April
11, 2008, from http://www.omg.org/gettingstarted/what_is_uml.htm

Sajaniemi, J. (2002). Visualizing roles of variables to novice programmers. In J. Kuljis, L. Baldwin, & R.
Scoble (Eds.), Proceedings of the 17th Annual Workshop of the Psychology of Programming Interest
Group (PPIG ’02; pp. 111–127). Uxbridge, UK: Brunel University.

Sajaniemi, J., & Navarro Prieto, R. (2005). Roles of variables in experts’ programming knowledge. In
P. Romero, J. Good, S. Bryant, & E. A. Chaparro (Eds.), Proceedings of the 17th Annual Workshop of the
Psychology of Programming Interest Group (pp. 145–159). Brighton, UK: University of Sussex.

Sajaniemi, J., & Niemeläinen, A. (1989). Program editing based on variable plans: A cognitive approach to
program manipulation. In Proceedings of the Third International Conference on Human-Computer
Interaction on Designing and Using Human-Computer Interfaces and Knowledge Based Systems (2nd ed.;
pp. 66–73). New York: Elsevier Science Inc.

Shneiderman, B. (1986). Empirical studies of programmers: The territory, paths, and destinations. In E. Soloway &
S. Iyengar (Eds.), Empirical studies of programmers (pp. 1–12). Norwood, NJ, USA: Ablex Publishing Co.

Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and techniques.
London: Sage Publications, Inc.

Wiedenbeck, S., LaBelle, D., & Kain, V. N. R. (2004). Factors affecting course outcomes in introductory
programming. In E. Dunican & T. Green (Eds.), Proceedings of the Sixteenth Annual Workshop of the
Psychology of Programming Interest Group (PPIG ’04; pp. 97–110). Carlow, Ireland: Institute of Technology.

Sajaniemi

8

Author’s Note

I am grateful to Pablo Romero who organized the reviewing process of the paper that I have coauthored.

All correspondence should be addressed to:
Jorma Sajaniemi
University of Joensuu
P.O.Box 111
FI-80101 Joensuu
Finland
saja@cs.joensuu.fi

Human Technology: An Interdisciplinary Journal on Humans in ICT Environments
ISSN 1795-6889
www.humantechnology.jyu.fi

An Interdisciplinary Journal on Humans in ICT Environments ISSN: 1795-6889

www.humantechnology.jyu.fi Volume 4 (1), May 2008, 9–25

9

A CODING SCHEME DEVELOPMENT METHODOLOGY
USING GROUNDED THEORY

FOR QUALITATIVE ANALYSIS OF PAIR PROGRAMMING

Abstract: A number of quantitative studies of pair programming (the practice of two
programmers working together using just one computer) have partially conflicting
results. Qualitative studies are needed to explain what is really going on. We support
such studies by taking a grounded theory (GT) approach for deriving a coding scheme
for the objective conceptual description of specific pair programming sessions
independent of a particular research goal. The present article explains why our initial
attempts at using GT failed and describes how to avoid these difficulties by a
predetermined perspective on the data, concept naming rules, an analysis results
metamodel, and pair coding. These practices may be helpful in all GT situations,
particularly those involving very rich data such as video data. We illustrate the
operation and usefulness of these practices by real examples derived from our coding
work and present a few preliminary hypotheses regarding pair programming that have
surfaced.

Keywords: pair programming, grounded theory, coding scheme development,
qualitative data analysis, video data.

INTRODUCTION

During the last few years, pair programming, as it is known from extreme programming (Beck,
2004), has been the subject of many empirical investigations. This research focused mainly on
the measurement of bottom-line pair programming effects, whereas the underlying process of
pair programming has been regarded as a kind of black box, the output of which is analyzed
quantitatively with respect to its performance, error rate, programmer satisfaction, and so forth.

© 2008 Stephan Salinger, Laura Plonka, & Lutz Prechelt, and the Agora Center, University of Jyväskylä
URN:NBNfi:jyu-200804151350

Stephan Salinger
Institut für Informatik

Freie Universität Berlin
Germany

Laura Plonka
Institut für Informatik

Freie Universität Berlin
Germany

Lutz Prechelt
Institut für Informatik

Freie Universität Berlin
Germany

Salinger, Plonka, & Prechelt

10

Unfortunately, the results of this research are often contradictory. For instance, regarding
total effort (measured in person-hours of developers’ work time), Williams (2001) found that
pair programming results in a 15% increase compared to solo programming, Lui and Chan
(2003) found 21%, and Nawrocki, Jasiński, Olek, and Lange (2005) found 48%. Most likely
these differences are caused by differences in moderator variables, such as programmer and
pair experience, type of task, and so on, but we do not know the complete set of relevant
moderator variables nor the nature and mechanism of their influence.
 Our goal as software engineering researchers is to understand pair programming in such a
way that we can advise practitioners how to use it most efficiently. We propose that the only
way to obtain such understanding is to understand the mechanisms at work in the actual pair
programming process. Obviously, this understanding must first be gained in qualitative form
before we can start quantifying and, since we do not know much yet, the investigation has to
start in an exploratory fashion.
 We have started such an investigation based on the grounded theory (GT) methodology
(Strauss & Corbin, 1990) and working from rich sets of data (full-length audio, programmer
video, and screen video of pair programming sessions). The current article presents a number of
important methodological insights gained during this research and a few initial results. Its
contributions are the following:

� a description of stumbling blocks for a GT-based analysis in this area;
� a set of practices that extend the plain GT method and help overcome obstacles;
� a sketch of a pair programming process coding scheme.

In subsequent research, the coding scheme is intended to form the basis for more detailed
conceptual descriptions of the pair programming process. It also should support the
proposition of hypotheses and theory construction.
 We will first give a short introduction to GT and describe the nature and origin of our raw
data. The heart of the article describes how and why plain traditional GT does not work well
under these constraints and which practices help it work better. Thereafter we will present the
application of the modified GT process and a few of its initial results, namely excerpts of a
coding scheme for describing the activities occurring during pair programming. We close by
outlining related works and offering a summary and outlook. This article is an improved and
slightly extended version of Salinger, Plonka and Prechelt (2007) and focuses on research
method, not on research results. The results primarily serve to illustrate the method.

THE GROUNDED THEORY METHODOLOGY

Selecting Among Qualitative Research Methods

We have already argued why we believe that it is time to study pair programming in an
exploratory manner. We want to avoid posing specific hypotheses and generally make as few
assumptions as possible. Using predefined coding schemes (see Hughes & Parkes, 2003, for a
list) implies making such assumptions and hence should be avoided. Considerations like these
quite naturally lead to using GT as the research method, because GT is an approach that makes
the fewest number of assumptions.

Coding Scheme Development

 11

 Alternative methods, such as protocol analysis (Ericsson & Simon, 1993) or verbal
analysis (Chi, 1997), appear less suitable because they start from at least partially predefined
coding schemes or theoretical models. They are also more specialized than appropriate: They
were designed for investigating cognitive processes.
 Verbal analysis aims at the ability to quantify qualitative data, which could be an
advantage. Unfortunately, such quantification requires a well-defined granularity of
segmentation, so making such decisions at the start of the analysis prematurely structures the
exploration space and prevents a completely open exploratory approach.

The Basic Ideas of Grounded Theory

GT, first described in Glaser and Strauss (1967), is a data analysis approach that is largely data
driven and aims at producing a theory that describes interesting relationships between things,
situations, events, and activities (together called phenomena) reflected in the data by means of
abstract concepts. The term grounded indicates that this theory will contain only statements
derived from actual observations in a manner that can be traced back to these data: The theory is
grounded in the data.
 We use the variant of GT described by Strauss and Corbin (1990), who suggest three
(partially parallel) activities for a GT-based data analysis:

1. Open coding describes the data by means of conceptual (rather than merely
descriptive) codes, which are derived directly from the data.

2. Axial coding identifies relationships between the concepts described by these codes.
Strauss and Corbin (1990) suggest a concrete set of relationships to check for (in
particular: causal conditions leading to phenomena that exist in a context featuring
intervening conditions and leading to participant’s strategies that create certain
consequences). These relationships (plus the slightly fuzzy notion of forming
categories) they call a paradigmatic model, a term we will use further below.

3. Selective coding extracts a subset of the concepts and relationships found and
formulates them into a coherent theory. Selective coding is not relevant for the
development of a coding scheme and thus will not be discussed in the present article.

Strauss considered the following three aspects to be the core of the GT method, saying in an
interview that only these are required in order to call something GT (Legewie & Schervier-
Legewie, 1995):

� Theoretical coding: Codes are theoretical, not just descriptive. They reflect
concepts that have potential explanatory value for the phenomena described.

� Theoretical sampling: The selection of the material to be analyzed is made
incrementally during the course of the analysis, based on what is expected to be
most relevant for the theory under development.

� Constant comparison: Observed phenomena (and their contexts) are compared
many times in order to create codes that are precise and consistent.

Theoretical sampling is of less interest in the present article, but theoretical coding and
constant comparison are of vital importance to understand the discussion.

Salinger, Plonka, & Prechelt

12

DATA USED FOR THE ANALYSIS OF PAIR PROGRAMMING

In the following subsections, we describe our observation context (programmers and task).
We also describe the data capturing method used.

Observation Context: The Origin of Our Data

We observed (in the manner described below) seven pairs of graduate students who all worked
on the same task. Six of them had worked together as pairs previously. The average work time
(which was not limited) was 3.8 hours. The students were all participants of a highly technical
course on enterprise information systems and the Java2 Enterprise Edition (J2EE) architecture
and technologies. The specific task called for an extension of an existing Web shop application.
The task required broad passive J2EE knowledge for analyzing and understanding the existing
system and specific operational knowledge about Java Message Service (JMS), Java Naming and
Directory Interface (JNDI), and the JBoss application server1 for programming, configuring, and
testing the actual extension. The task was not easy; only three of the pairs were completely
successful. The other four pairs terminated their work before it was completely finished. They did
not believe it to be possible to solve the remaining problems in an acceptable time frame.
 For the analysis described in the present article, we used the session of one of the
successful pairs only. This session ran 2 hours and 58 minutes.

Observation Method: Data Capturing Procedure

Since we did not know in advance what would or would not be important, we needed to start
from a rather rich data set. We used three different data sources:

� An audio recording captured verbal communication between the participants, as well
as other noises, vocal or other, that may have helped with the interpretation of the data.

� A frontal-perspective video of the programmers (shot from above and behind the
screen and reaching down to about waist level) captured aspects of facial
expression, gestures, posture, direction of attention, and, most relevantly, who was
operating mouse and keyboard at any given time.

� A full-resolution screen recording captured almost all computer activities of the
programmers on a fairly fine-grained level.

 All three recordings were made simultaneously using Camtasia Studio2 and unified into a
single, fully synchronized video file in which the camera video was superimposed
semitransparently onto a corner of the screen video. In this way, all data was visible at once
(multidimensional video).
 The session was recorded in an otherwise silent office. Combined with the high audio
quality of a high-end webcam3, this arrangement provided good acoustical playback conditions.

Coding Scheme Development

 13

PROBLEMS OF A PLAIN GROUNDED THEORY DATA ANALYSIS A PPROACH

Attempting GT-style exploratory analysis of the rich data set described above (actually a
precursor study, but very similar in all respects), we quickly recognized that transcription was
not practical. Too much relevant information in the screen recording—source code fragment
input, used features of the development environment (such as browsing across different files
or positions within files), pointing with the mouse during discussion with the partner, and so
on—proved unclear in how to go about, or impractical in the effort of, transcribing.
 This is why we decided to work on the raw video directly. We chose the qualitative data
analysis software ATLAS.ti4 for achieving this task, which is one of the few products that
allows direct annotation to video.
 One of us, Stephan Salinger, started open coding in the manner suggested by Strauss and
Corbin (1990). The short-term goal was to characterize the activities occurring during pair
programming; the long-term goal was to identify recurring behavioral patterns and classify
them as helpful, hampering, ambivalent, or neutral.
 This approach generated as many as 194 distinct concepts and almost complete
confusion and despair in the course of a few days of analysis due to the following problems:

� No predefined focus: We had no criteria for selecting which observations (verbal
interaction, facial expressions, gestures, posture, directions of gaze, subverbal vocal
noises, nervous tics, computer input, input methods, computer output, etc.) to code
and which to ignore, and consequently were overwhelmed by the data.

� No predefined granularity: We made no prior decision regarding the level of detail
worth coding. As a result, we produced codes on different levels of detail (e.g.,
coarse ones such as handle problem and finer ones such as test defect fix), which
were difficult to delineate against one another subsequently.

� No predefined level of acceptable subjectivity: The nature of the codes chosen in
GT can be anywhere on the spectrum, ranging from codes that reflect observations
that any observer could agree with to codes that interpret the observation to a
degree that could be called wishful thinking. GT as such does not provide a
criterion for deciding where “grounded in data” ends and wishful thinking begins.
As a consequence, we mixed objective–descriptive and subjective–evaluative
attitudes for selecting codes. This led to codes of different nature (e.g., descriptive
ones such as uses documentation and assumption-bearing ones such as gains
knowledge of detail) existing side-by-side, which made it harder to decide which
code to use in a particular case.

� Too many topics: The codes described too many different topics of interest, making
it impossible to properly focus on anything. None of the resulting collections of
information ever reached a useful degree of completeness.

� Lack of concept grouping: The diversity of topics also distracted from forming
what GT calls categories: a few large groups of heavily interrelated concepts, say,
human-human interaction (HHI) or human-computer interaction (HCI).

� Importance misjudgments: The high attention to a broad set of concepts overtaxed
our ability to judge their importance so that, because of the large number of concepts
we introduced, we completely overlooked a number of important ones.

Salinger, Plonka, & Prechelt

14

 After we had noticed and gradually understood a number of these problems, we stopped
this mode of investigation completely. We restarted the complete analysis from scratch (but
very slowly and carefully, and with considerable backtracking) and concurrently redesigned
the coding procedure. The result of this redesign was a number of heuristic practices
described below that help using the GT analysis process.

PRACTICES SUPPORTING THE ANALYSIS OF COMPLEX VIDEO DATA

The methodological heuristics presented here form the heart of the present article. These
intertwined practices serve to reduce or solve the problems described in the previous section.
After introducing them, we will present an application that shows how they work together
and mutually support one another.

Practice 1: Perspective on the Data

Strauss and Corbin (1990) suggest that the start of selective coding (that is, after open coding
and axial coding have been going on for quite some time) is the time when you should begin
to decide what is important and what is less so. As described above, we found that this is not
practical when working with rich video data. There are three reasons why a perspective used
for the analysis should be defined before starting:

� to avoid drowning in detail;
� to provide consistency in the criteria used for creating and assigning concepts;
� to focus attention on the most relevant aspects.

This perspective can be defined by formulating answers to the following questions. These
answers should be reviewed (and perhaps revised) several times in the course of the analysis:

1. In which respects do you expect the data to provide insight?
2. What kinds of phenomena do the researchers allow themselves to identify in the

data?
3. What type of result do you want the analysis to bring forth?

 Question 1 does not ask what you expect to find, only in what respects you expect to find
something. The answer acts as a filter that tells you which phenomena should receive more
attention than others. Furthermore, constantly rechecking and adjusting the answer to this
question helps in deciding when to stop the analysis, when to modify (or even replace) your
research question, and when to obtain further or different raw data. In our case, the
expectation was that the data could help understand what activities dominate the pair
programming process and how they relate.
 Answer 2 provides the mechanism for systematically bounding the nature and amount of
subjectivity to be found in the conceptualizations of the data. The strongest restriction would
be to allow only concepts that express directly observable phenomena, resulting in a
behaviorist (stimulus/response) research perspective. Weaker restrictions might also allow
concepts referring to unobservable processes (such as attitudes or thinking processes of
actors), concepts that involve predictions (such as “helpful for reaching goal X”), and/or

Coding Scheme Development

 15

concepts expressing moral judgment (good, bad). We were convinced that, in our case, only
the behaviorist perspective would enable us to trust our own results.
 Finally, the result type is the standard used for deciding how much attention to invest in which
kinds of phenomena when the analysis resources begin to get scarce (which very quickly they
will). It helps to stay on track. Do we want to produce a full conceptual theory, just a conceptual
structure (system of categories) for the data, or even just a coding scheme? In our case, the goal
was just to produce a coding scheme, because we felt we knew so little about the internals of pair
programming that we should not yet decide on an actual engineering research question.

Practice 2: Concept Name Syntax Rules

Choosing concept names is another area where we found that giving up some of the freedom
postulated by plain GT is beneficial. We found that our initial freely chosen concept names
turned out to be highly variable and hence difficult to understand, remember, and compare.
 As a remedy, we developed a structured naming scheme. Within the confines we set for
ourselves by Practice 1, that is, describing directly observable activities of the pair programmers,
the scheme does not predetermine anything with respect to the meaning of a concept: It only
prescribes the shape of its name. When working with this scheme, we observed the following
benefits:

� A concept will be better understood right at introduction time.
� A naming scheme facilitates managing a large set of concepts consistently.
� Some relationships between concepts are implicitly recorded as well, which greatly

simplifies axial coding and the forming of categories.
� A concept name explicitly represents several aspects at once, which simplifies the

fundamental GT practice of constant comparison.
� It becomes easier to understand where difficulties in delineating one concept

against another arise, and correspondingly easier to obtain insights into the
weaknesses of the overall conceptual description in practice.

 In our case, the concepts needed to describe individual activities by one or both of the
pair members, although for other domains of analysis different code naming structures might
be preferable. Our concept name was structured like a complete sentence:

code = <actor>.<description>
actor = P1 | P2 | P
description = <verb>_<object>[_<criterion>]

 Examples for such concept names are P1.ask_knowledge and P2.explain_knowledge. The
criterion element of the structure can be used for additional specialization where needed. Given
such codes, subsequent analysis can very easily abstract, for instance, the verb element (to
compare contexts of objects) or the object element (to compare the variants of action types).
Without such complex codes, the same situation would probably be modeled by a tuple of
codes with relationships. So while finding relationships in plain GT involves axial coding, in
our case recording at least some relationships became a fringe benefit of open coding.

Salinger, Plonka, & Prechelt

16

Practice 3: Analysis Results Metamodel

When we started practicing GT, we found some of the terminology and concepts confusing.
First, where GT talks about phenomena, conceptualization, concepts, properties, categories,
and relationships, our analysis software (ATLAS.ti) talks about quotations, annotation,
concepts, concepts, families, and relationships, respectively—and even the term relationships
denotes two different notions.
 Second, even after the initial learning phase, some of the differences were subtle enough
that we misapplied them every once in a while. As a result, we became confused when trying
to reconstruct what we had meant to express.
 Third, when decisions regarding the introduction or demarcation of codes became
difficult (which they often did), we realized we needed guidance for systematically applying
the ideas of GT to break out of the situation in an appropriate way. (An example of this will
be given in the section presenting the practices’ application.)
 Fourth, we extended the terminological framework with additional ideas related to the
nature of our data, in particular the notion of a Track for partitioning data in order to support
data visualization for a better overview of nested and parallel activities.
 Together, these issues prompted us to formulate an explicit analysis results metamodel,
that is, a model of the concepts that describe the structure of an analysis result. We
formulated this metamodel as a UML class model (Rumbaugh, Jacobson, & Booch, 2005),
which is shown in Figure 1.
 Here is a very short description of the model’s elements: a Quotation defines a fragment
of the data (a scene of the video) the analysis refers to. An Annotation connects Quotations
with a Concept. Concepts can be grouped into a ConceptClass; a single Concept can be a
member of many ConceptClasses.

Figure 1. Complete metamodel of analysis results formulated as a UML class model. Boxes denote

the various different kinds of elements occurring in our GT analysis results and the lines
describe the relationships between them.

Coding Scheme Development

 17

 In order to further differentiate Concepts, they can be attributed with Properties that have
Values. This allows developing concepts in a data-driven manner during axial coding and is
helpful for identifying relationships between concepts (Strauss & Corbin, 1990).
 A ConceptRelation is used to describe a relationship between Concepts, for instance
according to the paradigmatic model. In many cases, such a relationship is not valid for all
pairs of Annotations that use these Concepts; it can then be expressed individually by using
AnnotationRelation. A Track allows for defining subsets of annotations that help identify
various kinds of recurring relationships on the concept level, typically by means of
appropriate visualization, as shown in Figure 2.
 In addition to describing the structure of analysis results (to avoid terminological
confusion), the metamodel also acts as a repository of ideas for the analysis process. For
instance, when one is unsure whether a certain ConceptRelation will always hold, the
metamodel suggests initial annotation of the currently known instances only
(AnnotationRelation) and deferring the creation of the more general ConceptRelation until
sufficient evidence is available.
 Note that the metamodel is meant to be used throughout all phases of the GT research
process. Some of its elements (e.g., Tracks) are used only rarely during the development of a
coding scheme, as described in this article.

Figure 2. An example of a visualization of Tracks: The upper part shows a heavily scaled-down,

automatically generated visualization of the GT annotations for a full pair programming session of 2 hours
and 58 minutes. The lower part shows a magnified excerpt containing in particular the following four

tracks: Track HHI.P1P2 represents the HHI activities of P1 (green) and P2 (red); HCI.P1P2 is the
corresponding view of the HCI activities. Track P1.HHI represents each type of HHI activity performed by

P1 in a different color; P1.HCI is the corresponding view of the HCI activities.

Salinger, Plonka, & Prechelt

18

Practice 4: Pair Coding

The central and most important practice is pair coding. Pair coding means that all coding
work is done by two people working together at one computer (much like pair programming,
but that is just a coincidence). The key idea of pair coding is to require a consensus of two
people for all important decisions: Which phenomena found in the data to single out for
coding; where in time such a phenomenon starts and ends; which existing concept to use for
coding this phenomenon; when to create a new concept; how to name that concept.
 We found a number of benefits associated with pair coding as compared to a single
researcher, some of them very important for successful GT work:

� Concept definitions become more exact, because they are scrutinized more closely
upon their introduction. This effect is further supported by the structured naming
scheme (Practice 2).

� The differentiation between similar concepts also becomes more precise, due not
just to better definitions but also because a pair is less likely to let a concept slip in
that is on a much different level of granularity than the others (and hence likely to
have big overlaps with one or more existing concepts).

� Remaining concept differentiation problems will not be ignored but rather discussed.
If they can be resolved, this will happen at an earlier point in time, leading to fewer
incorrect concept assignments and therefore less rework. If it is impossible to fully
resolve them (a not uncommon situation), the discussion will help understanding
why, leading to a better understanding of the concepts involved.

� The perspective on the data (Practice 1) is maintained more consistently.
� The perspective on the data is refined more regularly and more thoroughly.
� A larger number of relevant phenomena are detected and encoded.

 These results are in tune with psychological research suggesting that groups will often
produce better decisions than isolated individuals (Shaw, 1981). Under adverse
circumstances, groupthink (i.e., excessive concurrence seeking in groups) may make group
decisions worse (t’Hart, 1988). But there is hardly any danger that this will happen in our
setting: Groupthink is most likely in cohesive groups with a dominant leader, where the
group is sharing common stereotypes and producing group pressures towards conformity
(Janis, 1982). Since it is one of the routine tasks of any pair coder to challenge stereotypes
used by the partner and to strive towards identifying possible different viewpoints, only a
dominant person can pose any danger of groupthink in a pair-coding context. If the coders are
equals, groupthink will be highly unlikely to happen.
 Taken together, these four practices provided a quantum leap in the usefulness of our
analysis results. The next section will illustrate this with a number of examples that will also
show how the practices complement one another.

APPLICATION OF THE PRACTICES AND SOME RESULTS

This section will present a few fragments from the analysis process that used the practices
described above and that led to our coding scheme for pair programming. We present these

Coding Scheme Development

 19

examples to make the practices clearer, to explain how they interact, and to make it more
credible that they help vitally.
 We first introduce four concepts from our coding scheme and then present some episodes
from the process in which we created them. Finally, we state a few hypotheses about pair
programming that we have derived based on our coding scheme.

An Extract from the Coding Scheme

Our current version of the coding scheme (which ignores the subject part of the concept
names) contains about 50 different concepts, clustered into about 20 overlapping
ConceptClasses, with most concepts being members of either two or three of them. As an
illustrative example we present the four concepts of the ThinkAloud ConceptClass. They are
shown in Table 1; the descriptions are heavily summarized.

Use of the Practices: A Few Examples

Early during the coding process we recognized that the so-called driver (Williams, Kessler,
Cunningham, & Jeffries, 2000) frequently verbalized what he was doing on the computer.
Based on this observation, we made two decisions. First, we developed two ConceptClasses
(see Practice 3) called HCI (human–computer interaction) and HHI (human–human
interaction) for separating the computer-operating aspect from the verbalization aspect. These
were ConceptClasses rather than individual concepts because the same separation would
obviously be relevant in many other cases as well. Second, we postulated a new concept,
ThinkAloud_Activity. By virtue of the concept naming syntax structure (Practice 2), this one
concept immediately generated a whole ConceptClass (although having only one member at
first) based on the verb to think aloud. This effect led to extended differentiation of concepts
where needed but incurs only little additional complexity for the coding scheme.

We introduced ThinkAloud_Finding as the second member of this class, when we
found a phenomenon that was obviously thinking aloud but did not explain computer
activity. The demarcation appeared to be relatively clear. In the discussion of the pair coders
(Practice 4), we agreed that ThinkAloud_Activity can be used only for the driver and that it
has priority where ThinkAloud_Finding might also be applicable.

Table 1 . The Concepts of the ThinkAloud ConceptClass.

Concept name Description

ThinkAloud_Activity Explains a current computer-operating activity

ThinkAloud_Finding States a newly won insight
(e.g., that some prior action was a mistake)

ThinkAloud_State Reflects on the current state of work
with respect to the current strategy and goal

ThinkAloud_Completion States that a simple work step has been completed

Salinger, Plonka, & Prechelt

20

Soon thereafter we encountered a programmer’s explanation of the state of affairs and
recognized it could be annotated as ThinkAloud_State, thus creating the third member of this
set of concepts. But we soon found ThinkAloud_State to exhibit two problems. First, we had a
case where it collided with ThinkAloud_Finding, because the finding concerned the state of
work. Second, it designated statements on rather different levels of abstraction and granularity.
 We solved both problems by using the metamodel (Practice 3), specifically by
introducing the ConceptRelation “is-precondition-of” from the existing concepts
Propose_Step (suggesting the next step) and Propose_Strategy (suggesting an approach for
choosing many future steps). We postulated that ThinkAloud_State had to refer to a previous
Propose_Strategy and introduced a new concept ThinkAloud_Completion that would refer to a
previous Propose_Step. This solved both problems at once: We could now discriminate large and
small granularity (strategic and tactical) and gained a criterion for when not to use
ThinkAloud_Finding, which provided the demarcation to the other two.
 This illustrates how open coding naturally leads into axial coding and how the combination
of the paradigmatic model with the concept naming syntax (Practice 2) can show a way back
into open coding, thus keeping the complexity of the resulting annotations down.
 We are convinced that this route worked only because of the pair coding constellation
(Practice 4), since both coders initially suggested encodings based on the existing codes and only
the nonacceptance of these suggestions (and their supporting arguments) by the other led to the
discovery of the “is-precondition-of” relationship and the fourth code ThinkAloud_Completion.

Some Hypotheses Based on the Coding Scheme

Although we have not yet started the analysis of the actual pair programming process as such,
a number of phenomena recurred so consistently that we already call them hypotheses:

� We have found no evidence that the driver and the observer do indeed work on
different levels of abstraction, as claimed in the pair programming literature
(Williams et al., 2000). Similar results have been reported for pair programmer
discussions by Bryant, Romero and du Boulay (in press), Freudenberg (née Bryant),
Romero and du Boulay (2007; based on quantitative–qualitative work), and by
Chong and Hurlbutt (2007).

� We have observed what we call pair phases, characterized by a high density of
communication acts referring to just one narrow issue. They look a lot like what
descriptions of pair programming suggest as the normal pair programming process,
but we realized they are all of short duration (usually under 3 minutes).

� We believe that pair programming is not driven by strategic planning and
monitoring. Rather, the plan is quite often only one step long: A single step is
suggested, possibly discussed, decided (or revised), and immediately executed.

� Besides the unavoidable roles of driver and observer, pair programming sessions
apparently tend toward implicitly producing a leader role as well. The leader is the
person more skilled for the given task and influences speed and direction of the process
much more strongly than the pair partner, no matter which role the leader is taking.

 We expect that valuable insight about pair programming can be gained by investigating
the reasons, consequences, and typical context conditions of the above trends. For instance,

Coding Scheme Development

 21

we expect to find that pair phases are episodes of super-high productivity; it would be helpful
to understand when and why they occur.

RELATED WORK

Qualitative Analysis of Pair Programming

We know of no other work analyzing the process of pair programming that uses a real GT
approach: Most similar works use at least partially predefined coding schemes and most
perform quantitative–qualitative analyses by means of protocol analysis or verbal analysis.
We are also not aware of any work that is using video data directly in the analysis process.
 Wake (2002) presented a list of typical pair programmer activities, but provided little
information on how it was derived. Bryant (2004) studied the difference in interaction type
and frequency in novice versus expert pair programmers. In a pilot study, she first refined
Wake’s list into a table of 11 behavior and interaction types. In the actual study, she then
recorded the sequence of events in real time according to this schema and analyzed these data
in a mostly quantitative way.
 Such real-time categorization is obviously a good precondition for analyzing a large
number of sessions, which is a positive approach. On the other hand, the simplicity of the
categorization that is needed to make it possible also restricts the results to analyzing in terms
of the rather simple concepts already presented in the predefined list. Neither subtle
discriminations nor surprising new insights appear likely from this approach: It is applicable
only in narrowly scoped investigations using predefined hypotheses.
 Bryant et al. (in press) investigated behavior related to the driver and observer roles.
They started from audio recordings, transcribed them, and annotated exactly each sentence
with one out of the six predefined codes. The coding scheme is based on Pennington (1987)
and characterizes the abstraction level. The analysis is mainly quantitative. This research
aims at confirming or rejecting a conventional wisdom and is thus rather more hypothesis-
driven than exploratory. A similar assessment applies to Freudenberg et al. (2007).
 Cao and Xu (2005) investigated the activity patterns of pair programming. Pair working
sessions were videotaped and then transcribed. The analysis used a coding scheme based on a
combination of the schemes from Lim, Ward and Benbasat (1997) and Okada and Simon
(1997). Then, during the analysis of the data, a new schema was developed in a manner not
described. This work shares our behaviorist observation attitude; unlike our approach,
however, it ignored all information contained in the computer interaction even though it was
still grounded in only objectively observable communication acts.
 In contrast, Xu and Rajlich (2005) used the dialog-based protocol in order to analyze the
cognitive activities in pair programming, which involves a far greater amount of either
subjectivity or generalized assumption. The coding scheme involved classification heuristics
derived from a theory on self-directed learning (Xu, Rajlich, & Marcus, 2005). Xu and Rajlich
proposed to do the coding assignment by two or more coders. In contrast to our approach, the
coders worked separately and compared the results afterwards. This approach is sensible only
with a fixed coding scheme; a GT-like generation of concepts would be very inefficient in this
manner. Immediate discussion, as in pair coding (Practice 4), is much more efficient.

Salinger, Plonka, & Prechelt

22

 It is obvious that all five studies use rather predefined concepts during the analysis than
concepts grounded only in the data. We fear that such approaches will be much more likely to
fall prey to unwarranted assumptions according to conventional wisdom, such as the
presumed driver/observer role differences, and so on.

Grounded Theory Work Using Rich Video Data

Even in the broader GT-related literature, examples of studies using video during the analysis
(rather than transcripts of videos only) are rare. We found one such example in medicine that
studied medical team leadership behavior (Xiao, Seagull, Mackenzie, & Klein, 2004). The video
was recorded with four cameras from different angles. The analysis involved four analysts and
three steps: (a) One analyst identified video segments with interesting verbal or nonverbal team
interactions; (b) Two analysts created conceptual descriptions of the segments by consensus; and
(3) Taxonomies for leadership actions from the conceptual descriptions were developed. This
approach resembles our pair coding practice, at least in Step 2. If different people performed
Steps 1, 2, 3 (the article is very unclear in this respect), we consider this a problematic procedure:
It is almost antithetical to the GT philosophy, because it partially prohibits constant comparison
and fully prohibits the intertwining of open coding (Steps 1 and 2) and axial coding (Step 3).

CONCLUSION AND FURTHER WORK

We have described why a straightforward application of the standard GT method on
multidimensional video data of pair programming sessions is not likely to be successful.
Furthermore, we presented and illustrated a set of four analysis practices that provide a
systematic way to hold the analysis problems at bay:

� Perspective on the data helps avoid drowning in detail.
� Concept name syntax rules help create useful and consistent concept names.
� An analysis results metamodel helps keep the analysis process systematic and the

results well structured.
� Pair coding mitigates the effects of limited or distorted perception.

 We have used these practices to generate a general-purpose coding scheme of pair
programming activities, of which we presented a small excerpt. In the future, we will proceed
with the following steps:

� Validation of the coding scheme. We will encode sessions that have very different
properties with respect to participants, task, and setting.

� Qualitative and quantitative evaluation of the coding process itself, based on its
results, intermediate results, and process monitoring information (in particular
timestamps) recorded by ATLAS.ti.

� Refinement of the coding scheme with respect to particular research applications,
in particular by adding properties according to the metamodel.

� Application of the coding scheme to produce actual grounded theories of several
aspects of the pair programming process. This will require selective coding through

Coding Scheme Development

 23

which we expect to exercise even those parts of the metamodel not discussed in the
present article.

 Just like the four practices mutually support one another, these tasks will also exhibit
synergy and so will be performed partially in parallel.

ENDNOTES

1. See http://labs.jboss.com/
2. A product of the TechSmith Corporation, http://www.techsmith.com
3. Logitech 5000 webcam
4. See http://www.atlasti.com/

REFERENCES

Beck, K. (2004). Extreme programming explained: Embrace change (2nd ed.). Boston: Addison-Wesley Professional.

Bryant, S. (2004). Double trouble: Mixing qualitative and quantitative methods in the study of extreme
programmers. In Proceedings of the 2004 IEEE Symposium on Visual Languages: Human Centric
Computing (VL/HCC ’04; pp. 55–61). Washington, DC, USA: IEEE Computer Society. Retrieved April
11, 2008, from http://doi.ieeecomputersociety.org/10.1109/VLHCC.2004.20

Bryant, S., Romero, P., & du Boulay, B. (in press). Pair programming and the mysterious role of the navigator.
International Journal of Human-Computer Studies.

Cao, L., & Xu, P. (2005). Activity patterns of pair programming. In Proceedings of the 38th Annual Hawaii
International Conference on System Sciences (HICSS ’05; p. 88a). Washington, DC, USA: IEEE
Computer Society. Retrieved April 11, 2008, from
http://doi.ieeecomputersociety.org/10.1109/HICSS.2005.66

Chi, M. T. H. (1997). Quantifying qualitative analyses of verbal data: A practical guide. Journal of Learning
Sciences, 6, 271–315.

Chong, J., & Hurlbutt, T. (2007). The social dynamics of pair programming. In Proceedings of the 29th

International Conference on Software Engineering (ICSE ’07; pp. 354–363). Washington, DC, USA: IEEE
Computer Society. Retrieved April 11, 2008, from
http://doi.ieeecomputersociety.org/10.1109/ICSE.2007.87

Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data. Cambridge, MA, USA: MIT
Press.

Freudenberg, S. (née Bryant), Romero, P., & du Boulay, B. (2007). “Talking the talk”: Is intermediate-level
conversation the key to the pair programming success story? In AGILE 2007 (pp. 84–91). Washington,
DC, USA: IEEE Computer Society. Retrieved April 11, 2008, from
http://doi.ieeecomputersociety.org/10.1109/AGILE.2007.1

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research.
New York: Aldine de Gruyter.

Hughes, J., & Parkes, S. (2003). Trends in the use of verbal protocol analysis in software engineering research.
Behaviour and Information Technology, 22, 127–140.

Janis, I. L. (1982). Groupthink (2nd ed.). Boston: Houghton Mifflin Company.

Legewie, H., & Schervier-Legewie, B. (1995). Im Gespräch: Anselm Strauss [An interview of Anselm Strauss].
Journal für Psychologie, 3, 64–75.

Salinger, Plonka, & Prechelt

24

Lim, K., Ward, L., & Benbasat, I. (1997). An empirical study of computer system learning: Comparison of co-
discovery and self-discovery methods. Information Systems Research, 8, 254–272.

Lui, K. M., & Chan, K. C. (2003). When does a pair outperform two individuals? In M. Marchesi & G. Succi
(Eds.), Extreme programming and agile processes in software engineering (Lecture Notes in Computer
Science 2675, pp. 225–233). Berlin, Germany: Springer.

Nawrocki, J. R., Jasiński, M., Olek, Ł., & Lange, B. (2005). Pair programming vs. side-by-side programming. In
I. Richardson, P. Abrahamsson, & R. Messnarz (Eds.), Software process improvement (Lecture Notes in
Computer Science 3792, pp. 28–38). Berlin, Germany: Springer.

Okada, T., & Simon, H. (1997). Collaborative discovery in a scientific domain. Cognitive Science, 21, 109–146.

Pennington, N. (1987). Comprehension strategies in programming. In G. Olson, S. Sheppard, & E. Soloway
(Eds.), Empirical Studies of Programmers: Second Workshop (pp. 100–113). Norwood, NJ, USA: Ablex
Publishing Corp.

Rumbaugh, J., Jacobson, I., & Booch, G. (2005). The unified modeling language reference manual (2nd ed.).
Boston: Addison-Wesley Professional.

Salinger, S., Plonka, L., & Prechelt, L. (2007). A coding scheme development methodology using grounded
theory for qualitative analysis of pair programming. In J. Sajaniemi, M. Tukiainen, R. Bednarik, &
S. Nevalainen (Eds.), Proceedings of the 19th Annual Workshop of the Psychology of Programming
Interest Group (pp. 144–157). Joensuu, Finland: Department of Computer Science and Statistics,
University of Joensuu. Also available at http://www.ppig.org/papers/19th-Salinger.pdf

Shaw, M. E. (1981). Group dynamics: The psychology of small group behavior. New York: McGraw Hill.

Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and techniques.
London: Sage Publications, Inc.

t’Hart, P. (1988, July). Groupthink: Observations toward a theory. Paper presented at the meeting of the
International Society of Political Psychology, Meadowlands, NJ, USA.

Wake, W. (2002). Extreme programming explored. Boston: Addison-Wesley.

Williams, L. (2001). Integrating pair programming into a software development process. In Proceedings of the
14th Conference on Software Engineering Education and Training (CSEET ’01; pp. 27–36). Washington,
DC, USA: IEEE Computer Society. Retrieved April 11, 2008, from
http://doi.ieeecomputersociety.org/10.1109/CSEE.2001.913816

Williams, L., Kessler, R. R., Cunningham, W., & Jeffries, R. (2000). Strengthening the case for pair
programming. IEEE Software, 17(4), 19–25.

Xiao, Y., Seagull, F., Mackenzie, C., & Klein, K. (2004). Adaptive leadership in trauma resuscitation teams: A
grounded theory approach to video analysis. Cognition, Technology & Work, 6, 158–164.

Xu, S., & Rajlich, V. (2005). Dialog-based protocol: An empirical research method for cognitive activities in
software engineering. In International Symposium on Empirical Software Engineering (ISESE 2005; pp.
383–392). Los Alamitos, CA, USA: IEEE Computer Society. Retrieved April 11, 2008, from
http://doi.ieeecomputersociety.org/10.1109/ISESE.2005.1541848

Xu, S., Rajlich, V., & Marcus, A. (2005). An empirical study of programmer learning during incremental
software development. In Fourth IEEE Conference on Cognitive Informatics (ICCI 2005; pp. 340–349).
Los Alamitos, CA, USA: IEEE Computer Society. Retrieved April 11, 2008, from
http://doi.acm.org/10.1145/1145287.1145289

Coding Scheme Development

 25

Author’s Note

All correspondence should be addressed to:
Stephan Salinger
Institut für Informatik
Freie Universität Berlin
Takustr. 9
14195 Berlin
Germany
salinger@inf.fu-berlin.de

Human Technology: An Interdisciplinary Journal on Humans in ICT Environments
ISSN 1795-6889
www.humantechnology.jyu.fi

An Interdisciplinary Journal on Humans in ICT Environments ISSN: 1795-6889

www.humantechnology.jyu.fi Volume 4 (1), May 2008, 26–46

 26

USABILITY ASSESSMENT OF A UML-BASED FORMAL
MODELING METHOD USING A COGNITIVE DIMENSIONS

FRAMEWORK

Abstract: Conceptual models communicate the important aspects of a problem domain
to stakeholders. The quality of the models is highly dependent on the usability of the
modeling method used. This paper presents a survey conducted on a method that
integrates the use of a semiformal notation, namely the Unified Modeling Language
(UML) and a formal notation, namely B. The survey assessed the usability of the method
by using the grounded theory, the Cognitive Dimensions of Notations (CD) framework,
and several criteria suggested by the International Organization for Standardization
(ISO). Ten participants responded to the survey. The results suggest that the method is
accessible to users when the principles and roles of each notation are obvious and well
understood, and when there is strong support from the environment. Supported by the
findings, a usability profile based on CD for designing a method that integrates
semiformal and formal notations is proposed.

Keywords: empirical assessment, semiformal and formal notations, cognitive
dimensions (CD), grounded theory, usability.

INTRODUCTION

Modeling is vital in the development and maintenance of software systems. It allows the
characteristics of the existing and future systems to be captured and understood. The
modeling process produces models where the requirement specification is one of them.
Software requirement specification is a conceptual model that establishes the connection
between the user’s needs of a system and the software solution to meet them. It is an abstract,

© 2008 Rozilawati Razali, Colin Snook, Michael Poppleton, & Paul Garratt, and the Agora Center, University of
Jyväskylä. URN:NBNfi:jyu-200804151351

Rozilawati Razali
Dependable Systems and Software

Engineering, School of Electronics and
Computer Science, University of

Southampton, UK

Colin Snook
Dependable Systems and Software

Engineering, School of Electronics and
Computer Science, University of

Southampton, UK

Michael Poppleton
Dependable Systems and Software

Engineering, School of Electronics and
Computer Science, University of

Southampton, UK

Paul Garratt
Dependable Systems and Software

Engineering, School of Electronics and
Computer Science, University of

Southampton, UK

Usability Evaluation of a UML-Based Formal Method

 27

clear, precise, and unambiguous conception of a system, which is developed by using the
appropriate notations. Some examples of notations used in conceptual modeling include
semiformal notations such as entity-relationship diagram (ERD; Chen, 1976) and Unified
Modeling Language (UML; Object Management Group [OMG], 2008), and formal notations
such as Z (Spivey, 1992) and B (Abrial, 1996). In addition, there are also notations that
integrate both semiformal and formal, such as UML and Z (Martin, 2003).

Formal notations such as Z and B use mathematical symbols to describe a system. The
notations have three components: rules for determining the grammatical well-formedness of
sentences (syntax); rules for interpreting sentences in a precise, meaningful way within the
domain considered (semantics); and rules for inferring useful information (proof theory), which
provides the basis for automated analysis of a model (van Lamsweerde, 2000). Formal
notations therefore have the ability to increase a model’s precision and consistency, which is
necessary especially for critical systems (Hinchey, 2002). However, the notations are regarded
as being difficult to comprehend, due to the usage of unfamiliar symbols and underlying rules
of interpretation that are not apparent to many practitioners (Carew, Exton, & Buckley, 2005).
On the other hand, semiformal notations such as ERD and UML provide abstract graphical
representations for illustrating system elements. They are semiformal because, although they
possess some formal aspects such as support the iterative refinement process, they cannot be
used to verify or predict the vast majority of system characteristics (Alexander, 1996). As a
result, an accurate and consistent model cannot be guaranteed. Nonetheless, the notations are
perceived as more accessible, since it is easier to visualize the mapping of graphical symbols to
the real-world objects they represent (Bauer & Johnson-Laird, 1993).

By integrating formal and semiformal notations, it may be that practitioners can produce a
model that is accurate, consistent, and more accessible to them. One possible approach to this
integration is to combine the formal notation of B and the semiformal notation of UML. A
method called UML-B (Snook & Butler, 2006) is one such product. The rationale of this
integration is that B has strong industrial supporting tools, such as Atelier-B (ClearSy
Systems Engineering [ClearSy], n.d.) and B-Toolkit (B-Core Limited [B-Core], 2002), and
UML has become the de facto standard for system development (Pender, 2003).

This paper presents an investigation into the usability of UML-B. Usability in this context
means the understandability/comprehensibility, learnability, operability, and attractiveness of the
method. The assessment was conducted by using the grounded theory and a usability evaluation
framework, namely the Cognitive Dimensions of Notations (CD; Green, 1989; Green & Petre,
1996), with several usability criteria suggested by the International Organization for
Standardization (ISO, 2003, 2004). The following section provides the background of the paper,
which includes a brief description of CD and UML-B. Later, the survey is presented. The final
section concludes the paper with a summary of the main findings and future work.

BACKGROUND

Cognitive Dimensions

The CD framework provides a comprehensive vocabulary for discussing the usability of
programming languages, tools, and environments. It was originally proposed as a broad-brush

Razali, Snook, Poppleton, & Garratt

28

discussion tool, offering a vocabulary to discuss the usability tradeoffs that occur when
designing programming environments (Green, 1989; Green & Petre, 1996). Nevertheless, it is
also applicable beyond the programming environment. Since its proposal, the CD framework
has been used as a basis of usability evaluation for several notations, such as UML (Cox,
2000; Kutar, Britton, & Barker, 2002), C# (Microsoft Corporation [Microsoft], 2008)
programming language (Clarke, 2001), spreadsheet application (Tukiainen, 2001), and Z
notation and tools (Triffitt & Khazaei, 2002).
 The framework is generally seen as a tool that aids the usability evaluation of information-
based artifacts (Green & Blackwell, 1998). The aim of the framework is to provide general
guidelines that can be used to evaluate the usability and suitability of an artifact for a particular
setting. An artifact is analyzed based on a usability profile that contains a CD set. The profile
guides the evaluation of the artifact for a particular user activity. The framework distinguishes
six main types of user activity (Blackwell & Green, 2003): incrementation, transcription,
modification, exploratory design, searching and exploratory understanding. Each of these user
activities is supported by a specific usability profile.
 Table 1 provides the 14 dimensions in the CD framework, with summarized descriptions.
Although the dimensions are conceptually independent, many of the dimensions are pairwise
interdependent (Green & Blackwell, 1998). This means although any given pair can be treated as
independent, a change in one dimension usually requires a change in some other dimension. For
example, reducing a notation’s viscosity may not affect its closeness of mapping, but it is likely to
affect other dimensions, such as increasing the abstraction gradient. The framework considers this
situation a matter of making compromises or tradeoffs in artifact designs.

Table 1. The CD Framework (drawn from Green, 1989).

Dimension Description

Abstraction gradient Level of grouping mechanism enforced by the notation

Closeness of mapping Mapping between the notation and the problem domain

Consistency Similar semantics are presented in a similar syntactic manner

Diffuseness Complexity or verbosity of the notation to express a meaning

Error-proneness Tendency of the notation to induce mistakes

Hard mental operations Degree of mental processes required for users to understand the notation and to
keep track of what is happening

Hidden dependencies Relationship between two entities such that one of them is dependent on the other
but the dependency is not fully visible

Premature commitment Enforcement of decisions prior to information needed and task ordering constraints

Progressive evaluation Ability to evaluate own work in progress at any time

Provisionality Flexibility of the notation for users to play with ideas

Role-expressiveness Purpose of an entity and how it relates to the whole component is obvious and can
be directly implied

Secondary notation Ability to use notations other than the official semantics to express extra
information or meaning

Viscosity Degree of effort required to perform a change

Visibility/Juxtaposibility Ability to view every component simultaneously or view two related components
side by side at a time

Usability Evaluation of a UML-Based Formal Method

 29

 In essence, CD provides a framework for assessing the usability of building and
modifying information structures. Because usability depends on the structure of the notation
and the supporting tools provided by the environment, the dimensions are indeed applicable
to the whole system.

UML-B

UML-B (Snook & Butler, 2006) is a graphical formal modeling notation and method based on
UML (OMG, 2008) and B (Abrial, 1996). It uses UML’s Class and Statechart diagrams as the
graphical representation of its model. The Class diagram shows the structure and the
relationships between system entities. The Statechart diagrams are attached to classes to
describe their behavior. A notation, µB (micro B) that is based on B notation, is used for textual
constraints and actions for the diagrams. µB has an object-oriented style dot notation that is
used to show ownership of entities, namely attributes and operations by classes. The modeling
environment of UML-B includes Rational Rose (IBM Software [IBM], n.d.) and a translator
called U2B (Snook & Butler, 2006). Rational Rose provides the environment for the UML-B
model development while U2B is a tool that translates a UML-B model to a B model so that it
can be verified by B tools, such as Atelier-B (ClearSy, n.d.) and B-Toolkit (B-Core, 2002).
 Figures 1 and 2 illustrate examples of a Class diagram and a Statechart diagram of a UML-B
model, respectively. The Class diagram shows the entities and relationships involved in an
Auction System. Two main classes, namely USER and AUCTION, are connected through seller
and highest_bidder relationships. The Statechart diagram shows the states and transitions
(operations) of the AUCTION class with the respective textual constraints specified using µB.

Figure 1. An example of a Class diagram of UML-B.

Razali, Snook, Poppleton, & Garratt

30

Figure 2. An example of a Statechart diagram of UML-B.

 The comprehensibility of the notation used in a UML-B model has been assessed in
previous work (Razali, Snook, Poppleton, Garratt, & Walters, 2007). The assessment was
conducted as a controlled experiment that compared a UML-B model and a B model for
model interpretation task. The measure of interest used in the experiment was efficiency in
performing the task, that is, accuracy over time. The results suggest with 95% confidence that
a UML-B model could be up to 16% (overall comprehension) and 50% (comprehension for
modification task) easier to understand than the corresponding B model. The subjects
commented that the UML-B model made it easier and quicker to understand the scenario and
the relationships between operations; easy to develop, especially on computers; and more
logical to developers. Nevertheless, the model was said to be useful only with good tool
support. The UML-B model was also regarded as being quite “messy,” since the information
was scattered around the Class and Statechart diagrams.

SURVEY

The controlled experiment described briefly in the previous section evaluated the notation
comprehensibility in terms of how easy it is to understand a UML-B model from the
perspective of users who interpret the model. The results of the experiment suggest that the
UML-B model is more comprehensible than the B model. The findings however cannot
suggest by any means that the notation is also usable from the perspective of developers who
use UML-B for modeling. Neither could they determine whether or not the notation suits the
developers’ common needs and expectations.

The following subsections present a further survey conducted on UML-B. The survey
assessed the usability of the notation used in UML-B from developers’ perspectives,
especially from the point of view of users who have only recently started to use it. Since

Usability Evaluation of a UML-Based Formal Method

 31

usability depends on the notation and its environment, the evaluation included the tools that
accompany the method, namely Rational Rose (IBM, n.d.) and U2B (Snook & Butler, 2006),
whenever appropriate.

Objectives and Methods

The survey was qualitative in nature. Despite the fact that some of the data were quantified
using an ordinal scale, the bulk of the analysis was interpretative. This type of analysis was
carried out due to the problem at hand, that is, the survey attempted to understand the nature
of experience of using UML-B. Since little is known about the UML-B method, the survey
aimed to explore and gain novel understandings of its use through qualitative data and
analysis. The analysis allows the intricate details about the phenomena, such as feelings,
emotions, and thoughts to be extracted and analyzed.

Many different approaches to qualitative data are employed in the social sciences
(Cassell & Symon, 1994; Denzin & Lincoln, 1994; Westbrook, 1994). We adopted one
approach, namely the grounded theory (Glaser & Strauss, 1967; Strauss & Corbin, 1998).
There are two variations in the approach, which are based on different directions taken by its
originators, namely Glaser (1992) and Strauss and Corbin (1998). This survey employed
Strauss’ approach because it is more systematic and directive. In particular, it contains more
formal models and procedures to generate theories. It also encourages a qualitative study to
have a research question so that the researcher can stay focused amid the masses of data. In a
qualitative study, the research question should be broad and open-ended.

The theory in the grounded theory approach is derived from data, systematically gathered
and analyzed through the process. This approach was chosen because, unlike the controlled
experiment conducted previously, this survey was not based on any specific theory. The
grounded theory approach allows the study to be initiated without a preconceived theory in
mind: The researcher can start with a phenomenon and allow the theory to emerge from the
collected data. Because the theory is drawn from data, it is likely to offer insight, enhance
understanding, and provide a meaningful guide to action (Strauss & Corbin, 1998). It is believed
that the theory generated from this approach is more likely to resemble the reality, as compared
to theory derived by merging concepts based on how one thinks things ought to work.

The survey aimed to formulate tentative theories of the usability of integrated methods,
(combined semiformal and formal notations) such as UML-B, based on the understanding
obtained from the qualitative analysis using the grounded theory approach. While a single
study can never embrace all possible situations, the survey sought to provide some
preliminary evidence of the integrated method’s likely strengths and weaknesses when used
under certain defined conditions. It was also intended to identify any threats that could hinder
the method’s usability and any opportunities that could improve the method further. The
tentative theories could act as a basis for further investigation and analysis.

One of the subjective comments obtained from the earlier controlled experiment was that
UML-B was seen as easy to develop, particularly on computers. The method also was
deemed to be useful only with good tool support. These hypotheses were given by subjects
who dealt with the already-developed UML-B model, not the process of modeling. This
could suggest, therefore, that the hypotheses might not be true from developers’ perspectives

Razali, Snook, Poppleton, & Garratt

32

for modeling purposes. As a result, the survey included these hypotheses in its investigation
of the phenomenon through the following broad research questions:

� Do individuals who develop a model using the UML-B method perceive them (i.e.,
the method and the model) as usable (easy to understand, easy to learn, easy to
operate, and attractive)?

� What are the characteristics of the UML-B method and UML-B model that affect
their usability from the modeling perspective?

Materials

The survey instrument was developed based on the ideas proposed in the CD usability
framework (Green, 1989). The framework was adopted because it captures a significant
number of psychology and human–computer interaction (HCI) aspects that focus particularly
on the notational design. The framework comprises 14 dimensions (see Table 1), which acted
as the response variables in the survey.

The questions for the survey were constructed by following the proposed CD questionnaire
(Blackwell & Green, 2000). The advantage of using a standard instrumentation, as proposed by
the CD questionnaire, is that it has been assessed for validity and reliability by the authors. The
CD framework is widely used by other researchers investigating the usability of notations, such
as UML diagrams (Kutar et al., 2002) and Z (Triffitt & Khazaei, 2002), and so it provides a
mechanism to compare the results of this survey with the results of other similar studies.

The CD questionnaire is intended to present the dimensions in general terms,
applicable to all information artifacts, rather than presenting descriptions specialized to a
specific system under consideration. The questionnaire was therefore tailored and modified
slightly to reflect the characteristics of UML-B. Moreover, the questions for the survey
were designed to include a set of answers using an ordinal scale together with the open-
ended questions. This approach allowed the survey to obtain some quantitative measures
rather than exclusively qualitative measures.

In addition to the CD framework, the questions on the survey were also constructed based
on the usability criteria proposed by the International Organization for Standardization (ISO,
2003, 2004): understandability, learnability, operability, and attractiveness. There were 20
questions on the survey: 14 reflecting the dimensions of the CD framework, 5 representing
the ISO’s usability criteria, and 1 designed to gather suggestions for improvement. The 14
questions on CD were also mapped to at least one usability criterion of ISO. The mapping
was based on the definition stated in the standard. The questions on the survey were
presented in random order without following a specific sequence of dimensions. To ensure
the questions were purposeful and concrete, the general guidelines on survey question
construction were followed (Kitchenham & Pfleeger, 2002).

The questions used an ordinal scale that provided the respondents with five potential levels
of agreement, from –2 (very difficult) to 2 (very easy). An uneven number of levels were used
because, by allowing for a neutral opinion, uneven numbers contribute to the achievement of
better results (Bonissone, 1982). In addition to the selection on the scale, justification for the
answer given was also required through open-ended questions, such as Why? or Which part?
This acted as the qualitative data, which were used together with the quantitative data on the
scale for the analysis. There were also questions that required an answer of Yes, No or Not sure.

Usability Evaluation of a UML-Based Formal Method

 33

The survey questions and raw data can be found in Razali (2007). As an overview of the
questions, Figure 3 provides some examples of the survey questions. The first question
concerns the visibility and juxtaposability dimension, which also relates to the
operability/attractiveness criteria of the ISO. The second question involves the hard mental
operations dimension that also implies the ISO’s understandability/learnability criteria.

The CD framework describes the necessary conditions for usability based on the structural
properties of a notation, the properties and resources of an environment, and the type of user
activity: incrementation, transcription, modification, exploratory design, searching and
exploratory understanding (Blackwell & Green, 2003). In particular, it addresses whether the
users’ intended activities are adequately supported by the structure of the notation used and its
environment. For the survey, the identified users’ intended activity was exploratory design, in
which the users employed UML-B (notation and environment) to design a conceptual model.
The survey questions and analysis therefore were tailored towards this aspect.

The survey questions were reviewed by a focus group prior to distribution. There were
four people involved in the process. The purpose of the review was to identify any missing or
unnecessary questions as well as to identify any ambiguous questions and instructions.

Participants

Ten participants responded to the survey. They were master’s students of a software
engineering program at the University of Southampton, who registered for the Critical
Systems1 course in spring 2006. They were chosen due to their potential contribution towards
the development of usability theory for integrated methods such as UML-B. Specifically, they
were selected because they received formal training on B (9 hours) and UML-B (1 hour)
during the course. They also had completed courses on the object-oriented technology and
formal methods of developing at some points in their studies. Basic knowledge of those
aspects is necessary to develop a UML-B model. Moreover, the participants had some
practical experience in using UML-B and its tools before participating in the survey. In
particular, they used the method to develop a model of a system as part of their coursework
towards the end of the Critical Systems course.

Figure 3. Examples of the survey questions from Razali (2007).

If you need to compare different parts of your UML-B model (e.g., between diagrams or windows of
different operations, etc.), how easy is it to view them at the same time in Rational Rose?

Very difficult Very Easy
 -2 -1 0 1 2

Why?

Do you find any complex or difficult tasks to work out in your head when modeling your UML-B model?

No Not Sure Yes

If Yes, what are they? If No or Not Sure, why?

Razali, Snook, Poppleton, & Garratt

34

The survey adhered to the university’s ethical policies and guidance for conducting
research involving human participants. The participants were aware that the survey was
intended for research purposes. They were motivated to participate as it helped them in
exploring the method in addition to providing a space for reflection on their learning prior to
their course examination.

The subjects were in the final semester of their master’s program. They therefore had a
reasonable amount of experience and knowledge in software development. Some of them had
some professional work experience in this area. They are the next generation of professionals,
thus they represented closely the population under study: software developers who are new
users of the UML-B method.

Results and Analysis

The survey adopted the grounded theory approach for the data analysis. In addition to
capturing the informants’ experiences of using UML-B, the survey aimed to formulate
tentative theories on the usability of such integrated methods in general. The theory in the
approach denotes a set of discrete categories that are systematically connected through
statements of relationship. The categories in essence are abstract concepts that describe the
phenomenon under study, whereas the statements of relationship are the interrelated
properties of those categories.

Employing the grounded theory approach entails a number of coding and analysis
processes. The first one applied was open coding where the responses were examined for
objects of interest based on the stated research questions. The technique used was
microanalysis (Strauss & Corbin, 1998). The analysis focused on identifying major themes or
categories and how often they emerged in the data under varying conditions. The idea was to
form a theoretical framework, thus the analysis involved the formulation of general
categories rather than ones specific to any individual cases. For example, issues of using
Rational Rose (IBM, n.d.) and running U2B (Snook & Butler, 2006) were conceptualized as
Availability and Usefulness of Supporting Tools. The analysis did not intend to specifically
delineate every single limitation of the tools. Rather, the objective was to identify and
propose a set of categories that can be used as a basis for examining the usability of other
similar methods in future.

After completing open coding, an axial coding process was conducted. Axial coding
involves moving to a higher level of abstraction by identifying relationships between
categories based on their properties. This forms the basis for the theory construction. The
properties for the categories were derived by having queries such as what, why, how and
when during the analysis process. For example, respondents mentioned the issue of learning
UML and B several times in their answers. Therefore, Learnability of Notations and Tools
was recognized as one of the categories. On the other hand, it is necessary to know what
aspect of the notations and their tools was easy or difficult to learn, when and why they
happened, in order to understand the phenomenon. To answer the queries, evidence was
obtained and accumulated from various parts of the questionnaire. This included both the
quantitative (ordinal scale) and qualitative (subjective) data. The use of CD framework and
ISO’s usability criteria that shaped the dimensions of usability investigation facilitated the
identification of the categories and properties.

Usability Evaluation of a UML-Based Formal Method

 35

The following paragraphs list the categories and elaborate their properties. The properties
(reasoning based on CD and ISO usability criteria) that support the statements are stated in
the parentheses in the paragraphs. The properties were grouped into categories based on the
respondents’ qualitative answers and data on the ordinal scales (for details, see Razali, 2007).

Category 1: Model Structure and Organization. The UML portion of UML-B allows the
system properties and behaviors to be illustrated using the Class and Statechart diagrams.
Each diagram represents the system from a specific perspective. For example, the Class
diagram shows the attributes and relationships between entities in the system while the
Statechart diagram delineates the states and transitions involved in the system operations. In
modeling a UML-B model, the users employ the diagrams to illustrate the system properties
from these perspectives.

The diagrams are equipped with formal semantics, where the characteristics and
behaviors of the systems are more precisely specified. Formal semantics in the form of B
syntax are added at different parts of the diagrams so that the diagrams and semantics can be
transformed to a B model. For example, the global variables and invariants are placed at the
Class diagram level while the conditions and effects of the behaviors are placed at the
Statechart diagram level. Despite being scattered throughout several parts of the model, the
method has the ability to transform the diagrams and consolidate the semantics as a single B
model through its tool, namely U2B.

Despite being logical, having the formal semantics at different parts of the model causes
an accessibility issue for the users. They need to switch to different parts of the model to
specify the formal semantics. Rational Rose supports the display of multiple windows at one
time. However, having to deal with several displayed windows simultaneously in Rational
Rose seems to be a problem (Property: visibility and juxtaposibility dimension). The users
have to view not only the windows that display the Class and Statechart diagrams but also the
pop-up windows that carry the semantics for each of the diagrams. In fact, some of these
windows have to be on top of each other due to limited screen space. This leads the users to
overlook certain aspects of the model and to become prone to errors (Property: error
proneness dimension). The users can view and subsequently check the model using B tools
by translating it to a B model using U2B at any modeling stage they like (Property:
progressive evaluation dimension). However, having to transform the model, particularly
while formulating and synthesizing ideas, has been regarded as a “noise.” In addition, model
transformation at early stages, where many aspects have yet to be carefully thought through,
will generate error messages in B tools. And starting modeling with many generated errors
can be a daunting experience, especially to new users.

This finding supports the comment obtained from the controlled experiment where the
UML-B model had been regarded as messy. The messiness is caused not only by the
scattered information but also the display of multiple windows simultaneously. The structure
of the model does affect its accessibility for both model reading and development, even on
the computer screen. The cognitive psychology theory that underpins this phenomenon is that
humans have a limited amount of information that can be processed at one time. The way
material is organized and presented has an effect (Chandler & Sweller, 1992). When the
related information is separated on the page or screen, users have to use cognitive resources
to search and integrate it. Users are less able to hold the separated information in working

Razali, Snook, Poppleton, & Garratt

36

memory simultaneously, especially if the information has a high intrinsic cognitive load
(Sweller & Chandler, 1994). In general, a formal notation such as B syntax is high in intrinsic
cognitive load because it involves concurrent interactions between its syntactical and
semantic characteristics.

Because a UML-B model always involves the use of more than one UML diagram that
carries the respective B syntax, the issue of scattered information is seen as unavoidable.
However, the effect of split-attention can be reduced if the modeling tool allows more
convenient and less distracting switching to and viewing different parts of the model.

Category 2: Availability and Usefulness of Supporting Tools. Rational Rose and U2B are
the main supporting tools in UML-B. These tools have been useful in some aspects (Property:
consistency dimension; secondary notation dimension; Learnability and Utility of U2B). On
the other hand, several problems in user-friendliness were discovered by the users. For
example, Rational Rose does not support some changes automatically, which causes the
modification process to be unnecessarily tedious (Property: viscosity dimension). If a variable
name is changed in the Class diagram, the change is not reflected in other parts, such as in the
Statechart diagram or in the semantics where the variable name is used. A similar situation
applies to variable deletion. Thus, the changes have to be done manually by visiting the
respective parts of the model.

U2B in general has received a fairly good acceptance among the users. This is due to its
obvious role, that is, to transform a UML-B model into a B model. By executing several simple
steps, the users can generate a B model and execute the verification task using B tools (Property:
progressive evaluation dimension). This is the reason why the tool is seen as easy to learn and
use (Property: Learnability and Utility of U2B). The automatic transformation has alleviated
some pains that would occur when modeling a B model from scratch. At the very least, it
provides basic structures for the B model, which the users could extend further by adding more
details. However, in order to keep the U2B simple, it does not contain a verification feature; the
user would need to return to the B tools to achieve verification. As a result, no matter how
simple to use, U2B, or even Rational Rose, does not support any type of checking. This means
users have to transform the UML-B model to a B model and run it in B tools each time they
change an idea, even if it involves only a minor change. Otherwise, there is no way to be sure
whether or not the change is acceptable. The generated B model will contain numerous types of
errors from the simplest to the most complex, which can only be recognized during model
verification using B tools. Because of this reason, users feel that the method is less supportive
for experimenting with ideas (Property: provisionality dimension). Users would benefit from
having some simple checking abilities, such as unused variables and typing errors of B syntax at
the modeling and transformation levels. This could act as the frontline checking to eliminate
minor errors before pursuing more extensive verification in B tools. Rather than introducing all
types of errors at once, evolutionary phases of checking could make the verification task less
daunting and troublesome for the users. Because the tool currently lacks these elements, it does
not fully meet the users’ expectation (Property: Learnability and Utility of U2B).

This finding supports the comment obtained from the controlled experiment where
several subjects in the experiment believed that the method is useful only with good tool
support. Although the necessary tools are available, there are several aspects that should be
improved in order to increase their utility (Property: Future Improvement). Perhaps a more

Usability Evaluation of a UML-Based Formal Method

 37

seamless modeling environment should be created so that users do not have to perform
several individual and intricate steps during modeling.

Category 3: Learnability of Notations and Tools. The successful use of UML-B relies on
the fact that users have to be familiar with UML and B. Otherwise, the integration of both
notations could not be understood or valued. From the results of the survey (Razali, 2007), it
has been found that it is difficult if not impossible to obtain the understanding of the notations
used in both UML and B at the same time (Property: Learnability of UML-B). Even though the
users have been exposed to UML and B for some time, a level of mental burden still occurs
during the process (Property: hard mental operations dimension). Having to think, integrate,
and harmonize two styles of modeling from two different methods seems to be problematic.

The model transformation provided by U2B also requires some learning (Property:
Learnability of UML-B). A UML-B model, in essence, carries two types of semantics:
explicit B syntax specified by the users in the UML diagrams that U2B transforms as it is in
the B model, and implicit B syntax that U2B implies and generates automatically from the
diagrams. For example, behaviors of the operations have to be specified by the users using
the B syntax in the UML diagrams whereas classes and associations in the diagrams are
translated automatically as the respective sets and variables in the B model. Users have to
understand these transformations and why they are accomplished in such ways (Property:
Learnability and Utility of U2B; hidden dependencies dimension), since it affects the way
they should do the modeling (Property: closeness of mapping dimension). Moreover, learning
of how to do modeling in Rational Rose is also required (Property: Learnability of UML-B).

Modeling the UML diagrams is regarded as quite straightforward (Property: role
expressiveness-diagram dimension; error proneness-diagram dimension), which eases the
process of describing what is intended (Property: diffuseness dimension; closeness of mapping
dimension). Despite the fact that B modeling imposes some task ordering and requires users to
define and group things beforehand, the diagrams have somehow diluted the effects (Property:
premature commitment dimension; abstraction gradient dimension). Perhaps these factors help
to explain why a UML-B model is seen as more approachable than a B model and, thus, UML-
B is preferred for formal modeling (Property: Operability and Attractiveness of UML-B).

On the other hand, specifying the UML diagrams with the correct formal semantics is
perceived as difficult and error-prone (Property: error proneness-syntax dimension; hard mental
operations dimension). Shallow understanding of how the formal semantics should work with
the UML diagrams, lack of comprehensive documentation on the method (Property: Usefulness
of Documentation), and the need to grasp the underlying principles of the employed methods
and tools mentioned above have downgraded the operability of the method (Property:
Operability and Attractiveness of UML-B). To attract new users to the method, a more
comprehensive documentation should be readily available (Property: Future Improvement).
The documentation should cover more of the practical aspects of the method and its tools
(Property: Usefulness of Documentation), rather than just theory. Currently, the available
documentation on the method is not helping the users much in this aspect (Property:
Accessibility of UML-B)

Category 4: Functionality of Notations. Rational Rose provides specification windows in
each diagram for specifying the semantics. There are two types of diagrams involved in

Razali, Snook, Poppleton, & Garratt

38

UML-B, thus the users are provided with two types of specification windows. One is in the
Class diagram and the other is in the Statechart diagram. Regardless of the location, U2B is
able to extract the semantics and treat them accordingly as a B model.

The semantics in the Statechart diagram are transformed as a nested condition under the
primary condition, which is obtained from the Class diagram. In many cases, the semantics of
the Statechart diagram can also be placed directly in the specification windows of the Class
diagram. If the users know the states and transitions involved in the operations, they can specify
it literally as a series of conditions in the specification windows of the Class diagram. Despite
providing an alternative in modeling, the flexibility somehow has made the role of the semantics
in the Statechart diagram, or even the Statechart diagram itself, unclear to some users (Property:
role expressiveness-diagram dimension; role expressiveness-syntax dimension). The users seem
to prefer specifying the full semantics in the Class diagram, since it is more obvious and
straightforward. Such a process could also reduce the mental burden of having to work with two
different diagrams at the same time (Property: visibility and juxtaposibility dimension; hard
mental operations dimension). Moreover, the generated nested conditions from the Statechart
diagram tend to complicate the B model. Because the only end product that actually matters is
the transformed B model, users prefer to have a simple and quick solution to achieve it.

More clear roles and boundaries should be set between the formal semantics of the Class
diagram and the Statechart diagram. The explanation of the roles and responsibilities of each
part of the diagrams and semantics should be stated succinctly in the documentation, which is
currently lacking in the method (Property: Usefulness of Documentation). It may be better if
some principles and controls can be placed on how a UML-B model should be modeled.
Although it may reduce the flexibility in modeling, it could at least guide the users based on
what should and should not be done. It can also avoid redundancy. This is particularly true
for new users, who often have no idea how to start and pursue the modeling. Furthermore, the
transformation of formal semantics from the Statechart diagram to a B model could be
smoothed further so that no unnecessary complication is introduced to users.

Discussion

The data from the survey suggest that UML-B is appealing to users who opt into B modeling
while yet prefer working with standard development style of UML. This is particularly true
when users are familiar with UML and have the capacity to appreciate what formal notations,
such as B, could offer. The graphical modeling environment alleviates the difficulty of
developing a formal model from scratch by stimulating the formulation of ideas through the use
of visual objects at the abstraction level. On the other hand, users are faced with the challenge
of having to grasp the underlying principles of each unique notation, as well as to understand
how both notations work together to achieve the integration objectives. Each notation’s roles
and functionality at different parts of a model should be understood, which can easily be
achieved only if the distinction between them is clear. Users are also required to learn and
become familiar with the individual tools that accompany each notation, which in general
should provide the necessary support.

Based on the findings, the survey generated the following tentative theories of the
usability of integrated methods that combine semiformal and formal notations. The categories
that contribute to the formulation of the theories are stated in the parentheses.

Usability Evaluation of a UML-Based Formal Method

 39

Theory 1: The integration of semiformal and formal notations requires the
understanding of principles and roles of both notations as well as the rules of the
integration. The principles, roles, and rules ought to be obvious to users
(Categories 3 and 4).

Theory 2: The integration of semiformal and formal notations requires strong
support from the environment. Supporting tools and comprehensive
documentation should be not only available but also useful, easy-to-learn, and
easy-to-use (Categories 1, 2, and 3).

Unlike the other categories, Category 1: Model Structure and Organization is not

explicitly stated in the theories, although it is included. It is indirectly implied in Theory 2
with a similar effect as Category 2: Availability and Usefulness of Supporting Tools. This is
because the incident may depend on the environment by which the method is supported
(Rational Rose). Perhaps only the current environment has the problem of managing scattered
information and multiple windows. As the data are quite limited, more observation is
required on this aspect, particularly within different environments.

In terms of the CD framework, goals for designing integrated methods such as UML-B
were identified. The design goals were proposed based on the nature of semiformal and formal
notations, and the motivation behind the integration. The individual notations (semiformal and
formal) have their own strengths and weaknesses, which are enhanced through the integration
effort. In addition, the design goals were based on the common types of user activity involved
in using such methods. In general, there are two major user activities: exploratory design,
where users implement such methods to create a new model, and modification, where users use
the methods to make changes and enhancements to an existing model.

Table 2 illustrates the recommended CD profile for designing methods that combine
semiformal and formal notations. The profile proposes the desired level for each dimension that
integrated methods and their notations (a combination of semiformal and formal) should aim to
achieve after the integration. The High and Low indicate whether the dimension should be
increased or reduced respectively, when such methods are designed. For example, method
designers are recommended to aim at increasing progressive evaluation and reducing hidden
dependencies. The Moderate indicates that although the dimension is desired at a certain level
(High or Low), it may be traded off to suit more important dimensions or the two user
activities. For instance, secondary notation is very useful for a Modification activity since it
provides users with additional informal information. It thus may be needed (High) to improve
the model comprehensibility, especially for formal (mathematical) models. However,
secondary notation may cause exploratory design activity to be a bit cumbersome, because
users are obliged to provide informal information about the elements in the model in addition to
the official notation. Moreover, the two user activities require a model to be less resistant to
change (low viscosity). By having secondary notation, any alterations to the model can be
difficult because the changes are also required for the additional information. Therefore,
secondary notation may be traded off (Moderate instead of High) for achieving low viscosity
and facilitating the two activities. Diffuseness may need to be traded off (Moderate instead of
Low) for achieving low premature commitment. Premature commitment is one dimension
that designers may aim to reduce because it can be problematic for both exploratory design and

Razali, Snook, Poppleton, & Garratt

40

Table 2. Proposed CD Profile for Designing Integrated Methods of Semiformal and Formal Notations.

Dimension Desired Level

Abstraction gradient Low*

Closeness of mapping High*

Consistency High**

Diffuseness Moderate (instead of Low)*

Error-proneness Low*

Hard mental operations Low*

Hidden dependencies Low

Premature commitment Low*

Progressive evaluation

Provisionality High

Role-expressiveness High*

Secondary notation Moderate (instead of High)

Viscosity Low

Visibility/Juxtaposibility High

Note: High means to increase; Low means to reduce; Moderate suggests a possible
trade-off among dimensions;
*Semiformal notations support formal notations to achieve the desired level (otherwise,
the level will be opposite);
**Formal notations support semiformal notations to achieve the desired level (otherwise,
the level will be opposite).

modification activities. To reduce the need for users to look ahead and make a decision
before sufficient information is available during the activities, the notation may need to be
verbose, or fuller. It is up to method designers to decide the best compromise based on their
methods’ context of use and needs.

There are dimensions that specifically affect a particular notation more than the other. By
integrating the notation with the other notation, it is believed that its usability can be
improved. A single asterisk in Table 2 indicates a dimension that affects formal notations,
which semiformal notations help to reduce the effect. On the other hand, two asterisks denote
a dimension that semiformal notations lack, which formal notations help to overcome. For
example, it is generally known that formal notations such as B syntax involve high, hard
mental operations, which causes comprehension difficulties. The use of intuitive graphical
symbols in semiformal notations with formal notations often reduces the effect. Similarly,
semiformal notations in general lack mechanisms for a systematic progressive evaluation,
which formal notations can normally offer. Without such interplay between the two types of
notations, the integration is not worth the effort. After all, the motivation of such integrated
methods is to allow one notation’s limitations to be compensated by the strengths of the
other. The following paragraphs elaborate how both notations cooperate to achieve the
desired level for dimensions other than those described above.

Abstraction gradient: Formal notations impose abstractions, since users need to define and
group elements into logical entities (High). Moreover, to reduce viscosity, users may need to

Usability Evaluation of a UML-Based Formal Method

 41

introduce abstractions so that any changes required would be easier. Integrating the graphical
symbols of semiformal notations with formal notations may alleviate the effect, since the
grouping of elements becomes more apparent (Low).

Closeness of mapping: The mapping of a problem domain is not quite straightforward using
formal notations, due to the notations’ unfamiliar symbols and underlying rules of
interpretation (Low). The graphical symbols in semiformal notations may however facilitate
the mapping, as they generally resemble objects in the real world (High).

Consistency: The formality in formal notations enforces a consistency that semiformal
notations solely could not assure (Low). Semiformal notations together with formal notations
could enable a consistent graphical formal model to be developed (High).

Diffuseness: The textual aspect of formal notations that is similar to natural language may
cause a description to be fuller. In contrast, the graphical symbols in semiformal notations
could normally carry meanings in simpler forms. The combination of textual and graphical
symbols may enable the description to be short and precise (Low or Moderate).

Error-proneness: The unfamiliar mathematical symbols in formal notations frequently induce
mistakes (High). The accessibility of graphical symbols in semiformal notations may reduce
the tendency of making errors (Low).

Premature commitment: Formal notations normally require users to look ahead in order to
obtain the right abstractions (High). Incorporating the graphical symbols of semiformal
notations into formal notations may reduce the effect, since they permit the visualization of
possible interacting entities (Low).

Role-expressiveness: The roles of mathematical symbols in formal notations are not so
obvious to many users due to their complex interpretation rules (Low). On the other hand, the
graphical symbols in semiformal notations are mainly intuitive. By combining the graphical
symbols together with the mathematical symbols, users may be helped to grasp the roles of
the latter (High).

The remaining dimensions without a single or double asterisk in Table 2 involve factors
other than the notations used. The dimensions are provisionality, hidden dependencies,
secondary notation, viscosity and visibility/juxtaposibility. Based on the findings of the
survey, it is believed that the environment in which the notations reside plays a major role in
achieving the desired levels for these dimensions. This environment includes the structure of
the model and the tools that support the notations. This claim is worth investigating in future.

The tentative theories and the proposed CD profile may not be conclusive, and they
should be validated and refined further in future investigations. However, they can act as the
first step in understanding the nature of integrated methods such as UML-B and provide a
meaningful guide to better design.

Validity

Threats to validity are influences that may limit the ability to draw conclusions from the data.
The following paragraphs discuss some threats of this survey.

Selection of Respondents. The respondents were students in the university where the
research was conducted. Therefore, their answers might have been biased (positively or

Razali, Snook, Poppleton, & Garratt

42

negatively). On the other hand, the respondents were considered the most appropriate
candidates for this study because they have been trained on B and UML-B. This knowledge is
necessary for using UML-B. In fact, the participants also had some experience in using
UML-B and thus were able to contribute more fully to the survey. Moreover, they were
independent users, who had no personal interest with the technologies involved or direct
contact with the research. To reduce the threat, the subjects were advised to give opinions and
comments as sincerely as possible.

Students as Respondents. The respondents of this survey were students. They may have not
represented software developers, since they are less experienced. However, the respondents
were in the final semester of their master’s program and had a reasonable amount of
experience and knowledge of software development. Half of the students had some
professional working experience. Thus they were seen as valid respondents for the survey as
new users with developer’s experience.

Sample Size and Response Rate. The survey questionnaire was distributed to all 14 master’s
students of software engineering at the University of Southampton who registered for the
Critical Systems course in spring 2006. Thirteen students responded to the survey. Due to a
technical problem, only 10 responses were considered for analysis. Although the number was
quite small, a response rate of 70% was considered appropriate for an initial attempt.
Moreover, as a qualitative study, the quality of the data is the focus, rather than strictly the
quantity. Brief identity screening was done on the four students who were not included. No
particular pattern was identified that could have potentially biased the results.

Non-committal Responses. Using an uneven number of levels for the ordinal scale leaves
open the possibility of noncommittal responses, with the medians representing “neither –nor”
or “not sure.” Although such incidents could be seen in the data, they did not happen often
and no pattern was detected in either the questions or by respondents.

Toy Problem. Due to time and resource constraints, the modeling task given to the respondents
was not large and may have not represented real software systems. However, the task was
believed to be sufficient for the respondents to experience modeling using UML-B. In fact, the
task required the respondents to explore most of the functionality provided by the method.

Analysis Process. The grounded theory approach encourages the gathering of further data
after analyzing the first gathered data. In fact, data collection and analysis should be repeated
several times so that more incidents are captured and validated until the theory saturates
(Strauss & Corbin, 1998). Due to time and resources constraints, the data collection and
analysis for the survey were conducted only once, and the findings presented here reflect one
set of data. However, the survey will be repeated in the future.

Nature of Study. Surveys and qualitative measures by their nature are retrospective.
Therefore, there was a risk that the respondents reported based on what they thought they did
rather than what they actually did. Advising the respondents to complete the survey
questionnaire as soon as they completed the modeling task could have reduced this threat,
because the respondents would have had a clearer memory of what they found during the
task. The respondents submitted the questionnaire together with their completed models at
the end of the course.

Usability Evaluation of a UML-Based Formal Method

 43

Heterogeneity of Respondents. The respondents might have different abilities and experiences.
Thus, there was a risk that the results might have been affected by individual differences. As a
qualitative study, the variation however could provide richer data for the analysis.

Familiarity of Respondents. The respondents were taught formally on B for about 9 hours
and on UML-B for 1 hour. They were then required to complete a modeling task using UML-
B within a month period. The results may have been different if the respondents were given
more time and training. The aim of the survey was to capture the experience of using UML-B
from new users’ perspectives. Therefore, the allocated time frame and training were seen as
adequate and realistic for the purpose of this research. The results may also have been
influenced by the respondents’ knowledge of UML obtained from their previous working
experience and studies, which varied considerably.

CONCLUSION

This paper has presented a survey conducted on a method that integrates the use of
semiformal and formal notations, namely UML-B. The survey assessed the usability of the
notation used in the method and its modeling environment by using the CD framework with
several usability criteria suggested by the ISO. The data analysis was conducted using the
grounded theory approach. The findings indicated that the dual characteristics of the method
bring to users several implications, both positive and negative. Combining semiformal and
formal notations allows the potential of individual notation to be strengthened, while each
notation’s limitations can be compensated by the other. However, the integration, in essence,
brings to the designers the loads of two individual notations, which are actually quite
different in many ways. Users therefore need strong support from the environment to lessen
the burden that lies beneath the integration effort. The support involves not only the tools that
aid the modeling process but also resources for learning the method. Based on the findings, we
proposed a usability profile based on CD for designing integrated methods such as UML-B.

Some of the findings of the investigation are now being fed into the next generation of
UML-B development2. The findings of the survey can be improved further by extending the
survey to a large number of users. This will help enhance the current understanding of the
method and discovering other factors that might affect its use. The tentative theories and the
proposed CD profile of integrated methods (combined semiformal and formal notations)
discussed in this paper can also be validated and refined further by applying them to examine
other similar methods. This allows the derivation of more concrete theories and guidelines
that can be used to design and improve the usability of such methods in future.

ENDNOTES

1. Electronics Computer Science (ECS), COMP3011 Critical Systems,
http://www.ecs.soton.ac.uk/syllabus/COMP3011.html
2. EU Framework VI project: Rigorous Open Development Environment for Complex Systems (RODIN)
http://rodin.cs.ncl.ac.uk/

Razali, Snook, Poppleton, & Garratt

44

REFERENCES

Abrial, J. R. (1996). The B-Method: Assigning programs to meanings. Cambridge, UK: Cambridge University Press.

Alexander, P. (1996). Best of both worlds (formal and semi-formal software engineering). IEEE Potentials, 14,
29–32.

Bauer, M., & Johnson-Laird, P. (1993). How diagrams can improve reasoning. Psychological Science, 4, 372–378.

B-Core Limited [B-Core]. (2002). The B-Toolkit. Retrieved April 18, 2008, from http://www.b-
core.com/ONLINEDOC/BToolkit.html

Blackwell, A. F., & Green, T. R. G. (2000). A cognitive dimensions questionnaire optimised for users. In A. F.
Blackwell & E. Bilotta (Eds.), Proceedings of the 12th Workshop of the Psychology of Programming
Interest Group (PPIG ’00; pp. 137–154). Cosenza, Italy: Memoria.

Blackwell, A., & Green. T. (2003). Notational systems: The cognitive dimensions of notations framework. In
J. M. Carroll (Ed.), HCI models, theories and frameworks: Toward a multidisciplinary science (pp. 103–
134). San Francisco: Morgan Kaufmann.

Bonissone, P. (1982). A fuzzy sets based linguistic approach: Theory and application. In M. Gupta &
E. Sanchez (Eds.), Approximate reasoning in decision analysis (pp. 329–339). New York: North-Holland
Publishing Company.

Carew, D., Exton, C., & Buckley, J. (2005). An empirical investigation of the comprehensibility of requirements
specifications. In G. Kadoda (Ed.), Proceedings of the 4th International Symposium on Empirical Software
Engineering (ISESE ’05; pp. 256–266). Noosa Heads, Australia: IEEE Computer Society.

Cassell, C., & Symon, G. (1994). Qualitative methods in organizational research. Thousand Oaks, CA, USA: Sage.

Chandler, P., & Sweller, J. (1992). The split-attention effect as a factor in the design of instruction. British
Journal of Educational Psychology, 62, 233–246.

Chen, P. (1976). The entity-relationship model: Toward a unified view of data. ACM Transactions on Database
Systems, 1, 9–37.

Clarke, S. (2001). Evaluating a new programming language. In G. Kadoda (Ed.), Proceedings of the 13th
Workshop of the Psychology of Programming Interest Group (PPIG ’01; pp. 275–289). Bournemouth, UK:
Bournemouth University.

ClearSy Systems Engineering [ClearSy]. (n.d.). Atelier B, the industrial tool to efficiently deploy the B Method.
Retrieved April 18, 2008, from http://www.atelierb.eu/index_en.html

Cox, K. (2000). Cognitive dimensions of use cases: Feedback from a student questionnaire. In A. F. Blackwell
& E. Bilotta (Eds.), Proceedings of the 12th Workshop of the Psychology of Programming Interest Group
(PPIG ’00; pp. 99–122). Cosenza, Italy: Memoria.

Denzin, N., & Lincoln, Y. (1994). Handbook of qualitative research. Thousand Oaks, CA, USA: Sage.

Glaser, B. (1992). Basics of grounded theory analysis: Emergence vs. forcing. Mill Valley, CA, USA:
Sociology Press.

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research.
London, UK: Weidenfeld and Nicolson.

Green, T. R. G. (1989). Cognitive dimensions of notations. In A. Sutcliffe & L. Macaulay (Eds.), People and
computers V (pp. 443–460). Cambridge, UK: Cambridge University Press.

Green, T. R. G., & Blackwell, A. F. (1998, September). Design for usability using cognitive dimensions.
Tutorial session at the British Computer Society Conference on Human Computer Interaction (BCS-HCI
’98). Sheffield, UK.

Green, T. R. G., & Petre, M. (1996). Usability analysis of visual programming environments: A cognitive
dimensions framework. Journal of Visual Languages and Computing, 7, 131–174.

Usability Evaluation of a UML-Based Formal Method

 45

Hinchey, M. G. (2002). Confessions of a formal methodist. In P. A. Lindsay (Ed.), Proceedings of the 7th
Australian Workshop on Safety-Related Programmable Systems (SCS ’02; pp. 17–20). Adelaide, Australia:
Australian Computer Society.

IBM Software [IBM]. (n.d.). Rational Rose. Retrieved April 18, 2008, from http://www-
306.ibm.com/software/awdtools/developer/rose/index.html

International Organization for Standardization [ISO]. (2003, July). Software engineering, product quality—Part
3: Internal metrics (Standard No. 9126-3). Geneva, Switzerland: ISO.

International Organization for Standardization [ISO]. (2004, March). Software engineering, product quality—
Part 4: Quality in use metrics (Standards No. 9126-4). Geneva, Switzerland: ISO.

Kitchenham, B. A. & Pfleeger, S. L. (2002). Principles of survey research: Part 3: Constructing a survey
instrument. SIGSOFT Software Engineering Notes, 27(2), 20–24.

Kutar, M., Britton, C., & Barker, T. (2002). A comparison of empirical study and cognitive dimensions analysis
in the evaluation of UML diagrams. In J. Kuljis, L. Baldwin, & R. Scoble (Eds.), Proceedings of the 14th
Workshop of the Psychology of Programming Interest Group (PPIG ’02; pp. 1–14). Brunel, UK: Brunel
University College.

Martin, S. (2003). The best of both worlds integrating UML with Z for software specifications, Journal of
Computing and Control Engineering, 14, 8–11.

Microsoft Corporation [Microsoft]. (2008). Visual C# Developer Center. Retrieved April 18, 2008, from
http://msdn.microsoft.com/vcsharp/

Object Management Group [OMG]. (2008). Introduction to OMG’s unified modeling language (UML).
Retrieved April 18, 2008, from http://www.omg.org/gettingstarted/what_is_uml.htm

Pender, T. (2003). UML Bible. Indianapolis, IN, USA: Wiley.

Razali, R. (2007). UML-B Survey questionnaires and responses. (Electronics and Computer Science, University
of Southampton Tech. Rep., ID code 13322). Retrieved April 18, 2008, from
http://eprints.ecs.soton.ac.uk/13322

Razali, R., Snook, C. F., Poppleton, M. R., Garratt, P. W., & Walters, R. J. (2007). Experimental comparison
of the comprehensibility of a UML-based formal specification versus a textual one. In B. Kitchenham,
P. Brereton, & M. Turner (Eds.), Proceedings of the 11th International Conference on Evaluation and
Assessment in Software Engineering (EASE ’07; pp. 1–11). Keele, UK: British Computer Society.

Snook, C., & Butler, M. (2006). UML-B: Formal modelling and design aided by UML. ACM Transactions on
Software Engineering and Methodology, 15(1), 92–122.

Spivey, J. M. (1992). The Z notation: A reference manual (2nd ed.). Englewood Cliffs, NJ, USA: Prentice-Hall.

Strauss, A. L., & Corbin, J. (1998). Basics of qualitative research: Techniques and procedures for developing
grounded theory (2nd ed.). Thousand Oaks, CA, USA: Sage.

Sweller, J., & Chandler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 12, 185–233.

Triffitt, E., & Khazaei, B. (2002). A study of usability of Z formalism based on cognitive dimensions. In
J. Kuljis, L. Baldwin, & R. Scoble (Eds.), Proceedings of the 14th Workshop of the Psychology of
Programming Interest Group (PPIG ’02; pp. 15–28). Brunel, UK: Brunel University College.

Tukiainen, M. (2001). Evaluation of the cognitive dimensions questionnaire and some thoughts about the
cognitive dimensions of spreadsheet calculation. In G. Kadoda (Ed.), Proceedings of the 13th Workshop of
the Psychology of Programming Interest Group (PPIG ’01; pp. 291–301). Bournemouth, UK:
Bournemouth University.

van Lamsweerde, A. (2000). Formal specification: A roadmap. In Proceedings of the Conference on the Future
of Software Engineering (pp. 147–159). New York: ACM Press.

Westbrook, L. (1994). Qualitative research methods: A review of major stages, data analysis techniques, and
quality controls. Library and Information Science Research, 16, 241–245.

Razali, Snook, Poppleton, & Garratt

46

Authors’ Note

The authors gratefully acknowledge the COMP3011 (spring 2006) students who participated
in this study.

All correspondence should be addressed to:
Rozilawati Razali or Colin Snook
Dependable Systems and Software Engineering Group (DSSE)
School of Electronics and Computer Science (ECS)
University of Southampton
SO17 1BJ United Kingdom
rr04r@ecs.soton.ac.uk or rozila_razali@yahoo.co.uk or cfs@ecs.soton.ac.uk

Human Technology: An Interdisciplinary Journal on Humans in ICT Environments
ISSN 1795-6889
www.humantechnology.jyu.fi

An Interdisciplinary Journal on Humans in ICT Environments ISSN: 1795-6889

www.humantechnology.jyu.fi Volume 4 (1), May 2008, 47–61

47

SPATIAL ABILITY AND LEARNING TO PROGRAM

Abstract: Results in introductory computer programming modules are often
disappointing, and various individual differences have been found to be relevant. This
paper reviews work in this area, with particular reference to the effect of a student’s
spatial ability. Data is presented on a cohort of 49 students enrolled on an MSc in
Information Technology course at a university in the UK. A measure was taken of their
mental rotation ability, and a questionnaire administered that focused on their previous
academic experience, and expectations relating to the introductory computer
programming module they were studying. The results showed a positive correlation
between mental rotation ability and success in the module (r = 0.48). Other factors, such
as confidence level, expected success, and programming experience, were also found to
be important. These results are discussed in relation to the accessibility of programming
to learners with low spatial ability.

Keywords: spatial skills, programming ability, individual differences.

INTRODUCTION

Results in introductory computer programming modules are often disappointing (Mancy &
Reid, 2004), with reports of up to 30% of students failing to complete them (Guzdial &
Soloway, 2002). Students who perform well in other subjects may not achieve equivalent
success in programming tasks (Byrne & Lyons, 2001; Fincher et al., 2005), lose confidence,
and give up computer science courses. Irrespective of experience, some programmers appear
to be more skilled than others. Curtis (1981) found a range of performance scores of 23 to 1
in a debugging exercise, and Shneiderman (1980) reported differences in performance of 100
to 1 among programmers of similar programming experience.

Previous research has focused on why some students underperform in programming.
Various individual differences have been implicated in programming success, with debate
over the relative importance of each of these factors. This paper will focus on spatial ability,

© 2008 Sue Jones & Gary Burnett, and the Agora Center, University of Jyväskylä
URN:NBNfi:jyu-200804151352

Sue Jones
School of Computer Science

University of Nottingham
Nottingham, UK

Gary Burnett
School of Computer Science

University of Nottingham
Nottingham, UK

Jones & Burnett

48

but also considers how some of the other individual differences are related in their influence
on learning to program. The next two sections will focus on a literature review of the work in
this area. Then follows an analysis of data collected in a study carried out over the academic
year 2005/06 at the University of Nottingham. Finally, the results will be discussed in relation
to programming achievement.

SPATIAL ABILITY AND MENTAL MODELS

One individual difference considered to have some relevance to programming aptitude is
spatial ability. This is a heterogeneous cluster of skills considered to be a dimension of
intelligence distinct from verbal, mathematical, and reasoning skills. Halpern (2000) defines
spatial ability as a cognitive characteristic that gives a measure of the ability to conceptualize
the spatial relations between objects. As this is a broad cognitive concept, various
categorizations have been suggested to help organize our understanding of this area, one of
these being mental rotation. Mental rotation is the capacity to accurately picture the rotation
of two- or three-dimensional objects in the mind, and some researchers believe that it is a
good measure of a general spatial reasoning ability (Halpern, 2000). The Vandenberg and
Kuse (1978) Mental Rotation Test is the standard test for this skill.

Spatial ability has been shown to be important for navigation in the real world, and in an
abstract information space such as hypertext (Jones & Burnett, 2007b). It is also considered by
some to be an important determinant in program comprehension, due in part to source code
being likened to a multidimensional virtual space that requires similar skills for navigation as
those utilized in a real environment (Cox, Fisher, & O’Brien, 2005). However, there are few
studies looking at relations between spatial ability and individual programming performance.
Mayer, Dyck, and Vilberg (1986) showed that success in learning Basic was related to spatial
ability (r = 0.31, p < 0.05). Fincher et al. (2005) showed an overall small positive correlation
between performance in a spatial visualization test and marks achieved in the introductory
programming courses at 11 institutions (r = 0.17, p = 0.047). Both of these studies used
versions of the Paper Folding Test, designed to measure spatial visualization, one of the various
types of task included in the broad cognitive category of spatial ability (Halpern, 2000). The
Paper Folding Test requires subjects to imagine the result after folding a paper object, but this
process does not require mental rotation (Velez, Silver, & Tremaine, 2005).

Webb (1984), studying children between the ages of 11 and 14, found a relationship
between spatial ability and various programming components of a short course in Logo
programming, with an average correlation of 0.63 (p < .001). The only pretest measure to
give a stronger correlation was the score on a mathematics reasoning test. Webb utilized three
measures of spatial ability, one of which was the Paper Folding Test, but the others requiring
mental rotation of figures. Fisher, Cox, and Zhao (2006) used the Vandenberg and Kuse
(1978) Mental Rotation Test to study correlations with a software maintenance task for a
short Java program. While they found a high correlation for the men (r = 0.63, p = .012), this
was not reflected in the women’s results.

A related factor in the role of spatial ability to programming success is the development
of mental models. Mental models are variously defined, but in the context of this paper are
considered as predictive representations or abstractions of a program. In recent work, Jones

Spatial Ability and Learning to Program

 49

and Burnett (2007a) demonstrated differences in the navigation of source code in a code
comprehension exercise, with individuals with higher spatial ability jumping between
functions more frequently and making more interclass jumps (moving between files). The
authors speculate that this style of navigation may allow a better mental model of the
program to be formed, thus aiding comprehension. Mental models of spatial information are
called cognitive maps (Downs & Stea, 1973), and people build these while familiarizing
themselves with an environment. They become disorientated if this internal map does not
correspond to the physical representation of the environment (Westerman & Cribbin, 1999).
In relation to cognitive maps of program code, Fisher et al. (2006, p. 1) use the term
“codespace,” and define it as “a programmer’s mental model of source code with respect to
the perceived spatial attributes of entities identified within the code.” Hence the mental model
is an abstraction of the program formed from piecing together various kinds of information
extracted while navigating the source code. Wiedenbeck, LaBelle, and Kain (2004) stress the
importance of a good mental model in program understanding.

It has been argued that because source code is linear, mental rotation may not be as
important as other types of spatial ability for navigation in programming environments
(Fisher et al., 2006). However, the studies utilizing mental rotation as a measure of spatial
ability appear to show stronger relations with measures of programming aptitude than those
using the Paper Folding Test as a measure of spatial visualization. Kimura (1999) makes the
link between success in mental rotation and the capacity to build a mental model, or cognitive
map, of an environment. She suggests that good mental rotation capacity enables us to
recognize a scene from different angles, and thus to retrace a route in reverse when returning
to a destination, or piece together other bits of information to devise a new route back. There
is an increasing recognition of the importance of mental models to learning programming
(Wiedenbeck et al., 2004), and perhaps a good mental rotation capacity is allowing formation
of more accurate mental models of programs.
 One study looked at the map-drawing styles of students to determine if this was a
predictor of success in the introductory programming courses they were studying (Tolhurst et
al., 2006). Students were required to sketch maps of a given real world environment, and the
maps were then grouped according to the landmark, route, survey model for the acquisition of
spatial knowledge (Werner et al., 1997). When compared to the marks achieved in the course,
they found a trend for the high achievers to draw survey maps, while those who sketched
route maps performed less well but better than those who produced landmark maps. The
authors speculate that programming ability is related to an ability to navigate through the
information space using the same skills as in the real world. Good spatial ability has been
related to the development of survey knowledge, equivalent to a well-formed cognitive map
of an environment (Cutmore, Hine, Maberly, Langford, & Hawgood, 2000).

RELATION OF SPATIAL ABILITY TO OTHER INDIVIDUAL DIF FERENCES

This section reviews the literature on the impact of various individual differences on
programming performance. The main focus will be the interactions with spatial ability.

Jones & Burnett

50

Gender

Girls are underrepresented in university computer science (CS) courses (Byrne & Lyons,
2001). Suggested reasons for this include sex stereotyping and males’ greater exposure to
computers and computer games (Mumtaz, 2001; Schumacher & Morahan-Martin, 2001).
Boys appear to have a more confident, positive attitude toward computers (Durndell & Haag,
2002). Another reason is that spatial skills are crucial to most video and computer games as
well as many computer applications, and repeated practice may actually enhance spatial skills
(Subrahmanyam, Greenfield, Kraut, & Gross, 2001). There is a wealth of evidence of gender
differences in spatial ability, with females appearing to underperform in certain measures,
such as mental rotation (Voyer, Nolan, & Voyer, 2000).
 It is difficult to study gender differences in programming style and ability due to the fact
that many females, prior to university admission, have already chosen not to take CS courses
for the reasons mentioned above (Scragg & Smith, 1998). Byrne and Lyons (2001) found no
significant difference in performance between male and female students in a first-year
programming module, possibly because the module was part of a Bachelor of Arts honors
degree program with a preponderance of female students (61%). However, other studies also
have not found the expected gender difference (Bergin & Reilly, 2005; Rountree, Rountree,
& Robins 2002), perhaps because group-based differences such as gender have less effect on
an individual’s performance than individual differences such as spatial ability or cognitive
style (Beckwith & Burnett, 2004). Fisher et al. (2006) hypothesize that females prefer a more
low-risk, bottom-up approach to program development and comprehension, and males a more
high-risk, abstract, top-down approach. Bradley (1985) demonstrated that top-down
processing was positively related to Logo programming success.

Self Efficacy/Comfort

Self-efficacy relates to how we estimate our capability to perform well in a certain context
(Bandura, 1986). A person with high self-efficacy is more likely to undertake challenging tasks,
expend more effort to achieve them, and demonstrate persistence when difficulties arise.
Rountree et al. (2002) surveyed students early in a first-year computer science course and found
that students’ expectation of how they were going to perform was the biggest indicator of
success. Surprisingly, students predicted the outcomes very early in the course, and this may
contribute to their level of motivation and persistence required to achieve. Closely related to
self-efficacy is comfort level, based on our perception of the degree of difficulty of a task,
which affects our anxiety levels. Studies have found that comfort level, derived from
questionnaires, was strongly predictive of programming performance (Bergin & Reilly, 2005;
Wilson & Shrock, 2001). Students with low computer experience are likely to be less confident
and more anxious when starting a programming course (Byrne & Lyons, 2001). It has also been
suggested that males tend to show greater self-efficacy and lower computer anxiety than
females (Beckwith & Burnett, 2004; Durndell & Haag, 2002). Having a good mental model
increases self-efficacy by enabling program comprehension (Wiedenbeck et al., 2004).

Spatial Ability and Learning to Program

 51

Previous Academic Exposure

Previous programming experience seems to relate to success in introductory programming
courses (Rountree et al., 2002; Wilson & Shrock, 2001), with Wiedenbeck et al. (2004) linking
this with self-efficacy. Boys are more likely than girls to have previous programming
experience (Bruckman, Jensen, & DeBonte, 2002). Good performance in mathematics is also
relevant, and is often an entry requirement for computer science, with the belief that the skills
required for solving mathematics problems are similar to those needed for programming tasks
(Byrne & Lyons, 2001). Various studies have found relations between mathematics results and
success in learning programming (Webb, 1984; Werth, 1986; Wilson & Shrock, 2001). Byrnes
and Lyons (2001) found a relationship between results in secondary school mathematics
examinations and results from a first-year programming course (r = 0.353, p < 0.01). The
correlation with science results was even stronger (r = 0.572, p < 0.01). There was no
correlation between the English or foreign language results and programming achievement.
Others have found a similar relationship with science (Bergin & Reilly, 2005; Werth, 1986).

The ability to succeed in mathematics has been related to spatial ability (Pease & Pease,
2001), and one study showed that males outperformed females in both the Vandenberg and
Kuse (1978) test for spatial ability and a mathematics aptitude test, with mental rotation
predicting mathematics aptitude for the female samples (Casey, Nuttall, Pezaris, & Benbow,
1995). When mental rotation ability was statistically adjusted for, the gender difference in
mathematics achievement was eliminated in most of the groups studied.

Cognitive Style

Cognitive abilities are specific to a particular domain of content or function, such as verbal,
numerical, or spatial ability. A measure can be taken of an individual’s spatial ability as separate
from their verbal reasoning score—one may be high, the other low. In contrast, cognitive styles
cut across these domains, and have more to do with organization and control of cognitive
processes. Consequently, there appears to be an interaction between cognitive abilities and
styles, with field-dependency being the style most associated with spatial ability (Chen,
Czerwinski, & Macredie, 2000). McKenna (1984) presents arguments debating whether field
dependence, often measured by the Embedded Figures Test (EFT), is a cognitive style or
cognitive ability. The EFT requires participants to locate a given simple shape embedded within
a larger complex one. Because the EFT is timed, it has been argued that it is more a measure of
cognitive ability than style, assessing differences in level of, rather than manner of, performance.
McKenna reviews work showing there is a strong relation between the EFT and spatial ability.

Various studies have demonstrated some impact of field dependency on programming
achievement. Bishop-Clark (1995) carried out a review of some of the work in this area. She
concluded that the results are not consistent (correlations ranging from .08 to .80), but that
field independence appeared to be positively related to programming success. Mancy and
Reid (2004) compared field dependency and marks in various assessments on an introductory
programming course. Field dependency was measured using the EFT, and the results showed
positive correlations with marks on the different assessments, with a good correlation (r =
0.40) with the final examination.

Jones & Burnett

52

In summary, individual differences with varying degrees of impact on programming
performance have been discussed in relation to spatial ability (see Figure 1). However, there
are only a small number of adult studies looking at mental rotation in this context. The
following study aimed to gather extra data to supplement the research knowledge regarding
any effect of spatial ability, and other interacting factors, on programming performance.

Figure 1 . Potential interactions between individual differences and programming performance.

THE STUDY

During the academic year 2005/06, a test of mental rotation ability and a questionnaire were
administered to a cohort of university students. This section will focus on the results of our
analyses to ascertain any relations between the variables studied.

Data Collection

Participants consisted of 49 volunteers (average age 26 years) from students enrolled in a one-
year master’s conversion course (meaning students did not have computer science as their first
degree) at the University of Nottingham, UK. An introductory programming module (ICP) was
compulsory for all students in the first semester. The course consisted of two streams. Students
in the MSc in Information Technology (IT, n = 28) had their first degree in a science or
engineering subject and would continue with further compulsory programming modules in the
second semester. Those studying for the MSc in the Management of Information Technology
(MIT, n = 21) had a first degree in a wide range of subjects (including arts and humanities), and
were not required to take programming modules after the first semester. The cohort consisted
of 39 males and 10 females, with only 2 females in the IT stream.
 Data on the participants’ academic history and perceived programming experience were
collected by questionnaire. At the end of Semester 1 (December 2005), and before taking the
introductory programming examination, the students were asked how they rated their

Group variables
e.g., gender

Inherent abilities
e.g., spatial

Subjective beliefs
e.g., self-efficacy

Academic background
e.g., programming experience

Programming
Performance

Spatial Ability and Learning to Program

 53

confidence levels in their last (as yet unmarked) programming coursework. They also rated
the ICP in comparison to other nonprogramming modules on the parameters of difficulty,
workload, and expected success, similar to Rountree et al. (2002). In addition, the final marks
in the following modules were collated:

� Semester 1: compulsory modules
• Introduction to Computer Programming (ICP). The assessment consisted of

50% coursework (2 programming assignments) and 50% examination. The
language taught was Java.

• Introduction to Human Factors (IHF), a nonprogramming module with
assessment based on 25% coursework and 75% final examination.

� Semester 2
• Object Oriented Systems (OOS), with two programming assignments

contributing 50% to the final mark, and a final examination. This module was
compulsory for the master’s in IT. The language taught was C++.

• Management of IT (MAN), a nonprogramming module with 25% coursework
and 75% examination. This module was compulsory for those taking the
master’s in MIT.

The programming modules involved considerable practical programming assignments, while
the nonprogramming subjects focused on issue-based discussion elements.
 Individual differences in the participants’ spatial skills were measured using a version of
the 3D Mental Rotation Test found at Psychlab OnLine1. The test is a modified version of the
Vandenberg and Kuse (1978) Mental Rotation (MR) test, and was customized for this study
by Professor Hay of the University of Wisconsin, Milwaukee.
 In the version used, the participants were asked to determine if one shape could be
mentally rotated to match the orientation of a second (see Figure 2 for an example). The
students were presented with 30 examples to be completed as quickly as possible, with equal
emphasis being given to accuracy and speed. This was an on-line test. Once an answer was
submitted, there was no recourse for correcting it, and no feedback was provided on the
correctness of the answers. At the completion of the test, a file was generated with the number
of correct answers, and the total time taken for completion of the 30 questions (mean time =
215s, range 59 to 452 s). A score for spatial ability was derived from the number of correct
answers divided by the total time (in seconds) to complete the exercise. The final number was
multiplied by 100 to provide a more usable scale.

Figure 2. Example of the modified Vandenberg and Kuse (1978) Mental Rotation Test, customized by

Professor Hay.

Jones & Burnett

54

Results

Module marks and questionnaire responses were recorded. Statistical analyses were run to
determine any relations between spatial ability and other individual differences.

 Module Marks

There was a strong correlation between mental rotation (MR) scores and the participants’ grades
in the programming modules, but this was not reflected in the nonprogramming modules (see
Table 1). There was a stronger correlation for the IT students (those who carried on with
programming) in the ICP, and a high correlation between MR scores and results in the more
advanced (OOS) programming module for these students. As can be seen in Figure 3, the spread
of results in the ICP module was greater for the IT stream (30% to 95%; M = 66.59, SD = 15.43)
than the MIT stream (42% to 78%; M = 64.90, SD = 9.93), although the difference in means was
not statistically significant (p = 0.66). Similarly, the MR test scores showed a greater range
among the IT students (3.09 to 30.76; M = 16.47, SD = 7.22) than the MIT students (4.18 to
22.30; M = 11.73, SD = 4.84), with the IT students scoring significantly higher (p < 0.05).
 When the results obtained in each of the modules were compared, there was found to be a
strong positive correlation between the two programming modules, ICP and OOS, and between
the two nonprogramming modules, IHF and MAN. There were no correlations between the
programming and nonprogramming modules (see Table 2).

Table 1. Correlation Analysis for Mental Rotation (MR) Scores and Module Marks.
Programming modules Nonprogramming modules

ICP
(All)

ICP
(MIT)

ICP
(IT)

OOS
(IT)

IHF
(All)

MAN
(MIT)

r 0.48 0.37 0.57 0.68 0.21 0.10
p <0.01 <0.05 <0.01 <0.01 0.16 0.65

MR
Score

n 49 21 28 27 46 21

0

10

20

30

40

50

60

70

80

90

100

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00

MR test score

IC
P

 m
ar

k
(%

)

IT

MIT

Figure 3. Scatterplot of ICP results as a function of MR test scores for the two master’s streams.

Spatial Ability and Learning to Program

 55

Table 2. Pearson Correlation Analysis for Module Marks.

Programming modules Nonprogramming modules
ICP OOS IHF MAN

ICP
OOS 0.73 (<0.001)
IHF 0.28 (0.07) 0.26 (0.26)
MAN 0.10 (0.76) N/A 0.69 (<0.005)

Note: The significance values are in parentheses.

Questionnaire Results

Many of the multiple-choice questions had a choice of 4 or 5 answer categories, and with
only 44 students completing the questionnaire, some of the categories had a very small
number of respondents. To enable statistical analysis, these categories were collapsed into 2
or 3 items. This allowed t tests to be carried out to determine if there were differences in the
means for MR test scores and ICP results for the dichotomous measures, and Kruskal-Wallis
tests on the trifold measures. The dichotomous variables were also subjected to chi-square
analysis to determine if there were any differences in the answers for the two degree streams,
and for confidence levels.

Those with greater perceived programming experience had higher spatial scores, and
performed significantly better in the ICP results (see Table 3). Similarly, those with higher
confidence levels for the ICP coursework performed very well in the ICP module, and there was
a trend for them to have higher MR scores (although just failing to reach statistical significance).

When students were asked to compare ICP with other nonprogramming modules, it was
found that individuals rating ICP as more difficult tended to have lower spatial scores. Those
rating success with ICP (relative to nonprogramming modules) as high were achieving better
end results (see Table 4).

There was a nonsignificant trend for those in the IT stream to have more programming
experience. Seventy-four percent claimed to be professional/intermediate, compared to only
39% of the MIT students (see Table 5).

Table 3. T-tests for Questionnaire Results.

 MR test score ICP mark
Parameter Categories Mean SD p Mean SD p

Science 15.71 7.63 68.00 15.55 First degree
Non-science 13.29 6.00

0.28
66.29 9.76

0.69

Male 14.67 6.72 68.51 11.70 Gender
Female 12.88 5.41

0.47
62.22 15.91

0.19

Professional/intermediate 16.65 7.41 72.50 9.54 Programming
experience Novice/none 12.31 5.51

<0.05
60.60 14.34

<0.005

High/moderate 15.95 7.15 72.59 8.23 Confidence
Little/none 12.23 5.85

0.09
56.47 14.83

<0.001

Jones & Burnett

56

Table 4 . Results of the Kruskall-Wallis Analysis of Student Expectations.

 MR test score ICP mark

Parameter

Categories
(collapsed)

Mean
rank

χ2 p Mean rank χ2 p

Much less/less 33.67 26.33
The same 26.09 27.09

Workload

More/much more 20.07

4.20 0.12

20.43

2.46 0.29

Much less/less 38.60 35.50
The same 26.64 22.18

Difficulty

More/much more 18.79

10.50 <0.01

20.30

5.97 0.05

Much less/less 14.60 14.00
The same 24.11 23.67

Success

More/much more 25.63

5.01 0.08

26.50

6.10 <0.05

Table 5. Results of Chi-square on Programming Experience and Confidence.

 Masters Confidence

Parameter Categories
(collapsed)

IT MIT χ2 p High/
moderate

Little/
none

χ2 p

Prof/intermediate 21 8 24 2 Programming
experience Novice/none 7 13

3.25 0.07
8 15

13.17 <0.001

High/moderate 22 12 Confidence
Little/none 6 9

1.36 0.24

The impact of programming experience on confidence levels was obvious, with 92% of

the more experienced students rating their confidence levels as high or moderate, and only
35% of the less experienced. Although failing to reach statistical significance, a larger
number of the IT students (79%) rated their confidence levels for the ICP coursework as
high/moderate, compared to only 56% of the MIT students.

DISCUSSION

It is known that students who perform well in other subjects may produce disappointing
results in programming. In the current study, there were correlations between the results
gained in programming modules and spatial scores, with no correlations being found with the
nonprogramming modules. These results suggest that spatial ability, as measured by a mental
rotation test, is related to success in the programming subjects, while not appearing to be of
relevance in the nonprogramming modules investigated.

When the relationship between spatial ability and ICP results were viewed for the
separate master’s streams, the correlation was found to be higher for the IT cohort. Some of
this variation between the two groups may be accounted for by the larger range of mental
rotation scores and ICP results in the IT stream. Additionally, this was a self-selected group
of students who have chosen to continue with programming. Although not reaching
significance, there was a trend for them to have greater programming experience, so this

Spatial Ability and Learning to Program

 57

variable would have had less of an impact than in the wider master’s cohort. Hassell (1982)
showed a similar result for second- and final-year students. She looked at correlations
between the EFT and measures of programming ability, and found a correlation (r = 0.5) for
seniors, but a nonsignificant correlation for the second-year students. In the current study,
there was a very strong correlation between the results for the IT students in the two
programming modules, even though the courses were taught by two different lecturers. There
was also a strong correlation between results in the two nonprogramming modules for the
MIT students. However, there was no relationship between the programming module (ICP)
and the nonprogramming module (IHF) for the group as a whole, nor between ICP and the
other nonprogramming module (MAN) for the MIT students. This demonstrates that those
who perform well in other subjects may underperform in programming.

As expected, these results suggest that other individual differences may have an impact on
the results. Those who considered themselves to be more experienced in programming
performed better in the introductory programming module. With this being a master’s course,
the students were generally older than undergraduate students, and may have had more
opportunity for exposure to programming, either within a first-degree course, or from a previous
work environment. The more experienced programmers tended to have higher spatial ability
and, as expected, admitted to having greater confidence about the coursework. This confidence
translated into better performance in the whole ICP module. This is confirmed by the fact that
those who expected themselves to be more successful in ICP than nonprogramming modules
generally performed better in the final mark. Rountree et al. (2002) found that expecting an A
grade was the strongest indicator of success, with expected difficulty and workload making
smaller but relevant contributions, trends reflected in the current study. Thus it would appear
that self-efficacy is an important contributor to achievement. The data also show that those with
low spatial ability were experiencing greater difficulty with ICP compared to the non-
programming modules. There was no significant impact of a science background on the results,
even though the majority of science graduates were enrolled in the IT stream. There were also
no significant differences between males and females in mental rotation test score or ICP mark.
This may have occurred because the sample size for the females was too low (20% of the
group), a situation reflected in many computer science courses.

One other variable that needs to be considered is the programming activity itself. As
shown in this study, the more experienced students had a higher spatial ability, but it is
difficult to be sure if this is cause or effect. It is known that high spatial ability predisposes
individuals to a choice of spatial subjects (such as engineering) and careers (such as
architecture; Quaiser-Pohl & Lehmann, 2002; Smith, 1992). Consequently, it is possible that
students with high spatial ability are choosing programming as an option because this skill
allows them to excel. Alternatively, the very act of practicing programming may cause an
increase in spatial ability. The task of learning to program has been shown to cause students
to become more field independent (Cathcart, 1990), and improve their mental rotation ability
(Miller, Kelly, & Kelly, 1998). However, these results were found when teaching Logo to
schoolchildren; Logo programming requires children to imagine orientating with the turtle, a
form of mental rotation (Miller et al., 1998). It would be interesting to give university
students a pre- and posttest to see if an intensive programming course resulted in any
improvement in mental rotation ability. Additionally, there is a wealth of evidence that
training in the use of spatial tasks can improve scores in spatial tests, and this could be an

Jones & Burnett

58

important exercise for students wishing to improve their inherent programming ability. The
authors believe that this training should be incorporated into the school curriculum, perhaps
as early as 6 years of age (Jones & Burnett, 2006).

CONCLUSION

From the results of this analysis, there is evidence that spatial ability is important when learning
to program. There are also interactions with other factors such as confidence levels, expected
success, and programming experience. When the impact of these factors was reduced by
focusing on a more advanced group of students, spatial ability was observed to have a stronger
effect. Future studies need to be carried out on a larger cohort of students to allow statistical
analysis of the relative contribution of each of the variables. It would also be beneficial to have
a larger ratio of females in the student group to enable a study of gender effects.

This study provides an important contribution to knowledge about why some students
struggle to achieve in introductory computer science courses, resulting in high attrition and
failure rates. While spatial ability has been shown to be relevant, we do not feel that mental
rotation capacity should be used as a means of predetermining programming aptitude, but
should be considered while devising pedagogical interventions. Thought needs to be given to
teaching methods and software visualizations that help students with low spatial ability to
envisage abstract concepts and build better mental models (Wiedenbeck et al., 2004). The
benefits of spatial training intervention also need to be assessed.

ENDNOTE

1. Available at http://www.uwm.edu/~johnchay/

REFERENCES

Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs, NJ, USA: Prentice Hall.

Beckwith, L., & Burnett, M. (2004). Gender: An important factor in end-user programming environments? In
Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing Languages and
Environments (pp. 107–114). Washington, DC: IEEE Computer Society.

Bergin, S., & Reilly, R. (2005). Programming: Factors that influence success. SIGCSE Bulletin, 37(1), 411–415.

Bishop-Clark, C. (1995). Cognitive style, personality, and computer programming. Computers in Human
Behavior, 11, 241–260.

Bradley, C. A. (1985). The relationship between students’ information-processing styles and Logo
programming. Journal of Educational Computing Research, 1, 427–433.

Bruckman, A., Jensen, C., & DeBonte, A. (2002). Gender and programming achievement in a CSCL
environment. In G. Stahl (Ed.), Proceedings of the Computer Supported Collaborative Learning (CSCL)
2002 Conference (pp. 119–127). Hillsdale, NJ, USA: Erlbaum.

Spatial Ability and Learning to Program

 59

Byrne, P., & Lyons, G. (2001). The effect of student attributes on success in programming. In Proceedings of
the 6th Annual Conference on Innovation and Technology in Computer Science Education (pp. 49–52).
New York: ACM Press.

Casey, M. B., Nuttall, R. L., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender
differences in mathematics college entrance test scores across diverse samples. Developmental Psychology,
31, 697–705.

Cathcart, W. (1990). Effects of Logo instruction on cognitive style. Journal of Educational Computing
Research, 6, 231–242.

Chen, C., Czerwinski, M., & Macredie, R. (2000). Individual differences in virtual environments: Introduction
and overview. Journal of the American Society for Information Science, 51, 499–507.

Cox, A., Fisher, M., & O’Brien, P. (2005). Theoretical considerations on navigating codespace with spatial
cognition. In P. Romero, J. Good, E. Acosta Chaparro, & S. Bryant (Eds.), Proceedings of the 17th
Workshop of the Psychology of Programming Interest Group (pp. 92–105). Retrieved May 21, 2006, from
http://www.ppig.org/workshops/17th-programme.html

Curtis, B. (1981). Substantiating programmer variability. Proceedings of the IEEE, 69, 846.

Cutmore, T. R. H., Hine, T. J., Maberly, K. J., Langford, N. M., & Hawgood, G. (2000). Cognitive and gender
factors influencing navigation in a virtual environment. International Journal of Human-Computer Studies,
53, 223–249.

Downs, R. M., & Stea, D. (1973). Cognitive maps and spatial behavior: Process and products. In R. M. Downs
& D. Stea (Eds.), Image and environments (pp. 8–26). London: Edward Arnold.

Durndell, A., & Haag, Z. (2002). Computer self efficacy, computer anxiety, attitudes towards the Internet and
reported experience with the Internet, by gender, in an East European sample. Computers in Human
Behavior, 18, 521–535.

Fincher, S., Baker, B., Box, I., Cutts, Q., de Raadt, M., Haden, P., Hamer, J., Hamilton, M., Lister, R., & Petre,
M. (2005). Programmed to succeed? A multi-national, multi-institutional study of introductory
programming courses (University of Kent, Computing Laboratory Technical Report 1-05). Retrieved May
21, 2006, from http://www.cs.kent.ac.uk/pubs/2005/2157/

Fisher, M., Cox, A., & Zhao, L. (2006). Using sex differences to link spatial cognition and program
comprehension. In Proceedings of the 22nd IEEE International Conference on Software Maintenance
(ICSM; pp. 289–298). Washington, DC: IEEE Computer Society.

Guzdial, M., & Soloway, E. (2002). Teaching the Nintendo generation to program. Communications of the
ACM, 45, 17–21.

Halpern, D. F. (2000). Sex differences in cognitive abilities. Mahwah, NJ, USA: Lawrence Erlbaum Associates.

Hassell, J. (1982). Cognitive style and a first course in computer science: A success story. AEDS Monitor, 21,
33–35.

Jones, S., & Burnett, G. (2006). Give the girls a chance: Should spatial skills training be incorporated into the
curriculum? In K. Morgan, C. A. Brebbia, & J. M. Spector. (Eds.), The Internet Society II: Advances in
education, commerce & governance (pp. 105–114). Southampton, UK: WITpress.

Jones, S., & Burnett, G. (2007a). Spatial skills and navigation of source code. In Proceedings of the 12th Annual
Conference on Innovation and Technology in Computer Science Education (ITiCSE ’07; pp. 231–235).
New York: ACM.

Jones, S., & Burnett, G. E. (2007b). Children’s navigation of hyperspace: Are spatial skills important? In
Proceedings of the Sixth IASTED International Conference on Web-Based Education (pp. 643–648).
Anaheim, CA, USA: ACTA Press.

Kimura, D. (1999). Sex and cognition. Cambridge, MA, USA: MIT Press.

Mancy, R., & Reid, N. (2004). Aspects of cognitive style and programming. In E. Dunican & T. Green (Eds.),
Proceedings of the Sixteenth Annual Workshop of the Psychology of Programming Interest Group (PPIG
’04; pp. 1–9). Retrieved January 3, 2005, from http://www.ppig.org/workshops/16th-programme.html

Jones & Burnett

60

Mayer, R. E., Dyck, J. L., & Vilberg, W. (1986). Learning to program and learning to think: What’s the
connection? Communications of the ACM, 29, 605–610.

McKenna, F. P. (1984). Measures of field dependence: Cognitive style or cognitive ability? Journal of
Personality and Social Psychology, 47, 593–603.

Miller, R. B., Kelly, G. N., & Kelly, J. T. (1998). Effects of Logo computer programming experience on
problem solving and spatial relations ability. Contemporary Educational Psychology, 13, 348–357.

Mumtaz, S. (2001). Children’s enjoyment and perception of computer use in the home and the school.
Computers & Education, 36, 347–362.

Pease, A., & Pease, B. (2001). Why men don’t listen and women can’t read maps. London: Orion.

Quaiser-Pohl, C., & Lehmann, W. (2002). Girls’ spatial abilities: Charting the contributions of experiences and
attitudes in different academic groups. British Journal of Educational Psychology, 72, 245–260.

Rountree, N., Rountree, J., & Robins, A. (2002). Predictors of success and failure in a CS1 course. SIGCSE
Bulletin, 34, 121–124.

Schumacher, P., & Morahan-Martin, J. (2001). Gender, Internet and computer attitudes and experiences.
Computers in Human Behavior, 17, 95–110.

Scragg, G., & Smith, J. (1998). A study of barriers to women in undergraduate computer science. SIGCSE
Bulletin, 30, 82–86.

Shneiderman, B. (1980). Software psychology: Human factors in computer and information systems.
Cambridge, MA, USA: Winthrop Publishers Inc.

Smith, P. (1992). Spatial ability and its role in United Kingdom education. Vocational Aspect of Education, 44,
103–106.

Subrahmanyam, K., Greenfield, P. M., Kraut, R., & Gross, E. (2001). The impact of computer use on children’s
and adolescents’ development. Applied Developmental Psychology, 22, 7–30.

Tolhurst, D., Baker, B., Hamer, J., Box, I., Lister, R., Cutts, Q., Petre, M., de Raadt, M., Robins, A., Fincher, S.,
Simon, S., Haden, P., Sutton, K., Hamilton, M., & Tutty, J. (2006). Do map drawing styles of novice
programmers predict success in programming? A multi-national, multi-institutional study. In D. Tolhurst
& S. Mann (Eds.), Proceedings of the 8th Australian Conference on Computing Education (pp. 213–222).
Hobart, Australia: Australian Computer Society, Inc.

Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial
visualization. Perceptual and Motor Skills, 47, 599–604.

Velez, M., Silver, D., & Tremaine, M. (2005). Understanding visualization through spatial ability differences. In
Proceedings of the IEEE Visualization 2005 Conference (VIS 2005; pp. 511–518). New York: IEEE.

Voyer, D., Nolan, C., & Voyer, S. (2000). The relation between experience and spatial performance in men and
women. Sex Roles: A Journal of Research, 43, 891–915.

Webb, N. M. (1984). Microcomputer learning in small groups: Cognitive requirements and group processes.
Journal of Educational Psychology, 76, 1076–1088.

Werner, S. Krieg-Bruckner, B., Mallot, H. A., Schweizer, K., Freksa, C., & Jahrestagung, G. (1997). Spatial
cognition: The role of landmark, route and survey knowledge in human and robot navigation. In M. Jarke,
K. Pasedach, & K. Pohl (Eds.), Informatik ’97 (pp. 41–50). New York: Springer.

Werth, L. H. (1986). Predicting student performance in a beginning computer science class. In J. C. Little & L.
N. Cassel (Eds.), Proceedings of the Seventeenth SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’86; pp. 138–143). New York: ACM.

Westerman, S. J., & Cribbin, T. (1999). Navigating virtual information spaces: Individual differences in
cognitive maps. In Proceedings of the UK Virtual Reality Special Interest Group (UKVRSIG ’99), Salford
University, UK.

Spatial Ability and Learning to Program

 61

Wiedenbeck, S., LaBelle, D., & Kain, V. N. R. (2004). Factors affecting course outcomes in introductory
programming. In Proceedings of the Sixteenth Annual Workshop of the Psychology of Programming
Interest Group (PPIG ’04) Retrieved May 15th 2005 from http://www.ppig.org/workshops/16th-
programme.html

Wilson, B. C., & Shrock, S. (2001). Contributing to success in an introductory computer science course: A study
of twelve factors. INROADS of SIGCSE, 33, 184–188.

Authors’ Note

The authors wish to thank Professor Emeritus John C. Hay, the University of Wisconsin, Milwaukee, for
permitting use of, and customizing, his version of the 3-D Mental Rotation Test.

All correspondence should be addressed to:
Sue Jones
School of Computer Science
University of Nottingham
Nottingham
NG8 1BB
United Kingdom
s.jones@nottingham.ac.uk

Human Technology: An Interdisciplinary Journal on Humans in ICT Environments
ISSN 1795-6889
www.humantechnology.jyu.fi

An Interdisciplinary Journal on Humans in ICT Environments ISSN: 1795-6889

www.humantechnology.jyu.fi Volume 4 (1), May 2008, 62–74

62

A ROLES-BASED APPROACH TO
VARIABLE-ORIENTED PROGRAMMING

Abstract: Delocalized variable plans pose problems for novice programmers trying to
read and write programs. Variable-oriented programming is a programming paradigm
that emphasizes the importance of variable-related plans, and localizes actions
pertaining to each variable together in one place in the program code. This paper
revisits the idea of variable-oriented programming and shows how it can be founded on
roles of variables: stereotypes of variable use suitable for teaching to novices. The paper
sketches out how variable-oriented, roles-based programming could be implemented
using either a new programming language or a framework built on an existing language.
The possible applications, merits, and problems of a roles-based approach, and
variable-oriented programming in general, are discussed. This paper points toward
possible research directions for the future and provides a basis for further discussions of
variable-oriented, roles-based programming.

Keywords: roles-based programming, variable-oriented programming, roles of
variables, delocalized plans, programming languages.

INTRODUCTION

It has been widely noted that novice programmers have great difficulty in comprehending and
creating computer programs (for recent reports, see Lister et al., 2004; McCracken et al.,
2001). A partial explanation for this is provided by the novices’ lack of programming-related
schemas or plans (Détienne, 1990; Soloway & Ehrlich, 1986). Schemas are mental
knowledge structures for storing abstract information that can be applied when planning
solutions to specific problems that fall within the scope of the schema. An expert in a domain
possesses a wide array of rich, domain-specific schemas that reduce cognitive load during
problem-solving tasks, such as programming and enable solving more complex problems. An
expert’s problem-solving process is characterized by planning ahead and forward
development (Byckling & Sajaniemi, 2006a; Rist, 1989).

Many schemas in programming are related to the use of variables (Soloway, Ehrlich,
Bonar, & Greenspan, 1982). For instance, a basic programming schema could describe how
variables can serve as “counters,” whose values start at zero and are then repeatedly incremented

© 2008 Juha Sorva, and the Agora Center, University of Jyväskylä
URN:NBNfi:jyu-200804151353

Juha Sorva
Helsinki University of Technology

Finland

Roles-Based Programming

63

by one. Commonly, the ways in which a variable is used in a program are not defined by a single
line of code or even by consecutive lines; references to each variable are spread throughout the
program code. In the terminology of Soloway, Lampert, Letovsky, Littman, and Pinto (1988), the
plan for such a variable is delocalized. Delocalization of a plan increases the cognitive load of a
programmer trying to comprehend it, since multiple separate units have to be kept in working
memory at once in order to figure out the plan. Novice programmers may find coping with this
cognitive load very difficult. Delocalized plans can be clarified with documentation (Soloway et
al., 1988) or software tools (Sajaniemi & Niemeläinen, 1989). In recent years, roles of variables
have been introduced as a means to describe, discuss, and think about common stereotypes of
variable usage (Sajaniemi, 2002, 2003). Roles of variables have been used to document variable
plans and for other purposes in teaching introductory programming (Byckling & Sajaniemi,
2007; Sajaniemi & Kuittinen, 2005; Sorva, Karavirta, & Korhonen, 2007).

This paper presents ongoing work on variable-oriented programming, a programming
paradigm that places an emphasis on localizing variable-related actions in program code. This
work draws on prior work on roles of variables, and uses roles as a basis for creating
variable-oriented programs. The paper is structured as follows. The Related Work section
describes previous work on roles of variables and variable-oriented programming. The A
Roles-Based Approach section introduces a new approach to variable-oriented programming,
and discusses how it could be implemented, using either a custom-made programming
language or existing programming languages. The Discussion section then takes a look at the
possible uses, merits, and downsides of the new approach. The paper concludes with general
comments and a look at possible future work.

RELATED WORK

Roles of Variables

Roles of variables are stereotypes of variable use in computer programs (Sajaniemi, 2002). Roles
embody expert programmers’ tacit knowledge of variable usage patterns, which can be made
explicit and taught to students (Sajaniemi & Navarro Prieto, 2005). Roles can help teachers
explain delocalized variable-related schemas in programs and assist in the stepwise refinement of
pseudocode designs of algorithms (Sorva et al., 2007). Prior research suggests that introductory-
level students who are taught programming using roles of variables gain better program
comprehension skills than students taught in an otherwise similar way but without using roles
(Sajaniemi & Kuittinen, 2005). Moreover, roles-based instruction facilitates the development of
program construction skills better than traditional instruction, especially if roles-based
visualizations of programs are also used in teaching (Byckling & Sajaniemi, 2006b, 2007).

According to Sajaniemi’s (2002) research, the behavior of 99% of variables in novice-level
programs can be characterized within a small set of roles. The following list, reprinted from
Sorva et al. (2007, p. 410), briefly introduces each variable role. For a fuller introduction to
roles of variables, and concrete program examples of each role, see Sajaniemi (2003).

1. A variable has the role fixed value if the variable’s value is not changed after it is
initialized.

Sorva

64

2. A variable has the role of stepper if it is assigned values in a systematic and
predictable order. An example of a stepper is an index counter used when looping
through an array of elements.

3. A variable has the role of most-recent holder if it holds the latest value in a
sequence of unpredictable data values. For instance, a most-recent holder could be
used to store the latest element encountered while iterating through a collection of
data elements, or the latest value that has been assigned to an object’s attribute (i.e.,
to an instance variable that is a most-recent holder) by a setter method.

4. The role most-wanted holder describes variables that hold the “best” value
encountered in a sequence of values. Depending on the program and the type of the
data, the best value may be the largest, smallest, alphabetically first, or an
otherwise most appropriate value.

5. A variable has the role gatherer if the variable is used to somehow combine data
values that are encountered in a sequence of values, and the variable’s value
represents this accumulated result. For instance, a variable keeping track of the
balance of a bank account (e.g., the sum of deposits and withdrawals) is a gatherer.

6. A follower is a variable that always holds the most recent previous value of another
variable. Whenever the value of the followed variable changes, the value of the
follower is also changed. For example, the “previous node pointer” used when
traversing a linked list is a follower.

7. A variable is a one-way flag if it only has two possible values and if a change to the
variable’s value is permanent. That is, once a one-way flag is changed from its
initial value to the other possible value, it is never changed back. For example, a
Boolean variable keeping track of whether or not errors have occurred during
processing of input is a one-way flag.

8. A variable has the role temporary if the value of the variable is needed only for a short
period. For example, an intermediate result of a calculation can be stored in a
temporary in order to make it more convenient or efficient to use in later calculations.

9. An organizer is a variable that stores a collection of elements for the purpose of
having that collection’s contents rearranged. An example of an organizer is a
variable that contains an array of numbers during sorting.

10. A variable is a container if it stores a collection of elements in which more
elements can be added (and, typically, can be removed as well). For example, a
variable that references a stack could be a container.

11. A walker is a variable whose values traverse a data structure, moving from one
location in the structure to another. For instance, a variable that contains a
reference to a node in a tree traversal algorithm and a variable that keeps track of
the search index in a binary search algorithm can be considered to be walkers.

Variable-Oriented Programming

In traditional procedural and object-oriented programming, the behavior of a variable, that is,
the logic that dictates how the variable is used, is often defined at multiple distinct locations
in program code. Depending on the scope of the variable, the behavior may be described by

Roles-Based Programming

65

inconsecutive lines of code within a function or method, may be located in a number of
functions, or even located in several program modules. Declaring a variable, if it is explicitly
done in the language at all, is a matter separate from the variable’s behavior.

There is an alternative way to organize variable behavior in programs. If a variable’s
behavior pattern is defined at the variable’s declaration, the “usage plan” of the variable
becomes localized in one place. This idea is central to the variable-oriented way of
programming discussed in this paper. In a variable-oriented program, each variable declaration
is accompanied by a definition of how the variable’s value is initialized and later updated. A
variable declaration could also include information of when the variable’s value is read and
dependencies on other variables. In a variable-oriented program, such rich variable declarations
serve as the basis of, and indeed govern, the creation of algorithms.

Variable-oriented programming has made an appearance in literature before. It was
introduced in connection with the program editor VOPE, which makes use of variable-
orientation to provide multiple views of program code written in the Pascal language
(Sajaniemi & Niemeläinen, 1989). In addition to a traditional control-flow oriented view of
Pascal programs, VOPE shows a purely variable-oriented view, which groups code fragments
so that all references to each variable are gathered together.

A ROLES-BASED APPROACH

A look at how an algorithm could be devised using roles of variables may be useful. The
passage below presents a hypothetical thought pattern of how a student of programming, who
has been taught to use the roles of variables, might go about the task of creating an algorithm for
computing the nth Fibonacci number.

Some way of keeping track of consecutive Fibonacci numbers is needed to compute to the nth
one. Each new value is produced by computing a new value based on the current one. That’s a
job for a gatherer. And since, in this case, each new value is computed based on two older
values, a follower is needed to store the older value of the gatherer. By starting from the first
Fibonacci number (one), then after n-1 updates to the gatherer, the result should be reached.

While fictional and idealized, this example offers an idea of how roles-based reasoning

might proceed and make use of the common patterns of variable use embodied by roles of
variables. It is also an example of thinking ahead: The programmer uses existing schemas to
plan in advance how he/she will use the two variables. Figure 1 shows a somewhat more formal
and complete description of the algorithm, using a pseudocode notation that closely reflects the
reasoning process described above.

In the pseudocode in Figure 1, two variables are declared, each with a different role. For
each variable, its behavior has been declared as a part of the variable definition. The example
illustrates how an algorithm can be built by attaching behavior to variable definitions.
Further, it shows how roles of variables can serve as templates for common patterns in a
variable-oriented program.

Each variable is declared as an instance of a role, which determines the kinds of
operations that need to be defined for each instance of the role. For example, all gatherers
require a definition of how their values change as a function of the same variable’s old value,

Sorva

66

Figure 1 . Variable-oriented pseudocode.

whereas a follower is dependent on another variable whose old values it receives. For a fixed
value (not shown in the example), only an initialization is needed, while a most-wanted
holder would define an operation to test whether a given value is “more wanted” than the
current value, and so on.

The next two subsections explore possible implementations for variable-oriented, roles-
based algorithms such as that in Figure 1. The first one sketches out a variable-oriented
programming language that uses roles of variables as language-level abstractions. The second
then takes a look at how a similar framework could be implemented in an existing
programming language.

A Roles-Based Language

Figure 2 provides an example of variable-oriented code based on roles of variables. It is
written in a speculative language called ROTFL (Role-Oriented, Titillating but Fictional
Language). The reader should note that ROTFL is at a draft stage and lacks a full syntactical
and semantical specification. The notation is used here to provide “food for thought.” In
Figure 2 and in other Fibonacci examples in this paper, n is an integer-valued constant that
determines which Fibonacci number is to be printed out.

Figure 2. The Fibonacci algorithm in the language ROTFL.

define GATHERER curr:
initial value is 1
always updated by computing value of curr + prev

define FOLLOWER prev:

initial value is 0
follows curr (and always receives its old value)

make n-1 updates to curr (results in changes to both curr and prev)
print curr (which now holds the nth Fibonacci number)

Gatherer curr:
 inits to: 1
 updates with: curr + prev

Follower prev:
 inits to: 0
 follows: curr

update curr times n-1
print(curr)

Roles-Based Programming

67

In ROTFL, there are no traditional variable definitions. Instead, all variables are defined in
terms of roles and associated with behaviors appropriate for those roles. Roles of variables are
language-level constructs, and there are reserved words related to defining or using variables
with particular roles (e.g., follower, update). ROTFL does not feature assignment operators or
statements in the traditional sense. Instead, variables’ values are changed in role-specific ways.
For instance, values are assigned to gatherers with the reserved word update, which uses the
updates-with operation of the gatherer to compute a new value for the variable, and followers
receive new values implicitly as the value of a followed variable changes.

Traditional loops are also conspicuous by their absence in Figure 2, despite the fact that the
algorithm is an iterative one. In this example, repetition is achieved using the keyword times in
association with updating the value of the gatherer curr. Another mechanism for achieving
repetition is illustrated in Figure 3, where a do each command repeatedly updates a most-recent
holder variable until a condition associated with the variable is reached. The same example also
shows a most-wanted holder dependent on a most-recent holder that serves as its source.

Figure 3 . A ROTFL code fragment to read in lines and print out the longest one.

Implementing Roles in an Existing Language

Variable-oriented programming can also be done within an existing programming language,
provided a suitable framework is available. Figure 4 shows how the variable-oriented, roles-
based program from Figures 1 and 2 can be written in the Python language. The program
makes use of an anonymous function defined using Python’s lambda mechanism.

The program in Figure 4 relies on a framework that defines roles of variables as Python
classes, and role-related operations (such as updating the value of a gatherer) as methods of
these classes. A partial framework for this purpose, defining the classes gatherer and follower,
is given in the Appendix.

Figure 4. A variable-oriented code fragment in Python.

MostRecentHolder input:
 updates with: readLine()
 until: input == ’stop’

MostWantedHolder longestInput:
 source: input
 wants value if: value.length() > longestInput.length()

do each input
print(longestInput)

curr = Gatherer(1, lambda: curr + prev)
prev = Follower(0, curr)
curr.updateTimes(n-1)
print(curr)

Sorva

68

DISCUSSION

Uses of Roles-Based Programming

As noted in the introduction to this paper, prior research suggests that the behavior of 99% of
variables can be characterized with a small set of roles, at least within novice-level programs
(Sajaniemi, 2002). It does not immediately follow, however, that 99% of even novice-level
programs can be conveniently written as variable-oriented programs using roles as templates
for variable behavior. Nevertheless, it seems roles form a solid foundation for creating
variable-oriented programs, as the small role set provides a quite substantial number of
variables with templates that capture some key aspects about how those variables are used.
This matter calls for further study.

Variable-oriented programming localizes variable plans in program code. Prior work in
cognitive psychology of programming suggests that it is likely that localizing variable plans
facilitates the extraction and construction of variable-related schemas (Soloway et al., 1988)
and therefore aids novices in acquiring some key programming skills. With this in mind, and
in light of previous experiences of using roles of variables in teaching, one can speculate
whether a variable-oriented, roles-based language could be useful for teaching introductory
programming. Clearly, there could be merits to such an approach if variable-orientation helps
students construct variable-related schemas, if roles can be used to encourage forward
development (Byckling and Sajaniemi, 2007), and if there were roles-aware program
development tools that could provide helpful feedback and error messages.

There also clearly are problems with such an approach. Not least of these is that while
variable-oriented programs emphasize variable-related plans and the data flow of programs, the
control flow of the program is not in focus. Understanding “what happens when” during the
execution of a variable-oriented program may be quite difficult, especially for the beginner.
There is a trade-off between emphasizing variable-related schemas and emphasizing control-
flow-related schemas. Using tools similar to VOPE (Sajaniemi & Niemeläinen, 1989), which
provides multiple views of programs, could be useful in combining these different aspects of
programs. A notation based on roles of variables could be used to build variable-oriented views
and to link them to procedural or object-oriented views.

Depending on the notation used, a variable-oriented program can be quite self-
documenting of variable-related schemas (see, e.g., Figure 2). Roles of variables help in this,
since role names succinctly describe patterns of variable use. However, it is not immediately
obvious what the documentative value of variable-oriented notations is compared to non-
variable-oriented notations that explicate the role of each variable (e.g., by simply tagging
each variable declaration with a role name using code comments). Documenting delocalized
variable behavior using role names may often do enough and using a variable-oriented
language may be overkill for this purpose.

Even if beginners are not taught variable-oriented, roles-based programming directly, they
might indirectly benefit from it. Bergin (2005) suggests that instructors of programming (and
others) could benefit from “etudes” that take one particular programming technique to an
extreme. While such etudes have no intrinsic value of their own, they can help hone one’s skills
in a particular technique and to ingrain that technique into one’s thinking. For helping instructors
(not novice programmers) make use of polymorphism, Bergin suggests the following etude:

Roles-Based Programming

69

Find some old program that you have around and that you are proud of…. Strictly as an
etude, rewrite that program with NO if/switch statements: no selection at all. Solve all of
the problems your ifs solve with polymorphism. (Bergin, 2005, p. 1)

In a similar vein, roles-based programming could serve as an etude for using roles of variables
in general. The intellectual exercise of rewriting programs in a variable-oriented way, using roles
as templates for variables, with no traditional-style assignment and perhaps with no traditional-
style loops, could deepen instructors’ understanding of roles and help them think of algorithms in
terms of variables and roles. At least, the exercise has expanded the mind of this author.

Variable-Oriented “Purity”

According to Sajaniemi and Niemeläinen (1989, p. 67, my emphases), “Variable-oriented
programming is a new programming paradigm which collects all actions concerning any
single variable together.... The plan of a variable is clearly visible and totally described in the
variable definition.”

A “pure” variable-oriented program, then, would gather all references (assignments and
reads) to a variable into one complete variable definition, irrespective of the location of these
references in the control flow of the program. The reader may note that the examples shown
in this paper are not pure by this strict definition. For instance, in Figure 2, neither the
command update nor reading the variable’s value for printing purposes (i.e., the last two
lines) is located within the variable definition. The example can be seen as a hybrid that is
largely variable-oriented but partially control-flow-oriented. It can be contrasted with the
pure variable-oriented views displayed by the VOPE tool (Sajaniemi & Niemeläinen, 1989).

Roles of variables are concerned with assignment, with change (or lack of change) in the
values of variables, and with the way consecutive values of variables are related to each other.
Roles are not concerned with when a variable’s value is updated or read, or with what is done
with the value after it has been read (whether it is printed, passed as a parameter, or something
else). A variable-oriented program based solely on roles of variables will not be pure. A more
complete discussion of the purity of variable-orientation is beyond the scope of this paper. The
next subsection also touches on the issue of purity, however, as it briefly explores the relationship
between object-oriented programming, variable-orientation, and roles-based programming.

Compatibility with Object-Orientation

The original set of roles of variables was discovered by analyzing procedural programs. Since
then, roles of variables have been applied to object-oriented as well as functional programs
(Sajaniemi, Ben-Ari, Byckling, Gerdt, & Kulikova, 2006). Roles seem to be a useful tool
irrespective of the programming paradigm used.

What, then, is the relationship between variable-orientation and object-orientation?
Quoting again from Sajaniemi and Niemeläinen (1989, p. 67), “In object-oriented
programming all operations applicable to objects of a class are described in one place.... In
variable-oriented programming programs center around the variables. A variable, and all the
actions using that particular variable, are described in one place.”

Sorva

70

 One of the two paradigms elevates classes as a key abstraction around which program
code is structured; the other does the same to variables. These two abstractions are in
competition, but not incompatible. It is quite possible to envision a hybrid of the object-
oriented and variable-oriented paradigms, as illustrated by the example in Figure 5.

It is easy to see that Figure 5 is not pure in terms of variable-orientation. The generic plan
for using the instance variable balance, a gatherer, is defined at the variable declaration.
However, the precise ways in which the three methods make use of this generic plan are
spread out in the code.

Figure 5. A ROTFL class representing simple bank accounts with non-negative balances.

Another issue needs to be considered when applying roles of variables to object-oriented

programs. As was noted by Sorva et al. (2007, p. 419),

Annotating a member variable and a local variable with the same role name indicates that
we think of them as similar. However, our experience suggests that in many people’s
perception a most-recent holder member variable, for instance, is used rather differently
than a most-recent holder local variable. A settable attribute of an object (the name of a
person object, say) is experienced as being quite different from a local variable that stores
the most recent element encountered in a collection during iteration.... This kind of
dividedness of roles is potentially confusing….

It may be that, in order to apply roles-based programming to object-oriented programs, new

roles are needed to represent different uses of instance variables. As an example, a role name
settable attribute could better describe the purpose of most-recent holder instance variables. If
needed, the roles-based language or framework could provide a somewhat different template for
settable attributes than for other most-recent holders.

class Account:
 private Gatherer balance:
 inits to: 0
 updates with (FixedValue amount):
 if (balance + amount < 0) then:
 0
 else:
 balance + amount

 public method deposit(FixedValue depositSize):
 update(depositSize) balance

 public method withdraw(FixedValue withdrawalSize):
 update(-withdrawalSize) balance

 public method getBalance():
 balance

Roles-Based Programming

71

CONCLUSIONS AND FUTURE WORK

In this paper, I have revisited the previously discovered ideas of variable-oriented programming
and roles of variables. This paper combines these two ideas by founding variable-orientated
programs on roles, and sketches out how such a roles-based approach could be implemented
using a roles-based programming language or a framework written in another language. The
paper has described ongoing work on tools for roles-based programming, and discussed the
possible applications, merits, and problems of the approach. It is my hope that this paper can
serve as a basis for further discussions of variable-oriented, roles-based programming.

This paper has merely introduced the idea of using roles of variables in variable-oriented
programming. There are many research paths that could be followed in the future. Roles-
based languages or frameworks could be developed further from the drafts presented,
investigating the suitability of the variable-oriented approach for more complex programs.
Ways of defining dependencies between variables could be explored, as could the idea of
actions that trigger when variables’ values change. Here, inspiration could perhaps be drawn
from earlier work, such as the language EDEN (Yung, Joy, & Ward, 1987), which, although
not variable-oriented, allows the programmer to associate “action specifications” to variables.

The suitability of the current set of roles of variables for roles-based programming needs
exploring, as does the idea of custom roles defined by the programmer. The possible
usefulness of roles-based programming outside educational settings could be investigated.

The effects of a variable-oriented notation on understanding programs’ control flow will
need to be explored if this approach is to be taken further. Roles-based tools supporting both
variable-oriented and other views of programs could be developed. If the approach looks
promising, the potential of variable-oriented programming in instruction could be evaluated.

Using roles-based programming as an etude for instructors to deepen their understanding
of roles of variables seems like a promising avenue to take in the future. This can be done
even using a speculative language like ROTFL.

REFERENCES

Bergin, J. (2005, July). Variations on a polymorphic theme: An etude for computer programming. Paper
presented at the Ninth Workshop on Pedagogies and Tools for the Teaching and Learning of Object
Oriented Concepts, Glasgow, UK. Retrieved April 15, 2007, from
 http://www.cs.umu.se/~jubo/Meetings/ECOOP05/Submissions/Bergin-full.pdf

Byckling, P., & Sajaniemi, J. (2006a). A role-based analysis model for the evaluation of novices’ programming
knowledge development. In ICER ’06: Proceedings of the 2006 International Workshop on Computing
Education Research (pp. 85–96). New York: ACM Press.

Byckling, P., & Sajaniemi, J. (2006b). Roles of variables and programming skills improvement. SIGCSE
Bulletin, 38, 413–417.

Byckling, P., & Sajaniemi, J. (2007). A study on applying roles of variables in introductory programming. In
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC ’07; pp. 61–68). Coeur
d'Alène, ID, USA: IEEE Computer Society.

Détienne, F. (1990). Expert programming knowledge: A schema-based approach. In J. M. Hoc, T. R. G. Green,
R. Samurçay, & D. J. Gilmore (Eds.), Psychology of programming (pp. 205–222). London: Academic Press.

Lister, R., Seppälä, O., Simon, B., Thomas, L., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm,
M., McCartney, R., Moström, J. E., & Sanders, K. (2004). A multi-national study of reading and tracing
skills in novice programmers. SIGCSE Bulletin, 36, 119–150.

Sorva

72

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B., Laxer, C., Thomas,
L., Utting, I., & Wilusz, T. (2001). A multi-national, multi-institutional study of assessment of
programming skills of first-year CS students. SIGCSE Bulletin, 33, 125–180.

Rist, R. S. (1989). Schema creation in programming. Cognitive Science, 13, 389–414.

Sajaniemi, J. (2002). An empirical analysis of roles of variables in novice-level procedural programs. In
Proceedings of IEEE 2002 Symposia on Human Centric Computing Languages and Environments (pp. 37–
39). Arlington, VA, USA: IEEE Computer Society.

Sajaniemi, J. (2003). The roles of variables home page. Retrieved April 15, 2007, from
http://cs.joensuu.fi/~saja/var_roles

Sajaniemi, J., Ben-Ari, M., Byckling, P., Gerdt, P., & Kulikova, Y. (2006). Roles of variables in three
programming paradigms. Computer Science Education, 16, 261–279.

Sajaniemi, J., & Kuittinen, M. (2005). An experiment on using roles of variables in teaching introductory
programming. Computer Science Education, 15, 59–82.

Sajaniemi, J., & Navarro Prieto, R. (2005). Roles of variables in experts’ programming knowledge. In
Proceedings of the 17th Annual Workshop of the Psychology of Programming Interest Group (PPIG; pp.
145–159). Brighton, UK: University of Sussex.

Sajaniemi, J., & Niemeläinen, A. (1989). Program editing based on variable plans: A cognitive approach to
program manipulation. In Proceedings of the Third International Conference on Human-computer
Interaction on Designing and Using Human-computer Interfaces and Knowledge Based Systems (2nd ed.;
pp. 66–73). New York: Elsevier Science Inc.

Soloway, E., & Ehrlich, K. (1986). Empirical studies of programming knowledge. In C. Rich & R. C. Waters
(Eds.), Readings in artificial intelligence and software engineering (pp. 507–521). San Francisco: Morgan
Kaufmann Publishers Inc.

Soloway, E., Ehrlich, K., Bonar, J., & Greenspan, J. (1982). What do novices know about programming? In
A. Badre & B. Shneiderman (Eds.), Directions in human-computer interactions (pp. 27–54). Norwood, NJ,
USA: Ablex Publishing.

Soloway, E., Lampert, R., Letovsky, S., Littman, D., & Pinto, J. (1988). Designing documentation to
compensate for delocalized plans. Communications of the ACM, 31, 1259–1267.

Sorva J., Karavirta V., & Korhonen A. (2007). Roles of variables in teaching. Journal of Information
Technology Education, 6, 407–423.

Yung, E., Joy, M., & Ward, A. (1987). EDEN: The engine for definitive notations. Retrieved April 15, 2007,
from http://www2.warwick.ac.uk/fac/sci/dcs/research/em/software/eden/

Author’s Note

All correspondence should be addressed to:
Juha Sorva
Helsinki University of Technology
Department of Computer Science and Engineering
Konemiehentie 2
02015 TKK, Finland
jsorva@cs.hut.fi

Human Technology: An Interdisciplinary Journal on Humans in ICT Environments
ISSN 1795-6889
www.humantechnology.jyu.fi

Roles-Based Programming

73

APPENDIX

A PARTIAL FRAMEWORK FOR VARIABLE-ORIENTED, ROLES-BA SED
PROGRAMMING IN PYTHON

The classes below form a partial (but working) framework for writing variable-oriented
programs in terms of roles of variables in the Python language. The partial framework shown
here has implementations for only some main features of three roles (fixed value, gatherer
and follower). For an example of using the classes, see Figure 4.

Other variable roles can be implemented in Python along the same lines.
Implementation-wise, most-recent holders are simple; they just need an update method that
replaces the old value with the given new one. Steppers and most-wanted holders can be
implemented similarly to gatherers and most-recent holders, respectively. Temporary
variables are akin to fixed values and trivial to implement, one-way flags likewise.
Containers need a more complex class, with methods for adding and removing values.
Alternatively, containers could be left unimplemented as an explicit role, relying on Python’s
built-in data structures instead. Organizers are characterized by a variable-specific function
that defines a means for ordering data, which can be passed as a constructor parameter (cf.
the gatherer implementation below).

The few variables that do not have any of the roles in Sajaniemi’s (2003) role set can be
treated as most-recent holders, or with a functionally similar but differently named class (e.g.,
special), which effectively allows new values to be assigned freely to the variable by passing
them as a parameter to update. Alternatively, programmers could define their own program-
specific custom roles.

import types

class Role:
 def __init__(self, initsTo):
 self.followers = []
 if (type(initsTo) == types.FunctionType):
 self.value = initsTo()
 else:
 self.value = initsTo

 def __add__(self, x):
 return self.value + x
 __radd__ = __add__

 def __str__(self):
 return repr(self.value)

 def addFollower(self, follower):
 self.followers.append(follower)

Sorva

74

class FixedValue(Role):
 def __init__(self, initsTo):
 Role.__init__(self, initsTo)

class Gatherer(Role):
 def __init__(self, initsTo, updatesWith):
 Role.__init__(self, initsTo)
 self.updatesWith = updatesWith

 def update(self):
 oldValue = self.value
 self.value = self.updatesWith()
 for f in self.followers:
 f.update(oldValue)

 def updateTimes(self, times):
 for time in range(times):
 self.update();

class Follower(Role):
 def __init__(self, initsTo, followedVariable):
 Role.__init__(self, initsTo)
 followedVariable.addFollower(self)

 def update(self, newValue):
 oldValue = self.value
 self.value = newValue
 for f in self.followers:
 f.update(oldValue)

An Interdisciplinary Journal on Humans in ICT Environments ISSN: 1795-6889

www.humantechnology.jyu.fi Volume 4 (1), May 2008, 75–91

75

FROM PROCEDURES TO OBJECTS: A RESEARCH AGENDA
FOR THE PSYCHOLOGY OF OBJECT-ORIENTED

PROGRAMMING EDUCATION

Abstract: Programming education has experienced a shift from imperative and procedural
programming to object-orientation. This shift has been motivated by educators’ desire to
please the information technology industry and potential students; it is not motivated by
research either in psychology of programming or in computer science education. There are
practically no results that would indicate that such a shift is desirable, needed in the first
place, or even effective for learning programming. Moreover, there has been an implicit
assumption that classic results on imperative and procedural programming education and
learning apply to object-oriented programming (OOP) as well. We argue that this is not the
case and call for systematic research into the fundamental cognitive and educational issues
in learning and teaching OOP. We also present a research agenda intended to improve the
understanding of OOP and OOP education.

Keywords: programming education, procedural programming, object-oriented
programming, psychology of programming.

INTRODUCTION

During the last 10 years, programming education has experienced a shift from imperative and
procedural programming to object-oriented programming (OOP). This shift has been
motivated by educators’ desire to please the information technology industry, on one hand,
and potential students on the other. Object-orientation and Java have been spreading as the
most important implementation platform for new, Web-based applications with widespread
visibility among computer users, which has created the illusion that the word programming
equals Java OOP. Thus, students want to learn Java from the very beginning of their
programming studies. Teachers’ selection of the first programming language is dominated by
student demand and a willingness to provide students with marketable skills (de Raadt,
Watson, & Toleman, 2002), that is, Java programming. With the current drop in enrollments
to academic computing programs (Cassel, McGettrick, Guzdial, & Roberts, 2007) educators’

© 2008 Jorma Sajaniemi and Marja Kuittinen, and the Agora Center, University of Jyväskylä
URN:NBNfi:jyu-200804151354

Jorma Sajaniemi
Department of Computer Science and

Statistics, University of Joensuu
Joensuu, Finland

Marja Kuittinen
Department of Computer Science and

Statistics, University of Joensuu
Joensuu, Finland

Sajaniemi & Kuittinen

76

thirst for pleasing potential students will probably only increase. Moreover, many companies
want to hire students who know how to program in Java and educators may think that if an
institute is not teaching Java, its reputation among those companies is damaged.
 It should be noted that the shift to object-orientation in education is not motivated by
psychology of programming or computer science education research: There are practically no
results that would indicate that such a shift is desirable, needed in the first place, or even
effective for learning programming (Lister et al., 2006). Yet, learning programming should be
the most important issue—not learning the peculiarities of a single paradigm or a certain
language. Note that “learning programming” does not refer to imperative1 or procedural—
neither functional nor logic—programming, but learning programming in a way that can be
applied in many programming paradigms and many programming languages.
 Indeed, we are surprised to find out that the cognitive consequences of the shift to object-
orientation had not been studied before the shift, and only superficially even after it. There
are some studies on the misunderstanding of object-oriented (OO) concepts but the
development of OOP skills and comprehension of OO concepts have not been studied. There
has been an implicit assumption that classic results on imperative and procedural
programming education and learning (see Robins, Rountree, & Rountree, 2003, and
Winslow, 1996, for reviews) also apply to OOP, but we fear that this is not always the case.
OOP is so much more complicated than imperative and procedural programming—both at the
concrete notational level and at a more abstract conceptual level—that there are good grounds
to question whether the classic results can be generalized to object-orientation.
 What this means in practice is that educational institutions around the world are
implementing curricula and teaching methods that are not based on research, but on intuition.
There are practically no theories on the development of programming skills or comprehension
of programming concepts in the OO case. It is no wonder that educators are fighting against
high dropout rates from (e.g., Kinnunen & Malmi, 2006) and poor learning outcomes in (e.g.,
McCracken et al., 2001) programming courses. Research has offered educators various
pedagogic tricks (e.g., Bennedsen & Caspersen, 2004; Bierre, Ventura, Phelps, & Egert 2006;
S. Cooper, Dann, & Pausch, 2003; Holliday & Luginbuhl, 2004; Hsia, Simpson, Smith, &
Cartwright, 2005; Kölling & Henriksen, 2005; Lopez-Herrejon & Schulman, 2004; Mahmoud,
Dobosiewicz, & Swayne, 2004; Marrero & Settle, 2005; Shanmugasundaram, Juell, & Hill,
2006; Truong, Bancroft, & Roe, 2005; Utting, 2006), but the lack of solid psychological and
educational theories makes a holistic approach impossible.
 This paper presents a case for systematic research into the comprehension of
programming and the development of skills in the OO paradigm. In order to understand the
huge shift from imperative and procedural programming to object-orientation, we start by
comparing these paradigms at three of the five domains that du Boulay (1989) presents as
issues that a learner must master: notations of the particular language, the notional machine
that describes how programs in the particular language are executed, and the orientation,
describing what programs are for and what can be done with them. Differences between
programming paradigms in du Boulay’s two remaining domains, structures (abstract
solutions to standard problems) and pragmatics (the skills of planning, developing, testing,
debugging, etc.), are more complicated and will not be treated in this paper. It is clear that if
differences in the basic constructs—notations, notional machine, and orientation—make the

From Procedures to Objects

77

applicability of classic results to object-orientation dubious, then differences in more
complicated issues will make the situation even worse.
 This paper is structured as follows. First, we will look at the differences between
imperative and procedural programming versus OOP with respect to notations, notional
machine, and orientation. Then, we will review research literature and see how it supports our
claims. Finally, we will present a research agenda for OOP.

THE NOTATIONAL REVOLUTION

Notations needed in Java programs do differ remarkably from those of imperative and
procedural programming2. This is partially due to the larger number of programming
concepts needed, but also due to the structure of the Java language (Radenski, 2006).
 For example, consider the algorithm for simple user interaction in Figure 1, given in a
natural language, English. The pseudo code version of this algorithm is given in Figure 2, and
a Pascal program for the same task in Figure 3 (from a popular textbook of its time, D.
Cooper & Clancy, 1982, p. 15). Even though the notations differ in their level of formality,
they look strikingly similar. When we compare the natural language version (that should be
in a notation familiar to students) in Figure 1 to the Pascal version (that the students should
learn to understand), the new notations and the related concepts are

� “program,” name of the program: program
� interaction ports needed: input/output
� “integer” and the variable name: variables
� “write,” “writeln,” and “readln”: input/output
� “var,” “begin,” “end,” and punctuation: language syntax.

 The first two of these are required by the language, but are simple to students (this is a
program with input and output); the next two are just what the students are learning (the
concepts of variable and input/output); the last one is something cryptic required by the
language. Parts required by the language vary from one language to another. For example, in
Python there would be no special punctuation or statement brackets and the program line
would not be needed.
 Now, let us turn to the Java version of the same program given in Figure 4, which must
be stored in a file with a certain name, Interactive.java. (We assume the existence of another
class for user input stored in the file Input.java). Compared with Figure 1, the new notations
and the related concepts are:

� “public”: visibility
� “class,” name of the class: classes and objects
� “static”: access rights
� “void”: return values
� “main”: program
� method name and its argument: methods and their arguments
� “String,” “[],” “System,” and “Input”: predefined classes
� “int” and the variable name: variables

Sajaniemi & Kuittinen

78

� “println,” and “readInt”: input/output
� punctuation: language syntax

 This list is much longer than the corresponding list for Pascal. And, what is more
important, it contains a large number of difficult concepts that are not required for the
solution of the problem, but by the structure of the language: classes and objects, visibility,
access rights, method definitions and calls, and return values.

Figure 1: An example program in English.

Figure 2: The example program in pseudo code.

Figure 3: The example program in Pascal.

Figure 4: The example program in Java.

Tell the user that this is an interactive program.
Ask the user to enter an integer value.
Get the number from the user.
Tell the user what the entered number was.

write 'This program interacts with its user.'
write 'Please enter an integer value.'
read Number
write 'The number you entered was:'
write Number

program Interactive (input, output);
 var Number: integer;
begin
 writeln ('This program interacts with its user.');
 writeln ('Please enter an integer value.');
 readln (Number);
 write ('The number you entered was:');
 writeln (Number)
end.

public class Interactive {
 public static void main(String[] args) {
 int Number;
 System.out.println("This program interacts with its user.");
 System.out.println("Please enter an integer value.");
 Number = Input.readInt();
 System.out.print("The number you entered was:");
 System.out.println(Number);
 }
}

From Procedures to Objects

79

 One may argue that this example program favors imperative programming and that the
first programs used in OOP courses do not contain this much input and output. Even if that
were the case, the first Java program will contain almost all of the above concepts.
 Thus, the shift to object-orientation and Java has made a revolution at the notational
level, even though this might not be obvious at first sight: The lengths of the programs in
Figures 3 and 4 are practically the same, yet the number of new notations and concepts is
remarkably higher in the Java case. This rise is not due to the programming problems that are
solved, but rather to the requirements of the language used.

THE NOTIONAL MACHINE REVOLUTION

In order to be able to understand what individual constructs of a programming language mean
and how programs written in that language work, a student must understand how the notional
machine (du Boulay, O’Shea, & Monk, 1981) underlying that language works. Programs
cannot be understood as strings of characters only; students must understand, for example,
what a variable is and how it is affected by assignments. A more thorough understanding of
programming includes, for instance, knowledge of typical uses of variables and control
structures (Détienne, 2002), which also relies on a proper understanding of the notional
machine. The machine needed for understanding the first programs should be simple, or else
learning programming becomes hard (du Boulay et al., 1981).
 In the procedural approach, instruction typically starts with the imperative constructs:
variables, input/output, conditionals, and looping constructs. The notional machine needed to
explain these notions consists of

� variable: location or slot with a name and contents
� input/output: two devices connecting variables to external world
� program execution: a program counter referring to a certain point at the program.

 A notional machine that consists of the above parts is clearly capable of executing the
program in Figure 3 and can be used in teaching the first steps in imperative programming.
 An extension to this notional machine is needed when pointers are included:

� pointer: contents of a variable may be the location of another variable.

 Further extensions are needed when procedures are introduced:
� procedure call: a call stack
� parameter: room for parameters in the call stack and parameter-passing

mechanisms
� return value: mechanism for return value, possibly with room for it in the call stack.

It should be noted that these extensions are fully compatible with the initial notional machine
and they can be introduced gradually along with the introduction of new programming
language constructs.
 In contrast to the procedural approach, OOP requires a much larger and more
complicated notional machine from the very beginning. A notional machine that is capable of
executing the program in Figure 4 must contain all of the following parts (see the list of
concepts of the program given in the previous section):

Sajaniemi & Kuittinen

80

� object: a heap for objects
� method: a call stack
� parameter: room for parameters in the call stack and parameter-passing

mechanisms
� return value: mechanism for return value, possibly with room for it in the call stack
� variable: location or slot with a name and contents (in the call stack)
� input/output: two devices connecting variables to external world
� object reference: contents of a variable or a parameter may be the location of an

object in the heap
� program execution: a program counter referring to a certain point at the program.

Moreover, there are concepts that are needed even though they are not directly expressed in
the notional machine: visibility and access rights concerning validity of the program, and the
relationship between classes and objects concerning the relationship between the program
text and the object heap.
 Compared with the notional machine in the procedural case, the difference is huge. The
OO notional machine described above and needed for the simple program in Figure 4 is not
only larger than the corresponding notional machine needed for the equivalent program in
Figure 3, but it is much larger than the total notional machine in the procedural case.
Furthermore, the notional machine for OOP described above does not even contain parts
needed to describe other OO constructs that are typically introduced in the first programming
course: subclasses and inheritance, implicit calls of superclass constructors, and polymorphism.
 One might argue that there is no need for students to understand notations and the
notional machine completely—students can simply put aside unnecessary parts as boiler
plates when first learning. The problem with this thinking is that novices have no means to
decide which issues are unnecessary and which must be attended to when reading or writing
programs. The use of boiler plate code mystifies programming and obscures concepts that
should be learned. Programming should not be taught as a copy-and-paste art that only
incidentally results in a correctly functioning program, but rather as a clearly defined activity
that deals with unambiguous constructs. Otherwise, the central concepts remain blurred.
 In summary, the shift to object-orientation and Java has made a revolution at the notional
machine level. Not only is the size of the required notional machine much larger than in the
procedural case, but the initial notional machine needed in order to understand the first
programs is much more complicated, as well.

THE ORIENTATION REVOLUTION

Sajaniemi, Ben-Ari, Byckling, Gerdt, and Kulikova (2006) have studied example programs in
elementary programming textbooks among three programming paradigms: procedural,
object-oriented, and functional. They found major differences in the programming problem
types used in these various programming paradigms. The most important issue in procedural
programming textbooks is the functionality of programs: Example programs compute
meaningful values based on input and print the results for users through simple output
mechanisms. OOP textbooks deal with data modeling on one hand, and demonstrate specific

From Procedures to Objects

81

language features on the other. Even though message passing structures may be complex,
their net effects are trivial from the user’s perspective. Finally, functional programming
textbooks stress data manipulation techniques. Thus, the orientation (i.e., what programs are
for) is very different in these paradigms.
 This finding also means that students’ tasks are different depending on the programming
paradigm used for learning. In procedural programming, students try to write programs that
do meaningful actions and computations, whereas in OOP students concentrate on creating
conceptual models for (usually concrete) data. Détienne (1997) notes that when novices
design OO programs, the activity of finding classes consumes their attention; they think about
functionality only late in the design activity. Ebrahimi and Schweikert (2006) found that
students have problems in understanding object-orientation and incorporating OO concepts
into problem solving. Students tend to spend more time trying to understand objects and less
time on problem solving. Thus, the shift to object-orientation has made a revolution at the
orientation level and regarding students’ tasks in programming.

RESEARCH SUPPORT

In the previous sections, we have demonstrated that the shift from imperative and procedural
programming education to OOP has denoted a revolution in the complexity of notations,
concepts and the notional machine needed, and in the orientation and tasks carried out by
students as programming exercises. In this section, we will look at research literature3 and see
what it says about this revolution.

Imperative and Procedural Programming

Classic works on programming education and the psychology of novice and expert
programming (e.g., Brooks, 1983; Corritore & Wiedenbeck, 1991; Davies, 1993; Gilmore &
Green, 1984; Letovsky, 1986; Pennington, 1987; Perkins & Martin, 1986; Rist, 1989;
Soloway & Spohrer, 1989; see also Robins et al., 2003, and Winslow, 1996, for excellent
reviews) are primarily based on imperative and, to some extent, also procedural
programming—in many cases Pascal programming, which is why we used Pascal in Figure 3.
It is evident from this literature that learning programming is challenging even in the
imperative case. Novices often have problems understanding basic concepts, such as
variables and basic imperative control structures (Ben-David Kolikant & Haberman, 2001;
Samurçay, 1989; Spohrer, Soloway, & Pope, 1989)—that is, they have problems in
understanding the basic notional machine required for imperative programming.
 Novices’ knowledge about the imperative parts of programming languages has been
found to be at first fragile (Perkins & Martin, 1986), such as inert knowledge that students
cannot readily master, or misplaced knowledge migrated to inappropriate contexts. As a
consequence, students have problems in applying their knowledge even though the
knowledge itself may be correct. From a cognitive perspective, the causes of fragile
knowledge include a sparse network of associations in long-term memory, that is, weak
connections between different concepts, and underdifferentiation of language commands.
Yet, the hardest part of learning is not in grasping the syntax and semantics of some

Sajaniemi & Kuittinen

82

language, but in adopting ways to construct larger program units that are needed to solve the
problem at hand (see, e.g., Winslow, 1996).
 A specific source of problems is the limited capacity of working memory (Anderson,
2000, p. 176). Even when writing simple imperative programs consisting of just a few lines,
expert programmers—let alone novices—often cannot form a complete mental representation
of the program in their working memory. Even with the help of external representations, the
number of simultaneously needed details easily exceeds the limitations of human working
memory (Green, Bellamy, & Parker, 1987). Highly economical chunking of knowledge is
therefore crucial for good performance in programming. Because novices’ programming
knowledge is fragile, efficient chunking is difficult for them.
 In summary, educational and psychological research into novice imperative and
procedural programming indicates that even the simplest imperative notional machine is
challenging for students to learn, students’ knowledge is fragile, and students have serious
problems in combining basic constructs of a programming language to form larger,
meaningful structures.

Object-Oriented Programming

Very little psychological and educational research exists for novice OOP. Most papers (e.g.,
Bennedsen & Caspersen, 2004; Bierre et al., 2006; S. Cooper et al., 2003; Holliday &
Luginbuhl, 2004; Hsia et al., 2005; Kölling & Henriksen, 2005; Lopez-Herrejon &
Schulman, 2004; Mahmoud et al,. 2004; Marrero & Settle, 2005; Shanmugasundaram et al.,
2006; Truong et al., 2005; Utting, 2006) introduce various pedagogic techniques and tips,
such as visualization tools or curriculum changes, without consideration for educational or
psychological theories. Some (e.g., Bednarik & Tukiainen, 2007; Romero, Lutz, Cox, & du
Boulay, 2002) study the use of such tools in the context of an OOP language but not relating
their findings to OO concepts or the OO paradigm. Only very few articles (see Tables 1 and
2) analyze object-orientation from a cognitive or educational perspective, that is, increase the
field’s understanding of OOP learning and how it differs from the imperative and procedural
cases. We will next review these results.
 Davies, Gilmore, and Green (1995) asked novices and experts to sort cards containing
short fragments of a large OO program library and found that experts tended to focus on
functional relations whereas novices were much more concerned with objects and inheritance
relations. Thus, novices’ mental representations of the structure of large OO programs
concentrates on objects and inheritance, that is, on elements that do not exist in the procedural
case. Corritore and Wiedenbeck (1999) and Wiedenbeck, Ramalingam, Sarasamma, and
Corritore (1999) have studied novices and experts comprehending short procedural and OO
programs and found that, in the OO case, the overall function of programs is understood better
than details of, for example, control flow; yet with procedural programs, comprehenders’
knowledge is more balanced. These results indicate that programmers’ mental representations
of procedural and OO programs do differ qualitatively. As the nature of mental representations
is strongly related with learning programming, this finding proposes the existence of
fundamental differences between learning procedural programming and learning OOP.
 Eckerdal and Thuné (2005) have studied novices’ understanding of class and object and
found several categories of conception of these concepts. Détienne (1997), Holland, Griffiths,

From Procedures to Objects

83

and Woodman (1997), Ragonis and Ben-Ari (2005), and Teif and Hazzan (2006) have found
that students have severe misconceptions about fundamental OO concepts, such as classes and
inheritance. Fleury (2000) has found several misconceptions concerning the construction and
use of objects in Java. In procedural programming, misconceptions about parameter passing
(Fleury, 1991) and recursion (Levy, 2001) have been found; in imperative programming only
fragile knowledge instead of misconceptions has been reported. In consequence, problems in
learning seem to have different roots in OOP than in imperative programming.

Table 1. Psychological and Educational Research on OOP: Mental Representation

Topic of
investigation

Expert
performance

Novice performance Cognitive
development

Programming
education

Notional machine/
structure

Notional machine/
detailed contents

Notional machine/
misconceptions

OO programs/
structure

Davies et al.
(1995)

Davies et al. (1995)

OO programs/
detailed contents

Corritore and
Wiedenbeck
(1999)

Wiedenbeck et al.
(1999)

OO programs/
misconceptions

OOP/ structure
OOP/ detailed
contents

 Eckerdal and Thuné
(2005)

 Mead et al.
(2006)

OOP/
misconceptions

 Détienne (1997);
Fleury (2000);
Holland et al. (1997);
Ragonis and Ben-Ari
(2005); Teif and
Hazzan (2006)

Table 2. Psychological and Educational Research on OOP: Skills and Strategies.

Topic of
investigation

Expert
performance

Novice performance Cognitive
development

Programming
education

Program
comprehension

Tracing and
debugging

 Lister et al. (2004);
Vainio and Sajaniemi
(2007)

 Thomas et al.
(2004)

Program design Détienne (1997);
Lee and
Pennington
(1994);
Pennington et
al. (1995);
Rosson and
Gold (1989)

Détienne (1997)

Sajaniemi & Kuittinen

84

 Mead et al. (2006) have compared cognitive problems in learning procedural and OOP and
developed a set of central concepts in the form of “anchor concept graphs” for both paradigms.
The two graphs differ considerably, providing more evidence for the assumption that learning
procedural programming and learning OOP are very different in nature.
 Thomas, Ratcliffe, and Thomasson (2004) found that students did not perform better in
tracing OO code fragments when they were provided with ready-made partial object
diagrams, nor did they draw their own diagrams more often in a follow-up test. On the other
hand, Lister et al. (2004) found that many students were able to track values of numeric
variables on paper, and Vainio and Sajaniemi (2007) found that students were able to draw
values of primitive types, but not object references. Taken together, these results imply that
students have more problems in making external representations of OO parts than imperative
parts of the notional machine, that is, the OO notional machine is even more poorly
understood by students than the imperative notional machine.
 In her state-of-art review of empirical research on object-oriented design, Détienne (1997)
examined the processes involved in designing in the OO paradigm and in the procedural
paradigm. Among other things, she reports on findings of Lee and Pennington (1994),
Pennington, Lee, and Rehder (1995), and Rosson and Gold (1989) concerning the differences
between OO designers and procedural designers. OO designers seem to base their solutions on
the problem domain itself, whereas procedural designers use generic programming constructs
for structuring their solutions. Thus, the overall approach in program design differs between
procedural and OO programming, and teaching should acknowledge this difference.

Discussion

Even though studies into OOP are few, the above results make it clear that both OOP itself and
learning OOP are very different from their imperative and procedural counterparts: Mental
representation of programs is different, problems have different roots, conceptual contents of
knowledge are different, the level of understanding the underlying notional machine is
different, and the overall approach to program design is different. These differences are so
fundamental to learning that we dare to claim that the classic educational and cognitive results
of novice imperative and procedural programming should not be used in the OO context.
 Furthermore, the number of educational and cognitive studies of learning OOP is small.
Lister et al. (2006) studied several popular claims about learning OOP and found practically
no evidence for them in scientific literature. Neither do we know of any results that would
provide evidence for the desirability or efficiency of replacing imperative/procedural
programming education by object-orientation. On the contrary, Chen, Monge, and Simon
(2006) found no effects of the first programming paradigm and later design skills; Détienne
(1997), Pennington et al. (1995), and Sharp and Griffyth (1999) found positive transfer
effects of traditional structured and procedural approaches to OO design.

PROPOSAL FOR RESEARCH AGENDA

Tables 1 and 2 draw together OOP research described in the previous section. We have
tabulated research articles according to two dimensions: the first describing the cognitive

From Procedures to Objects

85

content or skill targeted in an investigation, the second telling whether the investigation deals
with experts’ performance, novices’ performance or problems, development of novices’
mental representations and skills, or ways to improve this development with educational
techniques. The tables make it clear that large areas are totally neglected: Even the most
researched areas—novices’ misconceptions in OOP knowledge and experts’ program design
processes—have been studied in only a few papers.
 If novices are to be helped in their struggles when learning OOP, it is necessary to know
their problems and misconceptions as well as what experts know and how they apply their
knowledge. Only then can efficient teaching methods and contents that have a strong
cognitive basis be devised. Many studies in traditional programming have compared expert
and novice performance and mental representations, thus providing information on what
distinguishes experts from novices. In the OO domain, such studies are rare; only two studies
in Tables 1 and 2 (Davies et al., 1995; Détienne, 1997) cover both experts and novices. We
therefore suggest that research into expert and novice differences should be carried out in all
cognitive aspects listed in the tables.
 A notable gap in Table 1 covers the OO notional machine. There are no studies on
experts’ or novices’ understanding of the notional machine behind OOP; neither are there
studies on teaching a viable notional machine to students. Some suggestions have been
presented for visualizing OO program execution (e.g., Gries & Gries, 2002; Moreno, Myller,
Sutinen, & Ben-Ari, 2004; Sajaniemi, Byckling, & Gerdt, 2006), but their correspondence to
experts’ or novices’ mental representations or their efficiency in providing a mental model of
a correct notional machine has not been studied in detail. In a recent study (Sajaniemi,
Kuittinen, & Tikansalo, 2007), students were found to be poor in visualizing relationships
between objects and method calls during program execution and students’ understanding of
these relationships (i.e., the structure of the notional OO machine) was found to contain many
errors. We therefore suggest that experts’ mental representations of the notional OO machine
should be studied in detail. Moreover, effective ways to convey this knowledge to novices
should also be investigated.
 Another gap in Tables 1 and 2 is the lack of studies into the cognitive development of
novices’ mental representations and skills. In order to support learning by teaching, steps in
cognitive development must first be known. Basic cognitive activities—such as chunking—
do, of course, appear in the context of OOP as well. However, the building of the notional
machine, construction of OOP knowledge, and detailed development of OOP skills and
strategies presumably have components that are specific to OOP. We therefore suggest that
novices’ cognitive development in OOP should be studied.
 Investigations of mental representations of OO programs (Corritore & Wiedenbeck,
1999; Wiedenbeck et al., 1999) have probed participants’ knowledge with yes/no questions
divided into categories determined by the researchers a priori. Such a method reveals whether
participants possess knowledge in those categories but it does not reveal what other types of
knowledge they might have. As a consequence, exact contents of experts’ mental
representations of OO programs are largely unknown and teachers have only vague ideas of
how to best explain important program elements and their relationships to students. We
therefore call for exploratory research into experts’ mental representations of OO programs.
 Studies in cognitive processes, such as skills and strategies, cover mainly experts’
program design. In imperative programming, research into experts’ and novices’ program

Sajaniemi & Kuittinen

86

comprehension has increased our understanding of the comprehension processes and,
moreover, of the mental representations of imperative programs and imperative programming
knowledge. The structure of OO programs differs so much from imperative and procedural
programs that one may presume that their comprehension processes do also differ
considerably. Again, some elements (e.g., hypothesis-driven comprehension) are the same,
but issues related to program structure can be assumed to differ. We therefore suggest
research into experts’ and novices’ OO program comprehension processes.
 Finally, results of the research suggested above and summarized in Table 3 should be
utilized in devising effective methods for teaching OOP. However, we do not include this
work in the research agenda proposal for two reasons. Firstly, the right time for such
educational-oriented research will come only after there is a large body of results obtained
from the research agenda. Secondly, it may well be that effective ways to transfer experts’
mental representations, skills and strategies are at least partially revealed during the earlier
research covered by the agenda.

Table 3. Proposal for Research Agenda in OOP and OOP Education.

 Performance Development

Topic of
investigation

Expert Expert vs.
Novice

Novice Cognition Education

Mental
representation of
notional machine

• •
 • •

Mental
representation of
OO programs

• •
 •

Mental
representation of
OOP

 •
 •

Program
comprehension • • • •

Tracing and
debugging

 •
 •

Program design
 •

 •

CONCLUSION

In programming education, there has been a major shift in the programming paradigm used in
the first courses. To please industry and students, educators have moved from imperative and
procedural programming to object-orientation without studying its necessity or consequences
and without studying how OOP education should be carried out. Moreover, classic results
from imperative and procedural programming have been used as such even though their
applicability in the OO case can be questioned. The shift from imperative/procedural

From Procedures to Objects

87

programming to object-orientation is so revolutionary that the use of research results obtained
in the imperative and procedural cases is doubtful in the OO case. The number of notations
and concepts needed, the size of the notional machine required, and the whole orientation of
programming are so different that the basic assumptions used in imperative and procedural
programming research do not necessarily hold for object-orientation. Even though some
results may apply in object-orientation, there is a need to find out on what occasions this
happens to be the case.
 There is a lack of systematic research into the fundamental cognitive and educational
issues in learning and teaching OOP. Lister et al. (2006, p. 160) conclude their paper by
noting that “our community needs to discuss—and debate—this issue,” but we claim that the
computer science education research community and the psychology of programming
community need to rigorously study these issues first. For that purpose, we have presented a
research agenda comprising

� Constructing a model of the OOP expert: experts’ mental representations of the
notional OO machine; exploratory research into experts’ mental representations of
OO programs

� Understanding the differences between OOP experts and novices: experts’ and
novices’ differences in mental representations, program comprehension processes,
skills and strategies within OOP

� Fostering OOP novices’ cognitive development: novices’ cognitive development in
OOP; ways to convey the notional OO machine to novices

 High dropout rates from OOP courses and poor learning outcomes pose problems to
students, educators, and educational institutions. These problems can be attacked only with
rigorous research into the psychological and educational issues involved.

ENDNOTES

1. Imperative and procedural programming are often considered synonyms, but in this paper imperative refers
to programming with variables, assignment, and simple imperative control structures, such as sequence,
iteration, and conditionals, whereas procedural covers procedures, parameters and recursion, also.

2. Here we are interested in differences that are inherent to object-orientation and the way object-related
concepts are implemented in Java. We do not treat Java problems that occur within the imperative parts of
Java, for example, that using “=” as the assignment operator makes some students to confuse assignment
with mathematical equality.

3. In this literature review, we look at programming only. Thus, we do not include system design literature
even though we do include program design literature.

REFERENCES

Anderson, J. R. (2000). Cognitive psychology and its implications (5th ed.). New York: Worth Publishers.
Bednarik, R., & Tukiainen, M. (2007). Analysing and interpreting quantitative eye-tracking data in the studies

of programming: Phases of debugging with multiple representations. In J. Sajaniemi, M. Tukiainen, R.
Bednarik, & S. Nevalainen (Eds.), Proceedings of the 19th Annual Workshop of the Psychology of

Sajaniemi & Kuittinen

88

Programming Interest Group (pp. 158–172). Joensuu, Finland: University of Joensuu, Department of
Computer Science and Statistics.

Ben-David Kolikant, Y., & Haberman, B. (2001). Activating “black boxes” instead of opening “zippers”: A
method of teaching novices. In ITiCSE ’01: Proceedings of the Sixth Annual Conference on Innovation
and Technology in Computer Science Education (pp. 41–44). New York: ACM Press.

Bennedsen, J., & Caspersen, M. E. (2004). Programming in context: A model-first approach to CS1. In SIGCSE
’04: Proceedings of the 35th SIGCSE Technical Symposium on Computer Science Education (pp. 477–
481). New York: ACM Press.

Bierre, K., Ventura, P., Phelps, A., & Egert, C. (2006). Motivating OOP by blowing things up: An exercise in
cooperation and competition in an introductory Java programming course. In SIGCSE ’06: Proceedings of the
37th SIGCSE Technical Symposium on Computer Science Education (pp. 354–358). New York: ACM Press.

Brooks, R. E. (1983). Towards a theory of the comprehension of computer programs. International Journal of
Man-Machine Studies, 18, 534–554.

Cassel, L. B., McGettrick, A., Guzdial, M., & Roberts, E. (2007). The current crisis in computing: What are the
real issues? In SIGCSE ’07: Proceedings of the 38th SIGCSE Technical Symposium on Computer Science
Education (pp. 329–330). New York: ACM Press.

Chen, T.-Y., Monge, A., & Simon, B. (2006). Relationship of early programming language to novice generated
design. In SIGCSE ’06: Proceedings of the 37th SIGCSE Technical Symposium on Computer Science
Education (pp. 495–499). New York: ACM Press.

Cooper, D., & Clancy, M. (1982). Oh! Pascal! New York: W. W. Norton & Company.

Cooper, S., Dann, W., & Pausch, R. (2003). Teaching objects-first in introductory computer science. In SIGCSE
’03: Proceedings of the 34th SIGCSE Technical Symposium on Computer Science Education (pp. 191–
195). New York: ACM Press.

Corritore, C. L., & Wiedenbeck, S. (1991). What do novices learn during program comprehension?
International Journal of Human-Computer Interaction, 3, 199–222.

Corritore, C. L., & Wiedenbeck, S. (1999). Mental representations of expert procedural and object-oriented
programmers in a software maintenance task. International Journal of Human-Computer Studies, 50, 61–83.

Davies, S. P. (1993). Models and theories of programming strategy. International Journal of Man-Machine
Studies, 39, 237–267.

Davies, S. P., Gilmore, D. J., & Green, T. R. G. (1995). Are objects that important? Effects of expertise and
familiarity on classification of object-oriented code. Human-Computer Interaction, 10, 227–248.

Détienne, F. (1997). Assessing the cognitive consequences of the object-oriented approach: A survey of empirical
research on object-oriented design by individuals and teams. Interacting with Computers, 9, 47–72.

Détienne, F. (2002). Software design: Cognitive aspects. London: Springer-Verlag.

de Raadt, M., Watson, R., & Toleman, M. (2002). Language trends in introductory programming courses. In E.
Cohen & E. Boyd (Eds.), Proceedings of Informing Science and IT Education Conference (pp. 329–337).
Santa Rosa, CA, USA: Informing Science Institute.

du Boulay, B. (1989). Some difficulties of learning to program. In E. Soloway & J. C. Spohrer (Eds.), Studying
the novice programmer (pp. 283–299). Hillsdale, NJ, USA: Lawrence Erlbaum Associates.

du Boulay, B., O’Shea, T., & Monk, J. (1981). The black box inside the glass box: Presenting computing
concepts to novices. International Journal of Man-Machine Studies, 14, 237–249.

Ebrahimi, A., & Schweikert, C. (2006). Empirical study of novice programming with plans and objects. SIGCSE
Bulletin, 38(4), 52–54.

Eckerdal, A., & Thuné, M. (2005). Novice Java programmers’ conceptions of “object” and “class”, and
variation theory. In ITiCSE ’05: Proceedings of the 10th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education (pp. 89–93). New York: ACM Press.

Fleury, A. E. (1991). Parameter passing: The rules the students construct. SIGCSE Bulletin, 23(1), 283–286.

From Procedures to Objects

89

Fleury, A. E. (2000). Programming in Java: Student-constructed rules. In SIGCSE ’00: Proceedings of the 31st
SIGCSE Technical Symposium on Computer Science Education (pp. 197–201). New York: ACM Press.

Gilmore, D. J., & Green, T. R. G. (1984). Comprehension and recall of miniature programs. International
Journal of Man-Machine Studies, 21, 31–48.

Green, T. R. G., Bellamy, R. K. E., & Parker, J. M. (1987). Parsing and gnisrap: A model of device use. In G.
M. Olson, S. Sheppard, & E. Soloway (Eds.), Empirical studies of programmers: Second workshop (pp.
132–146). Norwood, NJ, USA: Ablex Publishing Company.

Gries, P., & Gries, D. (2002). Frames and folders: A teachable memory model for Java. The Journal of
Computing Sciences in Colleges, 17(6), 182–196.

Holland, S., Griffiths, R., & Woodman, M. (1997). Avoiding object misconceptions. SIGCSE Bulletin, 29(1),
131–134.

Holliday, M. A., & Luginbuhl, D. (2004). CS1 assessment using memory diagrams. In SIGCSE ’04:
Proceedings of the 35th SIGCSE Technical Symposium on Computer Science Education (pp. 200–204).
New York: ACM Press.

Hsia, J. I., Simpson, E., Smith, D., & Cartwright, R. (2005). Taming Java for the classroom. In SIGCSE ’05:
Proceedings of the 36th SIGCSE Technical Symposium on Computer Science Education (pp. 327–331).
New York: ACM Press.

Kinnunen, P., & Malmi, L. (2006). Why students drop out CS1 course? In ICER ’06: Proceedings of the 2006
International Workshop on Computing Education Research (pp. 97–108). New York: ACM Press.

Kölling, M., & Henriksen, P. (2005). Game programming in introductory courses with direct state manipulation.
In ITiCSE ’05: Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in
Computer Science Education (pp. 59–63). New York: ACM Press.

Lee, A., & Pennington, N. (1994). The effects of programming on cognitive activities in design. International
Journal of Human-Computer Studies, 40, 577–601.

Letovsky, S. (1986). Cognitive processes in program comprehension. In E. Soloway & S. Iyengar (Eds.),
Empirical studies of programmers (pp. 58–79). Norwood, NJ: Ablex Publishing Company.

Levy, D. (2001). Insights and conflicts in discussing recursion: A case study. Computer Science Education, 11,
305–322.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R., Moström, J. E.,
Sanders, K., Seppälä, O., Simon, B., & Thomas, L. (2004). A multi-national study of reading and tracing
skills in novice programmers. SIGCSE Bulletin, 36(4), 119–150.

Lister, R., Berglund, A., Clear, T., Bergin, J., Garvin-Doxas, K., Hanks, B., Hitchner, L., Luxton-Reilly, A.,
Sanders, K., Schulte, C., & Whalley, J. L. (2006). Research perspectives on the objects-early debate.
SIGCSE Bulletin, 38(4), 146–165.

Lopez-Herrejon, R. E., & Schulman, M. (2004). Using interactive technology in a short Java course: An
experience report. In ITiCSE ’04: Proceedings of the 9th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education (pp. 203–207). New York: ACM Press.

Mahmoud, Q. H., Dobosiewicz, W., & Swayne, D. (2004). Redesigning introductory computer programming
with HTML, JavaScript, and Java. In SIGCSE ’04: Proceedings of the 35th SIGCSE Technical Symposium
on Computer Science Education (pp. 120–124). New York: ACM Press.

Marrero, W., & Settle, A. (2005). Testing first: Emphasizing testing in early programming courses. In ITiCSE
’05: Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education (pp. 4–8). New York: ACM Press.

McCracken, M., Wilusz, T., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Ben-David Kolikant, Y., Laxer,
C., Thomas, L., & Utting, I. (2001). A multi-national, multi-institutional study of assessment of
programming skills of first-year CS students. SIGCSE Bulletin, 33(4), 125–140.

Mead, J., Gray, S., Hamer, J., James, R., Sorva, J., Clair, C. S., & Thomas, L. (2006). A cognitive approach to
identifying measurable milestones for programming skill acquisition. SIGCSE Bulletin, 38(4), 182–194.

Sajaniemi & Kuittinen

90

Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M. (2004). Visualizing programs with Jeliot 3. In AVI ’04:
Proceedings of the Working Conference on Advanced Visual Interfaces (pp. 373–376). New York: ACM.

Pennington, N. (1987). Comprehension strategies in programming. In G. M. Olson, S. Sheppard, & E. Soloway
(Eds.), Empirical studies of programmers: Second workshop (pp. 100–113). Norwood, NJ, USA: Ablex
Publishing Company.

Pennington, N., Lee, A., & Rehder, B. (1995). Cognitive activities and levels of abstraction in procedural and
object-oriented design. Human-Computer Interaction, 10, 171–226.

Perkins, D. N., & Martin, F. (1986). Fragile knowledge and neglected strategies in novice programmers. In E.
Soloway & S. Iyengar (Eds.), Empirical studies of programmers (pp. 213–229). Norwood, NJ, USA:
Ablex Publishing Company.

Radenski, A. (2006). “Python first”: A lab-based digital introduction to computer science. In ITICSE ’06:
Proceedings of the 11th Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education (pp. 197–201). New York: ACM Press.

Ragonis, N., & Ben-Ari, M. (2005). A long-term investigation of the comprehension of OOP concepts by
novices. Computer Science Education, 15, 203–221.

Rist, R. S. (1989). Schema creation in programming. Cognitive Science, 13, 389–414.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and discussion.
Computer Science Education, 13, 137–172.

Romero, P., Lutz, R., Cox, R., & du Boulay, B. (2002). Co-ordination of multiple external representations
during Java program debugging. In Proceedings of the IEEE 2002 Symposia on Human Centric Computing
Languages and Environments (pp. 207–214). Los Alamitos, CA, USA: IEEE Computer Society Press.

Rosson, M. B., & Gold, E. (1989). Problem-solution mapping in object-oriented design. New York: IBM T. J.
Watson Research Center.

Sajaniemi, J., Ben-Ari, M., Byckling, P., Gerdt, P., & Kulikova, Y. (2006). Roles of variables in three
programming paradigms. Computer Science Education, 16, 261–279.

Sajaniemi, J., Byckling, P., & Gerdt, P. (2006). Metaphor-based animation of OO programs. In SoftVis ’06:
Proceedings of the ACM Symposium on Software Visualization (pp. 173–174). New York: ACM Press.

Sajaniemi, J., Kuittinen, M., & Tikansalo, T. (2007). A study of the development of students’ visualizations of
program state during an elementary object-oriented programming course. In ICER ’07: Proceedings of the
Third International Workshop on Computing Education Research (pp. 1–15). New York: ACM Press.

Samurçay, R. (1989). The concept of variable in programming: Its meaning and use in problem-solving by
novice programmers. In E. Soloway & J. C. Spohrer (Eds.), Studying the novice programmer (pp. 161–
178). Hillsdale, NJ, USA: Lawrence Erlbaum Associates.

Shanmugasundaram, V., Juell, P., & Hill, C. (2006). Knowledge building using visualizations. In ITICSE ’06:
Proceedings of the 11th Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education (pp. 23–27). New York: ACM Press.

Sharp, H., & Griffyth, J. (1999). The effect of previous software development experience on understanding the
object-oriented paradigm. Journal of Computers in Mathematics and Science Teaching, 18, 245–265.

Soloway, E., & Spohrer, J. C. (Eds.). (1989). Studying the novice programmer. Hillsdale, NJ, USA: Lawrence
Erlbaum Associates.

Spohrer, J. C., Soloway, E., & Pope, E. (1989). A goal/plan analysis of buggy Pascal programs. In E. Soloway
& J. C. Spohrer (Eds.), Studying the novice programmer (pp. 355–399). Hillsdale, NJ, USA: Lawrence
Erlbaum Associates.

Teif, M., & Hazzan, O. (2006). Partonomy and taxonomy in object-oriented thinking: Junior high school
students’ perceptions of object-oriented basic concepts. SIGCSE Bulletin, 38(4), 55–60.

Thomas, L., Ratcliffe, M., & Thomasson, B. (2004). Scaffolding with object diagrams in first year programming
classes: Some unexpected results. In SIGCSE ’04: Proceedings of the 35th SIGCSE Technical Symposium
on Computer Science Education (pp. 250–254). New York: ACM Press.

From Procedures to Objects

91

Truong, N., Bancroft, P., & Roe, P. (2005). Learning to program through the web. In ITiCSE ’05: Proceedings
of the 10th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education
(pp. 9–13). New York: ACM Press.

Utting, I. (2006). Problems in the initial teaching of programming using Java: The case for replacing J2SE with
J2ME. In ITICSE ’06: Proceedings of the 11th Annual SIGCSE Conference on Innovation and Technology
in Computer Science Education (pp. 193–196). New York: ACM Press.

Vainio, V., & Sajaniemi, J. (2007). Factors in novice programmers’ poor tracing skills. In ITiCSE ’07:
Proceedings of the 12th Annual Conference on Innovation and Technology in Computer Science Education
(pp. 236–240). New York: ACM Press.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., & Corritore, C. L. (1999). A comparison of the
comprehension of object-oriented and procedural programs by novice programmers. Interacting with
Computers, 11, 255–282.

Winslow, L. E. (1996). Programming pedagogy: A psychological overview. SIGCSE Bulletin, 28(3), 17–22.

Authors’ Note

All correspondence should be addressed to:
Jorma Sajaniemi
University of Joensuu
P.O. Box 111
FI-80101 Joensuu
Finland
saja@cs.joensuu.fi

Human Technology: An Interdisciplinary Journal on Humans in ICT Environments
ISSN 1795-6889
www.humantechnology.jyu.fi

Human Technology:
An Interdisciplinary Journal on Humans in ICT Environments

www.humantechnology.jyu.fi

