HUMAN
TECHNOLOGY

An Interdisciplinary Journal on Humans in ICT Environments

Volume 4, Number 1, May 2008

SPECIAL ISSUE ON PSYCHOLOGY
OF PROGRAMMIING

Jorma Sajaniemi, Guest Editor

Pertti Saariluoma, Editor-in-Chief

HUMAN
TECHNOLOGY

An Interdisciplinary Journal on Humans in ICT Emriments

Volume 4, Number 1, May 2008

Contents

From the Editor-in-Chief: The Problems of Professits

Pertti Saariluoma

Guest Editor’s Introduction: Psychology of Programm
Looking into Programmers’ Heads

Jorma Sajaniemi

Original Articles:

A Coding Scheme Development Methodology Using Glenifftheory

pp. 1-3

pp. 4-8

pp. 925

For Qualitative Analysis of Pair Programming
Stephan Salinger, Laura Plonka, and Lutz Prechelt

Usability Assessment of a UML-Based Formal Modeliteghod
Using a Cognitive Dimensions Framework
Rozilawati Razali, Colin Snook, Michael Poppletand Paul Garratt

Spatial Ability and Learning to Program
Sue Jones and Gary Burnett

A Roles-Based Approach to Variable-Oriented Prograng
Juha Sorva

From Procedures to Objects: A Research Agendafor t
Psychology of Object-Oriented Programming Education
Jorma Sajaniemi and Marja Kuittinen

pp. 26-46

pp. 47-61

pp. 62-74

pp. 75-91

Human Technology: An Interdisciplinary Journal on Humansin ICT Environments

Editor-in-Chief:
Pertti Saariluoma, University of Jyvaskyla,
Finland
Board of Editors:
Jése Cafias, University of Granada,
Spain
Karl-Heinz Hoffmann, Technical University
Munich, Germany
Jim McGuigan, Loughborough University,
United Kingdom
Raul Pertierra, University of the Philippines
and Ateneo de Manila University, the
Philippines
Lea Pulkkinen, University of Jyvaskyla,
Finland
Howard E. Sypher, Purdue University,
USA

Human Technologis an interdisciplinary, scholarly
journal that presents innovative, peer-reviewed
articles exploring the issues and challenges
surrounding human-technology interaction and the
human role in all areas of our ICT-infused socgetie

Human Technologyis published by the Agora
Center, University of Jyvaskylda and distributed
without a charge online.

ISSN: 1795-6889
Submissions and contact: humantechnology@jyu.fi
Managing Editor: Barbara Crawford

www.humantechnology.jyu.fi

HuMAN

TECHNDLOGY
An Interdisciplinary Journal on Humans in ICT Emviments ISSN: 1795-6889
www.humantechnology.jyu.fi Volume 4 (1), May 2008, 1-3

From the Editor in Chief

THE PROBLEMS OF PROFESSIONALS

Pertti Saariluoma
Cognitive Science, Department of Computer Scienddrformation Systems
University of Jyvéaskyld, Finland

When we discuss interaction and communication telcigy (ICT) usability, the images of
ordinary users facing difficulties in getting th&ngp work come easily to mind. People who
struggle to use digital applications or find mobslervices, or feel lost or frustrated when
trying to use all of the features of a remote caldr seem to form the very stereotype of
users that interaction research should help. Howannytie, elderly neighbor, or disabled
brother could survive in an ICT-infused world isexognized problem today, although not
that long ago, their problems were not a priofTtige main focus of the research had been on
early middle-aged families with Western backgrouf@zaja, 1997; Newell & Gregor, 1997).

Of course, concentration on the “ordinary” peopdeacceptable on several grounds.
Consumers form the widest audience and marketseor|CT products. They also may have
the least amount of time for learning new environtaeand gadgets. Finally, they often
possess the lowest level of computing skills ohtézal know-how. This is why emphasis on
the usability of applications is understandably grbat importance among interaction
researchers. However, it would be a mistake toktkiat usability should be directed only
toward solving the challenges of ordinary people.

The interaction challenges of the professionakamauch less clearly recognized problem
than the concerns for everyday consumer interacti@me might think that technology
professionals easily understand what other prajeats need and that professionals in
general do not make similar mistakes in using tetdgies or solving interaction problems
via ICTs as do to individuals with everyday tectuyyl use. Moreover, professionals appear
to have the time and the skills, are often withinagpropriate age group to be familiar with
various types of technologies, have expertise iatwiey should do with computing or other
ICT devices, and are usually willing to invest titae and energy to learn new devices or
applications. They are generally educated and epsrd enough so that they can be
systematically trained to use new software or tetdgies, and it is easier for and more
typical of them to seek and obtain the needed supgeen they confront interaction problems.

© 2008 Pertti Saariluoma and the Agora Center, &lsity of Jyvaskyla
URN:NBNfi:jyu-200804151348

Saariluoma

While many of these assumptions may be true, nesteds these arguments miss one
important point: The tasks of professionals via $Gife far more complex and critical than
the tasks in everyday computing and ICT use.

Take, for instance, surgeons or other medicalgssibnals, for whom losing time or
information as a consequence of poorly construgtéetraction systems is safety critical.
Similarly, officers at the helm of a huge ship perhaps more importantly, workers at a
nuclear power plant, still must be thoroughly faamiwith—and have easy access to and use
of—all essential, even if even rarely used, feauod their complex, contemporary
technologies. Because professional ICT-facilitateteraction is constantly increasing and
becoming more ubiquitous, it is essential thatraxtdon researchers give specific attention to
how experts use technology. While human factoreaehers have done much work in this
area, much still remains to be done. For examplenwit can take a business professional
untold hours over the course of a year to com@et submit travel expense documents, or
when someone is expected to read a hundred-pages4k®rs’ instruction manual in order to
store a couple of numbers in a computing programs ieasy to see that this area is
underestimated and underresearched. These intaraetlities are complex issues.

A classic example of this interaction complexityallenge is computer programming.
This complex task requires immense cognitive enenyy skills. This reality has not been
lost on a community of researchers who initiatechesoof the earliest attempts to make
technologies simpler for users, and the profestsowho create the technologies. The first
programming languages were designed to help pragexsiremember the code. Similarly
programming paradigms, such as structured programmi object-oriented programming,
were intended to make programs easier for the arogrers to comprehend and remember.
Thus psychology was employed to help improve thekwwmonditions for professional
programmers, and thus opening a new field of rebedine psychology of programming. The
very foundation of this work points to the needotoserve and address the challenges of
professionals—whether they are computer programmens medical or business
professionals. The outcomes of the field of compptegramming reflect the emphasis on
good expert-computer interaction. Furthermore,rtble tradition of this field offers a large
body of knowledge that can be transferred to gtinefessional fields.

We are pleased to have a special issue on thénqiggy of programming irHuman
Technologybecause few areas of professional interactionarebehave equally developed
the practices of discourse, analysis, and develapahdesign. The papers of this issue reflect
not only concerns about computer programming, dsb @opics that can provide the
foundation for exploring many other aspects of exprhnology interaction. From this
research foundation, knowledge about the psychotdggxpert interaction with technology
can feed ongoing expert-technology research in naiverse fields, such as medicine,
education, aeronautics, business, energy, ancpetasion.

REFERENCES

Czaja, S. (1997). Computer technology and the cddiedt. In M. Helander, T. Landauer, & P. PrabhddF,
Handbook of human—computer interaction (pp. 797384 sterdam: Elsevier.

The Problems of Professionals

Newell, A. F., & Gregor, P. (1997). Human computeterfaces for people with disabilities. Handbodk o
human—computer interaction (pp. 813-824). Amsterdésevier.

All correspondence should be addressed to:

Pertti Saariluoma

University of Jyvaskyla

Cognitive Science, Department of Computer Sciemcklaformation Systems
P.O. Box 35

FIN-40014 University of Jyvaskyla, FINLAND

psa@it.jyu.fi

Human Technology: An Interdisciplinary Journal onrflans inCT Environments
ISSN 1795-6889
www.humantechnology.jyu.fi

HuMAN

TECHNDLOGY
An Interdisciplinary Journal on Humans in ICT Emviments ISSN: 1795-6889
www.humantechnology.jyu.fi Volume 4 (1), May 2008, 4-8

Guest Editor’s Introduction

PSYCHOLOGY OF PROGRAMMING: LOOKING INTO
PROGRAMMERS’ HEADS

Jorma Sajaniemi
Department of Computer Science and Statistics
University of Joensuu, Finland

Psychology of programming (PoP) is an interdisoguly area that covers research into
computer programmers’ cognition; tools and methHodgrogramming related activities; and
programming education. The origins of PoP date liadate 1970s and early 1980s, when
researchers realized that programming tools artthtdogies should not be evaluated based
on their computational power only, but also on thusiability from the human point of view,
that is, based on their cognitive effects. The hapesuch a new approach was that
programmers would make fewer errors, produce bst#tware, and work more efficiently.
In the first Workshop on Empirical Studies of Prammers, Ben Shneiderman listed “several
important destinations for researchers: refining tise of current languages, improving
present and future languages, developing specipbpa languages, and improving tools and
methods” (Shneiderman, 1986, p. 1). During the past decades, the flow of new
languages, tools, and methods has increased rapi@lyscope of programming work has
expanded, and research interests have extendedd¢o group activities. Yet the main goal of
PoP—to assist programmers through the benefitegriitive research—has remained.

The PoP research community consists of cognitiyelpdogists and computer scientists.
The main motivation for computer scientists is thprovement of current tools and the
development of new ones, as well as the discovegeneral principles concerning humans
in the context of programming tasks. Psychologists interested in new theories of human
cognition applicable in other domains too. For thpragramming—a highly complicated
task—provides good opportunities to study high-lesegnitive processes in a complex
setting. This dual character of PoP manifests fitedédo in the skills required from
researchers: a good knowledge of both cognitivelpsipgy and programming or, better still,
psychology, social sciences, and software engingeri

On the other hand, PoP research results are nessedy limited to the programming
domain, but can be applied in other domains thaolue design activities in a formal
environment. As an example, consider cognitive disiens (CDs), which were introduced
by Green (1989) to describe, compare and contnel fregramming language features affect
program design strategies. The dimension role-asspreness, for example, relates to how
well a piece of program code (e.g., “+") reveadsniteaning without a need to study the context

© 2008 Jorma Sajaniemand the Agora Center, University of Jyvaskyla
URN:NBNfi:jyu-200804151349

Looking into Programmers’ Heads

of the piece (addition, string catenation, etcgtelr, CDs were developed further and applied
to many types of cognitive artifacts, such as etioal theorem provers (Kadoda, Stone, &
Diaper, 1999), prototyping techniques (Dearden,diid & Naghsh, 2003), and music
notations (Blackwell & Green, 2003).

Even though the area of PoP seems to be quite wmarcomputer programming—it
covers a large variety of phenomena, from noviggeblems to experts’ tacit knowledge,
from program design to testing and maintenance fiamd short individual programs to huge
software systems. Consequently, research methods as well. Most often, research
methods have been adopted from cognitive psycholeqy, controlled experiments run in
laboratory settings) or social sciences (e.g.df#ldies with qualitative analysis techniques),
but it seems that in many subareas appropriatangdsenethods are yet to be discovered. As
many researchers are also computer science edsictiey have instant access to novices
and, therefore, studies on novices’ problems andramming education are frequent. A new
source of research materials is provided by varapen source communities that make their
program code, change logs, and discussions amauggon developers freely available on
the net. These materials represent expert progragimistate-of-the-art contexts.

During the past two decades, two important worksbepes have been fully devoted to
PoP: the Workshop on Empirical Studies of Prograrsr(ieSP), based primarily in the USA,
and the Psychology of Programming Interest GroupkRélmp (PPIG), having a European
character. The first ESP workshop was held in 1i888/ashington, DC, the eighth and last
one in 1999. Later, this workshop series was inm@ied into the IEEE Symposium on
Visual Languages and Human-Centric Computing (VL&)JGvhich, however, has a broader
scope than pure PoP and includes implementatioecesmnd the like. The European
conference series, PPIG, started in 1989, andraggito be organized annually. It is more
informal in nature than ESP; in addition to fullyewvetloped research papers, PPIG
proceedings include position papers and suggestoyriadividual studies. Many of the best
papers have later been published in more formdkcences and journals.

The organization behind PPIG workshops, the Psygyolof Programming Interest
Group, was established in 1987 and—just like thekaltop—is informal in nature. For
instance, there is no formal committee: Decisiamsdiscussed in an open business meeting
held during every workshop. The interest group ishiels an electronic newsletter and hosts
two mailing lists, a low-volume announcements [ilis another list for discussions. In
essence, the interest group is an informal cotlacbf people who are enthusiastic about
psychological aspects of programming and softwaggneering.

The latest PPIG workshop was held in Joensuu, ridrilaJuly 2007. The scientific program
consisted of four half- or full-day tutorials, aatloral consortium, two keynote addresses, 18
technical presentations, and two discussion sessfkhpaper submissions were reviewed by at
least two—usually three—anonymous reviewers ancrgapere accepted in two categories:
Full Papers and Work in Progress Reports, as deétigehe Program Committee. This special
issue ofHuman Technologgontains five of those papers, selected basechemeaviewers’
statements. The papers were re-reviewed and imgbrfmrepublication in this journal. These
papers demonstrate the variability in themes asghreh methodologies of PPIG workshops.

The first two papers deal with research methodaldgyhe article “A Coding Scheme
Development Methodology Using Grounded Theory fowal@ative Analysis of Pair
Programming,” Stephan Salinger, Laura Plonka, antk Prechelt consider the analysis of

Sajaniemi

rich video data that is typical for programming toeols. They have used grounded theory
(Strauss & Corbin, 1990), in which the whole codisaghased totally on protocol data, and
developed a specific coding scheme to be useddnctmtext of pair programming. The

article provides guidance for the use of groundebty in the analysis of rich protocol data
when the purpose of a study is to understand degnihenomena within a design process.
The principles described in the paper apply to domautside programming, as well.

Rozilawati Razali, Colin Snook, Michael Popplet@nd Paul Garrat have used two
methods to evaluate the usability of a semiformatiation that combines UML (Obiject
Management Group, 2007) with B (Abrial, 1996), th&er being a formal notation for
describing semantics. The evaluation methods ircld®s and the results were analyzed
using grounded theory. This paper, “Usability Assesnt of a UML-based Formal Modeling
Method Using a Cognitive Dimensions Framework,”s¢hdemonstrates how one can use
several research methods for the usability analgéisools within formal domains that
involve design activities.

The next two papers concentrate on specific detéitén programming. Sue Jones and Gary
Burnett tackle a popular problem: how to predicidents’ success in learning programming.
Earlier work on this area has looked at correlatietween programming success and some other
property, for example, field dependence (e.g., MafadReid, 2004), inclination to systematic
behavior (e.g., Dehnadi, 2006), or self-efficacg.(@Niedenbeck, LaBelle, & Kain, 2004). Jones
and Burnett study spatial ability and find a pesitcorrelation between mental rotation ability
and programming success in their paper “Spatiditplaind Learning to Program.”

Juha Sorva looks at variable-oriented programmarggtigm (Sajaniemi & Niemelainen,
1989) and combines it with the notion of roles afiables (Sajaniemi, 2002). This results in
a data-flow description of programs that explicithassifies variables using a fixed set of
categories found in expert programmers’ tacit kreage (Sajaniemi & Navarro Prieto,
2005). The article, “A Roles-Based Approach to ¥hle-Oriented Programming,” also
demonstrates how the new notation can be used émtahexercises even without a fully
functional implementation.

The final paper, “From Procedures to Objects: AdResh Agenda for the Psychology of
Object-Oriented Programming Education” by JormaaSigmi and Marja Kuittinen, presents
an overview of PoP research in novice education delothtes whether existing research
literature, which deals mostly with procedural pesgming, can be applied to current
educational practice that is based on object-agtbmirogramming (de Raadt, Watson, &
Toleman, 2002). The authors point out fundamernitidrénces that make the use of existing
research results in the current context dubious sajest areas that should be studied if
programming education is to be based on reseascitsaather than intuition.

The five papers included in this special issuel@ian Technologgepresent studies in
research methodology and in small scale programnirmegramming in the large, that is,
production of complex software systems, is notespented in this set. The reason is simple:
There were very few papers on that area in the B®IG workshop. This is also typical for
PoP research in general. Research into the cotistiaf large systems, although highly
important, is very expensive and industry partmgling to use their time for such research
are hard to find.

There is still a long way to go before PoP can @®van extensive picture of
programming and software engineering in general.

Looking into Programmers’ Heads

ENDNOTE

1. For more information on the Psychology of Prograng Interest Group, see http://www.ppig.org

REFERENCES

Abrial, J. R. (1996)The B-Method: Assigning programs to meanin@ambridge, UK: Cambridge University
Press.

Blackwell, A., & Green, T. (2003). Notational syste: The cognitive dimensions of notations framewdnk
J. M. Carroll (Ed.)HCI models, theories, and frameworks: Toward a iisitiplinary sciencegpp. 103—
133). San Francisco: Morgan Kaufmann Publishers.

Dearden, A., Siddiqgi, J., & Naghsh, A. (2003, ApriUsing cognitive dimensions to compare prototyping
techniques Paper presented at the 15th Annual Workshop @fRsychology of Programming Interest
Group, Keele, UK.

Dehnadi, S. (2006). Testing programming aptitudel | Romero, J. Good, E. A. Chaparro, & S. Bry&us(),
Proceedings of the 18th Annual Workshop of the lrdpgy of Programming Interest Gro{pPIG '06;
pp. 22-37). Brighton, UK: University of Sussex.

de Raadt, M., Watson, R., & Toleman, M. (2002). gaage trends in introductory programming courses. |
E. Cohen & E. Boyd (Eds.Rroceedings of Informing Science and IT Educationf€rencgInSITE '02;
pp. 329-337). Santa Rosa, CA, USA: Informing Saeimstitute.

Green, T. R. G. (1989). Cognitive dimensions ofations. In A. Sutcliffe & L. Macaulay (Eds.Peopleand
Computers \(pp. 443—-460). Cambridge, UK: Cambridge UniverEitgss.

Kadoda, G., Stone, R., & Diaper, D. (1999, Januddgsirable features of educational theorem proveXs:
cognitive dimensions viewpoinPaper presented at the 11th Annual Workshop efRkychology of
Programming Interest Group, Leeds, UK.

Mancy, R., & Reid, N. (2004). Aspects of cognitstgle and programming. In E. Dunican & T. Greengd
Proceedings of the Sixteenth Annual Workshop oPgyehology of Programming Interest Gro(RPI1G
'04; pp. 1-9). Carlow, Ireland: Institute of Teclogy.

Object Management Group (200Wtroduction to OMG's Unified Modeling Language (UM Retrieved April
11, 2008, from http://www.omg.org/gettingstartedawtis_uml.htm

Sajaniemi, J. (2002). Visualizing roles of variabl® novice programmers. In J. Kuljis, L. Baldwif,R.
Scoble (Eds.)Proceedings of the 17th Annual Workshop of the lRdpgy of Programming Interest
Group (PPIG '02; pp. 111-127). Uxbridge, UK: Brunel Ueisity.

Sajaniemi, J., & Navarro Prieto, R. (2005). Roldsvariables in experts’ programming knowledge. In
P. Romero, J. Good, S. Bryant, & E. A. Chaparros(Eé&roceedings of the 17th Annual Workshop of the
Psychology of Programming Interest Gro{gp. 145-159). Brighton, UK: University of Sussex.

Sajaniemi, J., & Niemeldinen, A. (1989). Progranitied based on variable plans: A cognitive appro&ezh
program manipulation. IrProceedings of the Third International Conference Human-Computer
Interaction on Designing and Using Human-Computgetfaces and Knowledge Based Systénd ed.;
pp. 66—73). New York: Elsevier Science Inc.

Shneiderman, B. (1986). Empirical studies of progreers: The territory, paths, and destinations..|Bd&oway &

S. lyengar (Eds.Empirical studies of programme(pp. 1-12). Norwood, NJ, USA: Ablex Publishing Co.

Strauss, A., & Corbin, J. (199asics of qualitative research: Grounded theorygedures and techniques
London: Sage Publications, Inc.

Wiedenbeck, S., LaBelle, D., & Kain, V. N. R. (2004actors affecting course outcomes in introdyctor
programming. In E. Dunican & T. Green (Ed¥)oceedings of the Sixteenth Annual Workshop of the
Psychology of Programming Interest Gro®P1G '04; pp. 97-110). Carlow, Ireland: InstitofeTechnology.

Sajaniemi

Author’s Note
| am grateful to Pablo Romero who organized théergwng process of the paper that | have coauthored.

All correspondence should be addressed to:
Jorma Sajaniemi

University of Joensuu

P.O.Box 111

FI-80101 Joensuu

Finland

saja@cs.joensuul.fi

Human Technology: An Interdisciplinary Journal onrflans inCT Environments
ISSN1795-6889
www.humantechnology.jyu.fi

HuMAN

TECHNDLOGY
An Interdisciplinary Journal on Humans in ICT Emviments ISSN: 1795-6889
www.humantechnology.jyu.fi Volume 4 (1), May 2008, 9-25

A CODING SCHEME DEVELOPMENT METHODOLOGY
USING GROUNDED THEORY
FOR QUALITATIVE ANALYSIS OF PAIR PROGRAMMING

Stephan Salinger Laura Plonka
Institut fur Informatik Institut fur Informatik
Freie Universitat Berlin Freie Universitat Berlin
Germany Germany

Lutz Prechelt
Institut fur Informatik
Freie Universitat Berlin
Germany

Abstract: A number of gquantitative studies of pair programgnithe practice of two
programmers working together using just one compulave partially conflicting
results. Qualitative studies are needed to explairat is really going on. We support
such studies by taking a grounded theory (GT) apghofor deriving a coding scheme
for the objective conceptual description of specifsair programming sessions
independent of a particular research goal. The presarticle explains why our initial
attempts at using GT failed and describes how toidavhese difficulties by a
predetermined perspective on the data, concept mgannules, an analysis results
metamodel, and pair coding. These practices mayhddpful in all GT situations,
particularly those involving very rich data such a&leo data. We illustrate the
operation and usefulness of these practices by egamples derived from our coding
work and present a few preliminary hypotheses reigar pair programming that have
surfaced.

Keywords: pair programming, grounded theory, coding schemevebigment,
gualitative data analysis, video data.

INTRODUCTION

During the last few years, pair programming, as known from extreme programming (Beck,
2004), has been the subject of many empirical tigesns. This research focused mainly on
the measurement of bottom-line pair programmingat$, whereas the underlying process of
pair programming has been regarded as a kind oklidax, the output of which is analyzed
quantitatively with respect to its performanceoperate, programmer satisfaction, and so forth.

© 2008 Stephan Salinger, Laura Plonka, & Lutz Peichnd the Agora Center, University of Jyvaskyla
URN:NBNfi:jyu-200804151350

Salinger, Plonka, & Prechelt

Unfortunately, the results of this research areroftontradictory. For instance, regarding
total effort (measured in person-hours of develgpeork time), Williams (2001) found that
pair programming results in a 15% increase comp#yesblo programming, Lui and Chan
(2003) found 21%, and Nawrocki, Jaski, Olek, and Lange (2005) found 48%. Most likely
these differences are caused by differences in ratatevariables, such as programmer and
pair experience, type of task, and so on, but wenaloknow the complete set of relevant
moderator variables nor the nature and mechanigheofinfluence.

Our goal as software engineering researchersuaderstand pair programming in such a
way that we can advise practitioners how to useast efficiently. We propose that the only
way to obtain such understanding is to understhadriechanisms at work in the actual pair
programming process. Obviously, this understandimgt first be gained in qualitative form
before we can start quantifying and, since we doknow much yet, the investigation has to
start in an exploratory fashion.

We have started such an investigation based ogrthended theory (GT) methodology
(Strauss & Corbin, 1990) and working from rich setdata (full-length audio, programmer
video, and screen video of pair programming sesidie current article presents a number of
important methodological insights gained durings thesearch and a few initial results. Its
contributions are the following:

= a description of stumbling blocks for a GT-basedlygsis in this area;
= a set of practices that extend the plain GT me#ratihelp overcome obstacles;
= a sketch of a pair programming process coding sehem

In subsequent research, the coding scheme is idetodform the basis for more detailed
conceptual descriptions of the pair programmingcess. It also should support the
proposition of hypotheses and theory construction.

We will first give a short introduction to GT adéscribe the nature and origin of our raw
data. The heart of the article describes how angl pi&in traditional GT does not work well
under these constraints and which practices heljorik better. Thereafter we will present the
application of the modified GT process and a fewt®finitial results, namely excerpts of a
coding scheme for describing the activities ocagrrduring pair programming. We close by
outlining related works and offering a summary aatlook. This article is an improved and
slightly extended version of Salinger, Plonka amdcRelt (2007) and focuses on research
method, not on research results. The results phnsarve to illustrate the method.

THE GROUNDED THEORY METHODOLOGY
Selecting Among Qualitative Research Methods

We have already argued why we believe that itngetito study pair programming in an
exploratory manner. We want to avoid posing spetifipotheses and generally make as few
assumptions as possible. Using predefined codingnses (see Hughes & Parkes, 2003, for a
list) implies making such assumptions and henceldhee avoided. Considerations like these
quite naturally lead to using GT as the researchode because GT is an approach that makes
the fewest number of assumptions.

10

Coding Scheme Development

Alternative methods, such as protocol analysiscégon & Simon, 1993) or verbal
analysis (Chi, 1997), appear less suitable bectnesestart from at least partially predefined
coding schemes or theoretical models. They arerats@ specialized than appropriate: They
were designed for investigating cognitive processes

Verbal analysis aims at the ability to quantifyatiiative data, which could be an
advantage. Unfortunately, such quantification respiia well-defined granularity of
segmentation, so making such decisions at thedtéine analysis prematurely structures the
exploration space and prevents a completely opploeatory approach.

The Basic Ideas of Grounded Theory

GT, first described in Glaser and Strauss (1967 data analysis approach that is largely data
driven and aims at producing a theory that desgriberesting relationships between things,
situations, events, and activities (together cgllednomengreflected in the data by means of
abstractconcepts The termgroundedindicates that this theory will contain only statnts
derived from actual observations in a manner thatbe traced back to these data: The theory is
grounded in the data.

We use the variant of GT described by Strauss@uorthin (1990), who suggest three
(partially parallel) activities for a GT-based datelysis:

1. Open codingdescribes the data by means of conceptual (rétrer merely
descriptive) codes, which are derived directly friva data.

2. Axial codingidentifies relationships between the conceptsrdest by these codes.
Strauss and Corbin (1990) suggest a concrete seflasfonships to check for (in
particular:causal conditiondeading to phenomena that exist it@ntextfeaturing
intervening conditionsand leading toparticipant’s strategiesthat create certain
consequencés These relationships (plus the slightly fuzzy iowt of forming
categorie¥ they call gparadigmatic modela term we will use further below.

3. Selective codingextracts a subset of the concepts and relationstupnd and
formulates them into a coherent theory. Selectioding is not relevant for the
development of a coding scheme and thus will natis®ussed in the present article.

Strauss considered the following three aspecte thdvcore of the GT method, saying in an
interview that only these are required in ordercédl something GT (Legewie & Schervier-
Legewie, 1995):

= Theoretical coding: Codes are theoretical, not just descriptive. Theflect
concepts that have potential explanatory valughferphenomena described.

= Theoretical sampling:The selection of the material to be analyzed isdena
incrementally during the course of the analysiselaon what is expected to be
most relevant for the theory under development.
= Constant comparisonObserved phenomena (and their contexts) are caupar
many times in order to create codes that are @earid consistent.
Theoretical sampling is of less interest in thespra article, but theoretical coding and
constant comparison are of vital importance to mstded the discussion.

11

Salinger, Plonka, & Prechelt

DATA USED FOR THE ANALYSIS OF PAIR PROGRAMMING

In the following subsections, we describe our obsgon context (programmers and task).
We also describe the data capturing method used.

Observation Context: The Origin of Our Data

We observed (in the manner described below) seai&s of graduate students who all worked
on the same task. Six of them had worked togethgraas previously. The average work time
(which was not limited) was 3.8 hours. The studevese all participants of a highly technical
course on enterprise information systems and tha@2J&nterprise Edition (J2EE) architecture
and technologies. The specific task called forxdaresion of an existing Web shop application.
The task required broad passive J2EE knowledgarfalyzing and understanding the existing
system and specific operational knowledge abowt Message Service (JMS), Java Naming and
Directory Interface (JNDI), and the JBoss applaraserver for programming, configuring, and
testing the actual extension. The task was not; eady three of the pairs were completely
successful. The other four pairs terminated thenkvioefore it was completely finished. They did
not believe it to be possible to solve the remaimroblems in an acceptable time frame.

For the analysis described in the present artiwle,used the session of one of the
successful pairs only. This session ran 2 hoursb8ndinutes.

Observation Method: Data Capturing Procedure

Since we did not know in advance what would or waubt be important, we needed to start
from a rather rich data set. We used three diftedlata sources:
= An audio recording captured verbal communicatiorveen the participants, as well
as other noises, vocal or other, that may havestedith the interpretation of the data.
= A frontal-perspective video of the programmers {dhom above and behind the
screen and reaching down to about waist level) uredt aspects of facial
expression, gestures, posture, direction of atienand, most relevantly, who was
operating mouse and keyboard at any given time.
= A full-resolution screen recording captured almatcomputer activities of the
programmers on a fairly fine-grained level.

All three recordings were made simultaneously gi€lamtasia Studfaand unified into a
single, fully synchronized video file in which theamera video was superimposed
semitransparently onto a corner of the screen vittethis way, all data was visible at once
(multidimensional video).

The session was recorded in an otherwise silditeofCombined with the high audio
quality of a high-end webcalrthis arrangement provided good acoustical playkaaditions.

12

Coding Scheme Development

PROBLEMS OF A PLAIN GROUNDED THEORY DATA ANALYSIS A PPROACH

Attempting GT-style exploratory analysis of thehridata set described above (actually a
precursor study, but very similar in all respect#, quickly recognized that transcription was
not practical. Too much relevant information in geeen recording—source code fragment
input, used features of the development environr{gnth as browsing across different files
or positions within files), pointing with the moudaring discussion with the partner, and so
on—proved unclear in how to go about, or impratticahe effort of, transcribing.

This is why we decided to work on the raw videredily. We chose the qualitative data
analysis software ATLASifor achieving this task, which is one of the femgucts that
allows direct annotation to video.

One of us, Stephan Salinger, started open coditigei manner suggested by Strauss and
Corbin (1990). The short-term goal was to charaagethe activities occurring during pair
programming; the long-term goal was to identifyueing behavioral patterns and classify
them as helpful, hampering, ambivalent, or neutral.

This approach generated as many as 194 distinctepts and almost complete
confusion and despair in the course of a few dagsalysis due to the following problems:

= No predefined focus: We had no criteria for sefegtivhich observations (verbal
interaction, facial expressions, gestures, postlirections of gaze, subverbal vocal
noises, nervous tics, computer input, input methodmputer output, etc.) to code
and which to ignore, and consequently were ovemvidlby the data.

= No predefined granularity: We made no prior decigiegarding the level of detall
worth coding. As a result, we produced codes ofemdint levels of detail (e.g.,
coarse ones such aandle problemand finer ones such asst defect fix which
were difficult to delineate against one anotherssgjoently.

= No predefined level of acceptable subjectivity: Tegure of the codes chosen in
GT can be anywhere on the spectrum, ranging frodegohat reflect observations
that any observer could agree with to codes thesrpret the observation to a
degree that could be called wishful thinking. GT saxh does not provide a
criterion for deciding where “grounded in data” srahd wishful thinking begins.
As a consequence, we mixed objective—descriptivéd smbjective—evaluative
attitudes for selecting codes. This led to codediféérent nature (e.g., descriptive
ones such asises documentatioand assumption-bearing ones suchgass
knowledge of detgilexisting side-by-side, which made it harder taide which
code to use in a particular case.

= Too many topics: The codes described too manyrdiftetopics of interest, making
it impossible to properly focus on anything. Norfetlte resulting collections of
information ever reached a useful degree of corapéss.

= Lack of concept grouping: The diversity of topidscadistracted from forming
what GT calls categories: a few large groups olitg@nterrelated concepts, say,
human-human interaction (HHI) or human-computegriamttion (HCI).

= |Importance misjudgments: The high attention to @atrset of concepts overtaxed
our ability to judge their importance so that, hessaof the large number of concepts
we introduced, we completely overlooked a numbemgbrtant ones.

13

Salinger, Plonka, & Prechelt

After we had noticed and gradually understood mber of these problems, we stopped
this mode of investigation completely. We restattael complete analysis from scratch (but
very slowly and carefully, and with considerablekigacking) and concurrently redesigned
the coding procedure. The result of this redesigas va number of heuristic practices
described below that help using the GT analysisgss.

PRACTICES SUPPORTING THE ANALYSIS OF COMPLEX VIDEO DATA

The methodological heuristics presented here fdrentteart of the present article. These
intertwined practices serve to reduce or solveptioblems described in the previous section.
After introducing them, we will present an applioatthat shows how they work together
and mutually support one another.

Practice 1: Perspective on the Data

Strauss and Corbin (1990) suggest that the stalettive coding (that is, after open coding
and axial coding have been going on for quite stme) is the time when you should begin
to decide what is important and what is less sodéscribed above, we found that this is not
practical when working with rich video data. Thame three reasons why a perspective used
for the analysis should be defined before starting:

= to avoid drowning in detail;
= to provide consistency in the criteria used foratiregy and assigning concepts;
= to focus attention on the most relevant aspects.

This perspective can be defined by formulating aarsvto the following questions. These
answers should be reviewed (and perhaps revisedjadimes in the course of the analysis:

1. In which respects do you expect the data to prowvisight?

2. What kinds of phenomena do the researchers allemgblves to identify in the
data?

3. What type of result do you want the analysis todpforth?

Question 1 does not ask what you expect to fint; m what respects you expect to find
something The answer acts as a filter that tells you wipblenomena should receive more
attention than others. Furthermore, constantly eekimg and adjusting the answer to this
guestion helps in deciding when to stop the anslyshen to modify (or even replace) your
research question, and when to obtain further fferént raw data. In our case, the
expectation was that the data could help understahdt activities dominate the pair
programming process and how they relate.

Answer 2 provides the mechanism for systematidadiynding the nature and amount of
subjectivity to be found in the conceptualizatiafithe data. The strongest restriction would
be to allow only concepts that express directly eobsble phenomena, resulting in a
behaviorist (stimulus/response) research persgecteaker restrictions might also allow
concepts referring to unobservable processes (aschttitudes or thinking processes of
actors), concepts that involve predictions (sucHhedpful for reaching goal X”), and/or

14

Coding Scheme Development

concepts expressing moral judgment (good, bad)wafe convinced that, in our case, only
the behaviorist perspective would enable us td tusown results.

Finally, the result type is the standard usediémiding how much attention to invest in which
kinds of phenomena when the analysis resources legiet scarce (which very quickly they
will). It helps to stay on track. Do we want to guge a full conceptual theory, just a conceptual
structure (system of categories) for the datayengust a coding scheme? In our case, the goal
was just to produce a coding scheme, because tweefddnew so little about the internals of pair
programming that we should not yet decide on amehengineering research question.

Practice 2: Concept Name Syntax Rules

Choosing concept names is another area where wel it giving up some of the freedom
postulated by plain GT is beneficial. We found tbat initial freely chosen concept names
turned out to be highly variable and hence diffitmlunderstand, remember, and compare.

As a remedy, we developed a structured namingrseh@Vithin the confines we set for
ourselves by Practice 1, that is, describing dyrextiservable activities of the pair programmers,
the scheme does not predetermine anything witrectsp the meaning of a concept: It only
prescribes the shape of its name. When working thith scheme, we observed the following
benefits:

= A concept will be better understood right at introtion time.

= A naming scheme facilitates managing a large sebo€epts consistently.

= Some relationships between concepts are implicityprded as well, which greatly
simplifies axial coding and the forming of categsti

= A concept name explicitly represents several aspacbnce, which simplifies the
fundamental GT practice of constant comparison.

» |t becomes easier to understand where difficuliresdelineating one concept
against another arise, and correspondingly easiepbtain insights into the
weaknesses of the overall conceptual descriptigumantice.

In our case, the concepts needed to describeididivactivities by one or both of the
pair members, although for other domains of anslgigferent code naming structures might
be preferable. Our concept name was structuredlis@mplete sentence:

code = <actor>.<description>
actor=P1|P2|P
description = <verb>_<object>[_<criterion>]

Examples for such concept names Rfeask_knowledge and P2.explain_knowledge. The
criterion element of the structure can be useddalitional specialization where needed. Given
such codes, subsequent analysis can very easilsaethbdor instance, the verb element (to
compare contexts of objects) or the object elentencompare the variants of action types).
Without such complex codes, the same situation dvpubbably be modeled by a tuple of
codes with relationships. So while finding relasibips in plain GT involves axial coding, in
our case recording at least some relationshipsmeesfringe benefit of open coding.

15

Salinger, Plonka, & Prechelt

Practice 3: Analysis Results Metamodel

When we started practicing GT, we found some ofténminology and concepts confusing.
First, where GT talks about phenomena, concephtaiz, concepts, properties, categories,
and relationships, our analysis software (ATLASta)ks about quotations, annotation,
concepts, concepts, families, and relationshigpeaetively—and even the temalationships
denotes two different notions.

Second, even after the initial learning phase,esofrthe differences were subtle enough
that we misapplied them every once in a while. Assallt, we became confused when trying
to reconstruct what we had meant to express.

Third, when decisions regarding the introductian demarcation of codes became
difficult (which they often did), we realized weeded guidance for systematically applying
the ideas of GT to break out of the situation iragpropriate way. (An example of this will
be given in the section presenting the practicpplieation.)

Fourth, we extended the terminological framewoithvadditional ideas related to the
nature of our data, in particular the notion ofrack for partitioning data in order to support
data visualization for a better overview of nesded parallel activities.

Together, these issues prompted us to formulaxplicit analysis results metamodel,
that is, a model of the concepts that describe dinecture of an analysis result. We
formulated this metamodel as a UML class model (Raugh, Jacobson, & Booch, 2005),
which is shown in Figure 1.

Here is a very short description of the modelengnts: &uotationdefines a fragment
of the data (a scene of the video) the analysersetb. AnAnnotationconnects Quotations
with a Concept Concepts can be grouped int@€CanceptClassa single Concept can be a
member of many ConceptClasses.

conceptional world) | real world
(axial and selective coding) | {open coding}
- prganize hierarchically
| | |
H ConceptClass AnnotationRelation Track
+Mame | +hName +hame
% % % ®
25 |3
subsume | y ?temporal sorting
: . . kS 1 . & & : %
ConceptRelation Concept —|—| Annotation |
b
+MName P S 1tame | : B B I
1
A |characterize
. . 1
Property 14%@ CQuoatation
+hName +hegin
+end

Figure 1. Complete metamodel of analysis results formulated ML class model. Boxes denote
the various different kinds of elements occurringur GT analysis results and the lines
describe the relationships between them.

16

Coding Scheme Development

In order to further differentiate Concepts, thay de attributed witPPropertiesthat have
Values This allows developing concepts in a data-driseanner during axial coding and is
helpful for identifying relationships between coptee(Strauss & Corbin, 1990).

A ConceptRelationis used to describe a relationship between Coacépt instance
according to the paradigmatic model. In many casesh a relationship is not valid for all
pairs of Annotations that use these Concepts;nttbhan be expressed individually by using
AnnotationRelation A Track allows for defining subsets of annotations thdp hdentify
various kinds of recurring relationships on the capt level, typically by means of
appropriate visualization, as shown in Figure 2.

In addition to describing the structure of anaysesults (to avoid terminological
confusion), the metamodel also acts as a repositbiigeas for the analysigrocess For
instance, when one is unsure whether a certain €uRelation will always hold, the
metamodel suggests initial annotation of the cdlyenknown instances only
(AnnotationRelation) and deferring the creationtltd more general ConceptRelation until
sufficient evidence is available.

Note that the metamodel is meant to be used thamutgall phases of the GT research
process. Some of its elements (e.g., Tracks) ae osly rarely during the development of a
coding scheme, as described in this article.

GT:HHLP1P2 B L | ! __

orveiere: [Il DI |
GT: Change Dnver I] | | I| i

- @uerme e werm

GT: PZHCI I . I]

ED-] IRTIE] T e (RN
ar-prac [D[l I|I] DI” III D]D

5:44:09

- o T T e o o o o o e e e e o e e e o e e e e e

Figure 2. An example of a visualization of Tracks: The uppart shows a heavily scaled-down,
automatically generated visualization of the GTaations for a full pair programming session ofa2its
and 58 minutes. The lower part shows a magnifiegg containing in particular the following four
tracks: Track HHI.P1P2 represents the HHI actisité P1 (green) and P2 (red); HCI.P1P2 is the
corresponding view of the HCI activities. Track IRdI represents each type of HHI activity perforntsd
P1 in a different color; P1.HCI is the correspoigdirew of the HCI activities.

17

Salinger, Plonka, & Prechelt

Practice 4: Pair Coding

The central and most important practice is pairimpdPair coding means that all coding
work is done by two people working together at oomputer (much like pair programming,
but that is just a coincidence). The key idea of pading is to require a consensus of two
people for all important decisions: Which phenomémand in the data to single out for
coding; where in time such a phenomenon startseadd; which existing concept to use for
coding this phenomenon; when to create a new conlceyw to name that concept.
We found a number of benefits associated with pading as compared to a single
researcher, some of them very important for suéake€§ work:
= Concept definitions become more exact, becauseategcrutinized more closely
upon their introduction. This effect is further popted by the structured naming
scheme (Practice 2).
= The differentiation between similar concepts alsgdmes more precise, due not
just to better definitions but also because aigdess likely to let a concept slip in
that is on a much different level of granularityamhthe others (and hence likely to
have big overlaps with one or more existing congept
= Remaining concept differentiation problems will betignored but rather discussed.
If they can be resolved, this will happen at adieapoint in time, leading to fewer
incorrect concept assignments and therefore legsrke If it is impossible to fully
resolve them (a not uncommon situation), the dsounswill help understanding
why, leading to a better understanding of the cptscavolved.

= The perspective on the data (Practice 1) is maietaimore consistently.
= The perspective on the data is refined more relyudard more thoroughly.
= A larger number of relevant phenomena are detentddencoded.

These results are in tune with psychological neteauggesting that groups will often
produce better decisions than isolated individug&haw, 1981). Under adverse
circumstancesgroupthink (i.e., excessive concurrence seeking in groups) make group
decisions worse (t'Hart, 1988). But there is harahy danger that this will happen in our
setting: Groupthink is most likely in cohesive gosuwith a dominant leader, where the
group is sharing common stereotypes and producingpgpressures towards conformity
(Janis, 1982). Since it is one of the routine taskany pair coder to challenge stereotypes
used by the partner and to strive towards idemiifypossible different viewpoints, only a
dominant person can pose any danger of groupthiakpair-coding context. If the coders are
equals, groupthink will be highly unlikely to happe

Taken together, these four practices provided antym leap in the usefulness of our
analysis results. The next section will illustréies with a number of examples that will also
show how the practices complement one another.

APPLICATION OF THE PRACTICES AND SOME RESULTS

This section will present a few fragments from #realysis process that used the practices
described above and that led to our coding schempdir programming. We present these

18

Coding Scheme Development

examples to make the practices clearer, to explam they interact, and to make it more
credible that they help vitally.

We first introduce four concepts from our codiceame and then present some episodes
from the process in which we created them. Finallg, state a few hypotheses about pair
programming that we have derived based on our gosttheme.

An Extract from the Coding Scheme

Our current version of the coding scheme (whichoigs the subject part of the concept
names) contains about 50 different concepts, aledteinto about 20 overlapping

ConceptClasses, with most concepts being membeesthdr two or three of them. As an

illustrative example we present the four concepthe ThinkAloudConceptClass. They are

shown in Table 1; the descriptions are heavily samnred.

Use of the Practices: A Few Examples

Early during the coding process we recognized thatso-called driver (Williams, Kessler,
Cunningham, & Jeffries, 2000) frequently verbalizedat he was doing on the computer.
Based on this observation, we made two decisioinst, ve developed two ConceptClasses
(see Practice 3) called HCI (human—computer intenac and HHI (human—human
interaction) for separating the computer-operatisgect from the verbalization aspect. These
were ConceptClasses rather than individual concbetause the same separation would
obviously be relevant in many other cases as v&tond, we postulated a new concept,
ThinkAloud_Activity. By virtue of the concept nangrsyntax structure (Practice 2), this one
concept immediately generated a whole Concept@s®ugh having only one member at
first) based on the vero think aloud This effect led to extended differentiation ohcepts
where needed but incurs only little additional céewfty for the coding scheme.

We introduced ThinkAloud_Finding as the second memdf this class, when we
found a phenomenon that was obviously thinking dldwt did not explain computer
activity. The demarcation appeared to be relatieddar. In the discussion of the pair coders
(Practice 4), we agreed that ThinkAloud_Activityndae used only for the driver and that it
has priority where ThinkAloud_Finding might also dygplicable.

Table 1. The Concepts of the ThinkAloud ConceptClass.

Concept name Description

ThinkAloud_Activity Explains a current computer-operating activity

States a newly won insight

ThinkAloud_Finding (e.g., that some prior action was a mistake)

Reflects on the current state of work

ThinkAloud_State with respect to the current strategy and goal

ThinkAloud_Completion States that a simple work step has been completed

19

Salinger, Plonka, & Prechelt

Soon thereafter we encountered a programmer’s xiden of the state of affairs and
recognized it could be annotated as ThinkAloud eSthus creating the third member of this
set of concepts. But we soon found ThinkAloud_Statexhibit two problems. First, we had a
case where it collided with ThinkAloud_Finding, bese the finding concerned the state of
work. Second, it designated statements on ratferelt levels of abstraction and granularity.

We solved both problems by using the metamodebcfiRe 3), specifically by
introducing the ConceptRelation “is-preconditiori-ofrom the existing concepts
Propose_Stefsuggesting the next step) aRdopose_Strategysuggesting an approach for
choosing many future steps). We postulated thatkiibud_State had to refer to a previous
Propose_Strategy and introduced a new concept Alaold_Completion that would refer to a
previous Propose_Step. This solved both problerosa: We could now discriminate large and
small granularity (strategic and tactical) and gedina criterion for when not to use
ThinkAloud_Finding, which provided the demarcatiorthe other two.

This illustrates how open coding naturally leate iaxial coding and how the combination
of the paradigmatic model with the concept namiyigtasx (Practice 2) can show a way back
into open coding, thus keeping the complexity efrbsulting annotations down.

We are convinced that this route worked only bseaof the pair coding constellation
(Practice 4), since both coders initially suggestecbdings based on the existing codes and only
the nonacceptance of these suggestions (and tpgioding arguments) by the other led to the
discovery of the “is-precondition-of” relationshapd the fourth code ThinkAloud_Completion.

Some Hypotheses Based on the Coding Scheme

Although we have not yet started the analysis efattual pair programming process as such,
a number of phenomena recurred so consistentlywbatready call them hypotheses:
= We have found no evidence that the driver and theewer do indeed work on
different levels of abstraction, as claimed in tpair programming literature
(Williams et al., 2000). Similar results have beeported for pair programmer
discussions by Bryant, Romero and du Boulay (is$te~reudenberg (née Bryant),
Romero and du Boulay (2007; based on quantitativalitgtive work), and by
Chong and Hurlbutt (2007).
= We have observed what we cphir phases characterized by a high density of
communication acts referring to just one narroweassThey look a lot like what
descriptions of pair programming suggest as thenabpair programming process,
but we realized they are all of short duration @lljuunder 3 minutes).
= We believe that pair programming is not driven Rbyategic planning and
monitoring. Rather, the plan is quite often onlyeostep long: A single step is
suggested, possibly discussed, decided (or reviaad)immediately executed.
= Besides the unavoidable roles of driver and obsepa&r programming sessions
apparently tend toward implicitly producing a leadale as well. The leader is the
person more skilled for the given task and inflesngpeed and direction of the process
much more strongly than the pair partner, no matkéch role the leader is taking.

We expect that valuable insight about pair prognamg can be gained by investigating
the reasons, consequences, and typical contexiticorsdof the above trends. For instance,

20

Coding Scheme Development

we expect to find that pair phases are episodssér-high productivity; it would be helpful
to understand when and why they occur.

RELATED WORK
Qualitative Analysis of Pair Programming

We know of no other work analyzing the process aif programming that uses a real GT
approach: Most similar works use at least partigitgdefined coding schemes and most
perform quantitative—qualitative analyses by meaiprotocol analysis or verbal analysis.
We are also not aware of any work that is usingw@idata directly in the analysis process.

Wake (2002) presented a list of typical pair pamgmer activities, but provided little
information on how it was derived. Bryant (2004)died the difference in interaction type
and frequency in novice versus expert pair programmin a pilot study, she first refined
Wake’s list into a table of 11 behavior and intéi@t types. In the actual study, she then
recorded the sequence of events in real time aicgptd this schema and analyzed these data
in a mostly quantitative way.

Such real-time categorization is obviously a ggowdcondition for analyzing a large
number of sessions, which is a positive approachti@ other hand, the simplicity of the
categorization that is needed to make it possite r@stricts the results to analyzing in terms
of the rather simple concepts already presentedhén predefined list. Neither subtle
discriminations nor surprising new insights apdéaly from this approach: It is applicable
only in narrowly scoped investigations using préusd hypotheses.

Bryant et al. (in press) investigated behavioated to the driver and observer roles.
They started from audio recordings, transcribeanthend annotated exactly each sentence
with one out of the six predefined codes. The apdicheme is based on Pennington (1987)
and characterizes the abstraction level. The aisalgsmainly quantitative. This research
aims at confirming or rejecting a conventional wisdand is thus rather more hypothesis-
driven than exploratory. A similar assessment aspid Freudenberg et al. (2007).

Cao and Xu (2005) investigated the activity patesf pair programming. Pair working
sessions were videotaped and then transcribedafdigsis used a coding scheme based on a
combination of the schemes from Lim, Ward and Beab41997) and Okada and Simon
(1997). Then, during the analysis of the data,\& sehema was developed in a manner not
described. This work shares our behaviorist obsenvaattitude; unlike our approach,
however, it ignored all information contained ire thbomputer interaction even though it was
still grounded in only objectively observable commuation acts.

In contrast, Xu and Rajlich (2005) used the diddaged protocol in order to analyze the
cognitive activities in pair programming, which olves a far greater amount of either
subjectivity or generalized assumption. The codingeme involved classification heuristics
derived from a theory on self-directed learning ,(Rajlich, & Marcus, 2005). Xu and Rajlich
proposed to do the coding assignment by two or rooders. In contrast to our approach, the
coders worked separately and compared the redtdtsvards. This approach is sensible only
with a fixed coding scheme; a GT-like generatiorcaficepts would be very inefficient in this
manner. Immediate discussion, as in pair codingatite 4), is much more efficient.

21

Salinger, Plonka, & Prechelt

It is obvious that all five studies use ratherdefened concepts during the analysis than
concepts grounded only in the data. We fear thett approaches will be much more likely to
fall prey to unwarranted assumptions according é¢mventional wisdom, such as the
presumed driver/observer role differences, andso o

Grounded Theory Work Using Rich Video Data

Even in the broader GT-related literature, exampfestudies using video during the analysis
(rather than transcripts of videos only) are r&ve found one such example in medicine that
studied medical team leadership behavior (Xiaog@kaviackenzie, & Klein, 2004). The video
was recorded with four cameras from different angléne analysis involved four analysts and
three steps: (a) One analyst identified video setgnaith interesting verbal or nonverbal team
interactions; (b) Two analysts created conceptestigptions of the segments by consensus; and
(3) Taxonomies for leadership actions from the eptgal descriptions were developed. This
approach resembles our pair coding practice, at leaStep 2. If different people performed
Steps 1, 2, 3 (the article is very unclear in tegpect), we consider this a problematic procedure:
It is almost antithetical to the GT philosophy, dege it partially prohibits constant comparison
and fully prohibits the intertwining of open codiffsteps 1 and 2) and axial coding (Step 3).

CONCLUSION AND FURTHER WORK

We have described why a straightforward applicatadnthe standard GT method on
multidimensional video data of pair programmingssass is not likely to be successful.
Furthermore, we presented and illustrated a sefowf analysis practices that provide a
systematic way to hold the analysis problems at bay

= Perspective on the dateelps avoid drowning in detail.

= Concept name syntax rulbslp create useful and consistent concept names.

= An analysis results metamodelps keep the analysis process systematic and the

results well structured.

= Pair codingmitigates the effects of limited or distorted paption.

We have used these practices to generate a ggnepalse coding scheme of pair
programming activities, of which we presented alkexaerpt. In the future, we will proceed
with the following steps:

= Validation of the coding scheme. We will encodesgass that have very different
properties with respect to participants, task, setting.

= Qualitative and quantitative evaluation of the oodprocess itself, based on its
results, intermediate results, and process mongomformation (in particular
timestamps) recorded by ATLAS.ti.

= Refinement of the coding scheme with respect ttiquaar research applications,
in particular by adding properties according tortietamodel.

= Application of the coding scheme to produce acgralinded theories of several
aspects of the pair programming process. Thisregjlire selective coding through

22

Coding Scheme Development

which we expect to exercise even those parts ofmgsgamodel not discussed in the
present article.

Just like the four practices mutually support am®ther, these tasks will also exhibit
synergy and so will be performed partially in pkaial

ENDNOTES

1. See http://labs.jboss.com/

2. A product of the TechSmith Corporation, httpultw.techsmith.com
3. Logitech 5000 webcam

4. See http://lwww.atlasti.com/

REFERENCES

Beck, K. (2004)Extreme programming explained: Embrace chagféed.) Boston: Addison-Wesley Professional.

Bryant, S. (2004). Double trouble: Mixing qualitagi and quantitative methods in the study of extreme
programmers. InProceedings of the 2004 IEEE Symposium on Visualglages: Human Centric
Computing(VL/HCC '04; pp. 55-61). Washington, DC, USA: IEEEbmputer Society. Retrieved April
11, 2008, from http://doi.ieeecomputersociety.cdgt109/VLHCC.2004.20

Bryant, S., Romero, P., & du Boulay, B. (in pre$®ir programming and the mysterious role of thégzor.
International Journal of Human-Computer Studies.

Cao, L., & Xu, P. (2005). Activity patterns of pgrogramming. IrProceedings of the 38th Annual Hawaii
International Conference on System Scien@d#CSS '05; p. 88a) Washington, DC, USA: IEEE
Computer Society. Retrieved April 11, 2008, from
http://doi.ieeecomputersociety.org/10.1109/HICS83266

Chi, M. T. H. (1997). Quantifying qualitative anags of verbal data: A practical guidikaurnal of Learning
Sciencesb, 271-315.

Chong, J., & Hurlbutt, T. (2007). The social dynasniof pair programming. IProceedings of the 39
International Conference on Software Engineef(l@SE '07; pp. 354-363). Washington, DC, USA: IEEE
Computer Society. Retrieved April 11, 2008, from
http://doi.ieeecomputersociety.org/10.1109/ICSE7280

Ericsson, K. A., & Simon, H. A. (1993protocol analysis: Verbal reports as dat@ambridge, MA, USA: MIT
Press.

Freudenberg, S. (née Bryant), Romero, P., & du 8guB. (2007). “Talking the talk”: Is intermedialevel
conversation the key to the pair programming sweetsry? INAGILE 2007(pp. 84-91). Washington,
DC, USA: IEEE Computer Society. Retrieved April 2008, from
http://doi.ieeecomputersociety.org/10.1109/AGILB20Q

Glaser, B. G., & Strauss, A. L. (1967Mhe discovery of grounded theory: Strategies falitptive research
New York: Aldine de Gruyter.

Hughes, J., & Parkes, S. (2003). Trends in theofiserbal protocol analysis in software engineeriegearch.
Behaviour and Information Technolgd2, 127-140.

Janis, I. L. (1982)Groupthink(2nd ed.). Boston: Houghton Mifflin Company.

Legewie, H., & Schervier-Legewie, B. (1995). Im @eich: Anselm Strauss [An interview of Anselm Sgsju
Journal fur Psychologie3, 64-75.

23

Salinger, Plonka, & Prechelt

Lim, K., Ward, L., & Benbasat, I. (1997). An empi study of computer system learning: Comparisocoe
discovery and self-discovery methottsformation Systems Resear8h254-272.

Lui, K. M., & Chan, K. C. (2003). When does a pairtperform two individuals? In M. Marchesi & G. Siuc
(Eds.),Extreme programming and agile processes in softvesmgineering(Lecture Notes in Computer
Science 2675, pp. 225-233). Berlin, Germany: Spring

Nawrocki, J. R., Jasski, M., Olek, t., & Lange, B. (2005). Pair prograrimg vs. side-by-side programming. In
I. Richardson, P. Abrahamsson, & R. Messnarz (E@aftware process improvemeiecture Notes in
Computer Science 3792, pp. 28-38). Berlin, Germ&pyinger.

Okada, T., & Simon, H. (1997). Collaborative disepyin a scientific domairCognitive Scienge21, 109-146.

Pennington, N. (1987). Comprehension strategiggragramming. In G. Olson, S. Sheppard, & E. Soloway
(Eds.),Empirical Studies of Programmers: Second Worksfpgp 100-113). Norwood, NJ, USA: Ablex
Publishing Corp.

Rumbaugh, J., Jacobson, I., & Booch, G. (200%k unified modeling language reference mar(@Xl ed.).
Boston: Addison-Wesley Professional.

Salinger, S., Plonka, L., & Prechelt, L. (2007).cAding scheme development methodology using grailinde
theory for qualitative analysis of pair programming J. Sajaniemi, M. Tukiainen, R. Bednarik, &
S. Nevalainen (Eds.)Proceedings of the 19th Annual Workshop of the Rdggy of Programming
Interest Group (pp. 144-157). Joensuu, Finland: Department of Qderp Science and Statistics,
University of Joensuu. Also available at http://w\ppig.org/papers/19th-Salinger.pdf

Shaw, M. E. (1981)Group dynamics: The psychology of small group befaew York: McGraw Hill.

Strauss, A., & Corbin, J. (199asics of qualitative research: Grounded theorygadures and techniques
London: Sage Publications, Inc.

t'Hart, P. (1988, July)Groupthink: Observations toward a theorlPaper presented at the meeting of the
International Society of Political Psychology, Meadands, NJ, USA.

Wake, W. (2002)Extreme programming exploreBoston: Addison-Wesley.

Williams, L. (2001). Integrating pair programmingd a software development processPhoceedings of the
14th Conference on Software Engineering Educatiwh Braining(CSEET '01; pp. 27—36 Washington,
DC, USA: IEEE Computer Society. Retrieved April 2008, from
http://doi.ieeecomputersociety.org/10.1109/CSEEI2903816

Williams, L., Kessler, R. R., Cunningham, W., & flefs, R. (2000). Strengthening the case for pair
programminglEEE Softwargl17(4), 19-25.

Xiao, Y., Seagull, F., Mackenzie, C., & Klein, KQ04). Adaptive leadership in trauma resuscitatéams: A
grounded theory approach to video analySgnition, Technology & Worlg, 158—164.

Xu, S., & Rajlich, V. (2005). Dialog-based protocéin empirical research method for cognitive adidg in
software engineering. Imternational Symposium on Empirical Software Eegiting (ISESE 2005; pp.
383-392). Los Alamitos, CA, USA: IEEE Computer Stgi Retrieved April 11, 2008, from
http://doi.ieeecomputersociety.org/10.1109/ISESE520541848

Xu, S., Rajlich, V., & Marcus, A. (2005). An emmal study of programmer learning during incremental
software development. IRourth IEEE Conference on Cognitive Informat{¢SCl 2005; pp. 340-349).
Los Alamitos, CA, USA: IEEE Computer Society. Rewed April 11, 2008, from
http://doi.acm.org/10.1145/1145287.1145289

24

Coding Scheme Development

Author’'s Note

All correspondence should be addressed to:
Stephan Salinger

Institut far Informatik

Freie Universitat Berlin

Takustr. 9

14195 Berlin

Germany

salinger@inf.fu-berlin.de

Human Technology: An Interdisciplinary Journal onrflans inCT Environments
ISSN1795-6889
www.humantechnology.jyu.fi

25

HuMAN

TECHNDLOGY
An Interdisciplinary Journal on Humans in ICT Emviments ISSN: 1795-6889
www.humantechnology.jyu.fi Volume 4 (1), May 2008, 26-46

USABILITY ASSESSMENT OF A UML-BASED FORMAL
MODELING METHOD USING A COGNITIVE DIMENSIONS

FRAMEWORK
Rozilawati Razali Colin Snook
Dependable Systems and Software Dependable Systems and Software
Engineering, School of Electronics and Engineering, School of Electronics and
Computer Science, University of Computer Science, University of
Southampton, UK Southampton, UK
Michael Poppleon Paul Garra
Dependable Systems and Software Dependable Systems and Software
Engineering, School of Electronics and Engineering, School of Electronics and
Computer Science, University of Computer Science, University of
Southampton, UK Southampton, UK

Abstract: Conceptual models communicate the important aspgcasproblem domain
to stakeholders. The quality of the models is kiglépendent on the usability of the
modeling method used. This paper presents a suceegucted on a method that
integrates the use of a semiformal notation, nantlety Unified Modeling Language
(UML) and a formal notation, namely B. The survegessed the usability of the method
by using the grounded theory, the Cognitive Dimamssiof Notations (CD) framework,
and several criteria suggested by the Internatio@afanization for Standardization
(ISO). Ten participants responded to the survew fEsults suggest that the method is
accessible to users when the principles and rofesach notation are obvious and well
understood, and when there is strong support froenénvironment. Supported by the
findings, a usability profile based on CD for desitg a method that integrates
semiformal and formal notations is proposed.

Keywords: empirical assessment, semiformal and formal natatio cognitive
dimensions (CD), grounded theory, usability.

INTRODUCTION

Modeling is vital in the development and maintereaiof software systems. It allows the
characteristics of the existing and future systamsbe captured and understood. The
modeling process produces models where the reqeiremspecification is one of them.
Software requirement specification is a conceptuadel that establishes the connection
between the user’s needs of a system and the gefswdution to meet them. It is an abstract,

© 2008 Rozilawati Razali, Colin Snook, Michael Pkgtpn, & Paul Garratt, and the Agora Center, Ursigrof
Jyvéaskyla. URN:NBNfi:jyu-200804151351

26

Usability Evaluation of a UML-Based Formal Method

clear, precise, and unambiguous conception of gesyswhich is developed by using the
appropriate notations. Some examples of notatised uin conceptual modeling include
semiformal notations such as entity-relationshiaggcam (ERD; Chen, 1976) and Unified
Modeling Language (UML; Object Management Group [GIM2008), and formal notations
such as Z (Spivey, 1992) and B (Abrial, 1996). tdition, there are also notations that
integrate both semiformal and formal, such as UMd Z (Martin, 2003).

Formal notations such as Z and B use mathematycabals to describe a system. The
notations have three components: rules for detémgithe grammatical well-formedness of
sentences (syntax); rules for interpreting sentncea precise, meaningful way within the
domain considered (semantics); and rules for imgmseful information (proof theory), which
provides the basis for automated analysis of a mfdm Lamsweerde, 2000). Formal
notations therefore have the ability to increaseaael’s precision and consistency, which is
necessary especially for critical systems (Hincl2®g2). However, the notations are regarded
as being difficult to comprehend, due to the usafgenfamiliar symbols and underlying rules
of interpretation that are not apparent to mangtgraners (Carew, Exton, & Buckley, 2005).
On the other hand, semiformal notations such as BRI UML provide abstract graphical
representations for illustrating system elementgeyTare semiformal because, although they
possess some formal aspects such as support idevéerefinement process, they cannot be
used to verify or predict the vast majority of gystcharacteristics (Alexander, 1996). As a
result, an accurate and consistent model cannguamnteed. Nonetheless, the notations are
perceived as more accessible, since it is easigstialize the mapping of graphical symbols to
the real-world objects they represent (Bauer & 3ohrLaird, 1993).

By integrating formal and semiformal notationsniay be that practitioners can produce a
model that is accurate, consistent, and more abbess them. Ongossible approach to this
integration is to combine the formal notation oaBd the semiformal notation of UML. A
method called UML-B (Snook & Butler, 2006) is oneck product. The rationale of this
integration is that B has strong industrial suppgrttools, such as Atelier-B (ClearSy
Systems Engineering [ClearSy], n.d.) and B-Too{BitCore Limited [B-Core], 2002), and
UML has become the de facto standard for systeraldpment (Pender, 2003).

This paper presents an investigation into the lisabf UML-B. Usability in this context
means the understandability/comprehensibility riability, operability, and attractiveness of the
method. The assessment was conducted by usingahedgd theory and a usability evaluation
framework, namely the Cognitive Dimensions of Niota (CD; Green, 1989; Green & Petre,
1996), with several usability criteria suggested the International Organization for
Standardization (ISO, 2003, 2004). The followingtiss provides the background of the paper,
which includes a brief description of CD and UMLA4BRater, the survey is presented. The final
section concludes the paper with a summary of #ie findings and future work.

BACKGROUND
Cognitive Dimensions

The CD framework provides a comprehensive vocapular discussing the usability of
programming languages, tools, and environmentgadt originally proposed as a broad-brush

27

Razali, Snook, Poppleton, & Garratt

discussion tool, offering a vocabulary to discuse usability tradeoffs that occur when
designing programming environments (Green, 198868 & Petre, 1996). Nevertheless, it is
also applicable beyond the programming environm@inice its proposal, the CD framework
has been used as a basis of usability evaluatioseweeral notations, such as UML (Cox,
2000; Kutar, Britton, & Barker, 2002), C# (Microso€Corporation [Microsoft], 2008)
programming language (Clarke, 2001), spreadsheglicapon (Tukiainen, 2001), and Z
notation and tools (Triffitt & Khazaei, 2002).

The framework is generally seen as a tool that tid usability evaluation of information-
based artifacts (Green & Blackwell, 1998). The aifrthe framework is to provide general
guidelines that can be used to evaluate the usadiid suitability of an artifact for a particular
setting. An artifact is analyzed based on a ugglpliofile that contains a CD set. The profile
guides the evaluation of the artifact for a patécwser activity. The framework distinguishes
six main types of user activity (Blackwell & Gree®003): incrementation, transcription,
modification, exploratory design, searching andl@gtory understanding. Each of these user
activities is supported by a specific usabilityfpeo

Table 1 provides the 14 dimensions in the CD fraark, with summarized descriptions.
Although the dimensions are conceptually independaany of the dimensions are pairwise
interdependent (Green & Blackwell, 1998). This ngealthough any given pair can be treated as
independent, a change in one dimension usuallyresga change in some other dimension. For
example, reducing a notation’s viscosity may nfecfits closeness of mappirigyt it is likely to
affect other dimensions, such as increasing thiesatisn gradient. The framework considers this
situation a matter of making compromises or tradanfartifact designs.

Table 1. The CD Framework (drawn from Green, 1989).

Dimension Description

Abstraction gradient

Level of grouping mechanism enforced by the notation

Closeness of mapping

Mapping between the notation and the problem domain

Consistency

Similar semantics are presented in a similar syntactic manner

Diffuseness

Complexity or verbosity of the notation to express a meaning

Error-proneness

Tendency of the notation to induce mistakes

Hard mental operations

Degree of mental processes required for users to understand the notation and to
keep track of what is happening

Hidden dependencies

Relationship between two entities such that one of them is dependent on the other
but the dependency is not fully visible

Premature commitment

Enforcement of decisions prior to information needed and task ordering constraints

Progressive evaluation

Ability to evaluate own work in progress at any time

Provisionality

Flexibility of the notation for users to play with ideas

Role-expressiveness

Purpose of an entity and how it relates to the whole component is obvious and can
be directly implied

Secondary notation

Ability to use notations other than the official semantics to express extra
information or meaning

Viscosity

Degree of effort required to perform a change

Visibility/Juxtaposibility

Ability to view every component simultaneously or view two related components
side by side at a time

28

Usability Evaluation of a UML-Based Formal Method

In essence, CD provides a framework for assesdieg usability of building and
modifying information structures. Because usabitigpends on the structure of the notation
and the supporting tools provided by the environtnéme dimensions are indeed applicable
to the whole system.

UML-B

UML-B (Snook & Butler, 2006) is a graphical formmabdeling notation and method based on
UML (OMG, 2008) and B (Abrial, 1996). It uses UMLGassandStatechardiagrams as the
graphical representation of its model. The Clasagrdim shows the structure and the
relationships between system entities. The Statechagrams are attached to classes to
describe their behavior. A notatiqrB (micro B) that is based on B notation, is useddatual
constraints and actions for the diagrapiB. has an object-oriented style dot notation that is
used to show ownership of entities, namely attebwind operations by classes. The modeling
environment of UML-B includes Rational Rose (IBMfSare [IBM], n.d.) and a translator
called U2B (Snook & Butler, 2006). Rational Rosevmles the environment for the UML-B
model development while U2B is a tool that traresdad UML-B model to a B model so that it
can be verified by B tools, such as Atelier-B (C8a n.d.) and B-Toolkit (B-Core, 2002).
Figures 1 and 2 illustrate examples of a Claggraim and a Statechart diagram of a UML-B
model, respectively. The Class diagram shows thigiesnand relationships involved in an
Auction System. Two main classes, namé§ERandAUCTION are connected througteller
and highest_bidderrelationships. The Statechart diagram shows thtesstand transitions
(operations) of the AUCTION class with the respactextual constraints specified usjuis.

USER

&halance : NAT =0

<= e (1

SETOET;TQS Hname o1 Screates> registerinm : STRINGS, pw . STRINGS)
$<cdestroy=» unregister()

®ogininm© STRINGS, pw - STRINGS)

$ogaff()

+password SdfisplayAmount() - amount

1 0.1

+seller +highest_bidder

[(1
AUCTION

20NN Syreserve | NATT

highest_bid : NAT =0
& admin_amount - NAT =0 highest |
&<<constant=> commission | NAT1

$ccrreates> createAuction(res - NAT1, user - USER)
o SplaceBid(user | USER, il | MATT)
displayAdminAmount() . amount placeBid2(user | USER, bid : NAT1)

®adestroys> win(user : USER)

Operation Specification for displayAdminAmount

Class specification for AUCTION

Semantics:
______________ Documentation:

amount = admin_amount | |eeemeeeeeeeee
INVARIANT
seller /= highest_bidder

Figure 1. An example of a Class diagram of UML-B.

29

Razali, Snook, Poppleton, & Garratt

createAuction] commission == user balance & user.user_state=loggedin]/
seller .= user || reserve :=res || user balance := user.balance - commission ||
admin_armount := admin_amount + commission

noBids

placeBid 1 user user_state=loggedin & user /= seller & bid >= reserve & bid <= user.balance & highest_bid = 0 & self /. dom($highest_bidder)]/
highest_bid:=bid || highest_bidder ;= user || user balance ;= user balance - bid

win[user = highest_bidder & highest_bid = reserve & commission <= seller balance + highest_hid]/
bidding | seller balance = seller balance + highest_bid - cormission || admin_armount := admin_armount + commission

®

placeBid2[user.user_state=loggedin & user /= seller & user /= highest_bidder & bid > highest_bid & bid == user.balance & self : domi$highest_bidder)] /
highest_hidder := user || highest_bid := bid || $balance:= $balance =+ {user |-> user.balance - bid , highest_bidder |-= highest_bidder.balance + highest_bid}

Figure 2. An example of a Statechart diagram of UML-B.

The comprehensibility of the notation used in a lUBI model has been assessed in
previous work (Razali, Snook, Poppleton, Garratt\<ers, 2007). The assessment was
conducted as a controlled experiment that comparé&tML-B model and a B model for
model interpretation task. The measure of inteussd in the experiment was efficiency in
performing the task, that is, accuracy over timee Tesults suggest with 95% confidence that
a UML-B model could be up to 16% (overall compredien) and 50% (comprehension for
modification task) easier to understand than theesponding B model. The subjects
commented that the UML-B model made it easier arnidkgr to understand the scenario and
the relationships between operations; easy to dpyedspecially on computers; and more
logical to developers. Nevertheless, the model said to be useful only with good tool
support. The UML-B model was also regarded as beuitg “messy,” since the information
was scattered around the Class and Statecharadiagr

SURVEY

The controlled experiment described briefly in frevious section evaluated the notation
comprehensibility in terms of how easy it is to arelfand a UML-B model from the
perspective of users who interpret the model. Hseilts of the experiment suggest that the
UML-B model is more comprehensible than the B modéie findings however cannot
suggest by any means that the notation is alsdeufa@mn the perspective of developers who
use UML-B for modeling. Neither could they determwwhether or not the notation suits the
developers’ common needs and expectations.

The following subsections present a further surgegducted on UML-B. The survey
assessed the usability of the notation used in WBMIErom developers’ perspectives,
especially from the point of view of users who hady recently started to use it. Since

30

Usability Evaluation of a UML-Based Formal Method

usability depends on the notation and its envirammiie evaluation included the tools that
accompany the method, namely Rational Rose (IBll) and U2B (Snook & Butler, 2006),
whenever appropriate.

Objectives and Methods

The survey was qualitative in nature. Despite tuet that some of the data were quantified
using an ordinal scale, the bulk of the analysis werpretative. This type of analysis was
carried out due to the problem at hand, that es,stirvey attempted to understand the nature
of experience of using UML-B. Since little is knowabout the UML-B method, the survey
aimed to explore and gain novel understandingstofuse through qualitative data and
analysis. The analysis allows the intricate detalil®ut the phenomena, such as feelings,
emotions, and thoughts to be extracted and analyzed

Many different approaches to qualitative data amgpleyed in the social sciences
(Cassell & Symon, 1994; Denzin & Lincoln, 1994; Wweeok, 1994). We adopted one
approach, namely the grounded theory (Glaser &uS#,a1967; Strauss & Corbin, 1998).
There are two variations in the approach, whichbased on different directions taken by its
originators, namely Glaser (1992) and Strauss aoi@ (1998). This survey employed
Strauss’ approach because it is more systematiciaedtive. In particular, it contains more
formal models and procedures to generate thedtiedsso encourages a qualitative study to
have a research question so that the researchstaafocused amid the masses of data. In a
qualitative study, the research question shouldrbad and open-ended.

The theory in the grounded theory approach is ddrivom data, systematically gathered
and analyzed through the process. This approachcivasen because, unlike the controlled
experiment conducted previously, this survey was based on any specific theory. The
grounded theory approach allows the study to b@ted without a preconceived theory in
mind: The researcher can start with a phenomendmatiow the theory to emerge from the
collected data. Because the theory is drawn frota, dais likely to offer insight, enhance
understanding, and provide a meaningful guide tiom¢Strauss & Corbin, 1998). It is believed
that the theory generated from this approach ierikely to resemble the reality, as compared
to theory derived by merging concepts based ondm@thinks things ought to work.

The survey aimed to formulate tentative theorieshef usability of integrated methods,
(combined semiformal and formal notations) suchJd4L-B, based on the understanding
obtained from the qualitative analysis using theugded theory approach. While a single
study can never embrace all possible situations, shrvey sought to provide some
preliminary evidence of the integrated method’®likstrengths and weaknesses when used
under certain defined conditions. It was also ideghto identify any threats that could hinder
the method’s usability and any opportunities thatild improve the method further. The
tentative theories could act as a basis for furithestigation and analysis.

One of the subjective comments obtained from thmiee&ontrolled experiment was that
UML-B was seen as easy to develop, particularlycomputers. The method also was
deemed to be useful only with good tool supporiesehhypotheses were given by subjects
who dealt with the already-developed UML-B modedt the process of modeling. This
could suggest, therefore, that the hypotheses migthbe true from developers’ perspectives

31

Razali, Snook, Poppleton, & Garratt

for modeling purposes. As a result, the surveyuidetl these hypotheses in its investigation
of the phenomenon through the following broad redequestions:
= Do individuals who develop a model using the UMLvgthod perceive them (i.e.,
the method and the model) as usable (easy to uaddrseasy to learn, easy to
operate, and attractive)?
= What are the characteristics of the UML-B method &ML-B model that affect
their usability from the modeling perspective?

Materials

The survey instrument was developed based on thasigroposed in the CD usability

framework (Green, 1989). The framework was adopiedause it captures a significant
number of psychology and human—computer interagttfl) aspects that focus particularly

on the notational design. The framework comprigesdifnensions (see Table 1), which acted
as the response variables in the survey.

The questions for the survey were constructed bywing the proposed CD questionnaire
(Blackwell & Green, 2000). The advantage of usirgjeandard instrumentation, as proposed by
the CD questionnaire, is that it has been assdssgdlidity and reliability by the authors. The
CD framework is widely used by other researchersstigating the usability of notations, such
as UML diagrams (Kutar et al., 2002) and Z (Trift Khazaei, 2002), and so it provides a
mechanism to compare the results of this survely thi2 results of other similar studies.

The CD questionnaire is intended to present theedsions in general terms,
applicable to all information artifacts, rather nharesenting descriptions specialized to a
specific system under consideration. The questioanveas therefore tailored and modified
slightly to reflect the characteristics of UML-B. dvkover, the questions for the survey
were designed to include a set of answers usingrdimal scale together with the open-
ended questions. This approach allowed the survegbtain some guantitative measures
rather than exclusively qualitative measures.

In addition to the CD framework, the questionslom survey were also constructed based
on the usability criteria proposed by the Interoradil Organization for Standardization (1SO,
2003, 2004): understandability, learnability, ofélry, and attractiveness. There were 20
questions on the survey: 14 reflecting the dimerssiof the CD framework, 5 representing
the ISO’s usability criteria, and 1 designed tohgatsuggestions for improvement. The 14
guestions on CD were also mapped to at least osmeiling criterion of 1SO. The mapping
was based on the definition stated in the stand@h® questions on the survey were
presented in random order without following a spedequence of dimensions. To ensure
the questions were purposeful and concrete, thergerguidelines on survey question
construction were followed (Kitchenham & Pfleeg2d0?2).

The questions used an ordinal scale that providedespondents with five potential levels
of agreement, from2 (very difficult)to 2 (very easy)An uneven number of levels were used
because, by allowing for a neutral opinion, unemambers contribute to the achievement of
better results (Bonissone, 1982). In addition ® sklection on the scale, justification for the
answer given was also required through open-endestigns, such as Why? or Which part?
This acted as the qualitative data, which were tsgdther with the quantitative data on the
scale for the analysis. There were also questi@igequired an answer of Yes, No or Not sure.

32

Usability Evaluation of a UML-Based Formal Method

The survey questions and raw data can be foundralR(2007). As an overview of the
questions, Figure 3 provides some examples of timeeg questions. The first question
concerns the visibility and juxtaposability dimension, which also relates the
operability/attractiveness criteria of the 1SO. Texond question involves the hard mental
operations dimension that also implies the ISOdeaunstandability/learnability criteria.

The CD framework describes the necessary conditamngsability based on the structural
properties of a notation, the properties and ressuof an environment, and the type of user
activity: incrementation, transcription, modificat exploratory design, searching and
exploratory understanding (Blackwell & Green, 2008) particular, it addresses whether the
users’ intended activities are adequately suppdnetihe structure of the notation used and its
environment. For the survey, the identified user@nded activity was exploratory design, in
which the users employed UML-B (notation and enwinent) to design a conceptual model.
The survey questions and analysis therefore wioeetd towards this aspect.

The survey guestions were reviewed by a focus gpyigr to distribution. There were
four people involved in the process. The purposthefreview was to identify any missing or
unnecessary questions as well as to identify aryiguous questions and instructions.

Participants

Ten participants responded to the survey. They wasester's students of a software
engineering program at the University of Southamptwho registered for the Critical

Systems course in spring 2006. They were chosen due o pogential contribution towards

the development of usability theory for integrameethods such as UML-B. Specifically, they
were selected because they received formal traiomdd (9 hours) and UML-B (1 hour)

during the course. They also had completed cowsethe object-oriented technology and
formal methods of developing at some points inrtistudies. Basic knowledge of those
aspects is necessary to develop a UML-B model. M@e the participants had some
practical experience in using UML-B and its toolksfdre participating in the survey. In

particular, they used the method to develop a mofial system as part of their coursework
towards the end of the Critical Systems course.

If you need to compare different parts of your UML-B model (e.g., between diagrams or windows of
different operations, etc.), how easy is it to view them at the same time in Rational Rose?

Very difficult Very Easy
-2 -1 0 1 2

Why?

Do you find any complex or difficult tasks to work out in your head when modeling your UML-B model?
No Not Sure Yes

If Yes, what are they? If No or Not Sure, why?

Figure 3. Examples of the survey questions from Razali (2007)

33

Razali, Snook, Poppleton, & Garratt

The survey adhered to the university’s ethical ged and guidance for conducting
research involving human participants. The parsiots were aware that the survey was
intended for research purposes. They were motivadeparticipate as it helped them in
exploring the method in addition to providing a apéor reflection on their learning prior to
their course examination.

The subjects were in the final semester of theisterégs program. They therefore had a
reasonable amount of experience and knowledgeftwa® development. Some of them had
some professional work experience in this areay Hne the next generation of professionals,
thus they represented closely the population ustiaty: software developers who are new
users of the UML-B method.

Results and Analysis

The survey adopted the grounded theory approachthirdata analysis. In addition to
capturing the informants’ experiences of using UBILthe survey aimed to formulate
tentative theories on the usability of such integgamethods in general. The theory in the
approach denotes a set of discrete categoriesatigatsystematically connected through
statements of relationship. The categories in &€&sane abstract concepts that describe the
phenomenon under study, whereas the statementlafionship are the interrelated
properties of those categories.

Employing the grounded theory approach entails embmr of coding and analysis
processes. The first one applied wgen codingwhere the responses were examined for
objects of interest based on the stated resear@stiqns. The technique used was
microanalysigStrauss & Corbin, 1998). The analysis focusedentifying major themes or
categories and how often they emerged in the dadarwarying conditions. The idea was to
form a theoretical framework, thus the analysisolmegd the formulation of general
categories rather than ones specific to any indaliccases. For example, issues of using
Rational Rose (IBM, n.d.) and running U2B (SnoolB&tler, 2006) were conceptualized as
Availability and Usefulness of Supporting Tools.eTanalysis did not intend to specifically
delineate every single limitation of the tools. IRat the objective was to identify and
propose a set of categories that can be used asisfor examining the usability of other
similar methods in future.

After completing open coding, an axial coding psxevas conducteddxial coding
involves moving to a higher level of abstraction laentifying relationships between
categories based on their properties. This forreshifisis for the theory construction. The
properties for the categories were derived by hlpyjoeries such awhat why, how and
whenduring the analysis process. For example, respasdeentioned the issue of learning
UML and B several times in their answers. Therefdearnability of Notations and Tools
was recognized as one of the categories. On ther didind, it is necessary to know what
aspect of the notations and their tools was easgifbicult to learn, when and why they
happened, in order to understand the phenomenoranwer the queries, evidence was
obtained and accumulated from various parts ofginestionnaire. This included both the
quantitative (ordinal scale) and qualitative (sabje) data. The use of CD framework and
ISO’s usability criteria that shaped the dimensiofsisability investigation facilitated the
identification of the categories and properties.

34

Usability Evaluation of a UML-Based Formal Method

The following paragraphs list the categories amdb@late their properties. The properties
(reasoning based on CD and ISO usability critetha} support the statements are stated in
the parentheses in the paragraphs. The properées gvouped into categories based on the
respondents’ qualitative answers and data on tiearscales (for details, see Razali, 2007).

Category 1: Model Structure and Organization. The UML portion of UML-B allows the
system properties and behaviors to be illustradguthe Class and Statechart diagrams.
Each diagram represents the system from a spqudfispective. For example, the Class
diagram shows the attributes and relationships émtwentities in the system while the
Statechart diagram delineates the states andttanssinvolved in the system operations. In
modeling a UML-B model, the users employ the diatgdo illustrate the system properties
from these perspectives.

The diagrams are equipped with formal semanticseravhthe characteristics and
behaviors of the systems are more precisely spécifrormal semantics in the form of B
syntax are added at different parts of the diagraonthat the diagrams and semantics can be
transformed to a B model. For example, the glolaaiables and invariants are placed at the
Class diagram level while the conditions and effeat the behaviors are placed at the
Statechart diagram level. Despite being scattdremlighout several parts of the model, the
method has the ability to transform the diagrant @nsolidate the semantics as a single B
model through its tool, namely U2B.

Despite being logical, having the formal semangitdifferent parts of the model causes
an accessibility issue for the users. They neeswiitch to different parts of the model to
specify the formal semantics. Rational Rose suppbe display of multiple windows at one
time. However, having to deal with several dispthyendows simultaneously in Rational
Rose seems to be a problem (Property: visibilitgg arxtaposibilitydimension). The users
have to view not only the windows that display @lass and Statechart diagrams but also the
pop-up windows that carry the semantics for eacthefdiagrams. In fact, some of these
windows have to be on top of each other due tadichscreen space. This leads the users to
overlook certain aspects of the model and to becpnome to errors (Property: error
proneness dimension). The users can view and suésty check the model using B tools
by translating it to a B model using U2B at any mlody stage they like (Property:
progressive evaluation dimension). However, hawmgransform the model, particularly
while formulating and synthesizing ideas, has lregarded as a “noise.” In addition, model
transformation at early stages, where many asests yet to be carefully thought through,
will generate error messages in B tools. And stgrthodeling with many generated errors
can be a daunting experience, especially to nevgsuse

This finding supports the comment obtained from ¢batrolled experiment where the
UML-B model had been regarded as messy. The messiise caused not only by the
scattered information but also the display of nplétivindows simultaneously. The structure
of the model does affect its accessibility for batbdel reading and development, even on
the computer screen. The cognitive psychology th#wt underpins this phenomenon is that
humans have a limited amount of information that ba processed at one time. The way
material is organized and presented has an ef@gar(dler & Sweller, 1992). When the
related information is separated on the page @esgrusers have to use cognitive resources
to search and integrate it. Users are less ablolt the separated information in working

35

Razali, Snook, Poppleton, & Garratt

memory simultaneously, especially if the informatibas a high intrinsic cognitive load
(Sweller & Chandler, 1994). In general, a formatation such as B syntax is high in intrinsic
cognitive load because it involves concurrent extdons between its syntactical and
semantic characteristics.

Because a UML-B model always involves the use ofentban one UML diagram that
carries the respective B syntax, the issue of eadtinformation is seen as unavoidable.
However, the effect of split-attention can be restudf the modeling tool allows more
convenient and less distracting switching to amaving different parts of the model.

Category 2: Availability and Usefulness of Supporting Tools. Rational Rose and U2B are
the main supporting tools in UML-B. These tools @&een useful in some aspects (Property:
consistency dimension; secondary notation dimendiearnability and Utility of U2B). On
the other hand, several problems in user-friendineiere discovered by the users. For
example, Rational Rose does not support some chaag®matically, which causes the
modification process to be unnecessarily tediougp@ty: viscosity dimension). If a variable
name is changed in the Class diagram, the changs reflected in other parts, such as in the
Statechart diagram or in the semantics where thabla name is used. A similar situation
applies to variable deletion. Thus, the changes tavbe done manually by visiting the
respective parts of the model.

U2B in general has received a fairly good acceptaamong the users. This is due to its
obvious role, that is, to transform a UML-B modsbi a B model. By executing several simple
steps, the users can generate a B model and exleewterification task using B tools (Property:
progressive evaluation dimension). This is theaeasghy the tool is seen as easy to learn and
use (Property: Learnability and Utility of U2B). @rautomatic transformation has alleviated
some pains that would occur when modeling a B méaeh scratch. At the very least, it
provides basic structures for the B model, whi@ukers could extend further by adding more
details. However, in order to keep the U2B simjpldpes not contain a verification feature; the
user would need to return to the B tools to achisfication. As a result, no matter how
simple to use, U2B, or even Rational Rose, doesuqgport any type of checking. This means
users have to transform the UML-B model to a B nhaahel run it in B tools each time they
change an idea, even if it involves only a mincarade. Otherwise, there is no way to be sure
whether or not the change is acceptable. The gexdeBamodel will contain numerous types of
errors from the simplest to the most complex, wigan only be recognized during model
verification using B tools. Because of this reaamers feel that the method is less supportive
for experimenting with ideas (Property: provisigtyatlimension). Users would benefit from
having some simple checking abilities, such aseshwsriables and typing errors of B syntax at
the modeling and transformation levels. This caadtl as the frontline checking to eliminate
minor errors before pursuing more extensive veiifon in B tools. Rather than introducing all
types of errors at once, evolutionary phases oflehg could make the verification task less
daunting and troublesome for the users. Becaus®theurrently lacks these elements, it does
not fully meet the users’ expectation (Propertyaroability and Utility of U2B).

This finding supports the comment obtained from dmmtrolled experiment where
several subjects in the experiment believed thatniethod is useful only with good tool
support. Although the necessary tools are availdbkre are several aspects that should be
improved in order to increase their utility (Prayeruture Improvement). Perhaps a more

36

Usability Evaluation of a UML-Based Formal Method

seamless modeling environment should be createthatousers do not have to perform
several individual and intricate steps during mivdgl

Category 3: Learnability of Notations and Tools. The successful use of UML-B relies on
the fact that users have to be familiar with UMLdaB. Otherwise, the integration of both
notations could not be understood or valued. Froerésults of the survey (Razali, 2007), it
has been found that it is difficult if not impodsilto obtain the understanding of the notations
used in both UML and B at the same time (Propdsarnability of UML-B). Even though the
users have been exposed to UML and B for some tinteyel of mental burden still occurs
during the process (Property: hard mental operat@imension). Having to think, integrate,
and harmonize two styles of modeling from two diéf& methods seems to be problematic.

The model transformation provided by U2B also rezgiisome learning (Property:
Learnability of UML-B). A UML-B model, in essencearries two types of semantics:
explicit B syntax specified by the users in the Ubllagrams that U2B transforms as it is in
the B model, and implicit B syntax that U2B impliasd generates automatically from the
diagrams. For example, behaviors of the operatiave to be specified by the users using
the B syntax in the UML diagrams whereas classek associations in the diagrams are
translated automatically as the respective setsvandbles in the B model. Users have to
understand these transformations and why they @engplished in such ways (Property:
Learnability and Utility of U2B; hidden dependergidimension), since it affects the way
they should do the modeling (Property: closeneseaygping dimension). Moreover, learning
of how to do modeling in Rational Rose is also nexgi(Property: Learnability of UML-B).

Modeling the UML diagrams is regarded as quite igittborward (Property: role
expressiveness-diagram dimension; error pronenagsadh dimension), which eases the
process of describing what is intended (Propeiffuskness dimension; closeness of mapping
dimension). Despite the fact that B modeling imgosame task ordering and requires users to
define and group things beforehand, the diagrame samehow diluted the effects (Property:
premature commitment dimension; abstraction gradienension). Perhaps these factors help
to explain why a UML-B model is seen as more apgable than a B model and, thus, UML-
B is preferred for formal modeling (Property: Omlity and Attractiveness of UML-B).

On the other hand, specifying the UML diagrams wite correct formal semantics is
perceived as difficult and error-prone (Propertyoeproneness-syntax dimension; hard mental
operations dimension). Shallow understanding of kmevformal semantics should work with
the UML diagrams, lack of comprehensive documemtiadtin the method (Property: Usefulness
of Documentation), and the need to grasp the uyidgrbrinciples of the employed methods
and tools mentioned above have downgraded the lifigraof the method (Property:
Operability and Attractiveness of UML-B). To atttacew users to the method, a more
comprehensive documentation should be readily avail (Property: Future Improvement).
The documentation should cover more of the prdctspects of the method and its tools
(Property: Usefulness of Documentation), rathemthast theory. Currently, the available
documentation on the method is not helping the suseuch in this aspect (Property:
Accessibility of UML-B)

Category 4. Functionality of Notations. Rational Rose provides specification windows in
each diagram for specifying the semantics. Theeetan types of diagrams involved in

37

Razali, Snook, Poppleton, & Garratt

UML-B, thus the users are provided with two typéspecification windows. One is in the
Class diagram and the other is in the Statechagrain. Regardless of the location, U2B is
able to extract the semantics and treat them aitigdydas a B model.

The semantics in the Statechart diagram are tramstbas a nested condition under the
primary condition, which is obtained from the Claagram. In many cases, the semantics of
the Statechart diagram can also be placed directtize specification windows of the Class
diagram. If the users know the states and transitiovolved in the operations, they can specify
it literally as a series of conditions in the sfieation windows of the Class diagram. Despite
providing an alternative in modeling, the flexityilsomehow has made the role of the semantics
in the Statechart diagram, or even the Stateckagtain itself, unclear to some users (Property:
role expressiveness-diagram dimension; role experssss-syntax dimension). The users seem
to prefer specifying the full semantics in the Glaagram, since it is more obvious and
straightforward. Such a process could also recheeniental burden of having to work with two
different diagrams at the same time (Property:biligi and juxtaposibility dimension; hard
mental operations dimension). Moreover, the geedratsted conditions from the Statechart
diagram tend to complicate the B model. Becausemiy end product that actually matters is
the transformed B model, users prefer to have pleiand quick solution to achieve it.

More clear roles and boundaries should be set leettree formal semantics of the Class
diagram and the Statechart diagram. The explanafidine roles and responsibilities of each
part of the diagrams and semantics should be ssaiszinctly in the documentation, which is
currently lacking in the method (Property: Usefsim®f Documentation). It may be better if
some principles and controls can be placed on hdwMa-B model should be modeled.
Although it may reduce the flexibility in modeling,could at least guide the users based on
what should and should not be done. It can alsadassalundancy. This is particularly true
for new users, who often have no idea how to stadtpursue the modeling. Furthermore, the
transformation of formal semantics from the Stasethlliagram to a B model could be
smoothed further so that no unnecessary complicéimtroduced to users.

Discussion

The data from the survey suggest that UML-B is appg to users who opt into B modeling
while yet prefer working with standard developmstyie of UML. This is particularly true
when users are familiar with UML and have the cépdo appreciate what formal notations,
such as B, could offer. The graphical modeling emrent alleviates the difficulty of
developing a formal model from scratch by stimuigtine formulation of ideas through the use
of visual objects at the abstraction level. Ondtieer hand, users are faced with the challenge
of having to grasp the underlying principles offeacique notation, as well as to understand
how both notations work together to achieve thegrdtion objectives. Each notation’s roles
and functionality at different parts of a model sldobe understood, which can easily be
achieved only if the distinction between them isacl Users are also required to learn and
become familiar with the individual tools that asgmany each notation, which in general
should provide the necessary support.

Based on the findings, the survey generated thilewiolg tentative theories of the
usability of integrated methods that combine semifd and formal notations. The categories
that contribute to the formulation of the theordes stated in the parentheses.

38

Usability Evaluation of a UML-Based Formal Method

Theory 1: The integration of semiformal and formal notatiorgjuires the
understanding of principles and roles of both notet as well as the rules of the
integration. The principles, roles, and rules oughtbe obvious to users
(Categories 3 and 4).

Theory 2: The integration of semiformal and formal notatioesjuires strong
support from the environment. Supporting tools amdmprehensive
documentation should be not only available but alseful, easy-to-learn, and
easy-to-use (Categories 1, 2, and 3).

Unlike the other categories, Category 1: Model &trre and Organization is not
explicitly stated in the theories, although it meluded. It is indirectly implied in Theory 2
with a similar effect as Category 2: Availabilitpci Usefulness of Supporting Tools. This is
because the incident may depend on the environtmgnwhich the method is supported
(Rational Rose). Perhaps only the current envirarirhas the problem of managing scattered
information and multiple windows. As the data aneite limited, more observation is
required on this aspect, particularly within difat environments.

In terms of the CD framework, goals for designintegrated methods such as UML-B
were identified. The design goals were proposeddas the nature of semiformal and formal
notations, and the motivation behind the integratithe individual notations (semiformal and
formal) have their own strengths and weaknesseghvere enhanced through the integration
effort. In addition, the design goals were basedhencommon types of user activity involved
in using such methods. In general, there are twjpmusaser activities: exploratory design,
where users implement such methods to create anuelel, and modification, where users use
the methods to make changes and enhancementgxising model.

Table 2 illustrates the recommended CD profile designing methods that combine
semiformal and formal notations. The profile pragthe desired level for each dimension that
integrated methods and their notations (a comlminaif semiformal and formal) should aim to
achieve after the integration. Thégh and Low indicate whether the dimension should be
increased or reduced respectively, when such methogl designed. For example, method
designers are recommended to aim at increasinggssige evaluation and reducing hidden
dependencies. Thdoderateindicates that although the dimension is desitelaertain level
(High or Low), it may be traded off to suit more gortant dimensions or the two user
activities. For instance, secondary notation is/weseful for a Modification activity since it
provides users with additional informal informatidhthus may be needed (High) to improve
the model comprehensibility, especially for form@hathematical) models. However,
secondary notation may cause exploratory desigritgcto be a bit cumbersome, because
users are obliged to provide informal informatidmoat the elements in the model in addition to
the official notation. Moreover, the two user aitiéés require a model to be less resistant to
change (low viscosity). By having secondary notatiany alterations to the model can be
difficult because the changes are also requiredtier additional information. Therefore,
secondary notation may be traded off (Modenaséead of High) for achieving low viscosity
and facilitating the two activities. Diffusenessymeeed to be traded off (Moderatestead of
Low) for achieving low premature commitment. Prematcommitment is one dimension
that designers may aim to reduce because it carobéematic for both exploratory design and

39

Razali, Snook, Poppleton, & Garratt

Table 2. Proposed CD Profile for Designing Integrated MethofiSemiformal and Formal Notations.

Dimension Desired Level

Abstraction gradient Low*

Closeness of mapping High*

Consistency High**

Diffuseness Moderate (instead of Low)*
Error-proneness Low*

Hard mental operations Low*

Hidden dependencies Low

Premature commitment Low*

Progressive evaluation

Provisionality High

Role-expressiveness High*

Secondary notation Moderate (instead of High)
Viscosity Low
Visibility/Juxtaposibility High

Note: High means to increase; Low means to reduce; Maeeuggests a possible
trade-off among dimensions;

*Semiformal notations support formal notations thiave the desired level (otherwise,
the level will be opposite);

**Eormal notations support semiformal notationsatdieve the desired level (otherwise,
the level will be opposite).

modification activities. To reduce the need for users to lookaghand make a decision
before sufficient information is available durintgetactivities, the notation may need to be
verbose, or fuller. It is up to method designergl@cide the best compromise based on their
methods’ context of use and needs.

There are dimensions that specifically affect dipalar notation more than the other. By
integrating the notation with the other notatioh,is believed that its usability can be
improved. A single asterisk in Table 2 indicatedimension that affects formal notations,
which semiformal notations help to reduce the ¢ffén the other hand, two asterisks denote
a dimension that semiformal notations lack, whiomTal notations help to overcome. For
example, it is generally known that formal notaiosuch as B syntax involve high, hard
mental operations, which causes comprehensiorcdlfits. The use of intuitive graphical
symbols in semiformal notations with formal notagsooften reduces the effect. Similarly,
semiformal notations in general lack mechanismsaf@ystematic progressive evaluation,
which formal notations can normally offer. Withauch interplay between the two types of
notations, the integration is not worth the effétter all, the motivation of such integrated
methods is to allow one notation’s limitations te bompensated by the strengths of the
other. The following paragraphs elaborate how botitations cooperate to achieve the
desired level for dimensions other than those desdrabove.

Abstraction gradientFormal notations impose abstractions, since useesl to define and
group elements into logical entities (High). Moregvto reduce viscosity, users may need to

40

Usability Evaluation of a UML-Based Formal Method

introduce abstractions so that any changes requicedd be easier. Integrating the graphical
symbols of semiformal notations with formal notasomay alleviate the effect, since the
grouping of elements becomes more apparent (Low).

Closeness of mapping@he mapping of a problem domain is not quite gtréiorward using
formal notations, due to the notations’ unfamilisgmbols and underlying rules of
interpretation (Low). The graphical symbols in skmmal notations may however facilitate
the mapping, as they generally resemble objedtseimeal world (High).

Consistency:The formality in formal notations enforces a cetency that semiformal
notations solely could not assure (Low). Semiformathtions together with formal notations
could enable a consistent graphical formal modektaleveloped (High).

DiffusenessThe textual aspect of formal notations that mikir to natural language may
cause a description to be fuller. In contrast, dhegphical symbols in semiformal notations
could normally carry meanings in simpler forms. Tdwnbination of textual and graphical
symbols may enable the description to be shorfpaecise (Low or Moderate).

Error-pronenessThe unfamiliar mathematical symbols in formal tiotas frequently induce
mistakes (High). The accessibility of graphical sgis in semiformal notations may reduce
the tendency of making errors (Low).

Premature commitmentormal notations normally require users to lookahin order to
obtain the right abstractions (High). Incorporatitige graphical symbols of semiformal
notations into formal notations may reduce theatffsince they permit the visualization of
possible interacting entities (Low).

Role-expressivenes§he roles of mathematical symbols in formal notagi are not so
obvious to many users due to their complex intégpi@n rules (Low). On the other hand, the
graphical symbols in semiformal notations are nyaintuitive. By combining the graphical
symbols together with the mathematical symbolsysusgy be helped to grasp the roles of
the latter (High).

The remaining dimensions without a single or dowddterisk in Table 2 involve factors
other than the notations used. The dimensions aeispnality, hidden dependencies,
secondary notation, viscosity and visibility/juxteibility. Based on the findings of the
survey, it is believed that the environment in whike notations reside plays a major role in
achieving the desired levels for these dimensi®hgs environment includes the structure of
the model and the tools that support the notatidohis claim is worth investigating in future.

The tentative theories and the proposed CD profilsy not be conclusive, and they
should be validated and refined further in futureestigations. However, they can act as the
first step in understanding the nature of integtateethods such as UML-B and provide a
meaningful guide to better design.

Validity

Threats to validity are influences that may linhi¢ &ability to draw conclusions from the data.
The following paragraphs discuss some threatsisftirvey.

Selection of Respondents. The respondents were students in the universityrevibe
research was conducted. Therefore, their answeghtniiave been biased (positively or

41

Razali, Snook, Poppleton, & Garratt

negatively). On the other hand, the respondents veemsidered the most appropriate
candidates for this study because they have bagretr on B and UML-B. This knowledge is

necessary for using UML-B. In fact, the particigariiso had some experience in using
UML-B and thus were able to contribute more fulty the survey. Moreover, they were

independent users, who had no personal interest tvé technologies involved or direct

contact with the research. To reduce the threatstijects were advised to give opinions and
comments as sincerely as possible.

Students as Respondents. The respondents of this survey were students. Tireyhave not
represented software developers, since they aseelgserienced. However, the respondents
were in the final semester of their master's progrand had a reasonable amount of
experience and knowledge of software developmerdlf ldf the students had some
professional working experience. Thus they wera seevalid respondents for the survey as
new users with developer’s experience.

Sample Size and Response Rate. The survey questionnaire was distributed to alirb&ter’s
students of software engineering at the UniversitySouthampton who registered for the
Critical Systems course in spring 2006. Thirteerdshts responded to the survey. Due to a
technical problem, only 10 responses were condidiereanalysis. Although the number was
quite small, a response rate of 70% was considematopriate for an initial attempt.
Moreover, as a qualitative study, the quality ¢f thata is the focus, rather than strictly the
quantity. Brief identity screening was done on fier students who were not included. No
particular pattern was identified that could hawéeptially biased the results.

Non-committal Responses. Using an uneven number of levels for the ordiralles leaves
open the possibility of noncommittal responseshlie medians representing “neither —nor”
or “not sure.” Although such incidents could bersðe data, they did not happen often
and no pattern was detected in either the questiohg respondents.

Toy Problem. Due to time and resource constraints, the modédisiggiven to the respondents

was not large and may have not represented re@lesef systems. However, the task was
believed to be sufficient for the respondents toeelence modeling using UML-B. In fact, the

task required the respondents to explore mostedfuthctionality provided by the method.

Analysis Process. The grounded theory approach encourages the gaghefifurther data
after analyzing the first gathered data. In faataccollection and analysis should be repeated
several times so that more incidents are captunedvalidated until the theory saturates
(Strauss & Corbin, 1998). Due to time and resoum@sstraints, the data collection and
analysis for the survey were conducted only onod,the findings presented here reflect one
set of data. However, the survey will be repeatettié future.

Nature of Study. Surveys and qualitative measures by their natuee ratrospective.
Therefore, there was a risk that the respondeptsted based on what they thought they did
rather than what they actually did. Advising thespendents to complete the survey
questionnaire as soon as they completed the magdtsk could have reduced this threat,
because the respondents would have had a clearaompef what they found during the
task. The respondents submitted the questionnagrethier with their completed models at
the end of the course.

42

Usability Evaluation of a UML-Based Formal Method

Heter ogeneity of Respondents. The respondents might have different abilities @xgkriences.
Thus, there was a risk that the results might teeen affected by individual differences. As a
qualitative study, the variation however could jpdewicher data for the analysis.

Familiarity of Respondents. The respondents were taught formally on B for al$btburs
and on UML-B for 1 hour. They were then requirec¢¢onplete a modeling task using UML-
B within a month period. The results may have bdiffierent if the respondents were given
more time and training. The aim of the survey wasapture the experience of using UML-B
from new users’ perspectives. Therefore, the alemtéime frame and training were seen as
adequate and realistic for the purpose of thisamese The results may also have been
influenced by the respondents’ knowledge of UMLaated from their previous working
experience and studies, which varied considerably.

CONCLUSION

This paper has presented a survey conducted on thodhehat integrates the use of
semiformal and formal notations, namely UML-B. Tvey assessed the usability of the
notation used in the method and its modeling enwirent by using the CD framework with
several usability criteria suggested by the 1SOe thata analysis was conducted using the
grounded theory approach. The findings indicated the dual characteristics of the method
bring to users several implications, both positwel negative. Combining semiformal and
formal notations allows the potential of individuabtation to be strengthened, while each
notation’s limitations can be compensated by tlentHowever, the integration, in essence,
brings to the designers the loads of two individnatations, which are actually quite
different in many ways. Users therefore need stsupport from the environment to lessen
the burden that lies beneath the integration effidre support involves not only the tools that
aid the modeling process but also resources fonitgathe method. Based on the findings, we
proposed a usability profile based on CD for desigimtegrated methods such as UML-B.

Some of the findings of the investigation are nang fed into the next generation of
UML-B developmerft The findings of the survey can be improved furttye extending the
survey to a large number of users. This will hekhance the current understanding of the
method and discovering other factors that migheciffts use. The tentative theories and the
proposed CD profile of integrated methods (combisediformal and formal notations)
discussed in this paper can also be validated efiteed further by applying them to examine
other similar methods. This allows the derivatidmre concrete theories and guidelines
that can be used to design and improve the usabfléuch methods in future.

ENDNOTES

1. Electronics Computer Science (ECS), COMP301ticaliSystems,
http://www.ecs.soton.ac.uk/syllabus/COMP3011.html

2. EU Framework VI project: Rigorous Open Developm&nvironment for Complex Systems (RODIN)
http://rodin.cs.ncl.ac.uk/

43

Razali, Snook, Poppleton, & Garratt

REFERENCES

Abrial, J. R. (1996)The B-Method: Assigning programs to meaniri@gmmbridge, UK: Cambridge University Press.

Alexander, P. (1996). Best of both worlds (formadl semi-formal software engineerintftEE Potentials 14,
29-32.

Bauer, M., & Johnson-Laird, P. (1993). How diagraras improve reasoningsychological Sciencd, 372-378.

B-Core Limited [B-Core]. (2002). TheB-Toolkit Retrieved April 18, 2008, from http://www.b-
core.com/ONLINEDOC/BToolkit.html

Blackwell, A. F., & Green, T. R. G. (2000). A cotwé dimensions questionnaire optimised for uskrd\. F.
Blackwell & E. Bilotta (Eds.),Proceedings of the 2Workshop of the Psychology of Programming
Interest GrougPPIG '00; pp. 137-154). Cosenza, Italy: Memoria.

Blackwell, A., & Green. T. (2003). Notational syste: The cognitive dimensions of notations framewadnk
J. M. Carroll (Ed.)HCI models, theories and frameworks: Toward a rdidtiplinary sciencdpp. 103—
134). San Francisco: Morgan Kaufmann.

Bonissone, P. (1982). A fuzzy sets based linguiasfiproach: Theory and application. In M. Gupta &
E. Sanchez (Eds.fppproximate reasoning in decision analy§®. 329-339). New York: North-Holland
Publishing Company.

Carew, D., Exton, C., & Buckley, J. (2005). An engal investigation of the comprehensibility of teégements
specifications. In G. Kadoda (EdBroceedings of theInternational Symposium on Empirical Software
Engineering(ISESE '05; pp. 256—266). Noosa Heads, Austr#iEE Computer Society.

Cassell, C., & Symon, G. (1999ualitative methods in organizational researthousand Oaks, CA, USA: Sage.

Chandler, P., & Sweller, J. (1992). The split-atitam effect as a factor in the design of instructiBritish
Journal of Educational Psycholog§?2, 233—-246.

Chen, P. (1976). The entity-relationship model: @adva unified view of datsACM Transactions on Database
Systemgl, 9-37.

Clarke, S. (2001). Evaluating a new programminggleme. In G. Kadoda (Ed.proceedings of the 13
Workshop of the Psychology of Programming Inte@stup (PPIG '01; pp. 275-289). Bournemouth, UK:
Bournemouth University.

ClearSy Systems Engineering [ClearSy]. (n.dtglier B, the industrial tool to efficiently depléhe B Method.
Retrieved April 18, 2008, fromttp://www.atelierb.eu/index_en.html

Cox, K. (2000). Cognitive dimensions of use casesdback from a student questionnaire. In A. Fcigiel|
& E. Bilotta (Eds.),Proceedings of the f2Workshop of the Psychology of Programming InteGstup
(PPIG '00; pp. 99-122). Cosenza, Italy: Memoria.

Denzin, N., & Lincoln, Y. (1994)Handbook of qualitative researciihousand Oaks, CA, USA: Sage.

Glaser, B. (1992)Basics of grounded theory analysis: Emergence oxting. Mill Valley, CA, USA:
Sociology Press.

Glaser, B. G., & Strauss, A. L. (1967Mhe discovery of grounded theory: Strategies falitptive research
London, UK: Weidenfeld and Nicolson.

Green, T. R. G. (1989). Cognitive dimensions ofations. In A. Sutcliffe & L. Macaulay (Eds.people and
computers \(pp. 443-460). Cambridge, UK: Cambridge Univergitgss.

Green, T. R. G., & Blackwell, A. F. (1998, Septembeesign for usability using cognitive dimensions
Tutorial session at thBritish Computer Society Conference on Human Coergateraction(BCS-HCI
'98). Sheffield, UK.

Green, T. R. G., & Petre, M. (1996). Usability arsé¢ of visual programming environments: A cogrativ
dimensions frameworklournal of Visual Languages and Computiigl31-174.

44

Usability Evaluation of a UML-Based Formal Method

Hinchey, M. G. (2002). Confessions of a formal roelist. In P. A. Lindsay (Ed.)Proceedings of the"7
Australian Workshop on Safety-Related Programm8@ktem¢SCS '02; pp. 17-20). Adelaide, Australia:
Australian Computer Society.

IBM Software [IBM]. (n.d.). Rational Rose Retrieved April 18, 2008, from http://www-
306.ibm.com/software/awdtools/developer/rose/inokex!

International Organization for Standardization [|[S@Q003, July).Software engineering, product quality—Part
3: Internal metricqStandard No. 9126-3). Geneva, Switzerland: 1SO.

International Organization for Standardization [IS@004, March).Software engineering, product quality—
Part 4: Quality in use metricéStandards No. 9126-4). Geneva, Switzerland: 1SO.

Kitchenham, B. A. & Pfleeger, S. L. (2002). Prifeof survey research: Part 3: Constructing aesurv
instrumentSIGSOFT Software Engineering Not2g(2), 20—-24.

Kutar, M., Britton, C., & Barker, T. (2002). A corapson of empirical study and cognitive dimensianalysis
in the evaluation of UML diagrams. In J. Kuljis, Baldwin, & R. Scoble (Eds.Proceedings of the 4
Workshop of the Psychology of Programming Inte@stup (PPIG '02; pp. 1-14). Brunel, UK: Brunel
University College.

Martin, S. (2003). The best of both worlds integrgtUML with Z for software specificationslournal of
Computing and Control Engineering4, 8—11.

Microsoft Corporation [Microsoft]. (2008). Visual #CDeveloper Center. Retrieved April 18, 2008, from
http://msdn.microsoft.com/vcsharp/

Object Management Group [OMG]. (2008ntroduction to OMG'’s unified modeling language (UM
Retrieved April 18, 2008, from http://www.omg.orgttingstarted/what_is_uml.htm

Pender, T. (2003)JJML Bible. Indianapolis, IN, USA: Wiley.

Razali, R. (2007)UML-B Survey questionnaires and respongEsectronics and Computer Science, University
of Southampton Tech. Rep., ID code 13322). RetdeveAprii 18, 2008, from
http://eprints.ecs.soton.ac.uk/13322

Razali, R., Snook, C. F., Poppleton, M. R., Garfattw., & Walters, R. J. (2007). Experimental camgon
of the comprehensibility of a UML-based formal sifieation versus a textual one. In B. Kitchenham,
P. Brereton, & M. Turner (Eds.Proceedings of the flinternational Conference on Evaluation and
Assessment in Software EngineefBASE '07; pp. 1-11). Keele, UK: British Computociety.

Snook, C., & Butler, M. (2006). UML-B: Formal motiey and design aided by UMIACM Transactions on
Software Engineering and Methodolod$(1), 92—-122.

Spivey, J. M. (1992)The Z notation: A reference manya!® ed.). Englewood Cliffs, NJ, USA: Prentice-Hall.

Strauss, A. L., & Corbin, J. (1998asics of qualitative research: Techniques and pduces for developing
grounded theory2" ed.). Thousand Oaks, CA, USA: Sage.

Sweller, J., & Chandler, P. (1994). Why some matésidifficult to learnCognition and Instructionl2, 185-233.

Triffitt, E., & Khazaei, B. (2002). A study of usgity of Z formalism based on cognitive dimensions.
J. Kuljis, L. Baldwin, & R. Scoble (Eds.Proceedings of the Y4Workshop of the Psychology of
Programming Interest Grou(PPIG '02; pp. 15-28). Brunel, UK: Brunel UniveysCollege.

Tukiainen, M. (2001). Evaluation of the cognitivéménsions questionnaire and some thoughts about the
cognitive dimensions of spreadsheet calculatiorG IiKadoda (Ed.)Proceedings of the ¥3workshop of
the Psychology of Programming Interest Gro@pPIG '01; pp. 291-301). Bournemouth, UK:
Bournemouth University.

van Lamsweerde, A. (2000). Formal specificatiomoAdmap. IrProceedings of the Conference on the Future
of Software Engineerinfpp. 147-159). New York: ACM Press.

Westbrook, L. (1994). Qualitative research methadseview of major stages, data analysis technigaed
quality controlsLibrary and Information Science Research, 261-245.

45

Razali, Snook, Poppleton, & Garratt

Authors’ Note

The authors gratefully acknowledge the COMP3011ir{g2006) students who participated
in this study.

All correspondence should be addressed to:

Rozilawati Razali or Colin Snook

Dependable Systems and Software Engineering GIDSSE)

School of Electronics and Computer Science (ECS)

University of Southampton

S017 1BJ United Kingdom

rr04r@ecs.soton.ac.uk or rozila_razali@yahoo.conudfs@ecs.soton.ac.uk

Human Technology: An Interdisciplinary Journal onrflans inCT Environments
ISSN1795-6889
www.humantechnology.jyu.fi

46

HuMAN

TECHNDLOGY
An Interdisciplinary Journal on Humans in ICT Emviments ISSN: 1795-6889
www.humantechnology.jyu.fi Volume 4 (1), May 2008, 47-61

SPATIAL ABILITY AND LEARNING TO PROGRAM

Sue Jones Gary Burnett
School of Computer Science School of Computer Science
University of Nottingham University of Nottingham
Nottingham, UK Nottingham, UK

Abstract: Results in introductory computer programming mosdulare often
disappointing, and various individual differenceavh been found to be relevant. This
paper reviews work in this area, with particularfeeence to the effect of a student’s
spatial ability. Data is presented on a cohort & dtudents enrolled on an MSc in
Information Technology course at a university ie thK. A measure was taken of their
mental rotation ability, and a questionnaire adrsiered that focused on their previous
academic experience, and expectations relating be tintroductory computer
programming module they were studying. The resshiswed a positive correlation
between mental rotation ability and success inntleglule = 0.48). Other factors, such
as confidence level, expected success, and prograjrerperience, were also found to
be important. These results are discussed in @fatid the accessibility of programming
to learners with low spatial ability

Keywords: spatial skills, programming ability, individual tifences.

INTRODUCTION

Results in introductory computer programming mosudee often disappointing (Mancy &
Reid, 2004), with reports of up to 30% of studeiaiting to complete them (Guzdial &
Soloway, 2002). Students who perform well in otBabjects may not achieve equivalent
success in programming tasks (Byrne & Lyons, 2@ddc¢cher et al., 2005), lose confidence,
and give up computer science courses. Irrespecfiexperience, some programmers appear
to be more skilled than others. Curtis (1981) foandinge of performance scores of 23 to 1
in a debugging exercise, and Shneiderman (198@ytexp differences in performance of 100
to 1 among programmers of similar programming eepee.

Previous research has focused on why some studederperform in programming.
Various individual differences have been implicatedorogramming success, with debate
over the relative importance of each of these factbhis paper will focus on spatial ability,

© 2008 Sue Jones & Gary Burnetahd the Agora Center, University of Jyvaskyla
URN:NBNfi:jyu-200804151352

47

Jones & Burnett

but also considers how some of the other individliférences are related in their influence
on learning to program. The next two sections feitlus on a literature review of the work in
this area. Then follows an analysis of data catléch a study carried out over the academic
year 2005/06 at the University of Nottingham. Fipahe results will be discussed in relation
to programming achievement.

SPATIAL ABILITY AND MENTAL MODELS

One individual difference considered to have soelevance to programming aptitude is
spatial ability. This is a heterogeneous clusterskifls considered to be a dimension of
intelligence distinct from verbal, mathematicaldamasoning skills. Halpern (2000) defines
spatial ability as a cognitive characteristic thates a measure of the ability to conceptualize
the spatial relations between objects. As this israad cognitive concept, various
categorizations have been suggested to help omaniz understanding of this area, one of
these being mental rotation. Mental rotation is ¢hpacity to accurately picture the rotation
of two- or three-dimensional objects in the mindd aome researchers believe that it is a
good measure of a general spatial reasoning al§isypern, 2000). The Vandenberg and
Kuse (1978) Mental Rotation Test is the standastfte this skill.

Spatial ability has been shown to be importantirigation in the real world, and in an
abstract information space such as hypertext (J&ri&srnett, 2007b). It is also considered by
some to be an important determinant in program cehgmsion, due in part to source code
being likened to a multidimensional virtual spalsattrequires similar skills for navigation as
those utilized in a real environment (Cox, Fisl&Q’'Brien, 2005). However, there are few
studies looking at relations between spatial gbditd individual programming performance.
Mayer, Dyck, and Vilberg (1986) showed that sucéedsarning Basic was related to spatial
ability (r = 0.31,p < 0.05). Fincher et al. (2005) showed an overakls positive correlation
between performance in a spatial visualization et marks achieved in the introductory
programming courses at 11 institutions= 0.17,p = 0.047). Both of these studies used
versions of the Paper Folding Test, designed tesureaspatial visualization, one of the various
types of task included in the broad cognitive caitggf spatial ability (Halpern, 2000). The
Paper Folding Test requires subjects to imaginedbelt after folding a paper object, but this
process does not require mental rotation (VeldzeGi& Tremaine, 2005).

Webb (1984), studying children between the aged&lofand 14, found a relationship
between spatial ability and various programming gonents of a short course in Logo
programming, with an average correlation of 0.63<(.001). The only pretest measure to
give a stronger correlation was the score on aenadlics reasoning test. Webb utilized three
measures of spatial ability, one of which was tapd? Folding Test, but the others requiring
mental rotation of figures. Fisher, Cox, and Zha00g) used the Vandenberg and Kuse
(1978) Mental Rotation Test to study correlationghva software maintenance task for a
short Java program. While they found a high coti@tefor the menr(= 0.63,p = .012), this
was not reflected in the women'’s results.

A related factor in the role of spatial ability ppogramming success is the development
of mental models. Mental models are variously dafinbut in the context of this paper are
considered as predictive representations or altstngcof a program. In recent work, Jones

48

Spatial Ability and Learning to Program

and Burnett (2007a) demonstrated differences inndgnagation of source code in a code
comprehension exercise, with individuals with higlspatial ability jumping between
functions more frequently and making more inter€lasnps (moving between files). The
authors speculate that this style of navigation ralgw a better mental model of the
program to be formed, thus aiding comprehensiomt®enodels of spatial information are
called cognitive maps (Downs & Stea, 1973), andppeduild these while familiarizing
themselves with an environment. They become distaied if this internal map does not
correspond to the physical representation of thér@mment (Westerman & Cribbin, 1999).
In relation to cognitive maps of program code, Eisket al. (2006, p. 1) use the term
“codespace,” and define it as “a programmer’s mantadel of source code with respect to
the perceived spatial attributes of entities iderdiwithin the code.” Hence the mental model
is an abstraction of the program formed from pigdingether various kinds of information
extracted while navigating the source code. WiedekpLaBelle, and Kain (2004) stress the
importance of a good mental model in program undading.

It has been argued that because source code &, limental rotation may not be as
important as other types of spatial ability for igation in programming environments
(Fisher et al., 2006). However, the studies utitizmental rotation as a measure of spatial
ability appear to show stronger relations with nse@s of programming aptitude than those
using the Paper Folding Test as a measure of spaimlization. Kimura (1999) makes the
link between success in mental rotation and tha@apto build a mental model, or cognitive
map, of an environment. She suggests that goodameotation capacity enables us to
recognize a scene from different angles, and thusttace a route in reverse when returning
to a destination, or piece together other bitswtrmation to devise a new route back. There
is an increasing recognition of the importance @ntal models to learning programming
(Wiedenbeck et al., 2004), and perhaps a good mextédion capacity is allowing formation
of more accurate mental models of programs.

One study looked at the map-drawing styles of estt&l to determine if this was a
predictor of success in the introductory prograngriourses they were studying (Tolhurst et
al., 2006). Students were required to sketch mépsgiven real world environment, and the
maps were then grouped according to the landmauite y survey model for the acquisition of
spatial knowledge (Werner et al., 1997). When camnbso the marks achieved in the course,
they found a trend for the high achievers to dravwey maps, while those who sketched
route maps performed less well but better thaneheko produced landmark maps. The
authors speculate that programming ability is eslato an ability to navigate through the
information space using the same skills as in ga world. Good spatial ability has been
related to the development of survey knowledgejvadgent to a well-formed cognitive map
of an environment (Cutmore, Hine, Maberly, LangfddHawgood, 2000).

RELATION OF SPATIAL ABILITY TO OTHER INDIVIDUAL DIF FERENCES

This section reviews the literature on the impattvarious individual differences on
programming performance. The main focus will beittteractions with spatial ability.

49

Jones & Burnett

Gender

Girls are underrepresented in university computéersge (CS) courses (Byrne & Lyons,
2001). Suggested reasons for this include sexaiigrieg and males’ greater exposure to
computers and computer games (Mumtaz, 2001; Schhena& Morahan-Martin, 2001).
Boys appear to have a more confident, positivéuati toward computers (Durndell & Haag,
2002). Another reason is that spatial skills areciad to most video and computer games as
well as many computer applications, and repeatadtioe may actually enhance spatial skills
(Subrahmanyam, Greenfield, Kraut, & Gross, 200her€ is a wealth of evidence of gender
differences in spatial ability, with females appegrto underperform in certain measures,
such as mental rotation (Voyer, Nolan, & Voyer, @00

It is difficult to study gender differences in gramming style and ability due to the fact
that many females, prior to university admissicavéalready chosen not to take CS courses
for the reasons mentioned above (Scragg & SmitA8LByrne and Lyons (2001) found no
significant difference in performance between mafel female students in a first-year
programming module, possibly because the module pagisof a Bachelor of Arts honors
degree program with a preponderance of female stad61%). However, other studies also
have not found the expected gender difference {(B&gReilly, 2005; Rountree, Rountree,
& Robins 2002), perhaps because group-based diffesesuch as gender have less effect on
an individual's performance than individual diffapes such as spatial ability or cognitive
style (Beckwith & Burnett, 2004). Fisher et al. (B) hypothesize that females prefer a more
low-risk, bottom-up approach to program developnaatt comprehension, and males a more
high-risk, abstract, top-down approach. Bradley 88)9 demonstrated that top-down
processing was positively related to Logo prograngrsuccess.

Self Efficacy/Comfort

Self-efficacy relates to how we estimate our cdjghib perform well in a certain context
(Bandura, 1986). A person with high self-efficagymore likely to undertake challenging tasks,
expend more effort to achieve them, and demonsfratsistence when difficulties arise.
Rountree et al. (2002) surveyed students earlyfinstayear computer science course and found
that students’ expectation of how they were gomgérform was the biggest indicator of
success. Surprisingly, students predicted the mésovery early in the course, and this may
contribute to their level of motivation and persigte required to achieve. Closely related to
self-efficacy is comfort level, based on our petwapof the degree of difficulty of a task,
which affects our anxiety levels. Studies have &buhat comfort level, derived from
guestionnaires, was strongly predictive of programgnperformance (Bergin & Reilly, 2005;
Wilson & Shrock, 2001). Students with low compuggperience are likely to be less confident
and more anxious when starting a programming cd@éwgae & Lyons, 2001). It has also been
suggested that males tend to show greater satbeffiand lower computer anxiety than
females (Beckwith & Burnett, 2004; Durndell & Ha#)02). Having a good mental model
increases self-efficacy by enabling program comgmeton (Wiedenbeck et al., 2004).

50

Spatial Ability and Learning to Program

Previous Academic Exposure

Previous programming experience seems to relagutgess in introductory programming
courses (Rountree et al., 2002; Wilson & Shrock120with Wiedenbeck et al. (2004) linking
this with self-efficacy. Boys are more likely thamirls to have previous programming
experience (Bruckman, Jensen, & DeBonte, 2002).dGasformance in mathematics is also
relevant, and is often an entry requirement for maier science, with the belief that the skills
required for solving mathematics problems are sintib those needed for programming tasks
(Byrne & Lyons, 2001). Various studies have foualhtions between mathematics results and
success in learning programming (Webb, 1984; W&8B6; Wilson & Shrock, 2001). Byrnes
and Lyons (2001) found a relationship between tesul secondary school mathematics
examinations and results from a first-year programgntourse = 0.353,p < 0.01). The
correlation with science results was even stror(ger 0.572,p < 0.01). There was no
correlation between the English or foreign langueggilts and programming achievement.
Others have found a similar relationship with scee(Bergin & Reilly, 2005; Werth, 1986).

The ability to succeed in mathematics has beemetk® spatial ability (Pease & Pease,
2001), and one study showed that males outperfofieradles in both the Vandenberg and
Kuse (1978) test for spatial ability and a mathecsaaptitude test, with mental rotation
predicting mathematics aptitude for the female damfCasey, Nuttall, Pezaris, & Benbow,
1995). When mental rotation ability was statisticaldjusted for, the gender difference in
mathematics achievement was eliminated in mosteftoups studied.

Cognitive Style

Cognitive abilities are specific to a particulamtiin of content or function, such as verbal,
numerical, or spatial ability. A measure can beteaf an individual’s spatial ability as separate
from their verbal reasoning score—one may be Highpther low. In contrast, cognitive styles
cut across these domains, and have more to do okganization and control of cognitive
processes. Consequently, there appears to be emactibn between cognitive abilities and
styles, with field-dependency being the style massociated with spatial ability (Chen,
Czerwinski, & Macredie, 2000). McKenna (1984) presearguments debating whether field
dependence, often measured by the Embedded Figests(EFT), is a cognitive style or
cognitive ability. The EFT requires participantddoate a given simple shape embedded within
a larger complex one. Because the EFT is timd@stbeen argued that it is more a measure of
cognitive ability than style, assessing differenodsvel of, rather than manner of, performance.
McKenna reviews work showing there is a strongtimiabetween the EFT and spatial ability.

Various studies have demonstrated some impactetd iependency on programming
achievement. Bishop-Clark (1995) carried out agewvof some of the work in this area. She
concluded that the results are not consistent €tairons ranging from .08 to .80), but that
field independence appeared to be positively réléaeprogramming success. Mancy and
Reid (2004) compared field dependency and marksiiimus assessments on an introductory
programming course. Field dependency was measwiag the EFT, and the results showed
positive correlations with marks on the differessessments, with a good correlation=(
0.40) with the final examination.

51

Jones & Burnett

In summary, individual differences with varying degs of impact on programming
performance have been discussed in relation tea$duility (see Figure 1). However, there
are only a small number of adult studies lookingregntal rotation in this context. The
following study aimed to gather extra data to sapmnt the research knowledge regarding
any effect of spatial ability, and other interagtfiactors, on programming performance.

Group variables

E e.g., gender ﬂ

Inherent abilities Subjective beliefs
e.g., spatial e.g., self-efficacy

Academic background
e.g., programming experience

Programming
Performance

Figure 1. Potential interactions between individual differem@nd programming performance.

THE STUDY

During the academic year 2005/06, a test of mentation ability and a questionnaire were
administered to a cohort of university studentss®ection will focus on the results of our
analyses to ascertain any relations between thabkes studied.

Data Collection

Participants consisted of 49 volunteers (average2égyears) from students enrolled in a one-
year master’s conversion course (meaning studdénhtsotl have computer science as their first
degree) at the University of Nottingham, UK. Anrattuctory programming module (ICP) was
compulsory for all students in the first semestée course consisted of two streams. Students
in the MSc in Information Technology (ITh = 28) had their first degree in a science or
engineering subject and would continue with furtb@mpulsory programming modules in the
second semester. Those studying for the MSc ilMaweagement of Information Technology
(MIT, n=21) had a first degree in a wide range of subj@ocluding arts and humanities), and
were not required to take programming modules dlffterfirst semester. The cohort consisted
of 39 males and 10 females, with only 2 femalekénlT stream.

Data on the participants’ academic history anatgiged programming experience were
collected by questionnaire. At the end of Semekti@ecember 2005), and before taking the
introductory programming examination, the studewssre asked how they rated their

52

Spatial Ability and Learning to Program

confidence levels in their last (as yet unmarkedgmmming coursework. They also rated
the ICP in comparison to other nonprogramming mesldn the parameters of difficulty,
workload, and expected success, similar to Rourred (2002). In addition, the final marks
in the following modules were collated:

= Semester 1: compulsory modules

Introduction to Computer Programming (ICP). Theeasment consisted of
50% coursework (2 programming assignments) and B@&mination. The
language taught was Java.

Introduction to Human Factors (IHF), a nonprogramgnimodule with
assessment based on 25% coursework and 75% fizuadieation.

= Semester 2

Object Oriented Systems (OOS), with two programmiagsignments
contributing 50% to the final mark, and a final eMaation. This module was
compulsory for the master’s in IT. The languageytdwas C++.
Management of IT (MAN), a nonprogramming modulen@b% coursework
and 75% examination. This module was compulsory tharse taking the
master’s in MIT.

The programming modules involved considerable pralcprogramming assignments, while
the nonprogramming subjects focused on issue-l@isedssion elements.

Individual differences in the participants’ spaséills were measured using a version of
the 3D Mental Rotation Test found at Psychlab Ogltifthe test is a modified version of the
Vandenberg and Kuse (1978) Mental Rotation (MRY), t&sd was customized for this study
by Professor Hay of the University of WisconsinWéukee.

In the version used, the participants were askedetermine if one shape could be
mentally rotated to match the orientation of a sdc(see Figure 2 for an example). The
students were presented with 30 examples to be letedpas quickly as possible, with equal
emphasis being given to accuracy and speed. Thisawaon-line test. Once an answer was
submitted, there was no recourse for correctinguril no feedback was provided on the
correctness of the answers. At the completion eftéist, a file was generated with the number
of correct answers, and the total time taken fonmetion of the 30 questions (mean time =
215s, range 59 to 452 s). A score for spatial tgbiias derived from the number of correct
answers divided by the total time (in seconds)amglete the exercise. The final number was
multiplied by 100 to provide a more usable scale.

D

Figure 2. Example of the modified Vandenberg and Kuse (197&)tal Rotation Test, customized by
Professor Hay.

53

Jones & Burnett

Results

Module marks and questionnaire responses werededofStatistical analyses were run to
determine any relations between spatial ability atinér individual differences.

Module Marks

There was a strong correlation between mentaliootéfR) scores and the participants’ grades
in the programming modules, but this was not rédlgéén the nonprogramming modules (see
Table 1). There was a stronger correlation for lthestudents (those who carried on with
programming) in the ICP, and a high correlationMeein MR scores and results in the more
advanced (OOS) programming module for these stad@atcan be seen in Figure 3, the spread
of results in the ICP module was greater for thetf@am (30% to 959 = 66.59,SD= 15.43)
than the MIT stream (42% to 78%;= 64.90,SD= 9.93), although the difference in means was
not statistically significantp(= 0.66). Similarly, the MR test scores showed eatgr range
among the IT students (3.09 to 30.K6;= 16.47,SD = 7.22) than the MIT students (4.18 to
22.30;M = 11.73,SD= 4.84), with the IT students scoring significaritlgher < 0.05).

When the results obtained in each of the modukse wompared, there was found to be a
strong positive correlation between the two programg modules, ICP and OOS, and between
the two nonprogramming modules, IHF and MAN. Therxe no correlations between the
programming and nonprogramming modules (see Tgble 2

Table 1. Correlation Analysis for Mental Rotation (MR) Scer@nd Module Marks.

MR test score

Programming modules Nonprogramming modules
ICP ICP ICP 00Ss IHF MAN
(Al (MIT) (Im) (IT) (D] (MIT)
MR r 0.48 0.37 0.57 0.68 0.21 0.10
Score | p <0.01 <0.05 <0.01 <0.01 0.16 0.65
n 49 21 28 27 46 21
100
90
80 o0 -
T T T
S . %}0 Sn " o0
% 5] M ° or
Ewl o - o =l
O 0
= 30 <o
20
10
0 ‘ ‘ ‘ ‘ ‘ ‘
0.00 500 1000 1500 20.00 2500 30.00 35.00

Figure 3. Scatterplot of ICP results as a function of MR tesires for the two master’s streams.

54

Spatial Ability and Learning to Program

Table 2. Pearson Correlation Analysis for Module Marks.

Programming modules Nonprogramming modules
ICP 00s IHF MAN
ICP
00Ss 0.73 (<0.001)
IHF 0.28 (0.07) 0.26 (0.26)
MAN 0.10 (0.76) N/A 0.69 (<0.005)

Note: The significance values are in parentheses.
Questionnaire Results

Many of the multiple-choice questions had a chate or 5 answer categories, and with
only 44 students completing the questionnaire, saiée categories had a very small
number of respondents. To enable statistical aisalifsese categories were collapsed into 2
or 3 items. This allowetltests to be carried out to determine if there vaifferences in the
means for MR test scores and ICP results for thleadomous measures, and Kruskal-Wallis
tests on the trifold measures. The dichotomousaibsées were also subjected to chi-square
analysis to determine if there were any differennake answers for the two degree streams,
and for confidence levels.

Those with greater perceived programming experidma@ higher spatial scores, and
performed significantly better in the ICP resuked Table 3). Similarly, those with higher
confidence levels for the ICP coursework performexy well in the ICP module, and there was
a trend for them to have higher MR scores (althqugtfailing to reach statistical significance).

When students were asked to compare ICP with etbeprogramming modules, it was
found that individuals rating ICP as more diffictdhded to have lower spatial scores. Those
rating success with ICP (relative to nonprogrammimgdules) as high were achieving better
end results (see Table 4).

There was a nonsignificant trend for those in fhestream to have more programming
experience. Seventy-four percent claimed to beegsibnal/intermediate, compared to only
39% of the MIT students (see Table 5).

Table 3. T-tests for Questionnaire Results.

MR test score ICP mark

Parameter Categories Mean SD p Mean SD p
First degree Science 15.71 7.63 0.28 68.00 15.55 0.69

Non-science 13.29 | 6.00 66.29 9.76
Gender Male 14.67 | 6.72 0.47 68.51 11.70 0.19

Female 12.88 5.41 62.22 15.91
Programming | Professional/intermediate | 16.65 7.41 <0.05 72.50 9.54 <0.005
experience Novice/none 12.31 5.51 60.60 14.34
Confidence High/moderate 15.95 7.15 0.09 72.59 8.23 <0.001

Little/none 12.23 | 5.85 56.47 14.83

55

Jones & Burnett

Table 4. Results of the Kruskall-Wallis Analysis of Stud@&xpectations.

MR test score ICP mark
Parameter Categories Mean X2 p Mean rank X2 p
(collapsed) rank
Workload Much less/less 33.67 4.20 0.12 26.33 2.46 0.29
The same 26.09 27.09
More/much more 20.07 20.43
Difficulty Much less/less 38.60 10.50 <0.01 35.50 5.97 0.05
The same 26.64 22.18
More/much more 18.79 20.30
Success Much less/less 14.60 5.01 0.08 14.00 6.10 <0.05
The same 24.11 23.67
More/much more 25.63 26.50

Table 5. Results of Chi-square on Programming ExperienceCandfidence.

Masters Confidence
Parameter Categories IT MIT X2 p High/ Little/ X2 p
(collapsed) moderate | none
Programming | Prof/intermediate 21 8 3.25 | 0.07 24 2 13.17 | <0.001
experience Novice/none 7 13 8 15
Confidence High/moderate 22 12 1.36 | 0.24
Little/none 6 9

The impact of programming experience on confiddeeels was obvious, with 92% of
the more experienced students rating their confieddavels as high or moderate, and only
35% of the less experienced. Although failing t@ate statistical significance, a larger
number of the IT students (79%) rated their comfadelevels for the ICP coursework as
high/moderate, compared to only 56% of the MIT stuid.

DISCUSSION

It is known that students who perform well in otlsrbjects may produce disappointing
results in programming. In the current study, thesre correlations between the results
gained in programming modules and spatial scoriéb, v correlations being found with the
nonprogramming modules. These results suggesspliaital ability, as measured by a mental
rotation test, is related to success in the prograng subjects, while not appearing to be of
relevance in the nonprogramming modules investijate

When the relationship between spatial ability a@P Iresults were viewed for the
separate master’'s streams, the correlation wagifoube higher for the IT cohort. Some of
this variation between the two groups may be adsalfor by the larger range of mental
rotation scores and ICP results in the IT streaddittonally, this was a self-selected group
of students who have chosen to continue with prograg. Although not reaching
significance, there was a trend for them to hawaigr programming experience, so this

56

Spatial Ability and Learning to Program

variable would have had less of an impact tharnenwider master’'s cohort. Hassell (1982)
showed a similar result for second- and final-ysardents. She looked at correlations
between the EFT and measures of programming ahalitgt found a correlatiom € 0.5) for
seniors, but a nonsignificant correlation for teemd-year students. In the current study,
there was a very strong correlation between thelteedor the IT students in the two
programming modules, even though the courses vaeght by two different lecturers. There
was also a strong correlation between results éenttto nonprogramming modules for the
MIT students. However, there was no relationshifwben the programming module (ICP)
and the nonprogramming module (IHF) for the grospaavhole, nor between ICP and the
other nonprogramming module (MAN) for the MIT statke This demonstrates that those
who perform well in other subjects may underperfammprogramming.

As expected, these results suggest that otherididivdifferences may have an impact on
the results. Those who considered themselves tanbee experienced in programming
performed better in the introductory programmingdoie. With this being a master’'s course,
the students were generally older than undergradeatdents, and may have had more
opportunity for exposure to programming, eitheihinita first-degree course, or from a previous
work environment. The more experienced programrterded to have higher spatial ability
and, as expected, admitted to having greater camt®l about the coursework. This confidence
translated into better performance in the whole f@Rlule. This is confirmed by the fact that
those who expected themselves to be more succéssfoP than nonprogramming modules
generally performed better in the final mark. Roemtet al. (2002) found that expecting an A
grade was the strongest indicator of success, aifiected difficulty and workload making
smaller but relevant contributions, trends reflddte the current study. Thus it would appear
that self-efficacy is an important contributor theevement. The data also show that those with
low spatial ability were experiencing greater diflty with ICP compared to the non-
programming modules. There was no significant imhpae science background on the results,
even though the majority of science graduates wrrelled in the IT stream. There were also
no significant differences between males and fesnalenental rotation test score or ICP mark.
This may have occurred because the sample sizthdofemales was too low (20% of the
group), a situation reflected in many computerrstg@ecourses.

One other variable that needs to be consideredeisptogramming activity itself. As
shown in this study, the more experienced studbats a higher spatial ability, but it is
difficult to be sure if this is cause or effectidtknown that high spatial ability predisposes
individuals to a choice of spatial subjects (such emgineering) and careers (such as
architecture; Quaiser-Pohl & Lehmann, 2002; Sni#92). Consequently, it is possible that
students with high spatial ability are choosinggramming as an option because this skill
allows them to excel. Alternatively, the very adtppacticing programming may cause an
increase in spatial ability. The task of learningoptogram has been shown to cause students
to become more field independent (Cathcart, 19890d,improve their mental rotation ability
(Miller, Kelly, & Kelly, 1998). However, these relssi were found when teaching Logo to
schoolchildren; Logo programming requires childteinmagine orientating with the turtle, a
form of mental rotation (Miller et al., 1998). Itowld be interesting to give university
students a pre- and posttest to see if an intengiggramming course resulted in any
improvement in mental rotation ability. Additionallthere is a wealth of evidence that
training in the use of spatial tasks can improveres in spatial tests, and this could be an

57

Jones & Burnett

important exercise for students wishing to impréwveir inherent programming ability. The
authors believe that this training should be inooaped into the school curriculum, perhaps
as early as 6 years of age (Jones & Burnett, 2006).

CONCLUSION

From the results of this analysis, there is evidahat spatial ability is important when learning
to program. There are also interactions with ofaetors such as confidence levels, expected
success, and programming experience. When the ingfathese factors was reduced by
focusing on a more advanced group of studentsiabpdility was observed to have a stronger
effect. Future studies need to be carried out targer cohort of students to allow statistical
analysis of the relative contribution of each @ thariables. It would also be beneficial to have
a larger ratio of females in the student groupn@bée a study of gender effects.

This study provides an important contribution toowtedge about why some students
struggle to achieve in introductory computer sogenourses, resulting in high attrition and
failure rates. While spatial ability has been shdwibe relevant, we do not feel that mental
rotation capacity should be used as a means okfaedining programming aptitude, but
should be considered while devising pedagogicalruentions. Thought needs to be given to
teaching methods and software visualizations tle$p Btudents with low spatial ability to
envisage abstract concepts and build better membalels (Wiedenbeck et al., 2004). The
benefits of spatial training intervention also néethe assessed.

ENDNOTE

1. Available at http://www.uwm.edu/~johnchay/

REFERENCES

Bandura, A. (1986)Social foundations of thought and acti&nglewood Cliffs, NJ, USA: Prentice Hall.

Beckwith, L., & Burnett, M. (2004). Gender: An imqant factor in end-user programming environmerhts?
Proceedings of the IEEE Symposium on Visual Langsiagd Human-Centric Computing Languages and
Environmentgpp. 107-114). Washington, DC: IEEE Computer Sgcie

Bergin, S., & Reilly, R. (2005). Programming: Fastthat influence succesSIGCSE Bulletin37(1), 411-415.

Bishop-Clark, C. (1995). Cognitive style, persotyaliand computer programmingomputers in Human
Behavior 11, 241-260.

Bradley, C. A. (1985). The relationship betweendetts’ information-processing styles and Logo
programmingJournal of Educational Computing Researth427-433.

Bruckman, A., Jensen, C., & DeBonte, A. (2002). @@nand programming achievement in a CSCL
environment. In G. Stahl (Ed.Proceedings of the Computer Supported Collaboratigarning(CSCL)
2002 Conferencépp. 119-127). Hillsdale, NJ, USA: Erlbaum.

58

Spatial Ability and Learning to Program

Byrne, P., & Lyons, G. (2001). The effect of stutatiributes on success in programmifrgProceedings of
the 6th Annual Conference on Innovation and Teauwlin Computer Science Educati{pp. 49-52).
New York: ACM Press.

Casey, M. B., Nuttall, R. L., Pezaris, E., & Benhd® P. (1995). The influence of spatial ability gender
differences in mathematics college entrance tesescacross diverse samplBgvelopmental Psychology
31, 697-705.

Cathcart, W. (1990). Effects of Logo instruction oognitive style.Journal of Educational Computing
Research6, 231-242.

Chen, C., Czerwinski, M., & Macredie, R. (2000)diidual differences in virtual environments: Irdietion
and overviewJournal of the American Society for Informatione®icie 51, 499-507.

Cox, A., Fisher, M., & O'Brien, P. (2005). Theorstl considerations on navigating codespace withiadpa
cognition. In P. Romero, J. Good, E. Acosta Chapa& S. Bryant (Eds.)Proceedings of the 17th
Workshop of the Psychology of Programming Inte@stup (pp. 92—-105). Retrieved May 21, 2006, from
http://lwww.ppig.org/workshops/17th-programme.html

Curtis, B. (1981). Substantiating programmer valiigb Proceedings of the IEEB9, 846.

Cutmore, T. R. H., Hine, T. J., Maberly, K. J., géord, N. M., & Hawgood, G. (2000). Cognitive andngler
factors influencing navigation in a virtual enviroant.International Journal of Human-Computer Studies
53, 223-249.

Downs, R. M., & Stea, D. (1973). Cognitive maps apdtial behavior: Process and products. In R. blvils
& D. Stea (Eds.)lmage and environmenfpp. 8—26). London: Edward Arnold.

Durndell, A., & Haag, Z. (2002). Computer self eficy, computer anxiety, attitudes towards the heeand
reported experience with the Internet, by genderam East European samplgéomputers in Human
Behavior 18, 521-535.

Fincher, S., Baker, B., Box, I., Cutts, Q., de Radtl, Haden, P., Hamer, J., Hamilton, M., List@r, & Petre,
M. (2005). Programmed to succeed? A multi-national, multiiitn§onal study of introductory
programming coursefUniversity of Kent, Computing Laboratory Techri&eport 1-05). Retrieved May
21, 2006, from http://www.cs.kent.ac.uk/pubs/20052

Fisher, M., Cox, A., & Zhao, L. (2006). Using sexffetences to link spatial cognition and program
comprehension. IiProceedings of the 22nd IEEE International Confeeeron Software Maintenance
(ICSM; pp. 289-298). Washington, DC: IEEE Comp@&eciety.

Guzdial, M., & Soloway, E. (2002). Teaching the tdimdo generation to prograr@ommunications of the
ACM, 45, 17-21.

Halpern, D. F. (2000Sex differences in cognitive abilitiddahwah, NJ, USA: Lawrence Erlbaum Associates.

Hassell, J. (1982). Cognitive style and a firstrseuin computer science: A success st&yDS Monitor 21,
33-35.

Jones, S., & Burnett, G. (2006). Give the girlsharce: Should spatial skills training be incorpedainto the
curriculum? In K. Morgan, C. A. Brebbia, & J. M. &por. (Eds.),The Internet Society Il: Advances in
education, commerce & governan@p. 105-114). Southampton, UK: WITpress.

Jones, S., & Burnett, G. (2007a). Spatial skilld aavigation of source codim Proceedings of the 12th Annual
Conference on Innovation and Technology in Comp8tEence EducatiofiTICSE '07; pp. 231-235).
New York: ACM.

Jones, S., & Burnett, G. E. (2007b). Children’s igation of hyperspace: Are spatial skills importanih
Proceedings of the Sixth IASTED International Coeriee on Web-Based Educati¢pp. 643-648).
Anaheim, CA, USA: ACTA Press.

Kimura, D. (1999)Sex and cognitiartCambridge, MA, USA: MIT Press.

Mancy, R., & Reid, N. (2004). Aspects of cognitstgle and programming. In E. Dunican & T. Greengd
Proceedings of the Sixteenth Annual Workshop oP8yehology of Programming Interest Gro(RPIG
'04; pp. 1-9). Retrieved January 3, 2005, from:Hitpvw.ppig.org/workshops/16th-programme.html

58

Jones & Burnett

Mayer, R. E., Dyck, J. L., & Vilberg, W. (1986). &ming to program and learning to think: What's the
connectionCommunications of the AGMS9, 605-610.

McKenna, F. P. (1984). Measures of field dependem@egnitive style or cognitive abilitydournal of
Personality and Social Psycholagy7, 593—-603.

Miller, R. B., Kelly, G. N., & Kelly, J. T. (1998)Effects of Logo computer programming experience on
problem solving and spatial relations abili§ontemporary Educational Psycholody, 348—357.

Mumtaz, S. (2001). Children’s enjoyment and periceptof computer use in the home and the school.
Computers & Educatiqr86, 347—-362.

Pease, A., & Pease, B. (2000yhy men don't listen and women can’t read mapesdon: Orion.

Quaiser-Pohl, C., & Lehmann, W. (2002). Girls’ splabilities: Charting the contributions of experces and
attitudes in different academic groupsitish Journal of Educational Psychologg?, 245—-260.

Rountree, N., Rountree, J., & Robins, A. (2002edritors of success and failure in a CS1 cous$&CSE
Bulletin, 34, 121-124.

Schumacher, P., & Morahan-Martin, J. (2001). Gendeternet and computer attitudes and experiences.
Computers in Human Behavjdr7, 95-110.

Scragg, G., & Smith, J. (1998). A study of barrismswomen in undergraduate computer sciel8I&CSE
Bulletin, 30, 82-86.

Shneiderman, B. (1980)Software psychology: Human factors in computer anfbrmation systems
Cambridge, MA, USA: Winthrop Publishers Inc.

Smith, P. (1992). Spatial ability and its role initéd Kingdom education/ocational Aspect of Educatipf4,
103-106.

Subrahmanyam, K., Greenfield, P. M., Kraut, R., &€, E. (2001). The impact of computer use ordofil’'s
and adolescents’ developmeApplied Developmental Psycholo@p, 7—30.

Tolhurst, D., Baker, B., Hamer, J., Box, I., ListBr, Cutts, Q., Petre, M., de Raadt, M., Robins,Fncher, S.,
Simon, S., Haden, P., Sutton, K., Hamilton, M., &tfy, J. (2006). Do map drawing styles of novice
programmers predict success in programming? A maliional, multi-institutional study. In D. Tolhars
& S. Mann (Eds.)Proceedings of the 8th Australian Conference on @gimg Education(pp. 213-222).
Hobart, Australia: Australian Computer Society,.Inc

Vandenberg, S. G., & Kuse, A. R. (1978). Mentalatimns, a group test of three-dimensional spatial
visualization Perceptual and Motor Skillg7, 599—-604.

Velez, M., Silver, D., & Tremaine, M. (2005). Und&nding visualization through spatial ability difénces. In
Proceedings of the IEEE Visualization 2005 ConfeedWIS 2005; pp. 511-518). New YorkEEE.

Voyer, D., Nolan, C., & Voyer, S. (2000). The ridat between experience and spatial performanceeim amd
women.Sex Roles: A Journal of ReseardB, 891-915.

Webb, N. M. (1984). Microcomputer learning in smatbups: Cognitive requirements and group processes
Journal of Educational Psychology6, 1076—1088.

Werner, S. Krieg-Bruckner, B., Mallot, H. A., Schieer, K., Freksa, C., & Jahrestagung, G. (1997nti@p
cognition: The role of landmark, route and survapwledge in human and robot navigation. In M. Jarke
K. Pasedach, & K. Pohl (Edslipformatik '97 (pp. 41-50). New York: Springer.

Werth, L. H. (1986). Predicting student performairca beginning computer science class. In J. @lel& L.
N. Cassel (Eds.)Proceedings of the Seventeenth SIGCSE TechnicgddSium on Computer Science
Education(SIGCSE '86; pp. 138-143). New York: ACM.

Westerman, S. J., & Cribbin, T. (1999). Navigativigtual information spaces: Individual differences
cognitive maps. IfProceedings of the UK Virtual Reality Special let&rGroup(UKVRSIG '99), Salford
University, UK.

60

Spatial Ability and Learning to Program

Wiedenbeck, S., LaBelle, D., & Kain, V. N. R. (2004actors affecting course outcomes in introdyctor
programming In Proceedings of the Sixteenth Annual Workshop ofR&gchology of Programming
Interest Group (PPIG '04) Retrieved May 15 2005 from http://www.ppig.org/workshops/16th-
programme.html

Wilson, B. C., & Shrock, S. (2001). Contributingsaccess in an introductory computer science codrséudy
of twelve factorsINROADS of SIGCSB3, 184—-188.

Authors’ Note

The authors wish to thank Professor Emeritus JohmH&y, the University of Wisconsin, Milwaukee, for
permitting use of, and customizing, his versionhaf 3-D Mental Rotation Test.

All correspondence should be addressed to:
Sue Jones

School of Computer Science

University of Nottingham

Nottingham

NGS8 1BB

United Kingdom

s.jones@nottingham.ac.uk

Human Technology: An Interdisciplinary Journal onrflans inCT Environments
ISSN 1795-6889

www.humantechnology.jyu.fi

61

HuMAN

TECHNDLOGY
An Interdisciplinary Journal on Humans in ICT Emviments ISSN: 1795-6889
www.humantechnology.jyu.fi Volume 4 (1), May 2008, 62-74

A ROLES-BASED APPROACH TO
VARIABLE-ORIENTED PROGRAMMING

Juha Sorv
Helsinki University of Technology
Finland

Abstract: Delocalized variable plans pose problems for noypoegrammers trying to
read and write programs. Variable-oriented programgiis a programming paradigm
that emphasizes the importance of variable-relapgdns, and localizes actions
pertaining to each variable together in one placethe program code. This paper
revisits the idea of variable-oriented programmaengd shows how it can be founded on
roles of variables: stereotypes of variable useate for teaching to novices. The paper
sketches out how variable-oriented, roles-basedyfmming could be implemented
using either a new programming language or a frawrvbuilt on an existing language.
The possible applications, merits, and problemsaofroles-based approach, and
variable-oriented programming in general, are dissed. This paper points toward
possible research directions for the future andvites a basis for further discussions of
variable-oriented, roles-based programming.

Keywords: roles-based programming, variable-oriented progranmgn roles of
variables, delocalized plans, programming languages

INTRODUCTION

It has been widely noted that novice programmeve lyaeat difficulty in comprehending and
creating computer programs (for recent reports, Lsster et al., 2004; McCracken et al.,
2001). A partial explanation for this is provideglthe novices’ lack of programming-related
schemas or plans (Détienne, 1990; Soloway & EhrlitB86). Schemasare mental
knowledge structures for storing abstract inforovatthat can be applied when planning
solutions to specific problems that fall within theope of the schema. An expert in a domain
possesses a wide array of rich, domain-specifiersas that reduce cognitive load during
problem-solving tasks, such as programming andlersaving more complex problems. An
expert’s problem-solving process is characterized ganning ahead and forward
development (Byckling & Sajaniemi, 2006a; Rist, 9P8

Many schemas in programming are related to theofiseariables (Soloway, Ehrlich,
Bonar, & Greenspan, 1982). For instance, a basigramming schema could describe how
variables can serve as “counters,” whose valuesattzero and are then repeatedly incremented

© 2008 Juha Soryand the Agora Center, University of Jyvaskyla
URN:NBNfi:jyu-200804151353

62

Roles-Based Programming

by one. Commonly, the ways in which a variablessclin a program are not defined by a single
line of code or even by consecutive lines; refegsrio each variable are spread throughout the
program code. In the terminology of Soloway, Larmdestovsky, Littman, and Pinto (1988), the
plan for such a variable @elocalized Delocalization of a plan increases the cogniael of a
programmer trying to comprehend it, since multipdparate units have to be kept in working
memory at once in order to figure out the plan. ib®yprogrammers may find coping with this
cognitive load very difficult. Delocalized plansncke clarified with documentation (Soloway et
al., 1988) or software tools (Sajaniemi & Nieme#iin1989). In recent yearsles of variables
have been introduced as a means to describe, slism think about common stereotypes of
variable usage (Sajaniemi, 2002, 2003). Roles wabias have been used to document variable
plans and for other purposes in teaching introaycpmogramming (Byckling & Sajaniemi,
2007; Sajaniemi & Kuittinen, 2005; Sorva, KaravigaKorhonen, 2007).

This paper presents ongoing work wariable-oriented programminga programming
paradigm that places an emphasis on localizinghkbgirelated actions in program code. This
work draws on prior work on roles of variables, amks roles as a basis for creating
variable-oriented programs. The paper is struct@gdollows. The Related Work section
describes previous work on roles of variables aadable-oriented programming. The A
Roles-Based Approach section introduces a new apprtw variable-oriented programming,
and discusses how it could be implemented, usitigereia custom-made programming
language or existing programming languages. Theudson section then takes a look at the
possible uses, merits, and downsides of the newoapp. The paper concludes with general
comments and a look at possible future work.

RELATED WORK
Roles of Variables

Roles of variablesre stereotypes of variable use in computer pnag&ajaniemi, 2002). Roles
embody expert programmers’ tacit knowledge of \dgiaisage patterns, which can be made
explicit and taught to students (Sajaniemi & Nawaprieto, 2005). Roles can help teachers
explain delocalized variable-related schemas ignaras and assist in the stepwise refinement of
pseudocode designs of algorithms (Sorva et al7)2@0ior research suggests that introductory-
level students who are taught programming usingsralf variables gain better program
comprehension skills than students taught in aeraike similar way but without using roles
(Sajaniemi & Kuittinen, 2005). Moreover, roles-bésestruction facilitates the development of
program construction skills better than traditionabtruction, especially if roles-based
visualizations of programs are also used in tegdyckling & Sajaniemi, 2006b, 2007).

According to Sajaniemi’s (2002) research, the beiaf 99% of variables in novice-level
programs can be characterized within a small sebles. The following list, reprinted from
Sorva et al. (2007, p. 410), briefly introduceshesmariable role. For a fuller introduction to
roles of variables, and concrete program examyleach role, see Sajaniemi (2003).

1. A variable has the rolfixed valueif the variable’s value is not changed after it is
initialized.

63

Sorva

2. A variable has the role ddtepperif it is assigned values in a systematic and
predictable order. An example of a stepper is a@exncounter used when looping
through an array of elements.

3. A variable has the role afost-recent holdeif it holds the latest value in a
sequence of unpredictable data values. For instanoest-recent holder could be
used to store the latest element encountered warating through a collection of
data elements, or the latest value that has bestgnasl to an object’s attribute (i.e.,
to an instance variable that is a most-recent mpluea setter method.

4. The role most-wanted holderdescribes variables that hold the “best” value
encountered in a sequence of values. Dependinigeoprogram and the type of the
data, the best value may be the largest, smalidphabetically first, or an
otherwise most appropriate value.

5. A variable has the rolgathererif the variable is used to somehow combine data
values that are encountered in a sequence of yahrebs the variable’'s value
represents this accumulated result. For instanceariable keeping track of the
balance of a bank account (e.g., the sum of depasd withdrawals) is a gatherer.

6. A follower is a variable that always holds the most recesnipus value of another
variable. Whenever the value of the followed vagathanges, the value of the
follower is also changed. For example, the “presiowde pointer” used when
traversing a linked list is a follower.

7. A variable is aone-way flagf it only has two possible values and if a chatméhe
variable’s value is permanent. That is, once awag-flag is changed from its
initial value to the other possible value, it isveechanged back. For example, a
Boolean variable keeping track of whether or nabrsr have occurred during
processing of input is a one-way flag.

8. A variable has the roemporaryif the value of the variable is needed only fahart
period. For example, an intermediate result of Eutation can be stored in a
temporary in order to make it more convenient ficieht to use in later calculations.

9. An organizeris a variable that stores a collection of elemdotsthe purpose of
having that collection’s contents rearranged. Amreple of an organizer is a
variable that contains an array of numbers durorgrsy.

10. A variable is acontainer if it stores a collection of elements in which mor
elements can be added (and, typically, can be rethes well). For example, a
variable that references a stack could be a catain

11. A walkeris a variable whose values traverse a data stejctooving from one

location in the structure to another. For instangeyariable that contains a
reference to a node in a tree traversal algoriththavariable that keeps track of
the search index in a binary search algorithm eaodmsidered to be walkers.

Variable-Oriented Programming
In traditional procedural and object-oriented peosgming, the behavior of a variable, that is,

the logic that dictates how the variable is usedfien defined at multiple distinct locations
in program code. Depending on the scope of thebbej the behavior may be described by

64

Roles-Based Programming

inconsecutive lines of code within a function orthwal, may be located in a number of
functions, or even located in several program mesiuDeclaring a variable, if it is explicitly
done in the language at all, is a matter separare the variable’s behavior.

There is an alternative way to organize variableab®r in programs. If a variable’s
behavior pattern is defined at the variable’s datian, the “usage plan” of the variable
becomes localized in one place. This idea is centrathe variable-oriented way of
programming discussed in this paper. hadable-oriented programeach variable declaration
is accompanied by a definition of how the variablealue is initialized and later updated. A
variable declaration could also include informatminwhen the variable’s value is read and
dependencies on other variables. In a variablevaibprogram, such rich variable declarations
serve as the basis of, and indeed govern, thaameatalgorithms.

Variable-oriented programming has made an appearamditerature before. It was
introduced in connection with the program editor RE) which makes use of variable-
orientation to provide multiple views of programdeowritten in the Pascal language
(Sajaniemi & Niemelainen, 1989). In addition toraditional control-flow oriented view of
Pascal programs, VOPE shows a purely variable-mieview, which groups code fragments
so that all references to each variable are gadhtegether.

A ROLES-BASED APPROACH

A look at how an algorithm could be devised usiotps of variables may be useful. The
passage below presents a hypothetical thoughtrpattenow a student of programming, who
has been taught to use the roles of variables,tg@hbout the task of creating an algorithm for
computing theith Fibonacci number.

Some way of keeping track of consecutive Fibonaggibers is needed to compute torithe
one. Each new value is produced by computing avadwe based on the current one. That's a
job for a gatherer. And since, in this case, eash value is computed based on two older
values, a follower is needed to store the oldereval the gatherer. By starting from the first
Fibonacci number (one), then after n-1 updatdsagatherer, the result should be reached.

While fictional and idealized, this example offens idea of how roles-based reasoning
might proceed and make use of the common pattdrnar@ble use embodied by roles of
variables. It is also an example of thinking ahéHte programmer uses existing schemas to
plan in advance how he/she will use the two vaesFigure 1 shows a somewhat more formal
and complete description of the algorithm, usings@udocode notation that closely reflects the
reasoning process described above.

In the pseudocode in Figure 1, two variables actaded, each with a different role. For
each variable, its behavior has been declaredpast af the variable definition. The example
illustrates how an algorithm can be built by attaghbehavior to variable definitions.
Further, it shows how roles of variables can sexsg¢emplates for common patterns in a
variable-oriented program.

Each variable is declared as an instance of a melech determines the kinds of
operations that need to be defined for each instaiche role. For example, all gatherers
require a definition of how their values changadsnction of the same variable’s old value,

65

Sorva

define GATHERER curr:
initial value is 1
always updated by computing value of curr + prev

define FOLLOWER prev:
initial value is 0
follows curr (and always receives its old value)

make n-1 updates to curr (results in changes to both curr and prev)
print curr (which now holds the nth Fibonacci number)

Figure 1. Variable-oriented pseudocade

whereas a follower is dependent on another variablese old values it receives. For a fixed
value (not shown in the example), only an initiatian is needed, while a most-wanted
holder would define an operation to test whethgiven value is “more wanted” than the
current value, and so on.

The next two subsections explore possible impleatants for variable-oriented, roles-
based algorithms such as that in Figure 1. The &ire sketches out a variable-oriented
programming language that uses roles of varialddargguage-level abstractions. The second
then takes a look at how a similar framework cobkl implemented in an existing
programming language.

A Roles-Based Language

Figure 2 provides an example of variable-orientedecbased on roles of variables. It is
written in a speculative language called ROTFL &ROriented, Titillating but Fictional
Language). The reader should note that ROTFL &sdraft stage and lacks a full syntactical
and semantical specification. The notation is usece to provide “food for thought.” In
Figure 2 and in other Fibonacci examples in thiggpan is an integer-valued constant that
determines which Fibonacci number is to be primted

Gatherer curr:
inits to: 1
updates with: curr + prev

Follower prev:
inits to: O
follows: curr

update curr times n-1
print(curr)

Figure 2. The Fibonacci algorithm in the language ROTFL.

66

Roles-Based Programming

In ROTFL, there are no traditional variable defons. Instead, all variables are defined in
terms of roles and associated with behaviors apiattepfor those roles. Roles of variables are
language-level constructs, and there are resereedswelated to defining or using variables
with particular roles (e.g., follower, update). REkTdoes not feature assignment operators or
statements in the traditional sense. Instead,Masgavalues are changed in role-specific ways.
For instance, values are assigned to gathererstingtheserved wordpdate which uses the
updates-with operation of the gathex@compute a new value for the variable, and fodosv
receive new values implicitly as the value of ddwked variable changes.

Traditional loops are also conspicuous by theieabs in Figure 2, despite the fact that the
algorithm is an iterative one. In this example etéjon is achieved using the keywdmhesin
association with updating the value of the gatherer. Another mechanism for achieving
repetition is illustrated in Figure 3, wherel@eachcommand repeatedly updates a most-recent
holder variable until a condition associated wité variable is reached. The same example also
shows a most-wanted holder dependent on a mositreckeler that serves as #surce

MostRecentHolder input:
updates with: readLine()
until: input == "stop’

MostWantedHolder longestinput:
source: input
wants value if: value.length() > longestinput.length()

do each input
print(longestinput)

Figure 3. A ROTFL code fragment to read in lines and prirttthe longest one.

Implementing Roles in an Existing Language

Variable-oriented programming can also be doneiwidim existing programming language,
provided a suitable framework is available. Figdrehows how the variable-oriented, roles-
based program from Figures 1 and 2 can be writtethé Python language. The program
makes use of an anonymous function defined usitigoR3s lambda mechanism.

The program in Figure 4 relies on a framework theftnes roles of variables as Python
classes, and role-related operations (such asiongdae value of a gatherer) as methods of
these classes. A partial framework for this purpdeéining the classegathererandfollower,
is given in the Appendix.

curr = Gatherer(1, lambda: curr + prev)
prev = Follower(0, curr)
curr.updateTimes(n-1)

print(curr)

Figure 4. A variable-oriented code fragment in Python

67

Sorva

DISCUSSION
Uses of Roles-Based Programming

As noted in the introduction to this paper, priesearch suggests that the behavior of 99% of
variables can be characterized with a small setlef, at least within novice-level programs
(Sajaniemi, 2002). It does not immediately folldwgwever, that 99% of even novice-level
programs can be conveniently written as variablerded programs using roles as templates
for variable behavior. Nevertheless, it seems rdtesn a solid foundation for creating
variable-oriented programs, as the small role seviges a quite substantial number of
variables with templates that capture some keyasmbout how those variables are used.
This matter calls for further study.

Variable-oriented programming localizes variablangl in program code. Prior work in
cognitive psychology of programming suggests thi likely that localizing variable plans
facilitates the extraction and construction of &hle-related schemas (Soloway et al., 1988)
and therefore aids novices in acquiring some kegnamming skills. With this in mind, and
in light of previous experiences of using rolesvafiables in teaching, one can speculate
whether a variable-oriented, roles-based languagéd de useful for teaching introductory
programming. Clearly, there could be merits to saictapproach if variable-orientation helps
students construct variable-related schemas, #sralan be used to encourage forward
development (Byckling and Sajaniemi, 2007), andthére were roles-aware program
development tools that could provide helpful feedband error messages.

There also clearly are problems with such an amgproblot least of these is that while
variable-oriented programs emphasize variableadlptans and the data flow of programs, the
control flow of the program is not in focus. Undargling “what happens when” during the
execution of a variable-oriented program may beeqdifficult, especially for the beginner.
There is a trade-off between emphasizing variagleged schemas and emphasizing control-
flow-related schemas. Using tools similar to VOF&jéaniemi & Niemeldinen, 1989), which
provides multiple views of programs, could be ukefuicombining these different aspects of
programs. A notation based on roles of variablegdcbe used to build variable-oriented views
and to link them to procedural or object-orientexivs.

Depending on the notation used, a variable-orierpeagram can be quite self-
documenting of variable-related schemas (see, Eigure 2). Roles of variables help in this,
since role names succinctly describe patterns wabig use. However, it is not immediately
obvious what the documentative value of variabierded notations is compared to non-
variable-oriented notations that explicate the mfleeach variable (e.g., by simply tagging
each variable declaration with a role name usirdeammments). Documenting delocalized
variable behavior using role names may often doughoand using a variable-oriented
language may be overkill for this purpose.

Even if beginners are not taught variable-orientetds-based programming directly, they
might indirectly benefit from it. Bergin (2005) syests that instructors of programming (and
others) could benefit from “etudes” that take oraetipular programming technique to an
extreme. While such etudes have no intrinsic vafuitdeir own, they can help hone one’s skills
in a particular technigue and to ingrain that tégisa into one’s thinking. For helping instructors
(not novice programmers) make use of polymorphiengin suggests the following etude:

68

Roles-Based Programming

Find some old program that you have around andyinatare proud of.... Strictly as an
etude, rewrite that program with NO if/switch statnts: no selection at all. Solve all of
the problems your ifs solve with polymorphism. (§er 2005, p. 1)

In a similar vein, roles-based programming coutgesas an etude for using roles of variables
in general. The intellectual exercise of rewritprggrams in a variable-oriented way, using roles
as templates for variables, with no traditionalestyssignment and perhaps with no traditional-
style loops, could deepen instructors’ understandfrroles and help them think of algorithms in
terms of variables and roles. At least, the exettés expanded the mind of this author.

Variable-Oriented “Purity”

According to Sajaniemi and Niemeldainen (1989, p. By emphases), “Variable-oriented
programming is a new programming paradigm whicHects all actions concerning any
single variable together.... The plan of a variablelearly visible andotally described in the
variable definition.”

A “pure” variable-oriented program, then, would fgat all references (assignments and
reads) to a variable into one complete variabléenden, irrespective of the location of these
references in the control flow of the program. Teéader may note that the examples shown
in this paper are not pure by this strict defimitid-or instance, in Figure 2, neither the
commandupdate nor reading the variable’s value for printing pasps (i.e., the last two
lines) is located within the variable definitionhd example can be seen as a hybrid that is
largely variable-oriented but partially controlsleoriented. It can be contrasted with the
pure variable-oriented views displayed by the VQ&& (Sajaniemi & Niemeldinen, 1989).

Roles of variables are concerned with assignmeittt, elange (or lack of change) in the
values of variables, and with the way consecutaleies of variables are related to each other.
Roles are not concerned witthena variable’s value is updated or read, or with twhalone
with the value after it has been read (whethes firinted, passed as a parameter, or something
else). A variable-oriented program based solelyates of variables will not be pure. A more
complete discussion of the purity of variable-ciaion is beyond the scope of this paper. The
next subsection also touches on the issue of ptotyever, as it briefly explores the relationship
between object-oriented programming, variable-taigm, and roles-based programming.

Compatibility with Object-Orientation

The original set of roles of variables was discedeny analyzing procedural programs. Since
then, roles of variables have been applied to ¢olgeented as well as functional programs
(Sajaniemi, Ben-Ari, Byckling, Gerdt, & Kulikova,096). Roles seem to be a useful tool
irrespective of the programming paradigm used.

What, then, is the relationship between variablergation and object-orientation?
Quoting again from Sajaniemi and Niemeldinen (1989, 67), “In object-oriented
programming all operations applicable to objecta aflass are described in one place.... In
variable-oriented programming programs center atdhe variables. A variable, and all the
actions using that particular variable, are desctiim one place.”

69

Sorva

One of the two paradigms elevates classes as alkgyaction around which program
code is structured; the other does the same tahlas. These two abstractions are in
competition, but not incompatible. It is quite pb$s to envision a hybrid of the object-
oriented and variable-oriented paradigms, as st by the example in Figure 5.

It is easy to see that Figure 5 is not pure in seofrvariable-orientation. The generic plan
for using the instance variablealance a gatherer, is defined at the variable declanatio
However, the precise ways in which the three methmadke use of this generic plan are
spread out in the code.

class Account:
private Gatherer balance:
inits to: O
updates with (FixedValue amount):
if (balance + amount < 0) then:
0
else:
balance + amount

public method deposit(FixedValue depositSize):
update(depositSize) balance

public method withdraw(FixedValue withdrawalSize):
update(-withdrawalSize) balance

public method getBalance():
balance

Figure 5. A ROTFL class representing simple bank accountls méin-negative balances.

Another issue needs to be considered when appigieg of variables to object-oriented
programs. As was noted by Sorva et al. (2007, 9),41

Annotating a member variable and a local variakita the same role name indicates that
we think of them as similar. However, our expergermstiggests that in many people’s
perception a most-recent holder member variableinfiance, is used rather differently
than a most-recent holder local variable. A se#tattribute of an object (the name of a
person object, say) is experienced as being giffereht from a local variable that stores
the most recent element encountered in a colleafiaring iteration.... This kind of
dividedness of roles is potentially confusing...

It may be that, in order to apply roles-based @ogning to object-oriented programs, new
roles are needed to represent different uses ti#rios variables. As an example, a role name
settable attributecould better describe the purpose of most-receldeh instance variables. If
needed, the roles-based language or framework pooldde a somewhat different template for
settable attributes than for other most-recentdrsld

70

Roles-Based Programming

CONCLUSIONS AND FUTURE WORK

In this paper, | have revisited the previously disgred ideas of variable-oriented programming
and roles of variables. This paper combines theseideas by founding variable-orientated
programs on roles, and sketches out how such s-balsed approach could be implemented
using a roles-based programming language or a fwankewritten in another language. The
paper has described ongoing work on tools for tbéesed programming, and discussed the
possible applications, merits, and problems ofapgroach. It is my hope that this paper can
serve as a basis for further discussions of variakbiEented, roles-based programming.

This paper has merely introduced the idea of usites of variables in variable-oriented
programming. There are many research paths thdtl dmufollowed in the future. Roles-
based languages or frameworks could be developatiefufrom the drafts presented,
investigating the suitability of the variable-oried approach for more complex programs.
Ways of defining dependencies between variablesdcbe explored, as could the idea of
actions that trigger when variables’ values chahtgre, inspiration could perhaps be drawn
from earlier work, such as the language EDEN (Yuly, & Ward, 1987), which, although
not variable-oriented, allows the programmer tmaisde “action specifications” to variables.

The suitability of the current set of roles of \adnlies for roles-based programming needs
exploring, as does the idea of custom roles defibgdthe programmer. The possible
usefulness of roles-based programming outside ¢idnehsettings could be investigated.

The effects of a variable-oriented notation on us@ading programs’ control flow will
need to be explored if this approach is to be tdlsether. Roles-based tools supporting both
variable-oriented and other views of programs cdwdddeveloped. If the approach looks
promising, the potential of variable-oriented pargming in instruction could be evaluated.

Using roles-based programming as an etude foricistrs to deepen their understanding
of roles of variables seems like a promising avetoutake in the future. This can be done
even using a speculative language like ROTFL.

REFERENCES

Bergin, J. (2005, July)Variations on a polymorphic theme: An etude for patar programming Paper
presented at the Ninth Workshop on Pedagogies amds Tfor the Teaching and Learning of Object
Oriented Concepts, Glasgow, UK. Retrieved April 2807, from
http://www.cs.umu.se/~jubo/Meetings/ECOOP05/Subkiuaiss/Bergin-full. pdf

Byckling, P., & Sajaniemi, J. (2006a). A role-basetlysis model for the evaluation of novices’ pesgming
knowledge development. IflCER '06: Proceedings of the 2006 International Workshop am@uting
Education Researcfpp. 85-96). New York: ACM Press.

Byckling, P., & Sajaniemi, J. (2006b). Roles of igates and programming skills improveme&8iGCSE
Bulletin, 38, 413-417.

Byckling, P., & Sajaniemi, J. (2007). A study orpbjing roles of variables in introductory progranmgi In
IEEE Symposium on Visual Languages and Human-@e@tmputing(VL/HCC '07; pp. 61-68). Coeur
d'Aléne, ID, USA: IEEE Computer Society.

Détienne, F. (1990). Expert programming knowled§eschema-based approach. In J. M. Hoc, T. R. Gegre
R. Samurcay, & D. J. Gilmore (EdsPsychology of programmin@p. 205-222). London: Academic Press.

Lister, R., Seppala, O., Simon, B., Thomas, L., ddaE. S., Fitzgerald, S., Fone, W., Hamer, J.dhoim,
M., McCartney, R., Mostrom, J. E., & Sanders, KOQ2). A multi-national study of reading and tracing
skills in novice programmerS&IGCSE Bulletin36, 119-150.

71

Sorva

McCracken, M., Almstrum, V., Diaz, D., Guzdial, Mdagan, D., Kolikant, Y. B., Laxer, C., Thomas,
L., Utting, I., & Wilusz, T. (2001). A multi-natial, multi-institutional study of assessment of
programming skills of first-year CS studer$GCSE Bulletin33, 125-180.

Rist, R. S. (1989). Schema creation in programniagnitive Sciencel3, 389-414.

Sajaniemi, J. (2002). An empirical analysis of solef variables in novice-level procedural prograrrs.
Proceedings of IEEE 2002 Symposia on Human Ce@winputing Languages and Environme(ms. 37—
39). Arlington, VA, USA: IEEE Computer Society.

Sajaniemi, J. (2003). The roles of variables homagep Retrieved April 15, 2007, from
http://cs.joensuu.fi/~saja/var_roles

Sajaniemi, J., Ben-Ari, M., Byckling, P., Gerdt,, R Kulikova, Y. (2006). Roles of variables in tlere
programming paradigm&omputer Science Educatial6, 261-279.

Sajaniemi, J., & Kuittinen, M. (2005). An experinteon using roles of variables in teaching introdugt
programmingComputer Science Educatiatb, 59-82.

Sajaniemi, J., & Navarro Prieto, R. (2005). Roldsvariables in experts’ programming knowledge. In
Proceedings of the 17th Annual Workshop of the liRdggy of Programming Interest GroypPIG; pp.
145-159). Brighton, UK: University of Sussex.

Sajaniemi, J., & Niemeldinen, A. (1989). Progranitied based on variable plans: A cognitive approaezh
program manipulation. IrProceedings of the Third International Conference Human-computer
Interaction on Designing and Using Human-computgeifaces and Knowledge Based Systénd ed.;
pp. 66—73). New York: Elsevier Science Inc.

Soloway, E., & Ehrlich, K. (1986). Empirical studief programming knowledge. In C. Rich & R. C. Wate
(Eds.),Readings in artificial intelligence and softwaregareering(pp. 507-521). San Francisco: Morgan
Kaufmann Publishers Inc.

Soloway, E., Ehrlich, K., Bonar, J., & Greenspan(1982). What do novices know about programming? |
A. Badre & B. Shneiderman (EdsDirections in human-computer interactio(p. 27-54). Norwood, NJ,
USA: Ablex Publishing.

Soloway, E., Lampert, R., Letovsky, S., Littman,, & Pinto, J. (1988). Designing documentation to
compensate for delocalized pla@@mmunications of the ACN1, 1259-1267.

Sorva J., Karavirta V., & Korhonen A. (2007). Role§ variables in teachingJournal of Information
Technology Educatigr, 407—-423.

Yung, E., Joy, M., & Ward, A. (1987EDEN: The engine for definitive notatiorRetrieved April 15, 2007,
from http://www2.warwick.ac.uk/fac/sci/dcs/resedesh/software/eden/

Author’s Note

All correspondence should be addressed to:
Juha Sorva

Helsinki University of Technology

Department of Computer Science and Engineering
Konemiehentie 2

02015 TKK, Finland

jsorva@cs.hut.fi

Human Technology: An Interdisciplinary Journal onrflans inCT Environments
ISSN1795-6889
www.humantechnology.jyu.fi

72

Roles-Based Programming

APPENDIX

A PARTIAL FRAMEWORK FOR VARIABLE-ORIENTED, ROLES-BA SED
PROGRAMMING IN PYTHON

The classes below form a partial (but working) feavork for writing variable-oriented
programs in terms of roles of variables in the Bgttanguage. The partial framework shown
here has implementations for only some main featofethree roles (fixed value, gatherer
and follower). For an example of using the classes,Figure 4.

Other variable roles can be implemented in Pythdonga the same lines.
Implementation-wise, most-recent holders are simhley just need an update method that
replaces the old value with the given new one. @ep and most-wantedublders can be
implemented similarly to gatherers and most-rechotders, respectively. Temporary
variables are akin to fixed values and trivial tmplement, one-way flags likewise.
Containers need a more complex class, with mettiodsadding and removing values.
Alternatively, containers could be left unimplenahias an explicit role, relying on Python’s
built-in data structures instead. Organizers amraitterized by a variable-specific function
that defines a means for ordering data, which eapdssed as a constructor parameter (cf.
the gatherer implementation below).

The few variables that do not have any of the roieSajaniemi’s (2003) role set can be
treated as most-recent holders, or with a funclipisamilar but differently named class (e.g.,
specia), which effectively allows new values to be aseijrireely to the variable by passing
them as a parameter to update. Alternatively, piogners could define their own program-
specific custom roles.

import types

class Role:
def __init__ (self, initsTo):
self.followers =[]
if (type(initsTo) == types.FunctionType):
self.value = initsTo()
else:
self.value = initsTo

def __add__(self, x):
return self.value + x
__radd__ = add

def _str_ (self):
return repr(self.value)

def addFollower(self, follower):
self.followers.append(follower)

73

Sorva

class FixedValue(Role):
def __init__(self, initsTo):
Role. _init__ (self, initsTo)

class Gatherer(Role):
def __init__(self, initsTo, updateswWith):
Role. _init__ (self, initsTo)
self.updatesWith = updatesWith

def update(self):
oldValue = self.value
self.value = self.updatesWith()
for f in self.followers:
f.update(oldVvalue)

def updateTimes(self, times):

for time in range(times):
self.update();

class Follower(Role):

def __init__(self, initsTo, followedVariable):

Role.__init__(self, initsTo)
followedVariable.addFollower(self)

def update(self, newValue):
oldValue = self.value
self.value = newValue
for f in self.followers:
f.update(oldVvalue)

74

HuMAN

TECHNDLOGY
An Interdisciplinary Journal on Humans in ICT Emviments ISSN: 1795-6889
www.humantechnology.jyu.fi Volume 4 (1), May 2008, 75-91

FROM PROCEDURES TO OBJECTS: A RESEARCH AGENDA
FOR THE PSYCHOLOGY OF OBJECT-ORIENTED
PROGRAMMING EDUCATION

Jorma Sajaniemi Marja Kuittinen
Department of Computer Science an Department of Computer Science and
Statistics, University of Joensuu Statistics, University of Joensuu

Joensuu, Finland Joensuu, Finlan

Abstract: Programming education has experienced a shift fraperative and procedural
programming to object-orientation. This shift hameb motivated by educators’ desire to
please the information technology industry and ipidib students; it is not motivated by
research either in psychology of programming ocamputer science education. There are
practically no results that would indicate that bug shift is desirable, needed in the first
place, or even effective for learning programmiltpreover, there has been an implicit
assumption that classic results on imperative amatgdural programming education and
learning apply to object-oriented programming (OGR)well. We argue that this is not the
case and call for systematic research into the dnmehtal cognitive and educational issues
in learning and teaching OOP. We also present aaesh agenda intended to improve the
understanding of OOP and OOP education.

Keywords: programming education, procedural programming, cbjeriented
programming, psychology of programming.

INTRODUCTION

During the last 10 years, programming educationexgerienced a shift from imperative and
procedural programming to object-oriented prograngm{OOP). This shift has been
motivated by educators’ desire to please the infion technology industry, on one hand,
and potential students on the other. Object-ortemtaand Java have been spreading as the
most important implementation platform for new, \Ahesed applications with widespread
visibility among computer users, which has credtedillusion that the worgrogramming
equals Java OOP. Thus, students want to learn fiawa the very beginning of their
programming studies. Teachers’ selection of thet frogramming language is dominated by
student demand and a willingness to provide stisdenth marketable skills (de Raadt,
Watson, & Toleman, 2002), that is, Java programm¥igh the current drop in enroliments
to academic computing programs (Cassel, McGettfiakzdial, & Roberts, 2007) educators’

© 2008 Jorma Sajaniemi and Marja Kuittinamd the Agora Center, University of Jyvaskyla
URN:NBNfi:jyu-200804151354

75

Sajaniemi & Kuittinen

thirst for pleasing potential students will probabhly increase. Moreover, many companies
want to hire students who know how to program waJand educators may think that if an
institute is not teaching Java, its reputation agihiose companies is damaged.

It should be noted that the shift to object-or@ioin in education is not motivated by
psychology of programming or computer science etilucaesearch: There are practically no
results that would indicate that such a shift isiddle, needed in the first place, or even
effective for learning programming (Lister et &006). Yet, learning programming should be
the most important issue—not learning the pectikgiof a single paradigm or a certain
language. Note that “learning programming” does medér to imperative or procedural—
neither functional nor logic—programming, but ldaghprogramming in a way that can be
applied in many programming paradigms and manyraragiing languages.

Indeed, we are surprised to find out that the @dongnconsequences of the shift to object-
orientation had not been studied before the shiftl only superficially even after it. There
are some studies on the misunderstanding of objgmtted (OO) concepts but the
development of OOP skills and comprehension of ©@cepts have not been studied. There
has been an implicit assumption that classic reswibh imperative and procedural
programming education and learning (see Robins,nRRee, & Rountree, 2003, and
Winslow, 1996, for reviews) also apply to OOP, imat fear that this is not always the case.
OOP is so much more complicated than imperativepaadedural programming—both at the
concrete notational level and at a more abstrauteqmual level—that there are good grounds
to question whether the classic results can bergkred to object-orientation.

What this means in practice is that educationatitutions around the world are
implementing curricula and teaching methods thatret based on research, but on intuition.
There are practically no theories on the developraéprogramming skills or comprehension
of programming concepts in the OO case. It is nadeo that educators are fighting against
high dropout rates from (e.g., Kinnunen & Malmi0B) and poor learning outcomes in (e.g.,
McCracken et al., 2001) programming courses. ReBelns offered educators various
pedagogic tricks (e.g., Bennedsen & Caspersen,; Kléde, Ventura, Phelps, & Egert 2006;
S. Cooper, Dann, & Pausch, 2003; Holliday & Luginbw2004; Hsia, Simpson, Smith, &
Cartwright, 2005; Koélling & Henriksen, 2005; Lopéterrejon & Schulman, 2004; Mahmoud,
Dobosiewicz, & Swayne, 2004; Marrero & Settle, 208hanmugasundaram, Juell, & Hill,
2006; Truong, Bancroft, & Roe, 2005; Utting, 200B)it the lack of solid psychological and
educational theories makes a holistic approach ssipte.

This paper presents a case for systematic reseitoh the comprehension of
programming and the development of skills in the @@@adigm. In order to understand the
huge shift from imperative and procedural prograngmio object-orientation, we start by
comparing these paradigms at three of the five dosntnat du Boulay (1989) presents as
issues that a learner must mastertationsof the particular language, tim®tional machine
that describes how programs in the particular lagguare executed, and tbdentation,
describing what programs are for and what can bee deith them. Differences between
programming paradigms in du Boulay’s two remainidgmains, structures (abstract
solutions to standard problems) gmégmatics(the skills of planning, developing, testing,
debugging, etc.), are more complicated and willlb®treated in this paper. It is clear that if
differences in the basic constructs—notations,omati machine, and orientation—make the

76

From Procedures to Objects

applicability of classic results to object-oriemdat dubious, then differences in more
complicated issues will make the situation evens&or

This paper is structured as follows. First, weluaok at the differences between
imperative and procedural programming versus OO# waspect to notations, notional
machine, and orientation. Then, we will review gesé literature and see how it supports our
claims. Finally, we will present a research ageiod€®OP.

THE NOTATIONAL REVOLUTION

Notations needed in Java programs do differ rentdykérom those of imperative and
procedural programmifg This is partially due to the larger number of gramming
concepts needed, but also due to the structuteeqfava language (Radenski, 2006).

For example, consider the algorithm for simplerusteraction in Figure 1, given in a
natural language, English. The pseudo code vedditins algorithm is given in Figure 2, and
a Pascal program for the same task in Figure 3n(feopopular textbook of its time, D.
Cooper & Clancy, 1982, p. 15). Even though the tara differ in their level of formality,
they look strikingly similar. When we compare thatural language version (that should be
in a notation familiar to students) in Figure 1the Pascal version (that the students should
learn to understand), the new notations and tlae@Iconcepts are

= “program,” name of the program: program

= interaction ports needed: input/output

= “integer” and the variable name: variables

= “write,” “writeln,” and “readIn”; input/output

= “var,” “begin,” “end,” and punctuation: languagensgx.

The first two of these are required by the langydmt are simple to students (this is a
program with input and output); the next two aretjwhat the students are learning (the
concepts of variable and input/output); the lasé @m something cryptic required by the
language. Parts required by the language vary toenlanguage to another. For example, in
Python there would be no special punctuation orestant brackets and the program line
would not be needed.

Now, let us turn to the Java version of the samgnam given in Figure 4, which must
be stored in a file with a certain name, Interacjava. (We assume the existence of another
class for user input stored in the file Input.jav@mpared with Figure 1, the new notations
and the related concepts are:

= “public”: visibility
“class,” name of the class: classes and objects
= “static”: access rights
= “void”: return values
= “main”: program
= method name and its argument: methods and theinsegts
= “String,” “[],” “System,” and “Input”: predefinedlasses
= “int” and the variable name: variables

77

Sajaniemi & Kuittinen

= “println,” and “readInt”: input/output
= punctuation: language syntax

This list is much longer than the correspondirgl for Pascal. And, what is more
important, it contains a large number of difficalbncepts that are not required for the
solution of the problem, but by the structure af tanguage: classes and objects, visibility,
access rights, method definitions and calls, ahdmevalues.

Tell the user that this is an interactive program.
Ask the user to enter an integer value.

Get the number from the user.

Tell the user what the entered number was.

Figure 1: An example program in English

write "This program interacts with its user.'
write 'Please enter an integer value.'

read Number

write 'The number you entered was:'

write Number

Figure 2. The example program in pseudo code.

program Interactive (input, output);
var Number: integer;

begin
writeln ("This program interacts with its user.");
writeln (‘Please enter an integer value.');
readln (Number);
write (‘The number you entered was:");
writeln (Number)

end.

Figure 3: The example program in Pascal

public class Interactive {
public static void main(String[] args) {

int Number;
System.out.printin("This program interacts with its user.");
System.out.printin("Please enter an integer value.");
Number = Input.readint();
System.out.print("The number you entered was:");
System.out.printin(Number);

Figure 4. The example program in Java

78

From Procedures to Objects

One may argue that this example program favoreriative programming and that the
first programs used in OOP courses do not contagwrhuch input and output. Even if that
were the case, the first Java program will consdimost all of the above concepts.

Thus, the shift to object-orientation and Java megle a revolution at the notational
level, even though this might not be obvious &tfsight: The lengths of the programs in
Figures 3 and 4 are practically the same, yet tiraber of new notations and concepts is
remarkably higher in the Java case. This rise igloe to the programming problems that are
solved, but rather to the requirements of the laggwsed.

THE NOTIONAL MACHINE REVOLUTION

In order to be able to understand what individwaistructs of a programming language mean
and how programs written in that language workudent must understand how the notional
machine (du Boulay, O’'Shea, & Monk, 1981) undedyitnat language works. Programs
cannot be understood as strings of characters stigients must understand, for example,
what a variable is and how it is affected by assignts. A more thorough understanding of
programming includes, for instance, knowledge gdidgtl uses of variables and control
structures (Détienne, 2002), which also relies opr@per understanding of the notional
machine. The machine needed for understandingrgtepfograms should be simple, or else
learning programming becomes hard (du Boulay efi8B1).

In the procedural approach, instruction typicatarts with the imperative constructs:
variables, input/output, conditionals, and loopaamstructs. The notional machine needed to
explain these notions consists of

= variable: location or slot with a name and contents

= input/output: two devices connecting variablesxtemal world
= program execution: a program counter referring ¢ergain point at the program.

A notional machine that consists of the abovespariclearly capable of executing the
program in Figure 3 and can be used in teachindjrétesteps in imperative programming.
An extension to this notional machine is neededmpointers are included:
= pointer: contents of a variable may be the locatibanother variable.

Further extensions are needed when procedurasterduced:
= procedure call: a call stack

= parameter: room for parameters in the call stackl grarameter-passing
mechanisms

= return value: mechanism for return value, possith room for it in the call stack.

It should be noted that these extensions are daliyipatible with the initial notional machine
and they can be introduced gradually along with ititeoduction of new programming
language constructs.

In contrast to the procedural approach, OOP requia much larger and more
complicated notional machine from the very begignih notional machine that is capable of
executing the program in Figure 4 must containoélthe following parts (see the list of
concepts of the program given in the previous eati

79

Sajaniemi & Kuittinen

= object: a heap for objects
= method: a call stack

= parameter: room for parameters in the call stackl grarameter-passing
mechanisms

= return value: mechanism for return value, possiti room for it in the call stack
= variable: location or slot with a name and contéimtshe call stack)
= input/output: two devices connecting variablesxtemal world

= object reference: contents of a variable or a patammay be the location of an
object in the heap

= program execution: a program counter referring ¢ergain point at the program.

Moreover, there are concepts that are needed éoegh they are not directly expressed in
the notional machine: visibility and access rigtescerning validity of the program, and the
relationship between classes and objects concethmgelationship between the program
text and the object heap.

Compared with the notional machine in the procaldoase, the difference is huge. The
OO notional machine described above and needethéosimple program in Figure 4 is not
only larger than the corresponding notional macmeeded for the equivalent program in
Figure 3, but it is much larger than the total oxdil machine in the procedural case.
Furthermore, the notional machine for OOP descriakdve does not even contain parts
needed to describe other OO constructs that areatiypintroduced in the first programming
course: subclasses and inheritance, implicit cilgiperclass constructors, and polymorphism.

One might argue that there is no need for studemtsnderstand notations and the
notional machine completely—students can simply @sitle unnecessary parts as boiler
plates when first learning. The problem with thigking is that novices have no means to
decide which issues are unnecessary and which lmeuattended to when reading or writing
programs. The use of boiler plate code mystifiemy@mming and obscures concepts that
should be learned. Programming should not be taagh& copy-and-paste art that only
incidentally results in a correctly functioning gram, but rather as a clearly defined activity
that deals with unambiguous constructs. Otherwigecentral concepts remain blurred.

In summary, the shift to object-orientation andalaas made a revolution at the notional
machine level. Not only is the size of the requinetional machine much larger than in the
procedural case, but the initial notional machimeded in order to understand the first
programs is much more complicated, as well.

THE ORIENTATION REVOLUTION

Sajaniemi, Ben-Ari, Byckling, Gerdt, and Kulikova006) have studied example programs in
elementary programming textbooks among three pnognag paradigms: procedural,
object-oriented, and functional. They found majdfedences in the programming problem
types used in these various programming paradidims.most important issue in procedural
programming textbooks is the functionality of praps: Example programs compute
meaningful values based on input and print the ltedor users through simple output
mechanisms. OOP textbooks deal with data modelngrne hand, and demonstrate specific

80

From Procedures to Objects

language features on the other. Even though megsag®ng structures may be complex,
their net effects are trivial from the user's persjve. Finally, functional programming
textbooks stress data manipulation techniques. ,Tthesorientation (i.e., what programs are
for) is very different in these paradigms.

This finding also means that students’ tasks dferednt depending on the programming
paradigm used for learning. In procedural prograngnstudents try to write programs that
do meaningful actions and computations, whereas ifP @@dents concentrate on creating
conceptual model$or (usually concrete) data. Détienne (1997) ndtes when novices
design OO programs, the activity of finding classessumes their attention; they think about
functionality only late in the design activity. Elfwimi and Schweikert (2006) found that
students have problems in understanding objecti@iion and incorporating OO concepts
into problem solving. Students tend to spend mione trying to understand objects and less
time on problem solving. Thus, the shift to objedentation has made a revolution at the
orientation level and regarding students’ tasksrogramming.

RESEARCH SUPPORT

In the previous sections, we have demonstratedthieashift from imperative and procedural
programming education to OOP has denoted a rewolut the complexity of notations,
concepts and the notional machine needed, andeirotiientation and tasks carried out by
students as programming exercises. In this seatierwill look at research literatutand see
what it says about this revolution.

Imperative and Procedural Programming

Classic works on programming education and the hpspgy of novice and expert
programming (e.g., Brooks, 1983; Corritore & Wiebeck, 1991; Davies, 1993; Gilmore &
Green, 1984; Letovsky, 1986; Pennington, 1987; iRerl& Martin, 1986; Rist, 1989;
Soloway & Spohrer, 1989; see also Robins et aD32@nd Winslow, 1996, for excellent
reviews) are primarily based on imperative and, some extent, also procedural
programming—in many cases Pascal programming, wkialhy we used Pascal in Figure 3.
It is evident from this literature that learningogramming is challenging even in the
imperative case. Novices often have problems utalelsg basic concepts, such as
variables and basic imperative control structuisn¢David Kolikant & Haberman, 2001;
Samurcay, 1989; Spohrer, Soloway, & Pope, 1989)+-tha they have problems in
understanding the basic notional machine requivedriperative programming.

Novices’ knowledge about the imperative parts oigpamming languages has been
found to be at first fragile (Perkins & Martin, 198 such as inert knowledge that students
cannot readily master, or misplaced knowledge negrgo inappropriate contexts. As a
consequence, students have problems in applying #rowledge even though the
knowledge itself may be correct. From a cognitiverspective, the causes of fragile
knowledge include a sparse network of association®ng-term memory, that is, weak
connections between different concepts, and unifiereintiation of language commands.
Yet, the hardest part of learning is not in gragpthe syntax and semantics of some

81

Sajaniemi & Kuittinen

language, but in adopting ways to construct lapyegram units that are needed to solve the
problem at hand (see, e.g., Winslow, 1996).

A specific source of problems is the limited capaof working memory (Anderson,
2000, p. 176). Even when writing simple imperatpregrams consisting of just a few lines,
expert programmers—Ilet alone novices—often canmon fa complete mental representation
of the program in their working memory. Even wilie thelp of external representations, the
number of simultaneously needed details easily edsd¢he limitations of human working
memory (Green, Bellamy, & Parker, 1987). Highly momical chunking of knowledge is
therefore crucial for good performance in programgniBecause novices’ programming
knowledge is fragile, efficient chunking is difficdor them.

In summary, educational and psychological resedrth novice imperative and
procedural programming indicates that even the keistpmperative notional machine is
challenging for students to learn, students’ knolg&eis fragile, and students have serious
problems in combining basic constructs of a prognémy language to form larger,
meaningful structures.

Object-Oriented Programming

Very little psychological and educational reseaggists for novice OOP. Most papers (e.g.,
Bennedsen & Caspersen, 2004; Bierre et al., 2006Cd®per et al.,, 2003; Holliday &
Luginbuhl, 2004; Hsia et al.,, 2005; Kolling & Heksen, 2005; Lopez-Herrejon &
Schulman, 2004; Mahmoud et al,. 2004; Marrero &I8e2005; Shanmugasundaram et al.,
2006; Truong et al., 2005; Utting, 2006) introdu@ious pedagogic techniques and tips,
such as visualization tools or curriculum changeghout consideration for educational or
psychological theories. Some (e.g., Bednarik & @irken, 2007; Romero, Lutz, Cox, & du
Boulay, 2002) study the use of such tools in thetext of an OOP language but not relating
their findings to OO concepts or the OO paradigmlyQrery few articles (see Tables 1 and
2) analyze object-orientation from a cognitive dueational perspective, that is, increase the
field’s understanding of OOP learning and how ffedts from the imperative and procedural
cases. We will next review these results.

Davies, Gilmore, and Green (1995) asked novices experts to sort cards containing
short fragments of a large OO program library aodnél that experts tended to focus on
functional relations whereas novices were much neoreerned with objects and inheritance
relations. Thus, novices’ mental representationsthef structure of large OO programs
concentrates on objects and inheritance, thahigl@ements that do not exist in the procedural
case. Corritore and Wiedenbeck (1999) and WieddénbRamalingam, Sarasamma, and
Corritore (1999) have studied novices and expeartaprehending short procedural and OO
programs and found that, in the OO case, the dvieradtion of programs is understood better
than details of, for example, control flow; yet lwiprocedural programs, comprehenders’
knowledge is more balanced. These results inditatieprogrammers’ mental representations
of procedural and OO programs do differ qualitdgivAs the nature of mental representations
is strongly related with learning programming, tHiading proposes the existence of
fundamental differences between learning proceguogramming and learning OOP.

Eckerdal and Thuné (2005) have studied novicederstanding of class and object and
found several categories of conception of theseams. Détienne (1997), Holland, Griffiths,

82

From Procedures to Objects

and Woodman (1997), Ragonis and Ben-Ari (2005), Beifl and Hazzan (2006) have found
that students have severe misconceptions abouariuertal OO concepts, such as classes and
inheritance. Fleury (2000) has found several miseptions concerning the construction and
use of objects in Java. In procedural programmmigconceptions about parameter passing
(Fleury, 1991) and recursion (Levy, 2001) have beend; in imperative programming only
fragile knowledge instead of misconceptions haslveported. In consequence, problems in
learning seem to have different roots in OOP thamperative programming.

Table 1. Psychological and Educational Research on OOP: i®#presentation

Topic of
investigation

Expert
performance

Novice performance Cognitive

development

Programming
education

Notional machine/
structure

Notional machine/
detailed contents

Notional machine/
misconceptions

OO programs/
structure

Davies et al.
(1995)

Davies et al. (1995)

OO programs/
detailed contents

Wiedenbeck et al.
(1999)

Corritore and
Wiedenbeck
(1999)

OO programs/
misconceptions

OOP/ structure

OOP/ detailed
contents

Eckerdal and Thuné
(2005)

Mead et al.
(2006)

OOP/
misconceptions

Détienne (1997);
Fleury (2000);
Holland et al. (1997);
Ragonis and Ben-Ari
(2005); Teif and
Hazzan (2006)

Table 2. Psychological and Educational Research on OOPIs$kill Strategies

Topic of Expert Novice performance Cognitive Programming
investigation performance development education
Program

comprehension

Tracing and Lister et al. (2004); Thomas et al.
debugging Vainio and Sajaniemi (2004)

(2007)

Program design

Détienne (1997);
Lee and
Pennington
(1994);
Pennington et
al. (1995);
Rosson and
Gold (1989)

Détienne (1997)

83

Sajaniemi & Kuittinen

Mead et al. (2006) have compared cognitive problemearning procedural and OOP and
developed a set of central concepts in the forfamthor concept graphs” for both paradigms.
The two graphs differ considerably, providing mexédence for the assumption that learning
procedural programming and learning OOP are vdfgrént in nature.

Thomas, Ratcliffe, and Thomasson (2004) found shadents did not perform better in
tracing OO code fragments when they were provideth weady-made partial object
diagrams, nor did they draw their own diagrams nasten in a follow-up test. On the other
hand, Lister et al. (2004) found that many studemtse able to track values of numeric
variables on paper, and Vainio and Sajaniemi (200@ihd that students were able to draw
values of primitive types, but not object referenctaken together, these results imply that
students have more problems in making externaksgmtations of OO parts than imperative
parts of the notional machine, that is, the OO am@l machine is even more poorly
understood by students than the imperative notiorzadhine.

In her state-of-art review of empirical researchobject-oriented design, Détienne (1997)
examined the processes involved in designing inQ@i@& paradigm and in the procedural
paradigm. Among other things, she reports on figsliof Lee and Pennington (1994),
Pennington, Lee, and Rehder (1995), and RossorGattl(1989) concerning the differences
between OO designers and procedural designers.e9ign@érs seem to base their solutions on
the problem domain itself, whereas procedural desgyuse generic programming constructs
for structuring their solutions. Thus, the oveigbproach in program design differs between
procedural and OO programming, and teaching srexkdowledge this difference.

Discussion

Even though studies into OOP are few, the abovdtsasiake it clear that both OOP itself and
learning OOP are very different from their imperatiand procedural counterparts: Mental
representation of programs is different, probleragehdifferent roots, conceptual contents of
knowledge are different, the level of understandthg underlying notional machine is
different, and the overall approach to program giess different. These differences are so
fundamental to learning that we dare to claim thatclassic educational and cognitive results
of novice imperative and procedural programminguithaot be used in the OO context.

Furthermore, the number of educational and cogngitudies of learning OOP is small.
Lister et al. (2006) studied several popular claahsut learning OOP and found practically
no evidence for them in scientific literature. Neit do we know of any results that would
provide evidence for the desirability or efficien@f replacing imperative/procedural
programming education by object-orientation. On tleatrary, Chen, Monge, and Simon
(2006) found no effects of the first programmingamigm and later design skills; Détienne
(1997), Pennington et al. (1995), and Sharp andfy@ri(1999) found positive transfer
effects of traditional structured and proceduradrapches to OO design.

PROPOSAL FOR RESEARCH AGENDA

Tables 1 and 2 draw together OOP research desciibéite previous section. We have
tabulated research articles according to two dimoess the first describing the cognitive

84

From Procedures to Objects

content or skill targeted in an investigation, seeond telling whether the investigation deals
with experts’ performance, novices’ performance pooblems, development of novices’

mental representations and skills, or ways to iw@rthis development with educational

techniques. The tables make it clear that largasasee totally neglected: Even the most
researched areas—novices’ misconceptions in OOR/Ikdge and experts’ program design
processes—have been studied in only a few papers.

If novices are to be helped in their struggles mvlgarning OOP, it is necessary to know
their problems and misconceptions as well as wkpérs know and how they apply their
knowledge. Only then can efficient teaching methaasl contents that have a strong
cognitive basis be devised. Many studies in trad#l programming have compared expert
and novice performance and mental representatibis, providing information on what
distinguishes experts from novices. In the OO domsiich studies are rare; only two studies
in Tables 1 and 2 (Davies et al., 1995; Détien®8,7) cover both experts and novices. We
therefore suggest that research iexpert and novice differencebould be carried out in all
cognitive aspects listed in the tables.

A notable gap in Table 1 covers the OO notionatimree. There are no studies on
experts’ or novices’' understanding of the notiomachine behind OOP; neither are there
studies on teaching a viable notional machine tmlestts. Some suggestions have been
presented for visualizing OO program execution.(é€gies & Gries, 2002; Moreno, Myller,
Sutinen, & Ben-Ari, 2004; Sajaniemi, Byckling, & @k, 2006), but their correspondence to
experts’ or novices’ mental representations orrte#ficiency in providing a mental model of
a correct notional machine has not been studiedeirail. In a recent study (Sajaniemi,
Kuittinen, & Tikansalo, 2007), students were foundbe poor in visualizing relationships
between objects and method calls during prograncugia and students’ understanding of
these relationships (i.e., the structure of théonal OO machine) was found to contain many
errors. We therefore suggest teaperts’ mental representations of the notional @&rhine
should be studied in detail. Moreover, effectivays to convey this knowledge to novices
should also be investigated.

Another gap in Tables 1 and 2 is the lack of ssidnto the cognitive development of
novices’ mental representations and skills. In ptdesupport learning by teaching, steps in
cognitive development must first be known. Basigritive activities—such as chunking—
do, of course, appear in the context of OOP as. wisivever, the building of the notional
machine, construction of OOP knowledge, and detailevelopment of OOP skills and
strategies presumably have components that aréfisgecOOP. We therefore suggest that
novices’ cognitive development in OGRould be studied.

Investigations of mental representations of OOgmms (Corritore & Wiedenbeck,
1999; Wiedenbeck et al., 1999) have probed paatitg knowledge with yes/no questions
divided into categories determined by the reseaschgriori. Such a method reveals whether
participants possess knowledge in those categbuei does not reveal what other types of
knowledge they might have. As a consequence, exadtents of experts’ mental
representations of OO programs are largely unknamahteachers have only vague ideas of
how to best explain important program elements #a&ir relationships to students. We
therefore call foexploratory research into experts’ mental repreaéinhs of OO programs.

Studies in cognitive processes, such as skills strategies, cover mainly experts’
program design. In imperative programming, reseanth experts’ and novices’ program

85

Sajaniemi & Kuittinen

comprehension has increased our understanding efctmprehension processes and,
moreover, of the mental representations of impeggirograms and imperative programming
knowledge. The structure of OO programs differaraech from imperative and procedural

programs that one may presume that their comprérengrocesses do also differ

considerably. Again, some elements (e.g., hypathdsven comprehension) are the same,
but issues related to program structure can benessuo differ. We therefore suggest
research intexperts’ and novices’ OO program comprehension @sees.

Finally, results of the research suggested abadesammarized in Table 3 should be
utilized in devising effective methods for teachi@@P. However, we do not include this
work in the research agenda proposal for two reaséirstly, the right time for such
educational-oriented research will come only aftere is a large body of results obtained
from the research agenda. Secondly, it may welhbe effective ways to transfer experts’
mental representations, skills and strategies tteaat partially revealed during the earlier
research covered by the agenda.

Table 3. Proposal for Research Agenda in OOP and OOP Educati

Performance Development

Topic of Expert Expert vs. Novice Cognition Education
investigation Novice
Mental
representation of ¢ ° i i
notional machine
Mental
representation of i b b
OO programs
Mental
representation of i i
OOP
Program

. [] [] [] []
comprehension
Tracing and o .
debugging
Program design ° °

CONCLUSION

In programming education, there has been a majftristthe programming paradigm used in
the first courses. To please industry and studediscators have moved from imperative and
procedural programming to object-orientation withstudying its necessity or consequences
and without studying how OOP education should beiezh out. Moreover, classic results
from imperative and procedural programming havenbeged as such even though their
applicability in the OO case can be questioned. ®hdt from imperative/procedural

86

From Procedures to Objects

programming to object-orientation is so revolutigninat the use of research results obtained
in the imperative and procedural cases is doulmfiihe OO case. The number of notations
and concepts needed, the size of the notional maakiquired, and the whole orientation of

programming are so different that the basic assimptused in imperative and procedural
programming research do not necessarily hold fgeadmrientation. Even though some

results may apply in object-orientation, there iseged to find out on what occasions this
happens to be the case.

There is a lack of systematic research into thldmental cognitive and educational
issues in learning and teaching OOP. Lister e(20106, p. 160) conclude their paper by
noting that “our community needs to discuss—andatkeb-this issue,” but we claim that the
computer science education research community &ed psychology of programming
community need to rigorously study these issues. fifor that purpose, we have presented a
research agenda comprising

= Constructing a model of the OOP expegkperts’ mental representations of the
notional OO machine; exploratory research into espenental representations of
OO programs

= Understanding the differences between OOP expatts novices:experts’ and
novices’ differences in mental representationsgram comprehension processes,
skills and strategies within OOP

= Fostering OOP novices’ cognitive developmerdvices’ cognitive development in
OOP; ways to convey the notional OO machine toces/i

High dropout rates from OOP courses and poor iegroutcomes pose problems to
students, educators, and educational institutibhese problems can be attacked only with
rigorous research into the psychological and edurattissues involved.

ENDNOTES

1. Imperative and procedural programming are oftersictamed synonyms, but in this papmperativerefers
to programming with variables, assignment, and Enmperative control structures, such as sequence,
iteration, and conditionals, wherga®ceduralcovers procedures, parameters and recursion, also.

2. Here we are interested in differences that arerentieto object-orientation and the way object-efat
concepts are implemented in Java. We do not teaat groblems that occur within the imperative pafts
Java, for example, that using “=" as the assignnopetrator makes some students to confuse assignment
with mathematical equality.

3. In this literature review, we look at programminglyo Thus, we do not include system design litexatu
even though we do include program design literature

REFERENCES

Anderson, J. R. (2000 ognitive psychology and its implicati® (3" ed.). New York: Worth Publishers.
Bednarik, R., & Tukiainen, M. (2007). Analysing amderpreting quantitative eye-tracking data in stedies
of programming: Phases of debugging with multieresentations. In J. Sajaniemi, M. Tukiainen, R.
Bednarik, & S. Nevalainen (Eds.Proceedings of the 19th Annual Workshop of the lirdggy of

87

Sajaniemi & Kuittinen

Programming Interest Grougpp. 158-172). Joensuu, Finland: University of doen Department of
Computer Science and Statistics.

Ben-David Kolikant, Y., & Haberman, B. (2001). Adiing “black boxes” instead of opening “zipper&:
method of teaching novices. IMICSE '01: Proceedings of the Sixth Annual Conference on latiow
and Technology in Computer Science Educafjgm 41-44). New York: ACM Press.

Bennedsen, J., & Caspersen, M. E. (2004). Progragimicontext: A model-first approach to CS1SIGCSE
'04: Proceedings of the 35th SIGCSE Technical Swinpo on Computer Science Educatigp. 477—
481). New York: ACM Press.

Bierre, K., Ventura, P., Phelps, A., & Egert, CO@8). Motivating OOP by blowing things up: An exsecin
cooperation and competition in an introductory Jancggramming course. BIGCSE '06: Proceedings of the
37th SIGCSE Technical Symposium on Computer Sdighazation(pp. 354—358). New York: ACM Press.

Brooks, R. E. (1983). Towards a theory of the cahpnsion of computer progranisternational Journal of
Man-Machine Studied 8, 534-554.

Cassel, L. B., McGettrick, A., Guzdial, M., & Rolb®rE. (2007). The current crisis in computing: \Vae the
real issues? ISIGCSE '07: Proceedings of the 38th SIGCSE TechBigaposium on Computer Science
Education(pp. 329-330). New York: ACM Press.

Chen, T.-Y., Monge, A., & Simon, B. (2006). Relaiship of early programming language to novice gateer
design. InSIGCSE '06: Proceedings of the 37th SIGCSE Techr@ganposium on Computer Science
Education(pp. 495-499). New York: ACM Press.

Cooper, D., & Clancy, M. (1982Dh! Pascal!New York: W. W. Norton & Company.

Cooper, S., Dann, W., & Pausch, R. (2003). Teachbjgcts-first in introductory computer scienceSIGCSE
'03: Proceedings of the 34th SIGCSE Technical Sywmpo on Computer Science Educatigp. 191—
195). New York: ACM Press.

Corritore, C. L., & Wiedenbeck, S. (1991). What dwvices learn during program comprehension?
International Journal of Human-Computer Interactj@ 199-222.

Corritore, C. L., & Wiedenbeck, S. (1999). Mentabresentations of expert procedural and objectiarie
programmers in a software maintenance teg&rnational Journal of Human-Computer Studigg 61-83.

Davies, S. P. (1993). Models and theories of prognang strategylnternational Journal of Man-Machine
Studies39, 237-267.

Davies, S. P., Gilmore, D. J., & Green, T. R. @98). Are objects that important? Effects of exigertand
familiarity on classification of object-orientedam Human-Computer Interactio0, 227-248.

Détienne, F. (1997). Assessing the cognitive camseces of the object-oriented approach: A survesnubirical
research on object-oriented design by individuatstaamslinteracting with Computer®, 47—72.

Détienne, F. (200250ftware design: Cognitive aspedt®ndon: Springer-Verlag.

de Raadt, M., Watson, R., & Toleman, M. (2002). dizenge trends in introductory programming courses.|
Cohen & E. Boyd (Eds.Rroceedings of Informing Science and IT Educati@mf€rence(pp. 329-337).
Santa Rosa, CA, USA: Informing Science Institute.

du Boulay, B. (1989). Some difficulties of learnitgprogram. In E. Soloway & J. C. Spohrer (EdStudying
the novice programmepp. 283-299). Hillsdale, NJ, USA: Lawrence ErliveAssociates.

du Boulay, B., O'Shea, T., & Monk, J. (1981). Thiadk box inside the glass box: Presenting computing
concepts to novicetnternational Journal of Man-Machine Studjdsgl, 237-249.

Ebrahimi, A., & Schweikert, C. (2006). Empiricalidy of novice programming with plans and obje8i$&sCSE
Bulletin, 38(4), 52-54.

Eckerdal, A., & Thuné, M. (2005). Novice Java pangmers’ conceptions of “object” and “class”, and
variation theory. INTICSE '05 Proceedings of the 10th Annual SIGCSE Conferenckmovation and
Technology in Computer Science Educafigm 89-93). New York: ACM Press.

Fleury, A. E. (1991). Parameter passing: The rilestudents constru@IGCSE Bulletin, 23), 283—-286.

88

From Procedures to Objects

Fleury, A. E. (2000). Programming in Java: Studsmstructed rules. I8IGCSE '00: Proceedings of the 31st
SIGCSE Technical Symposium on Computer Scienceafiolu¢pp. 197—-201). New York: ACM Press.

Gilmore, D. J., & Green, T. R. G. (1984). Compredien and recall of miniature programisternational
Journal of Man-Machine Studig®l, 31-48.

Green, T. R. G., Bellamy, R. K. E., & Parker, J. (#987). Parsing and gnisrap: A model of device Usé&.
M. Olson, S. Sheppard, & E. Soloway (Ed&jmpirical studies of programmers: Second worksmm
132-146). Norwood, NJ, USA: Ablex Publishing Compan

Gries, P., & Gries, D. (2002). Frames and foldéksteachable memory model for JavBhe Journal of
Computing Sciences in Collegé&3(6), 182—-196.

Holland, S., Griffiths, R., & Woodman, M. (1997)vaiding object misconception&SIGCSE Bulletin29(1),
131-134.

Holliday, M. A., & Luginbuhl, D. (2004). CS1 assesnt using memory diagrams. IBIGCSE ’'04:
Proceedings of the 35th SIGCSE Technical Symposiut@omputer Science Educati¢op. 200-204).
New York: ACM Press.

Hsia, J. I, Simpson, E., Smith, D., & CartwrigRt, (2005). Taming Java for the classroomSIGCSE '05:
Proceedings of the 36th SIGCSE Technical Symposiut@omputer Science Educatigop. 327-331).
New York: ACM Press.

Kinnunen, P., & Malmi, L. (2006). Why students dropt CS1 course? IfCER '06: Proceedings of the 2006
International Workshop on Computing Education Reseépp. 97-108). New York: ACM Press.

Kolling, M., & Henriksen, P. (2005). Game programignin introductory courses with direct state matapan.
In ITICSE '05: Proceedings of the 10th Annual SIGCSihf€rence on Innovation and Technology in
Computer Science Educatigpp. 59—63). New York: ACM Press.

Lee, A., & Pennington, N. (1994). The effects obgmamming on cognitive activities in designternational
Journal of Human-Computer Studjd$), 577-601.

Letovsky, S. (1986). Cognitive processes in progmomprehension. In E. Soloway & S. lyengar (Eds.),
Empirical studies of programme(pp. 58—79). Norwood, NJ: Ablex Publishing Company

Levy, D. (2001). Insights and conflicts in discugsrecursion: A case stud@gomputer Science Educatioht,
305-322.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, Wamer, J., Lindholm, M., McCartney, R., Mostréom,E],
Sanders, K., Seppdalg, O., Simon, B., & Thomas2004). A multi-national study of reading and tragin
skills in novice programmerS&IGCSE Bulletin36(4), 119-150.

Lister, R., Berglund, A., Clear, T., Bergin, J.,rda-Doxas, K., Hanks, B., Hitchner, L., Luxton-Rei A.,
Sanders, K., Schulte, C., & Whalley, J. L. (200Besearch perspectives on the objects-early debate.
SIGCSE Bulletin38(4), 146-165.

Lopez-Herrejon, R. E., & Schulman, M. (2004). Usimgeractive technology in a short Java course: An
experience report. INTICSE '04: Proceedings of the 9th Annual SIGCSEf€e@nce on Innovation and
Technology in Computer Science Educa(pp. 203—-207). New York: ACM Press.

Mahmoud, Q. H., Dobosiewicz, W., & Swayne, D. (2D0Redesigning introductory computer programming
with HTML, JavaScript, and Java. 8IGCSE '04: Proceedings of the 35th SIGCSE TechS8igaposium
on Computer Science Educatifpp. 120-124). New York: ACM Press.

Marrero, W., & Settle, A. (2005). Testing first: phmasizing testing in early programming coursedTI€SE
'05: Proceedings of the 10th Annual SIGCSE Confegeon Innovation and Technology in Computer
Science Educatio(pp. 4-8). New York: ACM Press.

McCracken, M., Wilusz, T., Almstrum, V., Diaz, B5uzdial, M., Hagan, D., Ben-David Kolikant, Y., Lexx
C., Thomas, L., & Utting, I. (2001). A multi-natiah multi-institutional study of assessment of
programming skills of first-year CS studer8$GCSE Bulletin33(4), 125-140.

Mead, J., Gray, S., Hamer, J., James, R., Sorv&Jair, C. S., & Thomas, L. (2006). A cognitivepapach to
identifying measurable milestones for programmikig acquisition. SIGCSE Bulletin38(4), 182—-194.

89

Sajaniemi & Kuittinen

Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M2004). Visualizing programs with Jeliot 3. VI '04:
Proceedings of the Working Conference on AdvandsabYVInterfacegpp. 373—-376). New York: ACM.

Pennington, N. (1987). Comprehension strategiggagramming. In G. M. Olson, S. Sheppard, & E. 8alp
(Eds.),Empirical studies of programmers: Second worksfgp 100-113). Norwood, NJ, USA: Ablex
Publishing Company.

Pennington, N., Lee, A., & Rehder, B. (1995). Cdigei activities and levels of abstraction in proged and
object-oriented desigituman-Computer InteractioilQ, 171-226.

Perkins, D. N., & Martin, F. (1986). Fragile knodtge and neglected strategies in novice programmeis.
Soloway & S. lyengar (Eds.Empirical studies of programmer®p. 213—-229). Norwood, NJ, USA:
Ablex Publishing Company.

Radenski, A. (2006). “Python first”: A lab-baseditial introduction to computer science. IRICSE ’'06:
Proceedings of the 11th Annual SIGCSE Conferencemovation and Technology in Computer Science
Education(pp. 197-201). New York: ACM Press.

Ragonis, N., & Ben-Ari, M. (2005). A long-term irstigation of the comprehension of OOP concepts by
novices.Computer Science Educatialb, 203—-221.

Rist, R. S. (1989). Schema creation in programnfiggnitive Sciengel3, 389-414.

Robins, A., Rountree, J., & Rountree, N. (2003)arnéng and teaching programming: A review and distan.
Computer Science EducatialB, 137-172.

Romero, P., Lutz, R., Cox, R., & du Boulay, B. (2D0Co-ordination of multiple external represerdas
during Java program debugging.Rroceedings of the IEEE 2002 Symposia on HumanriCelwmputing
Languages and Environmer(fgp. 207-214). Los Alamitos, CA, USA: IEEE Compueciety Press.

Rosson, M. B., & Gold, E. (1989roblem-solution mapping in object-oriented desityew York: IBM T. J.
Watson Research Center.

Sajaniemi, J., Ben-Ari, M., Byckling, P., Gerdt,, R Kulikova, Y. (2006). Roles of variables in tlere
programming paradigm&omputer Science Educatial6, 261-279.

Sajaniemi, J., Byckling, P., & Gerdt, P. (2006). thfghor-based animation of OO programs.SwitVis '06:
Proceedings of the ACM Symposium on Software \fistign (pp. 173—-174). New York: ACM Press.

Sajaniemi, J., Kuittinen, M., & Tikansalo, T. (2Q0A study of the development of students’ visuatians of
program state during an elementary object-orieptegramming course. IflCER '07: Proceedings of the
Third International Workshop on Computing Educatiesearch{pp. 1-15). New York: ACM Press.

Samurcay, R. (1989). The concept of variable ing@mmming: Its meaning and use in problem-solving by
novice programmers. In E. Soloway & J. C. SpohEas(), Studying the novice programmép. 161—
178). Hillsdale, NJ, USA: Lawrence Erlbaum Asscesat

Shanmugasundaram, V., Juell, P., & Hill, C. (200&)owledge building using visualizations. IIRICSE '06:
Proceedings of the 11th Annual SIGCSE Conferencemovation and Technology in Computer Science
Education(pp. 23—-27). New York: ACM Press.

Sharp, H., & Griffyth, J. (1999). The effect of preus software development experience on undersigritie
object-oriented paradigniournal of Computers in Mathematics and Sciencefieg 18, 245-265.

Soloway, E., & Spohrer, J. C. (Eds.). (198Sjudying the novice programmetillsdale, NJ, USA: Lawrence
Erlbaum Associates.

Spohrer, J. C., Soloway, E., & Pope, E. (1989).calfplan analysis of buggy Pascal programs. Indogay
& J. C. Spohrer (Eds.Studying the novice programmgop. 355-399). Hillsdale, NJ, USA: Lawrence
Erlbaum Associates.

Teif, M., & Hazzan, O. (2006). Partonomy and taxmyoin object-oriented thinking: Junior high school
students’ perceptions of object-oriented basic epteSIGCSE Bulletin38(4), 55-60.

Thomas, L., Ratcliffe, M., & Thomasson, B. (2008¢affolding with object diagrams in first year pragming
classes: Some unexpected resultsSIBCSE '04: Proceedings of the 35th SIGCSE TechBigaposium
on Computer Science Educatifpp. 250-254). New York: ACM Press.

90

From Procedures to Objects

Truong, N., Bancroft, P., & Roe, P. (2005). Leagnto program through the web. INiCSE '05 Proceedings
of the 10th Annual SIGCSE Conference on Innovadiath Technology in Computer Science Education
(pp. 9-13). New York: ACM Press.

Utting, |. (2006). Problems in the initial teachiofprogramming using Java: The case for repladRfgE with
J2ME. InITICSE '06: Proceedings of the 11th Annual SIGC®Bf€rence on Innovation and Technology
in Computer Science Educati¢op. 193-196). New York: ACM Press.

Vainio, V., & Sajaniemi, J. (2007). Factors in no&iprogrammers’ poor tracing skills. ITICSE '07:
Proceedings of the 12th Annual Conference on Inti@wand Technology in Computer Science Education
(pp. 236—-240). New York: ACM Press.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., &itGe, C. L. (1999). A comparison of the
comprehension of object-oriented and procedurabnams by novice programmerkteracting with
Computersl11, 255-282.

Winslow, L. E. (1996). Programming pedagogy: A psyjogical overviewSIGCSE Bulletin28(3), 17—-22.

Authors’ Note

All correspondence should be addressed to:
Jorma Sajaniemi

University of Joensuu

P.O. Box 111

FI-80101 Joensuu

Finland

saja@cs.joensuul.fi

Human Technology: An Interdisciplinary Journal onrflans inCT Environments
ISSN 1795-6889
www.humantechnology.jyu.fi

91

Human Technology:
An Interdisciplinary Journal on Humans in ICT Environments

www.humantechnology.jyu.fi

