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FROM PROCEDURES TO OBJECTS: A RESEARCH AGENDA 
FOR THE PSYCHOLOGY OF OBJECT-ORIENTED 

PROGRAMMING EDUCATION 
 
 
 
 
 
 

Abstract: Programming education has experienced a shift from imperative and procedural 
programming to object-orientation. This shift has been motivated by educators’ desire to 
please the information technology industry and potential students; it is not motivated by 
research either in psychology of programming or in computer science education. There are 
practically no results that would indicate that such a shift is desirable, needed in the first 
place, or even effective for learning programming. Moreover, there has been an implicit 
assumption that classic results on imperative and procedural programming education and 
learning apply to object-oriented programming (OOP) as well. We argue that this is not the 
case and call for systematic research into the fundamental cognitive and educational issues 
in learning and teaching OOP. We also present a research agenda intended to improve the 
understanding of OOP and OOP education. 
 
Keywords: programming education, procedural programming, object-oriented 
programming, psychology of programming. 

 
 

INTRODUCTION 
 
During the last 10 years, programming education has experienced a shift from imperative and 
procedural programming to object-oriented programming (OOP). This shift has been 
motivated by educators’ desire to please the information technology industry, on one hand, 
and potential students on the other. Object-orientation and Java have been spreading as the 
most important implementation platform for new, Web-based applications with widespread 
visibility among computer users, which has created the illusion that the word programming 
equals Java OOP. Thus, students want to learn Java from the very beginning of their 
programming studies. Teachers’ selection of the first programming language is dominated by 
student demand and a willingness to provide students with marketable skills (de Raadt, 
Watson, & Toleman, 2002), that is, Java programming. With the current drop in enrollments 
to academic computing programs (Cassel, McGettrick, Guzdial, & Roberts, 2007) educators’  
 
 
© 2008 Jorma Sajaniemi and Marja Kuittinen, and the Agora Center, University of Jyväskylä   
URN:NBNfi:jyu-200804151354 

Jorma Sajaniemi  
Department of Computer Science and 

Statistics, University of Joensuu 
Joensuu, Finland 

Marja Kuittinen  
Department of Computer Science and 

Statistics, University of Joensuu 
Joensuu, Finland 



Sajaniemi & Kuittinen 

76 

 
thirst for pleasing potential students will probably only increase. Moreover, many companies 
want to hire students who know how to program in Java and educators may think that if an 
institute is not teaching Java, its reputation among those companies is damaged. 
 It should be noted that the shift to object-orientation in education is not motivated by 
psychology of programming or computer science education research: There are practically no 
results that would indicate that such a shift is desirable, needed in the first place, or even 
effective for learning programming (Lister et al., 2006). Yet, learning programming should be 
the most important issue—not learning the peculiarities of a single paradigm or a certain 
language. Note that “learning programming” does not refer to imperative1 or procedural—
neither functional nor logic—programming, but learning programming in a way that can be 
applied in many programming paradigms and many programming languages. 
 Indeed, we are surprised to find out that the cognitive consequences of the shift to object-
orientation had not been studied before the shift, and only superficially even after it. There 
are some studies on the misunderstanding of object-oriented (OO) concepts but the 
development of OOP skills and comprehension of OO concepts have not been studied. There 
has been an implicit assumption that classic results on imperative and procedural 
programming education and learning (see Robins, Rountree, & Rountree, 2003, and 
Winslow, 1996, for reviews) also apply to OOP, but we fear that this is not always the case. 
OOP is so much more complicated than imperative and procedural programming—both at the 
concrete notational level and at a more abstract conceptual level—that there are good grounds 
to question whether the classic results can be generalized to object-orientation. 
 What this means in practice is that educational institutions around the world are 
implementing curricula and teaching methods that are not based on research, but on intuition. 
There are practically no theories on the development of programming skills or comprehension 
of programming concepts in the OO case. It is no wonder that educators are fighting against 
high dropout rates from (e.g., Kinnunen & Malmi, 2006) and poor learning outcomes in (e.g., 
McCracken et al., 2001) programming courses. Research has offered educators various 
pedagogic tricks (e.g., Bennedsen & Caspersen, 2004; Bierre, Ventura, Phelps, & Egert 2006; 
S. Cooper, Dann, & Pausch, 2003; Holliday & Luginbuhl, 2004; Hsia, Simpson, Smith, & 
Cartwright, 2005; Kölling & Henriksen, 2005; Lopez-Herrejon & Schulman, 2004; Mahmoud, 
Dobosiewicz, & Swayne, 2004; Marrero & Settle, 2005; Shanmugasundaram, Juell, & Hill, 
2006; Truong, Bancroft, & Roe, 2005; Utting, 2006), but the lack of solid psychological and 
educational theories makes a holistic approach impossible. 
 This paper presents a case for systematic research into the comprehension of 
programming and the development of skills in the OO paradigm. In order to understand the 
huge shift from imperative and procedural programming to object-orientation, we start by 
comparing these paradigms at three of the five domains that du Boulay (1989) presents as 
issues that a learner must master: notations of the particular language, the notional machine 
that describes how programs in the particular language are executed, and the orientation, 
describing what programs are for and what can be done with them. Differences between 
programming paradigms in du Boulay’s two remaining domains, structures (abstract 
solutions to standard problems) and pragmatics (the skills of planning, developing, testing, 
debugging, etc.), are more complicated and will not be treated in this paper. It is clear that if 
differences in the basic constructs—notations, notional machine, and orientation—make the 
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applicability of classic results to object-orientation dubious, then differences in more 
complicated issues will make the situation even worse. 
 This paper is structured as follows. First, we will look at the differences between 
imperative and procedural programming versus OOP with respect to notations, notional 
machine, and orientation. Then, we will review research literature and see how it supports our 
claims. Finally, we will present a research agenda for OOP. 
 
 

THE NOTATIONAL REVOLUTION 
 
Notations needed in Java programs do differ remarkably from those of imperative and 
procedural programming2. This is partially due to the larger number of programming 
concepts needed, but also due to the structure of the Java language (Radenski, 2006). 
 For example, consider the algorithm for simple user interaction in Figure 1, given in a 
natural language, English. The pseudo code version of this algorithm is given in Figure 2, and 
a Pascal program for the same task in Figure 3 (from a popular textbook of its time, D. 
Cooper & Clancy, 1982, p. 15). Even though the notations differ in their level of formality, 
they look strikingly similar. When we compare the natural language version (that should be 
in a notation familiar to students) in Figure 1 to the Pascal version (that the students should 
learn to understand), the new notations and the related concepts are 

� “program,” name of the program: program 
� interaction ports needed: input/output 
� “integer” and the variable name: variables 
� “write,” “writeln,” and “readln”: input/output  
� “var,” “begin,” “end,” and punctuation: language syntax. 

 The first two of these are required by the language, but are simple to students (this is a 
program with input and output); the next two are just what the students are learning (the 
concepts of variable and input/output); the last one is something cryptic required by the 
language. Parts required by the language vary from one language to another. For example, in 
Python there would be no special punctuation or statement brackets and the program line 
would not be needed. 
 Now, let us turn to the Java version of the same program given in Figure 4, which must 
be stored in a file with a certain name, Interactive.java. (We assume the existence of another 
class for user input stored in the file Input.java). Compared with Figure 1, the new notations 
and the related concepts are: 

� “public”: visibility 
� “class,” name of the class: classes and objects 
� “static”: access rights 
� “void”: return values 
� “main”: program 
� method name and its argument: methods and their arguments 
� “String,” “[],” “System,” and “Input”: predefined classes 
� “int” and the variable name: variables 
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� “println,” and “readInt”: input/output 
� punctuation: language syntax 

 This list is much longer than the corresponding list for Pascal. And, what is more 
important, it contains a large number of difficult concepts that are not required for the 
solution of the problem, but by the structure of the language: classes and objects, visibility, 
access rights, method definitions and calls, and return values. 
 

Figure 1:   An example program in English. 
 

Figure 2:  The example program in pseudo code.  
 

Figure 3:   The example program in Pascal. 

 

Figure 4:   The example program in Java. 
 

 

Tell the user that this is an interactive program. 
Ask the user to enter an integer value. 
Get the number from the user. 
Tell the user what the entered number was. 

write 'This program interacts with its user.' 
write 'Please enter an integer value.' 
read Number 
write 'The number you entered was:' 
write Number 

program Interactive (input, output); 
 var Number: integer; 
begin 
 writeln ('This program interacts with its user.'); 
 writeln ('Please enter an integer value.'); 
 readln (Number); 
 write ('The number you entered was:'); 
 writeln (Number) 
end. 

public class Interactive { 
 public static void main(String[] args) { 
  int Number; 
  System.out.println("This program interacts with its user."); 
  System.out.println("Please enter an integer value."); 
  Number = Input.readInt(); 
  System.out.print("The number you entered was:"); 
  System.out.println(Number); 
 } 
} 
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 One may argue that this example program favors imperative programming and that the 
first programs used in OOP courses do not contain this much input and output. Even if that 
were the case, the first Java program will contain almost all of the above concepts. 
 Thus, the shift to object-orientation and Java has made a revolution at the notational 
level, even though this might not be obvious at first sight: The lengths of the programs in 
Figures 3 and 4 are practically the same, yet the number of new notations and concepts is 
remarkably higher in the Java case. This rise is not due to the programming problems that are 
solved, but rather to the requirements of the language used. 
 
 

THE NOTIONAL MACHINE REVOLUTION 
 
In order to be able to understand what individual constructs of a programming language mean 
and how programs written in that language work, a student must understand how the notional 
machine (du Boulay, O’Shea, & Monk, 1981) underlying that language works. Programs 
cannot be understood as strings of characters only; students must understand, for example, 
what a variable is and how it is affected by assignments. A more thorough understanding of 
programming includes, for instance, knowledge of typical uses of variables and control 
structures (Détienne, 2002), which also relies on a proper understanding of the notional 
machine. The machine needed for understanding the first programs should be simple, or else 
learning programming becomes hard (du Boulay et al., 1981).  
 In the procedural approach, instruction typically starts with the imperative constructs: 
variables, input/output, conditionals, and looping constructs. The notional machine needed to 
explain these notions consists of  

� variable: location or slot with a name and contents  
� input/output: two devices connecting variables to external world  
� program execution: a program counter referring to a certain point at the program.  

 A notional machine that consists of the above parts is clearly capable of executing the 
program in Figure 3 and can be used in teaching the first steps in imperative programming.  
 An extension to this notional machine is needed when pointers are included:  

� pointer: contents of a variable may be the location of another variable.  

 Further extensions are needed when procedures are introduced:  
� procedure call: a call stack  
� parameter: room for parameters in the call stack and parameter-passing 

mechanisms  
� return value: mechanism for return value, possibly with room for it in the call stack.  

It should be noted that these extensions are fully compatible with the initial notional machine 
and they can be introduced gradually along with the introduction of new programming 
language constructs.  
 In contrast to the procedural approach, OOP requires a much larger and more 
complicated notional machine from the very beginning. A notional machine that is capable of 
executing the program in Figure 4 must contain all of the following parts (see the list of 
concepts of the program given in the previous section):  
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� object: a heap for objects  
� method: a call stack  
� parameter: room for parameters in the call stack and parameter-passing 

mechanisms  
� return value: mechanism for return value, possibly with room for it in the call stack  
� variable: location or slot with a name and contents (in the call stack)  
� input/output: two devices connecting variables to external world  
� object reference: contents of a variable or a parameter may be the location of an 

object in the heap  
� program execution: a program counter referring to a certain point at the program.  

Moreover, there are concepts that are needed even though they are not directly expressed in 
the notional machine: visibility and access rights concerning validity of the program, and the 
relationship between classes and objects concerning the relationship between the program 
text and the object heap.  
 Compared with the notional machine in the procedural case, the difference is huge. The 
OO notional machine described above and needed for the simple program in Figure 4 is not 
only larger than the corresponding notional machine needed for the equivalent program in 
Figure 3, but it is much larger than the total notional machine in the procedural case. 
Furthermore, the notional machine for OOP described above does not even contain parts 
needed to describe other OO constructs that are typically introduced in the first programming 
course: subclasses and inheritance, implicit calls of superclass constructors, and polymorphism.  
 One might argue that there is no need for students to understand notations and the 
notional machine completely—students can simply put aside unnecessary parts as boiler 
plates when first learning. The problem with this thinking is that novices have no means to 
decide which issues are unnecessary and which must be attended to when reading or writing 
programs. The use of boiler plate code mystifies programming and obscures concepts that 
should be learned. Programming should not be taught as a copy-and-paste art that only 
incidentally results in a correctly functioning program, but rather as a clearly defined activity 
that deals with unambiguous constructs. Otherwise, the central concepts remain blurred.  
 In summary, the shift to object-orientation and Java has made a revolution at the notional 
machine level. Not only is the size of the required notional machine much larger than in the 
procedural case, but the initial notional machine needed in order to understand the first 
programs is much more complicated, as well.  
 
 

THE ORIENTATION REVOLUTION 
 

Sajaniemi, Ben-Ari, Byckling, Gerdt, and Kulikova (2006) have studied example programs in 
elementary programming textbooks among three programming paradigms: procedural, 
object-oriented, and functional. They found major differences in the programming problem 
types used in these various programming paradigms. The most important issue in procedural 
programming textbooks is the functionality of programs: Example programs compute 
meaningful values based on input and print the results for users through simple output 
mechanisms. OOP textbooks deal with data modeling on one hand, and demonstrate specific 
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language features on the other. Even though message passing structures may be complex, 
their net effects are trivial from the user’s perspective. Finally, functional programming 
textbooks stress data manipulation techniques. Thus, the orientation (i.e., what programs are 
for) is very different in these paradigms.  
 This finding also means that students’ tasks are different depending on the programming 
paradigm used for learning. In procedural programming, students try to write programs that 
do meaningful actions and computations, whereas in OOP students concentrate on creating 
conceptual models for (usually concrete) data. Détienne (1997) notes that when novices 
design OO programs, the activity of finding classes consumes their attention; they think about 
functionality only late in the design activity. Ebrahimi and Schweikert (2006) found that 
students have problems in understanding object-orientation and incorporating OO concepts 
into problem solving. Students tend to spend more time trying to understand objects and less 
time on problem solving. Thus, the shift to object-orientation has made a revolution at the 
orientation level and regarding students’ tasks in programming.  
 
 

RESEARCH SUPPORT 
 
In the previous sections, we have demonstrated that the shift from imperative and procedural 
programming education to OOP has denoted a revolution in the complexity of notations, 
concepts and the notional machine needed, and in the orientation and tasks carried out by 
students as programming exercises. In this section, we will look at research literature3 and see 
what it says about this revolution.  
 
Imperative and Procedural Programming  
 
Classic works on programming education and the psychology of novice and expert 
programming (e.g., Brooks, 1983; Corritore & Wiedenbeck, 1991; Davies, 1993; Gilmore & 
Green, 1984; Letovsky, 1986; Pennington, 1987; Perkins & Martin, 1986; Rist, 1989; 
Soloway & Spohrer, 1989; see also Robins et al., 2003, and Winslow, 1996, for excellent 
reviews) are primarily based on imperative and, to some extent, also procedural 
programming—in many cases Pascal programming, which is why we used Pascal in Figure 3. 
It is evident from this literature that learning programming is challenging even in the 
imperative case. Novices often have problems understanding basic concepts, such as 
variables and basic imperative control structures (Ben-David Kolikant & Haberman, 2001; 
Samurçay, 1989; Spohrer, Soloway, & Pope, 1989)—that is, they have problems in 
understanding the basic notional machine required for imperative programming.  
 Novices’ knowledge about the imperative parts of programming languages has been 
found to be at first fragile (Perkins & Martin, 1986), such as inert knowledge that students 
cannot readily master, or misplaced knowledge migrated to inappropriate contexts. As a 
consequence, students have problems in applying their knowledge even though the 
knowledge itself may be correct. From a cognitive perspective, the causes of fragile 
knowledge include a sparse network of associations in long-term memory, that is, weak 
connections between different concepts, and underdifferentiation of language commands. 
Yet, the hardest part of learning is not in grasping the syntax and semantics of some 
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language, but in adopting ways to construct larger program units that are needed to solve the 
problem at hand (see, e.g., Winslow, 1996).  
 A specific source of problems is the limited capacity of working memory (Anderson, 
2000, p. 176). Even when writing simple imperative programs consisting of just a few lines, 
expert programmers—let alone novices—often cannot form a complete mental representation 
of the program in their working memory. Even with the help of external representations, the 
number of simultaneously needed details easily exceeds the limitations of human working 
memory (Green, Bellamy, & Parker, 1987). Highly economical chunking of knowledge is 
therefore crucial for good performance in programming. Because novices’ programming 
knowledge is fragile, efficient chunking is difficult for them.  
 In summary, educational and psychological research into novice imperative and 
procedural programming indicates that even the simplest imperative notional machine is 
challenging for students to learn, students’ knowledge is fragile, and students have serious 
problems in combining basic constructs of a programming language to form larger, 
meaningful structures.  
 
Object-Oriented Programming 
 
Very little psychological and educational research exists for novice OOP. Most papers (e.g., 
Bennedsen & Caspersen, 2004; Bierre et al., 2006; S. Cooper et al., 2003; Holliday & 
Luginbuhl, 2004; Hsia et al., 2005; Kölling & Henriksen, 2005; Lopez-Herrejon & 
Schulman, 2004; Mahmoud et al,. 2004; Marrero & Settle, 2005; Shanmugasundaram et al., 
2006; Truong et al., 2005; Utting, 2006) introduce various pedagogic techniques and tips, 
such as visualization tools or curriculum changes, without consideration for educational or 
psychological theories. Some (e.g., Bednarik & Tukiainen, 2007; Romero, Lutz, Cox, & du 
Boulay, 2002) study the use of such tools in the context of an OOP language but not relating 
their findings to OO concepts or the OO paradigm. Only very few articles (see Tables 1 and 
2) analyze object-orientation from a cognitive or educational perspective, that is, increase the 
field’s understanding of OOP learning and how it differs from the imperative and procedural 
cases. We will next review these results. 
 Davies, Gilmore, and Green (1995) asked novices and experts to sort cards containing 
short fragments of a large OO program library and found that experts tended to focus on 
functional relations whereas novices were much more concerned with objects and inheritance 
relations. Thus, novices’ mental representations of the structure of large OO programs 
concentrates on objects and inheritance, that is, on elements that do not exist in the procedural 
case. Corritore and Wiedenbeck (1999) and Wiedenbeck, Ramalingam, Sarasamma, and 
Corritore (1999) have studied novices and experts comprehending short procedural and OO 
programs and found that, in the OO case, the overall function of programs is understood better 
than details of, for example, control flow; yet with procedural programs, comprehenders’ 
knowledge is more balanced. These results indicate that programmers’ mental representations 
of procedural and OO programs do differ qualitatively. As the nature of mental representations 
is strongly related with learning programming, this finding proposes the existence of 
fundamental differences between learning procedural programming and learning OOP.  
 Eckerdal and Thuné (2005) have studied novices’ understanding of class and object and 
found several categories of conception of these concepts. Détienne (1997), Holland, Griffiths, 
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and Woodman (1997), Ragonis and Ben-Ari (2005), and Teif and Hazzan (2006) have found 
that students have severe misconceptions about fundamental OO concepts, such as classes and 
inheritance. Fleury (2000) has found several misconceptions concerning the construction and 
use of objects in Java. In procedural programming, misconceptions about parameter passing 
(Fleury, 1991) and recursion (Levy, 2001) have been found; in imperative programming only 
fragile knowledge instead of misconceptions has been reported. In consequence, problems in 
learning seem to have different roots in OOP than in imperative programming.  
 

Table 1.   Psychological and Educational Research on OOP: Mental Representation 

Topic of 
investigation 

Expert 
performance 

Novice performance Cognitive 
development 

Programming 
education 

Notional machine/ 
structure 

    

Notional machine/ 
detailed contents 

    

Notional machine/ 
misconceptions 

    

OO programs/ 
structure 

Davies et al. 
(1995) 

Davies et al. (1995)   

OO programs/ 
detailed contents 

Corritore and 
Wiedenbeck 
(1999) 

Wiedenbeck et al. 
(1999) 

  

OO programs/ 
misconceptions 

    

OOP/ structure     
OOP/ detailed 
contents 

 Eckerdal and Thuné 
(2005) 

 Mead et al. 
(2006) 

OOP/ 
misconceptions 

 Détienne (1997); 
Fleury (2000); 
Holland et al. (1997); 
Ragonis and Ben-Ari 
(2005); Teif and 
Hazzan (2006) 

  

 
 

Table 2.   Psychological and Educational Research on OOP: Skills and Strategies. 

Topic of 
investigation 

Expert 
performance 

Novice performance Cognitive 
development  

Programming 
education 

Program 
comprehension 

    

Tracing and 
debugging 

 Lister et al. (2004); 
Vainio and Sajaniemi 
(2007) 

 Thomas et al. 
(2004) 

Program design Détienne (1997); 
Lee and 
Pennington 
(1994); 
Pennington et 
al. (1995); 
Rosson and 
Gold (1989) 

Détienne (1997)   



Sajaniemi & Kuittinen 

84 

 Mead et al. (2006) have compared cognitive problems in learning procedural and OOP and 
developed a set of central concepts in the form of “anchor concept graphs” for both paradigms. 
The two graphs differ considerably, providing more evidence for the assumption that learning 
procedural programming and learning OOP are very different in nature.  
 Thomas, Ratcliffe, and Thomasson (2004) found that students did not perform better in 
tracing OO code fragments when they were provided with ready-made partial object 
diagrams, nor did they draw their own diagrams more often in a follow-up test. On the other 
hand, Lister et al. (2004) found that many students were able to track values of numeric 
variables on paper, and Vainio and Sajaniemi (2007) found that students were able to draw 
values of primitive types, but not object references. Taken together, these results imply that 
students have more problems in making external representations of OO parts than imperative 
parts of the notional machine, that is, the OO notional machine is even more poorly 
understood by students than the imperative notional machine.  
 In her state-of-art review of empirical research on object-oriented design, Détienne (1997) 
examined the processes involved in designing in the OO paradigm and in the procedural 
paradigm. Among other things, she reports on findings of Lee and Pennington (1994), 
Pennington, Lee, and Rehder (1995), and Rosson and Gold (1989) concerning the differences 
between OO designers and procedural designers. OO designers seem to base their solutions on 
the problem domain itself, whereas procedural designers use generic programming constructs 
for structuring their solutions. Thus, the overall approach in program design differs between 
procedural and OO programming, and teaching should acknowledge this difference.  
 
Discussion  
 
Even though studies into OOP are few, the above results make it clear that both OOP itself and 
learning OOP are very different from their imperative and procedural counterparts: Mental 
representation of programs is different, problems have different roots, conceptual contents of 
knowledge are different, the level of understanding the underlying notional machine is 
different, and the overall approach to program design is different. These differences are so 
fundamental to learning that we dare to claim that the classic educational and cognitive results 
of novice imperative and procedural programming should not be used in the OO context.  
 Furthermore, the number of educational and cognitive studies of learning OOP is small. 
Lister et al. (2006) studied several popular claims about learning OOP and found practically 
no evidence for them in scientific literature. Neither do we know of any results that would 
provide evidence for the desirability or efficiency of replacing imperative/procedural 
programming education by object-orientation. On the contrary, Chen, Monge, and Simon 
(2006) found no effects of the first programming paradigm and later design skills; Détienne 
(1997), Pennington et al. (1995), and Sharp and Griffyth (1999) found positive transfer 
effects of traditional structured and procedural approaches to OO design.  
 
 

PROPOSAL FOR RESEARCH AGENDA 
 
Tables 1 and 2 draw together OOP research described in the previous section. We have 
tabulated research articles according to two dimensions: the first describing the cognitive 
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content or skill targeted in an investigation, the second telling whether the investigation deals 
with experts’ performance, novices’ performance or problems, development of novices’ 
mental representations and skills, or ways to improve this development with educational 
techniques. The tables make it clear that large areas are totally neglected: Even the most 
researched areas—novices’ misconceptions in OOP knowledge and experts’ program design 
processes—have been studied in only a few papers.  
 If novices are to be helped in their struggles when learning OOP, it is necessary to know 
their problems and misconceptions as well as what experts know and how they apply their 
knowledge. Only then can efficient teaching methods and contents that have a strong 
cognitive basis be devised. Many studies in traditional programming have compared expert 
and novice performance and mental representations, thus providing information on what 
distinguishes experts from novices. In the OO domain, such studies are rare; only two studies 
in Tables 1 and 2 (Davies et al., 1995; Détienne, 1997) cover both experts and novices. We 
therefore suggest that research into expert and novice differences should be carried out in all 
cognitive aspects listed in the tables.  
 A notable gap in Table 1 covers the OO notional machine. There are no studies on 
experts’ or novices’ understanding of the notional machine behind OOP; neither are there 
studies on teaching a viable notional machine to students. Some suggestions have been 
presented for visualizing OO program execution (e.g., Gries & Gries, 2002; Moreno, Myller, 
Sutinen, & Ben-Ari, 2004; Sajaniemi, Byckling, & Gerdt, 2006), but their correspondence to 
experts’ or novices’ mental representations or their efficiency in providing a mental model of 
a correct notional machine has not been studied in detail. In a recent study (Sajaniemi, 
Kuittinen, & Tikansalo, 2007), students were found to be poor in visualizing relationships 
between objects and method calls during program execution and students’ understanding of 
these relationships (i.e., the structure of the notional OO machine) was found to contain many 
errors. We therefore suggest that experts’ mental representations of the notional OO machine 
should be studied in detail. Moreover, effective ways to convey this knowledge to novices 
should also be investigated.  
 Another gap in Tables 1 and 2 is the lack of studies into the cognitive development of 
novices’ mental representations and skills. In order to support learning by teaching, steps in 
cognitive development must first be known. Basic cognitive activities—such as chunking—
do, of course, appear in the context of OOP as well. However, the building of the notional 
machine, construction of OOP knowledge, and detailed development of OOP skills and 
strategies presumably have components that are specific to OOP. We therefore suggest that 
novices’ cognitive development in OOP should be studied.  
 Investigations of mental representations of OO programs (Corritore & Wiedenbeck, 
1999; Wiedenbeck et al., 1999) have probed participants’ knowledge with yes/no questions 
divided into categories determined by the researchers a priori. Such a method reveals whether 
participants possess knowledge in those categories but it does not reveal what other types of 
knowledge they might have. As a consequence, exact contents of experts’ mental 
representations of OO programs are largely unknown and teachers have only vague ideas of 
how to best explain important program elements and their relationships to students. We 
therefore call for exploratory research into experts’ mental representations of OO programs.  
 Studies in cognitive processes, such as skills and strategies, cover mainly experts’ 
program design. In imperative programming, research into experts’ and novices’ program 
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comprehension has increased our understanding of the comprehension processes and, 
moreover, of the mental representations of imperative programs and imperative programming 
knowledge. The structure of OO programs differs so much from imperative and procedural 
programs that one may presume that their comprehension processes do also differ 
considerably. Again, some elements (e.g., hypothesis-driven comprehension) are the same, 
but issues related to program structure can be assumed to differ. We therefore suggest 
research into experts’ and novices’ OO program comprehension processes.  
 Finally, results of the research suggested above and summarized in Table 3 should be 
utilized in devising effective methods for teaching OOP. However, we do not include this 
work in the research agenda proposal for two reasons. Firstly, the right time for such 
educational-oriented research will come only after there is a large body of results obtained 
from the research agenda. Secondly, it may well be that effective ways to transfer experts’ 
mental representations, skills and strategies are at least partially revealed during the earlier 
research covered by the agenda.  
 

Table 3.   Proposal for Research Agenda in OOP and OOP Education. 

 Performance Development 

Topic of 
investigation 

Expert  Expert vs. 
Novice 

Novice  Cognition  Education 

Mental 
representation of 
notional machine  

• • 
 • • 

Mental 
representation of 
OO programs  

• • 
 • 

 

Mental 
representation of 
OOP 

 • 
 • 

 

Program 
comprehension  • • • • 

 

Tracing and 
debugging  

 • 
 • 

 

Program design  
 • 

 • 
 

 
 

CONCLUSION 
 
In programming education, there has been a major shift in the programming paradigm used in 
the first courses. To please industry and students, educators have moved from imperative and 
procedural programming to object-orientation without studying its necessity or consequences 
and without studying how OOP education should be carried out. Moreover, classic results 
from imperative and procedural programming have been used as such even though their 
applicability in the OO case can be questioned. The shift from imperative/procedural 
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programming to object-orientation is so revolutionary that the use of research results obtained 
in the imperative and procedural cases is doubtful in the OO case. The number of notations 
and concepts needed, the size of the notional machine required, and the whole orientation of 
programming are so different that the basic assumptions used in imperative and procedural 
programming research do not necessarily hold for object-orientation. Even though some 
results may apply in object-orientation, there is a need to find out on what occasions this 
happens to be the case.  
 There is a lack of systematic research into the fundamental cognitive and educational 
issues in learning and teaching OOP. Lister et al. (2006, p. 160) conclude their paper by 
noting that “our community needs to discuss—and debate—this issue,” but we claim that the 
computer science education research community and the psychology of programming 
community need to rigorously study these issues first. For that purpose, we have presented a 
research agenda comprising  

�  Constructing a model of the OOP expert: experts’ mental representations of the 
notional OO machine; exploratory research into experts’ mental representations of 
OO programs  

�  Understanding the differences between OOP experts and novices: experts’ and 
novices’ differences in mental representations, program comprehension processes, 
skills and strategies within OOP  

�  Fostering OOP novices’ cognitive development: novices’ cognitive development in 
OOP; ways to convey the notional OO machine to novices  

 High dropout rates from OOP courses and poor learning outcomes pose problems to 
students, educators, and educational institutions. These problems can be attacked only with 
rigorous research into the psychological and educational issues involved.  
 
 
 

ENDNOTES 
 

1. Imperative and procedural programming are often considered synonyms, but in this paper imperative refers 
to programming with variables, assignment, and simple imperative control structures, such as sequence, 
iteration, and conditionals, whereas procedural covers procedures, parameters and recursion, also. 

2. Here we are interested in differences that are inherent to object-orientation and the way object-related 
concepts are implemented in Java. We do not treat Java problems that occur within the imperative parts of 
Java, for example, that using “=” as the assignment operator makes some students to confuse assignment 
with mathematical equality. 

3. In this literature review, we look at programming only. Thus, we do not include system design literature 
even though we do include program design literature.  
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