HuMAN

TECHNDLOGY
An Interdisciplinary Journal on Humans in ICT Emviments ISSN: 1795-6889
www.humantechnology.jyu.fi Volume 4 (1), May 2008, 62-74

A ROLES-BASED APPROACH TO
VARIABLE-ORIENTED PROGRAMMING

Juha Sorv
Helsinki University of Technology
Finland

Abstract: Delocalized variable plans pose problems for noypoegrammers trying to
read and write programs. Variable-oriented programgiis a programming paradigm
that emphasizes the importance of variable-relapgdns, and localizes actions
pertaining to each variable together in one placethe program code. This paper
revisits the idea of variable-oriented programmaengd shows how it can be founded on
roles of variables: stereotypes of variable useate for teaching to novices. The paper
sketches out how variable-oriented, roles-basedyfmming could be implemented
using either a new programming language or a frawrvbuilt on an existing language.
The possible applications, merits, and problemsaofroles-based approach, and
variable-oriented programming in general, are dissed. This paper points toward
possible research directions for the future andvites a basis for further discussions of
variable-oriented, roles-based programming.

Keywords: roles-based programming, variable-oriented progranmgn roles of
variables, delocalized plans, programming languages

INTRODUCTION

It has been widely noted that novice programmeve lyaeat difficulty in comprehending and
creating computer programs (for recent reports, Lsster et al., 2004; McCracken et al.,
2001). A partial explanation for this is provideglthe novices’ lack of programming-related
schemas or plans (Détienne, 1990; Soloway & EhrlitB86). Schemasare mental
knowledge structures for storing abstract inforovatthat can be applied when planning
solutions to specific problems that fall within theope of the schema. An expert in a domain
possesses a wide array of rich, domain-specifiersas that reduce cognitive load during
problem-solving tasks, such as programming andlersaving more complex problems. An
expert’s problem-solving process is characterized ganning ahead and forward
development (Byckling & Sajaniemi, 2006a; Rist, 9P8

Many schemas in programming are related to theofiseariables (Soloway, Ehrlich,
Bonar, & Greenspan, 1982). For instance, a basigramming schema could describe how
variables can serve as “counters,” whose valuesattzero and are then repeatedly incremented

© 2008 Juha Soryand the Agora Center, University of Jyvaskyla
URN:NBNfi:jyu-200804151353

62

Roles-Based Programming

by one. Commonly, the ways in which a variablessclin a program are not defined by a single
line of code or even by consecutive lines; refegsrio each variable are spread throughout the
program code. In the terminology of Soloway, Larmdestovsky, Littman, and Pinto (1988), the
plan for such a variable @elocalized Delocalization of a plan increases the cogniael of a
programmer trying to comprehend it, since multipdparate units have to be kept in working
memory at once in order to figure out the plan. ib®yprogrammers may find coping with this
cognitive load very difficult. Delocalized plansncke clarified with documentation (Soloway et
al., 1988) or software tools (Sajaniemi & Nieme#iin1989). In recent yearsles of variables
have been introduced as a means to describe, slism think about common stereotypes of
variable usage (Sajaniemi, 2002, 2003). Roles wabias have been used to document variable
plans and for other purposes in teaching introaycpmogramming (Byckling & Sajaniemi,
2007; Sajaniemi & Kuittinen, 2005; Sorva, KaravigaKorhonen, 2007).

This paper presents ongoing work wariable-oriented programminga programming
paradigm that places an emphasis on localizinghkbgirelated actions in program code. This
work draws on prior work on roles of variables, amks roles as a basis for creating
variable-oriented programs. The paper is struct@gdollows. The Related Work section
describes previous work on roles of variables aadable-oriented programming. The A
Roles-Based Approach section introduces a new apprtw variable-oriented programming,
and discusses how it could be implemented, usitigereia custom-made programming
language or existing programming languages. Theudson section then takes a look at the
possible uses, merits, and downsides of the newoapp. The paper concludes with general
comments and a look at possible future work.

RELATED WORK
Roles of Variables

Roles of variablesre stereotypes of variable use in computer pnag&ajaniemi, 2002). Roles
embody expert programmers’ tacit knowledge of \dgiaisage patterns, which can be made
explicit and taught to students (Sajaniemi & Nawaprieto, 2005). Roles can help teachers
explain delocalized variable-related schemas ignaras and assist in the stepwise refinement of
pseudocode designs of algorithms (Sorva et al7)2@0ior research suggests that introductory-
level students who are taught programming usingsralf variables gain better program
comprehension skills than students taught in aeraike similar way but without using roles
(Sajaniemi & Kuittinen, 2005). Moreover, roles-bésestruction facilitates the development of
program construction skills better than traditionabtruction, especially if roles-based
visualizations of programs are also used in tegdyckling & Sajaniemi, 2006b, 2007).

According to Sajaniemi’s (2002) research, the beiaf 99% of variables in novice-level
programs can be characterized within a small sebles. The following list, reprinted from
Sorva et al. (2007, p. 410), briefly introduceshesmariable role. For a fuller introduction to
roles of variables, and concrete program examyleach role, see Sajaniemi (2003).

1. A variable has the rolfixed valueif the variable’s value is not changed after it is
initialized.

63

Sorva

2. A variable has the role ddtepperif it is assigned values in a systematic and
predictable order. An example of a stepper is a@exncounter used when looping
through an array of elements.

3. A variable has the role afost-recent holdeif it holds the latest value in a
sequence of unpredictable data values. For instanoest-recent holder could be
used to store the latest element encountered warating through a collection of
data elements, or the latest value that has bestgnasl to an object’s attribute (i.e.,
to an instance variable that is a most-recent mpluea setter method.

4. The role most-wanted holderdescribes variables that hold the “best” value
encountered in a sequence of values. Dependinigeoprogram and the type of the
data, the best value may be the largest, smalidphabetically first, or an
otherwise most appropriate value.

5. A variable has the rolgathererif the variable is used to somehow combine data
values that are encountered in a sequence of yahrebs the variable’'s value
represents this accumulated result. For instanceariable keeping track of the
balance of a bank account (e.g., the sum of depasd withdrawals) is a gatherer.

6. A follower is a variable that always holds the most recesnipus value of another
variable. Whenever the value of the followed vagathanges, the value of the
follower is also changed. For example, the “presiowde pointer” used when
traversing a linked list is a follower.

7. A variable is aone-way flagf it only has two possible values and if a chatméhe
variable’s value is permanent. That is, once awag-flag is changed from its
initial value to the other possible value, it isveechanged back. For example, a
Boolean variable keeping track of whether or nabrsr have occurred during
processing of input is a one-way flag.

8. A variable has the roemporaryif the value of the variable is needed only fahart
period. For example, an intermediate result of Eutation can be stored in a
temporary in order to make it more convenient ficieht to use in later calculations.

9. An organizeris a variable that stores a collection of elemdotsthe purpose of
having that collection’s contents rearranged. Amreple of an organizer is a
variable that contains an array of numbers durorgrsy.

10. A variable is acontainer if it stores a collection of elements in which mor
elements can be added (and, typically, can be rethes well). For example, a
variable that references a stack could be a catain

11. A walkeris a variable whose values traverse a data stejctooving from one

location in the structure to another. For instangeyariable that contains a
reference to a node in a tree traversal algoriththavariable that keeps track of
the search index in a binary search algorithm eaodmsidered to be walkers.

Variable-Oriented Programming
In traditional procedural and object-oriented peosgming, the behavior of a variable, that is,

the logic that dictates how the variable is usedfien defined at multiple distinct locations
in program code. Depending on the scope of thebbej the behavior may be described by

64

Roles-Based Programming

inconsecutive lines of code within a function orthwal, may be located in a number of
functions, or even located in several program mesiuDeclaring a variable, if it is explicitly
done in the language at all, is a matter separare the variable’s behavior.

There is an alternative way to organize variableab®r in programs. If a variable’s
behavior pattern is defined at the variable’s datian, the “usage plan” of the variable
becomes localized in one place. This idea is centrathe variable-oriented way of
programming discussed in this paper. hadable-oriented programeach variable declaration
is accompanied by a definition of how the variablealue is initialized and later updated. A
variable declaration could also include informatminwhen the variable’s value is read and
dependencies on other variables. In a variablevaibprogram, such rich variable declarations
serve as the basis of, and indeed govern, thaameatalgorithms.

Variable-oriented programming has made an appearamditerature before. It was
introduced in connection with the program editor RE) which makes use of variable-
orientation to provide multiple views of programdeowritten in the Pascal language
(Sajaniemi & Niemelainen, 1989). In addition toraditional control-flow oriented view of
Pascal programs, VOPE shows a purely variable-mieview, which groups code fragments
so that all references to each variable are gadhtegether.

A ROLES-BASED APPROACH

A look at how an algorithm could be devised usiotps of variables may be useful. The
passage below presents a hypothetical thoughtrpattenow a student of programming, who
has been taught to use the roles of variables,tg@hbout the task of creating an algorithm for
computing theith Fibonacci number.

Some way of keeping track of consecutive Fibonaggibers is needed to compute torithe
one. Each new value is produced by computing avadwe based on the current one. That's a
job for a gatherer. And since, in this case, eash value is computed based on two older
values, a follower is needed to store the oldereval the gatherer. By starting from the first
Fibonacci number (one), then after n-1 updatdsagatherer, the result should be reached.

While fictional and idealized, this example offens idea of how roles-based reasoning
might proceed and make use of the common pattdrnar@ble use embodied by roles of
variables. It is also an example of thinking ahéHte programmer uses existing schemas to
plan in advance how he/she will use the two vaesFigure 1 shows a somewhat more formal
and complete description of the algorithm, usings@udocode notation that closely reflects the
reasoning process described above.

In the pseudocode in Figure 1, two variables actaded, each with a different role. For
each variable, its behavior has been declaredpast af the variable definition. The example
illustrates how an algorithm can be built by attaghbehavior to variable definitions.
Further, it shows how roles of variables can sexsg¢emplates for common patterns in a
variable-oriented program.

Each variable is declared as an instance of a melech determines the kinds of
operations that need to be defined for each instaiche role. For example, all gatherers
require a definition of how their values changadsnction of the same variable’s old value,

65

Sorva

define GATHERER curr:
initial value is 1
always updated by computing value of curr + prev

define FOLLOWER prev:
initial value is 0
follows curr (and always receives its old value)

make n-1 updates to curr (results in changes to both curr and prev)
print curr (which now holds the nth Fibonacci number)

Figure 1. Variable-oriented pseudocade

whereas a follower is dependent on another variablese old values it receives. For a fixed
value (not shown in the example), only an initiatian is needed, while a most-wanted
holder would define an operation to test whethgiven value is “more wanted” than the
current value, and so on.

The next two subsections explore possible impleatants for variable-oriented, roles-
based algorithms such as that in Figure 1. The &ire sketches out a variable-oriented
programming language that uses roles of varialddargguage-level abstractions. The second
then takes a look at how a similar framework cobkl implemented in an existing
programming language.

A Roles-Based Language

Figure 2 provides an example of variable-orientedecbased on roles of variables. It is
written in a speculative language called ROTFL &ROriented, Titillating but Fictional
Language). The reader should note that ROTFL &sdraft stage and lacks a full syntactical
and semantical specification. The notation is usece to provide “food for thought.” In
Figure 2 and in other Fibonacci examples in thiggpan is an integer-valued constant that
determines which Fibonacci number is to be primted

Gatherer curr:
inits to: 1
updates with: curr + prev

Follower prev:
inits to: O
follows: curr

update curr times n-1
print(curr)

Figure 2. The Fibonacci algorithm in the language ROTFL.

66

Roles-Based Programming

In ROTFL, there are no traditional variable defons. Instead, all variables are defined in
terms of roles and associated with behaviors apiattepfor those roles. Roles of variables are
language-level constructs, and there are resereedswelated to defining or using variables
with particular roles (e.g., follower, update). REkTdoes not feature assignment operators or
statements in the traditional sense. Instead,Masgavalues are changed in role-specific ways.
For instance, values are assigned to gathererstingtheserved wordpdate which uses the
updates-with operation of the gathex@compute a new value for the variable, and fodosv
receive new values implicitly as the value of ddwked variable changes.

Traditional loops are also conspicuous by theieabs in Figure 2, despite the fact that the
algorithm is an iterative one. In this example etéjon is achieved using the keywdmhesin
association with updating the value of the gatherer. Another mechanism for achieving
repetition is illustrated in Figure 3, wherel@eachcommand repeatedly updates a most-recent
holder variable until a condition associated wité variable is reached. The same example also
shows a most-wanted holder dependent on a mositreckeler that serves as #surce

MostRecentHolder input:
updates with: readLine()
until: input == "stop’

MostWantedHolder longestinput:
source: input
wants value if: value.length() > longestinput.length()

do each input
print(longestinput)

Figure 3. A ROTFL code fragment to read in lines and prirttthe longest one.

Implementing Roles in an Existing Language

Variable-oriented programming can also be doneiwidim existing programming language,
provided a suitable framework is available. Figdrehows how the variable-oriented, roles-
based program from Figures 1 and 2 can be writtethé Python language. The program
makes use of an anonymous function defined usitigoR3s lambda mechanism.

The program in Figure 4 relies on a framework theftnes roles of variables as Python
classes, and role-related operations (such asiongdae value of a gatherer) as methods of
these classes. A partial framework for this purpdeéining the classegathererandfollower,
is given in the Appendix.

curr = Gatherer(1, lambda: curr + prev)
prev = Follower(0, curr)
curr.updateTimes(n-1)

print(curr)

Figure 4. A variable-oriented code fragment in Python

67

Sorva

DISCUSSION
Uses of Roles-Based Programming

As noted in the introduction to this paper, priesearch suggests that the behavior of 99% of
variables can be characterized with a small setlef, at least within novice-level programs
(Sajaniemi, 2002). It does not immediately folldwgwever, that 99% of even novice-level
programs can be conveniently written as variablerded programs using roles as templates
for variable behavior. Nevertheless, it seems rdtesn a solid foundation for creating
variable-oriented programs, as the small role seviges a quite substantial number of
variables with templates that capture some keyasmbout how those variables are used.
This matter calls for further study.

Variable-oriented programming localizes variablangl in program code. Prior work in
cognitive psychology of programming suggests thi likely that localizing variable plans
facilitates the extraction and construction of &hle-related schemas (Soloway et al., 1988)
and therefore aids novices in acquiring some kegnamming skills. With this in mind, and
in light of previous experiences of using rolesvafiables in teaching, one can speculate
whether a variable-oriented, roles-based languagéd de useful for teaching introductory
programming. Clearly, there could be merits to saictapproach if variable-orientation helps
students construct variable-related schemas, #sralan be used to encourage forward
development (Byckling and Sajaniemi, 2007), andthére were roles-aware program
development tools that could provide helpful feedband error messages.

There also clearly are problems with such an amgproblot least of these is that while
variable-oriented programs emphasize variableadlptans and the data flow of programs, the
control flow of the program is not in focus. Undargling “what happens when” during the
execution of a variable-oriented program may beeqdifficult, especially for the beginner.
There is a trade-off between emphasizing variagleged schemas and emphasizing control-
flow-related schemas. Using tools similar to VOF&jéaniemi & Niemeldinen, 1989), which
provides multiple views of programs, could be ukefuicombining these different aspects of
programs. A notation based on roles of variablegdcbe used to build variable-oriented views
and to link them to procedural or object-orientexivs.

Depending on the notation used, a variable-orierpeagram can be quite self-
documenting of variable-related schemas (see, Eigure 2). Roles of variables help in this,
since role names succinctly describe patterns wabig use. However, it is not immediately
obvious what the documentative value of variabierded notations is compared to non-
variable-oriented notations that explicate the mfleeach variable (e.g., by simply tagging
each variable declaration with a role name usirdeammments). Documenting delocalized
variable behavior using role names may often doughoand using a variable-oriented
language may be overkill for this purpose.

Even if beginners are not taught variable-orientetds-based programming directly, they
might indirectly benefit from it. Bergin (2005) syests that instructors of programming (and
others) could benefit from “etudes” that take oraetipular programming technique to an
extreme. While such etudes have no intrinsic vafuitdeir own, they can help hone one’s skills
in a particular technigue and to ingrain that tégisa into one’s thinking. For helping instructors
(not novice programmers) make use of polymorphiengin suggests the following etude:

68

Roles-Based Programming

Find some old program that you have around andyinatare proud of.... Strictly as an
etude, rewrite that program with NO if/switch statnts: no selection at all. Solve all of
the problems your ifs solve with polymorphism. (§er 2005, p. 1)

In a similar vein, roles-based programming coutgesas an etude for using roles of variables
in general. The intellectual exercise of rewritprggrams in a variable-oriented way, using roles
as templates for variables, with no traditionalestyssignment and perhaps with no traditional-
style loops, could deepen instructors’ understandfrroles and help them think of algorithms in
terms of variables and roles. At least, the exettés expanded the mind of this author.

Variable-Oriented “Purity”

According to Sajaniemi and Niemeldainen (1989, p. By emphases), “Variable-oriented
programming is a new programming paradigm whicHects all actions concerning any
single variable together.... The plan of a variablelearly visible andotally described in the
variable definition.”

A “pure” variable-oriented program, then, would fgat all references (assignments and
reads) to a variable into one complete variabléenden, irrespective of the location of these
references in the control flow of the program. Teéader may note that the examples shown
in this paper are not pure by this strict defimitid-or instance, in Figure 2, neither the
commandupdate nor reading the variable’s value for printing pasps (i.e., the last two
lines) is located within the variable definitionhd example can be seen as a hybrid that is
largely variable-oriented but partially controlsleoriented. It can be contrasted with the
pure variable-oriented views displayed by the VQ&& (Sajaniemi & Niemeldinen, 1989).

Roles of variables are concerned with assignmeittt, elange (or lack of change) in the
values of variables, and with the way consecutaleies of variables are related to each other.
Roles are not concerned witthena variable’s value is updated or read, or with twhalone
with the value after it has been read (whethes firinted, passed as a parameter, or something
else). A variable-oriented program based solelyates of variables will not be pure. A more
complete discussion of the purity of variable-ciaion is beyond the scope of this paper. The
next subsection also touches on the issue of ptotyever, as it briefly explores the relationship
between object-oriented programming, variable-taigm, and roles-based programming.

Compatibility with Object-Orientation

The original set of roles of variables was discedeny analyzing procedural programs. Since
then, roles of variables have been applied to ¢olgeented as well as functional programs
(Sajaniemi, Ben-Ari, Byckling, Gerdt, & Kulikova,096). Roles seem to be a useful tool
irrespective of the programming paradigm used.

What, then, is the relationship between variablergation and object-orientation?
Quoting again from Sajaniemi and Niemeldinen (1989, 67), “In object-oriented
programming all operations applicable to objecta aflass are described in one place.... In
variable-oriented programming programs center atdhe variables. A variable, and all the
actions using that particular variable, are desctiim one place.”

69

Sorva

One of the two paradigms elevates classes as alkgyaction around which program
code is structured; the other does the same tahlas. These two abstractions are in
competition, but not incompatible. It is quite pb$s to envision a hybrid of the object-
oriented and variable-oriented paradigms, as st by the example in Figure 5.

It is easy to see that Figure 5 is not pure in seofrvariable-orientation. The generic plan
for using the instance variablealance a gatherer, is defined at the variable declanatio
However, the precise ways in which the three methmadke use of this generic plan are
spread out in the code.

class Account:
private Gatherer balance:
inits to: O
updates with (FixedValue amount):
if (balance + amount < 0) then:
0
else:
balance + amount

public method deposit(FixedValue depositSize):
update(depositSize) balance

public method withdraw(FixedValue withdrawalSize):
update(-withdrawalSize) balance

public method getBalance():
balance

Figure 5. A ROTFL class representing simple bank accountls méin-negative balances.

Another issue needs to be considered when appigieg of variables to object-oriented
programs. As was noted by Sorva et al. (2007, 9),41

Annotating a member variable and a local variakita the same role name indicates that
we think of them as similar. However, our expergermstiggests that in many people’s
perception a most-recent holder member variableinfiance, is used rather differently
than a most-recent holder local variable. A se#tattribute of an object (the name of a
person object, say) is experienced as being giffereht from a local variable that stores
the most recent element encountered in a colleafiaring iteration.... This kind of
dividedness of roles is potentially confusing...

It may be that, in order to apply roles-based @ogning to object-oriented programs, new
roles are needed to represent different uses ti#rios variables. As an example, a role name
settable attributecould better describe the purpose of most-receldeh instance variables. If
needed, the roles-based language or framework pooldde a somewhat different template for
settable attributes than for other most-recentdrsld

70

Roles-Based Programming

CONCLUSIONS AND FUTURE WORK

In this paper, | have revisited the previously disgred ideas of variable-oriented programming
and roles of variables. This paper combines theseideas by founding variable-orientated
programs on roles, and sketches out how such s-balsed approach could be implemented
using a roles-based programming language or a fwankewritten in another language. The
paper has described ongoing work on tools for tbéesed programming, and discussed the
possible applications, merits, and problems ofapgroach. It is my hope that this paper can
serve as a basis for further discussions of variakbiEented, roles-based programming.

This paper has merely introduced the idea of usites of variables in variable-oriented
programming. There are many research paths thdtl dmufollowed in the future. Roles-
based languages or frameworks could be developatiefufrom the drafts presented,
investigating the suitability of the variable-oried approach for more complex programs.
Ways of defining dependencies between variablesdcbe explored, as could the idea of
actions that trigger when variables’ values chahtgre, inspiration could perhaps be drawn
from earlier work, such as the language EDEN (Yuly, & Ward, 1987), which, although
not variable-oriented, allows the programmer tmaisde “action specifications” to variables.

The suitability of the current set of roles of \adnlies for roles-based programming needs
exploring, as does the idea of custom roles defibgdthe programmer. The possible
usefulness of roles-based programming outside ¢idnehsettings could be investigated.

The effects of a variable-oriented notation on us@ading programs’ control flow will
need to be explored if this approach is to be tdlsether. Roles-based tools supporting both
variable-oriented and other views of programs cdwdddeveloped. If the approach looks
promising, the potential of variable-oriented pargming in instruction could be evaluated.

Using roles-based programming as an etude foricistrs to deepen their understanding
of roles of variables seems like a promising avetoutake in the future. This can be done
even using a speculative language like ROTFL.

REFERENCES

Bergin, J. (2005, July)Variations on a polymorphic theme: An etude for patar programming Paper
presented at the Ninth Workshop on Pedagogies amds Tfor the Teaching and Learning of Object
Oriented Concepts, Glasgow, UK. Retrieved April 2807, from
http://www.cs.umu.se/~jubo/Meetings/ECOOP05/Subkiuaiss/Bergin-full. pdf

Byckling, P., & Sajaniemi, J. (2006a). A role-basetlysis model for the evaluation of novices’ pesgming
knowledge development. IflCER '06: Proceedings of the 2006 International Workshop am@uting
Education Researcfpp. 85-96). New York: ACM Press.

Byckling, P., & Sajaniemi, J. (2006b). Roles of igates and programming skills improveme&8iGCSE
Bulletin, 38, 413-417.

Byckling, P., & Sajaniemi, J. (2007). A study orpbjing roles of variables in introductory progranmgi In
IEEE Symposium on Visual Languages and Human-@e@tmputing(VL/HCC '07; pp. 61-68). Coeur
d'Aléne, ID, USA: IEEE Computer Society.

Détienne, F. (1990). Expert programming knowled§eschema-based approach. In J. M. Hoc, T. R. Gegre
R. Samurcay, & D. J. Gilmore (EdsPsychology of programmin@p. 205-222). London: Academic Press.

Lister, R., Seppala, O., Simon, B., Thomas, L., ddaE. S., Fitzgerald, S., Fone, W., Hamer, J.dhoim,
M., McCartney, R., Mostrom, J. E., & Sanders, KOQ2). A multi-national study of reading and tracing
skills in novice programmerS&IGCSE Bulletin36, 119-150.

71

Sorva

McCracken, M., Almstrum, V., Diaz, D., Guzdial, Mdagan, D., Kolikant, Y. B., Laxer, C., Thomas,
L., Utting, I., & Wilusz, T. (2001). A multi-natial, multi-institutional study of assessment of
programming skills of first-year CS studer$GCSE Bulletin33, 125-180.

Rist, R. S. (1989). Schema creation in programniagnitive Sciencel3, 389-414.

Sajaniemi, J. (2002). An empirical analysis of solef variables in novice-level procedural prograrrs.
Proceedings of IEEE 2002 Symposia on Human Ce@winputing Languages and Environme(ms. 37—
39). Arlington, VA, USA: IEEE Computer Society.

Sajaniemi, J. (2003). The roles of variables homagep Retrieved April 15, 2007, from
http://cs.joensuu.fi/~saja/var_roles

Sajaniemi, J., Ben-Ari, M., Byckling, P., Gerdt,, R Kulikova, Y. (2006). Roles of variables in tlere
programming paradigm&omputer Science Educatial6, 261-279.

Sajaniemi, J., & Kuittinen, M. (2005). An experinteon using roles of variables in teaching introdugt
programmingComputer Science Educatiatb, 59-82.

Sajaniemi, J., & Navarro Prieto, R. (2005). Roldsvariables in experts’ programming knowledge. In
Proceedings of the 17th Annual Workshop of the liRdggy of Programming Interest GroypPIG; pp.
145-159). Brighton, UK: University of Sussex.

Sajaniemi, J., & Niemeldinen, A. (1989). Progranitied based on variable plans: A cognitive approaezh
program manipulation. IrProceedings of the Third International Conference Human-computer
Interaction on Designing and Using Human-computgeifaces and Knowledge Based Systénd ed.;
pp. 66—73). New York: Elsevier Science Inc.

Soloway, E., & Ehrlich, K. (1986). Empirical studief programming knowledge. In C. Rich & R. C. Wate
(Eds.),Readings in artificial intelligence and softwaregareering(pp. 507-521). San Francisco: Morgan
Kaufmann Publishers Inc.

Soloway, E., Ehrlich, K., Bonar, J., & Greenspan(1982). What do novices know about programming? |
A. Badre & B. Shneiderman (EdsDirections in human-computer interactio(p. 27-54). Norwood, NJ,
USA: Ablex Publishing.

Soloway, E., Lampert, R., Letovsky, S., Littman,, & Pinto, J. (1988). Designing documentation to
compensate for delocalized pla@@mmunications of the ACN1, 1259-1267.

Sorva J., Karavirta V., & Korhonen A. (2007). Role§ variables in teachingJournal of Information
Technology Educatigr, 407—-423.

Yung, E., Joy, M., & Ward, A. (1987EDEN: The engine for definitive notatiorRetrieved April 15, 2007,
from http://www2.warwick.ac.uk/fac/sci/dcs/resedesh/software/eden/

Author’s Note

All correspondence should be addressed to:
Juha Sorva

Helsinki University of Technology

Department of Computer Science and Engineering
Konemiehentie 2

02015 TKK, Finland

jsorva@cs.hut.fi

Human Technology: An Interdisciplinary Journal onrflans inCT Environments
ISSN1795-6889
www.humantechnology.jyu.fi

72

Roles-Based Programming

APPENDIX

A PARTIAL FRAMEWORK FOR VARIABLE-ORIENTED, ROLES-BA SED
PROGRAMMING IN PYTHON

The classes below form a partial (but working) feavork for writing variable-oriented
programs in terms of roles of variables in the Bgttanguage. The partial framework shown
here has implementations for only some main featofethree roles (fixed value, gatherer
and follower). For an example of using the classes,Figure 4.

Other variable roles can be implemented in Pythdonga the same lines.
Implementation-wise, most-recent holders are simhley just need an update method that
replaces the old value with the given new one. @ep and most-wantedublders can be
implemented similarly to gatherers and most-rechotders, respectively. Temporary
variables are akin to fixed values and trivial tmplement, one-way flags likewise.
Containers need a more complex class, with mettiodsadding and removing values.
Alternatively, containers could be left unimplenahias an explicit role, relying on Python’s
built-in data structures instead. Organizers amraitterized by a variable-specific function
that defines a means for ordering data, which eapdssed as a constructor parameter (cf.
the gatherer implementation below).

The few variables that do not have any of the roieSajaniemi’s (2003) role set can be
treated as most-recent holders, or with a funclipisamilar but differently named class (e.g.,
specia), which effectively allows new values to be aseijrireely to the variable by passing
them as a parameter to update. Alternatively, piogners could define their own program-
specific custom roles.

import types

class Role:
def __init__ (self, initsTo):
self.followers =[]
if (type(initsTo) == types.FunctionType):
self.value = initsTo()
else:
self.value = initsTo

def __add__(self, x):
return self.value + x
__radd__ = add

def _str_ (self):
return repr(self.value)

def addFollower(self, follower):
self.followers.append(follower)

73

Sorva

class FixedValue(Role):
def __init__(self, initsTo):
Role. _init__ (self, initsTo)

class Gatherer(Role):
def __init__(self, initsTo, updateswWith):
Role. _init__ (self, initsTo)
self.updatesWith = updatesWith

def update(self):
oldValue = self.value
self.value = self.updatesWith()
for f in self.followers:
f.update(oldVvalue)

def updateTimes(self, times):

for time in range(times):
self.update();

class Follower(Role):

def __init__(self, initsTo, followedVariable):

Role.__init__(self, initsTo)
followedVariable.addFollower(self)

def update(self, newValue):
oldValue = self.value
self.value = newValue
for f in self.followers:
f.update(oldVvalue)

74

