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ABSTRACT

Jani Luoto 
Bayesian Applications in Dynamic Econometric Models 
Jyväskylä: University of Jyväskylä, 2009, 148 p. 
(Jyväskylä Studies in Business and Economics,  
ISSN 1457-1986; 70) 
ISBN 978-951-39-3568-9 (PDF), 978-951-39-3434-7 (nid.)
Diss.

The purpose of this thesis is to provide a few new ideas to the field of Bayesian 
econometrics. In the first essay, we provide an easily implementable method for the 
Bayesian analysis of a simple hybrid DSGE model of Clarida et al. (1999). The 
forecasting properties of the model are tested against commonly used forecasting tools, 
such as Bayesian VARs and naïve forecasts based on univariate random walks. Our 
posterior evidence implies that the model captures the predictable behavior of the 
three U.S. key macroeconomic variables, inflation, short-term nominal interest rate and 
a measure of output gap, very well. In the second essay, using GARCH-in-Mean 
models based on the following Intertemporal Capital Asset Pricing Model Et-1(rt) = 0 + 

1Vart-1(rt) for the expected excess return rt, we study the robustness of the risk-return 
relationship in U.S. stock market returns. The issue is important, since unnecessarily 
including 0 in the previous expression is known to distort conclusions, while 
restricting 0 to zero forces the expected excess return to equal the risk-free interest rate 
under the hypothesis 1 = 0. Our evidence indicates that the existence of a risk-return 
relationship is fairly robust in that it does not strongly depend on the prior beliefs 
concerning the intercept, especially when the true value of 0 is sufficiently close to 
zero. In the third essay, we expand Kleibergen and Zivot’s (2003) Bayesian Two Stage 
(B2S) model by allowing for unequal variances. To the best of our knowledge there is 
no single Bayesian study of instrumental variable (IV) models with unequal variances, 
although from the Bayesian point of view modelling heteroscedasticity should improve 
the precision of estimates and the quality of predictive inference. As an application we 
present a cross-country Cobb-Douglas production function estimation. In the fourth 
essay, we provide a simple epidemiology model where households, when forming 
their inflation expectations, adopt the past release of inflation with certain probability 
rather than the forward-looking newspaper forecast as suggested in previous 
literature. The posterior model probabilities based on the Michigan survey data 
strongly support the proposed model. Our results show that this simple model is also 
able to capture the heterogeneity in households’ expectations very well. In the fifth 
essay, the Bayesian structural vector autoregressive model and the Finnish aggregate 
infrastructure capital series from 1860 to 2003 are used to explore how government 
infrastructure policy affects long-run output growth. We base our conclusions on 
posterior analysis, since it allows us to draw exact inference on parameters with near 
non-stationary data. We find strong and robust support in the Finnish data to indicate 
that permanent changes in government infrastructure policy can have permanent 
effects on the growth rate of output. 

Keywords: Bayesian inference, Monte Carlo methods, Prior elicitation 
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1  INTRODUCTION 

1.1  A Brief Overview on Bayesian Econometrics 

The purpose of this thesis is to provide a few new ideas to the field of Bayesian 
econometrics. For example, it proposes a new econometric model, shows how 
to use priors to check the empirical validity of theoretical restrictions and 
provides an efficient way to improve the forecasting performance of popular 
New Keynesian models.  Bayesian methods are used to solve problems of 
statistical inference which cannot be easily solved in the non-Bayesian 
framework. In particular, the focus of the thesis is on analyzing dynamic 
econometric models. Most models include nonlinear components and we often 
deal with small samples or near unit root data. 
 Since prior distributions have a very important role in Bayesian analysis, 
considerable effort is spent on prior elicitation and discussion on the used 
priors. Throughout the thesis economic theory ( collectively  subjective beliefs) 
and information derived from data sets not included in the estimation sample 
are used as a basis of prior knowledge. In some models standard uninformative 
priors are used, though. 
 The estimated models have nonstandard posterior distributions requiring 
the use of Monte Carlo methods in their evaluation. The correct implementation 
of these methods is of course crucial for the validity of results. Therefore, 
detailed descriptions of the used algorithms and simulation routines are given. 
The convergence of the Markov Chain Monte Carlo (MCMC) samplers are also 
assessed using formal diagnostics. 
 A major finding of this thesis is that when classical methods fail to 
produce reliable inference, Bayesian methods can still, in many cases, be 
successfully applied. Our empirical evidence implies that Bayesian methods are 
particularly useful when the competitive models are non-nested, the likelihood 
function is multimodal or peaks in an economically non-sensible region, 
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economic theory provides important or necessary information that is not 
contained in the estimation sample, or the economic variables have some silent
information which can not be modeled using the likelihood only. These results 
are of course well known in Bayesian econometrics. Our contribution is to give 
some new ideas and new empirical evidence to the literature. 
 Finally, the reader will note that we are not fully consistent in using 
Bayesian analysis everywhere. In some cases we use classical tests in 
preliminary data analysis, since these tests are readily available and do not 
demand extra programming efforts. In addition, their use increases 
comparability with some earlier studies. 
 In the following subsections we will give, among some discussion and 
brief literature review, an illustrative example of the usefulness of Bayesian 
inference in modern economic research. This is done by taking a brief look at 
the Bayesian method, which has been widely used among economists and 
policy makers over the past 15 years. In section 1.2 we will give the summaries 
of the essays. 

1.1.1 Some Discussion 

We begin our tour  by a brief discussion on the main distinction between 
classical and Bayesian methods. We then continue by taking a short look at the 
prior issue. After looking at the priors we will give an incomplete overview on 
the history of Bayesian econometrics. To give an example of the practicability of 
Bayesian methods, for a reader who is unfamiliar with the Bayesian approach, 
the Bayesian estimation of popular dynamic stochastic general equilibrium 
(DSGE) models is also discussed. In particular, an overview of the literature and 
a short discussion on why Bayesian inference works well in this environment 
are given. 
 Given the observations y (the data) and the model M, the starting point of 
Bayesian analysis is to determine the prior density function p( |M) of 
unobservable parameters , which together with the density of observations 
L(y| ,M) (likelihood function), yields the conditional density of  given y and 
M,

( ) ( )
( )

( ) ( )
( ) ( )==

θθθ
θθθ

θ
dMyLMp

MyLMp
Myp
Myp

Myp
,||
,||

,
,

, .  (1) 

Expression (1) is called the posterior density of  and the corresponding 
distribution is called posterior distribution. The marginal 
density ( ) ( ) θθθ dMyLMp ,; , which is called marginal likelihood, is relevant in 
Bayesian decision making, since Bayesians often base model inference on them 
(see e.g. Hoeting et al., 1999, for a complete introduction to Bayesian model 
averaging where marginal likelihoods are utilized in an efficient and practical 
way).
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 The major difference between the Bayesian and classical schools of thought 
is in conditioning (see e.g. DeGroot, 1970, and Poirier, 1988) for a discussion on 
the distinction between Bayesian and non-Bayesian methods. The classical 
school conditions on an unknown , and compares the likelihood function with 
the data. Bayesians condition on actually available information y and base their 
inference on the full density p( ,y|M). Thus, classical statistics has the problem 
of conditioning on what is unknown, but it does not need any statement about 
prior density. Bayesian statistics instead provides a coherent tool for decision 
making, but requires the specification of prior density p( |M) (see Geweke, 
2005) for discussion. 
 The prior density reflects the researcher’s subjective beliefs concerning 
plausible parameter values (or models etc.). When the researcher does not have 
a clear idea about the value of a parameter or does not want his prior 
knowledge to affect estimation results, he can assign to it a noninformative 
prior distribution. Noninformative distributions have typically a large variance 
or are improper, that is, non-integrable. Bayesian econometrics has a long 
tradition of noninformative priors (especially improper priors) and there is a 
variety of standard textbook models which follow this tradition (see e.g. 
Jeffreys, 1961, Zellner, 1971, Bauwens et al., 1999, Koop, 2003, and Lancaster, 
2004).
 A commonly known problem with improper priors is that they cause 
marginal likelihoods, which are typically used in model comparison, to be 
indeterminate, since the normalizing constants of these priors are not defined. 
On the other hand, there are methods for model comparison which allow for 
the use of improper priors. For example, Gelman et al. (2004) introduce the 
average discrepancy, defined as the posterior mean of deviance, as a criterion 
for model comparison. They prefer using discrepancy between data and model 
to using marginal likelihoods in model comparisons. They consider marginal 
likelihoods to be in most cases irrelevant, since they are used to compute the 
relative probabilities of the models conditional on one of them being true. The 
usual argument against deviances is that they have no proper scale. However, a 
similar statement can be made of posterior model probabilities when the list of 
competitive models excludes the true model. Furthermore, priors have a 
prominent role in determining the values of marginal likelihoods (see e.g. 
Adolfson et al., 2007a, for discussion), whereas the average discrepancy is not 
sensitive to priors. 
 A typical informative prior, on the other hand, reflects the researcher’s 
subjective beliefs (when she/he has them), summarizes information from the 
data not included in the estimation sample, or is based on both of them. Often 
the underlying economic theory provides a natural starting point for prior 
elicitation in econometrics. 
 The use of informative priors is usually subject to strong criticism, 
sometimes rightly, by reason of their tendency to increase the degree of 
subjectivity in statistical inference. However, informative priors can – when 
well designed – facilitate numerical maximization and provide a practical tool 
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to handle potential model misspecification and lack of parameter identification 
(see e.g. Fernández-Villaverde and Rubio-Ramírez, 2004). Furthermore, if the 
researcher is unsure of whether his prior influences on the posterior in an 
undesirable way, there are methods to control for the robustness of posterior 
results with respect to changes in the prior distribution. The recent Bayesian 
analysis of very popular dynamic stochastic general equilibrium (DSGE) 
models provides an excellent example of an efficient prior use and we will 
return to this issue in the next subsection (see e.g. Sungbae and Schorfheide, 
2007, and Del Negro and Schorfheide, 2008, for discussion). 

1.1.2 Related Literature 

There is a rabidly growing literature using Bayesian methods to solve problems 
of statistical inference. For example, Poirier (1989, 2004) find strong empirical 
evidence on a rapid growth of Bayesian publications in statistics over the past 
35th years. An upward trend of Bayesian publications in economics (mainly in 
theoretical economics but also in empirical economics) can also be found, but 
surprisingly not in econometrics (see Poirier, 1989, 2004, for discussion).
 The increasing interest of Bayesian methods in statistics is largely a result 
of two elements. Firstly, the computational revolution of the 1990s strongly 
increased the practicability of computationally intensive Bayesian methods. 
Secondly, Bayesian methods can be, in many cases, successfully implemented 
even when the mainstream statistics fails to produce reliable inference. This is 
particularly common when the statistical inference is based on a system of 
equations (cf. the recent Bayesian analysis of DSGE models). Despite of this the 
Bayesian approach has been dismissed by several mainstream econometricians
mainly because of its subjectivism (see Qin, 1993, and Zellner, 2008, for 
discussion). However, the true reason for the unpopularity of Bayesianism in 
econometrics is likely the complexity of Bayesian methods, not subjectivism, 
since the methods used in mainstream econometrics are often much simpler 
than the corresponding Bayesian methods. 
 Anyhow, all econometricians use prior information more or less 
subjectively. Model selection provides a fairly illustrative example of this 
proposition. In model selection Bayesians typically combine model priors and 
marginal likelihoods to utilize posterior model probabilities associated with 
alternative models to averaging over these models, whereas frequentists 
typically select a model from some class of models (typically chosen using their 
past experience i.e. subjective prior information) and then proceed as if the 
selected model had generated the data. According to Zellner (2008), Bayesian 
econometricians learn using an explicit model, Bayes’ theorem that allows prior 
information to be employed in a formal and reproducible manner whereas 
classical econometricians learn in an informal, subjective manner. 
 An incomplete list of important works which have been particularly 
influential in Bayesian econometrics, to the best of our knowledge, is given 
below (see e.g. Berry et al., 1996, and Zellner, 2006, 2008, for a complete analysis 
of the topic). 
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 The central Bayesian book of Jeffreys (1939), The Theory of Probability, 
provides important methods for deriving diffuse priors and constructing 
Bayesian (statistical) tests, among other things (see Zellner, 1980 and 2008, for 
discussion). Jeffreys’ work has influenced all areas of Bayesian econometrics, 
and a large amount of econometricians have based their statistical inference on 
his work. 
 Friedman and Savage (1948, 1952) provide an early Bayesian work which 
combined economic utility theory and statistical theory to the decision theoretic 
Bayesian approach. The illustrative book of Raiffa and Schlaifer (1961) provides 
methods and applications of the Bayesian decision theory. The work of Fisher 
(1962), in which the author thoroughly analyzes the Bayesian solution of the 
decision problem, is also worth of mention. 
 Very important and influential works on the Bayesian analysis of 
simultaneous equation models are given by Drèze (1962, 1976), Rothenberg 
(1963) and Drèze and Richard (1983), whereas earlier Bayesian works on 
evaluating and estimating structural dynamic econometric models can be found 
in Zellner and Palm (1974, 1975) and Zellner (1965) (see also, for example, 
Kleibergen and Zivot, 2003, for a recent treatment of Bayesian simultaneous 
equation models). 
 A Bayesian solution for regression models with autocorrelated errors was 
initiated by Zellner and Tiao (1964) (see Bauwens et al., 1999, for a recent 
treatment of regression models with autocorrelated errors), while the paper of 
Tiao and Zellner (1964) provides an original work of multivariate regression 
models (see also Geisser, 1965). The influential book of Zellner (1971), An 
Introduction to Bayesian Inference in Econometrics, has also had a very 
prominent role in Bayesian econometrics, and is therefore important to mention 
in this context. 
 A pioneering work of Bayesian model comparison in econometrics is given 
by Geisel (1975). In particular, his study was the first, to the best of our 
knowledge, which used posterior odds to compare competitive macroeconomic 
models, an approach which has become very popular in current empirical 
macro-economics (see e.g. Smets and Wouters, 2003, 2005 and 2007, Sala-i-
Martin et al., 2004, and Sungbae and Schorfheide, 2007, and references therein). 
 Stein (1956, 1962) developed Bayesian shrinkage estimators that 
outperform a variety of other estimators relative to quadratic loss in several 
models. Over the past 30th years methods based on his shrinkage idea  have 
become popular, especially in forecasting, among economists working in 
private, government and academic sectors (see e.g. Bawa et al., 1979, Quintana 
et al., 1995, Schirm and DiCarlo, 1998 and Cogley et al., 2005). The work of the 
so called Minnesota crew  (see Litterman 1980, Doan et al. 1984, and Litterman 
1986) has had a prominent role in this development (see also Kadiyala and 
Karlsson, 1997, who provide systematic treatment and simulation methods for 
Bayesian vector autoregressive (VAR) models with Minnesota-type priors). 
 Finally, important works concerning posterior simulation, which has a 
crucial role in Bayesian econometrics, include Kloek and van Dijk (1978), Drèze 
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and Richard (1983) and Gelfand and Smith (1990) (see also Geweke, 1999a and 
2005, and references therein). 
 To convince the non-Bayesian reader (econometrician) of the practicability 
of Bayesian methods in econometrics, we will discuss below on Bayesian 
methods developed to estimate and evaluate DSGE models in recent years. This 
rapidly growing empirical literature provides a useful starting point for such a 
mission, since there is nearly consensus among macroeconomists on the 
usefulness of the Bayesian approach in this context. 
 The maximum likelihood (ML) estimation of DSGE models has, in general, 
turned out to be a challenging task. Often DSGE models have multimodal 
likelihoods that may peak in economically unreasonable areas. This may easily 
lead to absurd parameter estimates. For instance, the ML estimates of structural 
parameters, such as the constant discount factor or the elasticity of labor 
supply, are often observed to be at odds with evidence obtained from micro-
level data, due to the stylized nature of DSGE models. 
 In situations like this, informative priors can be used to incorporate 
additional information into estimation, at the cost of increasing subjectivism in 
empirical analysis. However, if we are ready to accept this cost, marginal priors 
can be used, for instance, to facilitate numerical maximization, down-weigh the 
regions of the parameter space which are at odds with observations not 
included in the estimation sample or add curvature to a likelihood function 
which is flat in some dimensions of the parameter space (see e.g. Sungbae and 
Schorfheide, 2007). Thus, priors, when they are well designed, can provide a 
fairly practical tool to handle many potential problems in empirical analysis, 
such as model misspecification and lack of parameter identification (see e.g. 
Fernández-Villaverde and Rubio-Ramírez, 2004). 
 Not surprisingly, Bayesian methods have become very popular in the 
analysis of DSGE models. Sungbae and Schorfheide (2007) provide an excellent 
review of the Bayesian methods which have been developed in recent years to 
estimate and evaluate models of this class. Table 1 lists the major contributors of 
this literature. As we can see, Bayesian approaches to calibration are proposed 
by Canova (1994), DeJong, Ingram, and Whiteman (1996) and Geweke (1999b). 
These early works provide empirical applications that assess business cycle and 
asset pricing implications of stochastic growth models.  
 The likelihood-based Bayesian estimation of DSGE models was initiated 
by the works of Landon-Lane (1998), DeJong, Ingram, and Whiteman (2000), 
Schorfheide (2000), and Otrok (2001). Among these authors DeJong, Ingram, 
and Whiteman (2000) examined the forecasting performance of stochastic 
growth models. Schorfheide (2000) considered cash-in-advance monetary DSGE 
models, while Otrok (2001) explored the welfare costs of business cycles using a 
real business cycle model with habit formation. 
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TABLE 1  List of Contributors 

___________________________________________________________________________________________________________________________________________________

Contributors Content 
___________________________________________________________________________________________________________________________________________________

Canova (1994), DeJong et al. 
(1996) and Geweke (1999b) 

These authors used Bayesian calibration in their analyses and 
explored the business cycle and asset pricing implications of 
stochastic growth models. 

Landon-Lane (1998), DeJong 
et al. (2000), Schorfheide 
(2000) and Otrok (2001) 

Started the likelihood-based Bayesian estimation of DSGE 
models. Examined a variety of issues, such as the forecasting 
performance of stochastic growth models, cash-in-advance 
economy and the welfare costs of business cycles. 

DeJong and Ingram (2001), 
Chang and Schorfheide 
(2003), Galí and Rabanal 
(2004) and Fernández-
Villaverde and Rubio-
Ramírez (2004a) 

Expanded the field: by studying the cyclical behavior of skill 
accumulation, estimating a home-production model to study 
the importance of labor supply shocks, estimating a cattle-cycle 
model and studying the effect of technology shocks on hours 
worked.

Rabanal Rubio-Ramírez 
(2005) 

Compared variants of the small-scale New Keynesian DSGE 
model using marginal likelihoods. 

Schorfheide (2005) Allowed for a regime-switching of the target inflation level in 
the monetary policy rule. 

Lubik and Schorfheide 
(2007) and Del Negro (2003) 

Used marginal likelihoods and small-scale open economy 
models to answer the question whether the central banks 
respond to exchange rates. 

Lubik and Schorfheide 
(2005), Rabanal and Tuesta 
(2005), and deWalque and 
Wouters (2004) 

Estimated multi-country DSGE models. 

Adolfson et al. (2007), 
Adolfson et al. (2007a) and 
Adolfson et al. (2008) 

Used large-scale open economy DSGE models to explore the 
out-of-sample forecasting performance of these models and 
captured the volatility and persistence of real exchange rate 
without assuming unreasonable degrees of price rigidity. 

Smets and Wouters (2003, 
2005 and 2007), Christiano et 
al. (2005), Laforte (2004), 
Onatski and Williams (2004), 
and Levin et al. (2005) 

Analyzed large-scale closed economy DSGE models, which 
include capital accumulation, additional shocks and real (and 
nominal) frictions and can be used for policy analysis and 
forecasting.

___________________________________________________________________________________________________________________________________________________

The cyclical behavior of skill accumulation was studied by the work of DeJong 
and Ingram (2001). Chang and Schorfheide (2003) estimated a home-production 
model to study the importance of labor supply shocks, whereas Fernández-
Villaverde and Rubio-Ramírez (2004a) estimated a cattle-cycle model. 
 Galí and Rabanal (2004) used the DSGE model to study the effect of 
technology shocks on hours worked. Variants of the small-scale New Keynesian 
DSGE model are compared by Rabanal and Rubio-Ramírez (2005) using 
marginal likelihoods and U.S. data. Schorfheide (2005) allowed for regime-
switching of the target inflation level in the monetary policy rule, whereas 
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Canova (2006) explored the stability of the structural parameters in the U.S. 
economy by estimating a small-scale New Keynesian model recursively.
 In the open economy literature Lubik and Schorfheide (2007) computed 
marginal likelihoods using the small-scale open economy DSGE model to 
answer the question whether the central banks of Australia, Canada, England, 
and New Zealand respond to exchange rates. A similar model is applied by Del 
Negro (2003) to Mexican data. Justiniano and Preston (2004) studied imperfect 
exchange rate passthrough, whereas Lubik and Schorfheide (2005), Rabanal and 
Tuesta (2005), and De Walque and Wouters (2004) have estimated multi-
country DSGE models. In addition, the research staff of Sveriges Riksbank (the 
central bank of Sweden) has also put a large amount of effort to the evaluation 
and (Bayesian) estimation of open-economy DSGE models (see e.g. Adolfson et 
al., 2005, Adolfson et al., 2007a and b, Adolfson et al., 2007, and Adolfson et al., 
2008).
 Finally, large-scale models that include capital accumulation and 
additional shocks and real and nominal frictions are analyzed by Smets and 
Wouters (2003, 2005) both for the U.S. and the Euro Area. The interested reader 
would also like to read the very intuitive paper of Smets and Wouters (2007). 
These authors show that a large-scale DSGE model with capital accumulation 
and various nominal and real frictions can have a model fit comparable to that 
of reduced-form Bayesian vector autoregressive (VAR) models (estimated with 
well-designed shrinkage methods). Models similar to that of Smets and 
Wouters (2003), which can be used for policy analysis and forecasting, have 
been estimated by Christiano et al. (2005), Laforte (2004), Onatski and Williams 
(2004), and Levin et al. (2005). 
 Table 2 summarizes the major issues involved in the likelihood based 
inference of DSGE models. As Table 2 indicates, in the DSGE framework, model 
misspecification may occur because of non-singularity in the forecast error 
covariance matrix. For example, Sims (2002b) suggests dealing with this issue 
using procedures that can be applied despite the singularity, whereas Sargent 
(1989), Altug (1989), Ireland (2004), Leeper and Sims (1994) and Smets and 
Wouters (2003) propose removing the singularity by adding measurement 
errors or additional structural shocks to the model mechanism. The major 
problem in the latter solution is related to model uncertainty. That is, how to 
decide which shocks (or measurement errors) should be added to the DSGE 
model mechanism? A feasible Bayesian solution to this problem is model 
averaging.
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TABLE 2  Major Issues Involved in the Likelihood Based Inference of DSGE Models 

_______________________________________________________________________________________________________________________________________

Issue Problem Solution Problem in Solution 
_______________________________________________________________________________________________________________________________________

 Non-singularity in 
forecast error covariance 
matrix 

 Procedures that can be 
applied despite the 
singularity 

 Remove the singularity 
by adding so-called 
measurement errors or 
additional structural 
shocks to the model 

 Model uncertainty: 
which shocks or 
measurement errors 
should be introduced to 
the model?

 A feasible solution: 
Bayesian model averaging 

 Invalid cross-coefficient 
restrictions which cause 
poor out-of -sample fit 

 Larger DSGE models 
equipped with capital 
accumulation and various 
nominal and real frictions 

 Complexity of models, 
which reduces practic-
ability. 

 Model uncertainty: 
which variables should be 
introduced to the model?  

 A feasible solution: 
Bayesian model averaging 

Model
misspecification 

 Absurd parameter 
estimates due to the 
stylized nature of DSGE 
models 

 Use of informative 
priors to down-weigh the 
regions of the parameter 
space which are at odds 
with micro-level evidence  

 Subjectivism: what 
features of the posterior 
are generated by the prior 
rather than the likelihood? 

 A direct comparison of 
priors and posteriors may 
produce one solution to 
this problem. 

Identification 

 Lack of identification of 
the structural parameters 

 Use of informative 
priors to add curvature to 
a likelihood function 
which is flat in some 
dimensions of the 
parameter space 

 Subjectivism: the use of 
informative priors may 
require a considerable 
amount of effort to 
confirm that the important 
features of posterior 
results are not driven by 
these priors

 A direct comparison of 
priors and posteriors. 

Model comparison 

 Posterior odds, typically 
used in model 
comparison, are 
proportional to prior 
odds; model comparison 
is thus sensitive to the 
prior.

 Typically, DSGE priors 
are in part based on data-
peeking, which weakens 
the credibility of model 
comparison. 

 Use of a training-sample 
to cancel the influence of 
the prior on the marginal 
likelihood 

 Use of alternative model 
comparison methods, 
such as the average 
discrepancy, defined as 
the posterior mean of 
deviance. 

 How to determine the 
size of the training 
sample? 

 Training sample priors 
for small training samples 
can easily be eccentric. 

 The usual argument 
against deviances is that 
they have no proper scale. 

___________________________________________________________________________________________________________________________________________________

The second source of model misspecification comes from potentially invalid 
cross-coefficient restrictions, which often cause poor out-of-sample fit. The 
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literature has responded to this issue by developing large-scale DSGE models 
equipped with capital accumulation and various nominal and real frictions (see 
Smets and Wouters, 2003, 2005 and 2007, and Christiano et al., 2005). Again 
Bayesian model averaging is needed, since introducing additional variables into 
the model mechanism increase model uncertainty. Smets and Wouters (2007) 
take steps to this direction by testing which frictions are empirically important 
by comparing the marginal likelihoods of the alternative models. Another 
problem of large-scale models is their complexity, which decreases their 
practicability.
 Absurd parameter estimates are, due to the stylized nature of DSGE 
models, also common in empirical analysis. In situations like this, the use of 
informative priors to down-weigh the regions of the parameter space which are 
at odds with micro-level studies may be practical. This, however, easily 
provokes questions about the reliability of the analysis. That is, which features 
of the posterior are generated by the prior rather than the likelihood? A direct 
comparison of priors and posteriors may provide one solution to this problem.
The lack of identification of the structural parameters is studied by, e.g., Beyer 
and Farmer (2004), Canova and Sala (2005) and Sungbae and Schorfheide 
(2007). A Bayesian solution to this problem is to use priors to add curvature to a 
likelihood function which is flat in some dimensions of the parameter space. 
However, the use of informative priors may require a considerable amount of 
effort to confirm that the important features of posterior results are not driven 
by these priors. 
 Finally, posterior odds are typically used in model comparison. However, 
they are proportional to prior odds, which makes model comparison sensitive 
to the prior. Furthermore, the DSGE priors are typically based on data-peeking 
in part, which weakens the credibility of model comparison. We can of course 
use a training sample to cancel the influence of the prior on the marginal 
likelihood. However, training sample priors, especially with small training 
samples, can easily be eccentric. More importantly, determining the size of the 
training sample is somewhat difficult, and far from unique. As an alternative 
strategy, we suggest using other model comparison methods, such as the 
average discrepancy, defined as the posterior mean of deviance. However, the 
usual argument against deviances is that they have no proper scale.
 In sum, Bayesian methods can provide straightforward solutions to many 
fundamental problems related to the analysis of DSGE models. However, all 
approaches have their pros and cons, as Table 2 clearly points out.
 Finally, it is clear that Bayesian methods can provide useful tools for all 
areas of economic research, not just for the analysis of DSGE models. However, 
since this class of models has become very popular in economics over the past 
15 years, it provides fairly illustrative examples of the practicability of the 
Bayesian approach in econometrics. In the next subsection, when giving the 
summaries of the essays, we will suggest several other Bayesian tools having 
important roles in reliable econometric analysis. 
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1.2  Essays 

1.2.1 The Forecasting Performance of the Small-Scale Hybrid New Keynesian 
 Model 

In essay 1, we provide a method for the Bayesian analysis of a simple hybrid 
DSGE model (or the New Keynesian (NK) model) of Clarida et al. (1999). This 
method is easily implementable and leads to savings in the CPU time required 
in posterior simulation, compared to the commonly used Kalman filter 
approach. Specifically, the Bayesian full information framework is adopted. 
 We choose to use Bayesian methods in estimation since the full 
information maximum likelihood (FIML) estimates turned out to be very 
sensitive to the starting values of maximization due to a multimodal likelihood. 
According to Lindé (2005), the maximum likelihood estimation of the hybrid 
model can with different starting values converge to local equilibria with more 
or less plausible parameter values. Surprisingly, this problem remained even if 
the parameter space was restricted to an economically feasible region. 
 The Bayesian full information analysis instead turned out to produce 
reliable parameter estimates. This is mainly since our joint prior is well 
designed in allowing the parameters to be estimated fairly freely, while being 
informative enough to keep the posterior distribution away from economically 
unreasonable values. To be more concrete, the marginal priors of the taste and 
policy parameters of the hybrid model come from micro-level studies, while the 
priors of the autoregressive parameters are based on a simple parameter 
transformation, which forces the posteriors of these parameters to be located in 
the interval [–1, 1]. Furthermore, the standard deviations of structural shocks 
are assumed to follow an inverse-gamma distribution with the shape and scale 
parameters yielding fairly loose priors. 
 The main objective of this essay is to compare the forecasting properties of 
the hybrid DSGE model against commonly used forecasting tools, such as 
Bayesian VARs and naïve forecasts based on univariate random walks. To do 
this properly we use quarterly ex post and real-time U.S. data from 1953:2 to 
2004:4. In particular, the predictability of three key macroeconomic-variables, 
inflation, short-term nominal interest rate and a measure of output gap are 
studied. The source of the ex post data is the FREDII databank of the Federal 
Reserve Bank of St. Louis, while the source of the real-time data is the Federal 
Reserve Bank of Philadelphia. 
 Our out-of-sample forecast evidence implies that in the entire forecast 
sample (1976:4-2004:4) the forecasts of the hybrid DSGE model outperform 
those of the Bayesian VARs, while in the low inflation subsample (1990:1-
2004:4) all the multivariate forecasting methods seem to produce equally 
accurate forecasts. In addition, both the DSGE and VAR models turned out to 
produce inflation forecasts which outperformed the naïve forecasts up to six 
quarters in all samples. This result is particularly important, since Atkeson and 
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Ohanian (2001) found that the one-year-ahead Federal Reserve’s Greenbook 
inflation forecast has not been better on average than the naïve forecast since 
1984.
 We may conclude that the simple hybrid DSGE model captures the 
predictable behavior of the three U.S. key macroeconomic variables very well. 
The result is very interesting, since several recent papers have suggested 
different ways to improve the forecast performance of DSGE models at the cost 
of increasing the complexity of model mechanisms, thus decreasing the 
practicability of these approaches. 

1.2.2 Robustness of the Risk-Return Relationship in the U.S. Stock Market 

In essay 2, we study the robustness of the risk-return relationship in monthly 
U.S. stock market returns with respect to the specification of the conditional 
mean equation. The starting point of our analysis is the following linear 
equation for the expected excess return rt, implied by Merton’s (1973) 
Intertemporal Capital Asset Pricing Model (ICAPM), 

( ) ( )tttt rVarrE 1101 −− += μμ ,

where the slope coefficient 1 is expected to be positive and the intercept 0

should be zero. Most of the previous empirical work on the ICAPM is based on 
the GARCH-in-Mean (GARCH-M) model, and it is the model used in our 
empirical analysis.
 The empirical evidence of ICAPM is mixed, but typically 1 has been 
found insignificant (see Ghysels et al., 2005, and references therein). However, 
Lanne and Saikkonen (2006) recently showed that adding the theoretical 
restriction 0 = 0 to the previous expression produces reasonable empirical 
results. Unfortunately, this restriction may be criticized, since it forces the 
expected excess return of the stock market to equal the risk-free interest rate 
under the null hypothesis 1 = 0. This is in conflict with the stock premium 
puzzle literature put forth by Mehra and Prescott (1985), according to which the 
average stock return, in the U.S. particularly, has been excessively high relative 
to the risk. 
 Therefore, the results of Lanne and Saikkonen (2006) concerning the risk-
return relationship should be checked for robustness to confirm that they are 
not driven by the zero restriction on the intercept. To this end, we make use of 
Bayesian methods and estimate a model assuming a number of different prior 
beliefs in order to observe the sensitivity of the estimate of 1.
 In particular, we assume a zero mean normal prior distribution for 0 and 
consider several alternative plausible values for the prior variance of 0 to see 
how the tightness of the prior assumption 0 = 0 affects the estimation results. 
Specifically, we let the prior standard deviation ( ) of 0 vary from 6-1×0.003 to 
10×0.003, where 0.003 is the standard error of the maximum likelihood estimate 
of 0 reported by Lanne and Saikkonen (2006). In practice,  = 10×0.003 yields a 
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noninformative prior distribution for 0, while  = 6-1×0.003 is small enough to 
force the posterior mean of 0 to be close to zero. Although the equity premium 
puzzle indicates a positive 0, in this exercise we rely on the underlying 
economic theory (ICAPM), which suggests zero mean on 0, as a basis of our 
prior knowledge. Values of the prior variance of 0 close to zero are, thus, more 
in accordance with the ICAPM, while higher values of the prior variance of 0

allow for the possibility of the equity premium.  
 The data are downloaded from Kenneth French’s homepage. The data set 
consists of the monthly excess return on the value-weighted CRSP index (in 
excess of the 3-month Treasury bill rate) from 1928:1 to 2004:12. In addition to 
the entire sample, the models are estimated for the 1928:1 – 1966:6 and 1966:7 – 
2004:12 subsample periods of equal length. This serves as a convenient check 
for robustness and parameter constancy. 
 Our empirical evidence lends support to the robustness of the positive 
risk-return relationship in the U.S. stock market data, albeit the evidence is 
weaker in the first subsample period. In other words, this conclusion is shown 
not to be affected by (falsely) restricting the intercept term in the equation for 
the expected excess return equal to zero, when its true value is close to zero. 
The estimates of 1, however, were shown to be affected by imposing this 
restriction if untrue, as was the case in the full sample and the first subsample 
periods.
 One possible drawback of our analysis comes from the role which priors 
have in determining the values of marginal likelihoods. That is, when the prior 
variance of 0 is set to be small enough to force the posterior mean of 0 to be 
close to zero, the prior may become informative enough to have non-negligible 
influence on the marginal likelihood. We control this issue by two ways. Firstly, 
we estimate the marginal likelihood with the full restriction of zero intercept ( 0

= 0). The results of this exercise were very close to that where the posterior 
mean of 0 was forced to be close to zero using small prior variance of 0.
Secondly, in addition to marginal likelihoods, estimated average discrepancies, 
which are not sensitive to priors, are used as well (see Gelman et al., 2004). 
Fortunately, both methods of model comparison turned out to produce similar 
conclusions.

1.2.3 Bayesian Two-Stage Regression with Parametric Heteroscedasticity 

In essay 3, we expand Kleibergen and Zivot’s (2003) Bayesian Two Stage (B2S) 
model by allowing for unequal variances. In classical analysis, modelling 
heteroscedasticity improves the efficiency of estimation and enables the 
variance estimates to be consistent. Thus, not surprisingly, modelling 
heteroscedasticity has become standard in classical IV literature. However, 
there is no single Bayesian study (to our knowledge) of IV models with unequal 
variances, although from the Bayesian point of view, modelling 
heteroscedasticity should improve the precision of estimates and the quality of 
predictive inference. The latter follows from the fact that modelling 
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heteroscedasticity allows predictive inferences to be more precise for some units 
and less precise for other.
 Our choice for modelling heteroscedasticity is a fully Bayesian parametric 
approach. As a prior distribution we will use a modification of the Jeffreys prior 
distribution (see e.g. Zellner, 1971). Although the derivation of our prior 
distribution is somewhat arbitrary (as will be seen) it yields a prior density 
which has a very practical property. The B2S model with heteroscedasticity 
correction is not informative regarding the vector of structural parameters 
when the parameter matrix  of the regression coefficients of the first-stage 
regression has reduced rank. In the presence of our prior, the marginal 
posterior of  does not have a non-integrable asymptote in this situation. The 
parameter matrix  is close to zero or close to having reduced rank in the case 
of weak instruments, that is, when the instruments are only weakly correlated 
with the endogenous regressors. 
 To make an empirical illustration of the properties of the heteroscedastic 
B2S model, we follow Benhabib and Spiegel (1994) and Papageorgiou (2003) 
and construct a simple exercise of aggregate production function estimation 
using a cross-country sample of 85 non-oil-producing countries. In this essay, 
we use the Penn World Table 6.1 dataset. The usefulness of this dataset is that 
the data is adjusted for differences in purchasing power across countries, which 
allows for strict comparability of the levels of GDP. The source of the years-of-
schooling series is Cohen and Soto (2001). In the formation of their dataset, the 
authors put effort to raise the quality of the years of schooling data by 
minimising extrapolations and keeping the data as close as possible to those 
directly available from national censuses. 
 Our motivation to cross-country analysis comes from the fact that the 
problems of endogenoity and heteroscedasticity are well documented in cross-
country growth literature (see e.g. Benhabib and Spiegel, 1994, and the surveys 
of Temple, 1999, and Durlauf et al., 2005). 
 Our parameter estimates of the input shares of human capital and physical 
capital are close to their theoretical values 2/3 and 1/3, respectively, when the 
endogeneity of inputs is controlled. Our results also indicate that the variation 
of standard deviations between the countries is large, which causes estimation 
inefficiency if not modelled. Finally, on the basis of the estimated 
heteroskedasticity parameter, it seems that the less-developed countries in 1970 
had more variability in their growth possibilities over 1970-2000. 

1.2.4 A Naïve Sticky Information Model of Households’ Inflation 
  Expectations 

In essay 4, we provide a new model for the households’ inflation expectations 
formation process. The model is based on Carroll’s (2003) expectation formation 
model, where the general public adopt professionals’ forecast with certain 
probability, rather than form their own rational forecasts. The structure of his 
model was inspired by simple models of disease spread from the epidemiology 
literature, and it provides promising microfoundations for sticky information 
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models. To the best of our knowledge, it is also unique in relaxing the 
assumption that an ordinary person either knows the true probability 
distribution of the economy or can estimate some sophisticated econometric 
model when forming expectations. This relaxation is, however, important, since 
although trained economists might have this kind of knowledge, it would 
probably be an overwhelming task for an ordinary person (see Shiller, 1997). 
According to Carroll (2003), it might require, for example, obtaining a Ph.D. 
degree in economics first. 
 Our model differs from that of Carroll (2003) in that it no longer assumes 
agents to be ‘infected’ by rare newspaper forecasts. Rather, the source of 
‘infection’ is the past release of annualized monthly inflation, the most 
commonly reported figure in the news coverage of inflation. This model is 
referred as the naïve sticky information model, and is motivated by the finding 
of Atkeson and Ohanian (2001) that since 1984 the one-year-ahead inflation 
forecast of professionals has not been better than the “naïve” forecast given by 
the inflation rate over the previous year. Furthermore, recent work has cast 
doubt on the reliability of traditional approaches to inflation forecasting (see 
e.g. Atkeson and Ohanian, 2001, Fisher et al., 2002, Sims, 2002a, Stock and 
Watson, 2002 and 2007, and Brave and Fisher, 2004). These findings give us a 
reason to question households’ rationale to search for relatively rare newspaper 
forecasts or to form their own rational forecasts. 
 The model is estimated with both population- and household-level survey 
data from 1981/3 to 2001/4, constructed by the Survey Research Center (SRC) 
at the University of Michigan. In the population level, the naïve sticky 
information model is tested empirically against Carroll’s sticky information 
approach. Specifically, we compare the posterior probabilities of the alternative 
models in which households update their expectations either to the forward-
looking newspaper forecast or to the most recently reported past inflation 
statistic. As will be seen, Michigan data strongly support the latter.  
 The posterior model probabilities are computed, since the models are non-
nested and conventional tests cannot be used to the test them against each 
other. There are of course classical alternatives for model comparison of non-
nested models (such as the Akaike Information Criterion and Davidson-
McKinnon J-test), but these tests  have no proper scale. The tested models are 
standard linear regression models corresponding to their theoretical 
counterparts. We assume uniform independent prior distributions on the 
interval [0,1] for parameters which economic theory suggests to be households’ 
updating probabilities. Furthermore, for simplicity, uniform independent prior 
distributions on given intervals are also assumed for other parameters. 
 In the household-level analysis, we extend the agent-based epidemiology 
model, proposed by Carroll (2006), by deriving a relatively simple adaptation of 
that model, suitable for estimation. The model is derived, since there is likely to 
be heterogeneity in households’ expectations that cannot be captured by the 
population level model. The marginal priors of model parameters are based on 



24

the underlying economic theory and on information derived from data sets not 
included in the estimation sample. 
 Our posterior evidence indicates that the agent-based epidemiology model 
captures the heterogeneity between agents’ expectations fairly well, in the sense 
that the variance of unexplained heterogeneity ( 2), i.e. heterogeneity in agents’ 
expectations which the underlying model cannot explain, is quite small 
(approximately 1.1) relative to the high degree of heterogeneity observed in the 
actual micro level data. For example, in Branch’s (2007) Rationally 
Heterogeneous Expectations (RHE) sticky information model, 2 was 36. 
Although our result is not fully comparable to that of Branch (2007), we note 
that, opposite to our model, in the RHE model most variation in agents’ 
expectations is attributed to unexplained heterogeneity. 

1.2.5  Aggregate Infrastructure Capital Stock and Long-Run Growth: 
Evidence from Finnish Data 

In essay 5, we explore the relationship between infrastructure capital and long-
run output growth in the time-series context. Exogenous and endogenous 
growth theories give substantially different predictions on this relationship. The 
conventional wisdom of the exogenous neoclassical model has been that 
government actions can have an effect on the income level but only a temporal 
effect on the growth rate, while the endogenous growth theory predicts that 
permanent changes in government policy, e.g. investments in infrastructure 
capital or human capital, can also have a permanent effect on the growth rate of 
output.
 Earlier growth studies on productive public expenditure use different 
kinds of measures of the public capital stock (or subcomponents of the 
aggregate infrastructure capital stock) in their growth regressions. Instead, we 
use the Finnish land and water construction investment series from 1860 to 
2003, and the perpetual-inventory method, to obtain a constant-euro value of 
the aggregate infrastructure capital stock for each year. This estimated capital 
series covers all important factors of infrastructure investment in Finland 
during that period.
 Our estimations were based on the non-residential sector of the Finnish 
economy. The source of the investment series and the gross domestic product 
(GDP) series is Statistics Finland (Historical Series of Finnish National 
Accounts). All the endogenous variables are I(1) processes. We, however, find 
only very weak evidence in the data for a long-run relationship between the 
infrastructure capital, non-infrastructure capital and GDP series. This increases 
the complexity of reliable classical inference, decreasing its practicability. 
Fortunately, Bayesian methods allow us to easily draw an exact inference on the 
parameters even with near non-stationary data. At least Sims and Uhlig (1991), 
Sims and Zha (1999), and Bauwens, Lubrano and Richard (1999: 136) have 
discussed the usefulness of posterior analysis of near non-stationary data. 
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Boarnet (1995) reports a number of shortcomings in traditional infrastructure 
(public capital) studies. First, a common trend in both the output and 
infrastructure capital time series can lead to spurious correlation. Second, some 
of the productivity effect of infrastructure might spill over across regions, and 
thus regional panel studies do not measure the full effect of infrastructure.  
Third, infrastructure capital investment both causes and is caused by output 
growth, which means that the series are endogenous. 
 We avoid the reported shortcomings by using the Bayesian vector 
autoregressive (VAR) approach. Specifically, we use a structural-form Bayesian 
VAR to get a consistent parameter estimate for the long-run multiplier of 
output w.r.t. aggregate infrastructure capital. To acquire such a parameter we 
identify our Bayesian VAR using a Barro (1990) type growth model. 
Furthermore, in this essay, a standard non-informative prior is used, since our 
VAR system is very parsimonious and, hence, does not suffer from the over-
parameterization problem. 
 Our analysis is close to that of Kocherlakota and Yi (1997); however, when 
we analyse a country where public infrastructure investments are typically less 
than 5% of total public expenditures (as is typical in OECD countries), we 
should not include a tax variable  (like Kocherlakota and Yi, 1997), but instead 
include a private capital variable in the regression. If we estimate the model 
with infrastructure capital and the tax variable on the right-hand side, as is 
typical in a distributed-lag approach, only the revenue part of the government’s 
budget is controlled. This biases the result towards exogenous growth. 
However, including a private capital variable allows us to control the effect of 
the agents’ decisions on the allocation of investments between the infrastructure 
and other forms of capital. 
 The posterior evidence gives strong support for endogenous growth. 
However, failing to include the private capital variable in the regression biases 
the result towards exogenous growth. In general, our estimation results are in 
line with previous studies on the dynamic effects of infrastructure (public) 
capital. However, as we will show, when the dynamic effect of aggregate 
infrastructure capital (not public capital) is studied, one should put forth an 
effort to modelling in order to obtain consistent parameter estimates for the 
long-run coefficient of output w.r.t. infrastructure capital. 



2  ESSAY 1: THE FORECASTING PERFORMANCE OF 
 THE SMALL-SCALE HYBRID NEW KEYNESIAN 
 MODEL1

ABSTRACT

This paper uses quarterly ex post and real-time U.S. data to show that the very 
simple hybrid New Keynesian model of Clarida, Galí and Gertler [1999. The 
Science of Monetary Policy: A New Keynesian Perspective. Journal of Economic 
Literature 37, 1661-1707] can provide forecasts comparable to those based on 
Bayesian reduced-form vector autoregressive models. The issue is important, 
since several recent papers have suggested different ways to improve the 
forecast performance of New Keynesian models at the cost of increasing the 
complexity of model mechanisms, thus reducing the practicability of these 
approaches.

Keywords: New Keynesian model; Forecasting; Real-time data; Bayesian 
inference; Vector autoregressive models. 
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2.1 Introduction 

There is an increasing volume of literature focusing on developing New 
Keynesian (NK) models suitable for forecasting and quantitative policy analysis 
(see Sungbae and Schorfheide, 2007, and references therein). Within this 
literature, Smets and Wouters (2003, 2005 and 2007), Christiano et al. (2005), 
Adolfson et al. (2007a), and Adolfson et al. (2005, 2008), construct large-scale 
NK models aiming to find a structural macroeconomic model which has a fit 
comparable to that of reduced-form Bayesian vector autoregressive (VAR) 
models. In these studies, additional shocks, frictions and measurement errors 
are introduced to the NK model mechanisms until the desired fit is achieved. 
This approach ignores model uncertainty, leading to inferences which are over-
confident and decisions which are riskier than the policy-maker believes them 
to be. A promising alternative strategy is provided by Del Negro and 
Schorfheide (2004). In their approach an NK model is used to generate a prior 
distribution for the parameters of the VAR to improve the forecast and policy 
analysis performance of these models. Although this approach is promising, it 
is nonetheless complicated and the numerical methods required in estimation 
are time-consuming. The practicability of this approach can therefore be 
questioned (see also Del Negro et al., 2007). In the light of recent NK literature, 
it would be thus interesting to see whether a simple NK model, including only 
few shocks and the standard price rigidity, can have a fit comparable to other 
forecasting methods such as the Bayesian VARs commonly used as a 
benchmark.
 This paper has two objectives. First, it provides a method for the Bayesian 
analysis of a simple hybrid NK model of Clarida et al. (1999). The method is 
very easy to implement and leads to savings in the CPU time required in 
posterior simulation, compared to the commonly used Kalman filter approach. 
Lindé (2005) estimates a version of the hybrid NK model with the full 
information maximum likelihood (FIML) method using U.S. data. We instead 
adopt a Bayesian full information framework, since the FIML estimates turned 
out to be very sensitive to starting values and since Bayesian methods allow 
incorporation of prior information which facilitates numerical maximization.  
 Our second objective is to compare the forecasting properties of the hybrid 
NK model against commonly used forecasting tools such as Bayesian VARs and 
naïve forecasts based on univariate random walks. Using quarterly U.S. data we 
show that the hybrid model can provide forecasts of key macroeconomic 
variables, inflation and short-term nominal interest rate, and a measure of the 
output gap comparable to forecasts based on reduced-form Bayesian VARs. 
Our results also indicate that the hybrid model predicts more accurately than 
naïve forecasts based on univariate random walks. In particular, these results 
hold for both ex post data and real-time data, which are available to policy-
makers when forecasts are being made. Our results also confirm the finding of 
Smets and Wouters (2007) that the cross-equation restrictions implied by NK 



28

models work especially well in forecasting at medium-term horizons (from four 
to twelve quarters). For policy-makers, comparisons of forecasts at longer than 
one quarter horizon are of interest, since policy actions typically depend on 
expected future developments in the economy. 
 Finally, we find two major reasons for the good forecasting performance of 
the hybrid model. Firstly, the model allows both for the endogenous persistence 
in inflation and output and for the persistence of exogenous shock processes. 
This approach is commonly used in large-scale NK models, which forecast well. 
Secondly, our joint prior is well designed in allowing the parameters to be 
estimated fairly freely, while being sufficiently informative to keep the posterior 
distribution away from economically non-meaningful values. 
 The remainder of the paper is organized as follows. In section 2, we 
discuss the model, the prior and the data. We continue the analysis by reporting 
the posterior distributions of the parameters. In section 3, we explain the 
forecasting comparison methods, and present and discuss the results of a 
forecasting exercise. Section 4 concludes the paper. 

2.2  Likelihood, Prior, Data, and Posterior 

In this section we introduce a hybrid NK model. Its likelihood and the joint 
prior density function of the structural parameters are specified. We then 
describe the data and continue the analysis by reporting the posterior 
distributions of the parameters. 

2.2.1 Model Likelihood 

Let us consider the following hybrid NK model for period t inflation2, t, and a 
measure of the output gap, xt, respectively, 

( ) tttttt xE ,11 1 πεγπαπαπ ++−+= −+ ,   (1) 

( ) ( ) txtttrtttt ERxxEx ,111 1 επβββ +−−−+= +−+ ,  (2) 

where parameters  and  satisfy the conditions 0  1 and 0  1. Equation 
(1) is the hybrid New-Keynesian Phillips curve (NKPC), similar to that 
analyzed in Rudd and Whelan (2006), while Equation (2) is the aggregate 
demand equation. The model is very close to that carefully studied in Clarida et 
al. (1999). 
 The disturbance terms ,t and x,t in Equations (1) and (2) are assumed to 
follow univariate AR(1) processes: 

                                                
2  Price inflation is defined as the percent change in the price level from t – 1 to t.
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ttt u ,1,, ππππ ερε += − ,    (3) 

txtxxtx u ,1,, += −ερε ,    (4) 

where ∈xρρπ , [–1,1], and u ,t and ux,t are independently and identically 
distributed (i.i.d.) random variables with zero means and variances 2

πσ  and 2
xσ ,

respectively.
 We close the model with the following Taylor rule for the nominal interest 
rate Rt,

( )( ) tRttxtt RxR ,11 εργπγρ π +++−= − ,   (5)

where the parameter ∈ρ [0, 1] measures the degree of interest rate smoothing, 
the disturbance term R,t obeys R,t = R R,t-1 + uR,t, ∈Rρ [–1,1], and uR,t is an i.i.d. 
random variable with zero mean and variance 2

Rσ .
 The model in Equations (1)-(5) can be solved analytically by using 
standard first-order log-linear methods. In particular, this paper follows Lindé 
(2005) in applying the solution algorithm of Söderlind (1999). The solution gives 
the equilibrium law of motion for the relevant state variables. Specifically, the 
state equation is given by zt = Czt-1 + vt, where zt = ( ,t, x,t, R,t, t-1, xt-1, Rt-1) , vt = 
(u ,t, ux,t, uR,t, 0, 0, 0)  and C is a nonlinear function of structural parameters. 
Given that the shocks are normally distributed and that the vector of 
observables yt = ( t, xt, Rt)   is a linear combination of the state variables, the 
common approach is to specify a recursive likelihood function for the model 
using the Kalman filter. The estimates of the model can then be obtained using 
standard non-linear optimization methods. 
 Alternatively, the analytical solution of the model can be written as a full 
information system of the vector of observables (see Lindé, 2005). Specifically,

ttyt CyCy εε+= −1 ,    (6) 

where t = ( ,t, x,t, R,t)  and Cy and C  are partitions of the solution matrix C
conformably with yt and t, respectively. 
 Then denote t = t-1, where  is a diagonal matrix whose diagonal entries 
are given by , x and R. The likelihood function for a sample of T observations 
can be written as 

      ( ) ( ){ }12/ '5.0exp; −−− Λ×−Λ∝ UUtrCYL TT
εθ ,  (7) 

where  = ( , , r, , , x, , , x, R, , x, R)  is a vector comprising all 
model parameters and  a diagonal covariance matrix with diagonal entries 
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2
πσ , 2

xσ and 2
Rσ . Furthermore, the tth rows of (T×m) matrices Y and U are given 

by yt  and ut , respectively, where m is the number of observables and 

( )( )2
1

1
11

−
−

−
−− Ρ+Ρ+−= tytytt yCCCyCCCyCu εεεεε .  (8) 

In what follows, we adopt the full information approach of Equation (7), since 
the optimization algorithm based on it proved faster than the algorithm based 
on the recursive Kalman filter. Specifically, the Kalman filter approach requires 
roughly 4.5 times as much CPU time for posterior simulation as our approach 
(with a sample of 200 observations). Furthermore, both estimation methods 
were also found to produce similar results. 
 The model described in Equations (1)-(5) contains 13 parameters, collected 
in . It is fairly easy to see that all parameters are identifiable from the data. 
However, the maximum likelihood (ML) estimation of the model turned out to 
be a challenging task. In particular, the ML estimates of the parameters were 
very sensitive to the starting values of maximization due to a multimodal 
likelihood. This problem remained even when the parameter space was 
restricted to an economically feasible region. To illustrate this problem we give 
an example from the previous literature. Lindé (2005) estimates a version of the 
model in Equation (1)-(5) on U.S. data with full information maximum 
likelihood (FIML).3 He finds positive and highly significant parameter estimates 
for the slope coefficients  (  0.05) and r (  0.09). However, there exists a local 
equilibrium in which the likelihood is higher than that in Lindé’s solution. At 
this equilibrium the slope coefficients  and r are still positive, but rather close 
to zero. According to Lindé (2005), the estimation can with different starting 
values converge to local equilibria with more or less plausible parameter 
values. To facilitate numerical maximization, we suggest using Bayesian 
methods, which allow incorporation of prior beliefs on parameters. While 
restricting, for example, the slope coefficients  and r to be equal to some 
theoretical values gives an example of a very strong prior belief, other kinds of 
beliefs cannot easily be considered in the classical framework.  
 As seen in current literature, Bayesian methods have become a standard 
workhorse in analysing the NK models. Sungbae and Schorfheide (2007) 
provide an excellent review of the Bayesian methods developed in recent years 
to estimate and evaluate this class of models (see also Adolfson et al., 2007b). 
Rather than elaborating the details of Bayesian methods in analysing the NK 
models, which is already done in Sungbae and Schorfeide (2007), we discuss 
our choices of marginal prior distributions in the next subsection. 

                                                
3  Lindé (2005) adds additional lags in the aggregate demand equation (2) and the 
 monetary policy rule (3) to make disturbance terms x,t and R,t white noise. 
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2.2.2 Marginal Priors 

The starting-point in the Bayesian analysis is to determine the prior density 
function of the parameters, p( ), which together with the likelihood function (7) 
yields the posterior density 

( ) ( ) ( )
( ) ( )=

θθθ
θθθ

dYLp
YLpYq
;
; .    (9) 

 A typical informative prior reflects the researcher’s subjective beliefs, 
summarizes information from the data not included in the estimation sample, 
or is based on both of them. Often the underlying economic theory provides a 
natural starting-point for the prior elicitation. We will use a very simple 
structural model as the basis of our prior knowledge. The model can be 
obtained by log-linearizing the aggregation of individual firms’ pricing 
decisions and the consumption Euler equation without using ad hoc 
assumptions such as backward inflation indexation or habit formation in 
consumption. Specifically, the prior means of the parameters in  are based on 
the following model, 

( )( )( )
tttt xbbE

κ
ζκκππ +−−+= +

111
1 ,   (10) 

( )11 ++ −−= tttttt ERxEx π ,    (11) 

where b is the subjective discount factor,  the frequency of price adjustment 
and  the elasticity of labor supply. Note that, for simplicity, a standard 
assumption on prior independence is used (see e.g. Zellner, 1971). Del Negro 
and Schorfheide (2008) criticize this assumption as having the drawback that 
the resulting joint prior distribution may assign a non-negligible amount of 
probability mass to regions of the parameter space where the model is 
unreasonable. It is fairly easy to see that the undesirable property suggested by 
Del Negro and Schorfheide (2008) is not present in our joint prior. 
 Table 1 lists the marginal prior distributions of the parameters. The beta 
prior distributions of the parameters  and  are concentrated towards unity, 
but are nonetheless only weakly informative (see Equations 10 and 11 for 
motivation). The prior mean of the slope coefficient r is set at unity, while the 
prior mean of  (1.00) can be obtained by setting the subjective discount factor, 
the elasticity of labor supply and the frequency of price adjustment at their 
standard calibrated values, e.g. 0.99, 2 and 0.57, respectively, in Equation (10). 
The prior variances of these parameters ( , r) are set to be small enough to keep 
the posterior distribution away from economically non-meaningful values. The 
prior means of the policy parameters  (1.50) and x (0.50) are obtained from 
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Taylor (1993).4 However, some interest rate smoothing is also allowed a priori. 
That is, the prior mean of  is set at 0.50. With the given prior variances, the 
marginal prior distributions of these parameters ( , x, ) turned out to be 
practically noninformative.  
 The standard deviations , x, and R are assumed to follow inverse-
gamma distributions with shape and scale parameters yielding fairly loose 
priors. Finally, the normal prior distribution with zero mean and (3/4)2

variance is used for the transformed parameters 

π

π
π ρ

ρφ
−
+=

1
1log

2
1 ,

x

x
x ρ

ρφ
−
+=

1
1log

2
1  and 

R

R
R ρ

ρφ
−
+=

1
1log

2
1 .  (12) 

These marginal priors force the posterior distributions of the autoregressive 
parameters , x and R to be located in the interval [–1, 1]. The marginal priors 
are also very loose, but nevertheless turned out to improve simulation 
efficiency.

2.2.3 Data and Results 

Throughout this study the quarterly U.S. data from 1953:2 to 2004:4 are used. In 
addition to the entire sample, the models are estimated for the subsample 
periods 1953:2-1982:2 and 1982:3-2004:4, capturing the “Great Inflation” and 
“Great Moderation” periods, respectively. This serves as a convenient check for 
robustness and parameter constancy. We are aware that the nominal interest 
rate, as the instrument of monetary policy, provides a reasonable description of 
the Federal Reserve’s operating procedures only after 1964 (see Clarida et al., 
1999). However, the first ten years of data are required to have a sufficiently 
long out-of-sample forecasting period. We form out-of-sample forecasts from 
1976:4 to 2004:4 to have forecast series which covers a diverse spectrum of 
inflation volatility. 
 The output gap is measured as a logarithmic difference between the actual 
and the potential output level. Two measures of actual output are used: real 
gross domestic product (GDP) and non-farm business (NFB) sector output. The 
logarithm of the potential output is proxied by the one-sided Hodrick-Prescott 
(HP) trend estimate in the model 

gt = t + 1t,     (13) 

(1 – L)2 t = 2t,     (14) 

                                                
4  In Taylor (1993), the interest rate and the inflation rate are expressed on a yearly 

basis. Since we express them on a quarterly basis, the prior mean of x should be set 
at 0.125 (0.5 divided by 4). However, the standard deviation of the measure of the 
output gap used in Taylor (1993) is markedly higher than the standard deviation of 
the measure of the output gap used in this paper. Thus, the prior mean of 0.5 can be 
seen to be justified in our case.
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where gt is the logarithm of the measure of actual output, L is a lag operator and 
1t and 2t are mutually uncorrelated white noise sequences with the relative 

variance q = var( 1t)/var( 2t). The value of q = 0.67×10−3 is taken from Stock and 
Watson (1999). We use the previous approximation of potential output, since 
our focus is on forecasting and since it does not use the future values of the 
detrended variable, as the optimal two-sided trend extraction HP-filter for 
Equations (13) and (14) does.5 Furthermore, Stock and Watson (1999) find, after 
experimenting with several methods suitable for forecasting, that this 
procedure produces plausible gap estimates which work fairly well in inflation 
forecasting.
 The price inflation is measured as the log difference of the Implicit Price 
Deflator of GDP (NFB). All the series are seasonally adjusted. The source of the 
final vintage data is the FREDII databank of the Federal Reserve Bank of St. 
Louis, while that of the real-time data is the Federal Reserve Bank of 
Philadelphia. The Federal Funds rate (FFR) is used as the instrument of 
monetary policy. The nominal interest rate and inflation rate series are 
measured as quarterly changes corresponding to their appearance in the 
structural model. Finally, the data are demeaned prior to estimation.
 The estimation results are presented in Table 1, in the topmost panel (A) 
for the entire sample and in the lower panels (B and C) for the two subsample 
periods.6 The data appear to be particularly informative in all these samples. 

                                                
5  We also tested for detrending linear and quadratic trend methods which are suitable 

for forecasting, and found that the results presented are not sensitive to using these 
measures of potential output. Furthermore, we ran several regressions with the 
dataset used in Lindé (2005). The results of the regressions with our and his datasets 
were quite similar. 

6  To generate a Monte Carlo sample from the posterior of  we used a version of the 
random walk Metropolis algorithm for Markov Chain Monte Carlo (MMCMC). The 
algorithm uses a multivariate normal distribution for the jump distribution on 
changes in . Our simulation procedure was as follows: we first simulated 10,000 
draws using a diagonal covariance matrix with diagonal entries 0.00001 in the jump 
distribution. We then used these draws to estimate the posterior covariance matrix of 
 and scale it by the factor 2.42/13, to obtain an optimal covariance matrix for the 

jump distribution; see e.g. Gelman et al. (2004). We continue by a simulating 10,000 
draws and calculated a more accurate covariance matrix for . We repeated this 
roughly 2 times. We then added noise to the posterior median to obtain 
overdispersed starting values and simulated three chains of length 30,000.  We 
excluded the first 5000 simulations as a burn-in period in each chain and picked out 
every 25th draw from the Markov chain, yielding a sample of 3000 draws, which 
economizes on storage space and reduces autocorrelation across draws. The 
convergence of the chains was checked using Gelman and Rubin’s convergence 
diagnostic R (also called ‘potential scale reduction factor’) (see Gelman and Rubin, 
1992).  The diagnostic values close to 1 indicate approximate convergence and values 
smaller than 1.1 are acceptable in most cases. In our case the diagnostic was estimated 
to be between 1.01 and 1.03 for all parameters and all models. The multivariate 
version of Gelman and Rubin's diagnostic proposed by Brooks and Gelman (1998) 
was between 1.01 and 1.02 for each model; the convergence was thus fairly good. The 
frequencies of accepted jumps were roughly 0.21. Finally, the previous adaptive 
Metropolis algorithm is used because the covariance matrix estimate based on the 
local behaviour of the posterior at its highest peak turned out to give too optimistic a 
view of precision, and thus failed to yield an efficient covariance matrix for the 
normal jump distribution.



34

That is, the variances of the posterior distributions are found to be 
systematically smaller than the prior variances. The posteriors are also 
relatively stable between the data sets and the subsamples with two exceptions. 
The variances of the stochastic error processes seem to have fallen in the second 
subsample period. Sims and Zha (2006) and Smets and Wouters (2007) find 
similar evidence in U.S. data concerning the variance of monetary policy 
shocks. Our results also indicate that the Federal Reserve seemed to respond to 
the output gap and inflation more strongly during the second subsample 
period. The latter result is in accordance with that of Boivin and Giannoni 
(2006) and Smets and Wouters (2007), while Bernanke and Mihov (1998), Leeper 
and Zha (2003) and Canova (2006) find a relatively stable interest rate rule for 
the post WWII sample.
 The Taylor principle is fulfilled in all the samples. This contradicts Clarida 
et al. (2000), who report that the Federal Reserve responded less than one-to-
one to inflation during the period 1960-1979 (pre-Volcker period), thus violating 
the Taylor principle. In line with our result, for example, Smets and Wouters 
(2007) and Rabanal and Rubio-Ramírez (2005) find the inflation coefficient to be 
greater than one. 
 The point estimate of  (0.08) indicates a very insignificant role for the 
forward-looking behavior in the Phillips curve. This result is in accordance with 
those of Fuhrer (1997), Lindé (2005) and Rudd and Whelan (2006), but at odds 
with the results of Smets and Wouters (2003, 2005 and 2007), Adolfson et al. 
(2005) and Galí et al. (2005). The latter group of authors obtains relatively low 
parameter estimates for the degree of price indexation. Our estimates were 
obtained using a statistical measure of the output gap. Galí and Gertler (1999) 
and Galí et al. (2005) have suggested that the key reason for the lack of success 
of the forward-looking NKPC is that the detrended output is not a good proxy 
for real marginal costs. Contrary to their finding, Rudd and Whelan (2006), who 
used both the output gap and labor's share as a proxy for real marginal cost, 
found that the evidence for the forward-looking behavior in the NKPC was 
very weak. 
 The point estimates of  are high, supporting the traditional forward-
looking intertemporal Euler equation. In contrast, previous studies have 
typically observed a high degree of habit persistence (see e.g. Christiano et al., 
2005, and Smets and Wouters, 2007). However, there seems to be a trade-off 
between the forward-looking behavior of the demand equation and the 
persistence of autoregressive demand shocks. In our paper, the high 
autoregressive parameter of the exogenous shock process ( x = 0.79) takes into 
account the degree of persistence observed in the data. In Smets and Wouters 
(2007), the habit formation of consumption takes into account the high 
persistence, while the autoregressive parameter of exogenous shocks is 
estimated to be relatively small (0.36). Smets and Wouters (2007), however, 
assume a high habit parameter 0.7 (with 0.01 prior variance), a priori.



35

TABLE 1  Priors and Posteriors of the hybrid NK model 

____________________________________________________________________________________________________________________________________

 Prior Distr. Posterior Distr. (GDP) Posterior Dist. (NFB) 
___________________________________________________________________________________________________________________________________

Panel A: Sample 1954:2 – 2004:4 
____________________________________________________________________________________________________________________________________

Par. Distr. Mean St.Dev. Median 5% 95% Median 5% 95% 
Beta 0.67 0.24 0.08 0.02 0.19 0.08 0.02 0.18 

Gamma 1.00 0.32 0.03 0.02 0.05 0.03 0.02 0.05 
Beta 0.67 0.24 0.75 0.65 0.84 0.74 0.65 0.83 

r Gamma 1.00 0.32 0.10 0.05 0.16 0.12 0.07 0.20 
Gamma 1.5 0.61 1.82 1.50 2.32 1.82 1.46 2.34 

x Gamma 0.5 0.35 0.59 0.40 0.87 0.49 0.33 0.76 
Beta 0.5 0.22 0.87 0.83 0.91 0.89 0.85 0.92 

Normal 0 0.54 -0.38 -0.46 -0.28 -0.42 -0.50 -0.33 
x Normal 0 0.54 0.79 0.67 0.87 0.78 0.66 0.86 
R Normal 0 0.54 0.12 -0.00 0.24 0.11 -0.00 0.24 

Invgam. 0.40 3.96 0.29 0.26 0.32 0.34 0.31 0.37 
x Invgam. 0.40 3.96 0.16 0.12 0.20 0.21 0.16 0.28 
R Invgam. 0.40 3.96 0.22 0.20 0.24 0.22 0.20 0.24 

____________________________________________________________________________________________________________________________________

Panel B: Sample 1954:2 – 1982:2 
____________________________________________________________________________________________________________________________________

Beta 0.67 0.24 0.08 0.02 0.20 0.08 0.02 0.21 
Gamma 1.00 0.32 0.05 0.03 0.07 0.05 0.03 0.07 

Beta 0.67 0.24 0.79 0.66 0.94 0.77 0.66 0.92 
r Gamma 1.00 0.32 0.19 0.11 0.32 0.21 0.12 0.35 

Gamma 1.5 0.61 1.86 1.46 2.46 1.81 1.41 2.47 
x Gamma 0.5 0.35 0.52 0.29 0.86 0.47 0.25 0.77 

Beta 0.5 0.22 0.84 0.78 0.90 0.87 0.80 0.92 
Normal 0 0.54 -0.35 -0.48 -0.21 -0.41 -0.52 -0.28 

x Normal 0 0.54 0.77 0.60 0.87 0.76 0.60 0.87 
R Normal 0 0.54 0.11 -0.06 0.29 0.10 -0.06 0.27 

Invgam. 0.40 3.96 0.34 0.30 0.39 0.41 0.36 0.46 
x Invgam. 0.40 3.96 0.24 0.17 0.34 0.32 0.22 0.43 
R Invgam. 0.40 3.96 0.28 0.25 0.31 0.28 0.25 0.32 

____________________________________________________________________________________________________________________________________

Panel C: Sample 1982:3  – 2004:4 
____________________________________________________________________________________________________________________________________

Beta 0.67 0.24 0.08 0.02 0.20 0.08 0.02 0.20 
Gamma 1.00 0.32 0.05 0.03 0.08 0.04 0.03 0.06 

Beta 0.67 0.24 0.83 0.70 0.97 0.86 0.73 0.98 
r Gamma 1.00 0.32 0.19 0.11 0.32 0.23 0.13 0.37 

Gamma 1.5 0.61 2.65 1.93 3.64 2.63 1.88 3.75 
x Gamma 0.5 0.35 0.89 0.57 1.35 0.69 0.42 1.08 

Beta 0.5 0.22 0.90 0.86 0.93 0.91 0.87 0.94 
Normal 0 0.54 -0.35 -0.50 -0.17 -0.37 -0.50 -0.22 

x Normal 0 0.54 0.88 0.79 0.94 0.88 0.80 0.94 
R Normal 0 0.54 0.29 0.11 0.47 0.34 0.16 0.52 

Invgam. 0.40 3.96 0.22 0.19 0.25 0.24 0.20 0.28 
x Invgam. 0.40 3.96 0.09 0.06 0.12 0.11 0.08 0.16 
R Invgam. 0.40 3.96 0.12 0.10 0.13 0.11 0.10 0.13 

____________________________________________________________________________________________________________________________________
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Finally, the persistence of monetary policy shocks ( R) is relatively low and 
equal to that estimated by Smets and Wouters (2007). 

2.3  Forecast Comparison 

In this section we first discuss the forecasting methods. We then provide some 
details for the forecasting comparison methods. Finally, we report the results of 
a forecasting exercise. 

2.3.1 Measuring the Prediction Performance of Competitive Models 

It is fairly easy to see that Equation (6) can be treated as a reduced-form VAR 
with lag-length 2 and normally distributed errors with covariance matrix  = 
C C . Thus, the conditional predictive distribution of Equation (6) for the joint 
lead time 1 through H, p(yt+1,…,yt+H|Y, ), is multivariate normal (see Lütkepohl, 
1993). This facilitates straightforward simulations from p(yt+1,…,yt+H|Y, ), given 
the posterior p.d.f. of . The method for obtaining the posterior p.d.f. of  was 
explained in the previous section.7
 The predictive performance of the hybrid NK model is compared to two 
Bayesian VARs and to naïve forecasts based on univariate random walks. The 
VAR systems consist of the same three variables, yt = ( t, xt, Rt) , as the hybrid 
NK model. The data are not however demeaned prior to estimation. Diffuse 
and Normal-Diffuse priors are used for the parameters of the VAR models (see 
Kadiyala and Karlsson, 1997) for discussion. Parameterization of the Normal-
Diffuse prior is based on the assumption that the variables behave as if they had 
random walk components (see Litterman, 1980). That is, the prior means are set 
at zero except for the elements corresponding to the first own lag of each 
variable. The prior variances of the parameters in the ith equation of a p-lag
VAR (k = 1,…, p)8 are given by 1/k, 2si2/sj2k (i j) and 3si2, for the parameters 
on own lags, foreign lags and a constant, respectively (see Litterman, 1986, and 
Kadiyala and Karlsson, 1997, for the motivation of this prior variance 
specification). A scale factor accounting for the different scales of the variables, 
                                                
7  In a recursive forecast exercise, a total of 113 chains were simulated from each model. 

The posterior estimates of  are based on 30,000 draws. The first 6,000 draws were 
discarded as a burn-in period. To reduce the size of output files, every 12th draw was 
saved. The predictive likelihoods are thus computed on the basis of 2000 draws from 
the Markov chain. Geweke (1992) proposed a convergence diagnostic for Markov 
chains based on a test for the equality of means of the first and last parts of the chain 
(in this paper the first 10% and the last 50% of observations were used). The test 
statistic is a standard Z-score; the difference between the two sample means divided 
by its estimated standard error. The standard error is estimated from the spectral 
density at zero and so takes into account any autocorrelation. The hypothesis of the 
equality of means was not rejected for most parameters at the 5 % significance level. 

8  In our paper, p is set at 4. The fractional marginal likelihoods (FML) of Villani (2001), 
which were used in preliminary data analysis, supported this choice in over 99% of 
the estimated regressions. 
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si2, is set at the residual standard error of equation i. The relative tightness of the 
prior is set at the commonly used values of hyper-parameters, 1 = 0.05 and 2 = 
0.005 (see e.g. Kadiyala and Karlsson, 1997, and Litterman, 1986).  The tightness 
of the constant terms is set at 3 = 0.05, which shrinks the processes towards 
driftless univariate random walk. This prior specification provides a suitable 
description for the processes of inflation, nominal interest rate and detrended 
output. The posterior distributions were simulated using the Gibbs sampling 
algorithm9 of Kadiyala and Karlsson (1997) for the Normal-Diffuse prior 
specification and the matricvariate Student’s t distribution for the Diffuse prior 
specification. The predictive likelihoods were computed on the basis of 2,000 
draws from the posteriors. 
  The forecasting performance of the models is examined using the standard 
recursive forecast procedure, which entails making forecasts using data dated 
before the forecasting period. The forecasting procedure is as follows: using 
data up to a given time point T all the parameters in the model are estimated 
and the predictive distribution over yT+1,…,yT+H is computed.10 Moving forward 
one period, all the parameters are re-estimated and the forecast distribution of 
yT+2,…,yT+H+1 is computed. This is continued until no more data are available to 
compute the one-step-ahead forecast errors. The period over which the 
dynamic forecast distributions are computed in this manner is 1976:4 through 
2004:4. In addition to the entire forecasts sample, the forecasts are also 
compared for the subsample period 1990:1-2004:4 (the sample period of Smets 
and Wouters, 2007). This serves as a check of robustness of the results and 
increases the comparability of our results to those in previous literature; 
especially in the paper of Smets and Wouters (2007). 
 Adolfson et al. (2007a) recommend use of several univariate and 
multivariate measures to determine the accuracy of the point forecasts. The two 
commonly used univariate measures of accuracy, the root mean squared 
forecast error (RMSE) and the mean absolute forecast error (MAE) are 
computed as 

( ) ( )
−+

=

−=
1
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,

1
hNT
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tihi heNhRMSE ,      (15) 
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−=
1
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hNT

Tt
tihi heNhMAE ,    (16) 

                                                
9  2,200 draws were simulated and the first 200 draws from the Markov chain were 

neglected as a burning period. 
10  Note also that when the forecasts are evaluated the data is demeaned and the gap 

estimates are computed using the data up to time T. Furthermore, when the analysis 
is based on demeaned data, the posterior median forecasts are computed and the 
means are added to the median forecasts.  
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respectively, where ( ) thtihtiti yyhe ++ −= ,,, ˆ  is the ith element of the h-step-ahead 
forecast error, thty +ˆ  the h-step-ahead posterior median forecast of yt+h and Nh

the number of the h-step-ahead forecasts (h = 1,…,H). However, only the RMSEs 
are reported, since these two measures turned out to produce equal results. 
 Two multivariate accuracy measures of point forecast, the log determinant 
statistic and the trace statistic, are also used in addition to the univariate 
measures. The multivariate statistics are based on the scaled h-step-ahead mean 
squared error (MSE) matrix

( ) ( ) ( )heheNhT t

NT

Tt
thM

h

'
1

1 ⋅=
−+

=

−  ,   (17) 

where ( ) ( )heMhe tt
1−=  and M is a scaling matrix accounting for the different 

scales of the variables being forecasted.11 As discussed in Adolfson et al. 
(2007a), the forecasting performance of the least predictable dimensions, that is, 
those corresponding to the highest eigenvalues of the square matrix TM(h),
mainly determine the trace statistic tr[TM(h)] = 1+…+ m, while the log 
determinant statistic log |TM(h)| = log 1+…+log m also takes into account the 
forecasting performance of the most predictable dimensions (the lowest 
eigenvalues). It is also obvious that when the lowest eigenvalue of TM(h)
approaches zero, the most predictable dimension determines the log 
determinant statistic. 
 Finally, in view of the increasing interest for forecast uncertainty, we also 
compare the prediction performance of the competitive models using the log 
predictive density score (LPDS), which is a measure of the accuracy of 
multivariate density forecasts (see Adolfson et al., 2007a). To be more concrete, 
let thty |ˆ + and t+h|t denote the posterior mean and covariance matrix of the h-
step-ahead forecast distribution pt(yt+h). Then, under the normality assumption 
of pt(yt+h), the LPDS of the h-step-ahead predictive density at time t is defined as 

( ) ( )htthtt ypyS ++ −= log2

( ) ( ) ( )ththtthtththttht yyyym ++
−
++++ −Ω−+Ω+= ˆˆlog2log 1'π . (18) 

We report the averages of the LPDSs over the evaluated h-step-ahead forecasts, 

( ) ( )
−+

=
+

−=
1

1
hNT

Tt
htth ySNhS .    (19) 

This measure takes into account the forecasting performance of the predictive 
density as a whole. 

                                                
11  We follow Adolfson et al. (2007a) and set M equal to the diagonal of the sample 

covariance matrix of the yt from 1976:4 to 2004:4 (1990:1 to 2004:4).
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2.3.2 Results 

Figures 1-3 summarize the forecasting performance of the competitive models. 
Specifically, Figure 1 reports the RMSEs in quarterly percentage terms, Figure 2 
the log determinant and the trace statistics, and Figure 3 the averages of the 
LPDS statistic. Figures 4-6 gives the corresponding statistics for the forecasts 
based on real-time data. The results based on the NFB data were similar to 
those based on the GDP data and in order to save space we report only the 
latter. All the statistics are reported at the 1 to 12 quarters horizons. 12 In the 
figures, a small value favors the model. 
 A few key findings emerge from the figures. Firstly, although the models 
are very simple they seem to forecast particularly well. According to the 
RMSEs, the small-scale models appear to produce more accurate point 
forecasts, on both inflation and the Federal Funds rate,13 than the large-scale 
Bayesian VAR of Smets and Wouters (2007). In addition, the models turned out 
to produce real-time inflation forecasts which outperformed the naïve forecasts 
up to six quarters in the 1990:1-2004:4 subsample (see Figure 4). This result 
gives some perspective to the forecast accuracy of the hybrid model, when we 
take into account the finding of Atkeson and Ohanian (2001) that the one-year-
ahead Federal Reserve’s Greenbook inflation forecast has not been better on 
average than the naïve forecast since 1984. 
 Secondly, all the forecast comparison methods appear to yield similar 
conclusions. In the entire sample the forecasts of the hybrid model outperform 
those of the Bayesian VARs, while in the low inflation subsample (1990:1-
2004:4) all the multivariate forecasting methods seem to produce equally 
accurate forecasts. Thus, the restrictions (stationary and cross-equation) implied 
by the hybrid model appear to help in forecasting especially well during high 
inflation periods. According to the univariate and multivariate measures of 
forecast accuracy, this result is most obvious at medium-term horizons. One 
exception is the nominal interest rate. The hybrid model forecasts this series 
very well in all samples and forecasting horizons (see Figure 1 and 4). In 
particular, all these results hold for both ex post data and real-time data. 
 Taking a closer look at the figures we see that the hybrid model is superior 
to the naïve forecasts at all samples and horizons, except for the longer horizon 
inflation forecasts in the low inflation subsample. In this subsample, the 
Bayesian VARs also give slightly better inflation and output gap forecasts than 
the hybrid model, according to the RMSEs. However, the improvement in the 
predictability of the variables is clearly negligible. 
 It also seems that the shrinking prior does not improve the forecasting 
performance of VARs in terms of point forecasting accuracy. This is not 
surprising, since the VAR systems are particularly parsimonious and, hence, do 
                                                
12  We do not report the marginal likelihood, since it captures only the one-step-ahead 

predictive performance of the full model and is therefore too restricted for forecasting 
comparison. 

13  The GDP forecasts are not directly comparable to results of Smets Wouters (2007), 
since they use the log difference of GPD series, while we use the GDP gap series.
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not suffer from the over-parameterization problem. However, the LPDS 
statistics (see Figures 3 and 6) support a slightly better forecasting density for 
the Normal-Diffuse prior specification in the low inflation subsample. Over the 
entire sample the LPDSs support Bayesian VARs at the shorter forecasting 
horizons (1 to 4 quarter); however, the hybrid model again outperforms the 
VARs at the longer horizons. 
 In sum, it seems fair to say that the simple hybrid NK model captures the 
predictable behavior of the three U.S. key macroeconomic variables very well. 
The reason for its good forecasting performance may be that the model allows 
both for the endogenous persistence in inflation and output and for the 
persistence of the exogenous shock processes. This approach is commonly used 
in large-scale NK models, which forecast well. Our joint prior is also well 
designed in allowing the parameters to be estimated fairly freely, while being 
informative enough to keep the posterior distribution away from economically 
non-meaningful values. 

2.4  Conclusion 

Several recent papers have suggested different ways to improve the forecast 
performance of New Keynesian models. Unfortunately, improvement in fit is 
achieved at the cost of increasing the complexity of model mechanisms, which 
reduces the practicability of these approaches. This paper, in contrast, has 
shown that the very simple hybrid New Keynesian model of Clarida et al. 
(1999) can provide forecasts comparable to those based on commonly used 
benchmark models such as reduced-form Bayesian VARs and univariate 
random walks. 
 Our forecasting evidence indicates that the restrictions implied by the 
hybrid model work especially well in high inflation regimes. According to 
several univariate and multivariate measures of forecast accuracy, the forecasts 
of the hybrid model outperform those of the Bayesian VARs when high 
inflation periods are forecast. In the low inflation forecast subsample, the 
methods produce equally accurate forecasts. One exception was the nominal 
interest rate. The hybrid model seems to forecast this series very well in all 
samples and horizons. The hybrid model also predicts more accurately than the 
naïve forecasts based on univariate random walks. Finally, we note that all 
these findings hold for both ex post and real-time data. 
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FIGURE 1  Root mean squared forecast errors for the competitive models 
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3 ESSAY 2: ROBUSTNESS OF THE RISK-RETURN 
RELATIONSHIP IN THE U.S. STOCK MARKET1

ABSTRACT

Using GARCH-in-Mean models, we study the robustness of the risk-return 
relationship in monthly U.S. stock market returns (1928:1 – 2004:12) with 
respect to the specification of the conditional mean equation. The issue is 
important because in this commonly used framework, unnecessarily including 
an intercept is known to distort conclusions. The existence of the relationship is 
relatively robust, but its strength depends on the prior belief concerning the 
intercept. The latter applies in particular to the first half of the sample, where 
also the coefficient of the relative risk aversion is smaller and the equity 
premium greater than in the latter half. 

Keywords: Bayesian analysis ; ICAPM model; GARCH-in-Mean model 

                                                
1  This paper has been published in the Finance Research Letters 5 (2008), pp. 118–127. 

Jani Luoto is responsible for empirical analysis. The writing and interpretation of 
results have been done jointly with Markku Lanne. 
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3.1  Introduction 

There is a voluminous literature studying the relationship between stock 
market returns and their risk. The starting point in most of this research is the 
following linear equation for the expected excess return, rt, implied by Merton’s 
(1973) Intertemporal Capital Asset Pricing Model (ICAPM), 

( ) ( )tttt rVarrE 1101 −− += μμ ,   (1) 

where the slope coefficient 1 is expected to be positive and the intercept 0

should be zero. The empirical evidence is mixed, but typically 1 has been 
found insignificant (see Ghysels et al., 2005).
 Most of the previous empirical work on the ICAPM is based on the 
GARCH-in-Mean (GARCH-M) model. Within this model, Lanne and Saikkonen 
(2006) recently showed that omitting the theoretically justified zero restriction 
on the intercept in the conditional mean equation may lead to a considerable 
power loss in the standard Wald test. This may explain why the slope 
coefficient has often been found insignificant. Constraining the intercept to 
zero, Lanne and Saikkonen (2006) found a positive risk-return relationship in 
the U.S. stock market. 
 While the restriction 0 = 0 produces reasonable empirical results, it may 
be criticized because it forces the expected excess return of the stock market to 
equal the risk-free interest rate under the null hypothesis 1 = 0. This is in 
conflict with the stock premium puzzle literature put forth by Mehra and 
Prescott (1985), according to which the average stock return, in the U.S. in 
particular, has been excessively high relative to the risk. Therefore, the results of 
Lanne and Saikkonen (2006) concerning the risk-return relationship should be 
checked for robustness to confirm that they are not driven by the zero 
restriction on the intercept. To this end, we make use of Bayesian methods, and 
estimate the model assuming a number of different prior beliefs to observe the 
sensitivity of the estimate of 1. In the U.S. data, the finding of a positive risk-
return relationship seems to be relatively robust with respect to the prior. 
 The plan of the paper is as follows. In Section 2, the GARCH-M model and 
the employed Bayesian methods are discussed. In Section 3, the empirical 
results are reported. Finally, Section 4 concludes. 

3.2  Econometric Methodology 

Let us consider the following GARCH-M model for the excess stock return rt,

tttt hhr εμμ 2/1
10 ++= ,    (2) 
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where 0 and 1 are parameters, t is an independently and identically 
distributed random variable with mean zero and variance unity and ht is the 
conditional variance. We assume that ht follows the GARCH(1,1) process of 
Bollerslev (1986), 

2
112110 −−− ++= tttt hhh εβββ ,    (3) 

where the parameters 0, 1 and 2 satisfy the conditions 0  0, 1  0, 2 > 0 and  
1 + 2 < 1. The GARCH (1,1) specification has almost invariably been found an 

adequate description of the dynamics of the conditional variance of stock 
returns (see e.g. Hansen and Lunde, 2005). The model can be estimated by the 
method of maximum likelihood (ML). Various distributional assumptions 
concerning t have been entertained in the previous literature. Because the 
returns typically exhibit high excess kurtosis, normality has been found 
inadequate, while the standardized Student’s t distribution with a relatively 
small degrees-of-freedom parameter  has turned out to be quite satisfactory, 
and that is the assumption made in our empirical analysis. Assuming that  > 2, 
the likelihood function for a sample of T observations r = (r1, r2,…, rT)′ can be 
written as (Bollerslev, 1986) 

( ) ( )
( )∏

=

+
−

−
+=

T

t t

t

t h
u

h
crl

1

2
1

2

2
1;

ν

ν
νη ,   (4) 

where ttt hu ε2/1= ,  = ( 0, 1, 2, 0, 1, )  is the vector consisting of all the 
parameters, and 

( ) ( )−Γ+Γ= 2
22

1 νπνννc

with ( )⋅Γ  the gamma function. 

As discussed by Engle et al. (1987), the classical maximum likelihood estimator 
of  is consistent and asymptotically normally distributed if the model is 
correctly specified. This facilitates standard asymptotic inference, but as 
pointed out by Lanne and Saikkonen (2006), the standard Wald test has very 
low power if the model is misspecified in that the intercept term 0 is, in fact, 
equal to zero. Therefore, Lanne and Saikkonen (2006) recommended imposing 
this constraint if it is true. However, even though this restriction is implied by 
the theoretical model in our application of interest, it may not be consistent with 
the data, and the robustness of the results with respect to it needs to be checked. 
To this end, we suggest using Bayesian methods that easily allow for 
incorporating prior beliefs about the parameters. While restricting the intercept 
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term to be equal to zero represents a very strong prior belief, other kinds of 
beliefs cannot easily be considered in the classical framework. 
 Most of the empirical work concerning (G)ARCH models is based on 
classical inference. However, at least Geweke (1989), Kleibergen and van Dijk 
(1993), Bauwens and Lubrano (1998, 2002), Nakatsuma (2000), Kaufmann and 
Fruhwirth-Schnatter (2002), Vrontos et al. (2000, 2003), and Bauwens et al. 
(2006) have employed the Bayesian framework. 
 The starting point of the Bayesian analysis of the GARCH-M model is the 
likelihood function (4) multiplied by the prior density function of the 
parameters, p(η), yielding the posterior density: 

( ) ( ) ( )rlprq ;ηηη ∝     (5) 

The prior density reflects the researcher’s prior beliefs concerning plausible 
parameter values. Our goal is to find out how the prior beliefs on 0 affect the 
estimate of 1 in the GARCH-M model, and this can be accomplished by 
comparing the posterior distributions based on a number of different priors. 
 In this paper, a standard assumption on prior independence, p(η) = 
p( 0)·p( 1)·p( 2)·p( 0)·p( 1)·p( ), is used. The marginal priors are assumed to be 
proper, since improper priors, i.e. priors that are not well-defined density 
functions, cause marginal likelihoods (which we use in model comparison) to 
be indeterminate. This is because the normalizing constants of these priors are 
not defined. As shown by Bauwens and Lubrano (1998), sufficient prior 
information is needed on the Student-t degree of freedom parameter  to force 
the posterior, in order to be integrable, to tend to zero quickly enough at the 
tail. We decided to follow Geweke (1993) in using an exponential density for the 
prior of . Furthermore, we decided to use log normal prior densities on 0, 1

and 2, which reflects the nonnegativity constraint on these parameters. We also 
assume that, a priori, 0 and 1 are symmetrically distributed, and hence the 
normal distribution is entitled for them. The prior means of the parameters are 
based on previous empirical studies, especially that of Lanne and Saikkonen 
(2006).2 Specifically, we set 0 ~ logN(-3, 4), 1 ~ logN(-0.2, 4), 2 ~ logN(-2.3, 4), 

0 ~ N(0, ), 1 ~ N(0,10), and  ~ Exp(0.1), where N(m, s) denotes the normal 
distribution with mean m and standard deviation s, logN(m, s) the 
corresponding log normal distribution and Exp( ) is an exponential distribution 
with rate . The joint prior density function p(η) in Eq. (5) is, hence, a product of 
univariate normal, log normal and exponential distributions. Finally, with the 
given values of prior standard deviations, the marginal priors turned out to be 
practically noninformative3.
                                                
2  Note that our ML results (not reported here in order to save space) are similar to 

those of Lanne and Saikkonen (2006), since we use the same data, with the exception 
that our sample covers the period from 1928:1 to 2004:12, while their sample ends at 
2000:12. 

3  When one does not have a clear idea about the value of a parameter or does not want 
his prior knowledge to affect estimation results, he can assign to it a noninformative 
prior distribution. Noninformative distributions have typically a large variance or are 
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 As we are interested in the effect of the prior distribution, several models 
based on different priors are considered. These models are compared by means 
of Bayes factors and estimated average discrepancies. A Bayes factor is defined 
to be the ratio of the marginal likelihoods of the two competing models, while 
the estimated average discrepancy approximates the posterior expectation of 
the deviance between the data and the model. Since the Bayes factor approach 
is based on the potentially invalid assumption that one of the models is true, the 
estimated average discrepancies are used as well (see Gelman et al., 2004). The 
Bayes factor is based on the marginal likelihood 

( ) ( ) ( ) kkkkkk dMpMrLMrq ηηη= ,;

of each of the models Mk (k = 1, 2,…, K). It is estimated from the simulated 
independent posterior sample using the reciprocal importance estimator with a 
multivariate normal importance density4 (see Gelfand and Dey, 1994). Given 
these marginal likelihoods, the Bayes factors can be computed using the 
formula

( )
( )j

i
ij Mrq

Mrq
B

ˆ
ˆˆ = ,    (6) 

where the hat indicates an estimator. In the previous equation a small ijB̂ favors
the model Mj. As Miazhynskaia and Dorffner (2004) show, for GARCH-type 
models the accuracy of the reciprocal importance estimator is statistically equal 
to more complex estimators, such as the bridge sampling estimator, Chib’s 
candidate’s estimator and the reversible jump MCMC estimator. Finally, the 
estimated average discrepancy is defined as 

( ) ( )i
N

i
avg rD

N
rD η,1ˆ

1=

= ,     (7) 

                                                                                                                               
improper (nonintegrable). Opposite statement can be made for informative priors. 

4  The reciprocal importance estimator is based on the following result 

( )
( )

( ) ( ) ( )= kkk
kkkk

k

k

dMrq
MpMrL

f
Mrq

ηη
ηη

η ,
,;

1
,

where f( k) is importance density (in our case multivariate normal). The associated 
estimator of q(r|Mk) is 

( ) ( )
( ) ( )

1

1 ,;
1ˆ

−

=
= N

i
k

i
kk

i
k

i
k

k MpMrL
f

N
Mrq

ηη
η

where { }N
m

i
k 1=η is a sample from the posterior q( k|r, Mk) and N is the sample size.
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where r = (r1, r2,…, rT)′ are the data, ( ) ( )ηη ;log2, rlrD −=  is the ‘deviance’, and 

{ }N
i

i
1=η  a sample from the posterior (N is the sample size). In the limit, as the 

sample size tends to infinity, the model with the lowest expected deviance will 
have the highest posterior probability. 

3.3  Empirical Results 

In this section, we apply the approach of Section 2 to U.S. stock market returns. 
The emphasis is on demonstrating how the prior distribution of the intercept 
term 0 in equation (2) affects conclusions concerning the risk-return 
relationship. In particular, as discussed in Section 2, we assume a zero mean 
normal prior distribution for 0 and consider several alternative plausible 
values for the prior variance of 0 to see how the tightness of the prior 
assumption 0 = 0 affects the estimation results. Although the equity premium 
puzzle indicates a positive 0, we rely on the underlying economic theory 
(ICAPM), which suggests zero mean on 0, as a basis of our prior knowledge5.
Values of the prior variance of 0 close to zero are, thus, more in accordance 
with the ICAPM, while higher values of the prior variance of 0 allow for the 
possibility of the equity premium. Specifically, to study the effect of the prior of 

0 on the estimate of 1, we let the prior standard deviation  of 0 vary from 6-

1×0.003 to 10×0.003, where 0.003 is the standard error of the maximum 
likelihood estimate of 0 reported by Lanne and Saikkonen (2006). In practice, 

 = 10×0.003 yields a noninformative prior distribution for 0, while  = 6-

1×0.003 is small enough to force the posterior mean of 0 to be close to zero. 
Moreover, as explained in Section 2, the model fits of these competing models 
are compared by means of Bayes factors and estimated average discrepancies. 
 The data set consists of the monthly excess return on the value-weighted 
CRSP index (in excess of the 3-month Treasury bill rate) from 1928:1 to 2004:12.6
The same data from the period 1928:1 – 2000:12 were used by Lanne and 
Saikkonen (2006). In addition to the entire sample, the models are estimated for 

                                                
5  Since the equity premium puzzle indicates that a positive mean would be 

appropriate, we also considered several alternative values of 0 with prior standard 
deviation  = 6-1×0.003 around the premium estimates ( 6%) of Mehra and Prescott 
(1985). Specifically, we run nine regressions with prior mean of 0 varying from 0.02 
to 0.10. The fit of these models turned out to be much worse than that of the models 
with ‘prior variance adjustment’. For instance, the posterior probabilities for all these 
models were virtually zero (with noninformative model priors the posterior 
probability for model k can be calculated as q(Mk|r) = q(r|Mk)/[q(r|M1) +…+
q(r|MK)], where q(r|Mk) is the marginal likelihood of model k). Results were similar 
with different sample sizes. This indicates that models with ‘mean adjustment’ are 
clearly misspecified, since marginal likelihoods select the true model asymptotically. 
Natural exceptions were the models where the prior mean of 0 was set close to its 
posterior median ( 0.01). However, the model with high prior variance of 0
adequately takes these cases into account. 

6  The data are downloaded from Kenneth French’s homepage. 
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the 1928:1 – 1966:6 and 1966:7 – 2004:12 subsample periods of equal length. This 
serves as a check of robustness and parameter constancy. Furthermore, the 
results in the empirical finance literature suggest that the coefficient of relative 
risk aversion has increased, while the equity premium puzzle has diminished 
since the 1960’s (see, e.g., Fama and French, 2002). That is, there may be some 
structural differences in these two subsample periods. In a similar subsample 
analysis, Lanne and Saikkonen (2006) also found the estimate of the slope 
coefficient 1 to be relatively stable once the intercept term 0 is restricted to 
zero, while the estimates from the different sample periods deviated 
considerably when 0 was unrestricted. Therefore, it is interesting to see 
whether our modeling approach leads to similar conclusions. 
 The estimation results7 are presented in Table 1, in the topmost panel for 
the entire sample and in the lower panels for the two subsample periods, and in 
Figures 1-6. Each column corresponds to a different prior distribution of the 
intercept term 0, with the standard deviation ranging from 10×0.003 to 6-

1×0.003. As far as the GARCH parameters 0, 1 and 2 and the degrees-of-
freedom parameter  are concerned, their posterior medians are insensitive to 
the prior. The parameters 1 and 2 are also accurately estimated, and the 
persistence in the volatility of the excess returns is high in all samples although 
the persistence tends to be somewhat lower in the latter subsample period. The 
estimated degrees of freedom indicate excess kurtosis, as expected. These 
findings are in accordance with the previous empirical results. 
 The models are compared by means of the Bayes factors and estimated 
discrepancy criteria. The Bayes factors reported in Table 1 are based on the 
benchmark of the model with the largest prior standard deviation of the 
intercept term (10×0.003). Note that small values of B1j and ( )YDavg

ˆ  in Table 1 
favor a model. In the entire sample, the estimated average discrepancy criterion 
and Bayes factors seem to favor models with relatively large prior variance of 
the intercept term 0. In other words, the models allowing the intercept to 
deviate from zero, fit the data better. The Bayes factors lend the strongest 
support to the model with the prior standard deviation of the intercept term 
equal to 2×0.003. This model has Bayes factor 0.41 (relative to the benchmark 
model) and estimated average discrepancy -3044, while these figures are 6.89 
and -3036, respectively, when the prior standard deviation of the intercept term 
is set at 6-1×0.003. The results of the model with the full restriction of zero 
intercept (not reported) were very close to the latter. Thus, the cost of the full 
zero restriction is relatively high in this case. Furthermore, the preferred model 
gives moderate evidence in favor of a positive risk-return relationship. The 
posterior probability of 1 being positive exceeds 90% (see also Figure 2). Note 
that, the posterior medians of 1 vary considerably between the models. In the 
preferred model, the median equals 1.206 which is clearly smaller than 3.54, the 
estimate obtained by Lanne and Saikkonen (2006). However, such a small value 

                                                
7  We used the Metropolis algorithm to generate a Monte Carlo sample from Eq. (5). 

Detailed description of the Metropolis algorithm and simulation routines are given in 
Appendix.
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is better in accordance with the result ( 1 = 2.6) that Ghysels et al. (2005) 
obtained using the far more sophisticated and data-demanding MIDAS 
method, as well as estimates of the coefficient of the relative risk aversion in the 
previous literature. Interestingly, the models with prior standard deviation of 0

above 2-1×0.003 imply marginal posterior distributions of 0 with high 
probability of positive values, which is consistent with the equity premium 
puzzle. Note, however, that the posterior medians are very small compared to 
the equity premium estimate of approximately 6% obtained by Mehra and 
Prescott (1985). 
 In the first subsample period, the preferred model is the one with the prior 
variance of 0 equal to 4×0.003 according to the estimated discrepancy criteria 
and Bayes factors. The posterior median of 1 is as low as 0.506. In this period, 
the results lend only very weak support to the ICAPM, since only about 70% of 
the posterior mass of 1 lies above zero (see Figure 4). 
 The results for the latter subsample period suggest that the intercept term 
is very close to zero in accordance with the ICAPM. The most preferred model 
is the one with prior standard deviation of 0 equal to 6-1×0.003, and, in this 
model, the coefficient of relative risk aversion is positive with high probability 
(see Figure 6). Furthermore, the results of the model with the full restriction of 
zero intercept (not reported) were practically equal to the most preferred 
model. All the models imply a considerably larger coefficient of relative risk 
aversion than in the first subsample period. There is also surprisingly little 
variation in the posterior medians of 1 between the models (see Figure 6). The 
differences between the subsample periods are consistent with the findings in 
the previous finance literature. In particular, the estimates of Ghysels et al. 
(2005) exhibit a similar change in the value of the coefficient of relative risk 
aversion. The fact that the intercept term was positive in the first but not in the 
second subsample period, probably reflects the moderation of the equity 
premium puzzle reported in the recent literature. 
 In sum, our results lend support to the robustness of the positive risk-
return relationship in the U.S. stock market data, albeit the evidence is weaker 
in the first subsample period. In other words, this conclusion is shown not to be 
affected by (falsely) restricting the intercept term in the equation for the 
expected excess return equal to zero, when its true value is close to zero. The 
estimates of 1, however, were shown to be affected by imposing this restriction 
if untrue, as was the case in the full sample and the first subsample periods. As 
shown by Lanne and Saikkonen (2006), for power considerations, the restriction 
is needed in classical inference, and our analysis can be seen as a robustness 
check of the validity of their empirical results. 
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TABLE 1  Estimation results. 
10×0.003 6×0.003 4×0.003 2×0.003 0.003 2-1×0.003 4-1×0.003 6-1×0.003

                 1928:1-2004:12                 
0 1e-4 

(4×1e-5) 
1e-4 

(4×1e-5) 
1e-4 

(4×1e-5) 
1e-4 

(4×1e-5) 
1e-4 

(5×1e-5) 
1e-4 

(5×1e-5) 
1e-4 

(5×1e-5) 
1e-4 

(5×1e-5) 
1 0.830 

(0.033) 
0.830 
(0.033) 

0.830 
(0.033) 

0.830 
(0.033) 

0.828 
(0.033) 

0.826 
(0.035) 

0.823 
(0.035) 

0.823 
(0.035) 

2 0.127 
(0.028) 

0.127 
(0.028) 

0.127 
(0.029) 

0.127 
(0.028) 

0.125 
(0.027) 

0.121 
(0.027) 

0.118 
(0.026) 

0.117 
(0.026) 

0 0.007 
(0.002) 

0.007 
(0.002) 

0.007 
(0.002) 

0.006 
(0.002) 

0.005 
(0.002) 

0.002 
(0.001) 

6�1e-4 
(7�1e-4) 

3�1e-4 
(5�1e-4) 

1 0.886 
(0.977) 

0.895 
(0.960) 

0.951 
(0.953) 

1.206 
(0.940) 

1.838 
(0.865) 

2.713 
(0.752) 

3.205 
(0.664) 

3.328 
(0.638) 

8.124 
(2.188) 

8.141 
(2.149) 

8.177 
(2.178) 

8.261 
(2.310) 

8.475 
(2.364) 

8.740 
(2.440) 

8.805 
(2.510) 

8.862 
(2.532) 

P( 0>0) 99.9% 99.9% 99.9% 99.7% 99.1% 93.3% 79.3% 71.0% 
P( 1>0) 82.4% 82.0% 84.0% 90.3% 98.6% 100% 100% 100% 

B1j - 0.64 0.49 0.41 0.82 2.82 5.64 6.89 
( )YDavg

ˆ -3044 -3044 -3044 -3044 -3043 -3039 -3037 -3036 

                 1928:1-1966:6                  
 0 1e-4 

(5×1e-5) 
1e-4 

(5×1e-5) 
1e-4 

(5×1e-5) 
1e-4 

(5×1e-5) 
1e-4 

(5×1e-5) 
1e-4 

(6×1e-5) 
1e-4 

(6×1e-5) 
1e-4 

(6×1e-5) 
1 0.817 

(0.041) 
0.817 
(0.041) 

0.817 
(0.040) 

0.819 
(0.041) 

0.817 
(0.042) 

0.816 
(0.043) 

0.815 
(0.044) 

0.814 
(0.045) 

2 0.157 
(0.045) 

0.159 
(0.044) 

0.158 
(0.044) 

0.157 
(0.044) 

0.155 
(0.043) 

0.148 
(0.041) 

0.145 
(0.040) 

0.144 
(0.040) 

0 0.011 
(0.003) 

0.010 
(0.003) 

0.010 
(0.003) 

0.009 
(0.003) 

0.006 
(0.002) 

0.002 
(0.001) 

0.001 
(0.001) 

3e-4 
(5�1e-4) 

1 0.392 
(0.949) 

0.429 
(0.930) 

0.506 
(0.935) 

0.820 
(0.916) 

1.562 
(0.872) 

2.400 
(0.814) 

2.823 
(0.773) 

2.906 
(0.772) 

8.7838 
(4.275) 

8.690 
(4.293) 

8.907 
(4.511) 

9.227 
(4.769) 

10.240 
(5.568) 

11.043 
(6.080) 

11.355 
(6.108) 

11.409 
(6.657) 

P( 0>0) 100.0% 100.0% 100.0% 100.0% 99.7% 95.6% 81.8% 73.0% 
P( 1>0) 66.5% 67.8% 70.4% 82.6% 96.8% 100.0% 100.0% 100.0% 

B1j - 0.66 0.56 0.71 4.56 31 78 78 
( )YDavg

ˆ -1481 -1481 -1481 -1481 -1478 -1473 -1469 -1468 

                 1966:7-2004:12                  
0 5e-4 

(4×1e-4) 
5e-4 

(4×1e-4) 
5e-4 

(4×1e-4) 
4e-4 

(4×1e-4) 
4e-4 

(4×1e-4) 
4e-4 

(4×1e-4) 
4e-4 

(4×1e-4) 
4e-4 

(4×1e-4) 
 1 0.677 

(0.199) 
0.684 
(0.195) 

0.687 
(0.194) 

0.693 
(0.190) 

0.696 
(0.187) 

0.701 
(0.183) 

0.702 
(0.185) 

0.700 
(0.186) 

 2 0.094 
(0.043) 

0.096 
(0.044) 

0.098 
(0.044) 

0.102 
(0.044) 

0.105 
(0.045) 

0.105 
(0.044) 

0.106 
(0.044) 

0.106 
(0.045) 

0 -0.003 
(0.009) 

-0.002 
(0.008) 

-0.002 
(0.007) 

-9e-4 
(0.005) 

-2e-4 
(0.003) 

-5e-5 
(0.001) 

-2e-5 
(0.001) 

-4e-6 
(0.001) 

 1 4.734 
(4.440) 

4.507 
(3.876) 

4.335 
(3.412) 

3.883 
(2.416) 

3.615 
(1.599) 

3.522 
(1.196) 

3.495 
(1.031) 

3.515 
(1.012) 

8.321 
(3.599) 

8.264 
(3.435) 

8.302 
(3.373) 

8.314 
(3.412) 

8.267 
(3.320) 

8.326 
(3.315) 

8.315 
(3.399) 

8.346 
(3.337) 

P( 0>0) 36.6% 38.1% 38.6% 43.2% 46.5% 48.2% 48.6% 49.4% 
P( 1>0) 90.0% 90.7% 91.7% 95.4% 99.9% 99.9% 100.0% 100.0% 

B1j - 0.54 0.35 0.25 0.22 0.21 0.21 0.19 
( )YDavg

ˆ -1559 -1559 -1559 -1559 -1560 -1560 -1560 -1560 

Each column corresponds to a different prior distribution of the intercept term 0, with the 
standard deviation ranging from 10×0.003 to 6-1×0.003. The posterior median and standard 
deviation (in parentheses) of each parameter are reported. The Bayes factors (B1j) are based on 
the benchmark of the model with the largest prior variance of the intercept term (10×0.003).
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3.4  Conclusion 

We have studied the robustness of the risk-return relationship in the U.S. stock 
market. Three major conclusions stand out. First, the existence of a risk-return 
relationship is fairly robust in that it does not strongly depend on the prior 
beliefs concerning the intercept, especially when the true value of 0 is 
sufficiently close to zero. Second, although the existence of the relationship is 
relatively robust, the size of the estimated parameter measuring its magnitude 
depends on the specified prior of the intercept. Third, in accordance with a 
diminishing equity premium, there is evidence in favor of a positive intercept 
term only in the first half of the sample period. 
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FIGURE 1  Estimated posterior densities of the parameter 0 with different prior 
standard deviations  = (0.003/6, 0.003/4, 0.003/2, 0.003, 2x0.003, 4x0.003, 
6x0.003 and 10x0.003, respectively) of 0. Sample period 1928:1–2004:12. 
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FIGURE 2  Estimated posterior densities of the parameter 1 with different prior 
standard deviations  = (0.003/6, 0.003/4, 0.003/2, 0.003, 2x0.003, 4x0.003, 
6x0.003 and 10x0.003, respectively) of 0. Sample period 1928:1–2004:12. 
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FIGURE 3  Estimated posterior densities of the parameter 0 with different prior 
standard deviations  = (0.003/6, 0.003/4, 0.003/2, 0.003, 2x0.003, 4x0.003, 
6x0.003 and 10x0.003, respectively) of 0. Sample period 1928:1–1966:6. 
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FIGURE 4 Estimated posterior densities of the parameter 1 with different prior 
standard deviations  = (0.003/6, 0.003/4, 0.003/2, 0.003, 2x0.003, 4x0.003, 
6x0.003 and 10x0.003, respectively) of 0. Sample period 1928:1–1966:6. 
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FIGURE 5  Estimated posterior densities of the parameter 0 with different prior 
standard deviations  = (0.003/6, 0.003/4, 0.003/2, 0.003, 2x0.003, 4x0.003, 
6x0.003 and 10x0.003, respectively) of 0. Sample period 1966:7–2004:12. 
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FIGURE 6. Estimated posterior densities of the parameter 1 with different prior standard 
deviations  = (0.003/6, 0.003/4, 0.003/2, 0.003, 2x0.003, 4x0.003, 6x0.003 and 10x0.003, 
respectively) of 0. Sample period 1966:7–2004:12. 
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APPENDIX 

Since the posterior density function (p.d.f.) in Equation (5) and none of its full 
conditionals are in the form of any standard p.d.f., we used a version of the
random walk Metropolis algorithm for Markov Chain Monte Carlo (MMCMC) 
to generate a Monte Carlo sample from it. The algorithm uses a multivariate 
normal distribution for the jump distribution on changes in the transformed 
parameters = (ln( 0), ln( 1), ln( 2), 0, 1, ) . We apply logarithmic 
transformations to the parameters 0, 1 and 2 to obtain approximate normality 
of their marginal posteriors, which makes the posterior simulations more 
efficient. Our simulation procedure was as follows: We first minimized the 
negative of the logarithm of the posterior density (5) numerically to obtain the 
posterior mode and evaluated the Hessian matrix at the minimum. We then 
used the inverse of the Hessian as an approximation to the posterior covariance 
matrix of  and scaled it by the factor 2.42/d, where d is the number of 
simulated parameters, to obtain an optimal covariance matrix for the jump 
distribution (see e.g. Gelman et al., 2004). We then added noise to the posterior 
mode to obtain overdispersed starting values and simulated three chains of 
length 400,000.  We excluded the first 40,000 of simulations as a burn-in period 
in each chain and picked out every 90th draw. Thus, our final results are based 
on 12,000 draws. The convergence of the chains was checked using Gelman and 
Rubin’s convergence diagnostic R (also called ‘potential scale reduction factor’) 
(see Gelman and Rubin, 1992).  The diagnostic values close to 1 indicate 
approximate convergence and the values smaller than 1.1 are acceptable in most 
cases. The potential scale reduction factor of Gelman and Rubin (1992) was 
between 1 and 1.01 for each parameter. The multivariate version of Gelman and 
Rubin's diagnostic, proposed by Brooks and Gelman (1997), was 1 in all cases. 
Finally, the frequency of accepted jumps was between 0.18 and 0.26.8 Finally, 
Figures 7-9 plots the sequences of the MCMC draws used to estimate some of 
parameters' posteriors. 

                                                
8  In the subsample 1966/72004/12 we use an adaptive Metropolis algorithm because 

the covariance matrix estimate based on local behaviour of the posterior at its highest 
peak turned out to give too optimistic a view of precision and thus failed to yield an 
efficient covariance matrix for the normal jump distribution. Specifically, we use a 
uniform prior between 0 and 1 for 0, 1 and 2 and the following adaptive random 
walk Metropolis algorithm: We first simulate 10,000 draws using a diagonal 
covariance matrix with diagonal entries 0.00001 in the jump distribution. We then use 
these draws to estimate the posterior covariance matrix of and scale it by the factor 
2.42/6. We continue by simulating 10,000 draws and calculate a more accurate 
covariance matrix for . We repeat this 2 – 5 times. Finally, we run 400,000 draws for 
three simulated chains using separate starting values and pick out every 90th draw 
after excluding the first 40,000 as a burnin period. The reader should note that this 
choice of the priors of the ’s has no practical effect on the results; it only appears to 
be computationally more convenient to work with uniform rather than lognormal 
priors here. 
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FIGURE 7  The sequences of MCMC draws of parameters’ posteriors when  = 2x0.003. 
Sample period 1928:1–2004:12.
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FIGURE 8  The sequences of MCMC draws of parameters’ posteriors when  = 4x0.003. 
Sample period 1928:1–1966:6. 
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FIGURE 9 The sequences of MCMC draws of parameters’ posteriors when  = 6-1x0.003.
Sample period 1966:6–2004:12. 



4  ESSAY 3: BAYESIAN TWO-STAGE REGRESSION 
WITH PARAMETRIC HETEROSCEDASTICITY1

ABSTRACT

In this paper we expand Kleibergen and Zivot’s [2003. Bayesian and Classical 
Approaches to Instrumental Variable Regression. Journal of Econometrics 114, 
29-72] Bayesian Two Stage (B2S) model by allowing for unequal variances. Our 
choice for modelling heteroscedasticity is a fully Bayesian parametric approach. 
As an application we present a cross-country Cobb-Douglas production 
function estimation. 

Keywords: heteroskedasticity, Bayesian two-stage model, Cobb-Douglas 
production function 

                                                
1 This paper has been accepted for publication in Advances in Econometrics 23 

(Bayesian Econometrics, 2008). Jani Luoto is responsible for statistical estimation, 
interpretation of the results, and most of the writing. Arto Luoma assisted in some of 
the writing and derived most of the statistical equations. 
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4.1  Introduction 

After Anderson and Rubin (1949) developed their limited information 
maximum likelihood (LIML) and Theil (1953) his two-stage least squares (2SLS) 
technique, instrumental variables (IV) regression has became a standard 
textbook approach in classical econometrics. The development of Bayesian 
analysis of such models started two decades later, being initiated by Drèze 
(1976) (see also e.g. Drèze and Morales, 1976, Drèze and Richard, 1983, and 
Bauwens and van Dijk, 1989). Drèze’s idea was to equalize the classical and 
Bayesian analysis of IV models using suitable diffuse priors for the parameters. 
Unfortunately, his prior ignores important information concerning the near 
nonidentification of structural parameters due to weak instruments (see e.g. 
Kleibergen and Zivot, 2003, for discussion).
 Mainly due to this undesirable property of the Drèze prior, recent research 
on Bayesian analysis of IV models has started to address the above mentioned 
problem of local non-identification (see e.g. Geweke, 1996, Kleibergen and van 
Dijk, 1998, and Chao and Phillips, 1998 and 2002). Following this tradition, 
Kleibergen and Zivot (2003) developed a new Bayesian two-stage (B2S) 
approach. In order to mimic classical 2SLS techniques, which essentially handle 
the problem of local non-identification, they constructed a prior for the 
parameters of the restricted reduced form specification and thus functionalized 
the steps used to obtain the 2SLS estimator. 
 In this paper we expand Kleibergen and Zivot’s (2003) B2S model by 
allowing for unequal variances. In classical analysis, modelling 
heteroscedasticity improves the efficiency of estimation and enables the 
variance estimates to be consistent. Thus, not surprisingly, modelling 
heteroscedasticity has become standard in classical IV literature (see e.g. White, 
1982, Cumby et al., 1983, and Davidson and MacKinnon, 1993). However, there 
is (to our knowledge) no single Bayesian study of IV models with unequal 
variances, although from the Bayesian point of view modelling 
heteroscedasticity should improve the precision of estimates and the quality of 
predictive inference. The latter follows from the fact that modelling 
heteroscedasticity allows predictive inferences to be more precise for some units 
and less so for other. 
 Our choice for modelling heteroscedasticity is a fully Bayesian parametric 
approach. Specifically, we assume that ( ) θζσ −= iiy 2var , where y is the response 
variable and  a variable explaining the variance. This specification requires 
only one unknown heteroscedasticity parameter ( ). Alternatively, we could 
follow, for example, Geweke (1993) and model heteroscedasticity using a 
nonparametric approach. This, however, would require estimation of several 
unknown parameters, which might give rise to identification and estimation 
problems in our relatively complex nonlinear model. 
 To give an empirical illustration of the properties of the heteroscedastic 
B2S model, we follow Benhabib and Spiegel (1994) and Papageorgiou (2003) 
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and construct a simple exercise of aggregate production function estimation as 
an application.2 We choose this example, since the problems of endogeneity and 
heteroscedasticity are well documented in the cross-country growth literature, 
see e.g. Benhabib and Spiegel (1994) and the surveys of Temple (1999a) and 
Durlauf et al. (2005). 
 The paper is organized as follows: In Section 2 we present a 
heteroscedastic Bayesian two-stage model (hereafter HB2S model). In Section 3 
we give an example of estimating the empirical Cobb-Douglas aggregate 
production function. Section 4 concludes the paper. 

4.2  The Bayesian Two-Stage Model with Parametric 
Heteroscedasticity

Consider the following limited information simultaneous equation model 

121 εγβ ++= ZYy ,    (1) 

22 VZXY +Γ+Π= ,    (2) 

where Y = (y1 Y2) is an N × m matrix of endogenous variables, Z an N × k1 matrix 
of included exogenous variables, X an N × k2 matrix of excluded exogenous 
variables, that is, instruments, and ε1 an N × 1 vector of errors and V2  an N × (m
– 1) matrix of errors.  Vectors β and γ contain the structural parameters of 
interest. The matrices Z and X are assumed to be of full column rank, 
uncorrelated with ε1 and V2, and weakly exogenous for the structural parameter 
vector β.
 If the observation vectors yi in the above simultaneous equation model 
have unequal covariance matrices, they are said to be heteroscedastic. In the 
following, we will model heteroscedasticity by assuming that the elements ε1i of 
ε and the rows V2i of V2 are normally distributed with zero mean and the m × m
covariance matrix 

( ) ( )
ΣΣ
Σσ

θζ=ε=Σ
2221

1211
21 ,'var iiii fV ,  (3) 

where heteroscedasticity is captured by the function f(ζi, ), ζ1,…, ζN being the 
known values of some positive-valued variable. Several alternative 
specifications of f(ζi, ) have been suggested in the literature (see e.g. Judge et al., 
1985, Greene, 1990, Griffiths, 1999, and Tanizaki and Zhang, 2001). Here, we 
consider the following simple functional form 

                                                
2  See also Barro (1999) and Temple (1999a, 1999b, 2001).  



75

( ) θ−ζ=θζ iif , ,    (4) 

where ]1,0[∈θ , and the extreme of  = 0 corresponds to homoscedastic errors 
(see e.g. Greene, 1990, and Boscardin and Gelman, 1996). If we substitute the 
reduced form Equation (2) into the structural form Equation (1), we get the 
following nonlinearly restricted reduced form specification

11 vWy += δ ,    (5) 

22 VUBY += ,    (6) 

where W = (UB Z),  = ( ) , U = (X Z), B = ( )  and v1 = 1 + V2 . Thus, U is 
an N × k matrix, where k = k1 + k2, and W is an N × (k1 + m – 1) matrix.  Denoting 

( ) ( )
ΩΩ
Ω

==Ω
2221

1211
21 ,'var

ω
θζ iiii fVv ; 21

1
2212112.11 ΩΩΩ−= −ωω ; 21

1
22ΩΩ= −φ ,

we obtain that e1 = v1–V2φ is uncorrelated with V2 and var(e1i) = f(ζi, ) 11.2.

From the reduced form equation (5) we can see the possible identification 
problem related to the two-stage approach. The parameter vector δ is identified 
when W has full column rank, which is equivalent to  having full column 
rank, and is locally nonidentified when  has a lower rank value. Therefore, the 
number of instruments has to be at least the number of endogenous regressors, 
that is, k2 m – 1. The model is called just-identified when k2 = m – 1 and over-
identified when k2 > m – 1. In the case of weak instruments (that is, when the 
instruments are only weakly correlated with the endogenous regressors),  
identification problems may occur, since  is then close to zero or close to 
having reduced rank (see e.g. Zivot et al., 1998, and Shea, 1997). Since in the 
Bayesian two-stage approach suggested by Kleibergen and Zivot (2003) the 
prior distribution is so constructed that it explicitly incorporates this kind of 
knowledge, we will choose it as a starting-point for our heteroscedasticity-
corrected limited information model.
 Using the restricted form specifications (5) and (6) we can write the 
likelihood in the form  

( ) ( ) ( )ηηη ,,,,,, 12 ZXypZXYpZXYp = ,

where

( ) ( ) ( ){ }φδφδωωη 21
1

21
1
2.11

5.05.0
2.1121 '5.0exp,,, VWyVWyZXYyp N −−Λ−−−Λ∝ −−−− , (7) 
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( ) ( ) ( ){ }UBYUBYtrZXYp mN −Λ−Ω−ΛΩ∝ −−−−−
2

1
2

1
22

)1(5.05.0
222 '5.0exp,, η .             (8) 

Here, η denotes the vector of all parameters and ( ) ( )( )θζθζ ,,...,,1 Nffdiag=Λ .
 As a prior distribution we will use a modification of the Jeffreys prior 
distribution. The Jeffreys prior is defined as 2/1)()( ηη Ip ∝ , where 

∂∂
∂−= )|(log

'
)(

2

η
ηη

η YpEI

is the Fisher information matrix for η. Our modifications will be as follows: 
firstly, we calculate the second-order derivative with respect to vec(B) from the 
logarithm of the conditional density (8) instead of the full log likelihood. 
Secondly, we remove the prior dependence between B and δ by replacing the 
corresponding non-diagonal blocks in I(η) with  zero matrices. Then, if we 
assume that the geometric mean of ζi, i = 1,...,T, is unity, the joint prior is given 
by

( ) ( ) ( ) 5.01)1(5.0125.0
2.11

15.0
22 ''1 WWUUp

mkmkm −−−+−−+− ΛΛΩ∝ ωη . (9) 

One can normalize the weight variable ζ by dividing it by its geometric mean. 
This has two advantages: firstly, one need not adjust the prior distribution, and 
secondly, the dispersion parameters ω11.2 and Ω22 have a consistent meaning 
under different values of . See also Boscardin and Gelman (1996), who discuss 
the issue in the context of one-stage regression models.
 Our derivation of the prior distribution is somewhat arbitrary. However, it 
yields a prior with desirable properties. The presence of the term 2/11' WW −Λ  in 
the prior (9) reflects the fact that the model is not informative regarding  when 

 has reduced rank, since this term tends to zero as  tends to a reduced rank 
value. In the special case, when Z is not in the model and  = 0, our prior 
reduces to that proposed by Kleibergen and Zivot (2003). The slightly simpler 
Drèze prior )1)(2/1( ++−Ω mk  has the drawback that the marginal posterior of  has 
a non-integrable asymptote at  = 0, when the model is just-identified (see 
Kleibergen and Zivot, 2003 for further discussion on the issue). 
 Multiplying the likelihood function by the joint prior (9) yields, after some 
tedious algebra, the following conditional and marginal posteriors 
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( ) ( ) 5.0115.0
2.11222.11 ',,,,, 1 WWBYp km −−+− Λ∝Ω ωωθφδ ,

( ) ( ){ }δδδδω ˆ''ˆ5.0exp 11
2.11 −Λ−− −− WW ,  (10) 

( ) ( ) 5.0

2
1

2
15.0

2.11222.11 ',,,, MVVBYp m −−− Λ∝Ω ωωθφ

( ) ( ){ }φφφφω ˆ''ˆ5.0exp 2
1

2
1

2.11 −Λ−− −− MVV ,   (11) 

( ) ( ) ( ) { }MvvMvvBYp NN 11
2.11

5.0125.0
2.11222.11 '5.0exp',,, −−−+− Λ−Λ∝Ω ωωθω , (12) 

( ) ( ) ( ) { }2
1

2
1

22

15.0

2
1

2
15.0

2222 '5.0exp',, VVtrVVBYp
kNkmN −−−+−−++− ΛΩ−ΛΩ∝Ω θ , (13) 

( ) ( ) ( )15.0

2
1

2

5.0

2
1

2
5.0)1(5.015.01 '''',

−+−−−−−−−−− ΛΛΛΛΛ∝
kNmmN VVMVVUUMvvYBp θ , (14) 

where

( ) ( )φδ 21
111 ''ˆ VyWWW −ΛΛ= −−− , ( ) 1

1
2

1
2

1
2 ''ˆ MyVMVV −−− ΛΛ=φ

( ) 111 '' −−− ΛΛ−= WWWWIM , φ̂21 Vyv −=  and UBY −= 22V .

The distributions given in Equations (10)-(11) are multivariate normal, while 
those in (12) and (13) are Inverse Gamma and Inverse Wishart, respectively. The 
joint marginal posterior for B and  in Equation (14) does not have a form of any 
standard p.d.f. 
 Kleibergen and Zivot (2003) discuss some properties of their B2S model 
and compare it to the original Drèze (1976) approach. We briefly review their 
discussion and make some comparison between our parametric 
heteroscedasticity-corrected model and their B2S model. 

a) As with the Drèze and B2S approaches, the posteriors are not invariant 
to the ordering of the endogenous variables; that is, if y1 is exchanged 
with some of the variables in Y2, the results do not remain identical. See 
Drèze (1976) for the argument. 

b) The mean of the conditional posterior of  in the B2S model is 
essentially SLS2β̂ . However, this is not true for the HB2S model, since 
heteroscedasticity correction gives more weight to ‘good’ observations, 
while SLS2β̂  weights all observations equally. The difference between the 
heteroscedastic-corrected estimate of  and SLS2β̂ depends, of course, on 
the degree of heteroscedasticity. 

c) As with the B2S approach, the marginal posterior (14) does not have the 
non-integrable asymptote at  = 0 which appears in the Drèze approach. 
The last term in (14) may be written in the form 
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2/)1(
1 )ˆ(')'ˆ(

−+−
− −Λ−+

kN
BBUUBBS , where 2

111 ')'(ˆ YUUUB −−− ΛΛ=  and 
)ˆ()'ˆ( 2

1
2 BUYBUYS −Λ−= − , and is, for a fixed , a kernel of a matric-variate 

Student-t density with N – 1 degrees of freedom. The other terms are, for 
a fixed , bounded from zero and infinity, which implies that the 
posterior is integrable with respect to B.  If the term 2/11' WW −Λ were not 
present in the prior its inverse would appear in the posterior causing an 
infinite asymptote at the reduced rank values of .

d) As with the B2S approach (without heteroscedasticity correction), the 
form of the posterior of B is closely related to the marginal posterior 
which results from a standard diffuse prior analysis of the reduced form 
regression of Y2 on U with heteroscedasticity correction. 

4.3  Empirical Example 

4.3.1 Estimated Model 

To illustrate some of the properties of the HB2S model we construct a simple 
exercise of aggregate production function estimation with cross-country data. We 
chose this example, since problems of endogeneity and heteroscedasticity are 
well documented in the cross-country growth literature (see e.g. Benhabib and 
Spiegel, 1994, Papageorgiou, 2003, and the surveys of Temple, 1999a, and Durlauf 
et al., 2005). For example, Benhabib and Spiegel (1994) analyse the biases of 
coefficient estimates which result from the correlation between the accumulated 
physical and human capital series and the error term, and find that there is likely 
to be an upward coefficient bias in the input share of capital and human capital 
estimates, and a downward bias in estimates of the input share of labour. Our 
analysis is close to that of Benhabib and Spiegel (1994) or Papageorgiou (2003). 
However, we do not separate aggregate labour and human capital stocks; rather 
we follow Bils and Klenow (2000) and assume that individual human capital 
stock is related to individuals, years of schooling and years of experience. This 
implies that each individual has some degree of human capital and thus 
aggregate human-capital stock should be modelled as Ht = htLt, where ht is 
average human-capital stock per person and Lt is labour force. 
 We assume the Romer-type Cobb-Douglas production function 

ititYititit HKAY εβαβα
,

+=  (see Romer, 1990), where Yit is the output, Ait productivity, 
Kit physical capital and HY,it  the human capital engaged in final-goods 
production in country i at time t. Taking log differences we obtain the following 
equation for long-run growth,

( ) ++++=
00,

,

000

logloglogloglog
i

iT

iY

iTY

i

iT

i

iT

i

iT

H
H

K
K

A
A

Y
Y

ε
εβαβα . (15) 
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In Equation (15), we assume that the resource constraint Hit = HA,it + HY,it, where 
HA,it is the human capital engaged in R&D activities, holds. One problem in 
estimating Equation (15) is that we should replace an unobservable log(AT/A0)
by some function of observables. Otherwise the estimates of factor shares will 
be biased (see e.g. Temple, 1999a and b). We follow Papageorgiou (2003) and 
propose the following specification for the growth rate of technology, 

−+=
−

1
0

0
,,

0

0

i
iTAiTA

i

iiT

A
A

HH
A

AA μδ ,   (16) 

where 0A is the technology frontier, and  and  are the innovation and imitation 
parameters, respectively. In Equation (16), human-capital speeds technology 
growth through innovation and imitation. Using Equation (16) we can write 
Equation (15) in the estimation form 

( ) ( ) +−++⋅= 0,
0

max
0

0,
0

log iA
i

iAi
i

iT H
y

yHd
Y
Y μμδβαψ

it
iY

iTY

i

iT u
H
H

K
K +++

0,

,

0

loglog βα ,  (17) 

where di is a vector of deterministic components (constant and dummy 
variables), and uit a normally distributed error term with zero mean and 11

variance. We follow Benhabib and Spiegel (1994) and Papageorgiou (2003) in 
assuming that (Y0/L0)max/(Yi0/Li0) = 0

max
0 / iyy  approximates 00 / iAA .

 Since human capital may also speed technology adoption and may be to 
some extent necessary for technology use, we propose the following two 
alternative specifications for technology growth with production technology, 

ititititit HKAY εβαβα += and ititititit LKAY εβαβα +=  (see e.g. Benhabib and Spiegel, 1994, and 
Bils and Klenow, 2000). With similar steps we obtain the corresponding 
empirical specifications

( ) ( ) +−++⋅= 0
0

max
0

0
0

log i
i

ii
i

iT H
y

yHd
Y
Y μμδβαψ

it
i

iT

i

iT u
H
H

K
K +++

00

loglog βα ,  (18) 

( ) ( ) +−++⋅= 0
0
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0

0
0

log i
i

ii
i

iT H
y

yHd
Y
Y μμδβαψ

it
i

iT

i

iT u
L
L

K
K +++

00

loglog βα .   (19)
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We estimate Equations (17)-(19) using our HB2S model. As a weight variable 
we use ζi = yi0, where 

( ) ( )−=
=

N

i
iiiii LY

N
LYy

1
00000 /log1/logexp .

This corresponds to dividing the output per labour force (Yi0/Li0) by its 
geometric mean. We use the output per worker in the weight coefficients f(ζi, ),
i = 1,…,N since we expect countries with higher initial income to have more 
stable growth paths due to developed institutional structures, which have the 
ability to reduce the overall risk in society. Alternatively, we could use some 
institutional indicator. However, since the choice of institutional indicators 
which approximate the ’true level’ of institutional quality is somewhat difficult, 
and far from unique, we decided to abandon this approach. 

4.3.2 Estimation Results 

Since physical and human capitals are accumulated factors, they are 
endogenous. This causes the simple OLS estimator to be inconsistent. A 
common means of dealing with the issue of endogeneity is to instrument for 
endogenous regressors with variables correlated with them but exogenous to 
them and the regressed variable. Moreover, the validity of an instrument 
requires that it cannot be a direct growth determinant or correlated with 
omitted growth determinants (see e.g. Durlauf et al., 2005). Therefore, we 
instrument the growth rates of aggregate human and physical capital using the 
distance from the equator (Gallup, Sachs and Mellinger, 1998) and the following 
variables in 1970: age dependency ratio (dependents to working-age 
population), illiteracy rate (%) of people aged 15-24 from World Development 
Indicators (2002), and the level of physical capital per worker. The data and 
instruments are described in Appendix A. 
 To generate a Monte Carlo sample from the joint posterior of  and B we 
used a version of the random walk Metropolis algorithm for Markov Chain 
Monte Carlo (MMCMC). The algorithm uses a multivariate normal distribution 
for the jump distribution on changes in  and B. Our simulation procedure was as 
follows: We first minimized the negative of the logarithm of the posterior density 
(14) numerically to obtain the posterior mode and evaluated the Hessian matrix 
at the minimum. We then used the inverse of the Hessian as an approximation to 
the posterior covariance matrix of ( ,vec(B)’)’ and scaled it by the factor 2.42/d,
where d is the number of simulated parameters, to obtain an optimal covariance 
matrix for the jump distribution (see e.g. Gelman et al., 2004).  
 We then added noise to the posterior mode to obtain overdispersed 
starting values and simulated three chains of length 100,000. We excluded the 
first half of simulations as a burn-in period in each chain and picked out every 
tenth draw. The convergence of the chains was checked using Gelman and 
Rubin’s convergence diagnostic R (also called ‘potential scale reduction factor’) 
(see Gelman and Rubin, 1992).  The diagnostic values close to 1 indicate 
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approximate convergence and the values smaller than 1.1 are acceptable in most 
cases. In our case the diagnostic was estimated as 1.00 for all parameters and all 
models; the convergence was thus very good. Table 2 in Appendix B shows the 
simulation results for model (17). After simulating  and B, the other parameter 
vectors and matrices were simulated from the conditional distributions (13) - 
(10). The B2S model could be estimated similarly, except that the covariance 
matrix of the classical first-stage regression (scaled by the factor 2.42/d) could be 
used as the covariance matrix of the jump distribution.3
 We use the posterior mean of deviance, ( ) ( ){ }YYDEYDavg η,= , as a measure 
of model fit. This criterion is called ‘average discrepancy’ by Gelman et al. 
(2004) who recommend its use for model comparison4. It is estimated as 

( ) ( )i
N

i
avg YD

N
YD η,1ˆ

1=

= , where ( ) ( )ηη YpYD ln2, −=  is  the deviance and 

,,...,1, Nii =η  are posterior simulations. The average discrepancy is usually 
greater than )ˆ,()(ˆ ηη YDYD = , where η̂  is a point estimate, such as posterior 
mode, mean or median. The difference )()( ˆ YDYDp avgD η−=  is called the 
effective number of parameters and is in most cases approximately equal to the 
number of parameters in nonhierarchical models. The Bayesian equivalent (and 
also a generalization) of the Akaike information criterion (AIC) is the deviance 
information (DIC), defined as DpYDDIC 2)(ˆ += η . The DIC has been suggested 
as a criterion of model fit when the goal is to select a model with best out-of-
sample predictive power (see Spiegelhalter et al., 2002). 
 Figure 1 displays the residual plots for the first- and second-stage 
regressions, corresponding to Equations (8) and (7), respectively. The residuals 
have been obtained by replacing the unknown parameters by their posterior 
means and they have been plotted against the normalized initial output y0. The 
approximate 95% probability belts, based on the normality assumption, are also 
shown.  We see that the fit of the belts seems worse for the log differences of Y
and K, since there are no points outside these bands for y0 > 2. The reason for 
this is probably that we have only one heteroscedasticity parameter for all 
regressed variables and the fit cannot be equally good for all of them.
 Table 1 shows the estimation results for Equations (17)-(19), obtained 
using the ordinary least squares (OLS) method and the Bayesian estimation of 
the B2S and HB2S models. On the basis of the figures and the posterior 
summaries of the heteroscedasticity parameter , we see that the data support 
heteroscedasticity in each model. Heteroscedasticity is especially obvious in the 
cases of output and physical capital growth, less so in human capital and only 

                                                
3  The estimation was implemented using R, a statistical computing environment. R is 

freely available under the General Public Licence at www.R-project.org. The code 
and data sets are available at http://mtl.uta.fi/codes/HB2S/. 

4  Gelman et al. (2004) prefer using discrepancy between data and model to using Bayes 
factors in model comparisons. They consider Bayes factors to be in most cases 
irrelevant, since they are used to compute the relative probabilities of the models 
conditional on one of them being true. 
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slight in labour growth. When we compare the estimated average 
discrepancies ( )YDavg

ˆ  between the B2S and HB2S models, we see that the data 
lend strong support to the latter. If one would test the significance of  using the 
likelihood ratio test, a significant result at the 5 % level would correspond to a 
difference greater than 3 in ( )YDavg

ˆ . This follows from the fact that the nested 

model has one parameter less in this case and from the relation between ( )YDavg
ˆ

and the number of parameters. 

TABLE 1  Growth regressions for Equations 17-19 

Par. Equation (17) Equation (18) Equation (19)
 OLS B2S HB2S OLS B2S HB2S OLS B2S HB2S 

( + )( - ) -0.096 
(0.048) 

-0.090 
(0.224) 

-0.077 
(0.1496) 

-0.016 
(0.0146) 

-0.009 
(0.035) 

-0.006 
(0.022) 

-0.023 
(0.012) 

-0.021 
(0.034) 

-0.017 
(0.023) 

( + ) 0.050f

(0.013) 
0.067a

(0.048) 
0.065 
(0.065) 

0.002f

(0.0005)
0.002 
(0.002) 

0.001 
(0.001) 

0.002f

(0.0004) 
0.002 
(0.002) 

0.002a

(0.001) 

0.432f

(0.073) 
0.283b

(0.107) 
0.339c

(0.107) 
0.433f

(0.074) 
0.293 c 

(0.097) 
0.347c

(0.103) 
0.452f

(0.070) 
0.313c

(0.101) 
0.361c

(0.101) 
0.378e

(0.137) 
0.537c

(0.152) 
0.470c

(0.147) 
0.365e

(0.144) 
0.539 c 

(0.150) 
0.483c

(0.150) 
0.408f

(0.162) 
0.618c

(0.185) 
0.547c

(0.169) 
 + - 0.820 

(0.129) 
0.806 
(0.106) 

- 0.831 
(0.131) 

0.829 
(0.108) 

- 0.931 
(0.161) 

0.908 
(0.136) 

- -0.036 
(0.269) 

-0.031 
(0.172) 

- -0.012 
(0.044) 

-0.007 
(0.028) 

- -0.022 
(0.038) 

-0.018 
(0.027) 

- 0.086a

(0.066) 
0.077 
(0.089) 

- 0.002 
(0.002) 

0.002 
(0.002) 

- 0.002 
(0.0018) 

0.002a

(0.0017) 
- - 0.529 

(0.122) 
- - 0.519 

(0.111) 
- - 0.434 

(0.113) 

Constant 0.275 
(0.064) 

0.335 
(0.133) 

0.305 
(0.099) 

0.255 
(0.081) 

0.270 
(0.150) 

0.235 
(0.109) 

0.351 
(0.062) 

0.417 
(0.133) 

0.376 
(0.105) 

Dummy
Africa

-0.262 
(0.112) 

-0.348 
(0.102) 

-0.298 
(0.105) 

-0.235 
(0.106) 

-0.302 
(0.098) 

-0.254 
(0.097) 

-0.287 
(0.121) 

-0.387 
(0.107) 

-0.327 
(0.107) 

Dummy
LatinAmerica 

-0.187 
(0.089) 

-0.261 
(0.104) 

-0.253 
(0.090) 

-0.174 
(0.088) 

-0.244 
(0.097) 

-0.237 
(0.088) 

-0.199 
(0.096) 

-0.285 
(0.105) 

-0.269 
(0.097) 

( )YDavg
ˆ - -378.7 -399.0 - -373.0 -394.4 - -417.8 -432.1 

2R 0.62 - - 0.62 - - 0.61 - - 
__________________________________________________________________________________________________________________________ 

a   parameter > 0 with 90-94 % probability          d     p-value of one-sided hypothesis test < 0.10 
b   parameter > 0 with 95-98 % probability          e     p-value of one-sided hypothesis test < 0.05 
c   parameter > 0 with 99 -100 % probability       f      p-value of one-sided hypothesis test < 0.01 

For the OLS estimates, White’s heteroscedasticity-corrected standard errors are given in 
parentheses. In the Bayesian models, the posterior means and standard deviations are reported. 
We do not report the OLS estimates of the imitation and innovation parameters, since exact 
standard errors are not available for them. 

It seems that the margin between the estimated average discrepancies of B2S 
and HB2S depends on the degree of heteroscedasticity, since the gap is around 
20 for models (17) and (18), while for model (19) it is about 14 only. Note that 
model (19) has the lowest heteroscedasticity parameter  due to the small 



83

amount of heteroscedasticity in the labour growth series (see the third row in 
Figure 1).  However, the differences in  are not very significant between the 
models, since they are smaller than the posterior deviation of the parameter. 
Furthermore, the model defined by (19) has the smallest estimated average 
discrepancy (-432). However, in the  ‘economic theory’ sense, this result does 
not necessarily indicate that Equation (19) is more preferable than the other 
models, since the first-stage regression could be more informative in this model, 
increasing  the overall model fit. 
 We also find that the IV regression estimates of  are, in general, higher, 
and the estimates of  lower, than the corresponding OLS estimates5. Thus our 
results confirm the finding of Benhabib and Spiegel (1994) that there is an 
upward coefficient bias in the OLS estimates of  and human capital share 
(Equations 17-18), and a downward bias in the OLS estimates of the labour 
share parameter  (Equation 19)6 (see also Griliches and Mairesse, 1995, for a 
discussion of endogeneity of regressors in the aggregate production function 
approach).
 Finally, based on the results reported in Table 1, the data are not consistent 
with the innovation parameter  being positive (see e.g. Benhabib and Spiegel, 
1994, who obtained similar results in their analyses). On the other hand, there is 
weak (or moderate) support in the data for the imitation parameter  being 
positive. Thus, contrary to Papageorgiou (2003), our results slightly favour 
catch-up progress over country-specific technological progress as the channel 
through which accumulation of human capital affects output growth. This is 
quite sensible, since only about 15 per cent of the countries in our sample have 
economically meaningful innovation activities (see also Benhabib and Spiegel, 
1994).

4.4  Conclusion 

In this paper we have presented a relatively straightforward way to model 
unequal variances in Bayesian two-stage instrumental variable regression. We 
have done this using a fully Bayesian parametric approach. As noted, 
modelling heteroscedasticity is important also in the Bayesian instrumental 
variable context, since it improves the precision of estimates and the quality of 
predictive inference. 
 We used a simple production function approach as a tool to provide an 
empirical illustration of some properties of the heteroscedastic B2S model. On 
                                                
5  See also the OLS results, where the dummies are excluded from the analysis, in Table 

3 (Appendix B). Our OLS results are, in general, quite similar to those in previous 
studies. Specifically, our estimates for physical capital share  lie between 0.432 and 
0.53 and are positive at the 1% significance level. The estimates of human 
capital/labour shares are relatively low and positive at the 5% level. 

6  Note that multiplying Lt by ht seems to reduce  more in the IV models than in the 
ordinary regression model.
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the basis of residual plots and estimated discrepancies between the data and the 
models, we have shown that the data lend strong support to the use of the 
HB2S model instead of the homoscedastic B2S model. 
 Because our modelling of heteroscedasticity is relatively limited, we 
suggest that future research on Bayesian IV regression under unequal variances 
should focus on multiplicative heteroscedasticity, which is flexible and includes 
most of the useful formulations for heteroscedasticity as special cases (see e.g. 
Tanizaki and Zhang, 2001). 
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FIGURE 1  Residual plots of the first- and second-stage regressions, corresponding to 
equations (8) and (7), respectively. The dotted lines are approximate 95% 
probability intervals, based on the normality assumption. The first row gives 
the residual plots against yi0, when log(YT/Y0), log(HY,T/HY,0) and log(KT/K0)
of model (17) are regressed on the instrumental variables. The second row 
gives the corresponding residual plots for log(YT/Y0), log(HT/H0), and 
log(KT/K0) when model (18) is used. Finally, the third row gives the residual 
plots for log(YT/Y0), log(LT/L0) and log(KT/K0),  corresponding to model (19). 
The residuals are obtained when the unknown parameters are replaced by 
their posterior means. 
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APPENDIX A 

Data and Instruments 

Our estimation involves data on 85 countries (see Table 4 in Appendix B). The 
stock of physical capital is estimated using each country’s investment rates from 
Penn World Tables 6.1 and perpetual inventory methods. The capital stock in 
1960 is estimated using Ki = Ii/(gi+d+ni), where I denotes  the investments, g the 
growth rate of GDP per worker, d  the depreciation rate and n the growth rate 
of the population, calculated as the average growth rate from 1961 to 1970. The 
depreciation rate d is assumed to be 0.07.7
 In the case of human capital we follow Bils and Klenow (2000), who 
approximate the human capital per person using the years of schooling per 
person and the experience of each age group. Specifically, we assume that the 
log of human capital stock of a worker of age a is 

( ) ( ) ( ) ( )2
21 66ln −−+−−+= sasasfah γγ ,  (20) 

where 1 and 2 are parameters of return to experience, s is average years of 
schooling and ( ) ( )ψθ ψ −⋅= − 1/1ssf ; ψ > 0,  > 0. Equation (20) is of the same 
form as that of Bils and Klenow (2000); however we assume that the influence 
of a teacher on human capital is zero. Using Equation (20) we calculate the 
average human capital stock for all age groups between 20 and 59 in 1970 and 
2000 by weighting the human capital of the age group by its proportion of the 
country's total population. In Equation (20) we set 1 = 0.0512 and 2 = -0.00071, 
which corresponds to the average estimates across 52 countries as reported in 
Bils and Klenow (2000). We set ψ at 0.28 and set  so that the mean of 

( ) ψθ ssf /' = equals the mean Mincerian returns across 56 countries, which is 
0.099 (see Bils and Klenow, 2000). Finally, HA,it is determined as Hit times the 
percentage of the population aged 15 or over with some higher education 
(complete + incomplete). 
 The education series are from Cohen and Soto (2001). The population data 
are from the International Data Base of the U.S. Census Bureau (Population 
Division of the International Programs Center (IPC)) and the United Nations 
population data (1995). The labour stock (L) in each country is obtained from 
World Development Indicators (2002). The output series have been taken from 
Penn World Tables 6.1. 

                                                
7  We have predicted the missing GDP and investment values for some countries in our 

data. The missing GDP values are predicted using the linear trend model while the 
investment share (I/GDP) values are predicted using the latest available data points. 
These countries (and missing years) are Angola (1997-2000), Central Africa (1999-
2000), Cyprus (1997-2000), Fiji (2000), Guyana (2000), Haiti (1999-2000), Sierra Leone 
(1997-2000) and Singapore (1997-2000). 
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 Since physical and human capitals are accumulated factors, they are 
endogenous. This causes the simple OLS estimator to be inconsistent. A 
common means of dealing with the issue of endogeneity is to instrument for 
endogenous regressors with variables correlated with them but exogenous to 
them and the regressed variable. Moreover, the validity of an instrument 
requires that it cannot be a direct growth determinant or correlated with 
omitted growth determinants (see e.g. Durlauf et al., 2005). Therefore, we 
instrument the growth rates of aggregate human and physical capital using the 
distance from the equator (Gallup, Sachs and Mellinger 1998) and the following 
variables in 1970: age dependency ratio (dependents to working-age 
population), illiteracy rate (%) of people aged 15-24 from World Development 
Indicators (2002), and the level of physical capital per worker. 
 We make the assumption that the distance of a country from the equator, 
the initial (year 1970) values for age dependency ratio and youth illiteracy rate 
are not direct growth determinants; rather they influence the environment and 
investment culture, where individuals accumulate physical and human capital. 
For a more detailed discussion on these topics see e.g. Durlauf et al. (2005). 
 Since one may question the validity of our instruments, we check the 
consistency of the IV estimators using two specification tests. Firstly, Hansen's 
test for over-identification restrictions is used to see whether the model 
specification is correct and the instruments are uncorrelated with the error 
process. The second test is for weak instruments. We follow Stock and Yogo 
(2002), who propose quantitative definitions of weak instruments based on the 
maximum IV estimator bias or the maximum Wald test size distortion. The
smallest p-value of the Hansen's test for over-identification restrictions for the 
regression models in this paper is 0.88 and the smallest test statistic of the Stock 
and Yogo test for weak instruments is 9.17. Thus, we can reject the null of weak 
instruments and can not reject the null of appropriate instruments at the 5% 
level. Note that we use classical tests here, since these are readily available and 
do not demand extra programming effort. Finally, we used African and Latin 
American country dummies since, based on the above test results, our 
instruments behave much more appropriately when these dummies are 
included in the analysis. The reason may be that these dummies approximate 
some omitted growth determinants which may be correlated with some of our 
instruments.
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APPENDIX B 

TABLE 2  Summary of the posterior simulation of  and B when model (17) was used. The 
elements of B are listed by columns. These results were obtained using the 
summary function of the R package MCMCpack.

Empirical mean and standard deviate-
ons, plus standard errors of the means: 

Quantiles for each variable 

____________________________________________________________________________________________________________________________________

Parameter Mean SD Naiv.SE T-S SE 2.5% 25% 50% 75% 97.5% 
____________________________________________________________________________________________________________________________________

0.5286 0.1166 0.0010 0.0024 0.3032 0.4485 0.5279 0.6066 0.7612 
b11 -0.6697 0.2886 0.0024 0.0060 -1.2414 -0.8623 -0.6662 -0.4807 -0.1021 
b12 0.4412 0.4261 0.0035 0.0085 -0.4085 0.1574 0.4451 0.7266 1.2684 
b13 -0.0096 0.0036 2.9e-05 6.6e-05 -0.0167 -0.0120 -0.0095 -0.0072 -0.0025 
b14 -0.3303 0.0690 0.0006 0.0014 -0.4674 -0.3758 -0.3293 -0.2846 -0.1947 
b15 4.7937 0.8125 0.0066 0.0162 3.2129 4.2394 4.7897 5.3363 6.3840 
b16 -1.1493 0.1901 0.0016 0.0039 -1.5192 -1.2758 -1.1507 -1.0225 -0.7689 
b17 -0.6680 0.1530 0.0012 0.0030 -0.9682 -0.7687 -0.6686 -0.5667 -0.3633 
b18 0.1390 0.2506 0.0020 0.0051 -0.3560 -0.0280 0.1406 0.3074 0.6310 
b19 -0.0040 0.1059 0.0009 0.0021 -0.2108 -0.0760 -0.0042 0.0664 0.2024 
b21 -0.5981 0.1200 0.0010 0.0026 -0.8356 -0.6786 -0.5986 -0.5172 -0.3663 
b22 1.4091 0.1778 0.0015 0.0035 1.0535 1.2914 1.4107 1.5285 1.7531 
b23 -0.0004 0.0015 1.2e-05 3.1e-05 -0.0032 -0.0014 -0.0004 0.0006 0.0026 
b24 0.0326 0.0280 0.0002 0.0006 -0.0212 0.0136 0.0325 0.0516 0.0876 
b25 -0.1891 0.3326 0.0027 0.0068 -0.8405 -0.4106 -0.1909 0.0383 0.4631 
b26 -0.1773 0.0767 0.0006 0.0017 -0.3289 -0.2286 -0.1775 -0.1260 -0.0269 
b27 -0.1368 0.0614 0.0005 0.0013 -0.2558 -0.1783 -0.1359 -0.0952 -0.0165 
b28 -0.1324 0.1001 0.0008 0.0020 -0.3321 -0.1982 -0.1314 -0.0664 0.0646 
b29 0.0122 0.0422 0.0003 0.0008 -0.0725 -0.0158 0.0128 0.0409 0.0946 

____________________________________________________________________________________________________________________________________

TABLE 3  OLS results of growth regressions for Equations 17-19 (dummies excluded)

   Parameters       Equation (17)      Equation (18)      Equation (19)   
Constant 0.197 

(0.073) 
0.159 
(0.094) 

0.256 
(0.068) 

( + )( - ) -0.03 
(0.054) 

0.005 
(0.017) 

-0.003 
(0.015) 

( + ) 0.057c

(0.018) 
0.001b

(0.0005) 
0.001b

(0.0004) 
0.231b

(0.104) 
0.267b

(0.124) 
0.202b

(0.113) 
0.513 c 

(0.060) 
0.500 c 

(0.064) 
0.534 c 

(0.056) 

2R 0.587 0.592 0.577 
OBS 85 85 85 

____________________________________________________________________________________________________________ 

b  p-value of one-sided hypothesis test < 0.05 
c  p-value of one-sided hypothesis test < 0.01 

White’s heteroscedasticity-corrected standard errors in parentheses.
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TABLE 4  Sample of 85 countries 

Algeria Malawi Colombia Fiji Germany 
Egypt Mali Costa Rica Indonesia Greece 
Jordan Mauritius Dominican Rep Korea South Ireland 
Morocco Mozambique Ecuador Malaysia Italy 
Syria Niger El Salvador Philippines Japan 
Tunisia Nigeria Guatemala Thailand Netherlands 
Angola Senegal Guyana Bangladesh New Zealand 
Benin Sierra Leone Haiti India Portugal 
Burkina Faso South Africa Honduras Nepal Singapore 
Burundi Tanzania Jamaica Australia Spain 
Cameroon Uganda Mexico Austria Sweden 
Cen. African Rep. Zambia Nicaragua Belgium Switzerland 
Ethiopia Zimbabwe Panama Canada United Kingdom 
Gabon Argentina Paraguay Cyprus United States 
Ghana Bolivia Peru Denmark Hungary 
Kenya Brazil Uruguay Finland Romania 
Madagascar Chile China France Turkey 



5  ESSAY 4: A NAIVE STICKY INFORMATION 
MODEL OF HOUSEHOLDS’ INFLATION 
EXPECTATIONS1

ABSTRACT

This paper provides a simple epidemiology model where households, when 
forming their inflation expectations, rationally adopt the past release of 
inflation with certain probability rather than the forward-looking newspaper 
forecast as suggested in Carroll [2003, Macroeconomic Expectations of 
Households and Professional Forecasters, Quarterly Journal of Economics, 118, 
269-298]. The posterior model probabilities based on the Michigan survey data 
strongly support the proposed model. We also extend the agent-based 
epidemiology model by deriving for it a simple adaptation, which is suitable for 
estimation. Our results show that this model is able to capture the heterogeneity 
in households’ expectations very well. 

Keywords: Inflation expectations; Heterogeneous expectations; Survey 
expectations; Sticky information; Bayesian analysis 

                                                
1  The first and very preliminary version of this paper has been accepted for publication 

in Applied Economics. Jani Luoto is responsible for statistical estimation, writing the 
theory, interpreting the results, and for most of the writing. In this new paper 
Markku Lanne and Arto Luoma assisted in interpreting the results and in some of the 
writing.
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5.1  Introduction 

In recent years there has been an increasing interest in explaining agents’ 
inflation expectations formation process (see, e.g., Mankiw and Reis, 2006 and 
2007, Sims, 2006, Trabandt, 2007, and Branch, 2004 and 2007). This is mainly 
due to observed failure of the rational expectation hypothesis. Within this 
literature, Mankiw and Reis (2002) propose a simple sticky information model 
where agents know the true probability distribution of the economy, but update 
their information set each period with certain probability. Carroll (2003, 2006) 
and Reis (2006a,b) seek microfoundations for sticky information models, while 
Mankiw et al. (2003) and Carroll (2003, 2006) find evidence based on survey 
data supporting these models (see also Khan and Zhu, 2006, Andres et al., 2005, 
Kiley, 2007, Coibion, 2006 and 2007, and Doepke et al., 2008). Finally, Branch 
(2007) bridges the sticky information and heterogeneous expectations literatures 
by presenting empirical evidence in favor of both, model heterogeneity and 
limited information flows (see Branch, 2007, and references therein). 
 Closest to our work, Carroll (2003) develops and estimates an expectation 
formation model, where the general public adopt professionals’ forecast with 
certain probability, rather than form their own rational forecasts. The structure 
of his model was inspired by simple models of disease spread from the 
epidemiology literature, and it provides promising microfoundations for sticky 
information models. To the best of our knowledge, it is also unique in relaxing 
the assumption that an ordinary person either knows the true probability 
distribution of the economy or can estimate some sophisticated econometric 
model2 when forming expectations. This relaxation is, however, important, 
since although trained economists might have this kind of knowledge, it would 
probably be an overwhelming task for an ordinary consumer (producer) (see 
Shiller, 1997). According to Carroll (2003), it might require, for example, 
obtaining a Ph.D. degree in economics first. 
 Despite the virtues of Carroll’s (2003) model, recent work has cast doubt 
on the reliability of professionals’ inflation forecasts, and, in general, on 
traditional approaches to inflation forecasting (see e.g. Atkeson and Ohanian, 
2001, Fisher et al., 2002, Sims, 2002, Stock and Watson, 2002 and 2007), and 
Brave and Fisher (2004). In particular, Atkeson and Ohanian (2001) found that 
since 1984 the one-year-ahead inflation forecast of professionals3 has not been 
better than the “naïve” forecast given by the inflation rate over the previous 
year. Thus, it is natural to question the rationale of searching for relatively rare 
newspaper forecasts (or to form one’s own rational forecast), when the most 
recently reported past inflation statistic provides a competitive forecast ‘model’ 
for future inflation. In this paper, we propose an epidemiology model, where 
agents simply adopt with certain probability the past release of the annualized 

                                                
2  That is, agents are assumed to be ‘boundedly’ rational; see e.g. Evans and 
 Honkapohja (2001). 
3  Specifically, Federal Reserve’s Greenbook forecasts. 
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monthly inflation figure, the most commonly reported figure in the news coverage 
of inflation. We refer to this model as the naïve sticky information model, and 
test it empirically against Carroll’s sticky information approach using quarterly 
U.S. data. Specifically, we compare posterior probabilities of the alternative 
models in which households update their expectations either to the forward-
looking newspaper forecast or to the most recently reported past inflation 
statistic. As will be seen, U.S. data strongly support the latter.
 Based on our empirical findings, we extend the agent-based epidemiology 
model, proposed by Carroll (2006), by deriving a relative simple adaptation of 
that model, suitable for estimation. The model assumes a constant personal 
probability for each agent to read a newspaper article on inflation. This 
variation in their newspaper reading propensities could explain differences in 
survey expectations across demographic groups, documented in Bryan and 
Venkatu (2001a, b) and Souleles (2004). The model differs from that of Carroll 
(2003, 2006) in that it no longer assumes agents to be ‘infected’ by rare 
newspaper forecasts. Rather, the source of ‘infection’ is the past release of 
annualized monthly inflation. The model is estimated with classified 
household-level survey data from 1981/3 to 2001/4 constructed by the Survey 
Research Center (SRC) at the University of Michigan. The results indicate that 
people on average update their expectations roughly once a year, which is in 
accordance with the previous literature, while their updating probabilities vary 
from 0.12 to 0.42. 
 An agent-based epidemiology model also captures the overall 
heterogeneity between agents’ expectations fairly well, in the sense that the 
variance of unexplained heterogeneity ( 2), i.e. heterogeneity in agents’ 
expectations which the underlying model cannot explain, is quite small 
(approximately 1.1) relative to the high degree of heterogeneity observed in the 
actual micro level data. For example, in Branch’s (2007) Rationally 
Heterogeneous Expectations (RHE) sticky information model, 2 was 36. 
Although our result is not fully comparable to that of Branch (2007), we note 
that in the RHE model most variation in agents’ expectations is attributed to 
unexplained heterogeneity4.
 This paper is organized as follows. In Section 2, we discuss and estimate 
two alternative models where agents update their expectations either to the 
forward-looking newspaper forecast or to the most recently reported past 
inflation statistic. Section 3 provides an adaptation of the agent-based 
epidemiology model and estimates it using classified household-level survey 
data. Finally, Section 4 concludes the paper. 

                                                
4  The empirical standard deviation of Branch’s (2007) sample was 12.7010. However, 

according to Branch (2007), the large empirical standard deviation is accounted for by 
a few outliers that expect inflation to be greater than 40%. Since his estimate of 
standard deviation of unexplained heterogeneity is 6 we state that in his model most 
variation in agents’ expectations is attributed to unexplained heterogeneity.
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5.2  Population Mean Analysis 

In this section, we introduce two alternative versions of an epidemiological 
expectation formation model and test them against each other. In both models 
agents face a constant probability of reading an article on inflation, and they 
believe that inflation follows a random walk (see Carroll, 2003). However, in the 
first model, proposed by Carroll (2003), agents also believe that a forecast from 
a professional forecaster is more accurate than a forecast that they could 
construct themselves. In the alternative model, we give up this potentially 
invalid assumption. 

5.2.1 Naïve Sticky Information Model 

Epidemiological information structure provides promising microfoundations 
for sticky information models. In an epidemiology model, each individual at 
any time point faces a constant probability (say ) of observing an article on 
inflation, which Carroll assumes to consist of professional forecasters’ forecasts. 
Individuals who do not observe such an article simply continue to believe the 
last forecast they read about. This information structure leads to the following 
relationship between the mean inflation expectation of the general public Mt[⋅]
and the newspaper forecast Nf[⋅] of professional forecasters at time t (see 
Carroll, 2003, for a systematic treatment and references), 

[ ] [ ] ( ) [ ] ( ) [ ]( ){ }...11 121111 +−+−+= +−+−++ t
f

tt
f

tt
f

ttt NNNM πλλπλλπλπ . (1) 

where Mt[⋅] is an operator that yields the population-mean value of the people’s 
inflation expectations at time t and t+1 is measured as the quarterly mean of 
monthly inflation of the seasonally adjusted Consumer Price Index (CPI) for all 
urban consumers.5
 In what follows, model (1) can be written, using certain assumptions on 
the public’s beliefs about the process of inflation, as 

[ ] [ ] ( ) [ ] ( ) [ ]( ){ }...11 2,223,114,4, +−+−+= +−−+−−++ tt
f

ttt
f

ttt
f

tttt NNNM πλλπλλπλπ
[ ] ( ) [ ]3,114, 1 +−−+ −+= ttttt

f
t MN πλπλ ,   (2) 

5  In this paper we use the quarterly series, since the only relevant candidate series for 
the views of professional forecasters which has the same forecasting horizon as the 
Michigan survey of households is the four-quarter inflation forecast from the Survey 
of Professional Forecasters (SPF). Furthermore, we use the quarterly means of 
monthly inflation series rather than quarterly inflation of the quarterly means of the 
monthly CPI series because a twelve-month forecast for annual inflation is the series 
that is asked from the respondents of the University of Michigan’s Survey Research 
Center.
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where , +4 = +1 + +2 + +3 + +4 is the annual inflation from τ to τ + 4. 
Equation (2) provides a testable implication for the public’s mean inflation 
expectations. It is based on two fundamental assumptions. Firstly, people 
believe that the economy has an underlying ‘fundamental’ inflation rate, f

tπ ,
and that the future changes in this fundamental rate are unforecastable. That is, 
they believe that t

f
tt e+= ππ  and 11 ++ += t

f
t

f
t ηππ , where et is a transitory shock to 

the inflation rate, unforecastable beyond period t, while t+1 is a permanent 
innovation in the fundamental inflation rate, unforecastable beyond period t + 
1. Secondly, people also believe that professional forecasters have some deeper 
knowledge on how the economy works, and, therefore, are capable to estimate 
the past and present values of e and  through periods t and t + 1, respectively. 
These assumptions are in line with the near-unit-root behavior of the inflation 
rate, which is well documented in the empirical literature, and with the result of 
Shiller (1997) that ordinary persons do not know the causes of inflation. 
However, recent work has cast doubt on the reliability of professionals’ 
inflation forecasts and the reliability of traditional approaches to forecasting 
inflation, suggesting that it might be rational for agents to use frequently 
reported actual inflation figures, rather than rare newspaper forecasts, as their 
inflation expectations (see e.g. Atkeson and Ohanian, 2001, Fisher et al., 2002, 
Sims, 2002, Stock and Watson, 2002 and 2007, and Brave and Fisher, 2004).

To this end, we propose an alternative version of an epidemiological 
expectation formation model, which we call a naïve sticky information model. 
In the model, we follow Carroll and assume that people believe inflation to 
follow a random walk. 
 Equation (1) is based on the assumptions that every inflation article 
contains a complete forecast of the inflation rate for all future periods and that 
the agent who reads an article can recall the entire forecast. However, when 
these newspaper forecasts are on average no better than the naïve forecasts,
people would eventually note this and rationally expect that Ft-j[ t+1] = Nt-j[ t-j]
= [ ]1+− t

f
jtN π , where j = 0,1,2,…, Nt[ t] is the actual inflation reported in the news 

media (N[⋅]) at time t, and F is a forecast operator. Furthermore, no newspaper 
article contains an inflation forecast into infinite future. Rather, newspaper 
forecasts are rare compared to the frequently presented actual inflation figures. 
That is, the most recently reported inflation statistic Nt[ t] is the figure which 
people most probably observe when being influenced by the news media. 
Under these assumptions Equation (1) can be rewritten as

[ ] [ ] ( ) [ ] ( ) [ ]( ){ }...11 121111 +−+−+= +−+−++ tttttttt FFFM πλλπλλπλπ

[ ] ( ) [ ] ( ) [ ]( ){ }...11 2211 +−+−+= −−−− tttttt NNN πλλπλλπλ . (3) 

Unfortunately, Equation (3) can be tested empirically only with annual data, 
since the available survey data only provide households’ inflation expectations 
over the next year (i.e. their forecasts of annual inflation). Given the available 
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dataset, we have roughly 20 annual observations, which are too few for valid 
inference. In addition, we prefer using quarterly data to keep the results 
comparable to those in Carroll (2003, 2006). 
 To derive a testable implication from Equation (3), let us note that under 
the random walk assumption, t,t+4 = t,t+1 + vt+4, where t,t+1  4 t+1 is 
annualized inflation and vt+4 a zero mean i.i.d. shock. Applying a lagged 
forecast operator on both sizes of this equation yields Ft-j t,t+4 = Ft-j t,t+1 for any j
(j = 0,1,2,…). This holds since people believe that future values of vt are 
unforecastable. Furthermore, according to the random walk assumption, people 
also believe that the best predictor for the t + 1 period annualized inflation, Ft-

j t,t+1, is Nt-j[ t-j-1,t-j]. Thus, we have the following empirically testable equation 
for the population mean of inflation expectations, 

[ ] [ ] ( ) [ ] ( ) [ ]( ){ }...11 4,24,14,4, +−+−+= +−+−++ tttttttttttt FFFM πλλπλλπλπ

[ ] ( ) [ ] ( ) [ ]( ){ }...11 2,321,21,1 +−+−+= −−−−−−− ttttttttt NNN πλλπλλπλ

[ ] ( ) [ ]3,11,1 1 +−−− −+= tttttt MN πλπλ ,   (4) 

where Nt[ t-1,t] is the annualized inflation reported in the news media at time t.
Equation (4) predicts the mean inflation expectation of the next year as a 
weighted average of the latest annualized inflation figure and the lagged mean 
inflation expectation. In our paper, annualized inflation is measured as (a 
quarterly mean of) annualized monthly inflation, the figure which the ordinary 
person most probably observes when being influenced by the news media. 

5.2.2 Econometric Approach 

Since the models in Equations (2) and (4) are non-nested, conventional tests 
cannot be used to the test them against each other. We therefore apply posterior 
model probabilities to explore if either of the models (2) or (4) is the true data 
generating process of the public’s inflation expectation formation. 
 Given the data y, and competing models M1,…,MK with parameter vectors 

k, k = 1,…,K, the posterior model probability for model Mk is given by 

( ) ( ) ( )
( ) ( )

=

= K

i ii

kk
k

MpMyp
MpMyp

yMp
1

,   (5) 

where

( ) ( ) ( ) kkkkkk dMpMypMyp θθθ= , ,   (6) 

is the marginal likelihood of model k, p( k|Mk) the prior density of k under 
model Mk, p(y| k, Mk) the likelihood, and p(Mk) the prior probability of Mk. The 
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explored models are standard linear regression models corresponding to 
theoretical models such as specifications (2) and (4). We will assume uniform 
independent prior distributions on given intervals for the regression 
coefficients. For simplicity, we also assume that the error variance  is, a priori, 
distributed uniformly on the interval [0,2]. Furthermore, we give the models 
equal prior probabilities, that is, p(Mk) = 1/K, k = 1,..,K. Given these priors it is 
straightforward to derive analytical solutions for Equations (5) and (6). 
 However, since these uniform priors are not necessarily non-informative, 
we control our results using approximate posterior model probabilities based 
on the Schwarz Bayesian Information Criterion (BIC) (see Schwarz, 1978, and 
Garratt et al., 2007). Specifically, 

( ) ( ) ( )
2

lnlnln pTlMypMyp kBICk
×−≡≈ ,  (7) 

where l denotes the log of the likelihood function evaluated at the maximum 
likelihood estimates, p denotes the number of parameters in the model, and T is 
the sample size. We use the previous marginal likelihood approximation, since 
it selects the same model as BIC, familiar to non-Bayesians. 

5.2.3 Posterior Model probabilities 

We estimate Equations (2) and (4) using a monthly survey of inflation 
expectations of approximately 500 households, conducted by the Survey 
Research Center (SRC) at the University of Michigan, and the mean four-
quarter inflation forecast from the Survey of Professional Forecasters6 (SPF) as 
proxies for households’ expectations and the newspaper forecast, respectively. 
The quarterly average series of annualized monthly inflation is based on 
seasonally adjusted real-time CPI (for all urban consumers) data7. The sample 
period ranges from 1981/3 to 2001/4, for which all the series are available. 
Specifically, we run the following regressions, 

[ ] [ ] [ ] tttttttttt MNM ,13,112,114, επαπαπ ++= +−−−+ ,   (8) 

[ ] [ ] [ ] tttttt
f

tttt MNM ,23,1144,34, επαπαπ ++= +−−++ ,  (9) 

where 1,t and 2,t are assumed to be zero mean normally distributed errors with 
variances 12 and 22, respectively. We refer to Equations (8) and (9) as models 
M1 (naïve model) and M2 (Carroll’s model), respectively. In these models 1 + 2

and 3 + 4 are set at unity, since we are interested in situations where the 
epidemiology model can be treated as a structural description of the true 

                                                
6  Data set is compiled by the Federal Reserve Bank of Philadelphia and is available at 

http://www.phil.frb.org/econ 
7  Data set is available at http://econweb.rutgers.edu/nswanson/realtime.htm
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process of the public’s inflation expectations formation. We assume for the 1

and 3 uniform independent prior distributions on the interval [0,1]. 
 The upper panel of Table 1 gives the summary statistics for the models M1

and M2. According to the posterior model probabilities, there is a strong 
support in the data for model M1. Specifically, the posterior probability of the 
naïve sticky information model being the true model exceeds 99.9 percent. 
Furthermore, the point estimate of 1 (0.18) is of sensible magnitude and in 
accordance with earlier empirical results. Conversely, the data do not lend 
support to model M2; its posterior probability of being the true model is very 
close to zero. 

TABLE 1  Posterior Model Probabilities for Mean Models 

Estimated Models 

Mt[ t,t+4] = 1Nt[ t-1,t] + 2Mt-1[ t-1,t+3] + 1t, and Mt[ t,t+4] = 3Nft[ t,t+4] + 4Mt-1[ t-1,t+3] + 2t
____________________________________________________________________________________________________________________________ 

Estimates and Posterior Model Probabilities
Models 1 2  3  4 p(Mk|y) pBIC(Mk|y)

M1 0.18 
(0.02) 

0.82 
(0.02) 

- - 99.993% 99.997% 

M2 - - 0.35 
(0.07) 

0.65 
(0.07)

0.006% 0.002% 

Estimated Model 

Mt[ t,t+4] = 5Nft[ t,t+4] + 6Mt-1[ t-1,t+3] + 7Nt[ t-4,t] + 3t

Estimates and Posterior Model probabilities
Models 5 6  7 p(Mk|y) pBIC(Mk|y)

M3 0.45 
(0.09)

0.64 
(0.07)

-0.09 
(0.07)

0.001% 0.001% 

M4 0.54 
(0.11)

0.54 
(0.09)

-0.05 
(0.07)

0.000% 0.000% 

____________________________________________________________________________________________________________________________ 

All Equations are estimated over the period 1981:3 to 2001:4 for which real-time inflation, 
Michigan and SPF expectations series are available. Posterior standard errors (in 
parenthesis). There is no evidence of serial correlation or heteroscedasticity in the residuals 
of any reported regression. 

Carroll (2003) suggests expanding model (9) to include the recently published 
annual inflation to test for the possibility that (a fraction of) individuals form 
their own forecast, the ‘adaptive expectations’ model, rather than use the 
forward-looking newspaper forecast. Using real-time CPI data, we therefore 
run the following regression 

[ ] [ ] [ ] [ ] ttttttttt
f

tttt NMNM 3,473,1164,54, επαπαπαπ +++= −+−−++ ,  (10) 

where Nt[ t-4,t] is the annual inflation reported in the news media at time t. We 
estimate this model with and without the constraint 5 + 6 + 7 = 1 and refer to 
these models as M3 and M4, respectively. We assume for the 5 and 6 uniform 
independent prior distributions on the interval [0,1] and for the 7 on [–1,1]. The 
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results presented in the lower panel of Table 1 provide strong evidence against 
the adaptive expectations model. The posterior probabilities of the models M3

and M4 are virtually zero. Furthermore, the estimated coefficients of annual 
inflation are negative, which is counterintuitive, but their posterior intervals 
include zero. Carroll (2003), in contrast, obtained negative and statistically 
significant estimates. The fact that our results deviate from his probably follows 
from the differences in the data: we used real-time inflation figures, while he 
uses final vintage data. Finally, including a constant in the previous regressions 
does not alter the qualitative results. We will not present such results here, 
since, according to Carroll (2003), the presence of a positive constant term could 
reflect the effect of social transmission of inflation expectations (e.g. 
conversations with neighbors), in addition to the news-media channel explored 
in our paper. 
 In sum, these results are quite impressive in supporting the naïve sticky 
information model. However, there is likely to be heterogeneity in households’ 
expectations that cannot be captured by the model. We will therefore, in the 
next section, estimate an agent-based version of the naïve sticky information 
model, where each individual has his own constant newspaper-reading 
propensity  and a fraction of population are allowed to round their inflation 
forecasts to the closest 0%, 5%, 10% or 15%. 

5.3 An Agent-Based Epidemiology Model 

In this section we provide a relatively simple adaptation of an agent-based 
epidemiology model. We estimate it using classified household-level survey 
data of approximately 500 households, constructed by the Survey Research 
Center (SRC) at the University of Michigan. We use a quarterly dataset from 
1981/3 to 2001/4 to keep results comparable to those presented in the previous 
section and in Carroll (2003, 2006). Furthermore, this dataset is easily available 
for the public. In it, the inflation expectation of each household is classified into 
one of seven categories. 

5.3.1 The Model 

Inspired by the preliminary results presented in the previous section, we 
estimate an agent-based version of the epidemiological model, where, in any 
given period t, each agent faces a constant personal probability i (i = 1,…,P,
where P is the size of population) of reading a newspaper article on the latest 
inflation figure. If he does not encounter such an article, his probability to use 
the views of period t – 1 about inflation is (1– i) i. Generally, the probability 
that he uses the newspaper view of period t – j + 1 in period t is 

( ) ( ) 11| −−= j
iiijp λλλ , j = 1, 2,…  (11) 
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This is the probability function of the geometric distribution and we can easily 
compute an individual’s j with given i. In the population level we need to 
choose a proper probability density function (p.d.f.) for individuals’ i. The beta 
distribution is a natural candidate for this purpose, since it is very flexible and 
assumes various shapes with different parameter values of  and . Thus, we 
assume that across agents the p.d.f of  is 

( ) ( ) ( ) 11 1
,

1 −− −= βα λλ
βα

λ
B

p , > 0, > 0,  (12) 

where ( ) ( ) ( ) ( )βαβαβα +ΓΓΓ= /,B  is the beta function and ( )⋅Γ  is the gamma 
function. The density (12) indicates that the higher the values of  and , the 
more homogenous are agents’ updating probabilities. Note also that functions  
(11) and (12) form the basis of the likelihood of the agent based naïve sticky 
information model. 
 Combining functions (11) and (12) yields the following joint density 
function for j and agents’ updating probabilities :
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Integrating over all agents’ updating probabilities , in turn, yields the following 
marginal probability function for j,
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Thus, p(j) gives the probability of a randomly picked agent using the newspaper 
inflation view of period t – j + 1 when forming his expectation at time t,
assuming that  follows the beta distribution in population level. Note that Eq. 
(14) is not in the form of any standard probability mass function. However, we 
can use numerical methods (classical or Bayesian) to estimate the mean, E( ) = 

, and the variance, ( ) 2
λσλ =Var , of all agents’ updating probabilities , using 

the properties of the beta distribution. That is, according to the beta 
distribution, the parameters  and  can be solved as functions of  and 2 as 
follows:  = 2(1 – )/ 2 –  and  = (1/  – 1). 
 To complete the model we assume that each survey respondent reports 

[ ] 41,14, ++−−+−+ += tjtjtjt
e

tt N εππ ,   (15) 
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where his j takes values from 1 to K (we have truncated the distribution in 
Equation 14 such that K = 28), and t+4 is a normally distributed error term with 
mean zero and variance 2. In Eq. (15) we assume that, after observing the 
newspaper article on inflation, an individual makes adjustments to the data and 
reports the figure that corresponds to his perception of future inflation. This is 
the standard modeling approach in the RHE literature where the stochastic 
terms t are interpreted as individual idiosyncratic shocks representing 
unobserved heterogeneity, i.e. heterogeneity in individuals’ expectations which 
underlying model can not explain (see Branch, 2007, for discussion and 
references therein). 
 Given Equations (14) and (15) and the classified household-level survey 
data, the likelihood function for the sample of T×C observations, n = (n11, n12,…,
nTC) ,  can be written as 

( ) ( )[ ]∏∏
= =

=
T

lt

C

c

n
t

tccPnL
1

;; θθ ,    (16) 

where  = ( , , q, )  is the vector of parameters, ntc the number of individuals 
in class c at time t, and Pt(c; ) the probability that an individual belong the class 
c at time t. The classes of individuals’ inflation expectations, c = 1,…,7, are 
defined as follows:  1 = –0%, 2 = 1–2%, 3 = 3–4%, 4 = 5%, 5 = 6–9%, 6 = 10–14%, 
7 = 15%+. The probabilities Pt(c; ) are given by
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where
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As we can see, the probability Pt(c; ) is calculated by integrating the conditional 
probability density ( )kjp e

tt =+4,π  over the interval of class c and summing over 
the possible updating intervals k = 1,…,K. After observing actual household 
level survey data, we have also allowed for the possibility that a fraction q of 
the total population round their inflation expectations to the closest 0%, 5%, 
10%, or 15%. This kind of behavior may be typical of those agents who have no 
special interest in the economy (see, e.g., Bryan and Palmqvist, 2004). Note that 
the extreme of q = 0 corresponds to the situation where there is no such 
behavior in the population. 

5.3.2 Results 

We will estimate the previous model using Bayesian methods. The starting 
point of the Bayesian analysis is to determine the prior density function of the 
parameters, p( ), which together with the likelihood function (16) yields the 
posterior density 

( ) ( ) ( )
( ) ( )=

θθθ
θθθ

dnLp
nLpnq

;
; .    (18) 

The prior density reflects the researcher’s prior beliefs concerning plausible 
parameter values. Table 2 lists the marginal prior distributions of the 
parameters. A standard assumption on prior independence is used (see e.g. 
Zellner, 1971). Reported marginal priors reflect the following parameter 
constraints, 0 <  < 1, 0 < q < 1, 0 < , and 0 < . The prior mean of  is set at 
0.25, which is a common result in previous studies. The prior mean of  is set at 
0.06, indicating moderate variation in individuals updating probabilities (see 
Carroll, 2006). We have not a clear idea about the value of q, hence the uniform 
prior (Beta(1,1)) is entitled in this case. Furthermore, the prior mean of  is set at 
5, slightly below the estimate of Branch (2007). Finally, with given prior 
variances, these marginal prior distributions turned out to be practically 
noninformative. 
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TABLE 2 Priors and Posteriors for Agent-Based Epidemiology Models 

The Likelihood 

( ) ( )[ ]∏∏
= =

=
T
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c

n
t

tccPnL
1

;; θθ

________________________________________________________________________________________________________________________________

 Prior Distributions Posterior Distr.  
Model (17) 

Posterior Distr.  
Model (19) 

___________________________________________________________________________________________________________________ 

 Distr. Mean St.Dev. Median St.Dev. Median St.Dev. 
___________________________________________________________________________________________________________________

1981/3-2001/4 
___________________________________________________________________________________________________________________

Beta 0.25 0.38 0.379 0.006 0.378 0.005 
Invgamma 0.06 0.19 0.116 0.004 0.099 0.004 
Invgamma 5.00 11.00 4.337 0.014 2.171 0.027 

q Beta 0.50 0.38 0.217 0.002 0.207 0.002 
a Gamma 1.00 1.00 - - 0.548 0.012 
 0 - - - - - 1.607 0.017 

p(Mk|y)    0.000 1.000 
___________________________________________________________________________________________________________________

1984/1-2001/4 
___________________________________________________________________________________________________________________

Beta 0.25 0.38 0.193 0.002 0.220 0.005 
Invgamma 0.06 0.19 0.008 0.002 0.024 0.007 
Invgamma 5.00 11.00 3.876 0.015 1.295 0.020 

q Beta 0.50 0.38 0.208 0.002 0.204 0.002 
a Gamma 1.00 1.00 - - 0.669 0.019 
 0 - - - - - 1.061 0.021 

p(Mk|y)    0.000 1.000 
________________________________________________________________________________________________________________________________

We set K at 28 (i.e. seven years) to have a sufficiently good approximation for Equation (14). The 
results of the regressions with shorter and longer lag lengths are quite similar. The inflation data 
before 1978:2 were based on the quarterly means of monthly inflation of the lagged CPI series 
(lagged by one month), which was acquired from Norman R. Swanson’s home page. 

The estimation results of model (17) are reported in Table 2.8 As can be seen, the 
median of the updating probability,  = 0.38, is higher than the point estimates 
of  reported in Table 1, but it is in accordance with previous studies. The 
truncation of Equation (14) is most likely the reason for the difference between  

8 We used the Metropolis algorithm to generate a Monte Carlo sample from the posteriors. 
The algorithm uses the multivariate normal distribution for the jump distribution on 
changes in the parameters . The inverse of the Hessian of the log posterior density at the 
posterior mode, scaled by the factor 2.42/4 (2.42/5), is used to obtain an optimal 
covariance matrix of the multivariate normal jump distribution; see e.g. Gelman et al. 
(2004). We use 10,000 draws, discarding the first 2,000 as a burn-in period. As a 
convergence check, three chains with different randomly selected starting values are 
simulated. The potential scale reduction factor of Gelman and Rubin (1992) was between 
1 and 1.04 for each parameter. The multivariate version of Gelman and Rubin's 
diagnostic, proposed by Brooks and Gelman (1997), were between 1.00 – 1.01 for each 
model. Finally, the frequency of accepted jumps was roughly 0.28.
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the results. For comparison, we also estimated a truncated version of Equation 
(4) with K = 28,9 based on Michigan mean expectations and obtained an 
estimate of  quite close to that obtained for model (17).10

 The median of the standard deviation of  is estimated to be 0.12, 
indicating strong heterogeneity in agents’ newspaper reading habits. The 
updating probability  varies from 0.11 to 0.71 among agents according to our 
simulation experiment (not reported here)11. This strong variation in their 
newspaper reading propensities could explain the differences in survey 
expectations across demographic groups, documented in Bryan and Venkatu 
(2001a, b) and Souleles (2004). Furthermore, roughly 1/5 (q = 0.22) of the 
population round their inflation forecasts to the closest 0%, 5%, 10% or 15%. 
This result is consistent with the shape of the empirical distribution of 
individual level data. The standard deviation of idiosyncratic shocks, , is 
estimated to be 4.3. 
 According to specification (17), a typical person is able to remember past 
inflation figures correctly. We are, however, rather skeptical about this, as it 
seem more likely that individuals’ ability to remember the contents of news 
articles decreases over time. To allow for this, we assume a very simple linear 
model for the error variance, related to recalling the newspaper figure. 
Specifically, the variance in (17) is parametrized as 2(j) = 2 (3 (j – 1) + a) and, 
thus, increases by 2 every month. Furthermore, we can interpret a22

0 σσ ≡  as 
the variance in individuals’ expectations not explained by the memory 
weakening process. With time-varying variance, model (17) can be written in 
the form 
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The results in Table 2 lend strong support to the specification (19). In particular, 
the probability of the time-varying variance model being the true model is 
virtually one.12 Furthermore, the results concerning the median value of  and 
the heterogeneity of  between agents are close to those obtained for model (17). 
This model can explain agents’ overall heterogeneity fairly well, in the sense 
that the standard deviation of unexplained heterogeneity ( 0  1.6) is small 

9  The results of the regressions with shorter and longer lag lengths are quite similar. 
10  We also estimated model (17) with the SPF series and found the estimate of the 

updating probability to be very high (  1). The probabilities  were also very 
homogenous ( was close to zero). When estimating a truncated version of Equation 
(2) based on Michigan and SPF mean expectations, an estimate of  close to 1 was also 
obtained. These implausibly high estimates lend support to the naïve sticky 
information model. 

11  The updating frequencies i are simulated from the beta distribution (12), given the 
posterior means of  and  (the size of the population P = 1500). 

12  The marginal likelihoods are estimated from the simulated posterior samples using 
the reciprocal importance estimator (see Gelfand and Dey, 1994) with a truncated 
multivariate normal importance density proposed by Geweke (1999).
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relative to the high degree of heterogeneity observed in the actual data. 
According to our simulation experiment (not reported) this model can easily 
explain the long tails observed in individual level data. In Branch’s (2007) RHE 
sticky information model, unexplained heterogeneity explains these long tails. 
In particular, the empirical standard deviation of Branch’s (2007) sample was 
12.7010. However, according to Branch (2007), the large empirical standard 
deviation is accounted for by a few outliers with expected inflation to be greater 
than 40%. Since his estimate for the standard deviation of unexplained 
heterogeneity was 6, we state that most variation in agents’ expectations is in 
his model attributed to unexplained heterogeneity. 

Since the forecasts based on standard econometric methods have not on 
average been better than the naïve forecast since 1984 (see Atkeson and 
Ohanian, 2001), we may expect that a fraction of individuals have used 
newspaper forecasts before that date. This might disturb the previous results. 
Therefore, the results should be checked using a post 1984 sample. Table 2 
shows the estimation results of a sample from 1984/1 to 2001/4. The median 
estimate of  is now close to the estimate of the corresponding parameter in the 
model of Section 2.4 (0.18), which is quite good news for the naïve sticky 
information model. The heterogeneity of  between agents (  = 0.024), obtained 
for model (19), is lower than that obtained for the full sample, but markedly 
higher than that obtained for the constant variance model (  = 0.008). In this 
sample, the updating probability  varies from 0.15 to 0.31 among agents 
according to our simulation experiment (not reported), indicating a moderate 
degree of heterogeneity. This evidence is in accordance with the ‘implicit’ 
evidence of Carroll (2006). Finally, the standard deviation of unobserved (or 
unexplained) heterogeneity between individuals ( 0  1.1) is close to that 
obtained for the full sample and indicates that an agent-based naïve sticky 
information model does a fairly good job in capturing the heterogeneity in 
individuals’ expectations. 

5.4  Conclusion 

Mankiw and Reis (2002) have proposed sticky information as an alternative to 
the sticky prices of Calvo (1983). Carroll (2003) has provided microfoundations 
for the aggregate inflation expectations equation of Mankiw and Reis (2002). 
The model presented in this paper can be interpreted as an extension of 
Carroll’s (2003) model. We have proposed that agents, when forming their 
inflation expectations, adopt the past release of annualized monthly inflation 
with certain probability rather than the forward-looking newspaper forecast as 
suggested in Carroll (2003). The model is motivated by recent empirical work, 
which has cast doubt on the reliability of professionals’ inflation forecasts, and, 
in general, on traditional approaches to inflation forecasting. We have shown 
that this simple model is able to fit the inflation expectations data of the 
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Michigan survey very well. In particular, the model can capture not only 
aggregate inflation expectations, but also the observed heterogeneity in 
households’ expectations. The latter finding is based on a relatively simple 
adaptation, which we have derived in this study for Carroll’s (2006) agent-
based epidemiology model. 



109

REFERENCES

Andres, J., Lopez-Salido, D. and Nelson, E., 2005. Stick-Price Models and the 
Natural Rate Hypothesis. Journal of Monetary Economics 52, 1025-1053. 

Atkeson, A. and Ohanian, L.E., 2001. Are Phillips curves useful for forecasting 
inflation?. Quarterly Review Federal Reserve Bank of Minneapolis 25, 2-11.

Branch, W.A., 2004. The theory of rationally heterogeneous expectations: 
evidence from survey data on inflation expectations. Economic Journal 114, 592-
621.

Branch, W.A., 2007. Sticky information and model uncertainty in survey data on 
inflation expectations. Journal of Economic Dynamics and Control 31, 245-276. 

Brave, S. and Fisher, J.D., 2004. In search of a robust inflation forecast. Economic 
Perspectives 28, 12–31.

Brooks, S.P. and Gelman, A., 1997. General methods for monitoring 
convergence of iterative simulations. Journal of Computational and Graphical 
Statistics 7, 434-455. 

Bryan, M. and Palmqvist, S., 2004. Testing near-rationality using survey data. 
Sveriges Riksbank Working Paper No. 183.

Bryan, M. and Venkatu, G., 2001a. The demographics of inflation opinion 
surveys. Economic Commentary, Federal Reserve Bank of Cleveland. 

Bryan, M. and Venkatu, G., 2001b. The curiously different inflation perspectives 
of men and women. Economic Commentary, Federal Reserve Bank of 
Cleveland.

Calvo, G., 1983. Staggered Prices in a Utility Maximizing Framework. Journal of 
Monetary Economics 12, 383–98. 

Carroll, C.D., 2003. Macroeconomic Expectations of Households and 
Professional Forecasters. Quarterly Journal of Economics 118, 269-298. 

Carroll, C.D., 2006. The Epidemiology of Macroeconomic Expectations, in: 
Blume, L., Durlauf, S. (Eds.), The Economy as an Evolving Complex System, III, 
Oxford University Press. 

Coibion, O., 2006. Inflation Inertia in Sticky Information Models. Contributions 
In Macroeconomics 6, Iss. 1, Article 1. 



110

Coibion, O., 2007. Testing the Sticky Information Phillips Curve. Manuscript. 

Doepke, J., Dovern, J., Fritsche, U. and Slacalek, J., 2008. The Dynamics of 
European Inflation Expectations. The B.E. Journal of Macroeconomics 8, Iss. 1 
(Topics), Article 12. 

Evans, G.W. and Honkapohja, S., 2001. Learning and Expectations in 
Macroeconomics. Princeton University Press, Princeton, NJ. 

Fisher, J.D., Liu, C. and Zhou, R., 2002. When can we forecast inflation?. 
Economic Perspectives, Federal Reserve Bank of Chicago, First Quarter, 30–42. 

Garratt, A., Koop, G., Mise, E. and Vahey, S.P., 2007. Real-time Prediction with 
UK Monetary Aggregates in the Presence of Model Uncertainty. Birkbeck 
Working Papers in Economics and Finance, No 714. 

Gelfand, A. and Dey, D., 1994. Bayesian model choice: Asymptotic and exact 
calculations. Journal of Royal Statistical Society Ser. B 56, 501 – 514. 

Gelman, A and Rubin, D.B., 1992. Inference from iterative simulation using 
multiple sequences. Statistical Science 7, 457 – 472. 

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B., 2004. Bayesian Data 
Analysis 2nd edition. Chapman & Hall/CRC, Boca Raton. 

Geweke, J., 1999. Using Simulation Methods for Bayesian Econometric Models: 
Inference, Development and Communication. Econometric Reviews 18, 1-126. 

Khan, H. and Zhu, Z., 2006. Estimates of the Sticky-Information Phillips Curve 
for the United States. Journal of Money, Credit and Banking 38, 195-207. 

Kiley, M.T., 2007. A Quantitative Comparison of Sticky-Price and Sticky-
Information Models of Price Setting. Journal of Money, Credit and Banking 39, 101-
125.

Mankiw, N.G. and Reis R., 2002. Sticky Information Versus Sticky Prices: A 
Proposal to Replace the New Keynesian Phillips Curve. Quarterly Journal of 
Economics 117, 1295-1328. 

Mankiw, N.G. and Reis R., 2006. Pervasive Stickiness. American Economic Review 
Papers and Proceedings 96, 164-169. 

Mankiw, N.G. and Reis R., 2007. Sticky Information in General Equilibrium. 
Journal of the European Economic Association 5, 603-613. 



111

Mankiw, N.G. and Reis, R., Wolfers, J., 2003. Disagreement about inflation 
expectations. in: Gertler, M., Rogoff, K. (Eds.). NBER Macroeconomics Annual 
2003.

Reis, R., 2006a. Inattentive Consumers. Journal of Monetary Economics 53, 1761-
1800.

Reis, R., 2006b. Inattentive Producers. Review of Economic Studies 73, 793–821. 

Schwarz, G., 1978. Estimating the dimension of a model. Annals of Statistics 6, 
461-464.

Shiller, R.J., 1997. Why Do People Dislike Inflation. in: Romer, C.D., Romer, 
D.H. (Eds.), Reducing Inflation: Motivation and Strategy, Chicago: University of 
Chicago Press. 

Sims, C., 2002. The role of models and probabilities in the monetary policy 
process. Brookings Papers on Economic Activity 2, 1–62. 

Sims, C.A., 2006. Rational Inattention: A Research Agenda. Manuscript. 

Souleles, N.S., 2004. Expectations, Heterogeneous Forecast Errors, And 
Consumption: Micro Evidence Form The Michigan Consumer Sentiment 
Surveys. Journal of Money, Credit and Banking 36, 39-72. 

Stock, J.H. and Watson, M., 2002. Macroeconomic forecasting using diffusion 
indexes. Journal of Business and Economic Statistics 20, 147–162.

Stock, J.H. and Watson, M., 2007. Why Has U.S. Inflation Become Harder to 
Forecasts?. Journal of Money, Credit and Banking 39, 3–33.

Trabandt, M., 2007. Sticky Information vs. Sticky Prices: A Horse Race in a 
DSGE Framework. Kiel Working Papers No. 1369. 

Zellner, A., 1971. An Introduction to Bayesian Inference in Econometrics. J. 
Wiley and Sons, Inc., New York. 



6  ESSAY 5: AGGREGATE INFRASTRUCTURE 
CAPITAL STOCK AND LONG-RUN GROWTH: 
EVIDENCE FROM FINNISH DATA1

ABSTRACT

In this paper, the Bayesian structural vector autoregressive model and the 
Finnish aggregate infrastructure capital series from 1860 to 2003 are used to 
explore how government infrastructure policy affects long-run output growth. 
We use Finnish data, since to our knowledge the Finnish land and water 
construction investments series is the best available sufficiently long time series 
on aggregate infrastructure investments. We find strong and robust support in 
the Finnish data to indicate that permanent changes in government 
infrastructure policy can have permanent effects on the growth rate of output. 

Keywords: aggregate infrastructure capital stock, Bayesian SVAR, long-run output 
growth

1  The first draft of this paper has been published in the University of Jyväskylä 
Working Paper Series No. 306 (2006). 
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6.1  Introduction 

There is a growing body of research exploring how government policies 
influence long-run output growth2. Exogenous and endogenous growth 
theories give substantially different predictions on this relationship. The 
conventional wisdom of the exogenous neoclassical model has been that 
government actions can have an effect on the income level but only a temporal 
effect on the growth rate, while the endogenous growth theory predicts that 
permanent changes in government policy, e.g. investments in infrastructure 
capital or human capital, can also have a permanent effect on the growth rate of 
output.
 It would appear that the relationship between public expenditure and 
output growth is relatively complex, suggesting that it is necessary to 
differentiate among the various components of governmental expenditure (see 
e.g. Fölster and Henrekson, 1999). For example, productive public expenditure 
in the areas of infrastructure and human capital are typically less than one fifth 
of the total public expenditure in OECD countries. In other words, more than 80 
percent of public expenditure consists of expenditure which is claimed to have 
no positive growth effects. It is also important to note that public investment, 
which is generally used to construct the public capital stock, does not fully 
correspond to the concept of infrastructure. For example, telecommunications, 
electricity and water inputs used in the production process of nearly every 
sector are typically produced by private firms. 
 In this paper, we use the Finnish land and water construction investment 
series3 from 1860 to 2003 to construct the long-run aggregate infrastructure 
capital series. This capital series covers all important factors of infrastructure 
investments in Finland during that period. To our knowledge, this is the first 
study on the dynamic effect of infrastructure to use a ‘proper’ approximation of 
aggregate infrastructure capital stock4. The choice of infrastructure series is, 
however, particularly important, since only about half of Finnish infrastructure 
investments were made by the public sector. This suggests that public capital 
stock may be a very poor guide to the amount of infrastructure capital 

2  See for example: Jones (1995), Kocherlakota and Yi (1997), Canning and Pedroni 
(1999), Kneller et al. (1999), Karras (1999), Bleaney et al. (2001), Romero de Avila and 
Strauch (2003), Kamps (2008), Perotti (2005), and Fedderke et al. (2006). See also the 
survey by Romp and de Haan (2007) and references therein. 

3  A full description of the elements in the land and water construction investments 
series can be found at 

 http://www.stat.fi/tk/tt/luokitukset/toimiala_00_index.html. The source of the 
series is Statistics Finland. 

4  The reader should note that since Aschauer (1989), a wide range of studies have 
addressed the question of the significance of the effect of infrastructural investment 
on aggregate output. This literature is reviewed in the World Bank’s World 
Development Report (1994); see also the surveys by Boarnet (1995), Garcia-Mila et al. 
(1996), and Fernald (1999). However, these studies (to our knowledge) have used 
some subcomponent of aggregate infrastructure stock and/or public capital as an 
approximation for aggregate infrastructure stock. 
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produced. We decided to use Finnish data, since to our knowledge the Finnish 
land and water construction investments series is the best available sufficiently 
long time series on aggregate infrastructure investments. Furthermore, Finland 
had the highest growth rate in GDP per capita in Europe in the 20th century. 
During this period it also developed from a relatively backward agricultural 
society to a modern post-industrial state. It is thus important to learn something 
about this ‘miraculous’ growth process5 (see further discussion on the special 
features of the Finnish economy in Jalava et al., 2006).
 In the estimation, we used the Bayesian structural vector autoregressive 
(SVAR) model and identified it using a Barro (1990) type growth model. As 
opposed to the rest of the VAR studies on the dynamic effect of infrastructure 
(public) capital, which have based their analyses on impulse responses6, we use 
the SVAR model to obtain a consistent parameter estimate for the long-run 
multiplier of output w.r.t. aggregate infrastructure capital. 
 Our analysis is close to that of Kocherlakota and Yi (1997); however, using 
the SVAR model rather than the Distributed-Lag approach gives us some 
advantages. Firstly, when we analyse a country where public infrastructure 
investments are typically less than 5% of total public expenditures (as is typical 
in OECD countries), we should not include a tax variable, but instead a private 
capital variable in the regression. If we estimate the model with infrastructure 
capital and the tax variable on the right-hand side, as is typical in a distributed-
lag approach, only the revenue part of the government’s budget is controlled. 
This biases the result towards exogenous growth. However, including a private 
capital variable allows us to control the effect of the agents’ decisions on the 
allocation of investment between the infrastructure and other forms of capital. 
Thus, the advantage of the VAR approach is that all endogenous variables are 
explicitly included in the analysis. Secondly, unlike the distributed-lag 
approach, the VAR approach makes no specific assumptions as to the form of 
long-run relations between ‘private’ capital, infrastructure capital, and output. 
The assumption that there is a one-to-one relationship between infrastructure 
capital and output severely restricts the dynamics of the distributed-lag model. 
Thirdly, the VAR approach gives us a natural means of control for the influence 
of business cycles due to lagged output variables. Even if we can add a capacity 
utilisation rate to the distributed-lag regression to control for the influence of 
business cycles, there are problems in finding theoretical justification for this. 

5  We are aware of certain specific problems, e.g. the effects of World War II and the 
slowdown years 1990-1993, in the regression analysis with long-run Finnish growth 
data. In this paper we use different sets of dummies to control the effects of unique 
shocks and find that the results with and without these dummies are fairly similar. 
This is not surprising since the use of long enough time series (100-140 years) should 
reduce the effect of unique shocks (and business cycles) in the regression. Finally, 
because there may be problems with using monetary values to calculate the 
infrastructure capital stock, we also run regressions using the kilometres of paved 
roads (see e.g. Pritchett, 1996, and Canning and Pedroni, 1999). We use the transport 
sector here in view of the reported importance of the highway infrastructure and the 
transport infrastructure in general (see e.g. Fernald, 1999).

6  See Kamps (2008) and Romp and de Haan (2007) for further discussion of VAR 
 studies of public capital. 
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 New empirical evidences presented in this paper are based on posterior 
analysis, since it allows us to draw an exact inference on the parameters with 
near non-stationary data7. When we estimate the SVAR model on the dynamic 
effect of infrastructure, we find strong support in the Finnish data for 
endogenous growth. However, failing to include a private capital variable in 
the regression biases the result towards exogenous growth. 
 The paper is organised as follows: Chapter 2 presents the Barro (1990) type 
growth model and the joint posterior p.d.f. of estimated parameters. Chapter 3 
presents the data and results. Chapter 4 gives concluding remarks. 

6.2  Estimated Model 

Here we briefly review the simple stylised growth model initially developed by 
Barro (1990) and ‘evolved’ by Kocherlakota and Yi (1997) and Canning and 
Pedroni (1999), among others. In this model, aggregate production Yt depends 
on aggregate infrastructure capital stock Gt-1 accumulated through the end of 
period t-1, other forms of capital Kt-1 accumulated through the end of period t-1,
and the level of technology At. The log of the production function takes the 
form

tttt agky +⋅+⋅= −− 11 βα ,    (1) 

where, from now on, lowercase letters refer to logs. As Kocherlakota and Yi 
(1997) argue, it is easy to modify the above technology to include labour, 
inelastically supplied, without changing any results derived from the 
underlying model. The production technology of Equation (1) is, however, fully 
appropriate for our purpose8. We assume that the log level of technology 
follows a stochastic exogenous process ttt aaa ηρ +⋅+= −1 , where the error term 

t can be broadly interpreted as i.i.d. technology shock. ‘Private’ capital and 
infrastructure capital accumulates according to the following technologies: 

( ) ttt ikbk ⋅+−+= − δδ 11  and   (2) 

( ) gttggt igbg ⋅+−+= − δδ 11 ,   (3) 

where  and g are the depreciation rates and It and Igt are the aggregate 
investments on ‘private’ capital and infrastructure capital, respectively. As in 
Canning and Pedroni (1999), it is irrelevant for our purposes whether we think 

7    See e.g. Sims and Uhlig (1991), Sims and Zha (1999), and Bauwens, Lubrano and 
 Richard (1999: 136) for a discussion of posterior analysis of near non-stationary data. 
8  Moreover, as our sensitive analysis shows, omitting labour from our empirical 

analysis has no influence on the estimation results. 
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of the decision on how much to invest in infrastructure as being made by the 
public sector and financed out of taxes, or whether it is being made by the 
private sector as a decision on the allocation of investment between different 
sectors. However, we assume for simplicity that the proportion of investment 
going to infrastructure investment (0 < t < 1) follows a stochastic exogenous 
process tt v+= ττ , where vt is a zero mean stationary i.i.d. series which can be 
broadly interpreted as a shock to infrastructure investments. 
 The agent can use ‘after-tax’ output to consume or invest in ‘private’ 
capital, suggesting that 

( ) tttt YIC τ−=+ 1 .    (4) 

Finally, a representative agent seeks to maximise the following periodic utility 
function:

( )
∞

=1
0 ln

t
t

t
c CE ρ .    (5) 

In what follows, the representative agent takes the processes 
generating{ }1,, −ttt GA τ as given and chooses C and I to maximise Equation (5), 
subject to constraints 1, 2, 4 and a requirement that capital be non-negative in 
each period. The derivations of the optimal path of ‘private’ capital can be 
found in Kocherlakota and Yi (1997; 253-255). They show that there exists the 
constant S = c /(1– c(1– )) such that if 

( ) ttt YSI τ−= 1  and    (6) 

( )( ) ttt YSC τ−−= 11 ,    (7) 

then the individual’s intertemporal Euler equation and transversality condition 
are satisfied. 
 Equations (1)-(3) and (6)-(7) together with the exogenous processes of at

and t, the infrastructure investment relationship 

ttgt YI τ= ,     (8) 

and the initial values of K and G form the solution to the model. To characterise 
the dynamics of the economy we use (6) to write the capital accumulation 
equation (2) in the form 

( ) ( )tttt vykbk −−+⋅+⋅−+= − τδδδ 1log1 1 ,  (9) 
⇔

( ) ( )tttt vkbyk −−+Δ−−=− −− τδδδ 1log1 11 ,
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where  is the difference operator and sbb ⋅+= δ . Given (8), the infrastructure 
accumulation equation (3) follows 

( ) ( )tgtgtggt vygbg ++⋅+−+= − τδδδ log1 1 ,  (10) 
⇔

( ) ( )ttggggtt vgbyg ++Δ−−=− −− τδδδ log1 11 .
 Substituting (9) and (10) in the production function equation (1), we have 

( ) ( ) ( ) ttttttt agkvvyy +Δ+Δ+++−−+++= −−−−− 111110 log1log βα φφτβταβαφ ,(11)

where 11
0

−− += ggbb δβδαφ , ( ) 11 −−−= δδαφα , and ( ) 11 −−−= gg δδβφβ .

We follow Canning and Pedroni (1999) and assume that one of the following 
two mechanisms determines the balanced growth path of our economy where 
all endogenous variables grow at the same constant growth rate, i.e. variables 
have a unit root and are co-integrated. 
 Firstly, let us suppose that  +  < 1 and assume that infrastructure capital 
and ‘private’ capital have a unit root. Then, as long as technology grows at a 
constant rate (i.e.  = 1), aggregate output will have a constant exogenous growth 
rate in the balanced growth path. This occurs, since all terms in Equation (11) 
are stationary except log output yt and log productivity at. Moreover, because 
exogenous technological progress is the driving force of the economy, shocks to 
infrastructure investments have no long-run effects on the level of output. 
According to Equations (9) and (10), infrastructure capital and ‘private’ capital 
stocks grow at the same constant rate as output, i.e. variables have a unit root 
and are co-integrated, since gt and kt are stationary, as are the remaining 
terms in the relationships. Finally, given Equations (6)-(8), consumption and 
investments also grow at this constant rate. 
 Let now us suppose that  +  = 1 and assume that infrastructure capital 
and ‘private’ capital have a unit root. Then, under stationary technological 
progress (  < 1), output has a constant endogenous growth rate in the balanced 
growth path. That is, according to Equation (11), permanent changes in the 
proportion of investment going to infrastructure ( ) can have a permanent effect 
on growth rates of output. The sign of this effect may be positive or negative, 
depending on the level of the proportion of investment going to infrastructure. 
Finally, according to Equations (6)-(10), all endogenous variables in the 
economy grow at the same constant rate as output. 
 Thus, in our economy, the key difference between endogenous and 
exogenous growth lies in the values of , , and . We may estimate Equation 
(11) directly using nonlinear regression. Estimates of ,  and , and the analysis 
based on these parameters, are consistent provided that the model is correctly 
specified. However, since this approach may ignore some relevant long-run 
information, we prefer to use a more flexible modelling strategy where long-
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run relationships of key endogenous variables in the model are estimated 
without restrictions. 
 To be more concrete, let us substitute ttt aaa ηρ +⋅+= −1  into Equation (1) 
and define a vector of endogenous variables as xt = (yt kt gt)’. We can then easily 
write the system of equations (1)-(3) and (6)-(8) in the following matrix form: 

tttt exxx +⋅Γ+⋅Γ+=Γ −− 22110 γ ,   (12)  

where the vector of stationary i.i.d. shocks et, parameter vector , and parameter 
matrices 0, 1, and 2 can be written as 

−
−=Γ

10
01
001

0

gδ
δ ,

−
−=Γ

gδ
δ

βαρ

100
0101 ,

−−
=Γ

000
000

0
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ρβρα
, =

gb
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γ ,

( )
( )+

−−=

tg

t

t

t

v
ve

τδ
τδ
η

1 .

Our empirical analysis is based on the above model. We analyse the SVAR 
model of the following form 

=
− ++=

p

i
titit xAaxA

1
0 ε .    (13) 

Equation (13) is of the same form as Equation (12), except that we assume the 
vector of structural errors t to be normally distributed with zero mean and 
diagonal covariance matrix, matrices Ai (i = 0,…,p) to be estimated without any 
restrictions, and the data to be used to estimate proper lag length (p) for the 
model. According to Equation (12), the contemporaneous relation matrix A0

follows

=
10
01
001

0

00

gy

ky

a
aA ,    (14) 

suggesting that A0 is a non-singular matrix such that the model provides a 
complete description of the p.d.f. for the data conditional on the initial 
observations.
 To proceed, we reparametrized the reduced-form version of the SVAR 
model in Equation (13) as follows: 
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−

=
−− +Π+ΔΠ+=Δ

1

1
1

p

i
ttitit uxxx π ,   (15) 

where the reduced-form errors are normally distributed with zero mean and 

( ) 1
0

1
0'

−−Λ=Ω AA     (16) 

covariance matrix. Parameter matrices  and i capture the long-run and short-
run effects, respectively. Even if the unconstrained least squares estimates of 
and i are consistent, and we can draw an exact posterior inference on the 
parameters when some of the series are non-stationary and/or co-integrated9,
the major problem in the analysis of (15) lies in interpreting the long-run 
coefficient in the  matrix. Specifically, the element yg in this  matrix is the 
long-run multiplier of output with respect to aggregate infrastructure capital 
(gt) given that only gt moves contemporaneously following a shock to gt. This 
identifying assumption is fulfilled by the simple theoretical model above. That 
is, given the theory-based restriction on the contemporaneous relation, matrix 
A0, yg is a long-run multiplier in Equation (15). 
 We may alternatively parametrise  as  = ’, where  and  are (m�r)
matrices of rank r, to incorporate rank restrictions in the model of Equation (15) 
(see e.g. Bauwens and Lubrano, 1996). The columns of  correspond to the co-
integrating vectors, and the rows of  to their adjustment coefficient (weights). 
Given that there exists a positive long-run relationship between log output and 
log infrastructure capital, we may basically test whether innovations to 
infrastructure have a long-run effect on the level of output using the estimates 
of the elements of  (see e.g. Canning and Pedroni, 1999). The problem in the 
analysis lies in the possible pseudoidentification of the co-integrating coefficient 
(see e.g. Strachan and Inder, 2004, and Villani, 2005 and 2006). To be more 
concrete, it is only the cointegration space that is identified, not particular 
cointegrating vectors. Moreover,  contains reduced-form coefficients, which 
implies that we cannot fully trust the analysis based on them. 
 Thus, to keep our analysis as simple as possible, we rewrite Equation (15) 
in the following condensed matrix form 

UZBX += ,     (17) 

where the tth rows of the matrices X(T×m), Z(T×k) and U(T×m) are given by 
x’t, (1 x’t-1··· x’t-p+1 x’t-1), and u’t, respectively. Note also that matrix B is 

obtained by stacking ’, i’:s, and ’ (k = 1 + m×p).
 Let the subscript i denote the ith column vector. We can then write the 
equation for variable i in the multivariate regression model (17) as iii uZx += β
(see e.g. Kadiyala and Karlsson, 1997). Given the contemporaneous restrictions 

                                                
9  See e.g. Luetkepohl (1991), Sims et al. (1990), Sims and Uhlig (1991), Sims and Zha 

(1999), and Bauwens et al. (1999: 158-196).
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in matrix A0, the reduced-form equation for output (i = 1) in Equation (17) is 
(after slight reparametrisation) equal to the structural-form equation for output. 
This suggests that we can write the likelihood function for a reparametrised 
version of the structural form equation for output as 

( ) ( ) ( ){ }yyyyy
T

yyyy ZxZxZxL ββλλλβ −−−∝ −− '5.0exp,, 15.0 , (18) 
where we let subscript y denote the first column vector, and the last row of 
vector y is the long-run multiplier of output w.r.t. infrastructure capital ( yg).
With the standard Jeffreys’ prior (Zellner, 1971) 

( ) 5.0, −∝Λ yBp λ ,    (19) 

the joint posterior for parameters is obtained as 

( ) ( ) ( ) ( ){ }yyyyy
T

yyyy ZxZxxZq ββλλλβ −−−∝ −+− '5.0exp,, 115.0 . (20) 

Integrating y out of the joint posterior (20), the marginal posterior of y is a k-
variate Student-t distribution with location parameter vector 

( ) yy xZZZ ''ˆ 1−=β ,    (21) 

 and scale matrix 

( ) ( )( ) 1'
ˆ'ˆ

−

−
−−

ZZ
kT

ZxZx yyyy ββ
.   (22) 

This enables us to make posterior inferences regarding the long-run multiplier 
of output w.r.t. aggregate infrastructure capital ( yg) using standard t-tables (see 
e.g. Zellner, 1971). 

6.3  Data and Estimation Results 

In this section we first describe the data, then continue our analysis of the 
dynamic effect of aggregate infrastructure capital using the distributed-lag 
approach. We show that the distributed-lag approach biases the results in 
favour of exogenous growth. Finally, we present the SVAR results, which 
correct this bias. 
 Our data source is Statistics Finland’s historical series of Finnish national 
accounts. The base year of the non-residential gross domestic product (GDP) 
and investment series is 2000. Using data on gross land and water construction 
investments from 1860-2003, we use the perpetual-inventory method with a 



121

depreciation rate of 1.98 per cent per year (Fernald, 1999, and Boskin et al., 1989, 
use a similar depreciation rate in their roads stock estimates) to estimate 
constant-euro values of the infrastructure stock for each year. Like Fernald 
(1999), we assume that the infrastructure input in a given year depends on the 
stock of infrastructure at the beginning of the year10.

TABLE 1 Augmented Dickey-Fuller Tests and FML-based rank estimates 

Variables ln GDP = y, ln K = k, and ln G = g  
______________________________________________________________________________________________________________________________

Sample
period

ln Variable t-adf FML-based rank estimates (r 
= rank) between y and g (k)

FML-based rank estimates (r 
= rank) between y, k, and g

1860-2003 GDP -2.1485 - - 

1860-2003 ‘Private’ 
Capital

-1.8179 r = 1 - 

1860-2003 Infrastructure 
Capital

-2.0426 r = 1 r = 0 

1948-2003 Paved Roads -1.0148 r = 2 r = 1 

______________________________________________________________________________________________________________________________

Alternative hypothesis is stationary. Trend is included in all regressions. 

In 2000, the value of estimated infrastructure capital stock was about 70 billion 
euro. The shares of traffic investments and the share of traffic, energy and water 
investments were 63% (53% if telecommunications is excluded) and 81% of total 
land and water construction investments on average over the period 1960-2003, 
respectively. Additionally, public investments are about half the total land and 
water construction investments over the given period (all reported shares 
remain relatively constant over time). 
 Figure 1 shows volume indices of gross domestic product (GDP) and the 
land and water investment series over the period 1860-2003. We can see from 
the figure that the marked industrialisation and urbanisation of the Finnish 
economy in the post-war period required (and made possible) high investments 
in infrastructure. Construction of infrastructure capital stock was particularly 
rapid during the period 1946-1970, and slowed down thereafter. 
 To see whether the data confirm the existence of a co-integrating 
relationship between log infrastructure capital, log physical capital and log 
GDP series, we follow Corander and Villani (2004) and compute approximate 
fractional marginal likelihoods (FML) from Equation (15) with different lags, 
ranks and sets of series (xt = (yt kt)’, xt = (yt gt)’, and xt = (yt kt gt)’). Here we use 
classical augmented Dickey-Fuller tests (the ADF test) in the preliminary data 
analysis, since this is readily available and does not require extra programming 
effort.

                                                
10  We estimate non-infrastructure capital stock using a similar method, but using 5% 

depreciation per year. The capital stocks in 1860 are estimated using I(1860)/(g+d)
where I denotes  the investments, g the growth rate of GDP (calculated as the average 
growth rate from 1860 to 1870), and d the depreciation rate. 
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 Table 1 reports estimated ranks and the results from the ADF tests. 
According to the table, all the series are form I(1) processes. We found some 
support in the data for long-run relationships between the infrastructure capital 
and GDP series and between the non-infrastructure capital and GDP series. 
However, estimated relationships are relatively weak, since they seem to vanish 
when both kt and gt variables are included in the regression. 

6.3.1 Distributed-Lag Results 

In our first set of regressions we follow Kocherlakota and Yi (1997), Kneller, 
Bleaney and Gemmell (1999), Karras (1999), Bleaney et al. (2001), and Romero 
de Avila and Strauch (2003), among others, and use the distributed-lag 
approach to analyse the relationship between infrastructure capital and output 
growth11. Note that this approach is consistent with our theoretical model 
above, which predicts a one-to-one long-run relationship between log aggregate 
infrastructure and log output. 
 Table 2 contains the results of regressions with different time periods, 
which employ eight lags of explanatory variables. As will be seen form the 
table, estimated parameters are statistically insignificant, favouring exogenous 
growth. These empirical estimates are robust, as compared to those in previous 
studies. The results simply indicate that one should include the marginal tax 
variable in the above distributed-lag regression to control both sides of the 
governmental budget. 
 Table 3 displays our results for distributed-lag regressions based on the 
infrastructure capital and the income tax series12. Looking at the results of the 
first row, we see that the long-run coefficients of the aggregate infrastructure 
capital and income tax series are close to zero and statistically insignificant. 
Regression with the paved roads series and the income tax series also gives 
similar results. These results contradict previous literature on the effect of 
public capital. This is not surprising, since public infrastructure investment was 
less than 7% of total public expenditure on average over the period 1948-2003. 
This indicates that only the revenue part of the government’s budget is 
controlled in the above regression. 

                                                
11  We will use the standard frequentist approach in order to maintain comparability 

with previous literature. 
12  The proper income tax series is available for the period 1948-2003, and can be found 

in Turkkila (2006). 
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TABLE 2 The Estimation Results of Distributed-Lag Models 

The estimation results of model 

( ) ( ) ttt

p

i
itititt ygygDy εαγλ +−⋅+−Δ⋅+⋅=Δ −−

−

=
−− 11

1

1

The regression was run with eight lags (k = 8). The Newey-West (1987) standard 
errors (with 5 lags) are shown in parentheses. The results of the regressions with 
shorter and longer lag lengths are similar. Dt includes a constant. Results are not 
sensitive to the different sets of dummy variables. With dummies, we control the 
influence of World War I, the slowdown years 1917-1920, World War II, and the 
slowdown years 1990-1993. 
________________________________________________________________________________________________________

Sample period variable (g) 
1860-2003 Infrastructure Capital 0.013  

(0.014) 
1860-2003 Public Expenditure 0.013 

(0.015)
1900-2003 Infrastructure Capital 0.016

(0.029)
1900-2003 Public Expenditure 0.015 

(0.030)
1948-2003 Infrastructure Capital -0.011 

(0.030)
1948-2003 Public Expenditure -0.104 

(0.038)
1948-2003 Paved Roads -0.007 

(0.009) 
________________________________________________________________________________________________________

To obtain a closer view of this, we regress GDP growth with the income tax and 
public expenditure series using the above distributed-lag approach. Estimation 
results are given in the third row of Table 3 (see also Table 2). The statistically 
and economically significant long-run coefficients are now consistent with the 
results of previous studies. The value of  is 0.15, suggesting that a one per cent 
permanent increase in public expenditure share will permanently boost long-
run growth by 0.15 percentage points. Thus, when controlling both sides of the 
governmental budget, we find that permanent changes in government policy 
have effects on the growth rate of output. This gives some support for 
endogenous growth. 
 According to the results shown in Tables 2 and 3, we conclude that since 
agents must make decisions on the allocation of the investments of 
infrastructure capital and other forms of capital, we should not control income 
taxation, but rather non-infrastructure investments when exploring the 
relationship between aggregate infrastructure capital and output. This suggests 
that the above results may be misleading due to omitted-variable bias. 
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TABLE 3  The Estimation Results of Distributed-Lag Models with Revenue and 
Expenditure Variable 

The estimation results of model 

−

=
−

−

=
−− −Δ⋅+−Δ⋅+⋅=Δ

1

1

1

1
)1ln()(

p

i
iti

p

i
itititt ygDy τδγλ

tttt yg ετβα +−⋅+−⋅+ −−− )1ln()( 111

where Dt includes a constant and dummy variable, which controls the slowdown years 1990-1993. The 
trend is statistically insignificant. The regression was run with eight lags (k = 8). The results of the 
regressions with shorter and longer lag lengths are not similar. The Newey-West (1987) standard 
errors (with 5 lags) are shown in parentheses. Finally, t is the income tax variable. 
______________________________________________________________________________________________________________________________

Sample period Variable (g) 
1948-2003 Infrastructure Capital -0.011 

(0.062) 
-0.022 
(0.084) 

1948-2003 Paved Roads -0.001 
(0.010) 

-0.065 
(0.161) 

1948-2003 Public Expenditure 0.154** 
(0.058) 

0.313** 
(0.071) 

______________________________________________________________________________________________________________________________

** p-value of one-sided hypothesis test < 0.01 

6.3.2 SVAR Results 

In the above distributed-lag approach, the OLS estimates of the long-run 
parameters are consistent only if the model is correctly specified. We, however, 
found several reasons for misspecification. Firstly, as our empirical result 
indicates, we should not include a tax variable, but non-infrastructure capital in 
the regression. Secondly, the distributed-lag approach assumes that there is a 
one-to-one long-run relationship between infrastructure capital and the output 
variable, which severely restricts the dynamics of the underlying model. 
Thirdly, the above distributed-lag approach fails to control the influence of the 
business cycles. 
 In order to avoid these problems, we report the point estimates (means) 
and standard deviations of the long-run multiplier of output growth w.r.t. 
aggregate infrastructure capital ( yg). The estimation results shown are based on 
Equations (21) and (22). We estimate proper lag lengths for the models using 
the estimated average discrepancy13 reported in Table 5 (Appendix). 
                                                
13  The estimated average discrepancy approximates expected deviance. In the limits of 

a large sample size, the model with the lowest expected deviance will have the 
highest posterior probability. We prefer using the discrepancy between the data and 
the model to using Bayes factors in model comparisons. We consider Bayes factors to 
be irrelevant in most cases, since they are used to compute relative probabilities of 
the models conditional on one of them being true; see Gelman et al (2004). The 
estimated average discrepancy is defined as 

( ) ( )i
N

i
avg yD

N
yD θ,1ˆ

1=

= ,      

where y is the data, ( ) ( )θθ ;log2, ylyD −=  is the ‘deviance’, and { }N
i

i
1=θ  a sample 
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 Table 4 shows the results for three time periods. In addition to the entire 
sample 1860-2003, models are estimated for the 1900 – 2003 and 1948 – 2003 
(post World War II period) subsample periods. This serves as a check of 
robustness and parameter constancy. Looking at the results in Table 4, we see 
that aggregate infrastructure capital has positive effects on economic growth 
with a probability of over 95 per cent. Thus, the data give strong support for 
endogenous growth in Finland during the past century. The estimation results 
based on the paved roads series confirm such a conception. The point estimate 
of the long-run multiplier of output w.r.t. aggregate infrastructure capital ( yg =
0.10) suggests that a one per cent permanent increase in the aggregate 
infrastructure capital stock raises GDP growth permanently by 0.10 percentage 
points. As we see in Table 4, estimated relations remain relatively robust over 
time. The results of the regression (to save space not reported here) with shorter 
and longer lag lengths are similar. Moreover, the results shown are not sensitive 
to the use of different sets of dummies. It is thus fair to say that in Finland, 
governmental actions have had an economically significant effect on output 
growth during the past 140 years. 
 Table 4 also reports the point estimates and standard errors for the long-
run multiplier of ‘private’ capital w.r.t. infrastructure capital ( kg)14. According 
to the table, there is strong support in the data for the long-run multiplier ( kg)
being positive. Results indicate that ‘private’ capital and infrastructure capital 
are complements in the long run. We may expect that there are two opposite 
forces determining the long-run effect of infrastructure capital on ‘private’ 
capital (see e.g. Baxter and King, 1993, and Kamps, 2008). The first concerns the 
allocation of investments in infrastructure capital and other forms of capital. 
This cost reduces the recourses available to the private sector, since higher 
levels of investment in infrastructure are obtained at the cost of lowered 
investments in other forms of capital. The second is the positive effect of the 
infrastructure on the marginal product of other forms of capital. As a 
consequence, higher levels of infrastructure investment should induce a rise in 
private investment. According to the results shown in Table 4, the latter effect 
has dominated in Finland over the past 140 years. This finding is in line with 
that in Kamps’s (2008) VAR study of public capital. He, however, found only 
moderate evidence for capital being complementary in Finland. The major 
reason for the difference between his and our results could be that we use an 
aggregate infrastructure capital series rather than a public capital series. 
Furthermore, Kamps’ time series covers a considerably shorter time period 
(from 1960 to 2001) than our data. 

                                                                                                                               
from the posterior (N is the sample size). In the limit, as the sample size tends to 
infinity, the model with the lowest expected deviance will have the highest posterior 
probability. The DIC is defined as ( ) ( )yDyDDIC avg θ̂

ˆˆ2 −= , where 
( ) ( )( )yyDyD θθ

ˆ,ˆ
ˆ =  and θ̂  is the parameter mean. 

14  Estimates shown are reduced-form estimates, so that the reader should be careful in 
the interpretation of these results.
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TABLE 4  The means and standard deviations of the Parameter’s Posteriors of the VAR 
Model

Model
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In samples 1860-2003 and 1948-2003, the data do not support the use of 
the trend variable (results are similar with or without trend); thus in 
these cases,  includes a constant. In 20th regressions,  includes a 
constant and trend (results are similar with or without it). The results are 
not sensitive to using different dummies and/or different ancillary 
variables. The results of the regressions with shorter and longer lag 
lengths are similar. 
___________________________________________________________________________________________________

Sample Period Variable (g) yg
1860-2003 Infrastructure Capital 0.096* 

(0.045) 
1900-2003 Infrastructure Capital 0.127* 

(0.057) 
1948-2003 Infrastructure Capital 0.141* 

(0.066) 
1948-2003 Kilometres of Paved 

Roads
0.017* 
(0.009) 

Sample Period Variable (g) kg
1860-2003 Infrastructure Capital 0.020* 

(0.010) 
1900-2003 Infrastructure Capital 0.032* 

(0.015) 
1948-2003 Infrastructure Capital 0.022* 

(0.013) 
1948-2003 Kilometres of Paved 

Roads
0.003* 
(0.002) 

___________________________________________________________________________________________________

* parameter > 0 at 95% probability.

In sum, our estimation results shown in Table 4 are robust, as compared to 
those of previous studies on the dynamic effects of public (infrastructure) 
capital (see e.g. Kocherlakota and Yi, 1997, Kneller, et al., 1999, Karras, 1999, 
Canning and Pedroni, 1999, Bleaney et al., 2001, Romero de Avila and Strauch, 
2003, Kamps, 2008, and Fedderke et al., 2006). However, as we have shown, 
when the dynamic effect on aggregate infrastructure capital (not public capital) 
are studied, we should put effort into modelling to ensure consistent parameter 
estimates for the long-run coefficient of output w.r.t. infrastructure capital. 
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6.3.3 Robustness of the Results 

To check the robustness of the VAR results shown in Section 3.2, two types of 
sensitive analysis are needed. 

a) Most studies on the dynamic effect of public (infrastructure) capital have 
used four-variables VAR models (public capital (infrastructure capital), 
‘private’ capital, employment (et), and output) in their analyses. Panel 
(A) in Table 6 (Appendix) reports the results of our four-variable VAR 
model. As will be seen from the table, there is strong support in the data 
for the long-run multiplier of output w.r.t. infrastructure capital being 
positive. The point estimates of the parameters are higher than those 
shown in Section 3.2.; however, our analysis is not critical for this. 

One may, of course, prefer to include the tax variable in the analysis. We 
therefore estimated the VAR model with five variables: infrastructure 
capital, ‘private’ capital, employment, income tax rate, and output. 
Results for the long-run multipliers are shown in Panel (B) in Table 6. 
They show that adding the income tax variables in the regression has no 
influence on the long-run results. In addition, including both a public 
expenditure variable and an income tax variable in the analysis also does 
not alter the results (results not given here). 

b) In addition to checking ancillary variables, we also examine the 
sensitivity of our results using an alternative identification of the VAR 
models. As has been widely reported in the VAR literature, estimation 
results may be sensitive to the choice of identification. Specifically, we 
estimate impulse responses of GDP (and private capital) to a shock to 
aggregate infrastructure capital using two precisely identified VAR 
models with alternative orderings of variables. In addition, we estimate 
Equation (15) with a diagonal covariance matrix structure. In the first 
model, we use a recursive approach with the following ordering of 
variables: xt = (yt kt et gt). This ordering corresponds to the VAR model 
shown in Section 2. In the second model, we follow Kamps (2008), 
among others, in using the following ordering of variables:  xt = (gt kt et

yt). In both analyses, A0 is restricted to be triangular and we solve for 
5.01

0 Λ−A  by taking a Choleski decomposition of  (see Equation, 15). In 
the third model, A0 is the identity matrix. This identification implies that 
Equation (15) is a structural form model allowing direct interpretation 
for all long-run parameters. 

Figures 2-5 show the impulse responses of GDP (yg) (and private capital, 
kg) to a shock to infrastructure capital for a horizon of 25 years achieved 
by three alternative identification schemes. We find positive responses of 
GDP (and private capital). In general, impulse responses are very similar, 
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suggesting that we can trust the results given in Section 3.2. This is in 
stark contrast to Kamps (2008), who finds highly sensitive impulse 
responses in the Finnish data. The major reason for the difference 
between his and our results could be that we use an aggregate 
infrastructure capital series rather than a public capital series. 
Furthermore, Kamps’ time series covers a considerably shorter time 
period (from 1960 to 2001) than our data. 

Figures 2-5 also show the impulse responses of infrastructure capital to a 
shock to GDP (gy) (and private capital, gk) for a horizon of 25 years. The 
results indicate that impulse responses of infrastructure capital are 
sensitive to the ordering of variables. Note, however, that the VAR 
results given in Section 3.2 are based on an equation for output, not an 
equation for infrastructure. Thus, the results are not critical for this.
Finally, according to the impulse responses shown, we find that the data 
give moderate support for reverse causation, i.e. feedback effects from 
the output to infrastructural investments (at least in the short-run). 

In sum, the main results of this study are robust to the given ancillary variables 
and the identification of VAR models. 

6.4  Conclusion 

In this paper, we have explored how investment in infrastructure capital 
influenced long-run output growth over the long-run period 1860-2003. Our 
analysis is based on the Bayesian SVAR model, since this gives reliable 
parameter estimates for the long-run multiplier of output with respect to 
aggregate infrastructure capital. 
  Based on the estimation results presented here, we find that investment in 
infrastructure capital has had a positive effect on output growth over the long 
run. The results shown are robust, suggesting that the Finnish data are 
consistent with endogenous growth. Our results also indicate that, when output 
growth is regressed with aggregate infrastructure capital stock (rather than 
public capital stock), the parameter estimates of the standard Distributed-Lag 
approach are inconsistent. The reason for this bias is the lack of a proper control 
variable. As was explained above, it seems appropriate to include ‘private’ 
capital rather than distortionary taxes in the analysis when the effect of 
infrastructure capital on output growth is explored.  
 Finally, based on our impulse response analysis, we find moderate 
evidence for a feedback effect from the output to infrastructural investments, 
suggesting that it is important to treat all model variables as endogenous. 
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FIGURE 2  Impulse responses of GDP to a shock to infrastructure capital, and impulse 
responses of infrastructure capital to a shock to GDP. Identification of the 
models is based on a recursive approach with a different ordering of 
variables. The time horizon of the impulse responses is 25 years. ------ 
represents 68% credible intervals, and ______ median. 
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FIGURE 3  Impulse responses of private capital to a shock to infrastructure capital and 
the impulse responses of infrastructure capital to a shock to private capital. 
Identification of the models is based on a recursive approach with a different 
ordering of variables. The time horizon of the impulse responses is 25 years. -
----- represents 68% credible intervals, and ______ median. 
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FIGURE 4  Impulse responses of GDP (private capital) to a shock to infrastructure 
capital, and impulse responses of infrastructure capital to a shock to GDP 
(private capital). Identification of the models is based on a recursive approach 
with a different ordering of variables. The time horizon of the impulse 
responses is 25 years. ------ represents 68% credible intervals, and ______

median. 
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FIGURE 5 Impulse responses of GDP (private capital) to a shock to infrastructure 
capital, and impulse responses of infrastructure capital to a shock to GDP 
(private capital). Identification of the models is based on a recursive and 
diagonal approach. The time horizon of the impulse responses is 25 years. ----
-- represents 68% credible intervals, and ______ median. The thinner lines 
represent the impulse responses of VAR with diagonal restriction, and the 
fatter lines the impulse responses of VAR with lower triangular restriction. 
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APPENDIX 

TABLE 5  Estimated average discrepancies and deviance information criterions (DIC) 

Summary statistics are based on the VAR model in Equation (13). 
__________________________________________________________________________________________________________________________________________

Infrastructure Capital 
(1860-2003)

Infrastructure Capital 
(1900-2003)

Lag DIC ( )yDavg
ˆ DIC ( )yDavg

ˆ

1 -2445 -2460 -1772 -833 
2 -2698 -2723 -2025 -962 
3 -2737 -2772 -2012 -932 
4 2720 -2763 -1980 -905 
5 -2685 -2740 -1942 -882 
6 -2653 -2718 -1920 -870 

Infrastructure Capital 
(1948-2003)

Paved Roads 
(1948-2003)

Lag DIC ( )yDavg
ˆ DIC ( )yDavg

ˆ

1 -1105 -1121 -833 -850 
2 -1215 -1241 -962 -989 
3 -1186 -1224 -932 -969 
4 -1182 -1230 -905 -955 
5 -1147 -1209 -882 -944 
6 -1112 -1189 -870 -947 

__________________________________________________________________________________________________________________________________________
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TABLE 6  Values of the Parameter’s Posteriors of the VAR Model 
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Panel (A)  includes a constant and trend if data support the use of it. The results of the regressions with 
shorter and longer lag lengths are similar.
_______________________________________________________________________________________________________________________________

Sample Period Variable (g) yg
1860-2003 Infrastructure Capital 0.144

(0.061) 
1900-2003 Infrastructure Capital 0.196

(0.077) 
1948-2003 Infrastructure Capital 0.158

(0.067) 

Sample Period Variable (g) kg
1860-2003 Infrastructure Capital 0.013

(0.014) 
1900-2003 Infrastructure Capital 0.034

(0.019)
_______________________________________________________________________________________________________________________
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Panel (B) in all post World-War II regressions  includes a constant. The results of the regressions with 
shorter and longer lag lengths are similar. 
_____________________________________________________________________________________________________________________

Sample Period Variable (g) yg
1948-2003 Infrastructure Capital 0.158

(0.067) 
1948-2003 Kilometres of Paved Roads 0.017

(0.010) 

Sample Period Variable (g) kg
1948-2003 Infrastructure Capital 0.012

(0.013) 
1948-2003 Kilometres of Paved Roads 0.001

(0.002) 
____________________________________________________________________________________________________________________________________________
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SUMMARY 

Bayesilaisia sovelluksia dynaamisissa ekonometrisissa malleissa 

Tämä väitöskirja koostuu viidestä esseestä, joissa tarjotaan muutamia uusia 
ideoita Bayesilaisen ekonometrian kenttään.  Väitöskirja esittelee uuden eko-
nometrisen mallin ja näyttää miten subjektivismia (priori-informaatiota) voi-
daan hyödyntää talousteoreettisten rajoitteiden validiuden testaamisessa. Li-
säksi se tarjoaa uuden tehokkaan tavan parantaa suosittujen uusien Keynesiläis-
ten makromallien ennustetarkkuutta. Väitöskirja keskittyy dynaamisiin eko-
nometrisiin malleihin joista useimmat sisältävät epälineaarisia komponentteja. 
Tämä tuo oman haasteensa analyysiin. Esseissä Bayesilaisia metodeja käytetään 
ratkaisemaan ongelmia joita ei pystytä helposti ratkaisemaan traditionaalisen 
tilastotieteen keinoin. 
 Priorijakaumien keskeisestä roolista johtuen niiden kehittäminen, esittä-
minen ja raportointi saa esityksessä kohtalaisen paljon tilaa. Käytetyt priorija-
kaumat perustuvat eri talousteorioihin (kollektiivisesti subjektiiviseen infor-
maatioon) ja muista alan empiirisistä tutkimuksista saatuun informaatioon. 
Joissakin malleissa käytetään myös standardeja epäinformatiivisia prioreita. 
Esityksessä lähes kaikkien mallien posteriori-jakaumat ovat ei-standardeja, jo-
ten niiden evaluoiminen vaatii numeeristen Monte Carlo -metodien käyttöä. 
Empiiristen tulosten luotettavuus riippuu voimakkaasti näiden metodien oike-
anlaisesta soveltamisesta. Tästä syystä väitöskirjassa annetaan yksityiskohtaiset 
kuvaukset käytetyistä numeerisista algoritmeista ja simulaatiorutiineista. Lisäk-
si Markov-ketjujen konvergoituminen on varmistettu käyttämällä formaalia tes-
tidiagnostiikkaa.
 Väitöskirjan keskeinen tutkimustulos on tämä, kun valtavirtaekonometria 
epäonnistuu tehtävässään tuottaa luotettavia empiirisiä tuloksia, Bayesilaiset 
ekonometriset menetelmät suoriutuvat monissa tapauksissa kyseisestä tehtä-
västä kunnialla. Esitetyt tulokset antavat olettaa, että Bayesilaiset menetelmät 
ovat erityisen hyödyllisiä varsinkin silloin kun vertailtavat taloustieteelliset 
mallit ovat ei-sisäkkäisiä tai mallin uskottavuusfunktio on monihuippuinen tai 
se saavuttaa maksimiarvonsa taloudellisessa mielessä järjettömillä parametriar-
voilla. Monissa tapauksissa taloustieteellinen teoria tarjoaa myös tärkeää tai 
välttämätöntä informaatiota mallinnettavasta ilmiöstä, jota käsillä oleva aineisto 
ei pysty tarjoamaan. Tulokset ovat luonnollisesti hyvin tunnettuja Bayesilaisten 
ekonometrikkojen keskuudessa. Näin ollen väitöskirja kontribuoi alan kirjalli-
suuteen laajentamalla käytettävissä olevien tutkimusvälineistöä. 
 Esseet tuovat myös oman lisäarvonsa taloustieteelliseen tutkimukseen. En-
simmäisessä esseessä esitellään helposti sovellettavissa oleva estimointitapa 
uuden Keynesiläisen dynaamisen stokastisen yleisen tasapainon (DSGE) mallin 
implementointiin. Esseessä tutkitaan kuinka hyvin kyseinen malli kykenee en-
nustamaan talouden avainmuuttujia inflaatiota, korkoa ja tuotantoa. Tässä tut-
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kimuksessa käytetään reaaliaikaista aineistoa, aineistoa jota Yhdysvaltain tilas-
toviranomaiset eivät ole jälkikäteen ’revisoineet’, lisäämään tulosten painoar-
voa. Ensimmäisen esseen tutkimustulokset osoittavat, että kyseinen yksinker-
tainen makromalli suoriutuu tehtävästään hyvin suhteessa vaihtoehtoisiin ylei-
sesti käytettyihin ennustemalleihin. Tulos on hyvin mielenkiintoinen, koska ai-
kaisemmassa kirjallisuudessa samoihin tuloksiin on päästy vain kasvattamalla 
voimakkaasti käytettyjen makromallien kokoa ja siten heikentämällä analyysin 
käyttökelpoisuutta.  
  Toisessa esseessä tutkitaan markkinaportfolion tuoton ja riskin välisen re-
laation robustisuutta. Tutkimus perustuu malliin Et-1(rt) = 0 + 1Vart-1(rt), missä 
rt on markkinaportfolion ylituotto. Tutkimusaihe on tärkeä, koska yleisesti tie-
detään, että 0:n tarpeeton lisääminen yhtälöön vääristää tuloksia, mutta toi-
saalta rajoite 0 = 0 pakottaa odotetut ylituotot nollaksi hypoteesin 1 = 0 alla. 
Rajoite 0 = 0 on talousteoreettisesti hyväksyttävissä, mutta konfliktissa empii-
risen rahoituskirjallisuuden kanssa. Tutkimusongelmaa lähestytään käyttämällä 
subjektiivista oletusta, että 0 on normaalisti jakautunut odotusarvolla nolla. 
Oletuksen robustisuutta testataan vaihtelemalla priori-jakauman varianssia. In-
tuitiivisesti pieni priori-varianssi on konsistentissa talousteorian kanssa, kun 
taas suuri priori-varianssi on konsistentissa empiirisen rahoituskirjallisuuden 
kanssa. Esitetyt tulokset indikoivat, että 0:n todellisen arvon ollessa lähellä nol-
laa kyseinen teoreettinen rajoite on hyväksyttävissä, mutta muussa tapauksessa 
rajoite on kyseenalainen. 
 Kolmas essee esittelee uuden ekonometrisen mallin, joka sallii Bayesilai-
sessa instrumenttimuuttujamallissa ei-vakioisen mallivirheen varianssin. Tut-
kimus on ensimmäinen laatuaan, mikä on suhteellisen yllättävää, sillä heteros-
kedastisuuden mallintaminen Bayesilaisessa ympäristössä parantaa estimaatti-
en tarkkuutta ja ennustepäättelyn laatua. Käytännön sovelluksena tutkimukses-
sa estimoidaan Cobb-Douglas tuotantofunktio käyttämällä maakohtaista poik-
kileikkausaineistoa. Sovellus on relevantti, sillä alan kirjallisuus on huolellisesti 
raportoinut endogeenisuus- ja heteroskedastisuusongelmien olemassaolosta 
tämän tyyppisissä aineistoissa. 
 Neljännessä esseessä esitellään uusi kotitalouksien inflaatio-odotuksia 
mallintava malli. Mallissa luovutaan rationaalisten kotitalouksien oletuksesta, 
ja oletetaan, että taloudenpitäjät muodostavat oletuksensa mediassa esitettyjen 
inflaatiouutisten perusteella. Malli olettaa, että taloudenpitäjät havaitsevat in-
flaatioluvun mediasta tietyllä todennäköisyydellä. Estimoitujen mallien poste-
riori-todennäköisyyksien perusteella Yhdysvaltain aineisto tukee voimakkaasti 
esittämäämme mallia, suhteessa malliin jossa taloudenpitäjät ovat osittain ra-
tionaalisia. Neljännessä esseessä esitetty malli selittää hyvin myös kuluttajien 
odotusten heterogeenisyyttä. Tämä tulos perustuu mallin kuluttajatason versi-
oon, joka on estimoitu mikrotason aineistoa hyväksi käyttäen. 
 Viidennessä esseessä tutkitaan infrastruktuuri-investointien pysyviä kas-
vuvaikutuksia käyttäen hyväksi hyvin pitkän aikavälin (1860-2003), aggregaat-
titason infrastruktuuri-investointi vuosiaineistoa. Tutkimuksen tilastollisessa 
päättelyssä käytetään posteriorianalyysiä, koska se tekee eksaktin päättelyn 
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helpoksi myös yksikköjuuriaineistoilla. Tutkimustulokset indikoivat, että myös 
hyvin pitkällä aikavälillä infrastruktuurishokit aiheuttavat pysyviä vaikutuksia 
bruttokansantuotteeseen.
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