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ABSTRACT

Yevseyeva, Iryna
Solving classification problems with multicriteria decision aiding approaches
Jyväskylä: University of Jyväskylä, 2007, 182 p.
(Jyväskylä Studies in Computing
ISSN 1456-5390; 84)
ISBN 978-951-39-3049-3
Finnish summary
Diss.

In classification problems with decisions highly dependent on subjective information
and preferences of a particular decision maker, the multiple criteria decision aiding ap-
proaches can be applied. The decision aiding aspect of these techniques allows providing
a significant help for the decision maker by defining the problem, formalizing it, and sug-
gesting supportive methods. In this work, we are motivated by the idea of structuring
the field of classification based on multicriteria decision aiding approaches. We present
a comprehensive state-of-the-art survey of classification with multicriteria decision aid-
ing approaches. We categorize the existing methods and discuss in more detail the most
widely-spread methods. For each method, we study advantageous and disadvantageous
properties and look for similarities and peculiarities. In addition, we compare different
properties of the existing methods. Such analysis indicates gaps in the existing methods
and has motivated us to develop two new methods that would fill some gaps.

In particular, we have extended stochastic multicriteria acceptability analysis for
nominal classification and have created the SMAA-Classification method. The method
does not need parametrical information to be specified but assumes that the decision
maker may provide some assignment example(s) for each class. The output of the method
contains information about acceptability of each alternative to be assigned in each class.
On the other hand, for the situation where there is no possibility to specify assignment
examples for classes, verbal decision analysis methods may be applied for ordinal classi-
fication. They assume absence of any other information about classes but their number
and order. The methods are interactive. In a dialog regime, the decision maker has to
classify some alternatives selected by the method, but not all. We have developed the
Dichotomic Classification method in the framework of verbal decision analysis.

We illustrate the methods developed with simple examples and perform some nu-
merical experiments for the data sets available in the multicriteria decision aiding litera-
ture. The results of these tests speak for the efficiency of the methods developed in this
work. The introduced Dichotomic Classification method is applied to neuropsycholog-
ical diagnostics, in particular, diagnostics of Attention Deficit - Hyperactivity disorder.
We implement the methods introduced and some of the existing methods in the frame-
work of the multicriteria decision support system developed. For completing the up to
date picture of the classification with multicriteria decision aiding approaches, we pro-
vide some recommendations for selecting a method to be used.

Keywords: multicriteria decision aiding, classification, multicriteria acceptability analy-
sis, verbal decision analysis, neuropsychological diagnostics
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1 INTRODUCTION

The main topic of this work is classification that considers assignment of a set of
given alternatives into a set of categories or classes. Classification is necessary
in a variety of problem areas such as medicine, financial management and eco-
nomics as well as marketing research, human resources management, production
system management and technical diagnostics, pattern recognition, environment
ecology and energy management ([3], [10], [37], [74], [169]). For example, a doctor
performs a diagnosis of a patient based on the analysis of his or her symptoms;
a financier estimates credit risk before investments and an analyst of a produc-
tion system controls and monitors complex functioning systems. The existence
of such a wide range of applications creates the preconditions for formalizing
classification problems and developing tools for solving them efficiently.

Traditionally, classification problems have been solved by parametric tech-
niques of multivariate statistical analysis, such as linear [48] and quadratic [147]
discriminant analysis, and econometrics, such as logit-probit analysis [18]. These
methods are still in use; however, they have been criticized due to difficulties
of practical application when statistical assumptions and restrictions cannot be
specified precisely. On the other hand, development of artificial intelligence,
in particular machine learning, allows considering non-parametric techniques,
such as neural networks, expert systems, and decision trees [39], for classification
problems. Other methods for classification can be found in operational research,
in particular, in multicriteria decision aiding (e.g., utility theory [159], outranking
approach [136], verbal decision analysis [98], [100], rough sets theory [55], and
fuzzy sets theory [166]).

The selection of a classification method to be used depends greatly on the
availability of initial information, the type of such information, completeness of
this information, the level of uncertainty, and the requirements for the final de-
cision. Most of the currently developed methods for classification analyze large
data sets and search patterns of similar behavior for parts of this set. However,
there are classification tasks in which knowledge and preferences of an expert or
a decision maker (DM) play a significant role. For example, the decision may be
highly dependent on subjective information and personal thoughts of a DM, his
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or her beliefs and/or intuition. In such situations, the multiple criteria decision
aiding (MCDA) methods can be applied. The decision aiding aspect of these tech-
niques allows providing a significant help for the DM by structuring the problem,
formalizing it, and suggesting supportive methods. In this work, we concentrate
mainly on the methodological part of classification problems with the MCDA
theory.

In MCDA, the DM is a person, who is responsible for making hard and/or
complex decisions. There may also be an expert involved who may share his or
her expertise in the problem area of the decision to be made. Neither the DM no
the expert are supposed to master MCDA techniques; rather, it is the analyst who
is supposed to be familiar with MCDA methodologies and techniques and sup-
port in decision making. With MCDA methods, the DM is involved in the process
of decision making by providing not only information necessary for the method
but also his or her own knowledge of the decision area and preferences accord-
ing to the situations considered. The expert may take part by sharing his or her
expertise in the problem domain. In case of some methods, they also participate
in the decision making by interacting with the MCDA method at intermediate
stages.

Elements involved in the decision aiding could be characterized as knowl-
edge and preferences. Preference can be understood as relating to opinions of
the DM about desirability for some features to have some values when compared
to other values. In other words, we can say that there is direction for some fea-
ture values that make the decision to be more attractive and desirable to the DM.
On the other hand, knowledge does not have this kind of direction but is related
more to the experience, believes and intuition of the DM or the expert. We refer
to both types of information as preferences and do not treat them in any specific
way.

By the concept "multicriteria" we refer to the idea that each alternative can
be estimated from several usually conflicting points of view; here we deal with
so-called criteria measurements. Thus, several conflicting criteria have to be con-
sidered simultaneously. The differences in the measurements of criteria as well
as possible dependencies between them should be taken into account. The fact
that real-world alternatives may be described by a large number of criteria is
also important. The problem area of MCDA applications varies from everyday
problems, such as "what to buy for dinner" and "where to go on the weekends",
to vitally important decisions, such as "selection of the profession" or "choice of
country for living".

There are two different approaches for representation and, consequently,
solving multiple criteria problems [108]: multiobjective optimization and mul-
tiattribute decision analysis. The latter one is also called multicriteria decision
aiding [140], and that is how we refer to it in the present work. The difference be-
tween the two approaches is in treating the feasible set of alternatives. Indeed, in
multiobjective optimization the set of alternatives is not available before the ac-
tual optimization procedure starts. It is assumed that there is an infinite number
of alternatives to be evaluated and that they are represented by decision variables
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and restricted by constraints in the decision variables space. The multiobjective
optimization problems are also called continuous. By contrast, in multicriteria
decision aiding, the set of alternatives to be estimated is discrete, finite, and usu-
ally available in advance and/or predefined by the DM [108]. For comprehensive
surveys on multiobjective optimization, we refer to [40], [41], [108].

There is a large amount of literature devoted to MCDA problems. Surveys
of this field may be found in [16], [19], [22], [44], [52], [140], [158]. A large bib-
liography for MCDA is presented at the web site of LAMSADE laboratory [91].
A lot of new ideas are presented twice per year at the conferences of the EURO
Working Group on MCDA [43], as well as on the international conferences of the
Multiple Criteria Decision Making (MCDM) society [67] and the Association of
European Operational Research Societies (EURO) [4] that take place biannually,
to name a few.

In this work, we consider classification of a set of discrete alternatives. That
is why we concentrate on solving it with MCDA methods. Traditional problems
to be solved by MCDA methods are the choice of the best alternative (or several
best ones) and ranking of the set of given alternatives. Examples of them are the
selection of a car to buy or the university where to study; or ranking of partici-
pants in a competition. The approach of solving classification problems by means
of MCDA is quite modern. The first MCDA method for classification was devel-
oped in the late 70s - early 80s by Moscarola and Roy [111], [136] and was limited
for three classes only. Later, this method was developed for an arbitrary num-
ber of classes [165]. The development of other classification methods within the
MCDA framework was undertaken during the 80s - 90s, e.g., in [9], [37], [56], [72],
[97], [100], [105], [131]. Recently, a number of Masters and PhD Theses have been
written about this subject [26], [110], [121], [157], to name a few. Finally, the book
on MCDA classification methods by Doumpos and Zopunidis [37] and the spe-
cial issue about classification with MCDA of the European Journal of Operational
Research [168] appeared in 2002.

In this work, we are motivated by the idea of structuring the field of classi-
fication with MCDA approaches and we follow two main goals. First, we want
to perform a representative review of the state-of-the-art of MCDA methods for
classification and provide a more detailed discussion of the most developed and
widely-spread methods. Second, we pursue the development of new MCDA-
based methods for classification that would improve the performance of the ex-
isting methods and extend the MCDA methodology for classification problems.

At the beginning of this work, we introduce basic terms and concepts used
in the MCDA methodology. We also describe decision aiding approaches and
the decision aiding process itself. Then, we define a classification problem and
the types of classification. We present an extensive survey of the existing most
widely-used methods and discuss their advantageous and disadvantageous prop-
erties as well as describe their extensions and applications. We summarize the
discussion of each method with some concluding remarks.

Besides some exceptions like [26], [37], [161], [172], there are very few re-
views of different approaches to classification within the MCDA framework avail-
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able in the literature. In this work, we try to fill this gap to some extent. We also
compare the features of the surveyed methods in order to define their advantages
and disadvantages as well as their similarities and peculiarities. The comparison
of the existing methods motivates us to improve them and create some new ones.
It also allows us to provide some recommendations for the selection of a method
to be used on each particular situation. There is no single best method to be used
for every case. That is why it is important to provide the DM and/or analyst with
some tips for the selection of an appropriate method depending on the available
initial information, requirements to the results of classification, the decision aid-
ing process itself, and the nature of the classification problem.

As mentioned before, there are differences between the classical approach
(e.g., statistics and artificial intelligence) and MCDA. Indeed, the latter involves
the DM in the classification problem. In addition, MCDA usually assumes that
the alternatives to be classified are estimated on a set of conflicting criteria, each
of which provides not only a description of some property (like attributes in clas-
sical approach) but includes additional preferential information (e.g., bigger val-
ues are assumed to be preferred or more desirable to smaller ones). Another
aspect considered in MCDA is the order of the classes. In classical approaches,
the classes are described in a nominal way and the order is not considered. Even
though the main focus of the methods that stem from the classical approaches
(that is the accuracy of the results obtained from the model) has a high impor-
tance, taking into account the issues considered by MCDA may improve and/or
simplify the performance of the classification models.

On the other hand, deep involvement of the DM into the decision aiding
process brings new challenges for the development of robust models that repre-
sent informal thinking of the DM as closely as possible to the real-life situation.
Such challenges include (but are not limited to) taking into account cognitive
sides of the DM when expressing his or her preferences, representing them in
the form understandable for the DM, and providing control to the DM during
the process of decision aiding.

The cognitive abilities (e.g., short-term memory) of the DM are limited [144].
People cannot deal with large volumes of information simultaneously and in
order to minimize efforts they tend to simplify their strategies and operations.
Moreover, humans are not accurate and may make mistakes as well as be incon-
sistent with their preferences. However, these facts are not usually taken into
account when developing MCDA methods.

In some cases, the DM may not be fully aware of his or her own prefer-
ences, in particular, if they have to be defined in terms and parameters of some
MCDA model. The DM may not be able to understand the exact meaning of such
terms and to provide the required information. However, he or she can give some
decisions that he or she used to make in the past or is ready to think about the
consequences of subset of possible decisions. The survey of the existing methods
shows that Stochastic Multicriteria Acceptability Analysis (SMAA) [83] provides
such possibilities for preference modeling for choice and ranking types of MCDA
problems; however, there is some lack of methods for solving classification prob-
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lems. That is why we have developed a so-called SMAA-Classification method
to be used in some types of classification problems.

The problem may be described not only with numerical data but using nat-
ural language, that is, verbal data. The latter may be the only way to express the
complexity of the situation. Thus, the DM expects to have a possibility to express
his or her preferences as well as to receive the results of the inference in natu-
ral language. However, most of the MCDA methods operate only with numeri-
cal values and, moreover, some of them assume the DM to be able to transform
the qualitative preferences to the quantitative ones. Such a transformation may
be misleading and cause error propagation. By taking into account the ability
to treat verbal values it is possible to avoid such weaknesses. In this work, we
search for methods that consider cognitive sides of the DM and allow operating
with verbal estimations expressed in natural language. The methods that satisfy
such features have been developed in the framework of verbal decision analysis
[100]. We wish to improve the existing verbal decision analysis methods for clas-
sification problems and introduce a method called Dichotomic Classification in
the verbal decision analysis framework.

The two new MCDA methods presented in this work are very different and
are used for different types of classification problems with different assumptions
regarding initial and resulting data as well as the process of decision aiding it-
self. Indeed, SMAA-Classification does not use the information about the order
on the set of classes assuming them to be nominal, and it operates with numerical
values on the scales of criteria and/or attributes. The method assumes the avail-
ability of a set of examples of the classifications, so-called assignment examples,
the decisions that the DM used to make in the past; or decisions made for realistic
alternatives not considered in the set of given alternatives; or DM’s readiness to
make decisions for a limited set of alternatives from the set of given alternatives
[72]. Based on the set of assignment examples, the method does a classification
and searches in an inverse manner for the preferences that support such a classi-
fication. The method can be applied in an interactive way and provides the DM
with an opportunity to learn how his or her own decisions influence the MCDA
classification model developed. On the other hand, the Dichotomic Classification
method is an interactive method that assumes an order between the classes, and
an ordinal scale of verbal values for each criterion. It supposes that there is no
initial information about the preferences of the DM available before the decision
aiding process starts and elicits preferential information iteratively.

We demonstrate the methods by some illustrative examples and perform
numerical experiments with data sets available in the MCDA literature. We ap-
ply the Dichotomic Classification method to the neuropsychological diagnostics
of Attention-Deficit Hyperactivity Disorder (ADHD). The developed and some
studied methods are implemented within a multicriteria decision support system
that is equipped with a comfortable interface allowing user-friendly interaction
between the DM (and/or analyst) and the system.

To summarize, following our main motivation to structure the field of clas-
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sification with MCDA approaches, we define the next goals of this work. We
wish to survey the existing MCDA methods for classification and present a com-
prehensive state-of-the-art of classification with MCDA approaches. Some cat-
egorization of the existing methods should be provided and the most widely-
spread methods should be discussed in more detail. Their advantageous and dis-
advantageous properties should be defined. The comparison of existing methods
should indicate the gaps and motivate us to create some new methods that would
fill some gaps. The methods developed should be compared to the existing meth-
ods and their performance should be tested on the same data sets. We also would
like to provide some recommendations for selecting an MCDA method for clas-
sification among the discussed methods. The methods developed and some ones
studied should be implemented in a multicriteria decision support system. The
method(s) developed should be applied to the neuropsychological diagnostics.
Finally, the conclusions of this work should be provided and directions for future
research outlined.

The rest of the work is organized as follows. In Chapter 2, we present the
main concepts and definitions of MCDA that will be used throughout this work,
we also formulate the MCDA process and discuss different types of classifica-
tion problems. We survey and categorize the MCDA methods for classification
in Chapter 3; some preference elicitation procedures are presented there as well.
In Chapter 4, we introduce some new methods developed for different types of
classification. In particular, a new SMAA-Classification method and a new Di-
chotomic Classification method are proposed. They are illustrated with simple
examples. Then, in Chapter 5, we compare methods surveyed and developed
according to the information used, the results obtained and the decision aiding
process itself. We provide the guidelines for selecting a method to be used for the
classification with MCDA approaches. Then, the results of the numerical experi-
ments made for the developed and some studied methods are presented in Chap-
ter 6. We also describe the application of the Dichotomic Classification method to
the neuropsychological diagnostics of Attention-Deficit Hyperactivity Disorder
and a developed multicriteria decision support system in Chapter 7. Finally, we
draw some conclusions of the work presented and discuss some directions for
further research in Chapter 8.



2 MCDA PRELIMINARIES

In this chapter, we consider some basic concepts of the MCDA theory, actors that
take part in the decision aiding, and the decision aiding process itself. We also
have a brief look at the different decision aiding approaches, theories and prob-
lem types. Finally, we introduce types of classification problems and formulate
classification model in MCDA terms. As we have already mentioned in the in-
troduction to this work, MCDA problems involve conflicting criteria. So, to win
in one of them, we have to lose in another. Here, we also introduce the types of
MCDA problems in which the solution can be aided. Particular attention is paid
to the classification type of MCDA problem on which this work is concentrated.
This chapter is mostly based on the material presented in [100], [140], [156], [158].

We begin by defining the concepts and aims of decision aiding. By decision
aiding, we mean assisting in the decision making when there are several conflict-
ing criteria to be considered simultaneously. It is based on the development of a
reality model by questioning the person who is assisted in the decision making.
According to Roy [140], "decision aiding is the activity of the person who, through
the use of explicit, but not necessary completely formalized models, helps obtain
elements of responses to the questions posed by a stakeholder of a decision and
usually towards recommending, or simply favoring, a behavior that will increase
the consistency between the evolution of the process and the stakeholder’s ob-
jectives and value system". Thus, the idea of the decision aiding is to assist the
DM in structuring the problem, acquiring his or her knowledge and preferences
about the problem area and understanding his or her own preferences and, fi-
nally, proposing a decision or decisions that best match the DM’s long-term goals
and possible environmental conditions.

2.1 Basic Concepts

In MCDA theory, some terms and concepts may be defined in a slightly differ-
ent way and under different titles. In this section, we specify the concepts used
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throughout this work, such as model, actors, alternatives, criteria and attributes,
and relations. We also consider the types of problems in which the MCDA theory
may assist.

2.1.1 Model

The model is a fragment of reality represented schematically and formally by an
observer (analyst and/or DM, see Section 2.1.2), in order to help to facilitate the
decision aiding process. In what follows, we refer to such a model as a reality
model. A model can be formal (e.g., defined by mathematical expressions) or
judgemental (e.g., defined by the set of decision rules). A formal model has a
structure (e.g., defined in the form of equations) and parameters (e.g., in the form
of variables in equations). Determination of the structure and parameters for a
formal model or the set of rules for a judgemental model is called model identifi-
cation [132].

One may ask: "How objective is the model?" There is no absolutely "true"
or "false" model because it is always only a fragment of reality. The usual way
to consider the goodness of a model is its ability to work efficiently for a given
problem. That is why limiting the scope of the model is considered to be an art
[140]. Every model is limited by the goals that it should serve. Identification
of a model assumes transformation from informal and ambiguous information
obtained from the expert and/or DM to a more formal reality model that still
contains ambiguity, but it is represented in an unambiguous way [156].

The development of the model is very important. As it is often quoted,
"a problem well-stated is a problem half-solved" (John Dewey, philosopher). In
order to proceed with decision aiding, it is necessary to elicit preferences of a DM
and, based on them, to construct a formalized reality model. Let us point out that
general structuring of the problem is not the main emphasis of this work. We
concentrate on the methodological part of the classification problem and assume
the initial information (not necessary precise and well-defined) to be given.

2.1.2 Actors

Persons that are taking part in the decision aiding process are called actors in
terms of MCDA. At least two persons are typically involved in the process of
decision aiding: DM and analyst.

A DM is a person who is being aided and who takes the responsibility for ac-
cepting the final decision. The DM is not supposed to know the MCDA methods,
moreover, sometimes he or she is not an expert in some part of the large problem
area where the decision is made. However, his responsibility for the final deci-
sion forces him to understand the main structure of the problem. Usually, he or
she should be able to define the main elements needed for the model, to express
ideas, knowledge and preferences. But this does not mean that ideas, knowledge
and preferences of the other participants (for instance, experts) are not taken into
account.
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An analyst is a person who helps the DM to investigate and to structure
the problem, to acquire expert’s and/or DM’s knowledge, and to understand
expert’s and/or DM’s preferences. The analyst creates a model of the problem
and chooses a method for obtaining a solution. He or she proposes a decision or
decisions that best match the DM’s long-term goals and possible environmental
conditions. The analyst is usually a specialist (system analyst, system designer,
economist, statistician) who is familiar with the MCDA techniques and meth-
ods. He or she should preferably be closely acquainted with the problem area
of application and clearly understand the definitions and dependencies between
the elements in order to limit the scope of the model; he or she should be able to
present a fragment of reality (as closely as possible) and to select a proper method
for aiding.

Usually, some other people, such as experts, take part in the process of de-
cision aiding. They are professionals in the problem area or some part of it. They
influence the decision aiding process by expressing their knowledge or by help-
ing in the construction of the model. However, usually, they are not responsible
for the final solution. On the other hand, it may be possible that the DM under-
stands too little some parts of the problem area. Then, the task of the expert is to
provide all his or her professional expertise for the DM to support his or her fi-
nal decision. For instance, we may consider the situation where the boss of some
company (who is the DM) has to listen to several managers (who are experts in
human resources, financial management and public relations) and make the final
decision taking into account their opinions. However, in what follows, the DM
and the expert are regarded as the same person (and called the DM).

On the other hand, there are situations where several DMs are taking part in
the decision process. In this work, most of the methods are designed for a single
DM; however, some allow the presence of several DMs. In these cases, we must
consider the aggregation of preferences of multiple DMs.

2.1.3 Alternatives

A set of given alternatives, denoted as X, is a set of actions or objects each of
which should be estimated directly (by the DM) or indirectly (by some method)
for the solution of the problem considered (see Section 2.1.6). Here, the terms
alternatives, actions and objects are treated as synonyms. An alternative xi ∈ X
is a vector of criterion values (or a tuple of attribute values). (The definitions
of criterion and attribute are given below.) Usually the set of given alternatives
is available or defined by the DM. (Otherwise, it can be defined as a Cartesian
product of scales of criteria values.)

The set of alternatives can be:

• finite if it is possible to define all members of the set of alternatives or infinite
if it is not possible;

• stable if the number and content of alternatives from the set of given alter-
natives cannot be changed during the decision aiding process or evolutive if
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the set of alternatives changes during the decision aiding process;

• comprehensive if accepting one alternative as a final decision excludes the
possibility of accepting any other one or fragmented if a combination of al-
ternatives can be the final decision.

According to Roy [140], a potential alternative is a realistic or fictitious alternative
temporary judged as being realistic by at least one actor. The potential alternative
is included in the decision aiding process. This alternative is real or realistic if it
can be a final decision or fictitious if it can assist in the decision aiding process but
does not exist in real life.

2.1.4 Criteria and Attributes

In MCDA, the alternatives are estimated on a set of criteria and/or attributes
denoted as G. The set of criteria and/or attributes defines the main features of
each alternative from the set of given alternatives. Each criterion or attribute
gj ∈ G defines one feature of the alternative. The criterion gj taking its values
from the ordered scale of values S(gj). Each criterion has to be either maximized
or minimized. On the other hand, the attribute may have nominal or ordinal
scale; however, it is neither maximized nor minimized.

In what follows, we assume without any loss of generality that preferences
increase with the increased value on each criterion. In other words, the maximal
value on the criterion is the most attractive or desirable for a DM. Thus, we con-
sider a maximization problem as a subject of intentions of DM in the framework
of the decision aiding process.

According to Vincke [158], a criterion is: "a function gj, defined on X, taking
its values in a totally ordered set, and representing the DM’s preferences accord-
ing to some point of view". Criteria may have verbal or numerical values on their
scales. Roy in [140] defines criterion with numerical values on the scale as "a
mapping gj from a set of alternatives X to a numerical scale, such that it appears
meaningful to compare two alternatives xi and xr according to a particular point
of view, on the sole basis of their evaluations gj(xi) and gj(xr). This implies that
a criterion induces a preference relation on the set X".

In MCDA, the set of criteria can be used if it has following properties [140]:

• completeness if all criteria that allow distinction of alternatives from the set
of given alternatives were taken into account. That means that there is no
pair of alternatives, for which it is possible to say: "xi is preferred to xr, and
xr is preferred to xi" and for which the following preference relations (see
Section 2.1.5) are true: xiPxr and xrPxi. If this property is satisfied, some
important criteria are not taken into account, and we have an incomplete set
of criteria;

• cohesiveness if two alternatives are indifferent (have the same values on all
criteria), then improving value on one criterion of one alternative xi and de-
teriorating value on some other criterion of some other alternative xr would
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reflect the following DM’s preferences "xi is preferred to xr" (see Section
2.1.5): xiPxr.

• non-redundancy if each criterion from the set plays a significant role and re-
moving at least one criterion leads to a violation of one of the two properties
considered above.

The set of criteria that satisfies these three properties is called coherent [140].
On the other hand, in the classical approaches to classification (e.g., statis-

tics and artificial intelligence), the alternatives to be classified are estimated with
attributes that are neither maximized nor minimized. According to Roy [140],
the attribute defines "a simple characteristic or sign that serves as a basis of an
estimation or assessment whose only purpose is to discern or distinguish", when
compared to a criterion that serves as "a basis for preferential judgement". The
attributes may have numerical or verbal values on their scales as well as have
ordered values that, however, cannot be used for the preferential judgement but
only distinguishing judgement.

For some types of classification problems, description of alternatives by at-
tributes is much more natural (like nominal classification, see Section 2.3.1). In an
ideal case, the method should be able to consider both criteria and attributes (for
instance, in the way it is done in the rough sets approach, see Section 3.7.2).

2.1.5 Relations

The comparison of alternatives on a set of criteria represents one of the most
important questions in the decision aiding theory. In order to model the DM’s
preferences, it is necessary to define relations between pairs of alternatives. There
are four basic binary relations, strict preference, weak preference, indifference,
and incomparability, for comparing any two potential alternatives [140].

The indifference relation between two alternatives xi and xr, denoted as xi Ixr,
"corresponds to the existence of clear and positive reasons that justify equiva-
lence between these two alternatives" [140]. Such a situation appears when two
alternatives xi and xr are equally preferable, in other words, they are of equal
importance to the DM. The indifference relation is reflexive and symmetric. The
reflexivity property assumes that xi Ixi is true and symmetry property assumes
that the order of alternatives in the notations xi Ixr and xr Ixi makes no difference.

The strict preference relation of one alternative xi over the other one xr, de-
noted as xiPxr, "corresponds to the existence of clear and positive reasons that
justify significant preference in favor of one (identified) of the two alternatives"
[140]. Such a situation appears when one alternative xi is better than the other
alternative xr for the DM. The strict preference relation is asymmetric and non-
reflexive. The asymmetry property assumes that the order in which alternatives
appear in relation makes a difference and nonreflexivity relation assumes that
xiPxi is false.

We should note here that the strict preference relation is very similar to the
so-called dominance relation that is a concept used in multicriteria optimization for
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denoting a similar situation, where the alternative xi should be better or equal to
the other alternative xr on all criteria (to be maximized):

xi D xr (xi dominates xr),
if gj(xi) ≥ gj(xr) and g f (xi) > g f (xr) on at least one criterion g f ,
f , j = 1, . . . , n; j �= f ; i, r = 1, . . . , m; i �= r.

Such a relation is asymmetric and transitive [158]. However, such a dominance
relation does not include preferences of the DM. In MCDA, there are other defini-
tions of dominance relation that include preferences of the DM (see, for instance,
[57] and [100]).

The weak preference relation, denoted as xiQxr, "corresponds to the existence
of clear and positive reasons that invalidate strict preference in favor of one (iden-
tified) of the two alternatives but that are insufficient to deduce either strict pref-
erence in favor of the other alternative or indifference between two alternatives,
thereby not allowing either of the two preceding situation to be distinguished as
appropriate" [140]. Such a situation may appear when the DM hesitates to make
a precise judgement about preference or indifference between two alternatives xi
and xr. The weak preference relation may be defined with different thresholds
(for instance, see Section 3.1.1). The weak preference relation is asymmetric and
nonreflexive.

The incomparability relation, denoted as xi Jxr, "corresponds to an absence of
clear and positive reasons that justify any of the preceding relations" [140]. This
defines the situation where the alternative xi is not in any of the above-mentioned
relations with the alternative xr, or the alternative xr is not in any of the above-
mentioned relations with the alternative with xi. The incomparability relation is
symmetric and nonreflexive.

Usually, in order to model preferences of a DM, a combination of several
binary relations is considered and is called system of preference relations. For
developing different systems of preference relations, more complex relations that
combine several basic ones have been developed, for instance, outranking rela-
tion (for details, see [140]).

The outranking relation, denoted as xiSxr, defines the situation in which the
preference (strict or weak) or indifference relation is true, that is xiPxr or xiQxr
or xi Ixr. For more information on other preference relations and their properties,
we refer to [140] and [158].

As we have mentioned earlier, we do not specifically make a distinction
in the information considered in decision aiding between knowledge and pref-
erences; however, there are different possibilities for such division. For instance,
from a classical point of view (e.g., artificial intelligence), in particular from expert
systems, we know that knowledge can be understood as all information acquired
from an expert for constructing decision rules. Thereby, when adapted to MCDA,
knowledge can be referred to as all kinds of information (e.g., initial information,
or information obtained during the decision aiding process) that does not require
the DM to make pairwise comparisons of elements (e.g., alternatives, criteria, cri-
teria values, and classes) and to say which of two the elements is better. On the
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other hand, such information that assumes explicit ordering of elements by the
expert and/or DM can be referred to as preferences. (Implicit ordering that can
be obtained from knowledge, e.g. order of the degrees of air temperature, can be
exclude from preferential information.)

However, there is another opinion about this issue. In [50], all information
obtained from an expert is considered as knowledge, while information received
from the DM is treated as preferences, thus, the expert may express only knowl-
edge, and the DM only preferences. Then, relations can be defined for knowledge
kind of information (for details, see [50]). We do not introduce such relations here
because we do not use them. And, as mentioned earlier, we do not divide the in-
formation provided by the DM and/or the expert in any specific way on knowl-
edge and preferences, and we refer to both types of information as preferences
and do not treat them in any specific way. Next, we consider the types of MCDA
problems that the DM may meet.

2.1.6 MCDA Problem Types

In MCDA theory, it is assumed that when making a decision the DM usually fol-
lows one or several of the following goals: to define the structure of the problem
in terms of the MCDA (to specify the set of given alternatives, criteria, etc.), to
select the best alternative from the set of given alternatives, to rank the set of
alternatives, to classify the set of alternatives into a predefined set of classes. Ac-
cording to these goals, the MCDA problem types are defined. In some literature,
for example, in [140], the problem types are called recommendations. Next, we
describe the possible types of MCDA problems.

Description of the problem: it is necessary to define the set of alternatives,
the set of criteria and/or attributes on which these alternatives will be estimated,
and create the model of the problem. This step is included in each type of MCDA
problem; however, it is treated separately here because it can be the only goal of
decision aiding.

Choice of the best alternative: during the process of decision aiding the DM
should find the smallest number of the best possible alternatives. For example,
it may be necessary to choose only one university for studying, or to choose a
particular person for the position of a manager.

Ranking the set of alternatives: it is necessary to order the alternatives from
the given set according to the DM’s preferences. An example of such a problem
is allocating the participants of a competition between the best and the worst.

Classification of alternatives: alternatives should be assigned into one or sev-
eral classes from the set of possible ones. Such kind of problem appears, for in-
stance, in diagnostic tasks (e.g., medical, technical, and financial). For example, a
doctor defines a disease according to the patient’s symptoms. Another example
is from everyday life: we may sort "to-do" tasks for the next day into four classes,
such as "must do", "wish to do", and "can do".

There are other possible combinations of the types of MCDA problems men-
tioned. (For examples, see [102].) For instance, choice and ranking can be com-
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bined when it is necessary to select several best alternatives. Then, the example
mentioned for a choice type of problem can be altered to get the alternative form:
it is necessary to choose two persons for the positions of secretaries. In next sec-
tion, we consider the stages of analysis that the DM together with the analyst
have to go through for solving a problem of any type.

2.2 Decision Aiding Process

The process of decision aiding consists of several issues to be considered. At the
beginning, the analyst together with the DM should be engaged in structuring
the problem area. At this so-called initialization step, it is necessary to define the
goals that should be achieved as a result of decision aiding. With respect to them
the required initial information is specified. This assumes that a set of alternatives
(see Section 2.1.3) is defined. The set of criteria (see Section 2.1.4), on which the
alternatives are estimated is also selected. Here, the requirements for the set of
criteria are checked (see Section 2.1.4). Then, the type of the problem situation
(see Section 2.1.6) is established, as well as the consequences of possible decisions
according to the goals are investigated. The additional information (e.g., set of
classes for the classification problem and order of classes for the ordinal type of
classification) as well as the requirements for the resulting information are also
defined at this step.

Next, at the method selection step the MCDA method (that may follow one of
the MCDA theories presented in Section 2.2.3) is selected from the set of possible
ones with respect to the structure defined at the previous step and according to
the type of the problem (see Section 2.1.6). In this work, we give some recom-
mendations for the selection of the MCDA method for the classification type of
problem (see Section 5.2).

In order to develop a model, some methods use parameters, such as crite-
ria weights (see Section 5.1.9) and/or thresholds (see, for example, Section 3.1.1),
and other methods need decision rules (see, for instance, Sections 3.5.1 and 3.7).
These are usually defined by the DM. However, this task may be difficult and
cognitively loading for the DM. That is why the special procedures that may sim-
plify the preference elicitation (e.g., see Section 3.2) or may assist in rules inferring
(e.g., see Section 3.5.1) have been developed. Thus, if necessary, at the preference
elicitation step, the parameters of the model or decision rules are defined by the
DM or may be extracted with respect to some procedure.

During the decision aiding process, the analyst and/or the DM may face a
number of problems. These are related to uncertainties that appear when simpli-
fying the real-world situation to formal models and may be caused by different
factors. Next, we consider possible types of uncertainties in decision aiding.
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2.2.1 Decision Aiding under Uncertainty

When modeling a decision situation that is a fragment of reality, it is not possi-
ble to avoid uncertainty, which to some extent is included in each model. This
issue should not be omitted and both the analyst and the DM should be aware
of the presence of uncertainty and search for ways to handle it. Analyzing and
structuring the problem may help to specify and better understand the nature of
uncertainty, and in such a way the uncertainty may be reduced. There are dif-
ferent types of uncertainty and different ways to classify it. Belton and Stewart
distinguish internal and external types of uncertainty [16].

Internal uncertainty is embedded into the structure of the DM’s preferences
as well as into the MCDA method considered. A part of this type of uncertainty
is resolvable. For instance, there can be difficulties with understanding the mean-
ing used for the description of criteria and interpretation of values on the scales of
each criterion. The details in terms of precision and selection of appropriate scales
of values is subject of discussion but still may be unresolved in some cases. The
alternatives that should be or should not be included into the set of given alterna-
tives should be discussed for compact but coherent formulation of the problem.
When estimating alternatives with qualitative scales of criteria values another
problem may appear. Verbal information, in some sense, is uncertain. In for-
mal methods, the most widely-spread way of working with verbal information
is its transformation to some numerical analogue. However, any transformation
evokes a loss of some information. Consequently, working with transformed in-
formation leads to accumulating inaccuracy. This important feature should be
taken into account.

As it was already quoted, "a problem well-stated is a problem half-solved"
(John Dewey, philosopher). That is why the step of structuring the problem is
very important. The structure is developed at the initialization step of decision
aiding process based on the available initial data and requirements to the result-
ing data. If there are several persons participating in the process of decision aid-
ing (e.g., the analyst and the DM), it is important to fix the vocabulary of terms
and definitions common for them. At the next step, where method is selected,
another type of uncertainty may appear, such as uncertainty in the parameters
of the specific model. Understanding parameters of the model selected for the
decision aiding is very important, since they may have a different meaning in
different methods (for instance, see Section 5.1.9). This type of uncertainty may
be resolved by a more precise analysis of requirements and given data. Another
kind of uncertainty is connected with the human nature. Indeed, the DM may
not be sure about his or her own preferences, which also may evolve over time.

External uncertainty about decision areas or environment depends on the
knowledge of the DM about consequences of his or her decisions. Uncertainty
about decision areas is related to the interconnection between different decisions
made in the problem area. For example, in a classification problem, it may be
about the influence of the assignment of one alternative to the class if the assign-
ment of another alternative to another class is done. The knowledge of the DM
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about the behavior of the environment is usually uncertain and may be limited.
In this work, we consider aspects of uncertainty in the framework of classi-

fication problems that may be resolved by the DM by means of better structuring
the problem, choosing the method that best suits the considered situation as well
as helping the DM to understand his or her own preferences.

In decision aiding, there are several basic approaches for the development of
decision aiding. Next, we consider assumptions that they impose on the behavior
of DM.

2.2.2 Decision Aiding Approaches

The inference of the DM’s preferences, the so-called preference elicitation, can
be done in different ways. These procedures depend on the "model of human
rationality", called a rationality model, a tool that is able to translate informal
information (that is naturally ambiguous) to a more formal form that still contains
ambiguity, but it is represented in an unambiguous way (for details, see [156]).

The first models of human rationality developed in the framework of clas-
sical decision theory [159] assume that the DM behaves as a rational person ac-
cording to the following principles or norms of rational or economical behavior.
It is assumed that the DM always maximizes his or her expected performance, he
or she can always define all parameters needed for the model, and has enough
knowledge for making a decision. Such models include uncertainty in the form
of probabilities. However, such assumptions are far from what happens in the
real life.

Recently, a lot of research has been done in studying the nature of human’s
rationality (see survey in [156]). Indeed, Simon in his work [143] studied the be-
havior of people when making decisions and introduced the bounded rationality
principles. He proves that, in practice, there are always unpredictable circum-
stances and incompleteness of information that is available (just because it is im-
possible to include in the decision aiding model all the preferences of the DM,
not to think about multiple DMs). The DM usually behaves according to the local
situation and searches not for the best decision ever but for a compromising and
acceptable one at the moment of decision making. Finally, the resources and time
of a DM are always limited. These findings gave birth to a new understanding of
the model: the model developed in the framework of a decision aiding process
and within a person.

A decision aiding approach characterizes how the decision aiding process
is conducted. Thus, several approaches to decision aiding originating from dif-
ferent ways to construct the decision aiding model (see Section 2.1.1) depending
on the assumed model of human rationality can be identified. These include nor-
mative, descriptive, prescriptive and constructive approaches [33], [156].

A normative approach assumes that the DM is rational and his or her behav-
ior is described by norms of rational behavior established a priori. The rationality
model consists of adaptation of DM’s ways of expressing preferences to the spec-
ified formal model. This approach assumes that the rationality model is objective
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and exists separately from the particular DM, in addition, it cannot be changed
(also during the decision aiding process). If the DM does not follow the principles
of rational behavior, he or she makes mistake; also uncertainties are considered as
probabilities in the model (that may not always be the case in real-life situations).
Even though this approach contradicts with principles of Simon’s bounded ra-
tionality discussed earlier, it is still widely-used and may be appropriate in some
situations.

A descriptive approach observes the behavior of a real DM and identifies his or
her cognitive profile. Then, the formal model that better suits such a behavioral
profile is selected. This approach assumes that other DMs act similarly when
facing the same problems. When compared to the normative one, the descriptive
approach is more subjective and satisfies principles of bounded rationality.

A prescriptive approach discovers a rationality model for a given DM from his
or her answers to a set of questions related to the preferences about the decision
situation. Even though the approach considers the whole decision aiding process
(see Section 2.2), it concentrates on fixing the model to be used by the DM in a
particular situation. This approach supposes that each DM has his or her own
rationality model that cannot be defined separately from him or her. Thus, it is
even more subjective than the descriptive approach. The DM may be inconsistent
when expressing his or her preferences. However, all inconsistencies should be
detected and then resolved by the DM.

A constructive approach builds a rationality model for a given DM from his
or her answers to a set of questions related to the preferences about the decision
situation. This approach concentrates not only on discovering and building the
model but also on structuring and learning of the DM’s own preferences. The DM
may be inconsistent with his or her preferences, and this is not considered to be a
problem. On the contrary, inconsistencies are seen as a source for discussion and
improvement of the model that may evolve during the decision aiding process.
Finally, there is no requirements for removing inconsistencies and the final model
tries to find a solution assuming presence of incomparabilities and intransitive
judgements.

As can be seen, the first approaches where developed for more general situa-
tions and aimed to be as objective as possible. On the other hand, the most recent
approaches pursue studying a particular situation and behavior of a particular
DM and allow him or her to learn. Thus, the latest trends in the development of
decision aiding approach is to move towards subjective models developed in the
framework of a decision aiding process and within a person.

Finally, one should mention that this variety of decision aiding approaches
is developed for different situations, and there is no special preference to any of
them. When selecting the decision aiding approach to be used the analyst has to
think about two questions [33]: "Where the rationality model comes from?" and
"How is the model obtained?" The answer to the first question allows selecting
more general and objective approaches (normative and descriptive) or subjective
and specific approaches (prescriptive and constructive). The answer to the sec-
ond question distinguishes the models that are postulated (normative approach),
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or derived from observations (descriptive approach), from models that trying to
discover the models (prescriptive approach) or to build the models (constructive
approach) based on a dialog with the DM.

Even though MCDA methods developed in the framework of decision aid-
ing theory (see Section 2.2.3) may assume one of the decision aiding approaches
when developing a rationality model, the methods are independent from the ap-
proaches used and vise-versa [33]. For instance, it is possible to use an outranking
based preference aggregation procedure (that is explicitly claimed have been de-
veloped within constructive philosophical justifications [140]) within a normative
approach. Next, we consider some widely-used MCDA theories that have been
developed.

2.2.3 MCDA Theories

A survey of the MCDA literature shows that the utility theory and the outranking
approach are the two most widely-used directions in MCDA theory.

A utility theory (UT) assumes that a DM is at least unconsciously maximizing
some utility function during the decision aiding process. This function represents
a global aggregation of utilities of alternatives on each criterion. Thus, it is nec-
essary to define the form of criteria functions. The preferences of the DM are
expressed in the form of criteria weights. The weights in UT represent trade-offs
between criteria. In order to represent uncertainties, UT uses probabilities (which
other MCDA approaches consider as a shortage). UT can work with different ag-
gregation forms for utility functions, the main aggregation forms being additive,
multiplicative and distributional. The approach considers all the alternatives de-
fined within a problem as comparable and independent. Since von Neumann
and Morgenstern [159] who developed UT, many methods have appeared in the
framework of this approach, and include Multiattribute Utility Theory (MAUT)
[80] and Analytical Hierarchical Process (AHP) [141].

An outranking approach uses DM’s preferences in order to compare pairs of
alternatives. Based on the pairwise comparison, a complete or non-complete pre-
order is built. The methods based on this approach use the concept of outranking
relation (see Section 2.1.5). The main idea is to estimate the outranking degree of
one alternative over another one, that is, to show that there are enough arguments
to consider "one alternative to be at least as good as another alternative" and there
are not enough arguments in the opposition to such an assertion. In comparison
to UT, outranking methods can take into account incomparability of alternatives
as well as have a noncompensatory character. Two alternatives are considered
incomparable if they are not indifferent to each other and it is not possible to say
which of the two alternatives is better or worse. Compensatory models, such as
UT, consider the trade-offs between criteria that are usually expressed by criteria
weights. In the outranking approach, on the other hand, there is no technique for
estimating trade-offs between criteria. Weight is used to represent relative impor-
tance of a criterion when compared to other criteria in terms of votes that support
or oppose the assertion "one alternative is at least as good as another alternative".
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The preference information for different outranking methods may be expressed
in weights and through preference, indifference and veto thresholds. Currently,
there are many MCDA methods developed according to the principles of this ap-
proach, and include ELECTRE [139], [140] and PROMETHEE [158] families of
methods.

The two above-mentioned theories require some preferential information
in the form of parameters of the model to be defined by the DM. However, it
may be difficult for the DM to understand the meaning of the parameters of a
particular model and/or express his or her preferences. That is why, recently, two
other MCDA directions have been intensively developed: preference elicitation
procedures and rules inferring also called here decision rule approach [172].

Preference elicitation procedures are indirect techniques that do not require the
DM to express his or her preferences in the form of parameters of a specific model,
even though they assume the form of the model to be known (e.g., utility theory
or outranking approach). One way of the preference elicitation is used with the
assumption that there are decisions available made during the past experience by
the DM or that he or she may make some decisions for realistic alternatives not
considered in the set of given alternatives, or decisions made for a subset of alter-
natives from the set of given alternatives. Based on such available decisions, the
parameters of the specific model are elicited. A so-called preference disaggrega-
tion approach has been developed that elicits preferences in the form specified by
the model (either the utility theory or the outranking approach) with one of the
mathematical programming techniques. A number of methods have been devel-
oped in the framework of preference disaggregation approach assuming utility
theory models, such as UTA [71], UTADIS [37], [72] and based on an outrank-
ing approach, such as ELECTRE TRI Assistant [119]. On the other hand, SMAA
[87], [153] performs simulations of the parameters of a specified model based on
the Monte-Carlo simulation. Usually, with these methods, there is no need for
specifying any information (such as decisions earlier made by the DM), but, if
some partial information about the parameters of the model (e.g., in the form of
intervals of values or their distribution) is available, it can be used in the SMAA
methods.

A decision rule approach is a technique that describes the behavior of the DM
by means of "if ..., then ..." rules or decision trees [172]. This idea is adapted from
artificial intelligence, where a similar approach is used, for instance, in expert
systems. It also assumes availability of the decisions made by the DM in the
past or readiness of the DM to make some decisions for realistic alternatives not
considered in the set of given alternatives or for a subset of given alternatives.
Several methodologies have been developed in the framework of the decision
rule approach, such as verbal decision analysis [99], [100], fuzzy sets [15], [166],
and rough sets [56]-[60].

Now that the most important concepts and terminology of MCDA have
been introduced, we have a sufficient background for considering classification
within the MCDA framework.
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2.3 MCDA and Classification

The rest of this work concentrates on classification. After describing several clas-
sification problems, we investigate different types of methods for solving classi-
fication problems with the help of MCDA approaches.

In many situations, the DM faces the problem of grouping alternatives into
homogeneous classes: this we call a classification problem. Usually, a classifica-
tion task appears in diagnostics, when the DM assigns each alternative from the
set of given alternatives to one or several classes. For example, a doctor arrives
at a diagnosis for a patient, an engineer establishes the type of problem when
a machine is broken down, and a biologist classifies a new plant to one of the
existing classes of plants or defines a new classification for it. The methods that
solve such problems should be transparent to allow the DM to perform effective
decision making.

2.3.1 Types of Classification

The central concept of a classification problem is class. A class is a collection of
alternatives with similar properties or even values for the same properties, when
compared to alternatives in other classes. The classes in a problem can be prede-
fined and well-described; it is also possible that information about the classes is
absent. If the classes are known beforehand, then the problem is called a classi-
fication problem. On the other hand, when there is no description of the classes
or even the number of classes is absent, the problem is known as a clustering
problem.

A clustering problem (see Figure 1) is also called an unsupervised learning
problem. In this case, classes are not defined and sometimes even the number
of them is unknown a priori. On solving a clustering problem, it is necessary
to locate in one cluster alternatives that are more similar to each other, when
compared to the alternatives in the other clusters. Clustering methods are dif-
ferentiated by the type of criteria used for optimal clustering, the distance or the
similarity measure, and the searching algorithms used [64], [73], [109].

The classification problem is also called a supervised learning problem. The
classification problem can be considered as a particular case of a clustering prob-
lem when additional information about the number of classes and their structure
is known a priori. There are two types of classification problems: nominal, when
classes are not ordered, and ordinal, when they are ordered according to the pref-
erences of the DM. The ordinal classification can be considered as a particular case
of the nominal one, when additional information about the order of the classes
is available. Utilizing such information about the order of classes is specific for
the MCDA methods, and it can improve and/or simplify the modeling process
in some cases.

There are different definitions of classification problem types in the MCDA
literature. For instance, Perny [131] describes classification as follows: "Given
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FIGURE 1 Clustering

a set of alternatives evaluated with respect to several criteria and a list of pre-
defined categories characterized by specific reference points in the space of crite-
ria, the multicriteria assignment problem is to evaluate the membership of each
alternative in each category. If a value judgment is associated with each cate-
gory the assignment problem amounts to evaluate the intrinsic quality of each
alternative". In this work, categories are classes, reference points are reference or
boundary alternatives for nominal and ordinal classification types, respectively,
and a multicriteria assignment problem is called as ordinal or nominal classifica-
tion for the case when classes are ordered and not, respectively (see [37] and [140]
for alternative definitions of classification problem).

In a nominal classification, it is necessary to assign alternatives to classes
predefined in some way. Usually, the number of classes is known a priori. In
the nominal classification problem, the classes may be (but not necessary are)
predefined with reference alternatives. A reference alternative is an alternative
typical for the class. In Figure 2, the not yet classified alternatives are shown as
grey circles (on the left); after classification they appear in three different classes
as yellow, blue and green circles, respectively; and with the reference alternative
as a red circle for each of the class.

In an ordinal classification, it is necessary to assign alternatives to ordered
classes predefined in some way. Again, the number of classes should be known a
priori. An ordinal classification problem may use (but not necessary does) bound-
ary alternatives for constraining classes. In Figure 3, instead of a reference alter-
natives for each class, we have dark blue circles that represent boundary alterna-
tives between each pair of classes. The boundary alternative is an alternative that
lies in the border between two classes and, changing values on at least one crite-
rion, will move this alternative to a neighboring class. The boundary alternatives
are ordered according to the classes, which they constrain.

A classification procedure consists of two steps. In the first step, a model
of the problem is built. During this step, the structure of the classes is defined in
some way, for instance, with the reference or the boundary alternatives for each
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FIGURE 2 Nominal classification

FIGURE 3 Ordinal classification

class. In the second step, the model is tested, and then it is utilized for assigning
new alternatives to one of the predefined classes. As already mentioned, the
classification problem with MCDA is also called a multicriteria assignment problem
[10] and ordinal classification is often called a sorting problem [37] (see also [26],
[172]).

In what follows, we concentrate on classification problems. In the next sec-
tion, a mathematical formulation of a classification problem is considered.

2.3.2 Mathematical Model of MCDA Classification

The mathematical formulation of a classification problem can be described as fol-
lows: it is necessary to assign the set of alternatives X = {x1, . . . , xm} evaluated
on the set of criteria G = {g1, . . . , gn} to one class from the predefined set of
classes (ordered or not) L = {l1, . . . , ls}. If an assignment to several classes is
allowed, it is specified. An estimation of the alternative xi on the criterion gj is
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denoted as gj(xi). Additional notation specific to each method will be explained
while presenting these methods. Next, we define some specific cases of nominal
and ordinal classification when additional information about reference or bound-
ary alternatives, respectively, is available.

If reference alternatives are available, they may be used for predefining
classes in the nominal or ordinal classification. A reference alternative is an alterna-
tive that most completely characterizes the class. The set of reference alternatives
is defined as B = {b1, . . . , bs}, where s is the number of classes. There can be
several reference alternatives for each class. In this case, the set of reference al-
ternatives is defined as B = {b1

1, . . . , bt1
1 , . . . , b1

s , . . . , bts
s }, where t1 and ts are the

numbers of reference alternatives for the classes l1 and ls, respectively.
After the definition of classes, the actual classification procedure can be con-

sidered: each alternative from the set X should be assigned to one of the classes
from the set L based on the rule of assignment, or the chances for each alterna-
tive to be assigned into each class are estimated. In case the nominal classes are
predefined with reference alternatives, the assignment rule is the following: an
alternative is assigned to a class if it is equivalent or roughly equivalent to at least
one of the reference alternatives of this class. Later, we discuss what "equivalent"
or "roughly equivalent" mean in methods.

If boundary alternatives are available, they may be used for ordinal clas-
sification. A boundary alternative belongs to a class, but changing the value on
at least one criterion will move this alternative to a neighboring class. A set of
boundary alternatives is defined as B = {b0, . . . , bs}, where s is the number of
classes, and bq−1 (q = 0, . . . , s) is the lower bound and bq is the upper bound
of the class lq, thus boundary alternatives separate classes. In case of several
boundary alternatives, for each class the set of boundary alternatives is defined
as B = {b1

0, . . . , bt1
0 , . . . , b1

s , . . . , bts
s }, where bh

q (h = 1, . . . , tq, q = 0, . . . , s) is one of
several boundary alternatives between classes lq−1 and lq. In this case there could
be several upper boundary alternatives and several lower boundary alternatives
for each class. In case the ordered classes are predefined with boundary alterna-
tives, the classification is realized according to the following rule: an alternative
is assigned to a class if it is located between the lower and the upper boundary
alternatives of a class.

In the next chapter, we consider different MCDA methods developed re-
cently for ordinal and nominal classification types. The survey provided tries to
cover the most widely-spread methods for classification within the MCDA frame-
work.



3 MCDA METHODS FOR CLASSIFICATION

Originally, MCDA methods were developed for choice and ranking types of prob-
lems, and, thus, most of them are based on the measurement of the degree of
preferences between alternatives from the given set. That was the reason for the
ordinal type of classification problem to appear in MCDA as a natural relaxation
of a ranking problem for the condition that at each rank level several alternatives
can be assigned. Later, however, the MCDA methodology has been extended for
nominal type of classification as well as for clustering problems. In this chapter,
we consider the methods for ordinal and nominal types of classification prob-
lems.

At the beginning of the decision aiding process, the analyst together with
the DM structures the problem at the initialization step of the decision aiding
process (see Section 2.2). For the classification problem, we have to define the
set of alternatives to be classified, the set of criteria and/or attributes, on which
the alternatives are evaluated, as well as the set of classes. It is important to de-
fine the scales of criteria and/or attributes and how the criteria and/or attributes
values are measured at each scale. The criteria and/or attributes can have nu-
merical or verbal values. In turn, the numerical values may have a form of exact
values, intervals, or distributions of criteria values. The requirements for the set
of criteria are checked (see Section 2.1.4). It should be also specified if there is
order between the classes or not, and if it is possible to define the classes with
boundary or reference alternatives (for ordinal and nominal classification types,
respectively).

If there is no possibility to define the reference or boundary alternatives, we
have to ask the DM if he or she is able to specify some assignment examples (that
may be decisions the DM used to make in the past or decisions made for realistic
alternatives not considered in the set of given alternatives). Otherwise, we have
to find a way to ask the DM to classify some (but not all) alternatives from the
set of given alternatives. For ordinal classification problems, if the boundary al-
ternatives are available, their order should correspond to the order of classes that
they constrain. Indeed, if we have the following order of classes according to the
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preferences of the DM:
ls P ls−1 P · · · P l1,

then the boundary alternatives are ordered as follows:

bs P bs−1 P · · · P b1.

The case of several lower and several upper boundary alternatives for each class
is defined by analogy with only a difference that in the set of lower (or upper)
boundary alternatives for the same class the relation of incomparability is estab-
lished:

b1
s J · · · J bts

s P b1
s−1 J · · · J bts−1

s−1 P · · · P b1
1 J · · · J bt1

1 .

We have also to consider in what form the final classification should be pre-
sented, that is, weather each alternative should be assigned into exactly one class
or weather it would be enough to provide a probability of the alternative to be
assigned to each class. Then, the MCDA method is selected with respect to the
information and structure of the problem defined at the initialization step.

There is a large variety of methods for classification in MCDA. The diversity
of the methods is due to the different types of classification problems, the initial
information available and requirements to the resulting one. The opinion of the
DM regarding the decision aiding process should also be taken into account. The
analyst should select the method that is suitable for the DM and that corresponds
to his or her knowledge and system of preferences.

It can be said that the selection of the MCDA method is an MCDA prob-
lem itself (by analogy with the selection of multicriteria optimization method in
[107]). Some recommendations for the selection of an MCDA method for classifi-
cation are provided in Section 5.2.

The most widely-used MCDA methods for classification have been mainly
developed within the MCDA theories presented in Section 2.2.3. Literature re-
views on the MCDA methods for classification can be found in [26], [37], [161],
[172].

In this work, we categorize the MCDA methods for classification discussed
in more detail in a similar way as it is done in [172], more specifically, according
to the assumption about the possibility to describe the behavior of the DM by
means of some formal model involving some parameters and according to the
way the preferences of the DM are elicited (see Figure 4). Two types of MCDA
methods for classification are considered: the first type can be called parameter-
based methods, and the second type parameter-free methods. For the first type, it is
possible to construct a formal model of the DM’s behavior based on some param-
eters. Here, two types of models are defined: utility function-based and outranking
relation-based. Parameter-free methods contain so-called decision rule methods
[172], which assume that the behavior of the DM is too complex to be described
by a formal model based on some parameters, but there are possibilities to define
it with a judgemental model based on a set of rules. The parameter-based meth-
ods are also categorized further according to the way the parameters of the model
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MCDA methods 
for classification

Parameter-based: 
1) utility function-based; 

2) outranking relation-based. 

Parameter-free: 
1) verbal decision analysis; 
2) fuzzy sets; 3) rough sets. 

Direct Indirect 

FIGURE 4 Categorization of MCDA methods for classification

are elicited on direct and indirect methods. With the direct methods, the DM pro-
vides all parameters of the model, while with the indirect ones, the parameters
are elicited based on the so-called assignment examples that are decisions made
by the DM in the past or made on a set of realistic alternatives not considered in
the set of given alternatives or a subset of the set of given alternatives.

Thus, three types of MCDA methods for classification are considered. The
first type is direct parameter-based methods, and the second type is indirect
parameter-based methods. There can be utility function-based and outranking
relation-based direct and indirect methods. The third type is parameter-free de-
cision rule methods. Let us consider these types in more detail.

Even though outranking methods and utility theory approaches assume
principally different formal models, in both cases the parameters of the model
should be well-defined. Usually, this means that the DM should be able to ex-
press his or her preferences in the form of parameters of some formal model.
That is why these methods are called direct parameter-based methods.

Most of the MCDA methods developed for ordinal classification are di-
rect outranking based methods. Among them is the first MCDA method de-
veloped for ordinal classification, called Trichotomic Segmentation [111], [136].
This method belongs to the ELECTRE family of methods and is based on the con-
cordance and non-discordance principle [140]. It is limited to three classes only.
Later, it was extended to the N-TOMIC method [105] and ELECTRE TRI method
[116], [165] with an arbitrary number of ordered classes. The utility based method
AHP [141] has also been adapted for classification problems [148].

A number of direct parameter-based methods have been developed within
the outranking approach for the nominal type of classification. These include the
MC Filtering method [131] and PROAFTN [10], [12].

In this work, in order to provide detailed presentation of the outranking
methodology we select the most widely-used direct outranking relation-based
method for ordinal classification, that is, ELECTRE TRI (see Section 3.1.1). Two
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other direct outranking relation-based methods, MC Filtering (for ordinal and
nominal classification types) and PROAFTN (for nominal type of classification),
are also considered in more detail. One more method for nominal classifica-
tion discussed in this work is TRINOMFC [101] that is also an outranking based
method that, however, stems from another family of methods, PROMETHEE [23].

The so-called indirect parameter-based methods, which also assume a par-
ticular formal model to be used, do not suppose that the DM is able or have to
define all the parameters of the model. These methods try to reduce the cognitive
load of the DM and to alleviate the inconvenience experienced by the DM when
specifying the parameters of a model in a particular form. In some of these meth-
ods, the parameters of the model are elicited from a set of assignment examples
made by the DM in the past or made on the set of realistic alternatives not con-
sidered in the set of given alternatives or on a subset of given alternatives. The
idea has been adapted from the machine learning and training or learning from
assignment examples. Based on such information, the model is constructed and
applied for the classification of the given set of alternatives.

A number of indirect utility function-based methods have been developed
in the framework of the preference disaggregation approach [37]. The preference
disaggregation approach elicits the DM’s preferences from the assignment exam-
ples based on one of the mathematical programming techniques. The following
methods have been developed in the framework of preference disaggregation
approach: UTADIS [37], PAIRCLAS [38] and MHDIS [35]. In this work, we con-
sider the UTADIS method in more detail (see Section 3.3.1). For the ELECTRE TRI
method, preference elicitation procedures have been developed, among them DI-
VAPIME [113], SRF [46] and ELECTRE TRI Assistant [119], [124]. In this work,
we consider two of them: DIVAPIME and ELECTRE TRI Assistant (see Section
3.2). ELECTRE TRI Assistant also uses preference disaggregation approach.

Another way of indirect preference elicitation has been suggested in SMAA
methods [87], [153]. In these indirect parameter-based methods, the preferences
of the DM are simulated by means of Monte-Carlo simulations. We consider in
more detail the SMAA-TRI method [151] that uses an outranking based ELECTRE
TRI model (see Section 3.4). The new SMAA-Classification method [164] that
uses SMAA for simulation of parameter values based on the distance function is
presented in Section 4.1.

We define the third type of MCDA methods for classification as parameter-
free decision rule methods. These methods assume the structure of the DM’s
preferences to be too complex for definition in terms of some formal model. In-
stead, the behavior of the DM is described in a symbolic or judgemental form by
means of decision rules. This approach is adapted from machine learning tech-
niques, such as expert systems. The idea is to search for the classification rules
that, like in preference disaggregation approach, are based on a set of assignment
examples. A number of methods has been developed in the framework of this
approach, such as verbal decision analysis [99], [100], fuzzy sets [15], [166], and
rough sets [56]-[60]. In this work, we consider some methods from all the three
approaches (see Sections, 3.5, 3.6, 3.7). We have also developed a new MCDA
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classification method, called Dichotomic Classification, (see Section 4.2) in the
framework of verbal decision analysis.

While both fuzzy sets and rough sets assume a set of assignment examples
to be available, in verbal decision analysis such information is absent a priori.
The verbal decision analysis methods are interactive. During the dialog, the DM
has to classify some alternatives selected by the method, but not all. In the frame-
work of verbal decision analysis, the following methods have been developed:
ORCLASS [100], SAC [95] and a new Dichotomic Classification method [163] (to
be presented in Section 4.2).

In this work, we discuss in more detail methods published in English be-
fore the summer 2007 in widely-accessible journal articles. Some other methods
for ordinal and nominal classification types are not covered by the present sur-
vey. These include STEPCLASS [50], methods based on fuzzy integrals [110] and
TOMASO [103], FlowSort [122], and screening methods [26]. There are also clas-
sification approaches discussed in works [1], [5], [20], [21], [82], [142] and appli-
cations presented in [3], [7], [25], [125]. We have not described these works in
more detail because they are based on different philosophies than the methods
presented here. However, we include several of them in Figures 17 and 16 in Sec-
tion 5.2, for completeness, in order to show where they would be located in the
decision trees when selecting an MCDA method for classification.

Each approach has advantages and disadvantages; there is no single one
that suits every possible situation. That is why the available initial information
and requirements for results as well as the nature of the classification problem
and the DM’s opinions about the suitability of the method to his or her own way
of thinking should be considered when selecting a method. After comparing fea-
tures of the presented methods in Section 5.1, we wish to give some recommen-
dations to the analyst and DM for selecting an MCDA-based method for classifi-
cation (see Section 5.2).

As has been mentioned earlier, the first classification methods in MCDA
stem from the ranking problem and have been developed for ordinal classifica-
tion problems. In ordinal type of classification methods, additional information
about the order between classes is assumed to be available. Usually, these meth-
ods estimate preferences between alternatives. On the other hand, later, the nom-
inal type of classification methods has become studied. These methods not utilize
any information about the order on the set of classes, and for them estimation of
the indifference or similarity between alternatives is more natural. This is the rea-
son for us to describe ordinal methods first and then to present nominal ones in
next sections. Methods for both types of classification problems may stem from
the same MCDA theories (see Section 2.2.3) and may have some similar features;
in this way they are connected. In what follows, some of these connections are
discussed when describing methods to point out similarities.
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3.1 Outranking methodology

In the outranking approach, the idea was to develop a theory that would allow
comparing a pair of alternatives while taking into account some level thresholds
that determine when to be indifferent or when to prefer one over the other on the
same criterion. At the same time, the conflicting nature of the multicriteria prob-
lems should also be paid attention to, and two alternatives should be allowed
to be incomparable on the same criterion. In such a way, the methods have a
non-compensatory nature that means an absence of trade-off between criteria.

For a historical overview on the development of outranking approaches,
we refer to [23], [45], [104], [135], [140]. Here, we only briefly mention that
the ELECTRE family is most developed group of outranking methods. The first
outranking-based ELECTRE method was developed in 1965 by Roy [135] in order
to choose the best alternative from the set of given alternatives. Then, ELECTRE
Iv appeared using additional information about veto threshold. The next version,
ELECTRE IS, allowed initial information to be imprecise and considered pseudo-
criteria. This version is still in use for the choice type of MCDA problems. The
subsequent versions, ELECTRE II and ELECTRE III, were developed for ranking.
The latter one uses pseudo-criteria and fuzzy binary outranking relations and is
the current version for the ranking type of MCDA problems. One more version,
ELECTRE IV, exists for problems where the ranking has to be done without tak-
ing into account the relative importance of criteria.

As mentioned earlier, the first outranking-based classification method, Tri-
chotomic Segmentation, [111], [136] was developed for sorting problems with
three classes. Later, this method was extended to an arbitrary number of classes
in the N-TOMIC [105] and ELECTRE TRI methods [119], [165]. Before consider-
ing ELECTRE TRI in more detail in the next section, it is worth to say that the
development of this method continues and we consider the latest trends in Sec-
tion 3.1.2.

There have been attempts [47] to develop the classification method in the
framework of another outranking approach, the PROMETHEE-based method,
introduced by Brans [23] and also described in [158]. The latest one is the Flow-
Sort method [122] that allows nominal and ordinal classification. There are still
possibilities for the development of the classification methods in the framework
of other outranking approaches, for instance, within an outranking method based
on the stochastic dominance relation [104].

3.1.1 ELECTRE TRI

ELECTRE TRI is a method for ordinal classification. The basis for the ELECTRE
TRI method [45], [119], [165], as well as for all the methods from the ELECTRE
family, is estimation of the outranking relations between pairs of alternatives.
As defined in Section 2.3.2, in the classification problem, there is a set of given
alternatives to be classified X estimated on a set of criteria G to be assigned
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into a set of ordered classes L predefined by the set of boundary alternatives
B = {b0, . . . , bs}. Each class is constrained by two (upper and lower) bound-
ary alternatives. Boundary alternatives separate classes in such a way that the
upper bound bq of the class lq−1 is the lower bound of the class lq (q = 1, . . . , s).
Changing values on at least one criterion moves the boundary alternative to a
neighboring class. For solving a classification problem, the method estimates the
outranking relation for each alternative xi ∈ X (i = 1, . . . , m) to be classified and
each boundary alternative bq between classes lq−1 and lq by calculating the out-
ranking index. We assign the alternative xi to the class lq if it is preferred to the
lower boundary alternative bq−1 of the class, and if the upper boundary alterna-
tive bq of the class is preferred to this alternative.

For the calculation of the outranking index, it is necessary to elicit the fol-
lowing information from the DM: a set of alternatives to be classified and a set
of criteria, on which the alternatives are evaluated with a scale of quantitative
values for each criterion. We ask the DM to specify the number of classes as well
as their order, according to his or her preferences; for example, the first class is
more important than the second one and so on. He or she should also define the
upper bq and lower bq−1 boundary alternatives for each class lq. In addition, the
ELECTRE TRI method requires the following information for each criterion gj
(j = 1, . . . , n): indifference qj(·), preference pj(·) and veto vj(·) thresholds as well
as weight wj; and cutting level λ. The indifference threshold qj(·) indicates the
largest difference between two alternatives on the criterion gj such that they re-
main indifferent for the DM. The preference threshold pj(·) indicates the smallest
difference between two alternatives such that one alternative is preferred to the
other one on the criterion gj. The veto threshold vj(·) defines the smallest differ-
ence between two alternatives on the same criterion gj that shows incomparabil-
ity of these two alternatives. The thresholds should satisfy following constraint
vj(·) > pj(·) > qj(·). The weight wj of criterion gj indicates the relative impor-
tance of criterion when compared to other criteria in terms of votes that support
or oppose the assertion "one alternative is at least as good as another alterna-
tive". The cutting level λ shows the smallest value of the outranking index that is
sufficient for considering an outranking situation between two alternatives.

The outranking relation is verified by two conditions: concordance and non-
discordance with regards to thresholds and weights defined by the DM. The first
condition requires preference of the alternative xi over the boundary alterna-
tive bq on the majority of criteria and the second one demands the absence of
strong opposition to the first condition in the minority of criteria. We compute
two partial indices for each criterion: concordance Cj(xi, bq) and Cj(bq, xi), and
discordance Dj(xi, bq) and Dj(bq, xi). They allow calculating the outranking in-
dices S(xi, bq) and S(bq, xi). The assignment procedure consist of a comparison of
outranking indices to the cutting level λ. There are two assignment procedures:
pessimistic and optimistic. The pessimistic procedure starts with the comparison
of an alternative to the lower bound of the highest class: we calculate the out-
ranking indices and compare them to the cutting level. The optimistic procedure
works in the same way but begins with the comparison of an alternative to the



43

0

1

)( qj bp)( qj bq

),( qij bxC

)()( ijqj xgbg −

FIGURE 5 ELECTRE partial concordance index Cj(xi, bq)

0

1

)()( ijqj xgbg −)( qj bv)( qj bp

),( qij bxD

FIGURE 6 ELECTRE partial discordance index Dj(xi, bq)

upper bound of the lowest class. In order to assign the alternative xi to the class
lq according to the pessimistic procedure (or to the class lp+1 with regards to the
optimistic one), the alternative should have the value of the outranking index
S(xi, bq) bigger than the cutting level λ and value of the index S(xi, bq+1) smaller
than λ. The DM can select one of the two assignment procedures or apply both
of them. Next, we can discuss the algorithm of the ELECTRE TRI method.

The algorithm of the ELECTRE TRI method
The procedure of classification with ELECTRE TRI consists of two parts:

construction of outranking relation (I) and utilization of this relation for the as-
signment of alternatives to classes (II).

Part I. Let us construct the outranking relation xiSbq for each alternative xi
(i = 1 . . . , m) to be classified and each boundary alternative bq (q = 0, . . . , s) with
the following steps:

Step 1 Calculate the partial concordance indices Cj(xi, bq) and Cj(bq, xi) for
each criterion gj (j = 1, . . . , n). Because a maximization problem is under con-
sideration, the criterion gj has an increasing direction of preference. The partial
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concordance index Cj(xi, bq) is computed as follows (see Figure 5):

Cj(xi, bq) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if gj(bq) − gj(xi) ≥ pj(bq),
1, if gj(bq) − gj(xi) < qj(bq),
pj(bq)−gj(bq)+gj(xi)

pj(bq)−qj(bq)
,

if gj(bq) − pj(bq) < gj(xi) ≤ gj(bq) − qj(bq).

The partial concordance index Cj(bq, xi) as follows:

Cj(bq, xi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if gj(xi) − gj(bq) ≥ pj(xi),
1, if gj(xi) − gj(bq) < qj(xi),
pj(xi)−gj(xi)+gj(bq)

pj(xi)−qj(xi)
,

if gj(xi) − pj(xi) < gj(bq) ≤ gj(xi) − qj(xi).

Step 2 Define the overall concordance indices C(xi, bq) as an aggregation of
partial concordance indices:

C(xi, bq) =
∑n

j=1 wjCj(xi, bq)

∑n
j=1 wj

,

C(bq, xi) =
∑n

j=1 wjCj(bq, xi)

∑n
j=1 wj

.

Step 3 Calculate the partial discordance indices Dj(xi, bq) and Dj(bq, xi) for
each criterion gj. We compute the partial discordance index Dj(xi, bq) for the cri-
terion gj according to the increasing direction of preference as follows (see Figure
6):

Dj(xi, bq) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if gj(bq) − gj(xi) < pj(bq),
1, if gj(bq) − gj(xi) ≥ vj(bq),
gj(bq)−gj(xi)−pj(bq)

vj(bq)−pj(bq)
,

if gj(bq) − vj(bq) < gj(xi) ≤ gj(bq) − pj(bq).

The partial discordance index Dj(bq, xi) as follows:

Dj(bq, xi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if gj(xi) − gj(bq) < pj(xi),
1, if gj(xi) − gj(bq) ≥ vj(xi),
gj(xi)−gj(bq)−pj(xi)

vj(xi)−pj(xi)
,

if gj(xi) − vj(xi) < gj(bq) ≤ gj(xi) − pj(xi).

Step 4 Calculate the outranking index S(xi, bq) that shows outranking credi-
bility of xi over bq assuming S(xi, bq) ∈ [0, 1] as follows:

S(xi, bq) = C(xi, bq)
n

∏
j=1

1 − Dj(xi, bq)
1 − Cj(xi, bq)

,

where j = 1, . . . , n and Dj(xi, bq) > Cj(xi, bq).
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Step 5 The DM defines the cutting level λ. Usually, the value of the cutting
level is λ ∈ [0.5, 1]. This level defines the minimal value of outranking indices
accepted for outranking of one alternative over the other one. The value of the
outranking index S(xi, bq) is compared to the cutting level λ. Based on such com-
parison, the preference situation between two alternatives is specified: they can
be indifferent, one preferred to the other one or they may be incomparable:

• if S(xi, bq) ≥ λ and S(bq, xi) ≥ λ =⇒ xi Ibq, then the alternatives xi and bq
are indifferent;

• if S(xi, bq) ≥ λ and S(bq, xi) < λ =⇒ xiPbq or xiQbq, then the alternative xi
is strongly or weakly preferred to the boundary alternative bq;

• if S(xi, bq) < λ and S(bq, xi) ≥ λ =⇒ bqPxi or bqQxi, then the boundary
alternative bq is strongly or weakly preferred to the alternative xi;

• if S(xi, bq) < λ and S(bq, xi) < λ =⇒ xi Jbq, then the alternatives xi and bq
are incomparable.

Part II. We exploit the constructed outranking indices S(xi, bq) for the classifica-
tion of each alternative in the following way. The DM selects the assignment
procedure: pessimistic or optimistic or both. Then, we compare the outranking
indices for each pair of the alternative xi to be classified and each boundary alter-
native bq to the cutting level λ with regards to the assignment procedure as it is
shown in Figure 7.

The pessimistic (or conjunctive) procedure assumes that we start to compare
the alternative xi to the lower bound bq−1 of the highest class lq (q = s, . . . , 1)
and continue in a decreasing order until we find such a lower bound bq−1 that
is outranked by the alternative xi: xiSbq−1. For the estimation of the outranking
relation xiSbq−1, the outranking index S(xi, bq−1) is calculated. Then, we calculate
the outranking index between the alternative xi to be classified and the upper
bound bq of the class lq: S(xi, bq). We assign the alternative xi to the class lq if
S(xi, bq−1) ≥ λ and S(xi, bq) < λ.

The optimistic (or disjunctive) procedure, on the other hand, assumes that
we begin to compare the alternative xi to the upper bound bq of the lowest class
lq (q = 1, . . . , s) and proceed in an increasing order until we find such an upper
bound bq that has strict preferences over the alternative xi: bqPxi. Then, we cal-
culate the outranking index between the alternative xi to be classified and the
lower boundary alternative bq−1 of the same class lq: S(xi, bq−1) we assign the
alternative to this class lq if S(xi, bq−1) ≥ λ and S(xi, bq) < λ.

Classification according to one of the described procedures is unambiguous.
If an assignment is considered according to both of the procedures, an alternative
can be assigned to different classes. For example, an alternative can be assigned
in the pessimistic procedure to a lower class than in the optimistic one. This am-
biguity must be resolved with the help of the DM or by changing the assignment
procedure [135].
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FIGURE 7 Assignment procedure of the ELECTRE TRI method

3.1.2 Extensions and Applications

The first outranking-based classification method, Trichotomic Segmentation, was
introduced by Moscarola and Roy [111], [136]. Its big limitation is the inability
to use more than three classes; nevertheless, as the first trial to classify within
the framework of multicriteria decision theory made in 1977, it was a great step.
Moreover, the method does work and its interactive modification has recently
been used [74].

The main differences between Trichotomic Segmentation and ELECTRE TRI
is the definition of the sets of upper and lower boundary alternatives as well
as determination of several cutting levels in the former one. The definition of
several cutting levels requires more cognitive effort from the DM when compared
to ELECTRE TRI, where only one cutting level is defined. At the same time,
the possibility of having several upper and several lower boundary alternatives
allows the boundaries between classes be of a more versatile form. It also means
that the upper bound of a class is not necessarily the lower bound for the class
with a higher importance.

In [136], there is an example of an implementation of the Trichotomic Seg-
mentation method for a small sized real-world problem with 2 upper boundary
alternatives and 2 lower boundary alternatives, and 5 criteria with the range of
0-100 on each criterion. The modified Trichotomic Segmentation method, that is
based on the continuous interaction with the DM, was improved for larger data
sets with 600 alternatives estimated on 5 criteria with a range of possible values
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of 0-100 in [74].
The ELECTRE TRI method has successfully been applied to a large num-

ber of real-world problems. These include but are not limited to: environmental
applications, such as estimation of impact on groundwater quality with sorting
cropping systems [3], definition of national priorities when reducing greenhouse
gas emissions [53], assessment of land-use stability [75], sorting of public trans-
port zones for evolutive ticket pricing [117], software evaluation [128], and in
education estimation of skills and qualification [145]. Thus, from this review of
literature the method is able to solve problems with the number of alternatives
up to 100, evaluated on up to 100 criteria with a range of values on each of them
between 0-100, and classified in up to 5 classes.

The ELECTRE TRI model is sensitive to the variation of the parameters val-
ues. That is why the SMAA-TRI method has been developed for sensitivity and
robustness analysis [151]. We consider SMAA-TRI in more detail in Section 3.4.
There are other more traditional procedures that has been developed for study-
ing imprecise parameters of ELECTRE TRI. In [106], a sensitivity analysis with
extremes values for possible parameter values is undertaken. Dias and Mousseau
[30] have developed the interactive software IRIS that performs a robustness anal-
ysis assuming all parameters of the ELECTRE TRI model to be defined impre-
cisely. The tool communicates with the user, asking to provide constraints for all
the parameters and inform if some contradiction appears.

3.1.3 Concluding Remarks

In ELECTRE TRI, it is necessary to define a large number of parameters besides
the boundary alternatives that separate classes: the thresholds and the weights
for each criterion as well as the cutting level. The specification of such parameters
directly may be cognitively difficult, although possible, for the DM. For instance,
the definition of thresholds is not an easy task for the DM and requires from him
or her an ability to understand the meaning of each threshold and to operate
with differences on criteria values (that is not a typical cognitive operation for
the DM). Moreover, even though using the thresholds has advantages when very
conflicting criteria are involved, one can claim that they do not have a clearly
defined physical or psychological interpretation [16]. Another evaluative aspect
is the DM’s time costs: the less information we ask from the DM, the less is the
cost in time; however, more information allows creating more comprehensive
models. Although exercising the parameter specification may help the DM to
understand his or her preferences, such acquisition process requires from him or
her a lot of cognitive effort. This is the reason for several studies in the MCDA
theory devoted to the preference elicitation procedures. For outranking methods,
DIVAPIME [113] and SRF [46] techniques have been developed for the purpose
of weights elicitation.

Based on the preference disaggregation approach, principles (see Section
3.3) there have been models created for all the ELECTRE TRI parameters elicited
at the same time [118]. However, such models appear to be quite complex. That
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is why several other mathematical models (that are also based on preference dis-
aggregation approach) have been developed for eliciting parts of ELECTRE TRI
parameters while assuming the rest of parameters to be known. These models
have been used for eliciting weighs and cutting level [116], boundary alternatives
[124], and veto thresholds [31]. At the same time, the ELECTRE TRI Assistant
software [119], [124] has been developed for user-friendly parameter elicitation
from assignment examples. We consider some preference elicitation methods in
more detail in the next section.

3.2 ELECTRE TRI Preference Elicitation Methods

As was mentioned earlier, for the construction of the ELECTRE TRI model, the
weights, the preference, the indifference and the veto thresholds for each crite-
rion as well as the cutting level should be asked from the DM. Even though such
parameters may be understandable for a DM in the situations with very conflict-
ing criteria, their precise values may be difficult to define if asked directly. For
example, the analyst can ask a question: "Please, specify the maximal value of
the difference between two alternatives on the criterion gj such that they remain
indifferent for you?" Even professionals in the problem area may not be able to
answer because they are not used to compare differences between criteria values.
Such difficulties create preconditions for the development of indirect ELECTRE
TRI parameter elicitation methods.

Researchers have been searching for ways to simplify the procedure of pref-
erence elicitation and found that DMs easily compare two alternatives and are
able to select the better one when these alternatives differ only on some crite-
ria. A pairwise comparison of such alternatives allows defining parameters of
ELECTRE TRI in the DIVAPIME method. It is also convenient for a DM to give
examples of classifications of alternatives that he or she is used doing in everyday
practice. This property has been used in preference disaggregation approach pre-
sented in Section 3.3 and, later, it has been extended in ELECTRE TRI Assistant
for the development of parameters of the ELECTRE TRI model. In the next two
sections, we discuss DIVAPIME [113] briefly and ELECTRE TRI Assistant [119],
[124] in more detail.

3.2.1 DIVAPIME

DIVAPIME (Determination d’Intervalles de Variation pour les Parametres
d’Importance des Methodes ELECTRE) [113] is an Elicitation Technique for Im-
portance Parameters (ETIP) for the ELECTRE family of methods. DIVAPIME is
an indirect technique. This means that the values of the ELECTRE TRI param-
eters are not asked directly from the DM but obtained through a comparison of
alternatives. During pairwise comparisons of alternatives the DM defines which
one of two alternatives is preferred or states that they are indifferent.
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For the ELECTRE TRI method, it is necessary to specify boundary alterna-
tives, a cutting level and for each criterion weight and thresholds: preference,
indifference and veto. It has been proposed, with DIVAPIME, to search for the
weights and thresholds by solving a clustering problem in the space of ordered
criteria. The DIVAPIME method assumes boundary alternatives and the cutting
level to be defined by the DM.

Clustering the space of ordered criteria means grouping criteria with a simi-
lar importance into one group when compared to the criteria in the other groups.
Groups of criteria are ordered, so dividing the space of weights can be done by
finding the upper and lower bounds for each of them. In order not to mix the
main problem of this work - classification of the set of alternatives - with the
problem in this section of grouping weights, in what follows, we will refer to
the latter problem as finding upper and lower bounds for the weights or an in-
terval of weights. Here, an interval of weights is defined for a group of criteria
that are of equal importance to the DM. It was proposed in [113] to define such
intervals through the construction of a non-empty polyhedron in the space of
weights. Clustering the weights with DIVAPIME assumes that the upper bound
of a weight group is not necessarily the lower bound for the neighboring group
of weights with a higher importance. Thus, for each group, upper and lower
bounds should be defined.

The preference and indifference thresholds are calculated for the neutral
(neither attractive nor unattractive) and the attractive (the most desirable - maxi-
mal as we consider maximization as the optimum) evaluations on each criterion.
The veto threshold is determined in the same way as the preference and indiffer-
ence thresholds, if necessary. Next, we discuss briefly the procedure for the elici-
tation of weights implemented by grouping the space of the admissible weights.

The algorithm of the DIVAPIME preference elicitation procedure
Step 1 Ranking the weights by the importance or pre-ordering criteria.
Step 2 Clustering the weights with a similar importance, that is finding

groups in the weight space (collection of "similar" weights in the group that are
"different" from the weights in the other groups).

Step 3 Evaluation of distance between groups of weights and definition of
the lower bound for each group.

Step 4 Providing an upper bound for each group of weights.
Step 5 Reducing the polyhedron of weights and in such a way cutting the

number of groups if it is possible.

At the end of the preference elicitation procedure, there are groups of crite-
ria, each of which is of a similar importance for the DM. A group of weights has
upper and lower bounds that define the range of the weights acceptable for the
current criteria group.

The threshold acquisition is performed through a dialog with the DM. It
could be difficult for the DM to estimate significant differences between two cri-
terion values. In order to infer the values of these thresholds, the DM is asked to
define the neutral and the attractive values for each criterion. The neutral value
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is neither attractive nor unattractive estimation, while the attractive value is the
most desirable value on the criterion. The preference and the indifference thresh-
olds for the neutral value of criterion are searched for on the interval between
the neutral and the attractive values of this criterion. The search is organized by
a dichotomy method. The minimal value of criterion indifferent to the neutral
value is considered as an indifference threshold, and the maximal value of crite-
rion that is preferred to the neutral value is defined as the preference threshold
for the neutral value. In the same way, the thresholds for the attractive values are
explored during dichotomic search on the interval between the neutral and the
attractive values and by comparing the result of segmentation with the attractive
value.

The preference and the indifference thresholds are searched for the neutral
and for the attractive values. The neutral and the attractive values of a thresh-
old bound the interval for all possible values of thresholds. Even though the
ELECTRE TRI method requires one weight value (and similarly one value of each
threshold) for each criterion, it is not specified in DIVAPIME how to select this
particular weight (threshold) value from the interval.

The idea of finding the ELECTRE TRI parameters by a pairwise compari-
son of fictitious alternatives is promising; however, it is time-consuming with the
DIVAPIME method and requires a lot of cognitive effort from the DM. Another
approach, used in the ELECTRE TRI Assistant method, intends to overcome these
drawbacks.

3.2.2 ELECTRE TRI Assistant

The ELECTRE TRI Assistant procedure [119] is based on the preference disaggre-
gation approach ideas presented in Section 3.3, according to which for a DM it
is easy to give examples of the classification of alternatives to classes that he or
she is used doing in everyday practice. For example, the DM can say: "Usually,
I classify the alternative xi to the class lq, the alternative xr to the class lk" and so
on. Based on the examples described, there is a possibility of a holistic [118] or a
partial [113], [116], [124] inference of parameters of the ELECTRE TRI classifica-
tion model with mathematical programming techniques. The model developed
should reassign the given set of classification examples as closely as possible with
a minimal misclassification error. Partial inference of weights is done by assum-
ing that other parameters (thresholds and boundary alternatives) are fixed. The
other possibility is to infer the preference and the indifference thresholds by as-
suming the weights and boundaries to be constant. In what follows, the holistic
preference elicitation procedure is considered.

In ELECTRE TRI Assistant, except for the assignment examples, the DM
should define a cutting level. For simplicity, it is assumed that the outranking
relation follows only a concordance rule without a necessity to take into account
non-discordance. In this case, there is no need to define a veto threshold. The
other parameters such as the preference and the indifference thresholds as well
as boundary alternatives and weights of criteria are obtained by solving some
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optimization problems to be described below by means of a mathematical pro-
gramming technique.

The model developed by ELECTRE TRI Assistant should be compatible
with the assignment examples if the ELECTRE TRI method should be able to pro-
vide a classification of these examples in the same way as the DM does. The ex-
perimental studies [116] show that it is enough to have 2n (where n is the amount
of criteria) assignment examples X∗ ∈ X (where X is the set of alternatives) for
eliciting the weights if the other parameters are fixed. The results of this study
were also used in the ELECTRE TRI Assistant method but enlarged for the holistic
inference of all parameters including the preference and the indifference thresh-
olds as well as the boundary alternatives. In order to develop the optimization
problem, we have to define its variables, objective function, and constraints.

The algorithm of the ELECTRE TRI Assistant preference elicitation procedure
Step 1 Define variables that should be optimized. In the ELECTRE TRI

method, the outranking index is used as a measure of indifference or preference
between each alternative and each boundary alternative of each class. That is
why it is necessary to search for the following variables: preference pj(·) and the
indifference qj(·) thresholds and weight wj for each criterion gj (j = 1, . . . , n) as
well as boundary alternatives bq (q = 0, . . . , s).

The cutting level allows defining which values of the outranking index are
large enough for an outranking relation to be true and which are not. As was de-
fined in Section 3.1.1 for the assignment of the alternative xi ∈ X∗ (i = 1, . . . , m∗)
to the class lq (q = 0, . . . , s) according to the pessimistic assignment procedure,
two conditions should be satisfied: S(xi, bq−1) ≥ λ and S(xi, bq) < λ. That is
why two slack variables, zi and yi, are introduced. These define the differences
S(xi, bq−1) − λ and λ − S(xi, bq), respectively, as follows:

zi = S(xi, bq−1) − λ,
yi = λ − S(xi, bq),

where zi ≥ 0 and yi ≥ 0.
Step 2 Define an objective function. The goal of the inferring procedure is

to find a model that best matches the assignment examples offered by the DM
and to minimize misclassification error (following the preference disaggregation
approach ideas presented in Section 3.3). For simplicity, it is assumed that slack
variables zi and yi are similar for each alternative xi ∈ X∗ to be misclassified to
any class. The authors of [119] assume that minimization of the slack between the
outranking index and the cutting level increases the probability of an alternative
to be assigned to a class correctly. That in turn would allow obtaining an optimal
model that corresponds to the assignment examples proposed by the DM:

max
xi∈X∗ min{zi, yi},

where zi ≥ 0 and yi ≥ 0 are slack variables for the assignment examples, that are,
alternatives xi ∈ X∗.
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In order to take into account any possible inaccuracy of the model, when
compared to the DM’s assignment examples, it is necessary to consider the over-
all ability to assign an alternative to a "correct" class:

max
xi∈X∗(min{zi, yi} + ε ∑

xi∈X∗
(zi + yi)),

where ε > 0 is a small value; ∑xi∈X∗(zi + yi) is a sum of slack variables for each
assignment example xi ∈ X∗.

The differentiable form of the same function is:
maxxi∈X∗(α + ε ∑xi∈X∗(zi + yi)),
s. t. α ≤ zi, α ≤ yi,
i = 1, . . . , m∗,

(1)

where m∗ is the number of assignment examples in X∗.
Step 3 Define constraints for the problem. The following constraints for the

slack variables should also be taken into account:
S(xi, bq) − zi = λ,
S(xi, bq+1) + yi = λ,
λ ∈ [0, 5; 1],

as well as the constraints for the thresholds and importance weights of criteria:

gj(bq+1) ≥ gj(bq) + pj(bq) + pj(bq+1),
pj(bq) ≥ qj(bq), wj ≥ 0, qj(bq) ≥ 0,
j = 1, . . . , n; q = 1, . . . , s,

where bq, wj, pj(·), qj(·) are variables that are searched for each criterion gj; and
pj(·) and qj(·) depend on the alternative considered.

Step 4 Create an optimization problem and solve it by means of some math-
ematical programming technique. We get the problem including (1) and con-
straints needed in the form:

maxxi∈X∗(α + ε ∑xi∈X∗(zi + yi)),
s.t. α ≤ zi, α ≤ yi,
∑n

j=1 cj(xi,bq)
∑n

j=1 wj
− zi = λ,

∑n
j=1 cj(xi,bq+1)

∑n
j=1 wj

+ yi = λ,

λ ∈ [0, 5; 1],
gj(bq+1) ≥ gj(bq) + pj(bq) + pj(bq+1),
pj(bq) ≥ qj(bq), wj ≥ 0, qj(bq) ≥ 0,
i = 1, . . . , m∗; j = 1, . . . , n; q = 1, . . . , s.

This is a nonlinear problem with 2m∗ + 3ns + n + 2 variables and 4m∗ + 3ns + 2
constraints, where m∗ is the number of assignment examples; n is the number of
criteria; and s is the number of classes. The quality of the model developed with
the assignment examples is assessed by the overlap between the results of ELEC-
TRE TRI supported by ELECTRE TRI Assistant and the DM’s opinions about
classification. If the model does not provide a satisfactory classification it is pro-
posed for the DM to rethink the assignment examples [118].
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3.2.3 Concluding Remarks

The two parameter elicitation methods described above use different approaches.
While ELECTRE TRI Assistant allows holistic elicitation of DM’s preferences in
the form of assignment examples, DIVAPIME utilizes results of pairwise com-
parisons of alternatives. Each method has its advantages and drawbacks. The
ELECTRE TRI Assistant method involves modest cognitive effort from the DM,
while in DIVAPIME, the cognitive loading of the DM is larger.

On the other hand, ELECTRE TRI Assistant includes solving a nonlinear
problem that requires computational time and a powerful computer. However,
both of the indirect parameter elicitation methods described simplify the process
of parameter acquisition when compared to obtaining them directly from the DM.

3.3 Preference Disaggregation Approach

The researchers were searching for ways to simplify the parameter elicitation in
the form specified by each model. They considered the difficulties that the DM
meet while expressing his or her preferences in a particular form of parameters
defined by the model, and noticed that the DM may have no time or willingness
to understand the meaning of the parameters of the model. On the other hand,
for the DM it may be easier to provide the examples of ready decision that he or
she used making in the past; or decisions made for realistic alternatives not con-
sidered in the set of given alternatives; or decisions for a limited set of alternatives
from the set of given alternatives [72]. This fact was considered by developers of
preference disaggregation approach (PDA) [72]. Hence, in PDA, it is not required
for the DM to express his or her preferences in the form of some specific model
parameters but to provide the analyst with ready decisions. Such information
should be enough to develop the decision aiding model.

The relation between the criteria evaluations and the examples of decisions
are analyzed with an ordinal regression-based technique. Then, an aggrega-
tion model is developed in such a way that it resolves, as closely as possible,
the provided decisions. The UTA (UTilités Additives) method is the first PDA
method developed for the ranking type of MCDA problems and was introduced
by Jacquet-Lagreze and Siskos [71]. The first versions of the method assume a
weighted sum preference model, for which parameters are estimated with linear
programming. However, more complex models have been developed later. A
summary of the development of PDA methodology in twenty years until the year
2001 may be found in [72]. Next, we consider the MCDA classification method
developed in the framework of PDA.
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FIGURE 8 Approximated UTADIS criteria functions

3.3.1 UTADIS

First attempts to develop the classification models in the framework of PDA ap-
pear during 60s and have been based on the discriminant function [37]. The fist
MCDA method, UTADIS, for ordinal classification has been developed based on
the UTA method and discriminant analysis [29], [37]. The method assumes that
the DM behaves according to the utility function. In particular, UTADIS is based
on the additive weighted sum utility function. The method tries to reduce the
cognitive loading of the DM and it does not require him or her to express pref-
erences in the form of certain model parameters. Indeed, following the PDA
approach, in UTADIS, the information about assignment examples for each class
is elicited from the DM. Then, this information is used for the identification of the
classification model parameters with a mathematical programming technique.
The model developed should reassign the given set of classification examples
as closely as possible with a minimal misclassification error.

Initially, the UTADIS method assumes that the set of assignment examples
X∗ = {x1, . . . , xm∗} is available, estimated on the set of criteria G = {g1, . . . , gn}
that may have verbal or numerical values and be defined by linear or nonlinear
criterion function (for instance, see Figure 8). For each discrete criterion gj from
the set G, the scale of values S(gj) = {gj1, . . . , gjt} (where t is the number of val-
ues on the scale of criterion gj) is defined. For the continuous type of criterion,
the function is available and its minimal and maximal values [gmin

j , gmax
j ] ∈ S(gj).

The utilities of criteria functions uj(gj(xi)) for xi ∈ X and gj ∈ G are supposed
to be monotone functions (linear or nonlinear) defined on the scales of criteria.
These functions allow different types of scales (both numerical and verbal) with
different measures to be reduced to a new scale in the interval [0, 1]. We assume
that bigger values are better and solve the maximization problem. Thus, all crite-
ria should be reduced to increasing scales.

The form of the criteria utility functions may be different depending on the
risk-attitude behavior of the DM and can be defined through regression analysis.
Thus, for a risk-neutral behavior this function is linear (see Figure 8a). A risk-
averse behavior with the inclination of the DM to be satisfied with the acceptable
performance leads to a concave function type (see Figure 8b), while the tendency
of the DM to search for the top performance and defined as risk-prone behavior
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FIGURE 9 Correct classification and misclassification

can be presented with a convex function (see Figure 8c). Finally, mixed type of
behavior is presented in Figure 8d.

The algorithm of the UTADIS method
Step 1 Select the type of aggregation function. The primary version of the

UTADIS method uses an additive utility function for the construction of the cri-
teria aggregation model:

u(xi) =
n

∑
j=1

wjuj(gj(xi)), (2)

where u(xi) is the global utility of the alternative xi ∈ X∗, and uj(gj(xi)) is utility
of the alternative xi (i = 1, . . . , m∗) on the function of criterion gj (j = 1, . . . , n)
(called in [37] as marginal utility functions), furthermore, wj is the weight of the
criterion gj such that the set of weights is nonnegative and normalized:

wj ∈ W =

{
wj ∈ Rn | wj ≥ 0 and

n

∑
j=1

wj = 1

}
. (3)

The criteria weights are parameters to be defined through a PDA in UTADIS.
Step 2 Approximate each nonlinear criterion function (for instance, see Fig-

ure 8b) with piecewise linear functions as follows. It is assumed that the nonlinear
function of the criterion gj taken values on some interval [gmin

j , gmax
j ] ∈ S(gj) is

divided into z linear subintervals [g0
j , g1

j [, . . . , [gz−1
j , gz

j ] such that:

gk
j = gmin

j +
k
z
(gmax

j − gmin
j ),

where k = 0, . . . , z and gj ∈ G.
The utility of each subinterval of the piecewise linear function is restricted

by the utilities of the breakpoints uj(g0
j ) ≤ · · · ≤ uj(gz

j ). Then, the utility uj(gj(xi))
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of the alternative xi on the criterion gj that belongs to the subinterval [gk
j , gk+1

j [ is
defined:

uj(gj(xi)) = uj(gk
j ) +

gj(xi) − gk
j

gk+1
j − gk

j

(uj(gk+1
j ) − uj(gk

j )),

where k = 0, . . . , z and gj ∈ G.
From this condition, we can see that in order to classify an alternative, it is

necessary to know all the utilities of the breakpoints uj(g0
j ) ≤ · · · ≤ uj(gz

j ) for all

subintervals [gk
j , gk+1

j [ (k = 0, . . . , z) on all criteria gj ∈ G. Thus, this set of utilities
of breakpoints is a set to be defined through a PDA in UTADIS.

Step 3 Define classes by classification rules. The global performance of the
alternative is estimated by aggregating the performances of the alternative on
each criterion and taking into account the criteria weights with regards to equa-
tions (2) and (3). Then, each alternative should be classified by comparison of
its global utility to the utility thresholds of the classes according to the follow-
ing rule: the alternative is assigned into the class lq (q = 1, . . . , s) if its utility is
bigger than the lower utility threshold of the class and is smaller than the upper
threshold of the class:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

if 0 ≤ u(xi) < u1, then xi ∈ l1,
· · · · · · · · · · · · · · · · · · · · · · · ·
if uq−1 ≤ u(xi) < uq, then xi ∈ lq,
· · · · · · · · · · · · · · · · · · · · · · · ·
if us−1 ≤ u(xi) ≤ 1, then xi ∈ ls,

(4)

where the set {u1, . . . , us−1} defines utility thresholds between neighboring or-
dered classes {l1, . . . , ls}, respectively. In order to be able to perform the classi-
fication according to this set of rules, it is necessary to know the utility thresh-
olds between all classes. This set of parameters will be defined through PDA in
UTADIS.

Step 4 Define the objective function. We consider the original version of the
UTADIS method [37], for which the goal is to develop a classification model that
reassigns the set of assignment examples xi ∈ X∗ as closely as possible to the
given ordered classes. In such a way, the misclassification error should be mini-
mized. For instance, in Figure 9 (on the right), two alternatives yellow and green
that should be in the classes with yellow and green alternatives, respectively, ap-
pear in the class with blue alternatives. Then, for correcting such misclassifica-
tions it is necessary to increase the utility of the yellow alternative and decrease
the utility of the green alternative.

Step 5 Define variables that should be optimized. For this purpose, two slack
variables σ+

i and σ−
i are introduced. In case of the slack variable σ+

i , in order to
classify the alternative xi correctly into the class lq, it is necessary to increase its
global utility by uq − u(xi); while the slack variable σ−

i defines misclassification
of the alternative xi such that in order to assign it correctly into the class lq its
global utility should be decreased by u(xi) − uq−1. By including slack variables
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into the classification rules, the condition (4) changes in the following way:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

if u(xi) − σ−
i < u1, then xi ∈ l1,

· · · · · · · · · · · · · · · · · · · · · · · ·
if u(xi) − σ−

i < uq−1,
if u(xi) + σ+

i ≥ uq,

}
then xi ∈ lq,

· · · · · · · · · · · · · · · · · · · · · · · ·
if u(xi) + σ+

i ≥ us−1, then xi ∈ ls.

(5)

Thus, the variables of the model to be estimated are utility thresholds between
all classes, utilities of the breakpoints of criteria functions, criteria weights, and
slack variables.

Step 6 Define constraints for the problem. In addition to the constraints
defined by the classification rules (5), the constraints for the weights to be non-
negative and normalized (3) should be considered.

Step 7 Create an optimization problem and solve it by means of some math-
ematical programming technique. Taking into account the goal of the original
UTADIS method, minimization of classifications errors of the assignment exam-
ples xi ∈ X∗ provided by the DM, the following mathematical programming
model has been developed for the estimation of the above-mentioned parame-
ters:

min
{

∑s
q=1

[
∑xi∈lq

(σ+
i +σ−

i )
mq

]}
subject to
u(xi) − u1 − σ−

i < ε, for xi ∈ l1,
u(xi) − uq−1 − σ−

i < ε,
u(xi) − uq + σ+

i ≥ ε,

}
for xi ∈ lq; (2 ≤ q ≤ s − 1),

u(xi) − us−1 + σ+
i ≥ ε, for xi ∈ ls,

σ+
i ≥ 0; σ−

i ≥ 0,
uq − uq−1 ≥ ε,
u(xi) = ∑n

j=1 wjuj(gj(xi)),
wj ≥ 0, ∑n

j=1 wj = 1,
uj(gj(xi)) increasing function,
ui(gmin

j (xi)) = 0; ui(gmax
j (xi)) = 1,

uj(gj(xi)) = uj(gk
j ) +

gj(xi)−gk
j

gk+1
j −gk

j
(uj(gk+1

j ) − uj(gk
j )),

uj(gk+1
j ) − uj(gk

j ) ≥ 0,

⎫⎬
⎭ if uj(gj(xi))

is nonlinear,

for all xi ∈ X∗,

where σ−
i and σ+

i are two classification errors for the alternative xi when misclas-
sified in upper and lower classes, respectively, when compared to the correct as-
signment into the class lq; mq is the number of assignment examples xi ∈ X∗ clas-
sified to the class lq; u(xi) is the global utility of the alternative xi and uj(gj(xi))
is the utility of the alternative xi on the criterion gj; uq is the utility threshold
between classes lq and lq+1; wj is the weight of the criterion gj; [gk

j , gk+1
j [ with
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(k = 0, . . . , z) is the subinterval of the piecewise linear function on the criterion gj;
ε is a small positive constant introduced for avoiding situations where u(xi) = uq
(for details, see [37]).

The constraints of this mathematical programming model have a nonlinear
form and solving this nonlinear programming problem could be challenging. In
[37], two heuristics have been introduced in order to overcome this problem. The
first one assumes that nonlinear criterion functions are divided in subintervals
in such a way that there is at least one assignment example belonging to each
subinterval. Another heuristics takes into account the distribution of assignment
examples from different classes on each criterion’s scale. If the first heuristics
simplifies computational efforts when developing the classification model, the
second one increases the stability of the additive utility classification models de-
veloped. Let us next discuss the modifications to the basic version of UTADIS
and practical applications of the method in different problem areas.

3.3.2 Extensions and Applications

As has been mentioned above, the first version of UTADIS [29], [37] was devel-
oped assuming an additive utility function of the DM’s preferences when solv-
ing the classification problem by minimizing misclassification error of the set of
assignment examples provided by the DM. Later, several versions of UTADIS
(UTADIS I, II, III) have been developed [36], [171]. In UTADIS I, at the same
time with the original goal (minimization of misclassification errors) the addi-
tional goal is optimized: it maximizes the distances between correctly classified
alternatives and utility thresholds. For modeling purposes, UTADIS II applies
mixed-integer programming instead of linear programming, and minimizes the
total number of misclassification errors instead of minimizing their magnitude.
Finally, UTADIS III combines UTADIS I and UTADIS II modifications.

Another method developed in the framework of PDA is the MHDIS method
(Multi-group Hierarchical DIScrimination) [35], [37]. This method has been de-
veloped considering interactive sequential classification. At each step of MHDIS,
the decision about the assignment of not yet classified alternatives into the most
preferred class (from not yet considered ones) is taken. In such a way, the alterna-
tives classified in the previous steps as well as considered classes are not exam-
ined in the following iterations. Another distinction of the MHDIS method when
compared to the UTADIS method are objectives taken into account. In addition
to minimization of the misclassification errors, maximization of the clarity of the
performed classification and minimization of the number of misclassifications (in
a way similar to UTADIS II and III) are considered.

In several works, the properties of the UTADIS family of methods have been
studied. Zopounidis and Doumpos examine UTADIS methods and compare their
performance to well-known statistical techniques, such as discriminant analysis
and logit and probit analysis [169]; and in [37] a comparison of UTADIS to sev-
eral MCDA methods, such as rough sets and ELECTRE TRI is done. In [38],
the authors study technical parameters of the UTADIS model, such as ε, and the
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ways for dividing criteria functions into subintervals. Mousseau and colleagues
[114] have investigated the possibility of including the size (absolute or relative)
of each class into the UTADIS method.

The UTADIS method has been implemented in the following multicrite-
ria decision support systems: PREFDIS (PREFerences DIScrimination) [170] and
FINCLAS (FINancial CLASsification) [171]. PREFDIS provides users with an in-
terface for modeling ordinal classification models with all four versions of the
UTADIS method. FINCLAS, in addition to possibilities of developing classifi-
cation models with all four versions of the UTADIS method, provides tools for
modeling of financial problems that include but are not limited to a data base of
financial statements and quantitative financial information, tools for credit anal-
ysis and financial forecasting, and graphical tools.

Most of the applications of the UTADIS methods deal with financial clas-
sification [36], [169], [171]. In particular, the methods have been applied for the
prediction of companies business failures [169], for country risk assessment when
estimating the creditworthiness of countries [170], and for estimation of compa-
nies’ credibility for assisting banks in granting credits [171].

3.3.3 Concluding Remarks

The classification with the set of assignment examples is easy for the DM. He or
she should not need a lot of cognitive effort for providing a decision that he or she
is used doing in the past or for being able to make classification of some subset
of given alternatives or realistic alternatives not considered in the set of given
alternatives. It is usually easier to provide such decisions than to provide upper
and lower boundary alternatives for each class.

The additive utility function that is used throughout the UTADIS method-
ology is straightforward and understandable. On the other hand, it has been
criticized for not taking into account the interaction between criteria [127]. How-
ever, the attempts to develop multiplicative models that would overcome such
weakness in the framework of PDA lead to computationally complex nonlinear
models.

Another issue discussed in [37] is post-optimality analysis. According to it,
the classification model developed with PDA and constructed based on the set of
assignment examples may not be robust enough if the set of assignment examples
changes, if for instance, the DM adds new assignment examples. That is why
some additional checking based on the knowledge of the preferential system of
the DM would be of help.

3.4 Stochastic Multicriteria Acceptability Analysis

The traditional way of representing preferences by means of exact parameter val-
ues of a specific model have drawbacks, and these values may not be always



60

available. The main difficulties with extracting initial information in the form
expected by the specific model may appear when the parameters of the model
need to be accepted by several DMs; or when there are no exact values but just
intervals of parameter values; or when there is some distribution of parameter
values; or the information about parameters is absent. The last mentioned case
is the most unlikely of these, but it is possible in situations where the values of
parameters may change over time, or are to be obtained later on. Thus, obtaining
exact information about parameter values may be difficult not only for multiple
DMs but even for one DM. The other problems are discussed in Sections 2.2.1
and 5.1.9, and may be connected to the interpretation of preference information
like weights in different models as well as behavioral aspects of humans when
providing such information. Moreover, such parameters (e.g., weights) elicited
for the same problem with different techniques may be different. One possible
way to tackle with such difficulties is used in PDA [37], [72], where the DM is not
required to define the preferences in the form of some specific model parameters.
On the contrary, PDA methods work in a backward manner and search for such
parameters of the model that most consistently resolve the examples of earlier
decisions provided by the DM. In a similar way, the so-called preference infor-
mation free methods proceed. Such methods have been considered in [6], [24],
[42], and [133]. Recently, another method based on similar ideas appears [66].

The SMAA method [83], [85]-[87] is also a preference information free and
inverse method developed based on the overall compromise criterion method
created by Bana e Costa [6]. SMAA [83] was proposed as a multicriteria de-
cision support system for multiple DMs in the situation of a complete absence
of preference information (for example, criteria weights) or in a situation of in-
completeness of preference information (for example, intervals or distribution of
criteria weights or criteria values). Based on the inverse principle, it describes
preferences that correspond to each possible decision or scenario. SMAA allows
not only to perform choice, ranking or classification but explores the parameter
space based on the Monte-Carlo simulation and finds parameters that support
each particular scenario (selection of the alternative xi to be the best one, or to be
located at a particular rank, or to be assigned to a particular class). For instance,
for the classification problem it finds acceptabilities for each alternative to be as-
signed to each class. It may also be used as a sensitivity and robustness analysis
tool for parameters of the selected MCDA model, in a similar way as it is done
for the ELECTRE TRI in SMAA-TRI [151].

As mentioned before, SMAA allows to take into account preferences of sev-
eral DMs and finds some compromise parameters that would represent prefer-
ences of an averaged or typical DM of this group of DMs. Then, if some prefer-
ences of several DMs are available, they may be introduced in the method with
intervals or distributions of parameters that are considered in the Monte-Carlo
simulation. In this work, we refer to modeling of preferences of a single DM as
imprecise or uncertain, not forgetting that the preferences of several DMs may be
modeled in the same way.

The nature of Monte-Carlo methods is such that random parameter values
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for the model are simulated. Then, the results of the modeling corresponding
to the same scenario are aggregated. The frequency of each scenario shows the
probability of its appearance, while averaged parameter values correspond to
the preferences of a typical DM when such a scenario is chosen. In Monte-Carlo
simulation, the error margins are small due to the large number of iterations; thus,
they do not have to be taken into account. Most of the existing SMAA methods
are for the choice and ranking types of MCDA problems. For the detailed survey
of SMAA methods developed so far, we refer to [153].

In SMAA methods developed so far, the information about criteria values
and/or DM’s preferences are assumed to be imprecise or uncertain. Thus, the
alternative xi is denoted as ξi ∈ χ when estimated with stochastic values gj(ξi)
on each criterion gj. The stochastic criteria evaluations are presented by a joint
probability distribution f (ξi) in the space Rm×n. It is assumed that the DM can
express his or her preferences in the form of weights of criteria. For different
methods, the meaning of the weights may be different. That is why the analyst
must explain to the DM the meaning of weights depending on the model used.
We discuss and compare weights in different models later in Section 5.1.9. For
the SMAA method, it is also important to specify the meaning of weights. For
instance, when using the original SMAA method [83] that is based on additive
value function, where the weights represent trade-offs between criteria. Within
ELECTRE TRI, and, consequently, in SMAA-TRI, weight represents the number
of votes supporting each criterion.

The weight w ∈ W is assumed to be stochastic. Thus, depending on the
model used for each scenario the set of favorable weight vectors W(xi) is defined.
For instance, in the original SMAA method [83], the set of favorable weights max-
imizes the values of the additive value function and with such set of weights the
alternative is considered to be the best one:

W(xi) = {w ∈ W : u(xi, w) ≥ u(xr, w), r = 1, . . . , m},

and any weight from the set of favorable ones makes the overall utility of the
alternative xi to be better or equal when compared to any alternative from the
given set.

The SMAA method provides the following indices: the acceptability index,
the central weight vector, and the confidence factor. The acceptability index shows
the variety of different preferences that support the alternative to be the best one.
It is computed as a multidimensional integral over the criteria distributions fχ(ξi)
and the favorable weight space fW(w) as follows:

ai =
∫

ξi∈χ
fχ(ξi)

∫
w∈W(ξi)

fW(w)dwdξ.

The acceptability index divides the set of given alternatives into efficient ones
(with ai � 0) and inefficient ones (with ai = 0 or near zero). The acceptability
index is affected by the scaling of criteria. That is why scaling cannot be done
arbitrary. For more details on the possible types of scaling for SMAA, see [87].
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The central weight vector defines the averaged favoring weights with which
the alternative is considered to be the best one. It is computed as a multidimen-
sional integral over criteria and weights distributions fχ(ξi) and fW(w), respec-
tively:

wc
i =

∫
ξi∈χ

fχ(ξi)
∫

w∈W(ξi)
fW(w)wdwdξ/ai.

In case several DMs taking part in the decision process, the central weight vector
represents the preferences of a typical DM supporting the alternative. Thus, even
if the preferences of a particular DM are different from the ones represented by
the central weight vector, he or she can learn about the preferences that show the
averaging preferences of the DMs that participated in the decision process. On
the other hand, if only one DM participates in the decision aiding process, but
he or she has uncertain preferences, then the central weight vector represents the
averaged preferences of this DM.

The confidence factor estimates the level of accuracy for the alternative to
be the best one. It is calculated as a multidimensional integral over the criteria
distributions fχ(ξi) as follows:

pc
i =

∫
ξi∈χ:u(ξi,wc

i )≥u(ξr,wc
i )

fχ(ξi)dξ.

The confidence factor evaluates the accuracy of the criteria values for detecting
efficient alternatives. Thus, in the case of selection of the set of most efficient al-
ternatives among a large set of given ones, the alternatives with a low confidence
factor should not be chosen.

The original SMAA method has been designed only for the choice type of
MCDA problems with one or several best alternative(s) to be selected. SMAA-
2 [87], on the other hand, allows ranking of the set of given alternatives. The
analysis of each alternative is enlarged holistically for all ranks. It also assumes
not only additive but a general value function, in order to include additional
preference information in a different form. Thus, new descriptive indices are
introduced: the rank acceptability index, three k-best rank-type measures, and
the holistic acceptability index. In SMAA-2, again the sets of nonnegative and
normalized weights (see equation (3)) are simulated. From all simulated weight
vectors the favorable once are selected in Wr(ξi) with which the alternative ξi is
successfully assigned into the rank r:

Wr(ξi) = {w ∈ W : rank(ξi, w) = r}.

Such weights should assign alternative to a particular rank according to the func-
tion:

rank(ξi, w) = 1 +
m

∑
r=1

ρ(u(ξi, w) ≥ u(ξr, w)),

where ρ(true) = 1 and ρ( f alse) = 0.
We are not going into more detail that can be found in [153], for example.

Next, we introduce the SMAA-TRI method developed for the sensitivity and ro-
bustness analysis of the ELECTRE TRI parameters.
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3.4.1 SMAA-TRI

In this work, we are mainly interested in the classification methods. In the frame-
work of SMAA, the SMAA-TRI method has been developed as an extension of
the ELECTRE TRI method. SMAA-TRI analyzes the stability of ELECTRE TRI
model parameters arbitrarily distributed in the finite space in order to find such
of them that support assignment of alternative to each class. SMAA-TRI allows
not only classification, but sensitivity and robustness analysis of the parameter
values of the ELECTRE TRI method [151]. As has been mentioned in Section
3.1.1, the ELECTRE TRI method is sensitive to the variation of the parameter val-
ues. That is why such analysis is important. Next, we consider SMAA-TRI in
more detail.

The SMAA-TRI assumes that the parameters of the ELECTRE TRI model
are specified in a different way for classification with SMAA-TRI. In particular, in
[151], it is proposed to analyze the stability of the sets of boundary alternatives
B = {b0, . . . , bs}, of weights W = {w1, . . . , wn}, and of criteria G = {g1, . . . , gn}
and cutting level λ. They are presented in a non-deterministic way with the fol-
lowing stochastic variables:

• Each boundary alternative bq of the class lq is presented with the stochastic
variable φj(bq) for the value of the alternative bq on the criterion gj. Be-
cause, in ELECTRE TRI, we consider classes to be ordered, the boundary
alternatives between classes are ordered as follows:

bs P bs−1 P · · · P b0.

The boundary alternatives between classes are assumed to be independently
distributed and their distributions do not overlap. Then, all possible crite-
ria values for the set of boundary alternatives B may be presented with the
joint density function fΦ(φ) in the space Φ ⊆ Rs−1×n.

• The weights W for criteria G are presented by joint density function fW(w)
in the space of feasible weights W. Total lack of preference information
is presented, in a ’Bayesian’ spirit, by a uniform distribution of parameter
values. For instance, such a representation for the weights in W is defined
as f (w) = 1/vol(W). However, if some information about distribution or
about the intervals of weights is available, it can be included here. The
weights are assumed to be non-negative and normalized (see formula (3)).
This is the main difference with the ELECTRE TRI weights, for which there
is no need for normalization.

• The cutting level λ is defined as a stochastic variable Λ with density func-
tion f (Λ) in the interval [0.5, 1].

To simplify the analysis, the rest of the parameters are assumed to be determinis-
tic and fixed, even though they all can be modeled in a similar way. Thus, thresh-
olds (indifference q(·), preference p(·) and veto v(·)) are assumed to be determin-
istic and defined by the DM, and criteria values gj(xi) (i = 1, . . . , m, j = 1, . . . , n)
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of alternatives from X are supposed to be available. We define the set of all the de-
terministic values by T = {gj(xi), qj(·), pj(·), vj(·)} for (i = 1, . . . , m, j = 1, . . . , n).
The SMAA-TRI method may be used in an iterative manner allowing the ELEC-
TRE TRI parameters values to be updated at each iteration.

As with other SMAA methods, in the output of the SMAA-TRI method
there is descriptive information in the form of acceptability indices for each al-
ternative to be assigned into each class. If we define the classification function
class(Λ, φ, w, T) based on the ELECTRE TRI method as follows:

xi ∈ lq =⇒ q = class(Λ, φ, w, T), (6)

and the class membership function as follows:

d(xi, lq) =
{

1, if class(Λ, φ, w, T) = q,
0, otherwise.

Then, the acceptability index aq
i describes the share of possible parameter val-

ues that supports the assignment of the alternative xi to the class lq and is defined
as a multidimensional integral over the finite parameter space as follows:

aq
i =

∫ 1

0.5
f (Λ)

∫
φ∈Φ

fχ( fΦ(φ))
∫

w∈W
fW(w)d(xi, lq)dwdφdΛ. (7)

For a stable and robust assignment, the class acceptability index is equal to 1 only
for one class and 0 for the rest of classes; otherwise, the classification is not stable
and robust with respect to the imprecise parameters.

The algorithm of the SMAA-TRI method
Step 1 Simulate all the parameters that are assumed to be stochastic accord-

ing to uniform distribution, if not specified otherwise.
Step 2 Apply ELECTRE TRI for the classification of the set of initial data

with the stochastic (simulated) and deterministic (fixed) parameters. Save all the
results necessary for calculating SMAA indices.

Step 3 Compute the descriptive information in the form of SMAA-TRI ac-
ceptability indices according to (7) for each alternative xi to be assigned to each
class lq.

Step 4 Provide the DM with the SMAA indices. If the DM is not satisfied
with the obtained classification, suggest him or her to rethink the initial informa-
tion (deterministic or stochastic) and specify it. Otherwise, if the DM agrees with
the results of the classification the procedure is finished.

When compared to the more traditional approaches for sensitive analysis
[106] and robustness analysis [30], SMAA-TRI has following advantages:

• The cognitive effort for defining the extremes of parameter values is re-
duced.

• With acceptability indices quantitative information about assignment to dif-
ferent classed is provided when compared to the range of possible classes
in the more traditional methods.
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• Parameters that are imprecise by nature, such as weights, may be more
meaningful when elicited as imprecise values (when compared to exact pa-
rameter values elicitation in the more traditional methods).

Later in this work (see Section 4.1), we present a new SMAA-Classification method
that extends the SMAA methodology for classification problems.

3.4.2 Extensions and Applications

Except the main direction of the SMAA methodology, represented by the SMAA
and SMAA-2 methods, several other SMAA methods have been developed. The
SMAA-O method [85] expands the SMAA-2 in order to process ordinal and cardi-
nal criteria values at the same time. The ordinal values on the scales are mapped
with ranks. It is assumed that the DM(s) can rank the alternatives on each cri-
terion before the analysis starts. Alternatives that are considered to be equally
good are placed on the same rank. The interval on the scales of the ordinal crite-
ria does not contain any information and may be different for the same criterion.
There is also a method developed for the situation where the utility function can-
not be applied but where a pseudo-criteria should be used. For such cases, the
SMAA-3 method [88] has been developed taking into account the experience of
the ELECTRE family of methods and based on Electre III (see [138], [158]). There
have also been techniques for eliciting and aggregating preferences based on be-
lief functions [155]. An alternative way of modeling preferences when compared
to weights are reference points. By defining reference points the DM specifies the
goals and desired values for each criterion. There are two methods that have been
developed for the modeling of reference points with SMAA: Ref-SMAA [86] and
SMAA-P [90]. Ref-SMAA [86] uses reference points to model desired goal prefer-
ences of multiple DMs. Achievement scalarizing functions of different types may
be used for characterizing non-dominated solutions. The SMAA-P method [90]
is based on the prospect theory [76] that assumes the behavior of the DM to be
risk-dependent (see Section 3.3.1).

In addition, research has been done for situations where the dependencies
between criteria should be taken into account [84]. There has been another in-
vestigation for improving discrimination in large sets of given alternatives to be
analyzed with SMAA by means of introducing cross confidence factor [89]. More-
over, extensive study has been devoted to the selection of the number of neces-
sary and sufficient simulations in order to have an accurate computation with the
Monte-Carlo technique used in SMAA [153]. The accuracy and complexity of the
SMAA algorithms are discussed in the works of Tervonen et al. [152], [153].

The applications of different SMAA methods include infrastructure plan-
ning for the development of the harbor area in Helsinki, Finland [65], forest plan-
ning in Finnish Lapland [78], [79], and elevator planning [154].
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3.5 Verbal Decision Analysis

The verbal decision analysis (VDA) methods have been developed by Larichev
and his colleagues [100, 95], in order to aid in the decision making of unstructured
problems. According to Newell, Shaw and Simon [123], it is difficult, in unstruc-
tured problems, to provide numerical evaluations on criteria as well as estimate
dependencies between them. Usually, in unstructured problems, a DM faces a
new problem or a problem that has new features when compared to the ones he
or she has been solving and where information may be missing at the moment
of decision making. The alternatives can have verbal or imprecise numerical es-
timations on criteria values. The absolute definition of scales of criteria can be
absent and only a relative definition is at the disposal of the DM. For instance,
it may be known that one value is better than another one, but the information
about how much better it is may be absent. In such problems, criteria, instead
of having objective scales, may only have subjective scales that are based on the
DM’s preferences, his or her knowledge, experience and intuition.

There can be uncertainties in the definition of the classes: in their number
and boundaries, not forgetting the clustering problem. However, here we mainly
deal with classification tasks where classes are defined (at least their number),
and look at the uncertainty in the criteria and alternatives.

The idea behind the VDA methods is to take into account the cognitive sides
of human behavior. These methods assume elicitation of DM’s preferences in a
natural language that sometimes can be the only way for the DM to express his
or her thoughts. On the other hand, if numerical information is available, it is
utilized. The elicitation of DM’s preferences is adapted to the human "capacity
limit", according to which human short term memory has limited abilities for
storing information. When large volumes of information are to be processed si-
multaneously, a human usually applies different simplifications such as aggrega-
tion or division. He or she also tries to minimize efforts when making a decision
in complex problems and uses simple strategies: easy cognitive operations such
as addition and subtraction with a small number of variables [100]. Thus, increas-
ing the number of criteria and the number of values on scales of criteria leads to
decreasing the quality of decisions obtained by the DM.

Features of unstructured problems define the requirements for VDA meth-
ods. At the same time, it is necessary to take into account the fact that the logical
rules of decision making used in the VDA methods should be mathematically
valid for operating with verbal information. Even though, according to psycho-
logical experiments [92], it is natural for the DM to use simple mathematical oper-
ations such as addition and subtraction, they cannot be used when verbal values
are estimated. Thus, we should search for other ways when developing rules for
operating with verbal judgements. Another requirement is connected with the
human factor in the decision aiding process: the DM’s estimations are not nec-
essarily accurate. Obviously, people can make errors and be inconsistent with
their preferences. The error propagation leads to incorrect results. That is why
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we should be able to check the consistency of information obtained from the DM
with his or her previous answers at each iteration of the decision aiding process.
In spite of the DM’s continuous involvement in the process of decision aiding,
obtaining some final solution by the method may not be evident for him of her.
Thus, the method should provide an explanation for the final result.

The main feature of the VDA methods is the ability to operate with quali-
tative information without direct transformation to a quantitative form. Usually,
MCDA methods are not adapted for working with verbal information in a pure
form: some converting rules are applied and the final result is obtained in numer-
ical form or the DM is forced to express his or her preferences in a numerical form.
However, there are cases, when it is difficult to give precise numerical estimation
on criteria or the information can be lost during the transformation.

When developing VDA methods, researchers were searching for ways to
avoid transformation of verbal criteria values into numerical analogies by the
DM or by the method at the final output. They utilized the assumption that val-
ues on the scales of criteria are ordered according to their preference to the DM
in such a way that the most desirable value has the maximal rank. Judging desir-
ability is possible due to the nature of criteria. Thus, for each value on the scale
of a criterion a rank corresponds. It is assumed that the difference between two
neighboring values on the scales of criteria is the same for all pairs of neighbor-
ing values. When operating with ranks, it is possible to save the transparency of
verbal values to the DM and allow him or her to make an evaluation of the alter-
natives with verbal values, while using ranks of verbal values on criteria scales
inside the methods.

For different types of MCDA problems, Larichev and his colleagues devel-
oped several methods based on the principles of VDA [92], [95], [96], [99], [100].
Closed Procedures near Reference Situation (that is the abbreviation of Russian
words: ZAPROS-LM) [100] allows partial rank-ordering of alternatives according
to their importance for the DM, PAired COMpensation (PACOM) [100] selects the
best alternative from the set of given alternatives, and ORdinal CLASSification
(ORCLASS) [100], Subset Alternative Classification (SAC) [95] and CYCLE [93]
methods classify a set of alternatives into ordered classes.

In general, any VDA method contains the following routines:

1. Interactive dialog between the DM and the algorithm, in the framework of
which the DM has to classify some alternatives, but not all.

2. Based on the partial preferences inferred in the previous routine, decision
aiding rules are developed with regards to the psychologically proved ap-
proaches to the decision making that correspond to the human processing
abilities.

3. Information received from the DM is checked on the consistency with pre-
viously obtained information. In case that contradictions appear, the DM is
asked to resolve them by changing one or both of the contradicting answers.
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4. Explanation procedure for decisions obtained is at the disposal of the DM
at the end of the method.

The classification with VDA is interactive. A preference elicitation procedure is
built in the methods and is organized through a dialog with the DM: at each it-
eration, the DM assigns one alternative specifically selected by the VDA method
to some class. Based on the answer of the DM, some alternatives may be auto-
matically classified. The procedure is repeated until each alternative is assigned
to exactly one class. The consistency of the information received from the DM is
checked with the previously obtained one. In case of a contradiction, the DM is
asked to rethink his or her answers. At the end of the classification, when each
alternative is classified, the set of rules that describes classes can be obtained.
Based on this set of rules, the DM can get an explanation about the appearance
of each alternative in the class. According to the requirements of unstructured
problems and taking into account features of classification tasks, the ORCLASS
and the SAC methods have been developed. In the next section, the ORCLASS
method will be discussed as well as its limitations, and after that, the SAC method
is described to show how to overcome some of these limitations.

3.5.1 ORCLASS and SAC

The ORCLASS method [100] is the first of the VDA methods developed for clas-
sification. It allows assigning alternatives described with qualitative or numer-
ical values into ordered classes. Thus, the initial information for the ORCLASS
method is the following: the number of classes and the set of criteria with the
scale of values for each of them. The values on the scales of criteria are ordered
by importance: there is a rank for each criterion value on the scale, and the most
desirable value has the maximal rank. The classes are also ordered in such a way
that the most desirable class has the maximal rank. The set of alternatives in-
volved in classification is obtained as a combination of values on the scales of
criteria in a form of a so-called Cartesian product of the scales of criteria. Typi-
cally, alternatives with values on criteria scales come from a real problem and are
defined, e.g., by the DM. However, in ORCLASS the set of alternatives is formed
as all possible combinations of values on the scales of criteria. This may cause
redundant calculations when the set of all possible alternatives is large and only
some alternatives should be used as real cases.

Instead of real values, the ranks of values on the scales of criteria are used
in the method for all calculations. Operating with ranks allows avoiding trans-
formation of criteria values to numbers in the verbal methods. We will see below
how this is realized. The method proposes inferring preferences directly from
the DM in the form of answers to questions. For example: "Please, classify the
alternative xi to one of the possible classes in L = {l1, . . . , ls}". However, it would
require a considerable amount of time from a DM to classify every alternative
from the set of possible alternatives. Moreover, cognitive loading of the DM (due
to the limits of short-term memory) grows with the increasing number of possible
alternatives, number of criteria, number of values on them, or number of classes
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will produce more questions.
Researchers have been looking for ways to overcome this problem. They

discovered that the assignment of some alternatives allows classifying several
others according to the relations of preference between the alternatives and with
regards to the order of classes. The property of an alternative to be able to classify
indirectly some other alternatives is called informativeness. The informativeness
of an alternative is calculated as a sum of products (calculated for each possible
class of the alternative) of the number of indirectly classified alternatives and the
probability of the alternative to be assigned to each class. Assignment of the most
informative alternative at each iteration allows classifying the maximal number
of alternatives indirectly with the minimal number of requests to the DM. In such
a way, ORCLASS reduces the number of alternatives to be classified by the DM
directly. Let us formulate the problem mathematically.

If G = {g1, . . . , gn} is the set of criteria, then the scale of values for each
criterion is S(gj) = {gj1, . . . , gjt} and the scale of ranks for the same criterion
is R(gj) = {1, . . . , t}, where t is the number of values on the scale of criterion
gj. The set of all possible alternatives is defined automatically as the Cartesian
product of scales of criteria values X = S(g1)× S(g2)× · · · × S(gn). The number
of classes L = {l1, . . . , ls} is known before the classification starts. However, their
bounds are formed during an interactive procedure with the DM. We are solving
a maximization problem, where higher values are preferred.

When the classification starts, for each alternative xi ∈ X (i = 1, . . . , m)
a set of admissible classes Li is defined (the classes where the alternative can
be assigned). We also use the notation Lold

i for defining the set of admissible
classes at the previous iteration. At the very beginning, the set of admissible
classes contains all classes Li = Lold

i = L and its size is |Li| = s. During the
interactive preference elicitation procedure between the method and the DM, the
classification of some alternatives is done indirectly. In such a way, the set Li
will be reducing until for each alternative xi only one admissible class is left and
then |Li| = 1. This means that each alternative from the set of possible ones is
classified into exactly one class.

It is assumed that the "worst" alternative with the least desirable values on
all scales is assigned to the class with the smallest rank on the scale of classes, for
instance, x1 ∈ l1, and the "best" alternative with the most desirable values on all
scales is automatically classified to the class with the largest rank on the scale of
classes, xm ∈ ls. The ORCLASS method is based on two relations:

1. The strict preference relation between two alternatives determines that the
alternative xi is better to the alternative xr, if it is strictly preferred on at
least one criterion gj(xi)Pgj(xr) and indifferent on the rest of the criteria
g f (xi)Ig f (xr), j �= f . But here instead of real values of alternatives on scales
of criteria their ranks are compared. For example, rj(xi) and rj(xr) are ranks
of alternatives xi and xr on the scale of the criterion gj. Consequently, for
the strict preference of the alternative xi when compared to the alternative
xr the following relations rj(xi)Prj(xr) and rj(xi)Irj(xr) are estimated. Then,
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the strict preference relation between the two alternatives is defined as fol-
lows:

xi P xr (xi is strictly preferred to xr),
if rj(xi) ≥ rj(xr) and r f (xi) > r f (xr) on at least one criterion g f ,
f , j = 1, . . . , n; j �= f ; i, r = 1, . . . , m; i �= r.

(8)

However, this relation is not enough for considering all the situations that
may appear in the decision aiding process. That is why the next relation is
also used.

2. The ordering relation between alternatives from different classes determines,
for instance, that alternatives belonging to the second class are preferred to
alternatives in the first one and so on. If the alternative xi belongs to the
class lq and the alternative xr to the class lk, where q and k are class ranks,
and we know that the alternative xi is preferred to the alternative xr, then
the class lq should have a higher rank than the class lk: q > k (as we consider
a maximization problem a higher rank of the class is preferred to a lower
one). The following binary relation on the set of alternatives X assigned to
some classes from the set L is established [100]:

xi O xr (xi belongs to the class with a higher rank
than the rank of the class where xr is located),
if xi ∈ lq, xr ∈ lk and q > k.

(9)

For a non-contradictory classification, the following relation should be fulfilled
[100]:

if xi P xr is true,
then xr O xi cannot be true.

(10)

This means that alternatives from a class with a lower rank cannot be preferred
to the alternatives from a class with a higher rank.

As mentioned earlier, the ORCLASS method is based on the idea of select-
ing the most informative alternative and proposing it to the DM for classification
at each iteration. For calculation of the informativeness of an alternative, the
following concepts are used: the center of a class (empty or non-empty), the dis-
tance between two alternatives, the size of a set of possible classes, the sum of
distances between any alternative and the center of each class, the number of in-
directly assigned alternatives, and the probability of an alternative to be assigned
to a particular class. Let us consider the definitions of all these concepts.

The center of a class is defined in a different way for empty and non-empty
classes. For a non-empty class lq, the center xq represents a fictitious alternative
with average ranks of criteria values of the alternatives assigned into this class,
xi ∈ lq. Then, each criterion value gj(xi) of the center xq of the non-empty class lq
is taken on each scale of criterion gj (j = 1, . . . , n) with regards to the rank rj(xq)
computed according to the expression:

rj(xq) =
∑xi∈lq rj(xi)

|lq| ,
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where |lq| is the size of the set of alternatives that are assigned to the class lq.
For an empty class lq, the center xq is calculated based on the assumption that

there are non-empty classes lw and lu on both sides of the class lq (not necessary
next to this class but with indices u < q < w). Then, each criterion value gj(xi) of
the center xq of the empty class lq is taken on each scale of criterion gj (j = 1, . . . , n)
according to the rank calculated by the following formula:

rj(xq) = rj(xu) +
rj(xw) − rj(xu)

w − u
(q − u),

where Xq = ∅, Xw �= ∅, Xu �= ∅, and u < q < w are the sets of alternatives of the
classes lq, lw, lu, respectively.

The maximal distance between two alternatives from the set X is defined as dmax
and calculated according to the formula:

dmax = max
xi,xr∈X

n

∑
j=1

|rj(xi) − rj(xr)|,

where xi, xr are two alternatives from the set X.
The distance between the alternative xi and the center xq of the class lq is defined

as diq and is computed as follows:

diq =
n

∑
j=1

|rj(xi) − rj(xq)|.

The distance between the alternative xi and the center xq of each class lq from the
set of admissible classes Li for this alternative is ∑lq∈Li

diq.
The number of indirectly assigned alternatives siq is estimated for each alterna-

tive xi when it is assumed that this alternative is assigned to the class lq. Then,
we have to calculate the strict preference relations with regards to (8) xiPxr and
xrPxi between this alternative xi and each not yet classified alternative xr such
that r �= i. Based on the relation of order between classes according to (9), it is
possible to reduce the set of admissible classes Li for the not yet classified alter-
natives. For some of them, this set will be equal to one |Li| = 1. That means that
those alternatives are classified indirectly. Thus, we can calculate such number
for each alternative xi if we assume or if the DM states that it is assigned to the
class lq.

The probability piq of the alternative xi to be assigned to the class lq is calculated
according to the following formula:

piq =
dmax − diq

|Li|dmax − ∑lq∈Li
diq

.

Then, for each alternative xi from the set X, the informativeness Φi is calcu-
lated as the sum of products (calculated for each class, to which this alternative
can be assigned lq ∈ Li) of indirectly classified alternatives siq and the probability
of each alternative to be assigned to the particular class piq:

Φi = ∑
lq∈Li

piqsiq. (11)
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This informativeness index is calculated for each alternative to be assigned into
each admissible class.

The algorithm of the ORCLASS method
Step 1 Define the subset XL ∈ X of alternatives that are not yet classified

by checking the sizes of the sets of admissible classes Li for each alternative xi
(i = 1, . . . , m). If we have |Li| = 1, then the alternative xi is classified. If there are
no alternatives with more than one admissible class in the set of not yet classified
ones XL = ∅, then the classification is finished. If there are alternatives, for which
|Li| > 1, the procedure of classification continues by moving to Step 2.

Step 2 Calculate informativeness for each alternative xi from the set of not
yet classified alternatives XL according to the formula (11).

Step 3 Select the alternative xi with the maximal informativeness such that:

Φi = max
xr∈XL

Φr.

Step 4 Present this alternative xi to the DM for direct classification. Ask the
DM to select the class lq (q = 1, . . . , s) for the presented alternative xi.

Step 5 Check the existence of inconsistencies. Inconsistencies occur if the
DM assigns the alternative xi to a class lq that does not belong to the set of admis-
sible classes Li. In this situation, all inconsistencies should be eliminated accord-
ing to the procedure described below.

Step 6 For each not yet classified alternative xr ∈ XL, recalculate the subset
of admissible classes Lr (that has been Lold

r at the previous iteration) based on the
information obtained from the DM at the previous step (where in our case xi has
been assigned to lq) according to the formula:

if xi ∈ lq and xi P xr, then Lr = Lold
r ∩ l1, . . . , lq−1,

if xi ∈ lq and xr P xi, then Lr = Lold
r ∩ lq, . . . , ls,

Lold
i = Li.

(12)

After such modifications of the set of admissible classes Lr for each alternative
xr ∈ XL, some alternatives in the set of not yet classified ones may happen to have
only one class in a set of admissible classes (for instance, for xr, |Lr| = 1). These
alternatives are then classified indirectly. At the end of this step, the iteration is
finished and a new one should be started in Step 2.

In case of two classes, there are no inconsistencies because once the DM has
assigned an alternative to a class, all other alternatives with not less preferable
values upon all criteria will be assigned to the same class. For the problems with
more than two classes, the information inferred from the DM is checked for con-
sistency with the previously obtained information according to the property (10).
For example, if q < k and the DM assigns the alternative xi to the class lq and at
the next iteration the alternative xr to the class lk, and xiPxr, a contradiction be-
tween the previously made classification and the current one appears, since one
of the two conditions presented below is violated:

if xi ∈ lq and xr ∈ lk and xi P xr, then for q > k classification is correct,
if xi ∈ lq and xr ∈ lk and xr P xi, then for q < k classification is correct.

(13)
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The reasons for the appearance of inconsistencies are the following: the DM
commits errors in the classification or the initial values on the criteria are esti-
mated incorrectly. The second case is difficult to trace and it is easier to prevent
it by checking completeness and other properties of the set of criteria (see Section
2.1.4). The first kind of error is common for any DM due to human fallibility. It
may be connected to losing attention or absence of a straight policy of classifica-
tion and acting by trial and error; it can also depend on the limited capacity of the
human memory. In this case, the DM should think over his or her answers and
resolve inconsistencies with a new classification of the same alternative.

When all the alternatives from the Cartesian product are classified, the OR-
CLASS method searches for the boundary alternatives between classes and using
boundary alternatives constructs the classification rule or rules for each class. The
boundary alternative can be detected when all the alternatives from the Cartesian
product of all criteria values are classified with regards to the following property
of boundary alternative. Indeed, for the boundary alternative, changing value on
at least one criterion moves it to a neighboring class. The obtained set of rules is
universal for the set of criteria and can be used for any set of given alternatives
defined on the same set of criteria and scales for them.

Based on the obtained set of rules, it is possible for the DM to obtain an ex-
planation for the assignment of each alternative. The explanation of classification
is presented as a location of the alternative regarding to the boundary alterna-
tives.

The effectiveness of the ORCLASS method has been checked in the litera-
ture [100] according to the statistical modeling of different classification problems
by variation in the number of criteria, the number of values on scales of criteria,
and the number of classes. The experimental results of statistical tests are pre-
sented in Table 1 adapted from [100]. Here, the average number of questions
proposed to the DM in order to realize a complete classification with the OR-
CLASS method is obtained experimentally for different sets of alternatives with
the following sizes: 81, 256, 243 or 1024, estimated on 4 or 5 criteria, and classified
into 2, 3 or 4 classes.

TABLE 1 Average number of questions for classification by ORCLASS

Size of G Number of values on Size of A Size of L
the scales of criteria 2 3 4

4 3 81 8 13 17
4 256 10 14 21

5 3 243 10 18 25
4 1024 14 24 33

However, some limitations of ORCLASS may be observed. The results of
statistical tests, provided in [95], show that the ORCLASS method works effi-
ciently only on small sets of alternatives with no more than 5 criteria and with 4



74

values in each criterion classified into 4 classes. For larger problems, the recalcu-
lation of the informativeness of each alternative at each iteration of a dialog be-
tween the DM and preference elicitation procedure is complex and, consequently,
time-consuming. The other feature of ORCLASS is the classification of the whole
set of alternatives obtained as the Cartesian product of scales of criteria. How-
ever, in real life, the DM is typically interested only in a given set of alternatives.
In cases like that, the method does redundant calculations. Another drawback is
the usage of an absolute value of informativeness as a measure, while in practice,
relative estimation is more natural (for details, see [95]). The last two shortcom-
ings are eliminated in the SAC method.

In the SAC method, the set of alternatives to be classified is given by the DM
(allowing a reduction in the number of calculations if the set of real alternatives
is smaller than the set of alternatives obtained as the Cartesian product of scales
of criteria). However, alternatives obtained as the Cartesian product of scales of
criteria are still used in the SAC method whenever they have a higher informa-
tiveness (and allow classifying indirectly a larger number of alternatives) when
compared to the given alternatives.

Another improvement of SAC when compared to ORCLASS lies in consid-
ering a variation of the number of indirectly classified alternatives (for more de-
tails, see [95]). Let us consider an example: the most informative alternative has
the most desirable values on all criteria but one, on which it has the value that is
different from the most desirable value on one rank (on the scale of criterion). In
a situation, where this alternative is assigned to a class with the smallest rank, a
great number of alternatives is classified indirectly. Even though the probability
of such an assignment is small, and in real life the impossibility of such a situ-
ation can be seen with an unaided eye, in the method this probability still can
be large enough to make our assumption valid and such an alternative to be the
most informative one. Thus, this alternative will be provided to the DM for clas-
sification and he or she assigns it to the class with the highest rank that will not
be of any help for the indirect classification. This kind of a situation is not taken
into account in the ORCLASS method because it considers the absolute average
(or mean) as a measure of informativeness. Instead, in the SAC method, a relative
estimation (or variation) σ is taken [100]. Then, informativeness is calculated as:

Φ̃i =
Φi

1 + β σ
Φi

=
Φi

1 + β

√
∑lq∈Li

piqsr
iq−Φ2

i
Φi

.

Here, Φi is the informativeness as it is calculated in the ORCLASS method; σ is the
variation of informativeness; sr

iq is the number of indirectly classified alternatives
obtained as a result of assigning the alternative xi to the class lq and calculated
in the same way as in ORCLASS with such a difference that only the given (real)
alternatives Xr = {xr

1, . . . , xr
m} are taken into account; and β (β > 0) is the relative

importance of variance between the number of indirectly classified alternatives
for different classes. It shows the influence of the variation on the informative-
ness. When variation is not taken into account β = 0, then informativeness is
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calculated in the same way as in ORCLASS but for the given alternatives.
Thus, the difference between ORCLASS and SAC is in the calculation of the

informativeness for each alternative at each iteration and in the taking into ac-
count only given alternatives. The rest of the alternatives can be used because
at some iterations they may happen to be the most informative ones and, con-
sequently, allow assigning the maximal number of given alternatives indirectly.
The relative character of informativeness is also taken into account. Recommen-
dations for the values of variation to be used in different problems have been
studied in [81] and are collected in Table 2. The rest of the classification proce-
dure is the same as in ORCLASS.

TABLE 2 Recommendations for values of variance in SAC

Size of G Size of L
2 3 4

4 2.4 2.3 2.2
5 3 2.7 2.4
6 3.5 3.1 2.6

Statistical tests provided in [95] show the advantage of SAC when compared
to ORCLASS. The efficiency of SAC and ORCLASS is estimated as a number of
questions Q to the DM when classifying the set of given alternatives Xr. It is also
possible to compare the number of questions posed to the DM when a direct clas-
sification of each alternative is organized. In this case, the number of questions is
naturally equal to the set of alternatives. One can say that this is the worst case.

As mentioned before, in ORCLASS and in the same way in SAC, the alter-
natives that lie on the boundaries of the classes are defined in the framework of
the methods. When such alternatives are known, the assignment of any alterna-
tive from the set of given alternatives to the class can be done by comparison to
boundaries of each class. Theoretically, the minimal number of questions posed
to a DM in the VDA method would be questions about alternatives that lie on the
boundaries, but that is an ideal case and it does not work in practice. However,
the efficiency of the VDA method can be estimated with the help of the ideal case.

One more VDA method called CYCLE [93] has appeared recently. The
method works for initial and output conditions that are similar to those of the
ORCLASS method. However, it improves the step of selection of alternative to
be posed to the DM. Indeed, it builds "chains" of alternatives between two alter-
natives that are assigned to two different classes. The chains are constructed in
such a way that two subsequent alternatives in the chain differ on one criterion
value. Then, for each chain a subset of alternatives equidistant from the two limit
alternatives of the chain is selected. For the alternatives from this subset, the sim-
plified version of informativeness is calculated (for details, see [93]). Then, the
alternative with maximal informativeness is posed to the DM for direct classifi-
cation.
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The CYCLE method is reported to outperform ORCLASS and be efficient
when compared to the monotone function decoding algorithm on smaller data
sets and less effective on more complicated problems (for details, see [93]). Even
though this direction seems to be promising, many open questions remain. For
instance, how to select two alternatives for the construction of chains. It is clear
that at the very beginning we have two alternatives with all the worst and all the
best criteria values classified to the worst and best classes, respectively. How-
ever, there is no description about the selection of the two alternatives for the
chain construction on the next iterations. Here, another question may appear,
i.e., whether it is preferable to construct chains between alternatives from the
closest classes or from the remotest ones? On the other hand, it may be possible
to construct several chains between two alternatives from different classes, and
there is no description about which one to select in this case. The method works
for the Cartesian product and still may be adapted to the set of given alternatives
(in a similar way it is done in SAC).

3.5.2 Concluding Remarks

Both VDA methods for classification, ORCLASS and SAC, require similar infor-
mation to be defined by the DM: the criteria with scales of the values (that can
be verbal or numerical) and the number of classes as well as their order. In OR-
CLASS, the set of given alternatives is composed as a Cartesian product of all
criteria scales, while in SAC the set of given alternatives should be specified.
The methods are parameter-free and do not require any parametric information
and/or assignment examples to be defined by the DM. On the contrary, the meth-
ods select some (but not all) alternatives from the set of alternatives composed as
the Cartesian product of all criteria scales. In such a way, the methods try to
reduce the cognitive loading of the DM. However, the alternatives posed to the
DM for direct classification are usually very difficult cases and located in the near-
boundary regions. That is why the DM may be loaded cognitively even with a
small number of alternatives that he or she should classify directly and may be
inconsistent when classifying such alternatives. The methods check the consis-
tency of each classification determined by the DM with the previous ones and
ask the DM to rethink his or her answers in case of contradictory classifications.
Resolving of a contradiction may also load the DM cognitively; however, such
exercising of direct classification may help the DM to understand his or her pref-
erences. The methods search for the boundary alternatives between classes and,
based on them, may provide explanation about the appearance of each alterna-
tive in the class.

The advantage of the methods is an absence of need for the transformation
of verbal values into numerical analogies at the input or output of the methods.
Moreover, the VDA methods keep the transparency of the verbal values during
the iterative process of DM’s interrogation and pose alternatives to be classified
with verbal values on the criteria. However, there is no way to treat attributes in
VDA methods.
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As a weak feature of the existing VDA methods, we consider the heuristics
embedded in the calculation of the informativeness index. Indeed, when calculat-
ing the probability of each alternative to be assigned in a class, it is assumed that
the center of an unknown class is located with an equal distance from the centers
of already known classes. This means that the centers of classes are uniformly
distributed. However, in real-life this may not be the case. For instance, for the
real-world examples described in [114], the distributions of alternatives between
the classes are not always uniform. When developing the new Dichotomic Classi-
fication method presented in the Section 4.2 we try to take this issue into account.

The SAC method decreases the number of calculations when compared to
the ORCLASS method [95]: only a given set of alternatives is classified, also rel-
ative informativeness is taken into account, but not the absolute one (for more
details, see [95]). Even though the alternatives from the whole Cartesian product
participate in the classification, and some of the alternatives that are not in the
set of given alternatives (but at some iteration appear to be the most informative)
may be asked from the DM. In addition, there is still the evident dilemma. The
effectiveness of the VDA methods considerably decreases when increasing the
number of criteria or the values on the scales of criteria, while with increasing
the number of classes the effectiveness increases [95]. The observations on the
limitations of human information processing system [92] recommend a problem
with a maximum of 10 classes and a maximum of 15 criteria, while the number
of values on the scales of criteria should not exceed 10 when applying the SAC
method. However, in the real world, still people must solve problems of larger
size. The new method proposed in Section 4.2 improves the efficiency of verbal
classification and aims at being able to cope with bigger size problems.

Because VDA methods assume that the DM’s knowledge and preferences
may not be very stable and may change over time, they perform consistency tests
in order to check contradictory classifications made by the DM during the in-
teractive interrogation. On the one hand, giving to the DM information about
his or her own contradictory classifications may help him or her to learn about
once’s preferences. On the other hand, VDA methods force the DM to resolve
contradictory classifications without letting him or her be imprecise, and, what is
more crucial, without supporting and guiding him or her towards resolving in-
consistencies. However, there are possibilities for improving this part of VDA by
studying human behavior. (For instance, in a similar way it it done for the choice
type of MCDA problems in [51].)

3.6 Fuzzy Sets

As has been mentioned above, uncertainty is treated differently in various MCDA
methods. Fuzzy sets developed by Zadeh [166] and adapted to MCDA in [15]
look into uncertainties when defining human preferences, in particular, in verbal
terms. The concept of fuzzy sets is used for the definition of imprecise belonging
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FIGURE 10 Partial membership function for fuzzy set

of an alternative to some set. For a classification problem, it is assumed that there
is some partial knowledge about belonging of an alternative to one or several
classes, however, such knowledge is not crisp and is represented by fuzzy sets.
Then, whether the alternative xi belongs to the class lq should not necessary be
true or false but may be partially true. The degree of truth is called membership
degree. It is defined on the interval [0, 1] with 0 indicating that a proposition is
false and 1 that it is true, and that there is a partial degree of truth in between.

Another specific feature of fuzzy sets is the possibility to take into account
not only criteria but attributes (see Section 2.1.4). Let us remember that when
compared to the criteria the attributes are neither minimized nor maximized and
the scales for them are not ordered. For the classification problem, a partial mem-
bership function shows the degree to which an alternative estimated on a crite-
rion or attribute belongs to a class.

The usual way to present a fuzzy membership function μ for the proposition
Aq

j : "xi belongs to the class lq according to the criterion or attribute gj" is shown
in Figure 10. Here, the complementary part for the negation of the proposition
¬Aq

j :"xi does not belong to the class lq according to the criterion or attribute gj"
is also shown. The partial fuzzy membership functions are defined by the DM.
It is assumed that he or she is able to estimate criteria and attributes values and
define such of them that support and/or oppose assignment of alternatives to
each class. This task may be difficult and cognitively loading for the DM.

The overall membership function is constructed as an aggregation of the
partial membership degrees on each criterion or attribute. The aggregation is
constructed with fuzzy rules that may be defined as follows:

if Aq
1 ∧ · · · ∧ Aq

n, then xi ∈ lq,

where the fuzzy value of membership function Aq
j corresponds to each value of

criterion or attribute gj when assigning the alternative xi to the class lq.
The main ideas of fuzzy sets are very simple, but the details can be very

specific as well as complicated membership functions can be used. We are not
going into more detail that can be found, for instance, in [27].

Modeling the uncertainty connected to human preferences with fuzzy sets is
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promising and appealing for the developers of MCDA because of the simple ideas
behind it. Moreover, in [37], it is mentioned that in many works, including [8],
[68], [69], [70], [126], the fuzzy rules have been developed for classification prob-
lems. In particular, fuzzy sets have been used for modeling ordinal preferences
expressed in verbal terms. In addition, fuzzy sets are applied for modeling of
imprecision in crisp theories, such as outranking methods. Another direction of
fuzzy sets development is their hybridization with other well-known techniques
such as neural networks (neuro-fuzzy system), expert systems (fuzzy rule-based
expert systems), and mathematical programming (fuzzy mathematical program-
ming) [37].

Despite of such a large application area of fuzzy sets, some practical prob-
lems in the implementation have been noticed [16]. First, the choice of the shape
of the fuzzy membership function is difficult. For instance, in order to define
such shape the DM has to be able to estimate the criterion or attribute values that
support assignment of the alternatives from the set of given alternatives into each
class. On the other hand, when membership degree is estimated, the explanation
of reasons for it may be difficult to interpret for the DM. Thus, the classification
results in the following form: "the alternative xi has greater membership than
the alternative xr to be assigned to the class lq", may be not evident for the DM.
That is why most often a linear function between two extremes on the interval
of criteria or attributes values is selected as a membership function. Secondly,
the operations of union and intersection applied in fuzzy rules for operating with
membership values have different meanings [167]. Thus, more complicated op-
erations have to be applied, but at the moment simple algebraic expressions are
used "by default".

3.7 Rough Sets

Originally, the rough set approach (RSA) was proposed by Pawlak [129] as a tool
for the analysis of sets which boundaries are not precise. At the beginning, the
rough set theory was developed for nominal classification [130] and later adapted
to solve ordinal classification [55], [59]. The idea is to present a class as a rough
set that contains alternatives that definitely belong to the class (that is, so-called
lower approximation of the class) and alternatives that could belong to the class
(that is, so-called upper approximation of the class). When compared to the fuzzy
sets approach, where the knowledge about whether an alternative belongs to a
particular set or not is a source of uncertainty estimated by a membership func-
tion degree, in rough sets, the class (that is, collection of alternatives) is consid-
ered to be uncertain.

In the original RSA developed for nominal classification, the given set of
assignment examples X∗ ∈ X (where X is the set of alternatives) is estimated with
the set of attributes G and have to be assigned to the set of classes L. The attributes
may have numerical or verbal values. In RSA adapted for ordinal classification,
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the possibility of estimation on the criteria is added and the order of classes is
known. The classification is based on the set of assignment examples provided
by the DM. Such decisions he or she is used making in the past; or decisions
made for realistic alternatives not considered in the set of given alternatives; or
decisions for a limited set of alternatives from the set of given alternatives. The
idea is to derive a set of rules in the form of the proposition: "if ..., then ..." from
assignment examples.

The development of RSA starts from the assumption that with every as-
signment example provided by the DM some knowledge, so-called granules, are
connected. These are blocks of alternatives indifferent with respect to a subset
of criteria and/or attributes. In rough set terminology, criteria and attributes are
considered to be condition attributes, and classes to which such alternative be-
longs are decision attributes.

RSA also works for the ranking and choice types of MCDA problems [57].
The brief overview presented in this section is based on the comprehensive sur-
veys [56] and [60]. Next, we consider RSA for nominal classification problem and
its modification for ordinal classification problem.

3.7.1 Rough Sets Approach for Nominal Classification

In nominal classification, for the definition of similarity between any two alterna-
tives a so-called indiscernibility relation that is the indifference relation in MCDA
(see Section 2.1.5) is applied. Such relation is estimated for all pairs of assignment
examples provided by the DM. In RSA, indifference may be defined on some sub-
set GI ⊆ G of attributes sufficient for considering these alternatives to be indif-
ferent. Later, the similarity relation was proposed in [146] that can also be used
in rough sets for nominal classification [61].

The algorithm of Rough Sets Approach for nominal classification
Step 1 Build the granules of knowledge about a given set of assignment ex-

amples with lower (precise) and/or upper (approximate) approximations of the
set of unordered classes. This is done by means of defining blocks of alterna-
tives indifferent with respect to a subset of attributes. The lower approximation
GI(Xlq) defines all alternatives Xlq from the given set of assignment examples X∗
(i = 1, . . . , m∗) which definitely belong to the class lq (q = 1, . . . , s) with respect
to the subset GI ⊆ G of attributes, while upper approximation GI(Xlq) contains
all alternatives Xlq that possibly belong to the class lq with respect to the sub-
set GI ⊆ G of attributes. For estimation of lower and upper approximations, it
is necessary to calculate the indifference relation IGI (xi, xr) between each pair of
alternatives xi and xr from X∗ only for a subset of attributes GI ⊆ G that is con-
sidered to be sufficient enough for the indifference between two alternatives to
be valid:

GI(Xlq) = {lq ∈ L, xi, xr ∈ X∗ : IGI (xi, xr) ⊆ Xlq},
GI(Xlq) = {⋃

lq∈L,xi,xr∈X∗ IGI (xi, xr)}.
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Here, the indifference relation IGI (xi, xr) is calculated as follows:

IGI (xi, xr) = {xi, xr ∈ X∗ :
gj(xi) = gj(xr) for any attribute gj ∈ GI , GI ⊆ G},

(14)

where gj (j = 1, . . . , n).
Step 2 Define the boundary "doubtful" region for each class lq as a difference

between the upper and lower approximations:

BGI(Xlq) = GI(Xlq) − GI(Xlq). (15)

According to the upper approximation, the alternative may be assigned to several
classes, and, thus, the classification is ambiguous.

Step 3 Estimate the quality of classification of the set of given alternatives
X∗ into the classes L using each subset of attributes GI ⊆ G:

γGI (X∗) =
∑s

q=1 |GI(Xlq)|
|X| .

It shows the ratio of the correctly classified assignment examples with respect
to the subset of attributes GI ⊆ G when compared to the set of all assignment
examples. The idea is to define the quality of classification based on each subset
of attributes GI ⊆ G and find a minimal subset that guarantees a high quality
of classification. In an ideal case, the quality of classification with such subset
should be the same as with the whole set of attributes, i.e., γGI (X∗) = γG(X∗).
Such a subset is called a reduct. There can be several reducts; their intersection is
called a core.

It is also possible to estimate the degree with which each particular alterna-
tive belongs to each class using a so-called membership degree:

μGI
Xlq

(xi) =
|Xlq ⊆ IGI (xi, xr)|

|IGI (xi, xr)| .

Such a membership function is close to conditional probability and shows the
degree of confidence calculated from the available data (when compared to the
fuzzy sets where membership function is assumed to be of a particular form de-
fined by the DM).

Step 4 Develop the set of rules for the assignment examples and selected
subset of attributes with regards to the selected strategy. The "if ...," part of the
rule is called conditional and "then ..." part is called decisional. The rules are of the
following form:

if (g1(xi) is Vg1) ∧ (g2(xi) is Vg2) ∧ · · · ∧ (gn(xi) is Vgn), then xi ∈ lq,

where gj(xi) is value of the attribute gj that take values Vgj on the scale of attribute
values Sgj.

There are several strategies according to which the set of rules for the given
set of assignment examples may be inducted in different RSA methods (for more
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details, see [56], [60]). The most often used strategy assumes that a minimal set of
rules that covers all assignment examples is discovered. For a rule from the min-
imal set, removing at least one attribute from the conditional part of the rule will
result in extension of this rule to a subset of alternatives that are not assignment
examples.

Step 5 Check inconsistencies in the assignment examples that may occur
when indiscernible assignment examples are assigned into different classes. Such
situations should be taken into account and may be resolved using RSA. We say
that the rule covers the assignment example if the description of the alternative
matches the conditional part of the rule, and that the rule supports the assignment
example if the description of the alternative matches both the conditional and
decisional parts of the rule. The following situations may appear:

1. The assignment example is covered by only one rule.

2. The assignment example is covered by several rules and is assigned into the
same class.

3. The assignment example is covered by several rules and is assigned into
different classes.

4. The assignment example is not covered by any rule.

The classification in the first two situations is obvious. The third conflicting situa-
tion is resolved if the strength of each rule is taken into account [63]. The strength
of the rule defines the number of assignment examples that support the rule.
There have been different ways to resolve the fourth situation. Most of them
apply the following approach: searching for the rules that cover the assignment
example partially [63]. Both of the approaches also consider the strength of rules.

3.7.2 Rough Sets Approach for Ordinal Classification

RSA has been adapted for ordinal classification in [55]. Recently, RSA for ordi-
nal classification has been extended into Dominance-Based Rough Set Approach
(DRSA) [58].

The ordinal character of a problem requires the introduction of an additional
relation: outranking relation (see Section 2.1.5). In RSA, the outranking relation
may be defined on some subset GI ⊆ G of criteria sufficient for such relation to
be valid:

xi SGI xr (xi outranks xr),
if gj(xi) S gj(xr) for all criteria GI ⊆ G,
i, r = 1, . . . , m∗; i �= r.

(16)

The verbal values can be considered in RSA similarly to VDA. The attributes
are compared based on the indifference relation (14). Next, we describe how, with
the help of these relations, the classification is done.
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The algorithm of Dominance-Based Rough Set Approach for ordinal classification
Step 1 Construct the outranking relation (16) for all pairs of assignment ex-

amples xi, xr ∈ X∗ (i = 1, . . . , m∗). Then, the following binary relation on the set
of assignment examples from X∗ is estimated (similarly to relation (9) but for the
subset of attributes and/or criteria GI ∈ G):

xi OGI xr (xi belongs to the class with a higher rank
than the rank of the class where xr is located),
if xi ∈ lq, xr ∈ lk and q > k.

Step 2 Using information about order of classes, for each class lq, it is possible
to define the upper L≥

q and lower L≤
q unions of upward and downward ranked

classes:
L≥

q =
⋃

t≥q lt,
L≤

q =
⋃

t≤q lt.

For each assignment example xi ∈ X∗, the sets X+
GI

(xi) and X−
GI

(xi) of alternatives
to which the alternative xi is preferred and which are preferred to the alternative
xi, respectively, are defined with respect to the selected set of attributes and/or
criteria GI ∈ G:

X+
GI

(xi) = {xr ∈ X∗, i �= r : xiSGI xr},
X−

GI
(xi) = {xr ∈ X∗, i �= r : xrSGI xi}.

In the ordinal classification DRSA method, the set of possible classes should
be defined for each assignment example. It is done in the same way as in VDA
(12); however, with respect to the selected subset of attributes and/or criteria
GI ∈ G:

if xr ∈ lk and xi SGI xr, then X−
GI

∩ L≥
q �= 0,

if xr ∈ lk and xr SGI xi, then X+
GI

∩ L≤
q �= 0.

(17)

Step 3 For the ordinal case, the upper and lower approximations are built
for upward L≥

q and downward L≤
q unions of possible classes on the sets X+

GI
(xi)

and X−
GI

(xi) of alternatives to which the assignment example xi is preferred and
which are preferred to the assignment example xi, respectively, in the following
way:

GI(L≥
q ) = {xi ∈ X∗ : X+

GI
⊆ L≥

q },
GI(L≥

q ) =
⋃

xi∈L≥
q

X+
GI

= {xi ∈ X∗ : X−
GI

∩ L≥
q �= 0}.

GI(L≤
q ) = {xi ∈ X∗ : X−

GI
⊆ L≤

q },
GI(L≤

q ) =
⋃

xi∈L≤
q

X−
GI

= {xi ∈ X∗ : X+
GI

∩ L≤
q �= 0}.

Step 4 The boundary regions for the upper and lower approximations of
classes are calculated in the same way as in the original RSA for nominal classifi-
cation according to formula (15).

Step 5 Then, for each class the quality of classification of the set of assign-
ment examples X∗ into the class lq using the subset of attributes and/or criteria
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GI ⊆ G is computed:

γGI (Xlq) =
|X∗ − ⋃

2≥q≥s BGI(L≥
q )|

|X| =
|X∗ − ⋃

1≥q≥s−1 BGI(L≤
q )|

|X∗| .

Reducts, core, and membership degree can be calculated in a similar way as in
the original RSA method for nominal classification but only for the set of possible
classes defined with expression (17).

Step 6 The decision rules are derived from the upper and lower approxima-
tions of possible classes in a similar way it is done for the original RSA method
for nominal classification.

Step 7 For ordinal classification with DRSA, the possible inconsistencies are
checked based on the outranking relation for the assignment examples from or-
dered classes in the same way as in VDA (13) but with respect to the subset of
attributes and/or criteria GI ∈ G:

xi ∈ L≥
q , but X+

GI
∩ L≤

q−1 �= 0,
xi � L≥

q , but X−
GI

∩ L≥
q �= 0.

Information about such inconsistencies should still be taken into account because,
as stated in [137], such information may indicate limited discrimination power of
attributes or show hesitation of the DM.

3.7.3 Extensions and Applications

Recently, DRSA [58] has been extended into variable-consistency dominance-
based rough set approach (VC-DRSA) [61] and its modification [17]. The mod-
ification of DRSA method [17], in addition to taking into account the positive as-
signment examples (that are good representatives of classes), considers the nega-
tive ones as well (defining such alternatives that cannot belong to the class). Such
an approach is reasonable, especially, when ambiguous assignments are consid-
ered.

An extensive list of applications of rough sets for classification was pre-
sented in the EURO XXII conference in Prague [62] in 2007, including financial
portfolio decision analysis, credit rating and credit assessment problems, sup-
porting facility service procurement, budget allocation in highway maintenance,
and assessing rural sustainable development potentialities.

3.7.4 Concluding Remarks

Like all the methods based on the assignment examples, RSA suffers from a pos-
sible imprecision and incompleteness of the information provided by the DM.
However, in RSA, there is a possibility for checking the inconsistencies that may
appear in the information provided. In addition, there are possibilities for the
analysis of importance and dependencies among criteria and hierarchical con-
struction of criteria. The decisions taken under uncertainty and with partially
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missing values can be considered, and there is a possibility to model imprecise
information by fuzzy sets [60].

In a similar way to VDA methods (see Section 3.5.1), rough sets do not re-
quire transformation of verbal values to numerical analogies at the input or out-
put of the methods, and keep the transparency of the verbal values for the DM.
In RSA for ordinal classification, the alternatives can be estimated on both the
attributes and criteria. In addition, RSA methods for both, ordinal and nominal,
classification types consider the possibility of classification based on subsets of
criteria and/or attributes. This feature is very natural for human evaluations that
is confirmed by experiments conducted in [96]. These show that usually experts
and/or DMs develop a small number of rules with some combination of the most
important criteria for the classification of alternatives.

3.8 Multicriteria Filtering Method

The Multicriteria Filtering (MC Filtering) method has been developed by Perny
[131] based on the concordance and non-discordance principles that have also
been used in the ELECTRE family of methods and presented in Section 3.1.1. The
method allows ordinal and nominal classification of the set of alternatives X, es-
timated on the set of criteria G, into the set of classes L predefined with the set
of boundary or reference alternatives B, respectively, for the ordered and not or-
dered classes. There can be several boundary or reference alternatives for each
class lq. In the case of ordinal classification, the MC Filtering method develop
a so-called filtering procedure based on the so-called valued preference relation
estimated for each pair of alternative xi to be classified and the boundary alterna-
tive bh

q . For nominal classification, the MC Filtering method constructs a filtering
procedure based on the valued indifference relation.

The MC Filtering method for ordinal classification is very similar but more
general than that of ELECTRE TRI presented in Section 3.1.1. The main difference
is in the use of a valued preference relation (for details, see [131]) instead of an
outranking relation for ordinal classification and a valued indifference relation
(defined below) for nominal classification. In addition, it is possible to define
several upper and lower boundary alternatives for each class. In this work, we
present the MC Filtering method for nominal classification that was one of the
first MCDA methods that consider classes to be not ordered.

The MC Filtering method assumes that the set of reference alternatives is
available B = {b1

1, . . . , bt1
1 , . . . , b1

s , . . . , bts
s }, where t1 and ts are the numbers of

reference alternatives for the classes l1 and ls, respectively. For the estimation of
the concordance and discordance indices, the outranking relations xiSbh

q between
each alternative xi to be classified and each reference alternative bh

q is calculated
taking into account the indifference qj(·), preference pj(·), and veto vj(·) thresh-
olds as well as the weight wj for each criterion gj.

In MC Filtering, the exact meaning of weights is not specified, but, since the
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outranking relation is used throughout, we can suppose that it is the same as in
the outranking methods. Then, the weight of the criterion indicates the relative
importance of the criterion when compared to other criteria in terms of votes that
support or oppose the assertion "one alternative is at least as good as another
alternative". However, from the examples provided in [131], we can see that for
ordinal classification the weight was taken with the same value for all criteria and
classes, but for nominal classification there were different weights for each class.
From this, we can guess that the authors assume that the weight for nominal
classification may have a different meaning when compared to the ordinal one.
Thus, the interpretation of weights here is possible: the weight wq

j of the criterion
gj may indicate the relative importance of the criterion when compared to the
other criteria that support the assignment in the class lq. As in the ELECTRE
TRI method, these may be specified in terms of votes and should be defined by
the DM. Next, we present the algorithm of the MC Filtering method for nominal
classification.

The algorithm of the MC Filtering method for nominal classification
Step 1 The partial outranking index Sj(xi, bh

q) is calculated for each pair of
the alternative to be classified xi (i = 1, . . . , m) and each reference alternative bh

q
(h = 1, . . . , tq) of each class lq (q = 1, . . . , s) on each criterion gj (j = 1, . . . , n) using
the indifference qj(bh

q) and preference pj(bh
q) thresholds:

Sj(xi, bh
q) =

pj(bh
q) − min{gj(bh

q) − gj(xi), pj(bh
q)}

pj(bh
q) − min{gj(bh

q) − gj(xi), qj(bh
q)}

.

Step 2 The partial concordance index Cj(xi, bh
q) is calculated for each pair

of compared alternatives, each alternative to be classified xi and each reference
alternative bh

q , as follows:

Cj(xi, bh
q) = Cj(bh

q , xi) = min{Sj(xi, bh
q), Sj(bh

q , xi)}.

Step 3 The global concordance index C(xi, bh
q) is obtained by aggregating the

partial indices and taking into account the weights of the criteria:

C(xi, bh
q) =

n

∑
j=1

wjCj(xi, bh
q),

where wj is the weight of the criterion gj. The weights are normalized and non-
negative (see formula (3)).

Step 4 The partial discordance indices DS
j (xi, bh

q) for the outranking relation

between two alternatives are calculated using the indifference qj(bh
q), preferences

pj(bh
q) and veto vj(bh

q) thresholds as follows:

DS
j (xi, bh

q) = min{1, max{0,
gj(bh

q) − gj(xi) − pj(bh
q)

vj(bh
q) − pj(bh

q)
}}.
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Step 5 The partial discordance index DI
j (xi, bh

q) for the indifference of two
alternatives is calculated:

DI
j (xi, bh

q) = DI
j (bh

q , xi) = max{DS
j (xi, bh

q), DS
j (bh

q , xi)}.

Step 6 The global discordance index D(xi, bh
q) is considered as follows:

D(xi, bh
q) = 1 −

n

∏
j=1

(1 − DI
j (xi, bh

q))
α/n,

where α is a technical parameter that is used for modifying the degree of synergy
between the criteria.

Step 7 Based on the concordance and discordance principles, the indifference
relation I(xi, bh

q) has been developed. It is valid if and only if the majority of
criteria is in favor of this relation and there is no strong enough opposition to this
relation in the minority of the criteria:

I(xi, bh
q) = min{C(xi, bh

q), 1 − D(xi, bh
q)}.

Step 8 The membership index d(xi, lq) for the alternative xi to be classified
into the class lq is calculated based on evaluating the degree of indifference in-
dices between this alternative and each reference alternative of the class.

d(xi, lq) = max{I(xi, bq
1), . . . , I(xi, bq

tq
)}.

Step 9 The alternative is assigned to the class if such a membership index
has a maximal value:

xi ∈ lq =⇒ d(xi, lq) = max{d(xi, l1), . . . , d(xi, ls)}.

The MC Filtering method is based on the concordance and non-discordance
principles and stems from the outranking approach. Consequently, it inherits
the advantages and disadvantages of this approach. Indeed, in the outranking
approach, there is the possibility to consider two alternatives as not only indif-
ferent or preferred but also to define them as weakly preferred or incomparable.
The last two situations may appear if there are very conflicting criteria, and their
differences on some criteria values cannot be compensated, or if the informa-
tion provided by the DM is incomplete. Because some incompleteness may be
involved in the model, the relations are not necessary transitive.

The definition of preference, indifference and, especially, veto thresholds in
the MC Filtering method may be difficult. Moreover, as has been mentioned in
[101], the application of such thresholds developed for modeling ordinal prefer-
ences is questionable in nominal classification, where there is no need to define
preference relation but indifference or similarity only. Absence of the order be-
tween classes may also reduce the need for finding which of two alternatives is
more preferable. That is why a calculation of the outranking index for the def-
inition of indifference between two alternatives may look redundant. Another
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important issue is that of how to treat attributes. In [131], there is no clear dif-
ferentiation between estimation on the set of criteria or attributes. However, the
attributes, even if have an ordinal scales (but usually nominal ones), are neither
to be maximized nor minimized; and the preference relation does not work for
them. This issue should be clarified in MC Filtering.

3.9 Other Nominal Classification Methods

As has been mentioned in the introduction to this chapter, the first methods for
nominal classification problems use classical approaches from statistics and artifi-
cial intelligence. Indeed, they assign the set of given alternatives into non-ordered
classes based on the estimation of a similarity measure to the alternatives from a
set of assignment examples. Usually, the alternatives are estimated on a set of
attributes, which are neither minimized nor maximized. On the other hand, in
MCDA theory, we have alternatives estimated on a set of conflicting criteria with
ordinal scales of criteria values. That is why criteria and not attributes are consid-
ered in most of the MCDA methods (and in all methods presented in this section)
for nominal classification. In an ideal case, for nominal classification methods, it
would be good to be able to work with both criteria and attributes in the way it
is done in rough sets (see Section 3.7.2).

In addition to criteria, in the nominal classification methods that stemmed
from MCDA, the outranking or other preference relations are often used. It is
typical for the modeling of ordinal preferences and is inherited from the MCDA
methods for ordinal classification. However, the preference relation is usually
estimated if the choice or ranking of alternatives should be done. On the other
hand, the application of the outranking and preference relations for nominal clas-
sification problems may be arguable. In nominal classification, there is no need to
compare which of two alternatives is preferred but to find how similar they are.

In next sections, we describe two methods developed recently for nomi-
nal classification in the framework of MCDA theory: PROAFTN [10] and TRI-
NOMFC [101]. The PROAFTN method [10] calculates an indifference index based
on the outranking relation for pairs of an alternative to be classified and a refer-
ence alternative in a way similar to that of MC Filtering. However, the reference
alternatives for each class are considered to be fuzzy. Their values on each cri-
terion are defined with the interval of possible values. The TRINOMFC method
[101], on the other hand, substitutes an outranking relation by a similarity rela-
tion. The similarity function between two alternatives can be of different type
for each criterion and should be defined by the DM. Next, we describe these two
methods and discuss their advantages and disadvantages.
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3.9.1 PROAFTN

The PROAFTN method was developed by Belacel [9], [10]. It is also based on
the concordance and non-discordance principles of the outranking methods pre-
sented in Section 3.1. The method calculates a fuzzy degree of membership for
each alternative xi to be classified into each class lq. Each alternative from the
set of those to be classified X estimated on the set of criteria G is compared to
each reference alternative from the set B that contains several reference alterna-
tives for each class. This method assumes that each reference alternative bh

q ∈ B
is presented in a fuzzy way: the values on each criterion gj of this alternative are
defined by an interval [gmin

j (bh
q), gmax

j (bh
q)], such that gmin

j (bh
q) < gmax

j (bh
q). Then,

the relation of indifference between the alternatives defined in such a fuzzy way
is called fuzzy indifference relation.

Because the intervals of possible criteria values of boundary alternatives are
fuzzy, two positive discrimination thresholds, d+

j and d−j , should be defined by

the DM. They indicate small differences, gmax
j (bh

q) and gmin
j (bh

q), for the lower

and upper limits of interval [gmin
j (bh

q), gmax
j (bh

q)] that will allow distinguishing
the fuzzy indifference relation according to the rules described below. The DM
should also be able to provide two veto thresholds, vmin

j and vmax
j , for the up-

per and lower limits of the interval [gmin
j (bh

q), gmax
j (bh

q)] that would discriminate
situations of discordance with the indifference relation.

The PROAFTN method requires the DM to provide the weight wq
j for each

criterion gj. In PROAFTN, the meaning of the weight wq
j of criterion gj is spec-

ified, and it indicates the relative importance of the criterion when compared to
other criteria in terms of votes that support the assignment in the class lq.

The assignment procedure consists of calculating the degree of membership
of each alternative to be assigned into each class based on the fuzzy indifference
relation between this alternative and each reference alternative of each class. The
alternative is assigned into a class with the maximal value of such a membership
degree.

The indifference relation shows to which degree "one alternative is indiffer-
ent or roughly equivalent to another alternative". The indifference relation for the
alternative xi to be classified and the reference alternative bh

q on the criterion gj is
defined according to the following rules:

1. If gmin
j (bh

q) ≤ gj(xi) ≤ gmax
j (bh

q), then the alternative xi to be classified is

indifferent to the reference alternative bh
q on the criterion gj (xi Ijbh

q is true).

2. If gj(xi) ≤ gmin
j (bh

q) − d−j (bh
q) or gj(xi) ≥ gmax

j (bh
q) + d+

j (bh
q), then the alter-

native xi to be classified is not indifferent to the reference alternative bh
q on

the criterion gj (xi Ijbh
q is not true).

3. If gmin
j (bh

q) − d−j (bh
q) < gj(xi) < gmin

j (bh
q) or gmax

j (bh
q) < gj(xi) < gmax

j (bh
q) +

d+
j (bh

q), then there is a weak preference between the alternative xi to be
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classified and the reference alternative bh
q (xiQjbh

q is true). In this case, the
thresholds play the role of boundaries for the weak preference.

The proposed explanation of the relations is used for calculating the partial con-
cordance indices C+

j (xi, bh
q) and C−

j (xi, bh
q) for each possible pair of the alternative

xi to be classified and the reference alternative bh
q of the class lq. Let us see how

these indices are used in the PROAFTN method.

The algorithm of the PROAFTN method
Step 1 For each alternative xi (i = 1, . . . , m) from the set of alternatives X

to be classified and each reference alternative bh
q (h = 1, . . . , tq) of the class lq

(q = 1, . . . , s) from a set of possible ones L, compute the partial concordance
indices (see Figure 11) on the criterion gj (j = 1, . . . , n):

C−
j (xi, bh

q) =
d−j (bh

q) − min{gmin
j (bh

q) − gj(xi), d−j (bh
q)}

d−j (bh
q) − min{gmin

j (bh
q) − gj(xi), 0} .

C+
j (xi, bh

q) =
d+

j (bh
q) − min{gj(xi) − gmax

j (bh
q), d+

j (bh
q)}

d+
j (bh

q) − min{gj(xi) − gmax
j (bh

q), 0} .

Then, set
Cj(xi, bh

q) = min{I−j (xi, bh
q), I+

j (xi, bh
q)}.

Step 2 Compute the partial discordance indices (see Figure 12):

D−
j (xi, bh

q) =
gj(xi) − max{gj(xi), gmin

j (bh
q) − d−j (bh

q)}
d−j (bh

q) − max{gmin
j (bh

q) − gj(xi), v−j (bh
q)}

.

D+
j (xi, bh

q) =
gj(xi) − min{gj(xi), gmax

j (bh
q) + d+

j (bh
q)}

−d+
j (bh

q) + max{−gmax
j (bh

q) + gj(xi), v+
j (bh

q)}
.

Then, set
Dj(xi, bh

q) = max{D−
j (xi, bh

q), D+
j (xi, bh

q)}.

Step 3 Calculate the fuzzy indifference relation xi Ibh
q with a indifference in-

dex:

I(xi, bh
q) =

n

∑
j=1

wq
j Cj(xi, bh

q)(
n

∏
j=1

1 − Dj(xi, bh
q))

wq
j ,

where wq
j are normalized and nonnegative weights (defined in formula (3)).

Step 4 Evaluate the fuzzy membership degrees d(xi, lq). The membership
degree is computed for each class from the set L by selecting the maximal values
of indifference indices from the reference alternatives of each class:

d(xi, lq) = max{I(xi, b1
q), . . . , I(xi, btq

q )}.

Step 5 The alternative xi is assigned to the class with a maximal membership
degree:

xi ∈ lq =⇒ d(xi, lq) = max{d(xi, l1), . . . , d(xi, ls)}.
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FIGURE 11 Concordance index for the PROAFTN method
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FIGURE 12 Discordance index for the PROAFTN method

In the same way as MC Filtering, PROAFTN is based on the concordance
and non-discordance principles and have the advantages and disadvantages of
this approach. Therefore, one of the advantages of PROAFTN is the flexibility
when comparing pairs of alternatives (allowing incomparability and absence of
need to have transitive relations). In addition, the developers define the ref-
erence alternatives in a fuzzy manner with the interval [gmin

j (bh
q), gmax

j (bh
q)] of

possible values on each criterion gj. Such representation is more flexible than
a definition of alternatives with crisp criteria values used in most of the meth-
ods and is suitable in situations where there are no possibilities to obtain ex-
act reference alternatives. At the same time, such a representation substitutes
the indifference threshold used in other outranking methods, as follows from
qj(bh

q) = gmax
j (bh

q) − gj(bh
q) = gj(bh

q) − gmin
j (bh

q).
However, there is still a lot of parametric information to be defined by the

DM, including discrimination and veto thresholds as well as weights. The dis-
crimination thresholds, d+

j and d−j , are very similar to the preference threshold

pj(bh
q): they both show the smallest difference between two alternatives such that

one alternative is not considered to be indifferent anymore (in the case of the dis-
crimination threshold) or is considered to be preferred (in the case of the prefer-
ence threshold) to the other one on the criterion gj. There are two discrimination
thresholds used for two limits of interval of possible criteria values, consequently.
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FIGURE 13 Similarity function for the TRINOMFC method

The weight of a criterion shows the relative importance of this criterion
when compared to other criteria in terms of votes that support the assignment
in a particular class. Such interpretation corresponds to nominal classification
when compared to the treating of weights as votes that support or oppose the
preference of one alternative over the other one in outranking approach for ordi-
nal classification (as well as for choice and for ranking types of MCDA problems).

The use of preference relation calculated in nominal classification may be
arguable. Here, there is no real need to define a preference situation between two
alternatives but rather their similarity. It would be also good to have possibility
to estimate the alternatives with the attributes and not only the criteria.

PROAFTN has been extensively applied to medical diagnostics, in partic-
ular to the cytopathological diagnosis of acute leukaemia [10], [11], [13]. There
is also the PROCFTN method [12] developed using fuzzy indifference relation
of PROAFTN for the selection of k reference alternatives for the k-nearest neigh-
bors method [39]. The procedure for the preference elicitation of the PROCFTN
method developed can be used to overcome the cognitive loading of the DM
when specifying such parameters directly in [14].

3.9.2 TRINOMFC

The TRINOMFC method was developed by Léger and Martel [101] with the aim
to reduce the amount of information needed for classification. For instance, with
it one can avoid the necessity for defining a veto threshold (that may be a diffi-
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cult task for the DM). In TRINOMFC, the DM has to define the set of alternatives
X estimated on the set of criteria G to be classified in the set of classes L. There
can be several reference alternatives for each class, and the set of reference alter-
natives is defined as B = {b1

1, . . . , bt1
1 , . . . , b1

s , . . . , bts
s }. The DM is also asked to

provide the weights of criteria that have the same meaning as in the PROAFTN
method. Thus, the weight wq

j of the criterion gj shows the relative importance of
the criterion when compared to other criteria for the assignment in the class lq.

For the comparison of the alternative xi to be classified and the reference al-
ternative bh

q of the class lq, in this method, a function SIj (represented by the sim-
ilarity or indifference index SIj(xi, bh

q)) is constructed on each criterion gj. Such
function varies on the interval [0, 1] and has a greater value if the alternatives are
more similar to each other on the particular criterion. The examples of types of
functions for modeling similarity are presented in Figure 13 adapted from the cri-
teria functions used in the PROMETHEE method [23]. However, any other type
of function can be chosen arbitrary. The DM has also to define similarity and non-
similarity thresholds, STj(bh

q) and DTj(bh
q), associated to the reference alternative

bh
q for each criterion gj. The steps of the methods can be represented as follows.

The algorithm of the TRINOMFC method
Step 1 At the beginning, the DM has to define the type of similarity function

SIj that would allow comparison of the alternative xi (i = 1, . . . , m) to be classified
and each reference alternative bh

q (h = 1, . . . , tq) of class lq (q = 1, . . . , s) on each
criterion gj (j = 1, . . . , n), based on which the partial similarity index SIj(xi, bh

q)
is constructed. For instance, if the DM selects the true-type similarity function
depicted in Figure 13(a) for the criterion gj, then the partial similarity index will
look like:

SIj(xi, bh
q) =

{
1, if gj(xi) − gj(bh

q) = 0,
0, if gj(xi) − gj(bh

q) �= 0.

This function does not need threshold information to be provided by the DM
and assumes that the two alternatives, xi and bh

j , are similar on the criterion gj
only if they have exactly the same values. For more complex than true-type func-
tions, the DM has to define the similarity and dissimilarity thresholds, STj(bh

q)
and DTj(bh

q), respectively. In the same way as the indifference threshold qj(·)
in the ELECTRE TRI method (see Section 3.1.1), the similarity threshold STj(bh

q)
indicates the largest difference between two alternatives on the criterion gj such
that they remain indifferent for the DM. The dissimilarity threshold DTj(bh

q) is
different from the preference threshold pj(·) in the ELECTRE TRI method (see
Section 3.1.1) because it indicates the smallest difference between the alternatives
xi and bh

q such that the first alternative xi is different (instead of being preferred in
the preference threshold) from the second one bh

q on the criterion gj. For instance,
for the pseudo-type similarity function in Figure 13(e) the partial similarity index
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on the criterion gj will have the following form:

SIj(xi, bh
q) =

⎧⎪⎪⎨
⎪⎪⎩

1, if |gj(xi) − gj(bh
q)| ≤ STj(bh

q),
0, if |gj(xi) − gj(bh

q)| > DTj(bh
q),

DTj(bh
q )−|gj(xi)−gj(bh

q )|
DTj(bh

q )−STj(bh
q )

, otherwise,

where STj(bh
q) > 0, DTj(bh

q) > 0, and STj(bh
q) �= DTj(bh

q).
Step 2 The next step is obtaining a global similarity index as an aggregation

of the partial ones:

SI(xi, bh
q) =

n

∑
j=1

wh
j SIj(xi, bh

q),

where wh
j is the weight that shows the importance of the criterion gj for the class

lq. The weights are normalized and nonnegative (defined in formula (3)).
Step 3 Among all the similarity indices calculated for the alternative xi to be

classified and each reference alternative bh
q of the class lq, the one for each class

is selected based on the minimal principle or pessimistic rule. According to this
rule, it is assumed that the "worst" of similarity index values is accepted:

d(xi, lq) = min{SI(xi, b1
q), . . . , SI(xi, btq

q )}.

Step 4 As a result, an alternative is assigned to the class with the maximal
value of the membership index between this alternative xi and one of the refer-
ence alternatives bh

q of this class lq selected at the previous step:

xi ∈ lq =⇒ d(xi, lq) = max{d(xi, l1), . . . , d(xi, ls)}.

Each alternative is assigned to only one class. If some alternative cannot be clas-
sified to exactly one class, then it is possible to define a cutting level λ:

d(xi, lq) ≥ λ.

It is possible to use not only "min max" type of rule for the assignment of alter-
natives to be classified but also other ones, such as "max min" or Hurwicz assign-
ment rules. For the case of several reference alternatives for each class, it is worth
first checking the following rule: the similarity indices between the reference al-
ternatives within each class should be smaller than the similarity indices between
the reference alternatives from different classes. This rule should be checked be-
fore applying the TRINOMFC method.

The developers of TRINOMFC view nominal classification from the classi-
cal approach point of view. Indeed, they search for the similarities and differences
between the alternative to be classified and the reference alternatives, unlike in
the approaches that stem from the outranking methods, where the alternatives
are compared based on the preference relation between them. They have also
searched a way to reduce the amount of information provided by the DM and
have managed to avoid the necessity for defining a veto threshold.
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On the other hand, instead of preference and indifference thresholds in TRI-
NOMFC similarity and dissimilarity thresholds are used. The similarity thresh-
old has similar meaning to the indifference threshold in the outranking theory
and shows maximal difference on the criterion value that is still small enough for
two alternatives to be considered similar. The dissimilarity threshold represents
a minimal value of difference between two values on the criterion that makes
one alternative to be dissimilar to another one (when compared to the preference
threshold that shows the preference of one alternative over another one). Thus,
such thresholds are more natural for nominal classification problems.

The use of different types of similarity functions allows flexibility when
comparing two alternatives. In the method, the alternatives are estimated on the
criteria only; however, the method can be easily adapted to the use of attributes.
In this way, the true-type similarity function can be applied. Two alternatives
are considered to be similar on the same attribute if they have exactly the same
values on this attribute.

Now that the most widely-spread MCDA methods for classification have
been introduced, we have a background for focusing on the development of new
methods by taking into consideration the advantages of different methods while
trying to reduce their disadvantages.



4 NEW CLASSIFICATION METHODS

As has been mentioned above, in real-life situations, for the DM it may be difficult
to think in terms of parameters of a particular model or define the exact numerical
values for parameters. In this work, we concentrate on methods that avoid direct
interrogation of parameter values from the DM. According to the categorization
of methods provided in the introduction to Chapter 3, such methods belong to
the indirect parameter-based and parameter-free groups of methods. Most of the
methods from these groups use assignment examples in order to perform classi-
fication. The definition of assignment examples (if they are available) is usually
much easier than the definition of the exact parameter values for the DM. The
survey of indirect parameter-based methods shows that there are two groups of
methods based either on mathematical programming or simulation, and most of
the methods belong to the first group. However, solving of mathematical pro-
gramming problem can be challenging, especially, for nonlinear problems that
may require computational time and a powerful computer. That is why, in this
work, we have developed a simulation-based method for nominal classification,
the so-called SMAA-Classification method. The method assumes that the set of
alternative to be classified is estimated on a set of criteria and/or attributes with
numerical scales of values. Furthermore, the number of classes and assignment
examples for each of them should be available a priori, to be defined by the DM
for instance.

When compared to SMAA-TRI for ordinal classification that uses ELECTRE
TRI with uncertainty or imprecise parameters, SMAA-Classification allows nom-
inal classification based on assignment examples. SMAA-Classification does not
require any parametrical information to be given in advance by the DM. How-
ever, if such information is available (for instance, in terms of intervals or dis-
tributions of weights or criteria values), it can be used. In a similar way as it is
done in the SMAA-TRI method presented in Section 3.4, the SMAA-Classification
method provides the DM with descriptive information about the probability of
each alternative to be assigned into each class as well as preferences (e.g., in
the form of weights) that support such assignment. Even though the SMAA-
Classification method does not require any parameter information to be defined
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in advance, it performs as efficiently as methods that assume the parameters of
the model to be defined by the DM (for details, see Section 6.1).

On the other hand, there can be situations, where it is not possible to provide
assignment examples. The survey of the existing MCDA methods for classifica-
tion presented in Chapter 3 shows that, currently, VDA methods introduced in
Section 3.5 include procedures of interaction with the DM and provide the tools
for questioning the DM about his or her preferences. These methods (e.g., SAC
and ORCLASS) have been developed in such a way that the DM has to classify
some alternatives, and the rest of the classification is done by the method. They
do not need any other information to be available in advance except the number
of classes and criteria with the scales of values (the SAC method also assumes
the set of given alternatives to be provided). The survey of VDA methods for
classification presented in Section 3.5 shows that there is still space for improve-
ment in the existing methods. That is why we have developed a new Dichotomic
Classification method that allows classification of the set of given alternatives
described by verbal or numerical scales of criteria values. The Dichotomic Clas-
sification method follows VDA principles: it is interactive and it presents some
alternatives from the set of given alternatives to the DM for direct classification,
while the rest of the alternatives are classified by the method. The alternatives
estimated with verbal values are presented to the DM in a natural language. In a
similar way with the VDA methods developed earlier, the Dichotomic Classifica-
tion method allows classification of each alternative into exactly one class. When
compared to the other VDA methods, Dichotomic Classification is more effective
on the same data sets in terms of number of alternatives posed to the DM for di-
rect classification. It is also more efficient computationally and does not depend
on the distribution of alternatives between classes (for details, see Section 6.2).
Next, we present and discuss these two new methods in more detail.

4.1 SMAA-Classification

In what follows, we introduce the so-called SMAA-Classification method for nom-
inal classification. The method assumes that the set of alternatives to be classified
is available. These alternatives can be estimated on a set of criteria and/or at-
tributes that have numerical scales of possible values. The method assists in the
assignment of alternatives when no preferences of DM are available or when they
are imprecise. There can also be preferences of several DMs to be taken into ac-
count. The SMAA-Classification method considers them in the same way as im-
precise preferences of a single DM and finds some average preferences of a typical
DM.

The SMAA-Classification method based on the Monte-Carlo simulation cal-
culates at each iteration the distances between the alternatives to be classified and
the assignment examples that are assumed to be available. At each iteration, the
method assigns an alternative into a class if the distance to the assignment exam-
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ple is minimal when compared to the distances to the assignment examples of the
other classes. Based on the analysis of statistical information obtained at the end
of the simulation process, the method calculates the levels of acceptability of the
same alternative into different classes. If additional information is needed, the
method can also define the central weight vectors with which such assignments
are supported. This descriptive information is provided to the DM for further
evaluation. There is also the possibility of the criteria values to be imprecise. In
case the classification to exactly one class is required, the DM is asked to define
a value of the acceptability index that is sufficient for classification of each alter-
native to only one class. In such a way, the ambiguous cases with high levels of
acceptability for several classes may be resolved.

4.1.1 Introduction

We develop a method for nominal classification problems in situations where
there is no "exact" information about reference alternatives, but where there is at
least one assignment example for each class. These assignment examples may
be a set of decisions that the DM used making in the past; or decisions made for
realistic alternatives not considered in the set of given alternatives; or decisions
for a limited set of alternatives from the set of given alternatives [72]. This case
is typical for a real-world situation where the DM usually has some examples of
classification (at least one) for each class. Defining reference alternatives may be
a more difficult task. For instance, in medical diagnostics doctors feel confident
about clear cases with known symptoms for a certain disease but hesitate when
making decisions about assigning cases that are not clear or that have symptoms
of several diseases.

SMAA-Classification for nominal classification [164] is an MCDA method
that allows assigning a set of given alternatives evaluated on a set of criteria
and/or attributes into a set of classes predefined with assignment examples and
considers the preference information to be imprecise or uncertain.

At the beginning, the DM specifies all initial data: the set of alternatives
X = {x1, . . . , xm} estimated on the set criteria and/or attributes G = {g1, . . . , gn}
and to be classified to the set of classes L = {l1, . . . , ls}, and the set of assignment
examples B = {b1

1, . . . , bt1
1 , . . . , b1

s , . . . , bts
s }. For each criterion and/or attribute gj

from the set G, we have the scale of values S(gj) = {gj1, . . . , gjt} (where t is the
number of values on the scale of criterion and/or attribute gj). The values on
the scale of each criterion are ordered. The most desirable value has the maximal
rank.

We assume that we have at least one assignment example for each class. The
SMAA method allows that the criteria and/or attributes values as well as DM’s
preferences that support assignment to be imprecise or uncertain. That is why the
criteria and/or attribute values of the alternative xi can be stochastic. Then, we
can use the notation ξi for defining the alternative xi estimated with the stochastic
values gj(ξi) on each criterion and/ot attribute gj. The stochastic values can be
presented by a joint probability distribution f (ξ) in the space Rm×n, which can be
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available as a partial knowledge about criteria and/or attribute evaluations but,
if not specified, is assumed to be uniform.

We can use the following ideas in the classification: assignment of an alter-
native 1) according to the maximal similarity to at least one of the assignment
examples of the class, or 2) with regards to the minimal distance between the
alternative to be classified and at least one of the assignment examples of the
class. In most of the recently developed MCDA classification methods [10], [110],
[101], [131], an approach based on the estimation of some similarity index is used.
The similarity indices are different in different MCDA methods. For instance, in
the TRINOMFC method [101] (see Section 3.9.2), an alternative is assigned into
a class based on the similarity index known as the "indifference index". Another
approach to model similarity has been used in clustering analysis [64]. In this
approach, an alternative is assigned into a class if the distance to the assignment
example of this class is minimal when compared to the distances to the assign-
ment examples of other classes.

The distance can be calculated with different metrics such as the Euclidean
distance (L2-norm distance), the Mahalanobis distance (that is an Euclidean dis-
tance that takes into account correlations of the data set), the Manhattan distance
(L1-norm distance), the Minkowski distance (Lp-norm distance) and others [39].
The most general type of the metric is the Minkowski distance, according to
which the distance between an alternative xi to be classified and an assignment
example bh

q of the class lq is:

dM(xi, bh
q) = (

n

∑
j=1

(|gj(xi) − gj(bh
q)|)p)1/p, (18)

where gj(xi) and gj(bh
q) are the values of the alternatives xi and bh

q on the criterion
gj, respectively, and the value of the p ≥ 1 parameter is selectable. Thus, with
p = 1 the Minkowski distance converts to the Manhattan distance, and with
p = 2 it becomes the Euclidean one.

We assign the alternative xi into the class lq if the distance to the assignment
example bh

q of this class is smallest (at iteration k) when compared to the distances
to the assignment example of the other classes:

xi ∈ lq =⇒ q = class(xk
i ) = arg min

1≤q≤s
h=1...tq

dM(xi, bh
q),

xi ∈ lq =⇒ q = class(xk
i ) = arg min

1≤q≤s
h=1...tq

{
(

n

∑
j=1

(|gj(xi) − gj(bh
q)|)p)1/p

}
.

For the case where there is information about the relative importance of the crite-
rion values being close to assignment example values in the form of weights, we
can use the weighted Minkowski distance:

dWM(xi, bh
q) = (

n

∑
j=1

(wj|gj(xi) − gj(bh
q)|)p)1/p.
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In the present work, for the estimation of the distance between alternatives we
select the weighted Euclidean distance as it is the most commonly used one:

xi ∈ lq =⇒ q = class(xk
i , wk) = arg min

1≤q≤s
h=1...tq

dWE(xi, w, bh
q), (19)

xi ∈ lq =⇒ q = class(xk
i , wk) = arg min

1≤q≤s
h=1...tq

⎧⎨
⎩

√√√√ n

∑
j=1

(wj|gj(xi) − gj(bh
q)|)2

⎫⎬
⎭ .

The SMAA methodology (see Section 3.4) explores the space of imprecise
or uncertain parameters in order to find such of them that support each scenario.
For classification problem, such a scenario is the assignment of an alternative to a
class. Thus, the SMAA-Classification method searches for such parameter values
that classify an alternative into a given class. For instance, in the weighted Eu-
clidean distance one may be interested in exploring such parameters as weights.

According to the SMAA-Classification method, after the distance function
is selected, the Monte-Carlo simulation is organized for each alternative to be
classified in the following way. Random sets of weights are generated from the
nonnegative and normalized weight space, w ∈ W, defined in the same way as
in formula (3).

Then, with regards to the selected distance function using a given weight
vector, the alternative to be classified is assigned into one of the classes according
to formula (19). This procedure is repeated for the number of simulation itera-
tions selected. The number of iterations is selected with regards to the accuracy
requirements. On the results in [152], it is shown that 10000 iterations is typically
enough for a reliable simulation with SMAA. As a result of the Monte-Carlo sim-
ulation, statistical information for each alternative to be assigned into each class
is collected. This information includes the number of successful classifications
into each class and aggregated preferences that have been simulated for such
successful classifications. Then, the SMAA-Classification method may calculate
descriptive information in the form of acceptability index for each alternative to
be classified into each class. The relation between the number of successful clas-
sifications and the total number of iterations yields an acceptability index. Next,
we introduce descriptive indices for SMAA-Classification by analogy with other
SMAA methods; however, we represent them as a discrete measures and not as a
continuous ones as it is usually done (see Section 3.4).

An acceptability index shows the variety of different successful valuations
that assign the alternative xi into the class lq:

aq
i =

1
z ∑

k:class(xk
i ,wk)=q

1,

where z is total number of simulation runs and k is a successful iteration at which
the alternative xi is assigned into the class lq and wk is the weight vector with
which such successful classification has been obtained.
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The higher the value of the acceptability index aq
i ∈ [0, 1] the higher the

probability for the alternative xi to be assigned into the class lq. Thus, aq
i = 0

indicates that the alternative xi is never assigned into the class lq, and aq
i = 1

shows that the alternative xi is assigned into the class lq with any set of simulated
weights.

If additional information is desired in SMAA-Classification, we can give
information about favorable weight vectors with which successful classifications
have been obtained. The favorable weight vector shows the importance of each
criterion in the distance function for classification of the alternative into the class
in the following way. If it is important that the criterion value of an alternative
to be classified is close to the corresponding assignment example value, then the
weight should be big.

Thus, from all simulated weight vectors the favorable ones are collected in
Wq(xi) with which the alternative xi is successfully assigned into the class lq:

Wq(xi) = {wk ∈ W : class(xi, wk) = q}. (20)

Then, a central weight vector may be calculated by averaging the set of favor-
able weights. The central weight vector wq

i = (wq
i1, . . . , wq

in) represents averaged
weights that support classification of the alternative xi into the class lq. Each com-
ponent wq

ij (j = 1, . . . , n) of the vector wq
i is calculated as:

wq
ij = ∑

k:class(xk
i ,wk

j )=q

1

/
∑

k:class(xk
i ,wk

j )=q

1
wk

j
, (21)

where k is the successful iteration at which the alternative xi is assigned into the
class lq and wk

j is the component of the simulated weight vector (on the criterion
gj) with which such successful classification has been obtained.

This may be calculated as the harmonic average of all the weights that pro-
vide a successful assignment of the alternative xi into the class lq. The descriptive
information (acceptability indices and central weight vectors) is provided to the
DM for further analysis.

The algorithm of the SMAA-Classification method
Step 1 Simulate weights that are assumed to be stochastic according to uni-

form distribution, if not specified otherwise.
Step 2 Perform classification of the set of given alternatives with regards to

the selected distance function using a simulated weight vector. Save all the results
necessary for calculating SMAA indices.

Step 3 Compute the descriptive information in the form of SMAA-Classifi-
cation acceptability indices according to formula (20) and central weight vectors
according to formula (21).

Step 4 Provide the DM with the SMAA indices. If the DM is not satisfied
with the obtained classification, suggest him or her to rethink the initial informa-
tion and specify it. Otherwise, if the DM agrees with results of the classification,
the procedure is finished.
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Class 1 

Iteration 1 w1 = (0.378, 0.228, 0.392)

Iteration 2 w2 = (0.148, 0.282, 0.568)

Iteration 3 w3 = (0.127, 0.405, 0.467)

Iteration 6 w6 = (0.379, 0.141, 0.479)

Iteration 8 w8 = (0.366, 0.177, 0.455)

Iteration 9 w9 = (0.191, 0.392, 0.415)

Iteration 4 w4 = (0.295, 0.578, 0.126)

Iteration 5 w5 = (0.395, 0.501, 0.101)

Iteration 7 w7 = (0.860, 0.002, 0.136)

Iteration 10 w10 = (0.757, 0.053, 0.189)

Class 2 

Acceptability index a15
1 = 0.6

Acceptability index a15
2 = 0.4

FIGURE 14 Simulation with 10 iterations for alternative x15 = (0.2, 0.2, 0.3)

Next, we illustrate the performance of the SMAA-Classification method
with a simple example. Even though the method allows criteria and/or attribute
values to be imprecise, in the illustrative example and the applications presented
they are exact.

4.1.2 An Illustrative Example

In order to demonstrate the SMAA-Classification method, we consider an illus-
trative example with an artificial set of 27 alternatives evaluated on 3 criteria.
This set is formed as a Cartesian product of criteria values {0.1, 0.2, 0.3}. The
alternatives are to be classified into two classes that both have one assignment
example: the alternative b1

1 = x6 = (0.1, 0.2, 0.3) is the assignment example for
the first class l1, and the alternative b2

1 = x13 = (0.2, 0.2, 0.1) is the assignment
example for the second class l2. We run the SMAA-Classification method with 10
and 10000 iterations in the Monte-Carlo simulation.

As an example of how the calculation is realized, we show the results of
a simulation with 10 iterations for the alternative x15 = (0.2, 0.2, 0.3) presented
in Figure 14. Let us follow the evaluation of this alternative at each step of the
SMAA-Classification method.

At the beginning, the method simulates random weights with regards to
some distribution, for instance, uniform, in such a way that ∑n

j=1 wj = 1. At the
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Alternatives

Class 1 Class 2

FIGURE 15 Diagram of alternatives with acceptability indices

first iteration, we obtain the weights w1 = (0.378, 0.228, 0.392). (Note that the
sum of weights is not equal to one with the precision used for the reason that we
only show three decimals here.) Then, the distances between the alternative to be
classified x15 and the assignment examples x6 and x13 are calculated. The alterna-
tive x15 is assigned into the class l1 according to the minimal distance. Then, these
two steps are repeated as many times as there are iterations. After 10 iterations,
we have the following situation: with different simulated weights the alternative
x15 appears 6 times in the class l1 and 4 times in the class l2, which corresponds
to the acceptability indices a1

15 = 0.6 and a2
15 = 0.4 for the two classes. Then,

the central weight vectors for each class can be calculated by averaging the ran-
dom weights, with which the alternative x15 has been assigned into each class.
Thus, we can obtain the central weight vectors w1

15 = (0.264, 0.270, 0.462) and
w2

15 = (0.576, 0.283, 0.138) for the classes l1 and l2, respectively.
Usually, 10 iterations is not enough to get a complete picture of all possible

random situations. That is why we have run the same example with 10000 iter-
ations. The results are presented in Figure 15 in the form of a diagram with the
acceptability indices calculated for our 27 alternatives. Even though here we con-
sider the set of given alternatives to be equal to the Cartesian product of criteria
scales, it should not be necessary the case and we may perform the classifica-
tion of arbitrary given set of alternatives. Here, each bar shows the percentage
of acceptability for assigning the alternative into each class. For instance, from
the very first bar on the left we can see that the alternative x2 = (0.1, 0.1, 0.2) is
assigned into the class l1 with 100% of random weight vectors. This means that
the alternative x2 is assigned into the class l1 with any simulated weight vector. A
similar situation appears with the alternatives x3, x5, x8, x9. For the alternatives
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x10, x11, x14, x16, x17, x20, x22, x23, x25, x26, there is an unambiguous classification
into the class l2. For the rest of the alternatives, the assignment is not so obvious.
For instance, the alternative x4 = (0.1, 0.2, 0.1) is assigned into the class l1 with
21% of simulated weight vectors and into the class l2 with 79% of cases.

Table 3 presents the results of classification for the alternatives with the ac-
ceptability indices different from 0 or 1. The DM may be interested to see the
classes where each alternative may be classified. It is up to the DM to define
the value of the acceptability index that is sufficient for crisp assignment of an
alternative into a class. Alternatively, the DM may pay more attention to such
alternatives.

TABLE 3 Alternatives with acceptability indices different from 0 and 1

Alternative Class 1 Class 2
x4=(0.1, 0.2, 0.1) a1

4 = 0.21 a2
4 = 0.79

x7=(0.1, 0.3, 0.1) a1
7 = 0.21 a2

7 = 0.79
x12=(0.2, 0.1, 0.3) a1

12 = 0.79 a2
12 = 0.21

x15=(0.2, 0.2, 0.3) a1
15 = 0.79 a2

15 = 0.21
x18=(0.2, 0.3, 0.3) a1

18 = 0.79 a2
18 = 0.21

x21=(0.3, 0.1, 0.3) a1
21 = 0.6 a2

21 = 0.4
x24=(0.3, 0.2, 0.3) a1

24 = 0.6 a2
24 = 0.4

4.1.3 Concluding Remarks and Future Research

The advantage of the SMAA-Classification method for nominal classification is
an absence of a need for any parametric information to be defined by the DM.
Instead, the assignment examples that can be expected to be easier to define. On
the other hand, SMAA-Classification can also be used as a tool for modeling and
solving classification tasks in situations where imprecise or uncertain information
about parameter values is available.

When compared to the most developed methods that require either assign-
ing the alternative to exactly one class (and resolve any ambiguous classification)
or show the range of admissible classes without providing probabilities of assign-
ment into each class, SMAA-Classification provides a general picture with a level
of acceptability for each alternative to be assigned into each class. In addition,
the SMAA-Classification method provides information about typical preferences
that support each assignment. The method allows the alternatives to be estimated
on attributes and/or criteria.

The performance of SMAA-Classification depends on the set of assignment
examples, its quality and number of examples for each class. Indeed, the closer
this set is to the set of reference alternatives (that are the brightest representatives
of classes), the better the resulting classification. Even though the quality of the
set of assignment examples is very important, we also have to study in future the
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influence of the size of this set on the quality of classification.
The SMAA-Classification method can also be extended to the case where

the assignment examples are absent. Then, some clustering techniques can be
applied. This is a topic of future research. Another issue to be investigated is
the usage of the metrics. Currently, we have applied the weighted Euclidean
metrics for the calculation of the distance between two alternatives. However,
other metrics could be studied for different situations. Another interesting mat-
ter to be investigated is the validity of the aggregation of the criteria with the
distance function. When compared to the attributes that are neither minimized,
nor maximized, the criteria scales have the direction of preferences that should
be considered in the aggregation function; thus, all criteria should be reduced to
the same direction of preference. We are also planning to study the possibility of
taking the PROMETHEE criteria functions into account in SMAA-Classification
in a similar way as in TRINOMFC.

In the future, it would also be interesting to test, for the SMAA-Classification
method, the possibilities of interactive improvement of the set of assignment ex-
amples in a similar way as was done for the ELECTRE TRI method in [32]. An-
other interesting question concerns resolving contradictions among assignment
examples that may appear, for instance, if several DMs assign the same alterna-
tive to different classes or if the DM is inconsistent. Similar work has been done
with ELECTRE TRI in [115].

Currently, the SMAA-Classification method need the set of assignment ex-
amples to be available a priori. But, in some real-life situation, it may be difficult
for the DM to define assignment examples. That is why the next method pre-
sented has been developed with no need for such a set to be available in advance.

4.2 Dichotomic Classification

Here, we introduce the so-called Dichotomic Classification method for ordinal
classification that has been developed in the framework of VDA. The method
assists in the assignment of alternatives when no preferences of the DM are avail-
able in advance. It is parameter-free method, and it does not require the DM to
think in terms of any model parameters. There can be criteria with verbal or nu-
merical scales of values. The method is interactive, and at each iteration some
alternative from the set of given alternatives is posed to the DM for direct clas-
sification. Thus, some alternatives are assigned by the DM and the rest of the
alternatives are classified by the method. The method assigns each alternative to
exactly one class.

When compared to the VDA methods presented in Section 3.5.1, the Di-
chotomic Classification method can work for the set of given alternatives with-
out using the complete set obtained as a Cartesian product (that is an universal
set of alternatives for the selected set of criteria) of all criteria scales. However,
the DM should be questioned for the classification of each such new set of given
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alternatives. The exception is the case when the set of given alternatives is equal
to the complete set of alternatives obtained as a Cartesian product of all criteria
values. Then, we can search for the rules that describe classes with boundary
alternatives in a similar way it is done in the ORCLASS and SAC methods (see
Section 3.5.1). Then, there is no need of questioning the DM each time the new
set of alternatives (that is smaller than the Cartesian product of criteria scales)
has to be classified. A boundary alternative can be detected when all the alter-
natives have been classified with regards to the property, according to which, for
the boundary alternative, changing the value on at least one criterion moves it to
a neighboring class.

4.2.1 Introduction

While developing the new method we aim at improving the efficiency of the VDA
classification procedure (presented in Section 3.5.1): to increase the number of
alternatives that can be classified without increasing the computation time and to
decrease the number of alternatives proposed to the DM for direct classification.
This can be done by simplifying the rule of selecting the alternative to be given to
the DM for classification at each iteration of the preference elicitation procedure.
In the ideal case, the method should effectively work for different alternative
distributions between classes.

We assume that criteria can have verbal estimations on the criteria values
and that information about the importance of the criteria can be absent. On the
other hand, sometimes information about a lexicographic ordering of criteria is
available. The lexicographic ordering [108] assumes that a more important cri-
terion is infinitely more important than a less important criterion. We consider
using lexicographic ordering of criteria when we have enough information for
it. Thus, in the method two cases are distinguished, i.e., when the criteria are
lexicographically ordered in terms of importance for the DM and when they are
not. As before, we are solving a maximization problem, where higher values are
preferred.

The idea of the method proposed follows the principles of the VDA meth-
ods for ordinal classification (see Section 3.5.1): to realize the classification of a set
of given alternatives (that may have verbal values on the scales of criteria) with
a minimal number of classifications made by the DM. The method is called Di-
chotomic Classification [163] and it is based on two concepts: VDA [100] and the
bisection method or a modification of a more popular dichotomous search [149].

The initial information needed for the Dichotomic Classification method is
the same as for SAC: the number of classes and their order, the set of criteria with
the scale of values for each of them as well as the order of criteria (if it is available)
and the set of given alternatives. We consider the set of given alternatives to
be equal to the set of alternatives obtained as the Cartesian product of scales of
criteria, as in ORCLASS. However, the method is also able to work on the set of
alternatives given by the DM.

The Dichotomic Classification method can be presented as follows. First,
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the DM specifies all necessary initial data: the set of criteria G = {g1, . . . , gn}
and the set of classes L = {l1, . . . , ls}. For each criterion gj from the set G, we
have the scale of values S(gj) = {gj1, . . . , gjt} with the following ranks R(gj) =
{1, . . . , t} for them (where t is the number of values on the scale of criterion gj).
The set of alternatives is defined as the Cartesian product of all scales of criteria
X = S(g1) × S(g2) × · · · × S(gn). The values on the scale of each criterion are
ordered. The most desirable value has the maximal rank due to the nature of
criterion. The classes are also ordered. The alternatives that belong to the class
with the maximal rank are the most desirable ones. Two cases are distinguished,
i.e., when the criteria are lexicographically ordered in terms of importance for the
DM and when they are not.

The set of possible classes Li is defined for each alternative xi, where xi ∈ X
(i = 1, . . . , m). In the beginning, this set contains all the possible classes for each
alternative, that is, Li = L. However, with the classification of some alternatives
the number of possible classes is reduced (according to the rule described below)
until for each alternative it becomes equal to one, e.g., |Li| = 1. Then, the classifi-
cation is finished.

In ORCLASS and SAC, the selection of the alternative, which is proposed to
the DM for classification, is based on its informativeness. The most informative
alternative should classify, indirectly, a maximal number of other alternatives.
The informativeness for each alternative is recalculated at each iteration. This
task is complex and time-consuming for large sets of alternatives. We propose a
much simpler way to select the alternative to be shown to the DM for classifica-
tion using the bisection of the set of given alternatives at each iteration.

In verbal analysis, the qualitative values on the criteria, which are not ap-
plicable for mathematical operations such as addition and subtractions, are com-
pared. However, it is possible to operate with ranks of alternatives on the scales
of criteria. For comparison of verbal values, we should assign the ranks to the
values on the scales of criteria according to their order. As mentioned, for the
criterion gj the scale of values S(gj) is with the ranks R(gj).

According to the bisection method, for defining the "middle" value of the
alternative xmiddle on the scale of criterion gj, it is necessary to calculate the rank
for it. For instance, at the first iteration, the rank of the "middle" alternative on the
scale of criterion gj is calculated as follows: rj(xmiddle) = rj(xbest)+rj(xworst)

2 , where
j = 1, . . . , n, rj(xbest) and rj(xworst) are ranks of the "best" and the "worst" alter-
natives for each criterion. If we have an even number of values on the scale of
criterion, the value of the middle rank rj(xmiddle) will not be an integer. In this
case, it is possible to round it either to the smaller or the bigger closest integer. In
the method, we round it to the smaller one. Then, the value located at the rank
rj(xmiddle) is considered as the value of the "middle" alternative on the scale of
criterion gj.

The principles of VDA assume that the preference relation works on the set
of alternatives and that the relation of order on the set of classes is utilized. We
also check how SAC and Dichotomic Classification work with all criteria being
of equal importance to the DM and with a lexicographic order on the set of cri-
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teria. The Dichotomic Classification method utilizes two basic relations of the
ORCLASS method: the relation of preference between the alternatives and the
relation of order of classes (see Section 3.5.1).

In this work, we also consider the possibility of establishing (when it is pos-
sible) a lexicographic order on the set of criteria according to the importance of
each criterion to the DM:

gj P g f (the criterion gj is infinitely more important than the criterion g f ),
if j > f and j, f = 1, . . . , n; j �= f .

In general, the sequence of steps in the algorithm of the Dichotomic Classification
method is similar to ORCLASS even though it differs in details. Let us consider
the algorithm of the Dichotomic Classification method.

The algorithm of the Dichotomic Classification method
Step 1 At the first stage, the initial data are defined: the alternatives "best"

xbest (the alternative that has the most desirable value on each criterion) and
"worst" xwost (the alternative that has the least desirable value on each criterion)
from the set of alternatives X (defined as the Cartesian product of the scales of
criteria) are classified to the classes with the maximal and the minimal ranks, re-
spectively. For each alternative xi (i = 1, . . . , m) from the set X, the set of possible
classes Li is assigned. At the beginning, this set contains all classes Lold

i = Li = L.
Step 2 The stopping criterion for the classification is the absence of alterna-

tives in the set of given alternatives with more than one possible class. Due to
this, each alternative is classified to exactly one class. If this is not the case, a new
iteration of the classification procedure starts.

Step 3 The "middle" alternative xmiddle is calculated as an alternative that has
middle ranks on scales of criteria with regards to the ranks of the "best" xbest and
the "worst" xwost alternative values. The "middle" alternative xmiddle defines the
boundaries for the two searching sets in the space of alternatives: one is the set
of all alternatives between the "best" xbest and the "middle" xmiddle alternatives,
and another one is the set of all alternatives between the "middle" xmiddle and the
"worst" xwost alternatives. In the following iterations, the "middle" alternatives
are determined correspondingly.

Step 4 The "middle" alternative xmiddle is proposed to the DM for classifica-
tion. As a result, we obtain the class, to which he or she assigns the alternative
xmiddle, for instance, to the class lq (q = 1, . . . , s): xmiddle ∈ lq.

Step 5 At this point, the existence of inconsistencies between the current and
previously made classifications is checked. The conditions related to previous
classifications are checked:

if xmiddle ∈ lk and xmiddle P xi, then xi ∈ lq where q > k,
if xmiddle ∈ lk and xi P xmiddle, then xi ∈ lq where q < k.

Inconsistencies are checked in case of more than two classes. For two classes,
there are no inconsistencies because once the DM has assigned an alternative to
a class, all other alternatives with not less preferable values upon all criteria will
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be assigned to the same class. Inconsistencies are eliminated by asking the DM to
think over the assignment of contradicting alternatives.

Step 6 According to the class for the alternative obtained from the DM at
Step 4, the possible classes for each not yet classified alternative are recalculated:

if xmiddle ∈ lk and xmiddle P xi, then Li = Lold
i ∩ l1, . . . , lk−1,

if xmiddle ∈ lk and xi P xmiddle, then Li = Lold
i ∩ lk, . . . , ls,

Lold
i = Li.

As a result, for each alternative xi which has not yet been classified, the set of
possible classes Li is determined. If the alternative has only one possible class,
e.g., |Li| = 1, it is classified indirectly. At the end of this step, the iteration is
finished and the new one should be started at Step 2.

In the situation where a lexicographic order of the criteria is available, it
is possible to order all the alternatives before the classification starts and each
alternative will have its rank, for instance, ri would be the rank of the alternative
xi. The procedure of classification is then simplified and Steps 3, 5 and 6 are
modified in the following way.

At Step 3, the middle alternative is selected with regards to the ranks rbest
and rworst of the "best" xbest and the "worst" rworst alternatives that defines the first
searching set: rmiddle = rbest+rworst

2 . The rank rmiddle of the middle alternative is
rounded if necessary (when the obtained rank is not an integer) to the smaller
closest integer, for instance.

At Step 5, the existence of inconsistencies is checked with regards to the
conditions:

if xmiddle ∈ lk and rmiddle > ri, then xi ∈ lq where q > k,
if xmiddle ∈ lk and ri > rmiddle, then xi ∈ lq where q < k.

(22)

The recalculation of the set of classes for each alternative at Step 6 is done in the
following way:

if xmiddle ∈ lk and rmiddle > ri, then Li = Lold
i ∩ l1, . . . , lk−1,

if xmiddle ∈ lk and ri > rmiddle, then Li = Lold
i ∩ lk, . . . , ls,

Lold
i = Li.

(23)

The idea of bisection of the set of alternatives has also been used in the
CYCLE method [93] that is another classification method. The method builds
"chains" of alternatives between two alternatives that are assigned to two differ-
ent classes. The chains are constructed in such a way that two subsequent alter-
natives in the chain differ on one criterion value. Then, for each chain a subset
of alternatives equidistant from the two limit alternatives of the chain is selected.
Here, the bisection is applied in order to reduce the number of alternatives for
which the informativeness is calculated, and in such a way to decrease the com-
putational efforts during indirect classification by preference relation. Moreover,
the alternative to be posed to the DM at each iteration is still selected based on
the maximal informativeness rule (in the same way as in ORCLASS and SAC).
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Similar idea of bisection is also used in several other methods for decoding
of monotone function [93]. However, those methods comes from Boolean algebra
logic and could be adapted to two classes problems only.

4.2.2 An Illustrative Example

In order to demonstrate the Dichotomic Classification method, we consider, as an
example, a very small problem with two criteria G = {g1, g2} = {quality, price}
which importance is unknown to the DM, three values on each criterion gj =
{bad, satis f ied, good}, and, for simplicity, only two classes L = {l1, l2} = {not
to buy, to buy} that are ordered in an increasing order. As we are solving a

maximization problem, the best criteria values and the best class for the DM have
maximal ranks. The size of the Cartesian product of the scales of criteria is equal
to |X| = 32 = 9. The set of alternatives contains the following alternatives X =
{(bad, bad), (bad, satis f ied), (bad, good), (satis f ied, bad), (satis f ied, satis f ied), (sa-
tis f ied, good), (good, bad), (good, satis f ied), (good, good)}. Thus, the task is to
classify the nine alternatives into two classes. The Dichotomic Classification me-
thod performs the following operations.

The performance of the Dichotomic Classification method
Step 1 For each alternative xi ∈ X to be classified, assign the set of possible

classes Lold
i = Li = L = {l1, l2}. Allocate the alternative with all the best values,

i.e., x9 = (good, good), into the best class l2 = to buy, and the alternative with all
the worst values, i.e., x1 = (bad, bad), into the worst class l1 = not to buy.

Iteration 1
Step 2 At this point, it is checked whether there are not yet classified al-

ternatives for which |Li| �= 1. There are seven not yet classified alternatives
XL = {x2, . . . , x8}.

Step 3 The set of not yet classified alternatives is bigger than two, thus, we
search for the middle alternative with regards to the best x9 and the worst x1
alternatives in the following way. We obtain the rank of the middle alternative on
each criterion by averaging the ranks of the best and the worst alternatives:

rquality(xmiddle) =
rquality(xbad) + rquality(xgood)

2
=

1 + 3
2

= 2,

rprice(xmiddle) =
rprice(xbad) + rprice(xgood)

2
=

1 + 3
2

= 2.

Thus, we should take as the middle alternative the alternative with the rank of
two at the first criterion scale and with the rank of two at the second criterion
scale. We obtain the first middle alternative xmiddle = x5 = (satis f ied, satis f ied).

Step 4 The middle alternative is proposed to the DM for classification. Let
us assume that the DM assigns the alternative x5 to the class l2 = to buy.

Step 5 There is no need for the inconsistency checking because we have only
two classes (see Section 4.2.1).

Step 6 Next, the set of possible classes is recalculated for each not yet clas-
sified alternative according to the classification of the alternative at Step 4. We
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check the preference relation for the alternative classified by the DM at Step 4
and each not yet classified alternative from the set XL (and check whether there
are not yet classified alternatives to which the alternative classified is preferred).
We find that the alternatives x6 = (satis f ied, good) and x8 = (good, satis f ied)
are preferred to the alternative x5 = (satis f ied, satis f ied) because rj(x5) ≤ rj(xi),
j = 1, 2; i = 6, 8. According to the relation (12), the set of possible classes for the
alternatives xi, i = 6, 8 should be recalculated. For instance, we have x6Px5, and,
thus, L6 = Lold

6
⋂

l2 = {l1, l2}⋂
l2 = l2 = to buy. In such a way, these alternatives

are classified indirectly: x6 ∈ l2, x8 ∈ l2. After this step, the process is repeated at
next iteration.

Iteration 2
Step 2 We should check whether there are not yet classified alternatives. At

this moment, the set of not yet classified alternatives is XL = {x2, x3, x4, x7}.
Step 3 In this case, the set of not yet classified alternatives is bigger than

two, and we again continue the search for the middle alternative on each of the
two searching sets: the first set is defined with regards to the best and the middle
alternatives obtained at the previous iteration, and the second set is defined be-
tween the middle and the worst alternatives in the same way as at the previous
iteration. In our situation, we have the first middle alternative x3 = (bad, good)
and from the second set only one alternative x7 = (good, bad) is left. We pro-
pose these alternatives to the DM for direct classification at the current and next
iterations.

Step 4 The alternative x3 = (bad, good) is proposed to the DM for classifica-
tion. Let us assume that the DM assigns it to the class l1 = not to buy: x3 ∈ l1.

Step 5 There is no need for the inconsistency checking because we have only
two classes (see Section 4.2.1).

Step 6 Recalculation of the set of possible classes for not yet classified alter-
natives allows indirect classification of the alternative x2 because it is less pre-
ferred than the alternative x3.

After this step, we should go to the next two iterations Iteration 3 and Iter-
ation 4 where at Step 4 the DM will classify the alternative x7 = (good, bad), for
instance, to the class l2 = to buy: x7 ∈ l2; and the alternative x4 = (satis f ied, bad),
for instance, to the class l1 = not to buy: x4 ∈ l1. Then, the classification is fin-
ished because there are no more not yet classified alternatives.

In such a way, the set of nine alternatives has been classified with four it-
erations (four questions posed to the DM) into two classes. Because we classify
the whole Cartesian product of criteria scales, it is possible to define the bound-
ary alternatives between classes in a similar way it is done for VDA methods
(see Section 3.5.1). The boundary alternatives between the two classes are: x3 =
(bad, good), x4 = (satis f ied, bad), x5 = (satis f ied, satis f ied), and x7 = (good, bad).
They allow the unambiguous classification of any alternative from the set X.
For instance, if someone is interested in knowing to which class the alternative
x6 = (satis f ied, good) belongs, a comparison with the alternative x5 = (satis f ied,
satis f ied) shows it belonging to the class l2.
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For the case where criteria are ordered according to its importance for the
DM, for instance, in an increasing order, the classification procedure is simplified.
The alternatives can be ordered from the very beginning of the classification pro-
cedure, and there is always only one boundary alternative between the classes
(because the situations of incomparability and indifference between alternatives
are excluded).

For our illustrative example, the alternatives in the set X are ordered from
the very beginning in an increasing order and the set of corresponding ranks is
available R(X) = {r1, . . . , r9} = {1, . . . , 9}. The middle alternative is selected.
In our illustrative example at Step 3 of Iteration 1, the rank of the first middle
alternative is obtained as follows:

rmiddle =
r1 + r9

2
=

1 + 9
2

= 5.

Thus, as a middle alternative we should take the alternative with the rank five.
And then, the first middle alternative would be the alternative x5 = (satis f ied,
satis f ied). Step 5 and Step 6 are modified in such a way that the relation of
the strict preference between alternatives is substituted with the relation of strict
preference between the alternative ranks. In our example, there is no need for
checking inconsistencies because the number of classes is equal to two. Then, at
Step 6, the recalculation of the set of possible classes for each alternative is done
with regards to the relation (23). According to this condition, the alternatives xi,
i = 6, 7, 8 are classified indirectly to the class l2: x6 ∈ l2, x7 ∈ l2, x8 ∈ l2. Then, the
middle alternative is selected with respect to the alternatives x1 and x5. The rest
of the procedure is repeated in a similar way.

4.2.3 Concluding Remarks and Future Research

The advantage of the Dichotomic Classification method for ordinal classification
is in the absence of a need for any parametric information and/or assignment
examples to be defined by the DM. This method is useful in cases where there is
no information about assignment examples available. Basically, only the number
of classes and their order as well as the criteria and their scales with numerical or
verbal values should be known in advance.

When compared to the VDA methods developed earlier, such as SAC, Di-
chotomic Classification is computationally less complex. Improvement of the ef-
fectiveness and computational complexity allows overcoming the limits of the
SAC method for the size of the set of alternatives to be classified and the num-
ber of the criteria on which these alternatives are evaluated. The questions posed
to the DM for the direct classification may not be the most difficult ones as in the
ORCLASS and SAC. We have also tried to avoid embedded heuristics (about uni-
form distribution of the centers of unknown classes) of the other VDA methods
and create a method that works efficiently for different distributions of alterna-
tives between classes.

We also considered the possibility of establishing a lexicographic order on
the set of criteria. This information, if available, simplifies the classification pro-
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cedure and reduces the number of questions posed to the DM for direct classifi-
cation.

In the future, we would wish to study the possibility to use criteria weights
in VDA or the possibility for the DM to select a subsets of the most important
criteria to be used for classification. Another possible extension is the application
of assignment examples in VDA; naturally, this should simplify the classifica-
tion process. Moreover, as we have pointed out in Section 3.5.1, in existing VDA
methods, the actual support to the DM when inconsistencies appear is absent. In
future work, we wish to study patterns of human behavior and possibilities to
provide real support to the DM for guiding him or her towards resolving incon-
sistencies. For instance, it may be possible to track the previous DM’s answers
when performing classification and search for some behavioral strategy (such as
considering several criteria as the most important ones for classification to some
class). Then, in case of inconsistencies, the DM can be provided with guidelines
for classifications which support or oppose the strategy used in previous steps. In
addition, some experience from studying human behavior when solving choice
type of MCDA problems [51] can be adapted here.



5 COMPARISON OF METHODS AND SELECTION
OF A METHOD

As can be seen from the previous chapter, a large number of methods have been
developed for classification in MCDA literature. Except for the reviews of MCDA
methods for classification made in like [26], [37], [161], [172], there are not many
surveys of MCDA approaches to classification available in the literature. Even
less attention is paid to the comparison of different methods. Comparing of dif-
ferent methods also allows us to provide some guidelines for the selection of a
method and recommendations for the method to be used in a particular situa-
tion. In this chapter, we try to fill the gap to some extent and compare pairs of the
methods as well as provide recommendations for the selection of a method.

In this work, we have restricted our comparisons to the theoretical aspects
of different methods. However, it should be mentioned that in addition to the
theoretical comparison of similarities and differences of the methods, it is im-
portant to compare them when applied to the same real-life problems. In [37],
some MCDA methods for classification presented here are compared in an exper-
imental way when applied to the same artificial data sets as well as to real-life
problems.

5.1 Comparison of Methods

In the introduction to the previous chapter, we categorized the discussed MCDA
methods for classification into three main groups: the first type is direct parameter-
based methods (there can be utility function-based and outranking relation-based
direct methods); the second type is indirect parameter-based methods; and the
third type is parameter-free decision rule methods. In this section, we compare
some pairs of methods in each category.

When comparing the features of the surveyed methods, we have tried to
define their advantageous and disadvantageous properties as well as similari-
ties and peculiarities. The comparison of existing methods also motivates us to
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improve them and to create some new methods that are presented in Chapter 4.

5.1.1 Comparison of Utility Theory and Outranking Approach

In the direct parameter-based methods approach for the construction of a model,
the alternatives for an MCDA type of problem (see Section 2.1.6) are estimated in
different ways. Indeed, the utility theory suggests to calculate an absolute perfor-
mance of each alternative on all criteria and then compares such overall utilities
of all the alternatives for solving one or another MCDA problem type. The out-
ranking approach (see Section 3.1), on the other hand, proposes to estimate the
relative performance of pairs of alternatives, in order to discover the preference
relations on such pairs or find out that alternatives are indifferent or incompa-
rable. Both of these methodological approaches have different assumptions and
requirements to the initial and resulting information as well as to the process of
decision aiding itself.

Both the utility theory and the outranking approach are direct methodolo-
gies that require the DM to provide parameter values in the form specified by the
model. However, these methodologies construct the decision aiding model in dif-
ferent ways and are based on different assumptions. Even though both of them
may be used for solving any of the MCDA problem types (see Section 2.1.6), usu-
ally they are applied in different situations depending on the initial information
available and requirements to the form of results and the decision aiding process
itself. In utility theory, each alternative is estimated independently of the other
alternatives and an overall utility is calculated as an aggregation of its perfor-
mance on each criterion. The solution of a problem is done through a comparison
of absolute utilities of alternatives. On the other hand, in outranking methods, a
relative pairwise comparison of alternatives is done. The solution of a problem
is based on the values of outranking indices between the compared alternatives.
The outranking concept considers one alternative "to be as good as" another one
if there are enough criteria with regards to which the first alternative is better
than the second one; and at the same time there is no "big enough" opposition to
such preference, that is, there are no criterion that interposes a veto against such
a preference. The concept "big enough" is defined with a cutting level.

The assertion "to be as good as" is defined with preference and indifference
relations. When compared to utility theory, in outranking methods, there is no
need for a strict relation of preference or indifference between the alternatives to
be held: they may be in a relation of weak preference. Two alternatives are as-
sumed to be in a relation of weak preference, when the DM hesitates to define the
preference of one alternative over another one or to consider them indifferent. On
the other hand, two alternatives may be incomparable, if for some reason (for in-
stance, in case of very conflicting alternatives) the DM cannot define a relation of
preference (strong or weak) or indifference between them. By introducing the in-
comparability of two alternatives, the situation that one alternative is performing
very well on some criteria and very poorly on other ones is taken into account.
This means that there strongly conflicting criteria. In addition, some uncertainty
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in the output data may remain. Such approach has an advantage if the DM has
difficulties for resolving uncertainties; however, it may be not applicable should
the output of the model have no uncertainties and should it provide the DM with
exact result.

When compared to the utility theory, the outranking approach does not as-
sume the preference and indifference relations to be transitive. On the other hand,
in outranking methods, the criteria may be verbally defined or even have categor-
ical scales of values, when compared to the utility theory where all non-numerical
estimations should be transformed into a single scale [0, 1]. However, when com-
pared to utility theory, in outranking methods, more preference information is
required from the DM. Thus, not only the alternatives estimated on the criteria
values and criteria weights, but also preference, indifference and veto thresholds
as well as cutting level are elicited from the DM.

One more basic distinction between the utility theory and the outranking
approach is interpretation of weights. In the utility theory that is considered to
be a compensatory approach, the weight of the criterion represents a trade-off,
such that an improvement of this criterion by one unit on the scale of criterion
values would lead to a deterioration on the scale of other criterion or criteria with
the number of units indicated by trade-off. In contrast, the outranking approach
is a non-compensatory approach that means that it does not consider trade-offs
between criteria. In the outranking approach, the weight indicates votes that
support or oppose the assertion "one alternative is at least as good as another
alternative".

The main disadvantage of the outranking approach is the cognitive loading
of the DM when inferring all the parameters of the model, even though this pro-
cess may help the DM to understand the model better and explore his or her own
preferences. This is due to the fact that the DM rarely can give precise numerical
values for the parameters of the model. Another difficulty appears when ag-
gregating all the preferences according to the concordance and non-discordance
principle. The details of this process are not intuitive enough for the DM, and
for instance, may lead to non-monotonic results of ranking. Moreover, in ranking
or choice type of MCDA problems, it could be difficult for the DM to understand
the changes in the final decision that appear with the addition or removal of some
alternatives to the set of given alternatives. This problem, however, does not ap-
pear in classification type of MCDA problems.

5.1.2 Comparison of PDA and SMAA

In view of the fact that both of the direct parameter-based methodologies, utility
theory and outranking approach, require cognitive loading of the DM when elicit-
ing parameters of the models, two other indirect parameter-based methodologies
appear: PDA and SMAA. Both of the indirect parameter-based methodologies
aim at assisting and simplifying preference elicitation in terms of parameters of
an MCDA model.

A simulation approach is used for modeling different preferences in SMAA
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(see Section 3.4). These methods are applied in the situations of uncertainty and
imprecision of the initial information obtained from the DM; the case of a com-
plete absence of preferential information is also taken into account. Different
preferences are modeled for each of the possible decisions, and the most proba-
ble values are proposed to the DM for evaluation. Thus, situations analyzed with
SMAA are similar to ones observed in PDA. However, in SMAA, we do not have
to have assignment examples. On the other hand, if some partial information
about preferences (in terms of parameters of the model or assignment examples)
is available at the beginning of the decision aiding process, it may be used in the
SMAA methods.

5.1.3 Comparison of PDA and VDA

When compared to the indirect parameter-based PDA methods, the VDA meth-
ods are parameter-free and so-called decision rule methods. The use of both the
utility function and the outranking model is possible when developing the model
of preferences with PDA. On contrast, in VDA, there is no any specific formal
model used, but the set of classification rules is discovered.

The PDA assumes that the DM has some earlier made decisions, so-called
assignment examples, for instance, from his or her past experience or has de-
veloped them in some other way (see Section 3.3). Then, a model is constructed
using mathematical programming techniques in such a way that earlier decisions
provided by the DM are resolved as close as possible (with minimal error) by this
model. Such an approach assumes that the earlier decisions provided by the DM
are considered to be good representatives of the problem situation.

On the other hand, the VDA methods (see Section 3.5.1) assume that it is dif-
ficult initially to have a set of assignment examples that represents the decision
situations completely enough or such assignment examples may be absent in the
situation which is new for the DM. The methods also assume a particular prefer-
ential system for the DM. However, they suppose that the preferences of the DM
are not stable and that they may evolve over time. That is why the methods are
interactive and here the DM is involved in the process of model construction. He
or she provides some part of his or her preferences at each step of the interactive
procedure. The information provided is used for the development of the model
until it satisfies the DM. Preferences are allowed to change during the elicitation
process, and that is why contradictions may appear. They should be resolved
within the VDA method.

An advantage of using an additive utility function in the framework of PDA
is the possibility to treat verbal estimations without transforming them into a nu-
merical analogy in the same way as in the interactive VDA methods (see Section
3.5.1). One more similarity of the PDA and VDA methodologies is their indirect
nature: they work with the earlier decisions provided by the DM. However, in
PDA the set of assignment examples is provided before the actual work of the
method starts. On the other hand, in VDA, at each step of the interactive dia-
log the DM has to make some decisions. For the classification problem, the DM
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has to assign one alternative selected by the method at each iteration. The selec-
tion of the next alternative to be proposed to the DM for classification depends
on the earlier made decisions. Thus, it would be interesting to see whether a set
of boundary alternatives obtained at the end of the VDA interactive procedure
would produce the same results of classification when compared to the results
of a PDA based method. It is also interesting to see if two models based on the
utility function and the outranking relation, for instance UTADIS and ELECTRE
TRI Assistant, generate the same classification results when the same set of as-
signment examples alternatives is applied in PDA.

5.1.4 Comparison of VDA and Outranking Approach

When compared to the direct parameter-based outranking approach methods,
the VDA methods are parameter-free decision rule methods. In the same way as
in the outranking approach, in VDA, the pairs of alternatives are compared and
preference and indifference relations are detected. However, in VDA, all the re-
lations are transitive, and the incomparabilities are considered due to the human
fallibility, but these should be resolved with the DM. On contrast, in the outrank-
ing approach, intransitivity and incomparability of preferences as well as weak
preference are allowed. Both approaches allow verbal values to be used, but, in
the outranking approach, the verbal definition of the preference, indifference and
veto thresholds may be difficult for the DM; not to forget the weight informa-
tion that usually has numerical format and a cutting level that is the technical
parameter and has to be defined in the interval [0, 1].

5.1.5 Comparison of VDA and Utility Theory

There are many similarities between VDA and the utility theory. Indeed, they
both assume a possibility to compare all alternatives based on indifference and
preference relations and allow their transitivity. All incomparabilities have to be
resolved in both methodologies. The comparison of these two approaches [112]
has been based on an application to the same problems (see [49], [92], [94]). In
VDA as well as in the utility theory, verbal values on criteria scales are allowed.
However, in VDA they are not reduced to numerical output as it is done in the
utility theory.

5.1.6 Comparison of Fuzzy and Rough Sets

Both fuzzy and rough sets work in a situation of uncertainty. However, while
RSA model imprecision in the definition of classes, fuzzy sets assume the be-
longing of an alternative to a class to be unsure. On the other hand, both meth-
ods apply the concept of membership function, and even though it has the same
meaning (the degree to which each alternative belongs to a class), in the fuzzy
sets theory the shape of the membership function is subjectively assumed, while
in RSA it is calculated from the data available. In both approaches, fuzzy sets and
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RSA, partial information can be enough for classification of alternative. For in-
stance, in RSA, a subset of possible attributes and/or criteria may be considered
sufficient for making a decision about classification.

5.1.7 Comparison of VDA and Rough Sets

There are a lot of similarities between VDA and RSA. Both parameter-free method-
ologies solve the classification problem by construction of a set of decision rules,
and both of them can be applied for nominal as well as ordinal types of clas-
sification problems. (Even though nominal classification could be handled, the
methods are less efficient in this case.) They both work in a natural language
and operate with qualitative values. There is a possibility to check inconsisten-
cies in both methods as well as a tool for providing explanations for classification
results.

On the other hand, a number of differences exist. RSA assumes that there
are assignment examples from the past experience of the DM or decisions made
for realistic alternatives not considered in the set of alternatives given by the DM,
while the VDA methods are interactive and ask the DM to classify alternatives
selected by the VDA method. Usually, the VDA method selects the most difficult
alternatives for classification, in contrast to RSA, where the DM has to provide
assignment examples that are usually the most evident cases. In VDA, a set of
rules defines the boundary alternatives between classes, while in RSA, there are,
usually, many more rules that cover the exact or approximate classification of
assignment examples estimated on the whole set or subsets of criteria and/or
attributes. Most of the VDA classification methods were developed for ordinal
classification, while RSA has been initially developed for nominal type of classi-
fication and has been later adapted for ordinal type of classification. In VDA, the
alternatives are estimated on a whole set of criteria, while in RSA the alternatives
may be evaluated with a whole or subset of criteria and/or attributes. In VDA,
after the boundaries are detected, we can assign any alternative unambiguously,
and the classification is crisp. While in RSA the membership function defines
one of several possible classes and the final solution about classification may still
contain some ambiguity.

5.1.8 Comparison of MC Filtering, PROAFTN and TRINOMFC

The MC Filtering and PROAFTN methods are similar in a sense that using the
interval [gmin

j (bh
q), gmax

j (bh
q)] with gmin

j (bh
q) ≤ gmax

j (bh
q) in PROAFTN is equivalent

to using an average value on each criterion gj(bh
q) = (gmax

j (bh
q) + gmin

j (bh
q))/2

and indifference threshold qj(bh
q) = gmax

j (bh
q) − gj(bh

q) = gj(bh
q) − gmin

j (bh
q) in MC

Filtering. The preference pj(bh
q) and discrimination d+

j and d−j thresholds are
very similar: both types of thresholds show the smallest difference between two
alternatives such that one alternative is considered to be preferred to the other
one on the criterion gj.
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Even though there is no indifference threshold qj(·) (required in MC Filter-
ing) used in PROAFTN, the interval of given values on each criterion plays the
same role and shows all the possible criterion values that are considered equally
possible for the alternative. On the other hand, using intervals is very convenient
in cases where giving precise values may not be possible. This feature allows a
flexible definition of the set of reference alternatives for classes in the PROAFTN
method when compared to MC Filtering where crisp values on criteria are re-
quired. There is a need for the definition of preference pj(·) and veto vj(·) thresh-
olds in both MC Filtering and PROAFTN.

When compared to MC Filtering and PROAFTN that are based on concor-
dance and non-discordance principles, in TRINOMFC, the idea similar to the
classical approach (e.g., statistics and artificial intelligence) to nominal classifi-
cation is used. Indeed, for the nominal type of classification, it is more impor-
tant to estimate the similarity and dissimilarity as it is done in TRINOMFC than
preference between two alternatives used in MC Filtering and PROAFTN. In TRI-
NOMFC, there is no need for a veto threshold to be specified. On the other hand,
instead of the preference and indifference thresholds used in MC Filtering (or
similar idea with fuzzy criteria values of reference alternatives in PROAFTN),
in TRINOMFC, the similarity and dissimilarity thresholds are used. Similarity
threshold has the same meaning as indifference threshold in the outranking the-
ory (on which MC Filtering and PROAFTN are based). However, the dissimi-
larity threshold shows a minimal value of difference between two values on a
criterion that makes one alternative to be dissimilar to another one (when com-
pared to the preference threshold there is no preference of one alternative over
another one). Thus, such thresholds are more natural for nominal classification
problems.

In MC Filtering, the exact meaning of weights is not specified, but, since
the outranking relation is used throughout, we may suppose that it is the same
as in the outranking methods at least for ordinal classification. Then, the weight
of the criterion indicates the relative importance of the criterion when compared
to other criteria in terms of votes that support or oppose the assertion "one alter-
native is at least as good as another alternative". However, from the examples
provided in [131] for nominal classification, there were different weights for each
class. From this, we can guess that the authors assume that the weight for nomi-
nal classification indicates the relative importance of the criterion when compared
to the other criteria that support the assignment in the class. In PROAFTN and
in TRINOMFC, however, the meaning of weights corresponds more to the classi-
fication problem itself than to the comparison of pairs of alternatives. Indeed, in
these methods, the weight indicates the relative importance of a criterion when
compared to other criteria in terms of votes that support or oppose the assign-
ment in a particular class.

Another important issue is treating attributes in nominal classification. All
three methods, MC Filtering, PROAFTN and TRINOMFC, work only with crite-
ria, even though it is natural for nominal classification to have some attributes
(that are neither minimized nor maximized) to be taken into account when esti-
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mating alternatives to be classified. Even though in MC Filtering the attributes
are mentioned, it is not very clear how they are treated. On the other hand, even
though in TRINOMFC the attributes are not mentioned, it is very easy to adapt
the method to use them with the true-type similarity function.

5.1.9 Representation of Weights in Different MCDA Theories

An important issue of representation of weights in different MCDA models is dis-
cussed in different chapters of [16]. The authors emphasize that intuitive weights
are not appropriate in all MCDA models. In the linear utility theory, the weights
represent trade-offs between pairs of criteria. For instance, for any two criteria gj
and gz the ratio of their weights wj/wz shows the increment in criteria values on
the scale of the criterion gz that compensates the loss in the criteria values on the
scale of the criterion gj. Such a ratio depends on the scaling of both the criteria
and should be adapted if any scaling changes occur. In the outranking approach,
the weights have a different meaning. Indeed, the weights represent the "voting
power" that supports each criterion rather than trade-offs between criteria. More-
over, the veto threshold that is used in the outranking approach does not allow
any trade-offs between criteria.

Even though the interpretation of weights varies from method to method,
it still may be different from the intuitive meaning of weights for the concrete
DM. People often express their preferences independently from the context of the
current problem. Thus, when the context changes, the weights do not change in
their opinion, even though they should according to the situation.

In addition, the intuitive modeling of weights may be different even for the
same DM relative to the reference point used for the representation of a criterion.
In [76], the authors show that humans react differently to the stimuli presented in
terms of losses when compared to the same stimuli defined in terms of gains. If a
criterion is framed in terms of losses depending on some reference point, it most
probably will have a higher weight when compared to the same criterion defined
in terms of gains relative to another reference point. On the other hand, split-
ting or hierarchical structuring of the criteria may lead to under/overevaluation
of weights [160]. Thus, there is a danger of mistreating weights from the view
point of model peculiarities as well as of their misinterpretation influenced by
the behavioral aspects of humans.

It should also be mentioned that, in the SMAA methods, the weights in-
terpretation depends on the model used. Thus, for the utility based methods,
like SMAA and SMAA-2, the weights represent trade-offs, while for the outrank-
ing based methods, like SMAA-3 or SMAA-TRI, the weights define the "voting"
power of each criterion. On the other hand, in the SMAA-Classification method,
a weight vector shows the importance of each criterion in the distance function
for classification of the alternative into the class. Indeed, if it is important that the
criterion value of an alternative is classified close to the corresponding reference
alternative value, then the corresponding weight should be big.

Another question is: should the meaning of the weights be different for the
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nominal and ordinal classification? As we can see from the methods developed
so far, it is different. Indeed, the ordinal classification methods assume a set of
weight to be defined for the whole set of attributes and/or criteria; however, for
nominal classification the weights are different for each class.

5.2 Selection of Classification Method

There is no single method that suits best to any classification problem. That is
the reason for providing here some recommendations for selecting a method to
be used. The selection of the method depends on the available initial informa-
tion, on the requirements to the results of classification and the decision aiding
process itself, not forgetting the difference between ordinal and nominal types of
problems. The ability of the DM to define parameters of the model and his or her
opinion about the method should also be considered. The method that best suits
the DM’s preference structure and his or her way of thinking should be selected.

Here, we present some guidelines for selecting a method among the sur-
veyed ones. The recommendations provided are very subjective and were cre-
ated by the author for the following reasons: on the one hand, there is a gap in
the MCDA literature when searching for guidelines as to which method to use
for a particular situation, and, on the other hand, there is an evident need of such
guidelines, for instance, if the analyst wish to follow the constructive approach
to the decision aiding (see Section 2.2.2). These recommendations do not intent
to be objective but should be seen as the first attempt for development in this
direction.

As has been mentioned earlier, the selection of the MCDA method is an
MCDA problem itself. That is why we have to define the criteria (that are the
main properties of the methods) that should be taken into account when making
the choice of a method. The idea is to consider assumptions made in each method
as well as the ability of the DM to provide information needed for each method.

As has already been mentioned in the introduction to Chapter 3, the first
classification methods in MCDA stem from the ranking problem and have been
developed for ordinal classification problems. The methods for ordinal and nom-
inal types of classification are different in the sense that for ordinal classification,
the additional information about the order between classes can be used and it
may improve and/or simplify the procedure of classification. Moreover, in ordi-
nal type of classification problems, the preferences between alternatives are eval-
uated; this contrasts with nominal classification problems, where indifference or
similarity between alternatives is estimated. That is why we assume that the first
step when selecting the MCDA method for classification should be defining the
type of classification (ordinal or nominal). However, here the question appears:
can we apply the MCDA methods that are developed for solving nominal clas-
sification problems for assigning alternatives to classes that are ordered (but for
some reasons we are not aware about the information about the order)? We will
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get back to this question in connection with numerical experiments in Section 6.1.
We have presented two decision trees for the selection of the MCDA method

for ordinal and nominal types of classification in Figures 16 and 17, respectively.
Most of the questions to be asked when selecting a method for ordinal and nom-
inal types of classification are the same. However, there are different methods
developed for the same purposes for ordinal and nominal types of classification.
The decision trees should be self-explaining. In the nodes, there are questions
that one may encounter when selecting a method to be used for classification
with MCDA. When developing these decision trees, the idea was to use only the
answers "yes" or "no", and assume the answer "no", in the case the answer was "I
do not know".

As can be seen from the trees, when selecting a method we consider the
categorization of the MCDA methods provided in Chapter 3 (see Figure 4) that
takes into account the ways to describe the behavior of the DM by means of some
formal or judgemental model and the way the preferences of the DM are elicited.
In this respect, the opinion of the DM is very important. The analyst should
select a method that is suitable for the DM and that corresponds to his or her
knowledge and system of preferences. We have to check what kind of model
resembles the DM’s way of thinking and whether the DM can easily define the
parameters of such model or another one. If some model corresponds to the
DM’s way of thinking, one of the direct methods can be used (that may be utility
function-based or outranking relation-based). However, if there are difficulties
with the definition of parameters, we have to consider indirect parameter-based
methods. Otherwise, if there is no way to specify any suitable formal model,
parameter-free methods should be used.

Trees include the methods, discussed in more detail in Chapter 3, as squares
with a solid line and some less considered methods as squares with dashed line.
We have also put the mark × in the squares for which we did not find a method
that would correspond to the considered properties.

In addition to the assumptions made in each method and the abilities of
the DM to provide information needed for each method discussed in the deci-
sion trees, it is important to consider how methods treat basic concepts (alterna-
tives, criteria, classes, etc.) as well as the way decision aiding is accomplished in
the different MCDA methods for classification. Such analysis of good and weak
properties has been done in the concluding remarks to the methods presented in
Chapter 3. We summarize the main properties in Table 4.

Here, the mark × indicates the presence of a feature in the method; the mark
×∗ defines that this property is not necessary present; the × f shows that for these
properties the values are fuzzy or × f ∗ may be fuzzy; ×m denotes a membership
function that is not a threshold but, in some sense, similar technical information.
The properties are classified into positive ("+"), negative ("-") or neutral ones.

Mainly, the following aspects of the models have been considered: type of
measurements on the scales of criteria (verbal or numerical values; and the latter
ones, in turn, are presented as exact values, or intervals, or distributions of values)
defining classes by boundary/reference alternatives, or by assignment examples,



124

The behavior of the 
DM can be described 
by some function 

The DM can specify 
parameters of the 
model 

The incomparability 
and intransitivity is 
allowed 

The DM can provide 
the assignment 
examples 

The DM can provide 
the assignment 
examples 

The incomparability 
and intransitivity is 
allowed 

There are available 
exact values of 
boundary alternatives  

Several boundary 
alternatives are 
allowed 

The DM can define 
the membership 
function  

yes 

no 

yes 

no 
no 

yes 

yes 

no 
yes 

no 
yes 

yes 

yes 

yes 

no 

no 

no 

no 
Rough Sets 

Fuzzy Sets 

ELECTRE TRI Assist.

UTADIS 

SMAA-TRI 

AHP based 

ELECTRE TRI 

SMAA-TRI 

MC Filtering

It is possible to apply heuristics 
about uniform distribution of 
alternatives between classes 

There is given set of 
alternatives available  yes 

yes 
no 

no ORCLASS 

SAC DC 

The incomparability 
and intransitivity is 
allowed 

yes X 
no 

FIG
U

R
E

16
Selecting

an
M

C
D

A
m

ethod
for

ordinalclassification



125

The behavior of the 
DM can be described 
by some function 

The DM can specify 
parameters of the 
model 

The incomparability 
and intransitivity is 
allowed 

The DM can provide 
the assignment 
examples 

The DM can provide 
the assignment 
examples 

The incomparability 
and intransitivity is 
allowed 

The DM can estimate 
preference relation 
(rather than similarity)

There are available 
exact values of 
reference alternatives  

The DM can define 
the membership 
function  

yes 

no 

yes 

no 
no 

yes 

yes 

yes 
no 

no 
yes 

yes 

yes 

yes 

no 

no 

no 

no 

Rough Sets

Fuzzy Sets 

Flow Sort 

SMAA-Class. 

X 

X 

MC Filtering 

TRINOMFC 

PROAFTN 

X 

It is possible to explore 
and to extend the initial 
structure of the problem

STEPCLASS 

no 
yes 

FIG
U

R
E

17
Selecting

an
M

C
D

A
m

ethod
for

nom
inalclassification



126

TABLE 4 Properties of MCDA methods for classification
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or not predefined (but their number is assumed to be known); assignment to
exactly one class or probability of assignment to each class is enough; and others.

We use some general preassumptions, such as "it is better if as little infor-
mation is asked from the DM as possible"; and "the more possibilities to consider
different types of information (e.g., ways to measure criteria or to consider fuzzy
values) the better the method is".



6 NUMERICAL EXPERIMENTS

In this chapter, we present some numerical experiments carried out with the two
new methods, SMAA-Classification and Dichotomic Classification, introduced in
Sections 4.1 and 4.2, respectively. We perform tests on the data sets available in
the literature and compare our results to the results obtained with methods devel-
oped earlier. It should be mentioned that with few exceptions, like [37], there are
not many results of solving classification problems with MCDA approaches doc-
umented in the literature. That is why we experienced difficulties when search-
ing for the data sets for our numerical experiments, especially, for testing and
comparing the SMAA-Classification method for nominal classification problems.
Next, we describe our numerical experiments in more detail.

6.1 SMAA-Classification

In Section 4.1, we have introduced the SMAA-Classification method for nom-
inal classification of a set of given alternatives to a predefined set of classes.
It is assumed that the set of given alternatives estimated on a set of criteria is
available, and that for each class at least one assignment example exists. SMAA-
Classification uses the Monte-Carlo method for simulation of uncertain or un-
known preferences. At each iteration, taking into account the simulated prefer-
ences, the distances between each alternative to be classified and each assignment
example of each class are calculated. The alternative is assigned to the class for
which the distance is minimal. After a specified number of simulation runs, sta-
tistical information is collected about acceptabilities of each alternative to each
class and about typical preferences that support each assignment.

Next, we describe some numerical experiments that we have done in order
to test the SMAA-Classification method and compare it to the results obtained
with the other methods. From the survey presented in Chapter 3, it can be seen
that there are few methods developed for nominal classification in the framework
of MCDA. The reasons for this, that have already been mentioned, are due to the
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orientation of the MCDA methods towards solving problems of preferential na-
ture. Even less is documented about tests of methods on data sets or applications
to real-life problems. That is why we have experienced difficulties in finding
some testing data.

However, the nominal classification problem can be considered to be more
general when compared to the ordinal type, thus, we can compare the results of
a more specified case to a more general one, but not vise versa. That is why, in
this work, apart from comparing the results of two nominal classification meth-
ods: SMAA-Classification and TRINOMFC, on the same data set, we also com-
pare SMAA-Classification for nominal classification and ELECTRE TRI for ordi-
nal classification on other data sets. In a similar way, in [37], the ELECTRE TRI
and UTADIS methods for ordinal classification have been compared to the statis-
tical discriminant analysis methods developed for nominal classification.

6.1.1 Analysis of Results

In order to test the performance of the SMAA-Classification method, we have
done several numerical experiments with data sets widely-used in MCDA pub-
lications. We compare the results of SMAA-Classification to the results obtained
with ELECTRE TRI and TRINOMFC. Even though ELECTRE TRI is an ordinal
classification method, it is possible to compare the results obtained with it to the
results obtained with nominal classification methods such as SMAA-Classification.
In this case, we have to assume that in the data provided the order of classes is
unknown and assignment examples for each class are available. On the other
hand, in this work, we have used testing data sets with precise criteria values of
the alternatives to be classified, while the SMAA-Classification method can also
perform assignment on data sets with imprecise or uncertain criteria values.

The following applications are considered: diagnosis of firms’ health [34]
which has been used for the estimation of the ELECTRE TRI method in [115];
credit granting in the banking sector introduced in [165] and used in [120] for
testing ELECTRE TRI; and identification of accident type [101] used in the eval-
uation of the TRINOMFC method. We ran the Monte-Carlo simulation in the
SMAA-Classification method with 10000 iterations for each application.

The results of testing three applications with SMAA-Classification, ELEC-
TRE TRI and TRINOMFC, are presented. Tables 5, 10, and 14 introduce the as-
signment examples for each problem. In these tables, the first columns define
the alternatives estimated on the sets of criteria and the second columns show
the assignment class. The alternatives to be classified and the results of classifi-
cation by different methods are presented in Tables 6-9, 11-13, and 15. In these
tables, the first columns show the alternatives to be classified estimated on the
set of criteria and the rest of the columns show the classes where the alternatives
have been assigned by different methods. For the SMAA-Classification method,
we have presented the acceptability indices for the alternative to be assigned into
each class. The cells highlighted in bold face indicate the highest acceptability
indices when compared to the other classes.
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TABLE 5 "Diagnosis of the health of the firms": assignment examples

Reference Alternative Class
b1

1 =(-12.0, -62.5, 92.5, 29.5, 42.5, 0.5, 0.0) l1
b1

2 =(-5.0, -50.0, 82.5, 25.5, 36.0, 1.5, 1.0) l2
b1

3 =(4.0, -10.0, 67.5, 20.5, 27.0, 3.0, 2.5) l3
b1

4 =(16.5, 25.0, 47.5, 14.0, 18.0, 4.5, 3.5) l4
b1

5 =(30.5, 48.5, 27.0, 5.0, 7.0, 5.0, 4.5) l5

The first application "Diagnosis of the health of the firms" involves 40 firms
evaluated on 7 criteria and assigned into 3 ordered classes defined with a set of
3 assignment examples (one for each class) [34]. We have compared the perfor-
mance of SMAA-Classification to the results of the classification given by ELEC-
TRE TRI and presented in [115]. In Tables 6-9, the first column indicates the
alternative to be assigned, the second and the third columns show the classes
for the indicated alternative according to the assignment with the ELECTRE TRI
optimistic and pessimistic procedures, respectively. The last columns show the
classes and acceptability indices for each alternative to be assigned into each class
obtained with the SMAA-Classification method.

The results of the SMAA-Classification method are compatible with the re-
sults obtained by the ELECTRE TRI method. For both of these methods, the class
l1 is empty. The rest of the classifications differ in the following ways. In cases
where the assignment according to the optimistic and pessimistic procedures of
ELECTRE TRI is different, SMAA-Classification usually shows the highest ac-
ceptability into one of them (for instance, the alternative x1 is assigned into class
l4 by the ELECTRE TRI optimistic procedure and also by SMAA-Classification,
and into l5 by the ELECTRE TRI pessimistic procedure). In this respect, the gen-
eral picture of classification with SMAA-Classification and ELECTRE TRI is the
same.

The second application "Credit granting in the banking sector" involves 45
alternatives evaluated on 7 criteria and assigned into 3 ordered classes with a
set of 13 assignment examples (several for each class) [165]. We have compared
the work of SMAA-Classification to the ELECTRE TRI results presented in [120].
The results of SMAA-Classification are similar to the ones of ELECTRE TRI (see
Tables 11-13).

The third application "Identification of accident type" is very small: there
are 3 workers evaluated on 3 criteria and assigned into 3 unordered classes with
a set of 6 assignment examples (several for each class). We have compared the
results of TRINOMFC presented in [101] with the results obtained by SMAA-
Classification. As we can see in Table 15, the first two alternatives are assigned
similarly by both methods, while the third one is assigned into the class l3 by
SMAA-Classification and into the class l2 by TRINOMFC (although the similarity
index for the class l3 is also high).
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TABLE 6 "Diagnosis of the health of the firms": assignments by ELECTRE TRI and
SMAA-Classification

Alternative x ELECTRE SMAA-Classification
PES OPT Class Acceptability

index
x0 =(35.8, 67.0, 19.7, 0.0, 0.0, 5.0, 4.0) l5 l5 l5 a5

0=1
x1=(16.4, 14.5, 59.8, 7.5, 5.2, 5.0, 3.0) l4 l5 l4 a4

1=0.916
l5 a5

1=0.084
l3 a3

1=0.00001
x2=(35.8, 24.0, 64.9, 2.1, 4.5, 5.0, 4.0) l3 l5 l5 a5

2=0.698
l4 a4

2=0.301
l3 a3

2=0.001
x3=(20.6, 61.7, 75.7, 3.6, 8.0, 5.0, 3.0) l3 l5 l4 a4

3=0.668
l5 a5

3=0.312
l3 a3

3=0.02
x4=(11.5, 17.1, 57.1, 4.2, 3.7, 5.0, 2.0) l3 l5 l4 a4

4=0.844
l5 a5

4=0.124
l3 a3

4=0.031
x5=(22.4, 25.1, 49.8, 5.0, 7.9, 5.0, 3.0) l4 l5 l4 a4

5=0.712
l5 a5

5=0.288
x6=(23.9, 34.5, 48.9, 2.5, 8.0, 5.0, 3.0) l4 l5 l5 a5

6=0.513
l4 a4

6=0.487
x7=(29.9, 44.0, 57.8, 1.7, 2.5, 5.0, 4.0) l4 l5 l5 a5

7=0.811
l4 a4

7=0.189
x8=(8.7, 5.4, 27.4, 4.5, 4.5, 5.0, 2.0) l3 l5 l4 a4

8=0.708
l5 a5

8=0.271
l3 a3

8=0.021
x9=(25.7, 29.7, 46.8, 4.6, 3.7, 4.0, 2.0) l3 l5 l4 a4

9=0.656
l5 a5

9=0.334
l3 a3

9=0.01
x10=(21.2, 24.6, 64.8, 3.6, 8.0, 4.0, 2.0) l3 l5 l4 a4

10=0.829
l5 a5

10=0.111
l3 a3

10=0.06
x11=(21.2, 24.6, 64.8, 3.6, 8.0, 4.0, 2.0) l3 l5 l4 a4

11=0.756
l5 a5

11=0.226
l3 a3

11=0.019
x12=(21.2, 24.6, 64.8, 3.6, 8.0, 4.0, 2.0) l3 l5 l5 a5

12=0.588
l4 a4

12=0.404
l3 a3

12=0.008
x13=(21.2, 24.6, 64.8, 3.6, 8.0, 4.0, 2.0) l3 l5 l4 a4

13=0.852
l3 a3

13=0.132
l5 a5

13=0.017
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TABLE 7 Cont. "Diagnosis of the health of the firms": assignments by ELECTRE TRI
and SMAA-Classification

Alternative x ELECTRE SMAA-Classification
PES OPT Class Acceptability

index
x14=(10.4, 9.3, 80.9, 1.4, 4.1, 4.0, 2.0) l2 l5 l4 a4

14=0.598
l3 a3

14=0.317
l5 a5

14=0.085
l2 a2

14=0.00001
x15=(17.7, 19.8, 52.8, 7.9, 6.1, 4.0, 4.0) l4 l5 l4 a4

15=0.88
l5 a5

15=0.12
x16=(14.8, 15.9, 27.9, 5.4, 1.8, 4.0, 2.0) l3 l5 l4 a4

16=0.664
l5 a5

16=0.32
l3 a3

16=0.015
x17=(16.0, 14.7, 53.5, 6.8, 3.8, 4.0, 4.0) l4 l5 l4 a4

17=0.82
l5 a5

17=0.18
x18=(11.7, 10.0, 42.1, 12.2, 4.3, 5.0, 2.0) l3 l5 l4 a4

18=0.936
l5 a5

18=0.036
l3 a3

18=0.027
x19=(11.0, 4.2, 60.8, 6.2, 4.8, 4.0, 2.0) l3 l5 l4 a4

19=0.8
l3 a3

19=0.165
l5 a5

19=0.035
x20=(15.5, 8.5, 56.2, 5.5, 1.8, 4.0, 2.0) l3 l5 l4 a4

20=0.846
l5 a5

20=0.093
l3 a3

20=0.061
x21=(13.2, 9.1, 74.1, 6.4, 5.0, 2.0, 2.0) l2 l5 l3 a3

21=0.64
l4 a4

21=0.342
l5 a5

21=0.017
l2 a2

21=0.001
x22=(9.1, 4.1, 44.8, 3.3, 10.4, 3.0, 4.0) l3 l5 l4 a4

22=0.812
l5 a5

22=0.118
l3 a3

22=0.07
x23=(12.9, 1.9, 65.0, 14.0, 7.5, 4.0, 3.0) l3 l5 l4 a4

23=0.879
l3 a3

23=0.119
l5 a5

23=0.002
x24=(5.9, -27.7, 77.4, 16.6, 12.7, 3.0, 2.0) l2 l4 l3 a4

24=0.98
l4 a5

24=0.019
l2 a3

24=0.00001
x25=(16.9, 12.4, 60.1, 5.6, 5.6, 3.0, 2.0) l3 l5 l4 a4

25=0.702
l3 a3

25=0.258
l5 a5

25=0.04
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TABLE 8 Cont. "Diagnosis of the health of the firms": assignments by ELECTRE TRI
and SMAA-Classification

Alternative x ELECTRE SMAA-Classification
PES OPT Class Acceptability

index
x26=(16.7, 13.1, 73.5, 11.9, 4.1, 2.0, 2.0) l3 l5 l3 a3

26=0.66
l4 a4

26=0.334
l5 a5

26=0.006
l2 a2

26=0.00001
x27=(14.6, 9.7, 59.5, 6.7, 5.6, 2.0, 2.0) l3 l5 l3 a3

27=0.51
l4 a4

27=0.471
l5 a5

27=0.019
l2 a2

27=0.00001
x28=(5.1, 4.9, 28.9, 2.5, 46.0, 2.0, 2.0) l1 l5 l3 a3

28=0.635
l4 a4

28=0.292
l2 a2

28=0.046
l5 a5

28=0.006
l1 a1

28=0.001
x29=(24.4, 22.3, 32.8, 3.3, 5.0, 3.0, 4.0) l4 l5 l5 a5

29=0.765
l4 a4

29=0.228
l3 a3

29=0.007
x30=(29.5, 8.6, 41.8, 5.2, 6.4, 2.0, 3.0) l4 l5 l4 a4

30=0.562
l5 a5

30=0.278
l3 a3

30=0.16
x31=(7.3, -64.5, 67.5, 30.1, 8.7, 3.0, 3.0) l2 l5 l3 a3

31=0.844
l4 a4

31=0.132
l2 a2

31=0.023
l1 a1

31=0.001
l5 a5

31=0.00001
x32=(23.7, 31.9, 63.6, 12.1, 10.2, 3.0, 3.0) l3 l5 l4 a4

32=0.875
l3 a3

32=0.122
l5 a5

32=0.003
x33=(18.9, 13.5, 74.5, 12.0, 8.4, 3.0, 3.0) l3 l5 l4 a4

33=0.626
l3 a3

33=0.372
l5 a5

33=0.002
x34=(13.9, 3.3, 78.7, 14.7, 10.1, 2.0, 2.0) l2 l5 l3 a3

34=0.873
l4 a4

34=0.122
l2 a2

34=0.005
l5 a5

34=0.00001
x35=(-13.3, -31.1, 63.0, 21.2, 29.1, 2.0, 1.0) l2 l3 l2 a2

35=0.822
l3 a3

35=0.177
l1 a1

35=0.001
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TABLE 9 Cont. "Diagnosis of the health of the firms": assignments by ELECTRE TRI
and SMAA-Classification

Alternative x ELECTRE SMAA-Classification
PES OPT Class Acceptability

index
x36=(6.2, -3.2, 46.1, 4.8, 10.5, 2.0, 1.0) l2 l4 l3 a3

36=0.643
l4 a4

36=0.318
l2 a2

36=0.028
l5 a5

36=0.011
x37=(4.8, -3.3, 71.1, 8.6, 11.6, 2.0, 2.0) l3 l4 l3 a3

37=0.871
l4 a4

37=0.128
l2 a2

37=0.001
l5 a5

37=0.00001
x38=(0.1, -9.6, 42.5, 12.9, 12.4, 1.0, 1.0) l2 l4 l3 a3

38=0.678
l2 a2

38=0.212
l4 a4

38=0.11
x39=(13.6, 9.1, 76.0, 17.1, 10.3, 1.0, 1.0) l2 l5 l3 a3

39=0.692
l2 a2

39=0.245
l4 a4

28=0.062
l5 a5

28=0.001

TABLE 10 "Credit granting in the banking sector": assignment examples

Reference Alternative x Class
b1

1=x19=(13.02, 15.74, 18.02, 7.24, 79.21, 42.63, 79.32) l1
b2

1=x23=(13.66, 11.01, 14.11, 70.55, 69.01, 18.77, 42.39) l1
b3

1=x41=(13.04, 7.99, 22.44, 7.24, 31.4, 14.83, 58.65) l1
b4

1=x49=(13.48, 1.05, 18.02, 6.45, 31.4, 18.77, 100.0) l1
b5

1=x68=(9.91, 7.99, 14.11, 7.24, 12.92, 3.02, 58.65) l1
b6

1=x5=(14.43, 11.01, 18.02, 29.25, 22.16, 31.73, 39.44) l1
b1

2=x29=(13.39, 11.01, 18.02, 17.36, 22.16, 8.91, 39.44) l2
b2

2=x55=(12.14, 7.99, 18.02, 5.46, 22.16, 3.02, 39.44) l2
b3

2=x62=(11.07, 7.99, 18.02, 5.46, 12.92, 3.02, 39.44) l2
b4

2=x66=(10.25, 7.99, 14.11, 15.58, 12.92, 8.91, 20.24) l2
b1

3=x69=(10.65, 11.01, 10.47, 3.69, 3.76, 8.91, 20.24) l3
b2

3=x84=(8.26, 7.99, 10.47, 3.69, 3.76, 3.02, 20.24) l3
b3

3=x94=(3.86, 1.96, 3.02, 3.69, 3.76, 3.02, 20.24) l3
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TABLE 11 "Credit granting in the banking sector": assignments by ELECTRE TRI and
SMAA-Classification

Alternative x ELECTRE SMAA-Classification
PES Class Acceptability

index
x6=(14.15, 11.01, 18.02, 19.13, 49.87, 14.83, 58.65) l1 l1 a1

6=0.908
l2 a2

6=0.092
x9=(14.54, 14.02, 18.02, 4.65, 12.92, 3.02, 58.65) l1 l1 a1

9=0.837
l2 a2

9=0.161
l3 a3

9=0.002
x12=(14.42, 11.01, 18.02, 4.65, 12.92, 8.91, 58.64) l1 l1 a1

12=0.832
l2 a2

12=0.15
l3 a3

12=0.018
x19=(13.02, 15.74, 18.02, 7.24, 79.21, 42.63, 79.32) l1 l1 a1

19=1
x21=(13.6, 4.02, 22.44, 4.65, 31.4, 31.73, 58.65) l1 l1 a1

21=1
x23=(13.66, 11.01, 14.11, 70.55, 69.01, 18.77, 42.39) l1 l1 a1

23=1
x25=(13.04, 7.99, 22.44, 40.19, 40.64, 6.96, 100.0) l1 l1 a1

25=0.922
l2 a2

25=0.078
x26=(12.97, 7.99, 18.02, 29.66, 31.4, 18.77, 100.0) l1 l1 a1

26=0.996
l2 a2

26=0.004
x41=(13.04, 7.99, 22.44, 7.24, 31.4, 14.83, 58.65) l1 l1 a1

41=1
x49=(13.48, 1.05, 18.02, 6.45, 31.4, 18.77, 100.0) l1 l1 a1

49=1
x58=(10.41, 1.96, 18.02, 19.13, 22.16, 18.77, 100.0) l1 l1 a1

58=0.922
l2 a2

58=0.074
l3 a3

58=0.004
x68=(9.91, 7.99, 14.11, 7.24, 12.92, 3.02, 58.65) l1 l1 a1

68=1
x73=(8.65, 1.96, 18.02, 71.48, 59.11, 7.88, 60.12) l1 l1 a1

73=0.996
l2 a2

73=0.003
l3 a3

73=0.001
x81=(7.58, 1.96, 18.02, 71.48, 49.87, 7.88, 60.12) l1 l1 a1

81=0.996
l2 a2

81=0.004
l3 a3

81=0.001
x87=(6.46, 4.98, 18.02, 50.78, 12.92, 6.96, 100.0) l1 l1 a1

87=0.927
l2 a2

87=0.043
l3 a3

87=0.03
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TABLE 12 Cont. "Credit granting in the banking sector": assignments by ELECTRE TRI
and SMAA-Classification

Alternative x ELECTRE SMAA-Classification
PES Class Acceptability

index
x2=(14.64, 14.02, 18.02, 5.46, 22.16, 3.02, 39.44) l2 l2 a2

2=0.998
l1 a1

2=0.001
l3 a3

2=0.001
x8=(14.71, 14.02, 18.02, 6.43, 12.92, 3.02, 39.44) l2 l2 a2

8=0.997
l3 a3

8=0.02
l1 a1

8=0.01
x13=(14.65, 14.02, 18.02, 6.43, 22.16, 14.83, 39.44) l2 l2 a2

13=0.904
l1 a1

13=0.095
l3 a3

13=0.001
x27=(13.51, 14.02, 18.02, 29.25, 22.16, 8.91, 39.44) l2 l2 a2

27=0.739
l1 a1

27=0.261
x29=(13.39, 11.01, 18.02, 17.36, 22.16, 8.91, 39.44) l2 l2 a2

29=1
x37=(13.52, 11.01, 14.11, 6.43, 22.16, 3.02, 39.44) l2 l2 a2

37=0.986
l1 a1

37=0.013
l3 a3

37=0.001
x38=(13.39, 11.01, 18.02, 5.46, 22.16, 3.02, 39.44) l2 l2 a2

38=1
x40=(13.4, 7.99, 14.11, 6.43, 22.16, 8.91, 39.44) l2 l2 a2

40=0.974
l3 a3

40=0.018
l1 a1

40=0.008
x48=(13.24, 4.98, 14.11, 6.43, 22.16, 20.32, 39.44) l2 l2 a2

48=0.782
l1 a1

48=0.214
l3 a3

48=0.004
x55=(12.14, 7.99, 18.02, 5.46, 22.16, 3.02, 39.44) l2 l2 a2

55=1
x59=(11.01, 7.99, 18.02, 17.36, 22.16, 3.02, 39.44) l2 l2 a2

59=0.995
l3 a3

59=0.005
l1 a1

59=0.00001
x76=(8.76, 4.98, 14.11, 17.36, 22.16, 3.02, 39.44) l2 l2 a2

76=0.93
l3 a3

76=0.056
l1 a1

76=0.014
x88=(6.65, 4.98, 14.11, 5.46, 3.76, 14.83, 39.44) l2 l2 a2

88=0.636
l3 a3

88=0.343
l1 a1

88=0.021
x90=(4.06, 1.05, 18.02, 39.78, 12.92, 3.02, 39.44) l2 l2 a2

90=0.554
l1 a1

90=0.319
l3 a3

90=0.127
x91=(4.64, 1.96, 6.74, 5.46, 3.76, 3.02, 39.44) l2 l2 a2

91=0.529
l3 a3

91=0.471
l1 a1

91=0.00001
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TABLE 13 Cont. "Credit granting in the banking sector": assignments by ELECTRE TRI
and SMAA-Classification

Alternative x ELECTRE SMAA-Classification
PES Class Acceptability

index
x66=(10.25, 7.99, 14.11, 15.58, 12.92, 8.91, 20.24) l3 l3 a3

66=1
x69=(10.65, 11.01, 10.47, 3.69, 3.76, 8.91, 20.24) l3 l3 a3

69=1
x77=(9.4, 7.99, 10.47, 3.69, 3.76, 3.02, 20.24) l3 l3 a3

77=1
x84=(8.26, 7.99, 10.47, 3.69, 3.76, 8.91, 20.24) l3 l3 a3

84=1
x85=(8.45, 7.99, 6.74, 3.69, 3.76, 8.91, 20.24) l3 l3 a3

85=1
x92=(5.11, 4.98, 3.02, 3.69, 3.76, 3.02, 20.24) l3 l3 a3

92=1
x93=(3.68, 1.96, 6.74, 15.58, 3.76, 3.02, 20.24) l3 l3 a3

93=1
x94=(3.86, 1.96, 3.02, 3.69, 3.76, 3.02, 20.24) l3 l3 a3

94=1
x95=(2.56, 1.96, 6.74, 15.58, 3.76, 14.83, 20.24) l3 l3 a3

95=1
x96=(2.81, 1.96, 3.02, 3.69, 5.41, 3.02, 20.24) l3 l3 a3

96=1
x97=(1.04, 1.05, 14.11, 49.9, 3.76, 3.02, 20.24) l3 l3 a3

97=0.755
l1 a1

97=0.242
l2 a2

97=0.003
x98=(1.48, 1.05, 3.02, 15.58, 3.76, 3.02, 20.24) l3 l3 a3

98=1
x99=(1.68, 1.96, 3.02, 15.58, 5.41, 3.02, 20.24) l3 l3 a3

99=1
x100=(0.6, 1.05, 0.71, 3.69, 5.41, 3.02, 20.24) l3 l3 a3

100=1

TABLE 14 "Identification of accident type": assignment examples

Reference Alternative x Class
b1

1=(11, 17, 15) l1
b2

1=(11, 18, 11) l1
b1

2=(10, 13, 18) l2
b1

3=(15, 14, 12) l3
b2

3=(15, 16, 11) l3
b3

3=(16, 15, 14) l3
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TABLE 15 "Identification of accident type": assignments by TRINOMFC and SMAA-
Classification

Alternative x TRINOMFC SMAA-Classification
Class Similarity index Class Acceptability

index
x0=(16, 14, 14) l3 SI3

0 =0.79 l3 a3
0=1

l2 SI2
0 =0.48 l2 a2

0=0
x1=(10, 18, 11) l1 SI1

1 =0.7 l1 a1
1=0.991

l3 SI3
1 =0.21 l3 a3

1=0
l2 SI2

1 =0.1 l2 a2
1=0.009

x2=(15, 17, 18) l2 SI2
2 =0.72 l2 a2

2=0.17
l3 SI3

2 =0.65 l3 a3
2=0.54

l1 SI1
2 =0.3 l1 a1

2=0.29

6.1.2 Concluding Remarks

Let us, finally, emphasize that even though the new SMAA-Classification method
does not require a great deal of parametric information from the DM (such as
thresholds and/or weights) and, thus, it does not load him or her cognitively,
still it provides similar results to methods that assume that the DM is able to
define all the parameters precisely. Thus, SMAA-Classification is more flexible
while being as effective.

We have tested our method with the results obtained by applying ELECTRE
TRI on two different data sets and by classifying with TRINOMFC. The results of
such experiments speak for the effectiveness of the SMAA-Classification method.

6.2 Dichotomic Classification

In Section 4.2, we have introduced the interactive Dichotomic Classification (DC)
method for ordinal classification of a set of given alternatives into a predefined
number of classes. The method assumes that the set of alternatives to be classi-
fied is given a priori and it is estimated on the set of criteria that may have verbal
or numerical values. The number of classes and their order should also be avail-
able in advance. The Dichotomic Classification method utilizes the ideas of VDA
classification methods. In the method, the DM should assign to classes some se-
lected alternatives from the set of given alternatives, but not all. In order to select
the alternative to be posed to the DM at each iteration of the classification, the
Dichotomic Classification method adopts the bisection search.

We have also considered the possibility of utilizing information about the
lexicographic order of the criteria according to their importance to the DM, if
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it is available. The procedure of classification is simplified and the number of
questions posed to the DM, naturally, is reduced if such a relation can be applied.

Next, we consider some numerical tests of the developed method and com-
pare the results provided by the Dichotomic Classification method and the SAC
method on the same artificial data sets.

6.2.1 Analysis of Results

The effectiveness of the VDA methods can be estimated as a number of questions
posed to the DM. Thus, in order to test performance of the Dichotomic Classifica-
tion method and to compare it to the VDA methods developed earlier, we have
to estimated the number of questions posed to the DM for different classification
problems.

When compared to the VDA methods developed earlier, the Dichotomic
Classification method can work for the set of given alternatives without using
the complete set obtained as a Cartesian product of all criteria scales. However,
the DM should be questioned for the classification of each such new set of given
alternatives. The exception is the case when the set of given alternatives is equal
to the complete set of alternatives obtained as a Cartesian product of all criteria
values (that is an universal set of alternatives for the selected set of criteria). Then,
we can search for the rules that describe classes with boundary alternatives in a
similar way it is done in the ORCLASS and SAC methods. Then, there is no need
of questioning the DM each time the new set of alternatives (that is smaller than
the Cartesian product of criteria scales) has to be classified. Boundary alternatives
can be detected when all the alternatives have been classified with regards to the
property, according to which, for the boundary alternative, changing the value on
at least one criterion moves it to a neighboring class. Here, we use this exceptional
case in order to compare Dichotomic Classification and SAC methods.

An approach to the comparison of VDA methods has been proposed in [93].
Theoretically, the minimal number of questions posed to a DM in the preference
elicitation procedure would concern only the alternatives that lie on the bound-
aries, but that would be an ideal case and does not work in practice. However, the
efficiency of the preference elicitation procedure can be estimated with the help
of this ideal case. The relation between the number of boundary alternatives and
the number of questions posed to the DM for a complete classification is often re-
ferred to as the absolute effectiveness index for classification methods. The number
of alternatives to be classified by the DM is known as the relative effectiveness index
[93].

We introduce another reducing effectiveness index (E) as a relation of the num-
ber of questions (Q) posed to the DM and the number of given alternatives (m):
E = Q/m; E ∈ [0, 1]. This index shows the reduction of the number of alter-
natives classified by the DM when compared to the direct classification of every
alternative in X. In the worst case, when the set of questions asked is equal to the
set of given alternatives, the reducing effectiveness is equal to 1. That is why we
are trying to minimize the reducing effectiveness index.
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The absolute and reducing effectiveness indices are the opposites in the fol-
lowing sense. In the "optimistic" absolute index, the number of questions posed
to the DM is compared to the best or ideal case and we should maximize it, while
in the "pessimistic" reducing index, the number of questions is compared to the
worst case of the preference elicitation procedure - to direct classification of each
alternative from the set of given alternatives. However, for the absolute index,
the information about exact boundaries should be available. That is not always
the case, especially, when the set of given alternatives is not equal to the Cartesian
product and the boundary alternatives detected by some method do not represent
any compact rule [92]. Thus, in the following we compare SAC and Dichotomic
Classification according to the relative and reducing indices.

On the other hand, in Dichotomic Classification method, we have tried
to avoid embedded heuristics (about uniform distribution of the centers of un-
known classes) of the other VDA methods and create a method that works ef-
ficiently for different distributions of alternatives between classes. The method
introduced should be effective for different kinds of alternatives distributions.
Real life examples studied in [114] motivate us to estimate the performance of
methods for different alternatives distributions between classes such as uniform
(when the same (+/-2) amount of alternatives are allocated in each class), expo-
nential (when the number of alternatives in the next class is larger than in the
previous one), and Gaussian (when almost all alternatives are assigned into one
class). We have also generated random alternatives distributions.

Another direction of research examines the DMs’ behavior when determin-
ing boundaries. The experiments conducted in [96] show that boundary alterna-
tives have a certain structure. Usually, experts and/or DMs develop a small num-
ber of rules for the classification of alternatives. Each rule has a structure of a tree
with the combination of the most important criterion in the root, to which several
criteria that are necessary to make a decision are added. Thus, boundaries should
be simulated according to the structure described. These experiments conducted
in [96] confirm our observations of the DMs’ behavior and directs us to the idea
that for the DM the criteria may have different importance. There are at least two
possible cases: either the DM assigns some weights to each criterion or simply
orders them lexicographically. In both cases, the task of classification is signifi-
cantly simplified. It is challenging to use weights in VDA where verbal values are
utilized, that is why we have used the order on the set of criteria. The information
about the lexicographical order is applied to the studied and developed methods
and their performance is estimated and compared.

Besides the effectiveness of the methods, it is important to evaluate their
computational complexity, even though the technologies are improving and com-
plex calculations are becoming less time-consuming. In VDA type of methods,
the computational complexity of a method can be calculated as the number of
comparison operations that the algorithm should perform in order to select the
alternative that is proposed to the DM for classification at each iteration of the
preference elicitation procedure. In the SAC method, the alternative is chosen
according to informativeness, for the calculation of which the preference relation
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should be checked for each alternative with regards to each not yet classified al-
ternative and each available class. Thus, the computational complexity at each
iteration of the SAC method is m′ × m′ × l, where m′ is the number of not yet
classified alternatives and l is the number of available classes for this alternative.
Unlike in SAC, in the Dichotomic Classification method for the selection of the
alternative that will be proposed to the DM for direct classification, we need only
information about the number of not yet classified alternatives m′ at each itera-
tion. At the first iteration, the number of the not yet classified alternatives is equal
to the complete set of given alternatives m′ = m, but it decreases from iteration
to iteration as some of the alternatives are classified. Next, we demonstrate the
results of tests with the SAC and Dichotomic Classification methods with equally
important criteria and with a lexicographic order on the set of criteria, and eval-
uate them according to the effectiveness criteria for the problems with different
alternatives distributions.

For our tests, we select problems with the following parameters: 4, 5 or 6
criteria and 3 values on each criterion. Resulting from Cartesian products we
have the sets of 81, 243 and 729 alternatives that should be assigned into 2, 3 or 4
classes. We also consider alternative sets with 256, 1024 and 4096 alternatives that
are created as Cartesian products of 4, 5 or 6 criteria, each of which is estimated
on 4 values and the alternatives are classified into 2, 3 or 4 classes.

Statistical modeling of different alternatives distributions between classes
allows comparing the effectiveness of the SAC and Dichotomic Classification
methods with a lexicographic order on the set of criteria and without it, according
to the efficiency indices measuring average relative effectiveness and reducing
effectiveness. We perform all the experiments with artificial data sets. For prob-
lems with different sizes, we produce from 5 to 10 simulations for each type of
distribution. For simulations according to the uniform, exponential and Gaussian
distributions, we perform 7 and 5 runs for 3 and 4 values on the scales of criteria,
respectively, and round the calculated average to the closest integer. For random
distribution, we perform the same simulations, however, without rounding the
relative effectiveness.

The relative effectiveness of SAC and Dichotomic Classification estimated
as a number of questions posed to the DM for direct classification is presented
in Table 16 and Table 17 (for 3 and 4 values on the scales of criteria, respec-
tively). Here, the first columns show the number of criteria (the size of the set
of criteria G), the second columns define the number of alternatives, that is, a
Cartesian product of the criteria set (the size of the set of alternatives X), and
the third columns present the number of classes (the size of the sets of classes
L). The fourth columns define the method (Dichotomic Classification or SAC).
For each type of problem, we use the methods with the following alternatives
distributions: uniform, exponential, random and Gaussian, which are presented
in columns five to eight, respectively. At the row intersections of the columns
five to eight, the numbers of questions posed to the DM are located. The cells
highlighted in italic face indicate the cases in which SAC and Dichotomic Classi-
fication are equally effective or when SAC works better. The tables also contain
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statistical information about averaging of the relative effectiveness for all distri-
butions and standard deviation in columns nine and ten, respectively.

TABLE 16 Relative effectiveness of DC and SAC for 3 value scales

Cri- Alter- Clas- Method Uniform Expon. Random Gauss. Average Stand.
teria natives ses Distr. Distr. Distr. Distr. Distr. Dev.

4 81 2 DC 20.00 16.00 18.00 10.00 16.00 5.28
SAC 30.00 37.00 22.00 49.00 34.50 10.97

5 243 2 DC 35.00 37.00 46.66 21.00 34.91 11.96
SAC 92.00 298.00 75.66 146.00 152.91 90.88

6 729 2 DC 66.00 70.00 81.33 56.00 68.33 16.60
SAC 98.00 332.00 149.66 434.00 253.41 132.45

4 81 3 DC 23.00 29.00 24.66 32.00 27.16 4.27
SAC 25.00 33.00 26.66 55.00 34.75 11.80

5 243 3 DC 42.00 49.00 48.66 55.00 48.66 5.13
SAC 30.00 61.00 65.33 82.00 59.58 21.29

6 729 3 DC 88.00 94.00 140.66 135.00 114.41 25.45
SAC 33.00 80.00 175.33 241.00 132.33 76.12

4 81 3 DC 38.00 25.00 24.00 32.00 29.75 5.88
SAC 42.00 40.00 25.00 56.00 40.75 13.18

5 243 3 DC 73.00 62.00 57.00 55.00 61.75 7.90
SAC 66.00 62.00 61.00 72.00 65.25 6.28

6 729 3 DC 148.00 128.00 140.66 135.00 137.91 9.90
SAC 132.00 101.00 109.00 151.00 123.25 37.80

In Figures 18- 21 and in Figures 22- 25, we demonstrate the comparative
results of the relative effectiveness of SAC and Dichotomic Classification with
different alternatives distributions. Here, the horizontal axes represent the num-
ber of classes and the number of alternatives for each problem; the vertical axes
show the relative effectiveness that is estimated as a number of questions posed
to the DM. The first group of figures follows the behavior of relative effectiveness
depending on the size of the criteria set: we fix the number of classes and change
the number of the criteria. The second group tracks changing the size of classes
set: we fix the number of criteria and change the number of classes.

According to the results, the Dichotomic Classification method is more ef-
fective in most cases of exponential and all cases of Gaussian distribution, while
when the alternatives are distributed uniformly at some cases SAC works in the
same way as (or better than) Dichotomic Classification. For a random distribu-
tion, Dichotomic Classification performs better on the average, however, there
are cases in which SAC and Dichotomic Classification are equally effective. The
analysis of the boundaries of these random distributions show that in such cases
the distribution is close to a uniform one.

The effectiveness of SAC for the uniform distribution, when compared with
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TABLE 17 Relative effectiveness of DC and SAC for 4 value scales

Cri- Alter- Clas- Method Uniform Expon. Random Gauss. Average Stand.
teria natives ses Distr. Distr. Distr. Distr. Distr. Dev.

4 256 2 DC 13.00 17.00 24.00 15.00 17.25 9.41
SAC 104.00 104.00 28.66 149.00 96.41 41.96

5 1024 2 DC 17.00 30.00 69.33 20.00 34.08 39.17
SAC 358.00 396.00 172.00 516.00 360.50 147.21

6 4096 2 DC 21.00 56.00 156.33 25.00 64.58 39.17
SAC 510.00 482.00 538.33 550.00 520.08 30.44

4 256 3 DC 44.00 32.00 46.66 60.00 45.50 9.68
SAC 77.00 60.00 63.33 113.00 78.33 20.38

5 1024 3 DC 97.00 48.00 106.33 165.00 104.08 39.41
SAC 114.00 118.00 150.33 243.00 156.33 79.40

6 4096 3 DC 249.00 56.00 271.66 165.00 185.25 39.41
SAC 252.00 453.00 585.33 622.00 478.08 167.29

4 256 3 DC 45.00 34.00 47.33 60.00 46.58 10.69
SAC 39.00 49.00 65.22 151.00 76.08 40.10

5 1024 3 DC 103.00 59.00 148.33 165.00 118.83 44.05
SAC 84.00 126.00 224.33 199.00 158.33 61.06

6 4096 3 DC 563.00 132.00 239.33 558.00 373.08 44.06
SAC 523.00 488.00 588.33 702.00 575.33 94.13
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FIGURE 18 Uniform distribution of alternatives between classes (grouped by criteria)
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FIGURE 19 Exponential distribution of alternatives between classes (grouped by crite-
ria)
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FIGURE 20 Random distribution of alternatives between classes (grouped by criteria)
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FIGURE 21 Gaussian distribution of alternatives between classes (grouped by criteria)
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FIGURE 22 Uniform distribution of alternatives between classes (grouped by classes)
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FIGURE 23 Exponential distribution of alternatives between classes (grouped by
classes)
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FIGURE 24 Random distribution of alternatives between classes (grouped by classes)



146

0

100

200

300

400

500

600

700

800

256
alternatives

1024
alternatives

4096
alternatives

256
alternatives

1024
alternatives

4096
alternatives

256
alternatives

1024
alternatives

4096
alternatives

2 classes 3 classes 4 classes

Type of problem

N
um

be
r o

f q
ue

st
io

ns
 to

 D
M

DC

SAC

FIGURE 25 Gaussian distribution of alternatives between classes (grouped by classes)
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FIGURE 26 Average relative effectiveness of DC and SAC methods (grouped by classes)
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FIGURE 27 Average relative effectiveness of DC and SAC methods (grouped by crite-
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FIGURE 28 Reducing effectiveness of DC and SAC methods (grouped by classes)
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FIGURE 29 Reducing effectiveness of DC and SAC methods (grouped by criteria)
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FIGURE 30 Average relative effectiveness of DC and SAC methods with the lexico-
graphic ordering of criteria (grouped by classes)
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FIGURE 31 Average relative effectiveness of DC and SAC methods with the lexico-
graphic ordering of criteria (grouped by criteria)

the other distributions, is caused by the heuristics embedded into the method.
When calculating the probability of each alternative to be assigned in a class, it
is assumed that the center of an unknown class is located with an equal distance
from the centers of already known classes, in other words, the centers of classes
are uniformly distributed. This is also the reason for a difference between the
values of SAC’s average relative effectiveness presented in [95] and the values
obtained in this work.

Figures 26 and 27 show the relative effectiveness averaged for all distribu-
tions. As in the previous figures, the types of problems are grouped by the same
criterion in Figure 26 and by the same class in Figure 27. These figures illustrate a
dependence between the number of criteria (or classes) and the number of ques-
tions posed to the DM. Thus, the average relative effectiveness increases when
the number of criteria increases for both SAC and Dichotomic Classification and
reduces for SAC and increases for Dichotomic Classification when the number
of classes grows. The same fact is confirmed by the reducing effectiveness index
presented in Figures 28 and 29. On an average, the number of questions asked
from the DM by Dichotomic Classification is smaller than by SAC, and according
to the standard deviation the method has a smaller variation in this number.

The data presented in Table 18 shows the performance of SAC and Di-
chotomic Classification for different distributions of alternatives between classes
when a lexicographic order on the set of criteria is considered. Statistical analysis
of the table shows that the Dichotomic Classification method works less effec-
tively for some cases of the uniform and random distributions (the cells are high-
lighted in italic face); however, for the exponential and Gaussian distributions it
performs better. Figures 30 and 31 demonstrate the average relative effectiveness
of the SAC and Dichotomic Classification methods when the lexicographic order-
ing of criteria is considered. The problem types are ordered in Figures 30 and 31
by criteria and classes, respectively. According to the average relative and reduc-
ing effectiveness indices, Dichotomic Classification is more effective than SAC for
the problems with a lexicographically ordered set of criteria.

The tests described and both the relative and reducing effectiveness indices
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show better results on the average for the Dichotomic Classification method com-
pared to the SAC method on the same data sets for both cases: with the lexi-
cographical order between criteria and without such information. However, a
more detailed analysis of the different alternatives distributions between classes
demonstrates that for the uniform distribution SAC performs as well as Dicho-
tomic Classification and even better in some cases (see Figure 22, for instance).
That is due to the specificity of the algorithm of the method. We also observe
increasing effectiveness of SAC with an increasing number of classes, while the
effectiveness of Dichotomic Classification decreases in the same conditions (see
Figure 28, for example).

TABLE 18 Relative effectiveness of Dichotomic Classification and SAC for 4 value scales
when criteria are lexicographically ordered

Cri- Alter- Clas- Method Uniform Expon. Random Gauss. Average Stand.
teria natives ses Distr. Distr. Distr. Distr. Distr. Dev.

4 256 2 DC 12.00 12.00 11.66 7.00 10.66 2.45
SAC 2.00 78.00 2.00 127.00 52.25 61.37

5 1024 2 DC 10.00 10.00 10.00 9.00 9.75 0.50
SAC 2.00 314.00 4.50 541.00 215.37 261.88

6 4096 2 DC 8.00 8.00 8.00 7.00 7.75 0.50
SAC 2.00 693.00 2.66 812.00 377.41 435.82

4 256 3 DC 15.00 14.00 9.66 17.00 13.91 3.10
SAC 43.00 62.00 5.83 161.00 67.96 66.26

5 1024 3 DC 19.00 48.00 14.17 19.00 25.04 15.47
SAC 172.00 226.00 9.00 431.00 209.50 171.10

6 4096 3 DC 23.00 23.00 15.17 22.00 20.80 3.77
SAC 210.00 332.00 8.00 519.00 267.25 214.52

4 256 3 DC 21.00 20.00 13.33 20.00 18.58 3.53
SAC 21.00 68.00 6.66 190.00 71.41 83.28

5 1024 3 DC 27.00 25.00 15.00 20.00 21.75 5.37
SAC 69.00 73.00 11.66 159.00 78.16 60.73

6 4096 3 DC 33.00 32.00 24.17 22.00 27.79 5.52
SAC 110.00 89.00 8.33 236.00 110.83 94.25

6.2.2 Concluding Remarks

We have implemented the Dichotomic Classification method and performed tests
on artificial data sets. When compared to another VDA classification method,
SAC, the Dichotomic Classification method is more effective as attested by the
relative and reducing indices of effectiveness. Dichotomic Classification is also
computationally less complex. Improvement in the effectiveness and computa-
tional complexity allows overcoming the limits of the SAC method for the set
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of alternatives classified. The Dichotomic Classification method works better for
different alternatives distributions between classes when compared to SAC ex-
cept for uniform distribution, where in some cases they both performed equally
well or SAC outperformed Dichotomic Classification.

In the VDA methods developed earlier, the heuristics about distribution
of alternatives uniformly between classes has been assumed. However, in the
real-life, it is not always the case. For instance, the real-life examples presented
in [114] show that there may be different distributions of alternatives between
classes. That is why, in this work, we have considered artificial data sets with
different distributions of alternatives between classes. The effective work of Di-
chotomic Classification for different distributions of alternatives between classes
is confirmed by the tests above.

We also considered the possibility of establishing a lexicographic order on
the set of criteria. In case when such information is available, the classification
procedure is simplified and the number of questions posed to the DM for direct
classification is reduced. In the tests, Dichotomic Classification performed better
than SAC on the average also in this setting.



7 APPLICATION OF DICHOTOMIC
CLASSIFICATION TO ADHD DIAGNOSTICS

An important application area of VDA methods for classification is diagnostics
of alternatives that are usually estimated with verbal or numerical values. Let
us mention that the VDA method ORCLASS has been successfully applied in
medical diagnostics [99]. As one of many possible applications, we consider here
neuropsychological diagnostics, where the evaluation of a patient’s behavior is
usually performed in a verbal form and is sensitive to any transformation. Our
special interest is focused on aiding decision making when detecting different
disorders. Next, we present the classification model developed for the diagnos-
tics and identification of the Attention Deficit - Hyperactivity disorder (ADHD).
This work has been done in cooperation with Niilo Mäki Institute (Jyväskylä),
where there is a wealth of experience in solving such problems; however, the
need of a computerized multicriteria decision support system exists. The work
on the multicriteria decision support system is discussed with experts in neu-
ropsychological diagnostics and is to be improved according to their needs. The
system can assist an expert as well as a new specialist in neuropsychological di-
agnostics.

7.1 Introduction to ADHD Diagnostics

In neuropsychology, there are a number of disorders that are difficult to identify
and for which diagnostic criteria are not completely defined. ADHD is one of
the most common and the most extensively studied child psychiatric syndromes
[150]. This disorder is characterized by symptoms of inattention, hyperactivity
and impulsivity [2]. Major research of ADHD is based on the studies made with
children of the school age between 6 and 12 years. Even though some symptoms
may appear at a younger age, it is difficult to estimate whether a child’s behavior
differs from the normal one. At the school age, the child needs to exercise con-
centration and vigilance; he or she should also demonstrate the abilities of motor
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control and working memory [77]. Although most of the research is done on
young ADHD children, several investigations on adults [134] indicate develop-
mental problems during the lifespan of persons affected by ADHD. Thus, ADHD
can cause various negative consequences including poor achievement at school,
more visits to the emergency rooms and more automobile accidents [134].

Currently, diagnostics of ADHD is performed with a standard questionnaire
known as Structured Interview for Diagnostic Assessment of Children (SIDAC)
for Diagnostic and Statistical Manual for Mental Disorders (DSM). However, this
standard is constantly modified and has already undergone several revisions
(DSM-I, ..., DSM-IV) [2], [54]. Thus, ADHD diagnostics is not yet even properly
defined and cannot be objectively measured [28]. In this work, we consider the
latest version of SIDAC for DSM: DSM-IV. The last version of SIDAC for DSM-IV
diagnoses for children of ages 6-12 can be found in [2], [54].

Another feature of the ADHD diagnostics is the descriptive character of the
symptoms that allow estimating the behavior of a person (in this work, we as-
sume the person under study to be a child). The usual way of diagnostics is
based on the evaluation of the child’s behavior by parents and teachers as well
as on the child’s own reports. These data should be enough for a clinician to be
able to detect the existence of one of ADHD subtypes or conclude the absence of
ADHD. In the ADHD diagnostics, the DM is a clinician.

Diagnostic problems, including ADHD detection, are typical classification
tasks where it is necessary to assign a set of alternatives estimated on a set of cri-
teria into a predefined set of classes. The above-mentioned features of the ADHD
diagnostic problems, among them are poorly or subjectively measured nature
of symptoms as well as the descriptive or verbal manner of criteria estimations,
narrow down the set of possible methods that can be applied to resolve such
classification tasks. In particular, difficulties with precise definition of numerical
estimations when describing behavior should be taken into account. That is why
we have applied the Dichotomic Classification method in the ADHD diagnostics
[162]. Next, we briefly describe the ADHD problem area in more detail.

As mentioned before, the ADHD diagnostics is performed with a SIDAC
interview. The structured interview assumes that all participating persons an-
swer diagnostic questions about the behavior of the child. Usually, the following
individuals are involved in the questioning procedure: the parents (usually, the
mother), the teacher, and the child itself; the last modifications to DSM-IV also
include the clinician’s opinion about the behavior of the child when the diagno-
sis is made. There are different opinions about the importance of the answers of
different persons. Some researchers point out that the teacher’s opinions are the
most important; the others do not place similar importance to this aspect [28]. We
assume that the opinions of the mother and the teacher are the most important
ones; however, the child’s self-reporting is also taken into account, and we in-
clude the clinician on the stage of decision making. In this, we follow the current
practice in ADHD diagnostics.

The structured interview for ADHD in SIDAC for DSM-IV [2] is presented
in Appendix. ADHD consists of three groups of symptoms: inattention, impul-
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sivity and hyperactivity. The decision is to be made about the presence of one of
the three following subtypes of ADHD: 1) attention-deficit hyperactivity disor-
der with predominantly inattentive type (inattention), 2) attention-deficit hyper-
activity disorder with predominantly hyperactive-impulsive type (hyperactivity-
impulsivity), 3) attention-deficit hyperactivity disorder: combined type (ADHD)
or the absence of any of these disorders (no ADHD). The decision is based on
the reports of the three persons involved in the decision making. The whole
questionnaire contains eighteen questions. The first nine questions allow mak-
ing conclusions about the presence or absence of inattention. The second part
of the interview consists of other nine questions that show whether there is the
hyperactivity-impulsivity disorder. The conclusion about inattention is made
when the child has shown six of the inattention symptoms and less than six of
the hyperactivity-impulsivity symptoms. The hyperactivity-impulsivity disor-
der is detected when the child’s behavior accords with six symptoms from the
hyperactivity-impulsivity group and with less than six of the inattention group.
For the ADHD, six symptoms from the first and six from the second group should
be satisfied. Otherwise, the conclusion about the absence of the ADHD is made.
These three rules are used in order to imitate the behavior of a clinician when
making a decision about the presence of the disorder discussed here.

Let us now model the problem of ADHD diagnostics with multiple criteria
decision analysis and illustrate how the Dichotomic Classification method can
assist in ADHD diagnostics.

7.2 ADHD Diagnostics with Dichotomic Classification

7.2.1 ADHD Model for Classification

In order to see how the Dichotomic Classification method works for the ADHD
diagnostics, let us present the problem in multiple criteria analysis terms. We
consider diagnostics of inattention and hyperactivity-impulsivity separately be-
cause the symptoms for these two diagnoses are different and they do not interact
with each other (see Appendix). The conclusion about ADHD or the absence of
ADHD is made based on the combination of the results from the inattention and
the hyperactivity-impulsivity diagnostics.

Thus, we will have three stages in our diagnostics: 1) diagnostics of inat-
tention with two possible classes: either the child meets the diagnostic criteria or
not; 2) diagnostics of hyperactivity-impulsivity with two possible classes: either
the child meets these diagnostic criteria or not; and 3) combination of the results
of two previous stages with four possible classes for ADHD diagnostics: the child
meets the diagnostic criteria for both of the previous stages, one of two or none
of them.

We formulate the first two stages as separate classification problems and
then combine their results for the final ADHD diagnostics decision at the third
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stage. The criteria for the first and second stages of the diagnostics consist of ques-
tions about the behavior of the child for detecting inattention and hyperactivity-
impulsivity. The values on each criterion are the same and they reflect the an-
swers of the mother, the teacher and child him/herself. Even though we assume
the answers of the mother and the teacher to be more important than the child’s
self-reporting, the overall estimation of child’s behavior is considered by a clin-
ician based on all information available. Thus, for each of the nine symptoms
(criteria) we compare the answers obtained from the three persons about the be-
havior of the child (criteria scale): if the majority of the interviewers (2 or 3 out
of 3) agree that a symptom appears often, we assume that the symptom exists,
otherwise if only a minority (0 or 1 from 3) agrees that a symptom appears often,
we assume that the symptom does not exist.

In all, the ADHD diagnostics according to the SIDAC for DSM-IV diagnoses
of children of ages 6-12 (see Appendix) is done in three stages. At the first stage, a
set of nine questions with two possible answers (rarely or often) on each of them
allows the creation of the set of all possible combinations (Cartesian product) of
answers, that is, the set of alternatives. This set is classified into two classes: inat-
tention exists or inattention does not exist. The second stage is done by an anal-
ogy with the first one with the only difference that another set of nine questions
is taken for evaluation regarding whether the child meets with the hyperactivity-
impulsivity conditions or not. At the third stage of the diagnostics, we aggregate
the results of the two previous stages and obtain the evaluation for the ADHD:
whether the child meets both subtypes of criteria (inattention and hyperactivity-
impulsivity), or one of them (only inattention or only hyperactivity-impulsivity),
or does not have any of the ADHD subtypes.

7.2.2 Dichotomic Classification for ADHD Diagnostics

We demonstrate the Dichotomic Classification method with the first stage of de-
cision aiding for ADHD diagnostics where the existence or absence of inattention
is detected. In Appendix, the nine questions for the identification of inattention
are presented. For example, the first question item in this interview is: "Often
fails to give close attention to details or makes careless mistakes in schoolwork,
chores, or other activities?" It characterizes one side of a child’s behavior for rec-
ognizing inattention, but to know the overall picture of the child’s behavior the
clinician needs to know the combination of the answers on all the nine questions.

According to these questions, we define nine criteria G = {g1, . . . , g9} with
equal importance for the clinician, two values on each criterion gj = {gj1, gj2} =
{rarely, o f ten}, (j = 1, . . . , n) and two classes L = {l1, l2} = {no inattention,
inattention exists} that are ordered in an increasing order. Here, we are solving a
maximization problem, where the maximal ranks of criteria values and maximal
rank of class correspond to strongest affirmation of inattention. Then, the Carte-
sian product of the scales of criteria allows us to obtain the set of alternatives X
with |X| = 29 = 512, that is, we have 512 combinations of answers on each of the
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nine questions and X = {x1, . . . , x512}, where

x1 = (rarely, rarely, . . . , rarely),
x2 = (o f ten, rarely, . . . , rarely),
· · ·
x511 = (o f ten, o f ten, . . . , o f ten, rarely),
x512 = (o f ten, o f ten, . . . , o f ten, o f ten).

(24)

Thus, it is necessary to classify the five hundred twelve alternatives into two
classes.

The application of the Dichotomic Classification method to the diagnostics of ADHD
Step 1 The algorithm starts by assigning the set of possible classes Lold

i =
Li = L = {l1, l2} for each alternative and allocating the alternative with all
the maximal ranks (largest criteria values), i.e., x512 = (o f ten, o f ten, . . . , o f ten,
o f ten), into the class with the maximal rank x512 ∈ l2, where l2 = inattention
exists, and alternative with all the minimal ranks (smallest criteria values), i.e.,
x1 = (rarely, rarely, . . . , rarely), into the class with the minimal rank x1 ∈ l1,
where l1 = no inattention.

Iteration 1
Step 2 Here, we should check whether there are not yet classified alterna-

tives for which |Li| = 1. There are 510 not yet classified alternatives XL =
{x2, . . . , x511}.

Step 3 The set of not yet classified alternatives is bigger than two; thus, we
should search for the middle alternative with regards to the alternative x1 with
the minimal ranks on all criteria and the alternative x512 with the maximal ranks
on all criteria as proposed in Step 3 of Section 4.2. However, in the problem dis-
cussed there are only two values on the scale of each criterion, and there is no
sense in searching for the middle values on the scale of each criterion. This fact
simplifies the procedure of selecting a middle alternative: we may choose it ac-
cording to the bisection on the set of not yet classified alternatives (as in the case
with ordered criteria). In this way, we obtain the first middle alternative x255 =
(rarely, o f ten, o f ten, o f ten, o f ten, o f ten, o f ten, o f ten, rarely).

Step 4 The middle alternative is proposed to the DM for classification. Ac-
cording to the rule that imitates a clinician (for the conclusion about inattention
diagnosis at least six symptoms of inattention should appear), the alternative x255
is assigned to the class l2 = inattention exists (seven symptoms appear).

Step 5 There is no need to check inconsistencies because we have only two
classes (see Section 4.2).

Step 6 At this step, the set of possible classes for the not yet classified al-
ternatives is recalculated according to the classification of the alternative at Step
4. We check the preference relation for the alternative classified by the DM at
Step 4 and each not yet classified alternative. We find that the alternatives x256 =
(rarely, o f ten, o f ten, o f ten, o f ten, o f ten, o f ten, o f ten, o f ten) and x511 = (o f ten,
o f ten, o f ten, o f ten, o f ten, o f ten, o f ten, o f ten, rarely) are preferred to the alterna-
tive x256 = (rarely, o f ten, o f ten, o f ten, o f ten, o f ten, o f ten, o f ten, rarely): xiPx255,
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i = 256, 511. According to the relation (12), the set of possible classes for the alter-
natives x256 and x511 should be recalculated. For instance, for the alternative x256,
we have x256Px255, and, thus, L256 = Lold

256
⋂

l2 = l1, l2
⋂

l2 = l2 (inattention exists).
In such a way, the alternatives x256 and x511 are classified indirectly: x256 ∈ l2 and
x511 ∈ l2. After this step, the next iteration is performed in a similar way starting
from Step 2.

Iteration 2
Step 2 We should check whether there are not yet classified alternatives. At

this moment, the set of not yet classified alternatives is XL = {x2, . . . , x254, x257,
. . . , x510}.

Step 3 We continue the search for the middle alternatives according to the
bisection on both parts of the set of not yet classified alternatives. At this step, we
find two middle alternatives x128 and x383.

Step 4 The selected alternatives are proposed to the DM for classification
one by one at the current and next iterations, respectively. According to the as-
sumed rule (inattention is concluded when six or more symptoms appear), the
alternative x128 = (rarely, rarely, o f ten, o f ten, o f ten, o f ten, o f ten, o f ten, o f ten) is
assigned to the class l2 = inattention exists.

Step 5 There is no need to check inconsistencies because we have only two
classes (see Section 4.2).

Step 6 Assignment of the alternative x128 into the class l2 allows indirect clas-
sification of the alternative x384 = (o f ten, rarely, o f ten, o f ten, o f ten, o f ten, o f ten,
o f ten, o f ten) into the class l2 = inattention exists with regards to the preference
relation x384Px128: L384 = Lold

384
⋂

l2 = {l1, l2}⋂
l2 = l2. The iterative procedure

continues until all five hundred twelve alternatives are classified.

Thus, with the Dichotomic Classification method, 242 questions are pro-
posed to the clinician (when compared to 336 questions that should be asked
by the SAC method). On the other hand, the Dichotomic Classification method
needs no more than 250 milliseconds of CPU time when selecting an alternative
to pose to the DM for classification at each iteration. SAC, on the other hand,
requires 9000 milliseconds of CPU time at first iteration, and that time is linearly
decreasing for the following iteration. This indicates that the computational com-
plexity when selecting an alternative at each iteration is considerably decreased
and that the effectiveness (in the number of questions posed to the DM) is im-
proved in Dichotomic Classification when compared to SAC.

Eventually, after the classification process, the alternatives are assigned in
the following way: from the whole set of 512 possible combinations of the symp-
toms, 382 do not indicate inattention and 130 define this disorder. The resulting
table is partially presented in Figure 34. Due to the similarity of the classifica-
tion rule for the detection of hyperactivity-impulsivity, the number of questions
posed to the DM is the same as for the indication of inattention: 242 when the
Dichotomic Classification method is applied and 336 when the SAC method is
used. At the third stage of the diagnostics, we aggregate the results of the two
previous stages and obtain the evaluation for the ADHD: 33 alternatives from
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512 meet both subtypes of criteria (inattention and hyperactivity-impulsivity),
and 285 alternatives do not have any of the ADHD subtypes.

7.2.3 Concluding Remarks

We have discussed ADHD diagnostics with the help of the interactive Dichotomic
Classification method for ordinal classification. The tests were done in the frame-
work of a multicriteria decision support system presented in Section 7.3 in coop-
eration with the Niilo Mäki Institute (Jyväskylä, Finland), where there is consid-
erable experience in solving such problems. The system can assist an expert as
well as a new specialist in neuropsychological diagnostics.

In order to demonstrate the method, we assumed some rules that imitate
evaluations made by clinician. However, there is a more realistic situation with
some uncertainty on qualitative estimations. We can define such condition with
"unsure" value on the scale of each criterion: gj = {gj1, gj2, gj3} = {rarely, unsure,
o f ten}. In this case, the aid of multicriteria decision support system is indispens-
able, since it allows defining the rules that are "hidden" even from the clinician.
This case is the subject for future research. There is another source for our investi-
gation: the use of additional information, such as distribution of the alternatives
between classes (in %, for instance) and utilization of data bases of the known
diagnostic cases that can be used as assignment examples. Next, we have a look
at the multicriteria decision support system that contains implementations of the
SAC method studied and the SMAA-Classification and Dichotomic Classification
methods proposed in this work.

7.3 Multicriteria Decision Support System for Classification

The multicriteria decision support system (MDSS) is a powerful tool that is aimed
to assist the analyst and/or DM when solving multicriteria problems. Indeed,
such system may help at different stages of the decision aiding process that in-
clude (but not limited to) structuring main components of the model and formu-
lating a task, defining preferences of the DM and selecting a method to be used.

When developing an MDSS for classification, we take into account the fact
that the DM is not necessarily familiar with the MCDA methodology. That is why
the system developed should be interactive and iterative, and it should serve the
learning of the DM through a dialog with the system. The interface should be
user-friendly and should provide necessary graphical or visualization tools. The
wishes of the DM should be considered and psychological as well as behavioral
aspects should be taken into account. The system should be platform indepen-
dent and should preferably be available via Internet. In this work, we have de-
veloped MDSS taking into account the desired features.

Let us briefly discuss the MDSS developed. The system allows classification
with one of the methods, SMAA-Classification, SAC or Dichotomic Classification
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methods. We have developed MDSS with Eclipse 3.1.1 Java Software Develop-
ment Kit using a Celeron (R) Processor equipped PC with 2 GHz and RAM 256. It
is platform independent (can be used at, e.g., Windows, Linux, Unix). We demon-
strate some screenings of the MDSS when solving the ADHD diagnostics problem
presented in Section 7.2.2.

Figure 32 shows the initial information input in the form of criteria with
name, description and a scale that can have verbal or numerical values for each
criterion and classes with a name and description for each class (and assignment
examples for SMAA-Classification). The user (analyst and/or DM) has possibil-
ities to add, to remove, to update and to save initial, resulting and intermedi-
ate information. The system creates the set of alternatives (called objects at the
screenings at Figures 32-34) as a Cartesian product of criteria scales and allows
deselecting the alternatives that are not currently given (even though they are
potential) in the problem. We are also planning to add the possibility of a more
natural but time-consuming (especially, for the large data sets) way to specify the
alternatives: the input of each given alternative by the DM.

After the initial information input, the classification method should be se-
lected. Currently, it is possible in the MDSS to assign alternatives estimated
on criteria into classes by means of SMAA-Classification methods, SAC or Di-
chotomic Classification. For SMAA-Classification, all alternatives are classified
automatically, but the set of assignment examples has to be predefined. For the
interactive VDA methods (SAC and Dichotomic Classification), there is possibil-
ity to specify lexicographic order of criteria. When the interactive VDA method
is selected, the DM is asked to classify some alternatives from the set of given
alternatives (but not all). The alternatives to be classified by the DM are posed
to the screen one by one, and he or she should select one class from the set of
predefined classes for each alternative. Figure 33 shows one of the iterations of
such a questioning procedure.

When the method has run its course, the results of classification can be
browsed; an example of such screening is presented in Figure 34. Except for
standard functions for the creation and modification of the problem by adding,
removing and editing the criteria and classes sets, there are options for saving
and opening separate files with a problem model or with the DM interview or
with the classification results.

By using an MDSS for classification, the analyst and/or the DM can get a
significant help at different stages of the decision aiding process. At the same
time, the analyst and/or the DM can learn more about the problem considered
and the methodology applied.
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8 CONCLUSIONS AND FUTURE RESEARCH

The main motivation for this work was to structure the field of the MCDA-based
classification. We have discussed classification problems and the ways they are
solved by MCDA approaches. At the beginning, we have introduced some basic
concepts and theories of multicriteria decision aiding. Then, we have defined
the classification problem and presented a comprehensive survey of the MCDA
methods existing in the literature. We have described the most widely-spread
MCDA methods for classification in more detail.

According to the assumption about the possibility to describe the behav-
ior of the DM by means of some model, we have categorized the MCDA meth-
ods for classification on parameter-based and parameter-free methods. In turn,
parameter-based methods (that can be utility function-based and outranking rela-
tion-based) are divided into direct and indirect ones according to the ability of the
DM to provide parameters of the selected method. Thus, the methods have been
categorized into three main groups: direct parameter-based, indirect parameter-
based and parameter-free. Most of the methods presented in this work are from
the last two groups.

The comparative analysis of the methods surveyed shows that there are
some gaps in existing MCDA methods and it is possible to improve some of the
existing methods as well as extend some MCDA methodology for the classifica-
tion problems. Thus, we have developed two new methods: SMAA-Classification
and Dichotomic Classification in the framework of indirect parameter-based and
parameter-free groups of methods, respectively. The methods developed differ
not only according to the group they belong to but also with regards to the initial
data used, resulting data provided to the DM, and the type of the classification
problem they solve.

The nominal SMAA-Classification method has been developed for the cases,
where it is assumed that the behavior of the DM can be described by some para-
meter-based model; however, the DM has difficulties to define the precise param-
eter values of the model. The method does not need them to be defined by the
DM; nevertheless, if there is some imprecise or uncertain information about them
available, it can be used by the method. On the other hand, the SMAA-Classifi-
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cation method assumes that the DM can specify some assignment examples for
each class. Such assignment examples may be decisions that the DM used to
make in the past. Alternatively, he or she may be willing to think about the pos-
sible consequences of decisions made for realistic alternatives not considered in
the set of given alternatives, or can make decisions for a subset of alternatives
from the set of given alternatives. The SMAA-Classification method allows nom-
inal classification of given sets of alternatives described by numerical criteria or
attributes. The method is based on the Monte-Carlo simulation. At each itera-
tion, the possible preferences of the DM are modeled. Taking them into account,
the classification of the set of given alternatives is done based on the minimal dis-
tance between the alternative to be classified and assignment examples of classes.
After running the specified number of simulations, statistical information about
frequency of each alternative to be assigned to each class as well as typical pref-
erences that support such an assignment is recorded.

As far as the Dichotomic Classification method is considered, it has been
developed in the framework of VDA and it inherits the main features of this ap-
proach. Indeed, Dichotomic Classification is an interactive method for ordinal
classification that asks the DM to classify some, but not all, the alternatives from
the set of given alternatives. The rest of the alternatives are classified indirectly.
The selection of the alternative to be posed to the DM for direct classification is
done based on the dichotomic search on the set of alternatives. The Dichotomic
Classification method does not require transformation of the verbal values on the
criteria scales to numerical analogies. The alternatives estimated on verbal val-
ues are posed to the DM in a natural language. Questioning of the DM continues
until each alternative has been assigned to exactly one class. It is assumed that
the preferences of the DM may change over time and that during the interroga-
tion procedure the DM may be inconsistent. That is why the classification at each
iteration is compared to the previously made ones. In case any contradiction ap-
pears, the DM is asked to rethink both or one of the contradicting classifications.

We have also considered the possibility of additional information to be taken
into account in VDA methods, such as lexicographic order on the set of criteria.
This information, if available, simplifies the classification procedure and reduces
the number of questions posed to the DM for direct classification.

Even though both the new methods introduced here have been developed
in the framework of MCDA theory, they aim at different types of classification
problems. Thus, they have different assumptions, different initial and resulting
data and a different process of decision aiding itself. We have described the func-
tioning of the methods with the help of simple illustrative examples. We have
also tested and compared their performance to the methods developed earlier
on data sets available in the MCDA literature. The analysis of the properties of
methods studied and developed allows us to suggest some recommendations for
selecting a method to be used depending on the initial information, requirements
to the resulting data, type of classification, and the decision aiding process. Thus,
we have formulated decision trees to support the task of selecting a method for
classification.
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We have also created a multicriteria decision support system in the frame-
work of which the developed and some of the methods studied have been im-
plemented and tested. Besides the methodological part, this software contains a
user-friendly interface and allows a comfortable interaction between the user (the
analyst and/or DM) and the methods.

Finally, the Dichotomic Classification method has been applied for the diag-
nostics of Attention-Deficit Hyperactivity Disorder. These tests have been done
in cooperation with neuropsychologists at the Niilo Mäki Institute (Jyväskylä,
Finland). In the future, it would be interesting to apply the methods developed
to other diagnostic problems.

To summarize, the main contributions of this work are following. We have
been motivated by the idea of structuring the field of classification with MCDA
approaches. For this purpose, we have presented a comprehensive state-of-the-
art of classification with MCDA approaches. We have categorized the presented
approaches, compared them and provided recommendations for selecting a meth-
od in a particular situation. This survey allows us to realize gaps existing in the
field of MCDA classification. In order to fill some gaps, we have developed two
new methods. We have implemented the methods developed in the framework
of the multicriteria decision support system and have applied one of the methods
developed to the neuropsychological diagnostics. At the same time, some other
gaps remain in this area and there is still a lot of work to be done in the future.
Next, we point out some directions of research that are worth of close attention.

Even though research in the area of classification with MCDA approaches
has evolved rapidly over the past two decades, there are still unsolved problems
left and interesting topics that need further investigation. Indeed, most of the
research done so far has concentrated on the development of new methods. Even
though some gaps still exist and there is space for new methods to fill them,
studying the methods developed should continue, for example, in the following
directions.

The effectiveness and complexity of the existing methods should be esti-
mated for different data sets. Currently, with the exception of work done in [37],
there are not many comparisons and applications of different MCDA classifica-
tion methods to the same data sets documented in the MCDA literature. The
research in this direction should be extended also because real-life applications
and practical situations may improve existing method and create challenges for
the development of new ones. That is why a repository with benchmark real-life
applications and artificial data sets should be created for testing the MCDA clas-
sification methods. Other important issues to be discussed are estimation of the
validity and quality of the methods developed as well as sensitivity and robust-
ness analysis.

In a similar way presented in this work, the comparison of different meth-
ods and recommendations for selecting a method to be used in a particular situ-
ation can be investigated further. Another important issue to be studied is using
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combinations of results of several MCDA classification methods, for instance, the
way as it is done in machine learning with voting procedures [39].

Recently, a large number of classification methods have been developed
within the field of artificial intelligence, in particular, in machine learning. The
effectiveness of the MCDA methods can be compared to non-parametric tech-
niques, for instance, to neural networks, expert systems, and decision trees. In
a similar way as it is done in [37], the MCDA methods can be compared to the
statistical analysis tools such as discriminant analysis. On the other hand, the
methods can be combined or hybridized in such a way that each method works
only at a certain stage of the decision aiding process.

Similarly to the combination of the ELECTRE TRI method and the SMAA
methodology in the SMAA-TRI method, the SMAA-Classification method can be
applied at the initial stages of the VDA methods. We plan to develop a VDA-
SMAA method that would perform classification of the given sets of alternatives
described with verbal or numerical criteria scales to ordered classes, the num-
ber of which would be predefined, but the boundary alternatives are unknown
a priori. (The assignment examples are assumed to be available in advance.) At
the beginning of the VDA-SMAA method, SMAA-Classification should perform
pre-classification and define acceptabilities of each alternative to be assigned to
each class. Then, the alternatives that have large acceptabilities to be assigned to
several classes should be posed to the DM for direct classification.

In the future, it would also be interesting to compare the application of the
methods of more general types of classification problems, for instance, clustering
and nominal classification, with methods of more specific types of classification
problems, for instance, nominal classification and ordinal classification, to the
same data sets. In this way, we would be able to check whether methods devel-
oped for more general and more specified cases of classification provide similar
results on the same data sets, and whether it is possible to detect the specific fea-
tures after application of the more general methods. For instance, it would be
interesting to test if it is possible to discover the order of the classes after appli-
cation of the nominal classification method to the data set with no information
about the order between classes available a priori.

Finally, we wish to emphasize the need for multicriteria decision support
systems that would be able to provide efficient assistance to the DM when select-
ing and applying the MCDA methods for classification problems. They should
have user-friendly interfaces and should provide the DM with necessary graphi-
cal or visualization tools. Such systems should be developed taking into account
the requirements and wishes of real DMs.
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APPENDIX 1 DIAGNOSTICS OF ATTENTION-DEFICIT
HYPERACTIVITY DISORDER

From Structured Interview for Diagnostic Assessment of Children (SIDAC) for
Diagnostic and Statistical Manual for Mental Disorders (DSM-IV) diagnoses
of children ages 6-12

Has patient had any of the following problems for at least the last six months?
Inattention:

• Often fails to give close attention to details or makes careless mistakes in
schoolwork, chores, or other activities?

• Often has difficulty sustaining attention in tasks or play activities?

• Often does not seem to listen to what is being said to him or her?

• Often does not follow through on instructions and fails to finish school-
work, chores, or duties at home (not due to oppositional behavior or failure
to understand directions)?

• Often has difficulties organizing tasks/activities?

• Often avoids or strongly dislikes tasks (such as schoolwork or homework)
that require sustained mental effort?

• Often loses things necessary for tasks or activities (e.g., school assignments,
pencils, books, tools, or toys)?

• Is often easily distracted by extraneous stimuli?

• Is often forgetful in daily activities?

Hyperactivity:

• Often fidgets with hands or feet or squirms while seating?

• Leaves classroom or other situations in which remaining seated is expected?

• Often runs about or climbs excessively in situation where it is inappropri-
ate?

• Often has difficulty playing or engaging in leisure activities quietly?

• Is often "on the go" or often acts as if "driven by a motor"?

• Often talks excessively?

Impulsivity:

• Often blurts out answers to questions before the questions have been com-
pleted?
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• Often has difficulty waiting in lines or awaiting turn in games or group
situations?

• Often interrupts or intrudes on others (e.g., butts into conversations or games)?



YHTEENVETO (FINNISH SUMMARY)

Monikriteerisen päätöksenteon lähestymistapoja ja periaatteita voidaan soveltaa
luokitteluongelmissa, joissa päätökset riippuvat päätöksentekijän subjektiivisista
tiedoista, mieltymyksistä ja preferensseistä. Tällaisten menetelmien päätöksen-
tekoa helpottavat ominaisuudet tarjoavat päätöksentekijälle huomattavaa apua
ongelman määrittelyn, muotoilun ja tukimenettelyjen kautta. Tämän työn taus-
talla on tarve strukturoida monikriteerisen päätöksenteon lähestymistapoja hyö-
dyntävää luokittelumenetelmästöä ja alan problematiikkaa. Työssä esitetään kat-
tava ja ajantasaisen katsaus luokittelumenetelmiin, jotka käyttävät monikriteeri-
sen päätöksenteon lähestymistapoja. Lisäksi olemassaolevat menetelmät jaotel-
laan ryhmiin ominaisuuksiensa mukaan ja tarkastellaan yleisimmin käytettyjä
menetelmiä yksityiskohtaisemmin. Esille tuodaan kunkin menetelmän vahvuuk-
sia ja heikkouksia, sekä" eroja ja yhtäläisyyksiä muihin verrattuna. Tämän ana-
lyysin esiintuomat puutteet ovat innoittaneet kahden uuden menetelmän kehit-
tämistä.

Tässä työssä laajennetaan stokastiseen hyvä"ksyttävyysanalyysiin perustuva
SMAA-menetelmä nominaaliseen luokitteluun. Tämä menetelmä ei edellytä para-
metri-informaation olemassaoloa, vaan se olettaa vain, että päätöksentekijä voi
osoittaa yhden tai useampia luokitteluesimerkkejä kuhunkin luokkaan. Mene-
telmä antaa tuloksena tietoa kunkin vaihtoehdon hyväksyttävyydesta" luokitel-
tavaksi eri luokkiin. Toisaalta taas silloin, kun luokitteluesimerkkejä ei voida os-
oittaa eri luokille, sanallista päätösanalyysia voidaan hyödyntää ordinaalisessa
luokittelussa. Tällöin oletetaan, että luokista tiedetään vain niiden lukumäärä ja
järjestys. Nämä menetelmät ovat interaktiivisia. Vuorovaikutteissa prosessissa
päätöksentekijää pyydetään luokittelemaan joitakin menetelmän valitsemia vai-
htoehtoja, mutta ei kaikkia. Tässä työssä esitellään sanallisen päätösanalyysin
periaatteita käyttävä DC-menetelmä ordinaaliseen luokitteluun.

Kehitetyt menetelmät sekä muutamia muita menetelmiä on implementoitu
päätöksenteon tukijärjestelmän muotoon. Työssä kehitettyjä menetelmiä havain-
nollistetaan yksinkertaisin esimerkein. Lisäksi esitetään joitakin numeerisia testi-
tuloksia ja vertailuja käyttäen monikriteerisen päätöksenteon kirjallisuudesta löy-
tyviä luokittelutehtäviä. Testien tulokset tukevat kehitettyjen menetelmien tehok-
kuutta. Uutta DC-menetelmää sovelletaan myös neuropsykologisessa diagnos-
tiikassa, erityisesti ADHD-tapausten diagnosoinnissa. Jotta ajantasainen kuva
monikriteerisen päätöksenteon lähetymistapoja hyödyntävistä luokittelumene-
telmistä täydentyy, esitetään työssä myös suosituksia kuhunkin luokitteluongel-
maan sopivan menetelmän valitsemiseksi.
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