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ABSTRACT 

Laitila, Erkki 
Symbolic Analysis and Atomistic Model as a Basis for a Program 
Comprehension Methodology  
Jyväskylä: University of Jyväskylä, 2008,  326 p.
(Jyväskylä Studies in Computing,   
ISSN 1456-5390; 90) 
ISBN  978-951-39-3252-7 (PDF), 978-951-39-2908-4 (nid.)
Finnish summary 
Diss. 
 
Research on program comprehension (PC) is very important, because the 
amount of source code in mission-critical applications is increasing world-wide.  
Software maintenance takes more than one half of all software development 
time and the effort to understand code about a half of this.   Although of great 
importance, research on program comprehension is not yet very advanced.  

Notwithstanding with its many excellent qualities, modern object-oriented 
code is harder to understand and more difficult to analyze than former 
procedural languages due to encapsulation and object bindings. As a solution 
for this problem we propose an information flow structure with four stages to 
help us in systematically obtaining new knowledge from the code. The first 
stage consists of loading the program through GrammarWare into a symbolic 
form to function as a construction for the model, as the second stage, which we 
call here ModelWare. In our research we wanted to find the smallest possible 
structure that could be used for modeling. This gave us the idea of an "atom" in 
the source code. The idea was then implemented as a so-called hybrid object, 
combining, in an ideal manner, object based abstraction and expressiveness of a 
logic language. As a consequence, semantics and associations could be 
presented in a symbolic form. 

The third stage, code simulation based on SimulationWare enables 
symbolic analysis, which brings to light a program simulation functionality that 
is comparable with dynamic analysis. The last stage in our methodology, 
KnowledgeWare, is aimed for collecting knowledge: the user constructs, stage 
by stage, the most suitable representations for the current tasks, which include 
code inspection, error detection and verification of current operations. 

The methodology is programmed with Visual Prolog and implemented in 
our JavaMaster tool, which enables the handling of Java code in accordance 
with the main stages. The formalism of the resulting implementation 
architecture combines the main functions in program development: reverse 
engineering for maintenance, and forward engineering for design of new code.  
 
Keywords: software maintenance, program comprehension, reverse 
engineering, grammars and automata, model theory, knowledge capture. 
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TAXONOMY FOR SYMBOLIC ANALYSIS 

Symbols for software engineering 
PC    Program comprehension 
RE Reverse engineering 
FE Forward engineering 

Technology spaces for the research 
GW GrammarWare: technology focusing on grammars. 
MW ModelWare: technology focusing on models. 
SW SimulationWare: technology focusing on code simulation. 
KW KnowledgeWare: technology focusing on knowledge capture. 

The semiotic triad 
S Symbol 
O Object, either Java object or a semiotic object 
L Logic, language, and interpretation 

Main symbols of the methodology 
T Task, maintenance task 
P Process, program understanding process 
H Hypothesis 
Q Query, question 
A Analysis 
M Model 

Functional symbols for ModelWare, SimulationWare, and KnowledgeWare 
E Element of the model 
Atom Symbolic source code element, a software atom 
Action Computer action or human action 
C Computation, either automatic simulation or a manual inference 
N Grammar term 
R Rule, production rule, grammar rule 
K Knowledge (K0 = initial knowledge) 

Symbols for grammars and automata, and the corresponding symbolic notation 
Γ Alphabet (Java  Symbolic), list of reserved words 
Σ Input symbols (syntax of source code) 
B State transition table of finite automata (usually Q is used)  
δ  Transfer function, semantics   
SE Side effect, any result generated from simulation 
Symbolic Domain specific language for abstractung Java 
Clause The main grammar term of the Symbolic language 
TM Turing machine.  
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1 INTRODUCTION   

Software maintenance is becoming more and more important, because 
development times and product lifecycles are shortening and the life around us 
is becoming more complex demanding even more complicated features from 
new information systems. 

In this research the focus is on source code comprehension, which should 
help the user in planning new implementations based on the current 
programming platform.  The goal of the research is to create a framework, a 
formalism to connect the code, its behavior model, and the corresponding 
knowledge in order to aid the user in the problem recognition and problem 
analysis phases that are typical at that stage of maintenance where 
programming is transformed to code. This idea is very practical, because it 
allows a profitable use of the old code as far as possible without any need to 
reinvent the wheel. Furthermore, this kind of approach is needed, because 
developing software versions step by step involves significant risks in all 
situations where current behavior is not well understood. Such incomplete 
understanding can lead to erroneous products and weakening architectures, 
and to other maintenance problems (Lehman and Belady, 1985). 

1.1 Practical challenges for software maintenance  

Although the methods of software development have improved much since the 
time of procedural programming, there are still problems that decrease 
productivity and cause risks and serious quality problems for software 
deliveries (Boehm, 1991). This can result in benefits of object-oriented 
programming being lost, because programs are nowadays bigger and much 
more complex than during the procedural programming era in the '70s and '80s 
(Sneed, 2004a). 

It is especially laborious to analyze large object-oriented programs, which 
contain, e.g., dynamic bindings and layer structures, due to problems in tools 
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and methodologies that are not as comprehensive as the ones in the procedural 
era, when the programs were simpler (Arevalo, 2006).  For example, the run-
time functionality of modern programs can only be investigated by using 
dynamic analysis that requires complex arrangements like code instrumenting 
and running of a complete implementation. The problem is that in a large 
output typical of dynamic analysis the most interesting thing, possibly a small 
feature of the large behavior model, can be lost behind irrelevant data. A 
modular and flexible approach is needed to allow selective investigation of 
code from the user’s point of view. 

Because dynamic analysis has proved to be impractical for testing, there 
have been many attempts to decrease the number of the known problems 
related to it (Sneed, 2004b). As a solution special testbeds have been 
programmed, new software code has been instrumented to enable test 
extensions, and even new test modules have been coded for the original 
application software modules. Unfortunately the extensions can cause new 
problems, because they change the behavior of the original software. They can 
slow the program down, resulting in unproductive use of work time to 
maintain the special test code. Furthermore, planning test cases is a very 
expensive, laborious phase, because the tests should cover the new code and 
old versions and their interconnections in minor details. A completely perfect 
test environment cannot be created, because there is a vast number of different 
approaches and use cases to be covered in detailed tests. 

In research, the dependencies of source code, i.e., the most essential code 
information, have been studied with a technology known as slicing for twenty 
years. Nevertheless, it is not a complete method (Gallagher and Lyle, 1991), and 
covers only a special point-of-view at a time. So although providing a large 
number of code statements, traditionally a laborious problem for the user to 
master, slicing is still too narrow a method, having relevance mainly for static 
analysis. 

In object-oriented development UML diagrams are widely used to specify 
the structure, logic and behavior of the new application, but they are not 
specific enough to cover the programming approach (Rumbaugh, et al., 1999). 
Thus much work must be done to make the final program complete and that is 
why the code and the previous UML plans are not usually compatible after the 
programming phase. There are no good technologies to synchronize code and 
UML diagrams because UML reverse engineering tools, including ADM 
(architecture driven modernization), are not accurate enough to cover the 
details of the programming languages (Ulrich, 2005). For this reason they 
cannot help in program comprehension efforts. 

1.2 Research goal  

Taking into account the formal characteristics of the code and the quite different 
informal characteristics of the knowledge of maintenance persons as users, it is 
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evident that the goal should be to connect these different viewpoints in order to 
create a consistent way for raising the abstraction of the original code to the 
level of maintenance.  That’s why the challenges of analyzing source code lead 
to the following research aims:  
 

- To build a bridge from code to maintenance, a foundation for symbolic 
analysis, by the correspondent techniques, later called as technology 
spaces, and their transformations. 

- To create a novel abstraction by presenting an atomistic, symbolic model 
as a key ingredient for the transformation process and program 
comprehension support.   

- To demonstrate that symbolic analysis and atomistic model can be 
implemented for the selected Java software to produce the assumed 
behavior model to be understood. 

 
As a solution we are suggesting a unified model, an atomistic construction, 
which consists only of atomistic elements to maximize their connectivity when 
building higher order views as knowledge presentations for the user. As a 
theoretical contribution the atomistic, formal source code model is very 
challenging, because it is a clear opposite to holistic UML models and widely-
used metametamodels, where existing data is described by using external 
concept layers. The drawback of UML has always been divergence: there are 
numerous displays and diagrams and structures that are not compatible with 
each other in real-life where information should be transferred seamlessly to the 
user (Rumbaugh et al., 1999; Selonen, 2005). The user would be better off 
studying the same information from many viewpoints simultaneously, and not 
from numerous different displays one after another. 

Instead of employing different meta-concepts, the user approach in this 
research is object-oriented, meaning that each fact has been described only once 
and only in one place. All connections have been described by using logic, a 
Prolog predicate that has the formalism of our Symbolic-language. By using this 
unique predicate the contents of each atom is made compatible with axiomatic 
semantics that has connections to program verification research. Thus the 
atomistic model enables creating semiautomatic proofing implementations. 

Object-oriented behavior has not been studied earlier from the viewpoint 
of that computational theory. This study opens the possibilities for object-
oriented analysis by simulating code, partially focusing on the most critical 
area.  This focused approach is useful in performing typical maintenance tasks.  

As a formalism and a structure the atomistic structure is fully compatible 
with network theory. All of its information can be programmed by using 
standard mathematical operations, thus connecting mathematics and 
programming semantics with each other.  This new bridge can have influence 
in building large theories for software modeling and for redevelopment 
purposes. 
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1.3 The overall framework 

In this research a complete framework have been developed to build a 
formalism and a comprehensive data flow from software, extending from the 
source code into the knowledge capturing phase, in order to utilize the program 
comprehension information ( 725HFIGURE 1).  

The flow starts from the grammar management (GrammarWare), which 
makes it possible to define the semantics of the code when parsing Java code for 
all later phases. For handling source code behaviour in high abstraction models, 
a new symbolic language, Symbolic, was developed. It enables effective 
processing while still having a declarative internal notation for programming. 

FIGURE 1  Program comprehension data flow. 

The most important discovery of the study is the atomistic source code model, 
presented as ModelWare in 726HFIGURE 1. Because of its simplicity (it only contains 
simple elements), it is an ideal construction for modeling purposes. Further, its 
architecture is novel as it connects two different paradigms in the tool - the 
abstraction features of object-oriented programming and association capabilities 
of logic-programming - in order to create a minimal structure as a unifying 
element of the model. We call this new structure an atom, because it is the 
smallest structure captured from the code that cannot be divided into smaller 
parts without it losing its internal semantics.  Furthermore, each atom is 
backwards compatible to a grammar term.  

The atomistic model creates a formal and efficient structure for later 
analyses and enables Hoare’s axiomatic semantics to be used in modeling the 
behavior of the atoms. However, in analyzing a possible code behavior, the 
most essential specification is operational semantics, because it describes the 
functionality of the language.  For implementing an operational semantics as a 
framework, SimulationWare defining an abstract machine is needed: it shows 
how an axiomatic structure is changed into a functional behaviour. The 
research introduces the theory of abstract machines and automata (Chomsky, 
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1956; Chomsky and Schützenberger, 1963; Hopcroft and Ullman, 1979) in order 
to show that the formalism of the Turing machine (TM) metaphor is a fruitful 
concept for program comprehension purposes with its background of 
computation theory including simulation. Simulated computations, evaluating 
the code, save time. This allows the user more time for making higher level 
computations like testing and proving the program or for considering changes. 
The symbolic Turing machine, introduced here as a symbolic abstract machine 
(SAM), allows simulating source code as a reductionist atomistic source code 
model. We show that, by function, any atomistic element has a behavior 
resembling its typical automaton level in the Chomsky hierarchy. All elements 
have an equal outer formalism and an internal state-table, compatible with their 
origin in the programming language grammar (here Java). 

However, the abstract machine with its tapes is not enough for the user to 
improve the development process. The developer also needs to obtain new up-
to-date, practical information for solving any specific problem. We have 
developed a new framework, KnowledgeWare (727HFIGURE 1), to describe the 
transformation from the output of the abstract machine into user knowledge 
that can be used in planning maintenance tasks. This theory has three levels 
according to the concept of Rasmussen: knowledge level, rule level, and skill 
level (Rasmussen, 1983). Our theory for KnowledgeWare describes action 
stereotypes for each level as an information ladder (Longworth, 1996) in the 
following way.  The original code is data, and the results captured from that 
data produce low-level information. Furthermore, the specific analyses produce 
argumentative proofs for the user collecting accumulated program knowledge. 
This, in turn, improves the current know-how of the user, and the skills of how 
to make safe modifications for the current program.   

It is essential to observe how the computer can help the user at each level. 
The main concept in the automated program comprehension, computation, 
illustrates the behavior of the atom and refers strongly to the computational 
theory. In the atomistic model all the computations take place modularly at the 
element level, a low level, which has the formalism of a simple state-machine. 
As this simple state-machine extends itself via its links to all the referring sub-
state machines, it is possible to combine the program knowledge, the source 
code model, the theories of state automata, and the computation theory into a 
unified formalism to cover the whole scope of program comprehension. 

1.4 Overview of the contributions  

From the user’s point-of-view the current reverse engineering software tools 
almost without an exception transform all their input data into display 
information to be studied further (Walenstein, 2002). Thus the human-computer 
interaction does not allow interactive, problem-oriented analysis of the 
problem. Instead, the focused approach defined in this research allows the user 
to modularly define the level of the information to be shown, the most 
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important data flow type and the most difficult area of his/her work to be 
validated and  brought to the focus. From that focused point of view the user 
can navigate interactively in each level at different abstraction levels. This 
allows problem recognition, modular simulation of the selected code model and 
collection of simulation results in order to build a mental image of the current 
problem. The model works like a server, where the query formalism has its 
background in the integrated mental model of program comprehension.  

From the cognitive viewpoint the research introduces some new 
perspectives, because it connects together the Turing machine metaphor 
(Turing, 1936), artificial intelligence, source code analysis (Binkley, 2007), and 
cognitive models (Rasmussen, 1983 ; Anderson and Lebiere, 1998). 

1.5 Contents of the dissertation 

The contents of the dissertation are shown in 728HTABLE 1. One can get a quick idea 
of the contribution by reading the abstract, introduction and summary. A more 
profound understanding can be obtained by reading Chapters 1, 2, and 3 and 
Appendix 2 that describes the formalism used,  and, as a conclusion, Chapters 9 
and 10.  

TABLE 1 Contents of the research. 

Chapter Topic Contents 
1 Introduction Introduction, this chapter 
2 Background Related work describing background on the research area and 

the known approaches. 
3 Approach Research approach including an abstract and more concrete 

goals for the dissertation. The concrete goals are evaluated in 
Chapter 9, and the abstract goals are summarized in Chapter 
10. 

4 GrammarWare Grammar-related methodology.  It describes a symbolic 
notation for grammars based on predicate logic. A novel 
symbolic language, named Symbolic, is presented there. 

5 ModelWare Model-based methodology.  It describes the motivation for an 
atomistic model, and building the model and corresponding 
characteristics including the architecture. 

6 SimulationWare Simulating methodology. A symbolic abstract machine is 
illustrated.  Simulating the atomistic model as a Turing 
machine metaphor is introduced. Semantics for the 
corresponding model is presented as an atomistic semantics. 
Corresponding formalisms are introduced. 

7 KnowledgeWare Knowledge-related methodology. This chapter is a synthesis, 
which combines maintenance, the corresponding tool and the 
atomistic model to a cognitive architecture.  

8 JavaMaster tool A demonstration to model a symbolic Turing machine 
including its architecture and user interface as well as an 
approach for proving programs.  

continues… 
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729HTABLE 1 continued. 
9 Results A summary of the methodology described in Chapters 4 – 7. 

Concrete goals from Chapter 2 are evaluated .   
10 Conclusions Conclusions including a summary of abstract goals from 

Chapter 2. 
 Summary The summary both in English and Finnish. 

App 1 Server example A short Java example of a typical object-oriented program, 
which uses threads in communication. 

App 2 Prolog tutorial A short Visual Prolog tutorial. 
App 3 Simulation data Simulation data for the example (Appendix 1). 
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2 BACKGROUND ON PROGRAM 
COMPREHENSION 

This chapter describes program comprehension (PC) research starting from 
software development process, which is the large context. Maintenance is the 
area where the problems of code understanding (a synonym for PC) are 
principally found. Creating a theory for solving program comprehension 
problems is important, because it could produce clear positive feedback to the 
whole development process.   

The aim of this research is to create a unified comprehension methodology 
for object-oriented programming (OOP). This focus has been selected, because 
OOP doesn’t have a well-established theory for analyzing dynamic behavior. 
Thus, it is lacking a theory that could provide most valuable information for 
solving maintenance tasks and object-oriented programs in general, which are 
often identified with serious problems  (Sakkinen, 1992; Arevalo, 2006; 
Zaidman, 2006; Tichelaar 2001) .  

2.1 Software development life cycle  

Software development is a relatively new discipline, and doesn’t yet have a 
strong theoretical foundation. Therefore its methods are practical rather than 
formal, even though the goal to increase formalism in development is apparent 
also in organization-centric proposals such as SPICE and CMMI (Raak et al., 
2004;  Garcia & Turner, 2006).  

Although a number of new technologies have been created since the 
1970’s one after another, programming is still laborious work, and object-
oriented programming has its own typical comprehension problems (Bezevin, 
2003). One reason for this is that while large software vendors exert a very 
strong influence on the strategy of software development organizations, they 
are not interested in developing totally new paradigms or new programming or 
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program comprehension theories.  That’s why commercial tools, research 
communities, and practitioners do not come together in the daily work. 

2.1.1 Evolution laws 

In the long run, software related work rather than being seen as a temporary 
activity, should be seen as a continuous process that obeys certain evolution 
laws (Lehman and Belady, 1985):  
 

- Continuous change: Software that is used in industrial and practical 
applications must evolve and be updated, lest it cease to fulfill its 
mission and meet its operational objectives. 

- Increasing complexity: When a system evolves, its structure becomes 
more complex and brittle unless software engineers take specific actions 
to remediate the phenomenon. 

- Numerous layers of feedback in the systems: The development processes 
are multi-loop, multi-agent feedback systems that are difficult to master. 

 
Lehman’s laws suggest that there are maintenance problems in future, too, due 
to continuous change and increasing complexity. By careful maintenance 
planning it is still possible to improve the quality of software, but in many cases 
it can be laborious and expensive. Therefore, developers need new 
methodologies in order to justify future investments in the existing software. 

2.1.2 Maintenance means a continuous life cycle 

Maintenance is the last part of the whole software production cycle, which aims 
at increasing the quality and value of the software implementation (Sneed, 
2004a). Much research has been done on making maintenance systematic, but 
the theoretical background for the results is rather thin. Generally one 
recognizes four types of maintenance activities: corrective, adaptive, perfective, 
and preventive (Chapin et al., 2001).   

The focus of this study is task based maintenance, which is organized 
bottom-up and case-by-case. The larger scale approach, system wide 
maintenance, which is organized top-down and involves very abstract planning 
for enterprise architectures and organizational goals (Zachman, 1987), is left out 
of the scope in this work. Task based maintenance starts from a typical change 
request, usually leading to PC needs in the functions of problem recognition, 
problem formulation, and deeper analysis.   

Corrective maintenance 

The most critical type of maintenance is correcting code errors. This has been 
studied extensively, but most often the proposed methods can only be used for 
procedural languages. (See Tonella et. al, 2007)   The most detailed method for a 
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corrective maintenance process was created by Jambor-Sadeghi et al.  (1994). It 
is described next.  

In the “Jambor-Sadeghi process” the application software is described to a 
bug management system by using a functionality hierarchy and collected 
information about individual bugs. In every new situation where a bug is 
identified, that bug is matched with the up-to-date information in order to find 
possible problem candidates, which normally are specific execution paths in the 
program. The execution paths and structural components selected by the user 
from the bug information are mapped together to a test case database to cover 
all known malfunctions. Information about each new bug solved is saved, and 
the functionality and path information is specified.  

The process works well in principle, but there are some problems in 
practice, because the software should be rather stable and homogenous to allow 
this kind of functionality mapping. In general, it cannot be used in OOP, where 
the class hierarchies can be deep and complex. One essential limitation for this 
method is that critical execution paths should be executed individually. The 
problem is that the analysis method that is currently used, dynamic analysis, 
doesn’t allow this.  That’s why the “Jambor-Sadeghi process” and other similar 
ones are best in static investigation of source code that is characterized by 
execution paths and static structures, functionalities and sub-functionalities. 
With object-oriented code this is not so simple, because most paths are activated 
dynamically in run-time and in layered architectures, and it is not possible to 
know all use cases and possible uses such as class contracts. The most serious 
drawback of dynamic analysis is that it cannot be used selectively piece by 
piece to test the most interesting execution paths or sub-functionalities.  

Thus neither static analysis nor dynamic analysis is perfect in 
implementing a complete corrective maintenance tool by itself.  The same 
conclusion has been made in many articles considering OOP (Sneed, 2004b). 
Although there are numerous methods for fixing and correcting specific 
problems in procedural and object-oriented code, a more general methodology 
is needed for a unified approach in corrective maintenance.  

Adaptive, perfective and enhancive maintenance 

The role of object-oriented programming is important in the pragmatics of 
creating new software in all maintenance types other than corrective 
maintenance. In each maintenance case, when fixing a bug or making a 
modification, the purpose should be to raise the quality of the software in order 
to avoid problems of degradation (Lehman et al., 1985). The means usually 
employed for raising the quality are design patterns (Gamma et al., 1995) best 
practice integrating rules, and architecture recommendations, which are specific 
for each organization (Brown et al., 1998; Demeyer, Ducasse, and Nierstratz, 
2003;  Shawn and Garlan, 1993;  Kazman et al., 1994).  

Raising quality is not easy, on the contrary it is often very laborious, 
because the changes in the code can propagate into numerous other places 
causing turbulence.  This is a gray area, where there are no good general 
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answers. Refactoring and reorganization (Fowler el al., 1999) are some ways to 
make progress (Demeyer et al., 2003), but there are no ready answers for all the 
questions. The most problematic topic in maintenance is then the code-related 
approach, where the information is the most complex and also the most critical.  

2.1.3 Reverse engineering and reengineering 

Reverse engineering is a research discipline relating to maintenance and 
through it to the whole software development process.  By definition, reverse 
engineering is the process of analyzing a subject system to create presentations 
of the system at a higher level of abstraction (Chikofsky et al., 1992). Reverse 
engineering in and of itself does not involve changing the subject system. It is a 
process of examination, not a change or replication.  

There is a great deal of motivation for reverse engineering in industry, 
because there are hundreds of billions of lines of code in mission critical 
systems worldwide. Furthermore, technology is changing rapidly, which exerts 
continuous modernization pressure. It is problematic that all systems degrade 
in quality due to continuous change. So there is a point in time for every 
mission critical system at which it either has to be reengineered (that means 
developing the system into the next step), rewritten or replaced (Morris, 
O’Brian, Smith, and Wrage, 2005). 

Software reengineering is a larger concept than reverse engineering, 
because its purpose is to modernize the current system (Chikofsky et al., 1992). 
It refers to techniques and methodologies that aim to facilitate: 

 
1. Understanding a software system and its components. 
2. Increasing functional and non-functional characteristics and properties 

of the software system. 
3. Collecting, modeling, categorizing and storing information related to 

the software system. 
 
Thus reengineering can be regarded as a process to read current source code, to 
understand it, to plan the necessary changes, bigger or smaller, in order to 
create a new software system implemented at the source code level. It can be 
done manually without tools or semi-automatically by using source code 
analysis methods. 

A horse shoe diagram (730HFIGURE 2) is a widely used metaphor to describe 
how the current source code (the left bottom corner in the figure) will be 
transformed into a high abstraction model for problem analysis (Kazman et al., 
1998). In this loop PC is the process to raise the abstraction level. It is needed 
also when planning modifications in forward engineering. After understanding 
the situation, the modifications can safely be made and programmed into the 
code (right lower corner of the figure).  



 

 

30 

The software development process can be considered as a general process, 
where reverse engineering is the necessary measurement, a feedback that 
should guarantee perfect control for making the production stable, because  it is 
the principle behind how industrial processes work (Baxter and Mechlich, 
1997). It was found in the '70s that maintenance contains numerous complex 
multi-layer multi-user feedback-loops (Lehman et al., 1985). Unfortunately these 
loops have been too complex to be analyzed and computerized to help the 
developers.  

FIGURE 2 Reverse engineering, a horse shoe diagram  (Tichelaar, 2001). 

2.1.4 Best practices of maintenance and reverse engineering 

In the USA and Canada transforming Cobol-programs into modern 
architectures has become very popular (Kontogiannis el al., 1998). Big 
organizations like NASA that have invested much in software, have developed 
high quality best-practices like SRAH and SMART for systematic reverse 
engineering  (Olsem, 1995; Morris el al., 2005).  

A standard proposal, Software Reengineering Assessment, SRA, is an 
evaluating and decision making process with the following principles (Olsem, 
1995).  SRA is intended to determine whether to maintain, reengineer, or retire 
software. It has three phases: technical, economic, and management assessment.  
It is mainly focused on technical aspects, because without good technological 
preconditions there is no use to migrate code and the implementation into new 
platforms. If the technical questions give positive answers and economic 
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conditions are advantageous, it is very easy for the project persons to present, to 
the management, the argument that migrating is profitable in a long-run. 

SMART (Service-Oriented Migration and Reuse Technique) is a 
modernization technology developed for the US Air force and has the following 
goals (Morris el al., 2005): 

- Establish stakeholder context. 
- Describe existing capabilities. 
- Describe the future service-based state. 
- Analyze the gap between the service-based state and existing 

capabilities. 
- Develop strategy to service migration. 

 
There are no actual measures for maintenance evaluation. The best of them are 
COCOMO-metrics (Boehm, 1981), but they normally provide information that 
is too specific and too narrow. The quality of forward engineering processes can 
be evaluated by using SPICE and CMMI models (Raak et al., 2004; Garcia et al., 
2006), but these ignore the omni-present role of reverse engineering in the 
whole development cycle. 

2.2 PC as an independent discipline 

Program comprehension is a domain of computing science dealing with the 
processes used by software engineers to understand programs during their 
evaluation, before their modification (Brooks, 1983). PC is also known as a 
synonym for program understanding. In this chapter PC is discussed both as an 
independent discipline (this section), and as integrated into a larger context 
(next section).  

There is a conference series ICPC 0F

1 on program comprehension (started in 
1992), which has focused mostly on the approach of the independent PC 
discipline.  However, because of its rather narrow scope this forum does not 
provide complete answers for industrial software development. A latter 
approach, multi disciplinary focus in integrating PC to other technologies, has 
attracted very little interest, although it can have more practical value than the 
single-disciplinary approach. There are conferences like WCRE (Working 
Conference on Reverse Engineering) 1F

2 and SCAM (Source Code Analysis and 
Manipulation) 2F

3 , where questions typical for PC are discussed. The topics they 
deal with are often rather technical, solving some special problems or covering 
a large area of the development process. 

                                                 
1 ICPC, The 15th IEEE International Conference on Program Comprehension, 

www.cs.ualberta.ca/icpc2007/index.html. 
2 WCRE2007, www.rcost.unisannio.it/wcre2007/program/main_conference_program.htm 

(1.11.2007) 
3  SCAM2007,  www.ieee-scam.org (1.11.2007) 
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2.2.1 Single-disciplinary approach   

Storey's survey has illustrated the past, present, and future of program 
comprehension (Storey, 2006).  In the following we present some observations 
about the survey. 

About models and theories  

The lack of theories of program comprehension was recognized as being 
problematic (Détienne, 2001) already before the '90s, but as the field of program 
comprehension matured, research methods and theories were borrowed from 
other areas of research, such as text comprehension, problem solving, and 
education. The theories for program mental models were created in the '80s and 
in the '90s (Brooks, 1983; Pennington, 1987;  von Mayrhauser and Vans, 1997). 
 

Mental and cognitive models. A mental model describes a mental 
representation of the program as understood by the developer, whereas a 
cognitive model describes the cognitive processes and temporary information 
structures in the programmer’s head that are used to form the mental model. 
Cognitive support refers to support provided for cognitive tasks such as 
thinking or reasoning (Walenstein, 2003). 

 
Programming plans.  In the '90s, program comprehension became an 

important topic as a possible solution for the productivity problem. The best 
known model from that area results from Pennington’s research about bottom-
up understanding (Pennington, 1987), where she showed in which order the 
students and programming novices learn code features. Its main construct is the 
so-called five-tuple: function, control flow, data flow, state, and operation.  This 
information set is useful to describe the information and even knowledge that 
can be captured from a procedural source code. 

 
Top-down comprehension model. In the '80s Brooks developed (Brooks, 

1983) a theory for the developer about matching source code with similar 
collections of high-level mental concepts. It is useful to note that without 
matching of that kind, or without making any assumptions, it is hard to learn 
code features. 

 
Integrated metamodel. An important theoretical framework for program 

comprehension is the integrated metamodel of von Mayrhauser  (von 
Mayrhauser et al., 1997), because it connects the theories of other researchers 
into a whole. It includes the three main models: the bottom-up model, the top-
down model, and the situation model. According to von Mayrhauser the 
relation between maintenance and program comprehension is the following  
(von Mayrhauser et al., 1997):  

 



  33 

 

“Program comprehension is said to be a first task before maintenance. The biggest 
problem in maintenance is the difficulty to understand the current 
implementation, all its dependencies and its business relations so that the 
program can safely be modified without any risk to cause new problems in the 
earlier functionality.”  

 
The top-down model concentrates on high-level plans and what the specified 
code element should do. The bottom-up model is suitable for detecting, from 
the code, different kinds of flows (control flow, data flow, and program flow), 
state dependencies or function of each code element. The situation model is an 
accumulated set of information collected in the program investigation phase. 
Situation model is needed for understanding relations between domain-specific 
dependencies and program structures and flows (von Mayrhauser et al., 1997). 

Storey (2006) summarizes the integrated mental model as follows: 
 
- The top-down (domain) model is usually invoked and developed using 

an as-needed strategy, when the programming language or code is 
familiar. It incorporates domain knowledge as a starting point for 
formulating hypotheses. 

- The program model may be invoked when the code and application is 
completely unfamiliar. The program model is a control-flow abstraction. 

-  The situation model describes data-flow and functional abstractions in 
the program. It may be developed after a partial program model is 
formed using systematic or opportunistic strategies. 

-  The knowledge base consists of information needed to build these three 
cognitive models.  It represents the programmer’s current knowledge 
and is used to store new and inferred knowledge. 

- Understanding is formed at several levels of abstraction simultaneously 
by switching between the three comprehension processes. 

Role of hypotheses in program understanding 

Hypotheses have long been recognized as major drivers of program 
comprehension  (von Mayrhauser et al., 1997). They help to direct further 
investigation. Brooks (1983) theorizes that hypotheses are the only drivers of 
cognition,  because understanding is complete when the mental model consists 
entirely of a complete hierarchy of hypotheses in which the lowest level 
hypotheses are either verified against the actual code or documentation, or fail. 

If we have, for example, a client-server application, which doesn’t respond 
to queries, we can make the following assumptions. Either the server has not 
been started, the machine is down, or the answering process is blocked.  Each of 
them is a typical troubleshooting hypothesis. In most cases it is possible for the 
user to coarsely localize the hypotheses to the code. Proving which one of them 
is erroneous is often difficult because of dynamic behavior of the application.   
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Using questions in exploring programs 

Goals or questions embody the cognitive processes by which maintenance 
engineers understand code. So goals of program comprehension have a logical 
connection to maintenance tasks. Solving a goal consists of lower level 
comprehension actions, which the user should perform in order to get a picture 
about the current goal. Von Mayrhauser describes the sequence of a goal (von 
Mayrhauser et al., 1997) containing the following lower levels: hypothesis, sub-
goal, sub-hypothesis, and an action. The role of this action level is typically to 
search or to prove something in the code. She has also described tool 
requirements for supporting program comprehension, where selective 
navigation has an essential role to play.  

Problems in reading object-oriented code 

Because of encapsulation, the most difficult thing in understanding object-
oriented source code can be attributed to crosscutting and dynamic bindings. 
Those bindings that are dynamic cannot be understood from the caller’s code 
without understanding all possible called elements. This is necessary in order to 
get real understanding about the real-time behavior (Walkinshaw, Roper, and 
Wood, 2005).   

Due to encapsulation, the contents of each class are difficult to be read. 
The invocations of each class and each method, in particular, cannot be found 
without reading the code. This is what is known as a crosscut problem. So 
analyzing the behavior automatically in order to automatically find all call 
candidates should be the most advantageous feature for the reader. 

Static analysis can solve neither the behavior nor invocation paths which 
form the real logic and control flow of an object-oriented system.  This 
invocation logic is called the behavior of the system. In UML it is typically 
presented as a sequence diagram (or as a scenario). 

Programming paradigms will also impact comprehension strategies. 
Object-oriented (OO) programs are often seen as a more natural fit to problems 
in the real world, because of ‘is-a’ and ‘is-part-of’ relationships in their class 
hierarchy and structure, but others argue that objects do not always map easily 
to real world problems (Détienne, 2001) .  

2.2.2 Influence of individual programmer differences 

There are many individual characteristics that will impact on how a 
programmer tackles a 
comprehension task. These differences also affect the requirements for a 
supporting tool. There exist clear differences in programmers' ability and 
creativity that cannot be measured simply by their experience (Curtis, 1981).  

Vessey (1985) has noted that experts use breadth-first approaches and at 
the same time are able to adopt a system view of the problem area, whereas 
novices use breadth-first and depth-first approaches but are unable to think in 
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system terms. Moreover, experts tend to reason about programs according to 
both functional and object-oriented relationships and consider the algorithm, 
whereas novices tend to focus on objects. Burkhardt et al. (2002)  performed 
experiments to study how object-oriented programs are comprehended. They 
observed that novices are less likely than experts to use inheritance and 
compositional relationships to guide their comprehension. Furthermore, Davies 
(1993) noted that experts tend to externalize low level details, but novices 
externalize higher levels of representation related to the problem. 

2.2.3 Object-Oriented Program Comprehension 

Only a few theories have been developed for understanding object-oriented 
programs.  The proposal of Burkhardt et al. is one of the most promising, 
because it defines the program comprehension approach taking care of the 
specialties of OO-programs (Burkhardt et al., 2002): 
 

- Main goals. The main goals of the problem correspond to functions 
accomplished by the program viewed at a high level of granularity. They 
do not correspond to single program units. Rather, the complex plan 
which realizes a single goal is usually a delocalized plan, a set of 
distributed activities, in an OO program. 

- Problem object(s) (PO). These objects directly model objects of the 
problem domain.  

- Relationships between problem objects. These consist of the 
inheritance and composition relationships between PO’s.  

- Computing or reified objects. An example of a computing, or reified, 
object is a string class, which is not a problem domain object per se. 
Reified objects are represented at the situation model level inasmuch as 
they are necessary to complete the representation of the relationships 
between problem objects, i.e., they bundle together program level 
elements needed by the domain objects. 

- Client–server relationships. Communication between objects 
corresponds to client–server relationships in which one object processes 
and supplies data needed by another object. These connections between 
objects are the links connecting units of complex delocalized plans. In an 
OO system, the actions in a complex plan which performs a main goal 
are encapsulated in a set of routines, and the routines are divided among 
a set of classes and connected by the control flow. Client–server 
relationships represent those delocalized connections. 

- Data flow relationships. Communication between variables 
corresponds to data flow relationships connecting units of local plans 
within a routine. 

 
The list above has only some connections to the procedural Pennington model 
(Pennington, 1987), because that list has been created supposing that object-
oriented programs and classes do have many use cases, that code elements have 
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numerous activation models, and, what is important, that a huge number of 
details are hidden behind the signatures of the classes. Therefore, in normal 
situations the role of the user is initially to investigate the most probable goals 
and problem objects in order to find and to understand the most essential 
connections, data paths and flows, and objects.  

It is essential to observe that the procedural comprehension model 
(Pennington, 1987) and its object-oriented equivalent (Burkhardt et al., 2002) can 
be connected with each other by creating some generic concepts, i.e., specialized 
program flows, that are common for both of them. However, currently there are 
no good tools for OOP understanding that would directly support these 
comprehension models. 

2.3 PC integrated into code analysis 

In most surveys of the field it can be seen that PC is considered to be an 
independent discipline, which has no connections to other parts of software 
development (Storey, 2006) relating to source code analysis in general (Binkley, 
2007), which is a wider approach. Rather than being a vivid activity, PC should 
be seen as a comprehensive link combining cognitive models and theories and 
the practical life of the programmer. There are two main reasons why PC 
should also be seen from a multidisciplinary approach: 
 

- von Mayrhauser et al. (1997) have proposed that PC is a mandatory 
phase before each maintenance task. That is why it should be integrated 
into other technologies and source code analysis tools. Furthermore, 
multidisciplinary research should be conducted in order to connect 
critical development phases like programming, design, maintenance, 
and restructuring together. 

- The best-known and most widely used source code analysis methods are 
program comprehension methods, because their purpose is to help the 
user to understand better the source code. Furthermore, it is not possible 
to change the code without understanding how the current functional 
and qualitative behavior will change in the modification process. 

Creating a comprehensive view to software maintenance 

Test cases, analysis methods, and the corresponding tools have been connected 
into a comprehensive set of methodology by Sneed (2004b). In his test system 
environment, built for a large commercial information system, the roles 
between different technologies are the following. Static analysis is used as much 
as possible, because the results from a source code can be captured without any 
cost (automatically).  Dynamic analysis is so expensive that it is used only in 
critical phases. So in practical maintenance cases it is useful to find 
compromises between different technologies. Integrating various tools with 
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each other in order to make a flexible environment for ensuring software 
production quality is very important. 

Programming can be seen as the most complex part of maintenance, which 
fact, therefore, emphasizes the role of PC. In most cases it is the most expensive 
phase, too, and has an important economical value. Thus all means to utilize the 
results of programming as perfectly as possible are valuable. The following use 
cases serve for extending the scope of PC to a larger software development 
context: 

- Finding problems in source code. 
- Proving programs. 
- Improving co-operation and delegation of work by means of better PC 

knowledge. 
- Avoiding reinventing the wheel by using current code as efficiently as 

possible.  
- Avoiding degrading the quality of software by systematic familiarization 

of code. 
- Scheduling the testing and verification phases as early as possible to 

minimize error costs. 
- Providing feedback to other organizations and teams and stakeholders 

by better metrics and more complete models. 
 
Source code can be analyzed either manually or automatically. Manual work is 
very expensive whenever we deal with huge amounts of code, often running to 
possibly millions of lines. Simply put, programmers have never enough time to 
get a very detailed mental image about large applications. Furthermore, it is 
hard for the developer to remember dependency information of code elements 
that are not in the active focus of the user. So the users must rely on their 
memory and use different hypotheses to check individual things case-by-case. 
Furthermore, often when the focus is changing then several places in the code 
that have already been visited must be re-navigated because of their different 
roles in the new task. 

2.3.1 Connecting PC and static analysis 

Static code analysis produces rather good results for procedural languages, 
although pointers cause often serious problems for C developers. Thus pointer-
analysis is a widely investigated area, studied by big organizations like NASA, 
Airbus and Boeing. 

There are numerous methods and principles for static analysis (Caprile et 
al., 2003; Binkley, 2007).  The area contains a few basic methodologies and 
various ways to analyze, but the role of program comprehension there cannot 
easily be seen, because most of the analysis principles are technologically 
oriented having no cognitive background.  

- The basic methodologies specify algorithms for static analysis and how 
to handle internal source code structures. They are based on variations of 
abstract-syntax-tree (AST), parse-tree (PT) and feature vector (FV).  
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- Several presentations for semantics have been proposed (Heering and 
Clint, 2007) . The best known of them are dependency graph (DG) 
providing outputs as flow analysis, abstract syntax graph (ASG) (Dean, 
2004), type inference analysis, slicing and clustering tools, transformers, 
and different kinds of call graphs.  Definitions for them can be found in 
the survey by Binkley (2007). 

  
It is problematic that these analysis functions are separate and cannot be used 
from one tool to cover all output information.  This fragmentation prevents the 
industry from using static analysis widely in software development, because 
there are no good tools to satisfy all the developers' needs. 
 
There are several specific  analysis techniques for meeting the analyzing 
challenges  described by Binkley (2007).  However, most of them are useful for 
programmers in the context of program comprehension: 

- Program slicing: Useful for detecting dependencies and correcting errors 
(Weiser, 1984; Binkley, 1996). Slicing (Weiser, 1984) is a method to locate 
statements in the code that can influence the target statement, pointed at 
by the user (Lucia, 2001). Because the method returns statements from 
the source without abstracting them, it is a low level method. There are 
numerous implementations of slicing, including forwards and 
backwards slicing and dynamic slicing. The best-known tool 
implementation is CodeSurfer (Anderson et al., 2001).  The problem is that 
often the output of slicing is too large for the user to be used efficiently 
in the user’s detailed questions about code behavior. 

- Flow analysis: Useful in understanding program flows and influences 
(Reps, 1998). Dataflow analysis studies the behavior of data. A well-
known method there, gen-kill, analyses the def, set and use references of 
variables in linear time (Dwyer el al., 1996).  

- Call graph extraction: This is an essential tool in behavior analysis 
(Caprile et al., 2003)  (Reps et al., 1995). It relates to the area of control 
flow analysis. 

- Automatic transformations: These provide utilities for larger tasks 
(Cordy et al., 2006;  Baxter et al., 2004). 

- Clustering:  Clustering divides software artifacts to possible subsystems 
(Beyer and Noack, 2005 ). 

- Architecture recovery: This gives high-level understanding support 
(Sartipi, 2003). 

- Class diagram recovery: This helps in synchronizing design and code 
(Selonen, 2005). 

- Impact analysis: This is essential in troubleshooting and preliminary 
tasks for maintenance (Ren el al. 2004). 

- Abstract interpretation: This is mostly a theoretical approach without 
PC context (Cousot and Cousot, 1977). 
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- Model checking: This approach doesn’t have a direct PC connection 
(Rajamani, 2005; Visser et al., 2003), because it studies understanding 
model behaviour, which seldom has connections to reverse engineering. 

- Different demand algorithms have been developed for query purposes 
for source code. The queries are complex because source code 
information is strongly hierarchical and has tight connections between 
elements. Many of the query implementations use a Prolog-engine and a 
database or relational model SCA  (Paul and Prakash, 1994) or EDATS 
(Wilde, Dietrich, and Calliss, 1995). Some query systems have been 
developed for querying the features of object-oriented systems  (Richner 
and Ducasse, 2002). 

- Analyzing hierarchical structures is one area where lambda calculus has 
been implemented. It can be used for recovering information from parse 
trees or hierarchical expressions. 

- Constraint-based implementations have become popular in analyzing 
models, especially for model checking purposes.  The constraints can be 
real-time connections between threads or processes and state machine 
conditions for mastering state machine code. 

- Studying reachability of elements is important because the dependencies 
are the most important things of PC, and they have strong influence in 
refactoring, too. The dependencies are hard to describe and model due to 
many simultaneous challenges that need to be overcome. These include 
implicit connections, nondeterministic features, conditional branches, 
dynamic bindings, as well as the semantics of source code languages.  
The problem arising from different access possibilities to variable access 
can be dealt with the alias analysis. 

- Studying logic paths is one part of the area of reachability.  Symbolic 
execution and path profiling techniques are mostly used for logic path 
analysis (Ball, 1999).  

 
Because the research of static analysis is fragmented, the tools are also 
differentiated. The most popular slicing tool is CodeSurfer (Anderson and 
Teitelbaum, 2001). There are several tools (Bellay and Gall, 1998; Koskinen et al., 
2004), which produce static call graphs (Eclipse, 2007). Other tools produce 
automatic documentation for Java and C++, such as UnderstandC 3F

4 . The 
problem from the viewpoint of the user is that it is not possible to integrate 
tools, because they have different data models and different kinds of interfaces 
(Dean, 2004). A unified formalism could, to a great extent, eliminate this tool 
interoperability problem. 

                                                 
4UnderstandC++(2007). Scientific Toolworks, Inc.,. url=www.scitools.com/products/understand 

(10.1.2008). 
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Source code interpretation 

Abstract interpretation is a theory for static analysis of software systems to 
formalize the notation approximation and abstraction in a mathematical setting, 
which is independent of any particular language (Cousot and Cousot, 1977). 
Because abstract interpretation conceptualizes only some parts of the software, 
it is not a usable method for PC, which should have a generic approach to the 
whole code. It has been observed that currently the main assumption for 
abstract interpretation, language-independency, has not become true in current 
research (Logozzo and Cortesi, 2005).  Therefore, abstract interpretation relating 
to PC is out of the scope of this research. 

2.3.2 Connecting PC and dynamic analysis 

Dynamic analysis is mainly based on debugging source code (Ball, 1999). Its 
best feature is that it can follow, in a very detailed manner, the final behavior of 
the program including dynamic bindings.  Its drawbacks include:  

- Mandatory preliminary tasks, code instrumentation, before analysis, 
- Narrow scope for each debugging session, and  
- No standards for the results of dynamic analysis (Denker, Greevy, and 

Lanza, 2006). 
It is also problematic that the information of dynamic analysis cannot be easily 
filtered to cover only the most interesting details. Furthermore, in most cases, 
e.g., in telecommunication software development environments, it is not 
possible to use dynamic analysis because of its security and installation 
problems.  

Zaidman has described different principles for dynamic analysis 
(Zaidman, 2006). There are two main approaches for it: a profiler or debugger 
based tracing. A profiler is typically used to investigate the performance or 
memory requirements of a software system. A debugger, on the other hand, is 
frequently used to step through a software system at a very fine-grained level in 
order to uncover the reasons for unanticipated behavior.  An overview of the 
strengths and weaknesses of using dynamic analysis for PC purposes is useful 
here. The strengths are its support for polymorphism and goal-oriented 
behavior analysis, which produce consistent information about program flows. 
The weaknesses are the overhead of the results and the observer's personal 
efforts needed for interpreting the results. These drawbacks can make analysis 
very laborious if the program logic is complex. 

Combining static and dynamic analysis 

Because both static analysis and dynamic analysis have their own benefits, it is 
natural to connect them to support each other. Connecting them has been 
studied in many works (Systä et al., 2001), (Richner and Ducasse, 1999), and 
there has been some success, especially in the testing area (Sneed, 2004b).  The 
approach of Richner and Ducasse is based on storing both statically and 



  41 

 

dynamically obtained information from a software system in a logic database. 
First, static and dynamic facts of an object-oriented application are modelled in 
terms of logic facts, after which queries can be formulated to obtain information 
about the system (Richner et al., 1999). Another research path that Systä follows 
is the combination of static and dynamic information (Systä et al., 2001). One of 
the observations made is that when combining static and dynamic information, 
one has to choose very early on which of these two sources of information will 
be the base layer and which approach will be used to augment this base layer. A 
drawback when using this kind of a hybrid analysis approach is that it often 
leads to separate subtasks where narrow displays will be generated so that it 
can be difficult to build a larger understanding about the application.  

Combining a forward model and a reverse model 

Combining the captured reverse engineering model and the corresponding 
forward engineering model is an interesting idea, because synchronizing them 
can automate the feedback from the current installation to the next installation, 
which could produce an excellent learning curve for the organization.  This 
could be helpful for agile development in increasing the abstraction level of 
basic refactoring (Fowler et al., 1999). It has been studied in Nokia, where the 
reverse engineered model is called the R-model and the forward engineering 
model, correspondingly, the F-model (Selonen, 2005). In that Nokia project the 
biggest problem was found in adjusting the abstraction levels: forward models 
have a general nature whereas reverse models are mostly very detailed. The 
data model for the software in that project was FAMIX (Demeyer, Tichelaar, 
and Steyaert, 1999), which is not a complete source code model. 

2.4 Dividing PC to research topics 

Comprehension is a rough synonym for understanding, which is said to be the 
limit of conceptualization. In PC, concepts are made from a formal 
programming language. That is why the approach of semiotics is relevant. 
Positioned between philosophy and language research, semiotics studies 
characters, data transfer, and interpretations (Boman, 1997).   

We propose that the three dimensions of semiotics describing the role of 
syntax, semantics and semiotics are useful in PC research, because all of them 
can be recognized in reverse engineering of formal programming languages.  
The third dimension, semiotics, could be considered as an interpretation, as 
knowledge captured from the model. In other words, semantics is an 
interpretation of syntax and knowledge is an interpretation of semantics and 
the results. There is, however, a gap between axiomatic semantics describing 
the static code and captured knowledge, because the dynamic behavior should 
be modeled for dedicated PC purposes. A definition for an abstract machine is 
needed to enable simulating the code in order to eliminate that gap. 
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In this section (as well as in this research) the scope of PC has been 
divided into four (4) sectors by using the concept of a technology space to 
define each sector. A technology space (Kurtev, Bezivin, and Aksit, 2002) is said 
to be a concept that employs the following individual features: it has a working 
context of its own, a set of concepts, a common representation system, a shared 
knowledge and know-how, and finally, a set of tools working on the common 
representation system.  

The four sectors, the candidates for technology spaces of PC research are: 
1. Grammar-based technologies, summarized as GrammarWare  (Klint, 

Lämmel, and Verhoef, 2003), starting from the code and leading to 
syntax. 

2. Models are necessary in evaluating complex structures leading to 
semantics, referred to later as ModelWare.  

3. EkaSimulation is a concept to execute a source code model.  It leads to a 
behavior model of the code by analyzing static and dynamic program 
flows. In this research all activities relating to simulation are referred to 
as SimulationWare.    

4. The cognitive approach for PC leads to semiotics and to the questions of 
what is information and what is knowledge. These questions that form 
the base of PC research are referred to as KnowledgeWare.   

 
These technology spaces provide the explicit steps to climb up the semiotic 
path.    

2.4.1 Grammar related approach 

There are many proved techniques for grammars and transformations 
including Abstract Syntax Tree, AST (Jones, 2003), ASF+SDF (van den Brand et 
al., 2001), Stratego (Visser, 2001), TXL (Dean et al., 2002) and DMS (Baxter et al., 
2004) as well as Antlr (Parr, 2007). All of them support the formalism of context 
free grammars, so they are useful in building parsers and language 
implementations. Their main focus is how to define syntax patterns in order to 
identify and validate any expression of the current language. The biggest 
problems related to these are (Klint et al., 2003): 

- Implementations are often too language dependent and too narrow to 
enable the user to build a comprehensive view for understanding a 
program.  

- Current practice of grammar implementations is not state-of-the-art, 
rather it could be described as hacking.  The implementations often are 
semi-automatic, which prevents from automating the tools entirely. This  
is apparent for example in the free source code of the Koala-project to 
implement an interpreter for Java, called DynamicJava (DynamicJava, 
2007).  Tangled grammars that are hard-coded into the source code of 
software are almost impossible to update if the grammar changes.  

- The most used grammar notation, EBNF (EBNF, 1996), is not ideal for 
describing semantics, because EBNF connects only syntax terms with 
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each other. There have been some attempts, though, to convert EBNF to 
models (Wimmer and Kramler, 2005).  

If a piece of code was to be translated into any executable model then semantics 
should be included.  Attribute grammars have been trialed to add evaluation 
features to AST, and a principle named ASD+SDF is one way to write 
evaluation logic for grammar based models  (van den Brand et al., 2001). The 
DMS tool has a strong formalism for transformations and for evaluating source 
code structures (Baxter et al., 2004), where the transformations are mainly 
intended for developing maintenance activities. 

Many modern tools have an AST interface as an extension for 
programmers to study their own installations (Eclipse, 2007). However, AST 
information is very low level data and not practical per se in source code 
understanding, because it is too complex for navigating.  Thus, the main use of 
AST is for compiler construction.  

The output of parsers, AST (abstract syntax tree), is a model, too, but such 
model is not complete for analysis, because its data structures are tree based 
and do not contain the execution semantics. A tree cannot provide an open 
access to various levels of code elements. Although AST is very close to the 
original syntax, it still doesn’t contain the semantics of the language, among 
them access rules, for example, which is an essential part for analysis purposes. 
So the value of AST for program comprehension is in its support for browsing 
code elements, not in supporting understanding of program behavior. 

2.4.2 Model related approach 

Modelling is a common nominator for all modern computer systems, because 
all information systems contain only artificial elements, concepts that are 
models about  wanted phenomena in the physical world (Falkenberg et al., 
1998). The main alternatives for modelling technologies are UML modeling, 
including MDA, XML, ontologies and technologies that use grammars as the 
foundation (Bézivin, 2005).  UML is not a theoretical platform or an innovation 
but a widely used industrial standard  (Koskimies et al., 2007) in industry for 
creating source code design models. It is managed by Object Management 
Group (OMG) (MDA, 2007).  

Recently, UML-technology has become popular in maintenance based on 
round-trip-engineering (Henriksson and Larsson, 2003), which is a technology 
capable in connecting class models, current code structures and an interactive 
user interface. It helps in learning changes of class structures, but does not help 
in recognizing individual control flow structures, because UML cannot express 
source code statements in the lowest level of information, i.e., the variable level 
and variable semantics. 

UML provides several approaches to the model, but most of them are not 
relevant to the PC approach.  Thus component/package diagrams, use case 
diagrams and many constructs are not essential PC topics. The most relevant 
view is a sequence diagram, because it lists the actions in the execution order, 
which is the goal of the behavior model for PC also. 
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MDA (Model Driven Architectures) is the modeling platform of OMG for 
software development (MDA, 2007). Its base, the Meta Object Facility MOF 
(MOF, 2004), which has been published in the XMI standard proposal (XMI, 
1998) has four levels: M0, M1, M2, and M3.  From the PC viewpoint dealing 
with multiple layers is annoying, because the user is forced to work with 
several mental models one after each other. That may be useful from the 
stepwise forward development point of view, but it is likely that all these and 
any discontinuities prevent the user from integrating a unified picture about the 
current program. Unfortunately the data model of MOF, with M3 as its best 
candidate for PC, is too complex for tools in the programming use, because the 
information it contains is too detailed (associations).  

We argue that the information model of a source code from the PC 
perspective should be as flat as possible. When evaluating and capturing a 
dependency between the focused elements in relation to all other possible 
elements, the approach should be independent of grammatical types. Any 
layers in the models make understanding unified dependencies more complex. 

There has been some discussion about executable UML models (Mellor 
and Balcer, 2002). However, it is widely known that UML models are not 
executable, because they do not have a model containing the source code level 
inside, or any variable environment or dynamic semantics. Therefore, the UML 
models are only models with their constraint described in the OCL language, 
which is not compatible with any known programming language (Akehurst 
and Patrascoiu, 2004). 

Architecture Driven Modernization, ADM 

OMG has presented an idea to revitalize the source code of current applications 
by Architecture Driven Modernization, ADM (ADM, 2007). Unfortunately 
ADM has not had much progress, perhaps due to its complex seven-layer 
structure that starts from the AST level.  The AST implementation has been 
extended by a meta structure, a meta AST layer, ASTM. The next level above it 
is Action semantics, the next is the analyzing level, then the metrics, refactoring, 
and the last level is about knowledge capturing. This principle sounds 
interesting and very informative, but it is still hard to understand how these 
highly interconnecting things can be divided into different layers. How can it 
help PC if the model is very complex with a lot of ADM discontinuities? ADM 
tries to define knowledge capturing in one of its layers. However, what is that 
knowledge if in the model there are numerous layers hiding all their specific 
data and information. What is the role of the user in ADM in interpreting lower 
level information? 

The main purpose of ADM, revitalizing source code, is clearly relevant for 
the topic of this research. However, in this work our purpose is to open up all 
source code element information, not to separate it into different layers.  There 
are numerous open questions relating to ADM. Solving the semantics of the 
underlying model is one of the most difficult ones. It is described next. 
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The influence of language semantics 

Although the problem of semantic definition has been the object of theoretical 
study for as long as the problem of syntactic definition, a satisfactory solution 
has been more difficult to find (Pratt and Zelkowitz, 2000).  

Semantics is said to be the “agreement” about the interpretation of syntax. 
Semantics is then a data transfer from syntax to a set of interpretations Syntax 
 Set (Interpretation), which is also called a meaning function. 

Unfortunately the agreement is not so simple, and there are numerous 
interpretations (Baxter, 2004): 

- Informal Semantics: This information can have any notation, even 
natural language. It has been created in order that everybody could be 
pretty sure to understand it. 

- Operational Semantics: This information describes the model that can be 
executed by a well-defined interpreter, which is usually called an 
abstract machine. 

- Transformational Semantics: This information is a map to a notation 
with known semantics. 

- Denotational Semantics: This information is a map to lambda calculus. 
- Models and Algebraic Semantics: This information models reasoning of 

the program by evaluating the correspondent rules such as its algebraic 
laws. 

 
It is surprising that there should be so many different semantic notations 
without concrete transformations connecting them.  In some notations there are 
some ambiguities. A valid question considering PC is therefore: Could there be 
only one accurate foundation for all the semantics in the PC approach? This is a 
novel question without a concrete answer yet. 

Java semantics 

In general Java is an excellent language for analyzing purposes, because it is 
logically isolated from its run time environment (Java Virtual Machine, JVM) 
(Qian, 1999). Run-time features and exception handling are the most difficult 
things to analyze because of their strong connection to JVM. 

Java semantics is, however, much more complex than that of procedural 
languages, because it includes inheritance, polymorphism, abstract classes, and 
virtual functions that define invocation possibilities. Because of polymorphism 
the behavior of the program cannot be evaluated without knowing the types of 
the arguments of invocations. 

There is a lot of research considering Java semantics, but mostly its 
purpose is to demonstrate the connections of the language either in a 
specification or in describing the behavior of statements (Attali, Caromel, and 
Russo, 1998).  For example, action semantics is a framework to combine 
operational, denotational, and algebraic semantics in order to avoid their worst 
features (Mosses, 2004).  Although a good idea, action semantics has not 
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matured yet, because there are no perfect software implementations for 
complete languages.  

As a demonstration Watt and Brown (2000) have reviewed three notations 
to describe dynamic semantics of Java containing control flow, method 
invocations, and exceptions.  The presentation, covering action semantics too, 
considers only a subset of Java, specifying the formal notations only. Therefore 
it cannot be used as a simulation specification for PC purposes. 

Model checking 

Model checking may be understood as the knowledge capturing tool of PC. 
There is a separate community that studies model checking as a separate 
discipline (Rajamani, 2005). The topics in this field have almost without an 
exception a mathematical foundation, often based on mu-calculus, Kripke 
graphs or temporal logic, which doesn’t often have any influence on 
programming language semantics or on program comprehension. There are 
some examples about this kind of academic research (see Visser et al.,  2003; 
Rajamani, 2005).  

Because of the automated error detection, model checking has been 
studied in Microsoft for decades. Microsoft has both a static model checking 
tool named SLAM (Rajamani, 2005) and a dynamic tool for checking concurrent 
software named ZING (Andrews et al., 2004). SLAM is focused on driver 
verification, whereas ZING functions as a scalable, systematic state-space 
exploration infrastructure.  

2.4.3 Behavior oriented approach (Simulation) 

Why is understanding of the behavior so important in program 
comprehension? The answer is that it describes accurately what the program 
does when it works perfectly and what it does when an error occurs. Therefore, 
where practical use of static code for troubleshooting is very limited, the 
behavior model is the best input for OOP code. Another use for behavior 
models is the possibility to analyze the complexity and functionality of 
algorithms (Leiss, 2006) like quicksort based on the sequence of computations in 
the result of simulation started in the beginning of an algorithm. 

Simulation and automata theories 

A lot of research considers state machines and the analysis of concurrent and 
event-based systems that are typical for object-oriented systems. Almost 
without exception the input for the research has been derived from UML 
models, from bytecode, from other results of dynamic analysis or from 
specifications. Hardly ever has this been captured from the source code. One 
reason why original source code has not been used for model evaluation or 
simulation purposes is that there are no standards for captured code 
information  (Denker et al., 2006).  
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In the following list there are some observations about research relating to 
simulation and automata theory: 

- Automata and automation theory has often been used for academic 
writing and for evaluating mathematical formulation (Dams and 
Namjoshi, 2005), but this approach does not cover PC purposes.  

- The Chomsky hierarchy and Turing machines (TM) are widely used in 
education and for modeling simple automaton (Herken, 1995), but they 
have not been used for PC applications. 

- Side effect analysis is one area which has some relations to PC. It is a 
research topic, but a unified definition for side effect is missing. Instead, 
it studies, for example, which method is a pure method and what kind of 
impurities there are (Salcianu and Rinard, 2005).  For PC purposes, the 
goal should be to better compute all side effects from the code and to 
show the relations between the code and the side effects in order to help 
modification and refactoring.  

2.4.4 Knowledge related approach 

It is essential to consider the area of program comprehension from the point-of-
view of human cognition. The corresponding theories are attempts to explain 
the model of learning and human thinking and how the developers 
(maintainers) conduct themselves in their day-to-day work. Hardly ever have 
such theories been used for PC, although they could provide essential value for 
it. The most relevant theories for PC are ACT-R (Anderson and Lebiere, 1998),  
Soar (Newell, 1994) and Step-ladder  (Rasmussen, 1983).  

In maintenance and PC the input for a maintenance task may be seen as a 
domain dependent high-level specification. However, a maintenance task 
cannot be solved without understanding the logical relations behind the task 
(Suitiala, 1993). Therefore, in the best of the cases the user can transform the 
task into a compact logical formulation. If the problem, just formulated, is 
computable, then the solution will be generated as automatically as possible. 
The complex tasks and actions, which require a lot of preliminary work like 
search, should be done by using a computer as a tool to preprocess information.  

Walenstein (2002) has argued: “Current tools have seriously failed in 
finding a balance between the user and the computer”, which should be the 
main goal of all human – computer interfaces. He says that an optimal tool 
display screen should show the user only the intersection of the most important 
and most difficult elements of the current model. 

Rasmussen has developed a substitution hierarchy (Step-ladder), also 
called a SRK-model, which contains Skill-level (S) for immediate skilled actions 
that are based on a low-level processor of a human’s hardware model. Rule-
level (R) is then the layer for rule-based recognition, which has a rapid 
response. Knowledge-level (K) is for deliberate reasoning to be used for solving 
problems that are not trivial (Rasmussen, 1983).  

Walenstein has extended the SRK-model by the symbol M, for meta, to 
describe all implicit information that cannot be solved by using knowledge 
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actions or lower level actions (Walenstein, 2002).  We propose that this meta-
feature can have logical connections to those metamodels that are typical for 
UML. This would allow the most abstract features of PC and UML models be 
connected with each other.  

Knowledge capturing methods 

The common practice in PC research and in source code analysis in general is to 
produce graphs or views, which are meant to be viewed as outputs, for the 
user. However, most often the user's capacities are not up to the task 
(Walenstein, 2002). Therefore a more focused approach is needed. Some 
observations about knowledge related research are: 

- There have been some trials to define a cognitive navigation 
environment to cover both low-level and high-level navigation as well as 
horizontal navigation (Storey, Fracchia, and Mueller, 1999). 

- The tool SHriMP introduces a method to support integrated mental 
models, but there is no practical experience about how it should work in 
a larger context. Its status is not fixed either (Storey, 2003). 

- In the reverse engineering roadmap Mueller et al. (2000) propose that 
reverse engineering should be done separately for code and data. This 
idea sounds a little clumsy, because the purpose of PC is to remove 
discontinuities of code and models, not to create new ones. 

2.5 About Symbolic processing  

It is essential to study symbolic processing in the PC context for two reasons. 
Newell has described how a human connects symbols in different cognition 
bands (Newell, 1994). Thus, expressing  information connected by symbols via 
predicates is more effective for PC purposes than showing mere alpha-numeric 
information, e.g., constants. The "origins" of the computer are to be found in the 
Turing machine, which was designed using the symbolism of a person writing 
to a square paper by a pen (Copeland, 2004). This symbolic feature has been lost 
in modern computers, because they are alpha-numeric as a default. However, 
that feature can be retrieved for computers as symbolic processing (King, 1976).  

In computer science there are numerous concepts, which have the prefix 
symbolic. Most of them have their origin in symbolic computation. These 
concepts include symbolic execution, symbolic analysis (Cheatham et al., 1979), 
symbolic evaluation, and symbolic manipulation. Cheatham et al. describe low 
level principles in detail: simulating variable references, evaluating conditional 
statements, limitations of loop analysis, and a symbolic evaluator, which uses 
an expression simplifier. In this section the concept symbolic processing is used 
to connect all of these together to emphasize that symbolic processing 
(evaluation) is an extension to numerical processing, because its allows using 
symbols  and symbolic expressions both as inputs and outputs for calculations 
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and logical expressions (Havlak, 1994;  King, 1976;  Boyer et al., 1975). 
Traditional software is not capable of calculating any expressions that have 
unknown variables or variables without values. A missing value in a non-
symbolic program can crash the program or even a computer. 

 The motivation for using symbolic processing for source code analysis 
arises from the fact that not all information of all the elements of the source 
code is known in each processing phase. Therefore, in symbolic processing it is 
natural to substitute the missing variable values by the variable references (their 
names or their handles). If there is no value for a variable x in formula y = sin(x) 
then the output is sin(x). From a programmer’s point-of-view symbolic 
processing is a higher abstraction information level than traditional numeric 
processing. Hence, the best way to connect the symbolic needs of the user and 
the symbolic abilities of the computer in a tool and in a methodology is to use 
symbolic processing in the computer. 

2.5.1 Symbolic terminology 

In a nutshell, the most used symbolic terminology for source code analysis 
consists of the following: 

- Symbolic execution analyzes if and when errors occur in the code. It can 
be used to predict what code statements do to specified inputs and 
outputs. It is also important for path traversal. It has difficulties in 
dealing with statements which are not purely mathematical (King, 1976; 
Rajamani, 2005). However, the scope of symbolic execution does not 
extend to complete software installations. Symbolic execution has found 
wider use in investigating different problems of source code analysis.  

- Symbolic analysis doesn’t have any good definition, because it has two 
meanings.  The meaning in the domain of mathematical calculation tools 
is used more often than the meaning connected to source code analysis. 
Symbolic analysis has been used in research of procedural languages 
and in compiler construction (Cheatham et al., 1979; Blieberger et al., 
2000; Havlak, 1994; Blieberger et al., 1999; Xie et al., 2003). Cheatham et al. 
(1979) have studied symbolic analysis for procedural code in order to 
find out about the problems of automatic analysis.  

- Symbolic model checking is a research area for verifying software 
models (Clarke et al., 1996; Henzinger et al., 1994; Rajamani, 2005). It is an 
academic field which has not much influence on PC, because the 
formalisms of it are using, as their input, symbolisms that are more 
abstract but less formal than source code (Java, C++). 

      
Symbolic execution has been used in numerous research projects for analyzing 
some parts of code, most often capturing method invocations (Roover et al., 
2006), control flow information (Xie et al., 2003), or database functions  (Ngo et 
al., 2006).   

Symbolic analysis has been used for optimizing compilers by Havlak 
(1994), who introduced the principles of typical flow graphs of the code and the 



 

 

50 

corresponding formula. Because Havlak’s work is focused on creating new 
code, its purpose is very far from that of PC. 

2.6 Summary of the related work 

Program comprehension research has created exceptionally specific theories 
and empiric results for specific areas covering different programming 
languages, analysis approaches, and program features. The integrated mental 
model is one of the more generic approaches, but it doesn’t have a strong 
formal base or tools that would enable a wide body of empiric research. It 
seems to be too challenging to instantiate such a model in tools, at least we have 
not found any such discussions in the most recent conferences ICPC (ICPC, 
2007) or SCAM (SCAM, 2006). 

The role of tools has been understood to cover only some limited areas like 
documentation, browsing, and navigation support, searching and querying, 
providing multiple views for the same thing, creating context-driven views, and 
giving individual cognitive support (Storey, 2006). The focus, as far as the tools 
are concerned, has thus been to aid one separate program comprehension task 
at a time, as opposed to the user’s need of being holistic.  

One may conclude that the area of PC is fragmented and specialized, 
which prevents the researchers and programmers from creating a general idea 
about the program itself from all of its possible perspectives. Therefore, in order 
to avoid specialization and to enable generalization, contrary to the current PC 
approach, a general formalism should be created connecting the code to the 
corresponding models including their semantics and the results from the 
analyses.  There are clear gaps between grammar-based and model-based 
technologies and between model-based and analysis-oriented technologies, as 
well as between the information in models and the knowledge that is needed 
for executing maintenance tasks. As a solution for the gaps different technology 
spaces should be identified and integrated to make a unified platform for PC.   
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3 TOWARDS SYMBOLIC ANALYSIS AND 
ATOMISTIC MODEL FOR PC 

This chapter describes the research approach and the most important selections 
in order to define the goals and commitments for the methodology, which is 
presented in the following four chapters in more detail. 

3.1 Research focus 

Several trials have been done to catch the overall formalism of source code and 
the design models in order to synchronize forward engineering and reverse 
engineering, which could provide stable development information for the 
software production. If this kind of synchronization could be reached, PC could 
work as a glue between the reverse and forward directions ( Demeyer, Ducasse, 
and Nierstratz, 2003; Selonen, 2005).  

Some reasons for failures in creating a coherent model to contain all 
necessary PC information may be due to many ambiguous definitions and 
inaccurate semantics of the code, which have made the elements incompatible 
with each other. Furthermore, the UML notation is not compatible with its own 
object constraint language, OCL, and none of them are compatible with 
semantics of Java or other languages. The analyzing algorithms, methods and 
structures are incompatible with other notations (Heering and Clint, 2007).  

In this research we bravely assume that the best possible way to solve the 
problem of several incompatible ambiguous languages behind the different 
notations, is to minimize the model as far as possible. This reductionist 
approach leads to a need to use the Occam’s razor in order to minimize the 
number and complexity of the elements and concepts by ignoring all irrelevant 
information and data.  

For efficiently mixing languages and notations, a powerfully expressive 
language should be selected as a doctor in order to understand the patients, the 
notations to be connected and studied.  The widely used proposition for that 
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kind of problem is XML with its schemas and tools. However, it has not 
succeeded in solving the interconnection problems of executable models and 
languages, because XML doesn't have a real computation model to generate 
new information.  Futhermore, most software models like FAMIX are only 
static (Demeyer et al.,  1999). Instead, a real dynamic computation model is 
required. 

 We argue that for investigating the formalism of source code and 
corresponding models, a novel approach would be to use predicate logic and 
object-oriented modeling tightly together in order to describe all the syntactical 
structures and semantics notations as compactly and completely as possible.  
For evaluating the captured heterogeneous information, we have chosen to 
create a symbolic construction, which would produce as accurate information 
as possible about the run-time behavior of object-oriented software by using 
only a minimal number of concepts. The pragmatic goal is to accelerate the 
maintenance process and to help in building new software installations.  

Unlike some traditional approaches this research covers both theory 
building and tool construction in order to demonstrate a focused approach, in 
which the amount of information to be presented on the display is minimized 
for the user. The necessary program comprehension tool, JavaMaster, is 
implemented using Visual Prolog 4F

5 , because that tool is object-oriented 
providing a hybrid platform for programming declarative, computable models. 
As a strongly typed language it is rather fast providing a performance 
comparable with that of traditional languages. 

3.1.1 Research Method 

As suggested before, the research is done in a bottom-up fashion by defining 
first the low level structures and concepts in Prolog. These are modeled in order 
to build larger and larger theories until the level of the aimed technology space 
(see Chapter 2 and (Kurtev, Bezivin, and Aksit, 2002)) is reached. The approach 
is reductionist in order to minimize complexity and the number of structures 
and to maximize expressiveness.  

Many researchers have found that current tools are somewhat too 
bounded allowing only a limited approach to the source code model (Zaidman, 
2006). To avoid the bottleneck of tool information, our purpose is to allow 
partial evaluation and flexible simulation of source code by high-level 
structures, even though user interactions would be needed in order to select the 
actual program flow.  

The basic qualitative attributes the research addresses are: 
- Coverage and consistency of the structures in each technology space. 

These are to be maximized.  
- Simplicity. It is obtained by using a minimal number of terms in each 

formulation. 

                                                 
5 Visual Prolog by Prolog Development Center A/S, Denmark: www.visual-prolog.org 

(referred 10.08.2007). 
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Because coverage and simplicity are the main features of the implementation, it 
is natural to expect that a solution for the formalism is found as a kernel object 
of the model to keep it simple, but still expressive. This reasoning leads to the 
first goal of the work. 

Goal 1. To find an atomistic representation of source code as a basis for a 
higher-order model, simulation, and user interaction.  

There are some topics that are not studied in this research in order to emphasize 
the role of the formalism.  These are discussed next. 

Performance is ignored, because source code is interpreted here 
symbolically step-by-step, causing its overload, in order to maximize 
information access to the user, who has a limited capacity to adapt new 
information. Therefore, the minimum requirement relating to performance is 
that the tool should be faster than the user in the selected activities.  

No compromises for mixing small atomistic structures with more complex 
models are allowed, because this research champions an approach to the code 
that is novel but extreme in order to minimize the complexity of the smallest 
element of the goal 1. This is important, because mixing more complex models 
would break the architecture, even though they could be more practical to use. 

No metamodels are used. A serious drawback for metamodels is that they 
lead to procedural thinking, where the model is seen as an external box, 
separated from the tool programmer’s approach. That’s why there should be an 
external parser, an external code generator or visitor to read metamodels. An 
object-oriented model should open a view into the internal perspective of each 
object. 

Although visualization is an important feature of PC, it is not studied in 
this research, because the first challenge should be to tame the complexity of 
source code structures and models. After the formalisms have been created, 
they can be used as bases for building new visualization views of the source 
code.  

The newest features of Java 5, including generics and annotations, are not 
studied, because generic definitions are only syntactic sugar that can be treated 
by using a simple pre-processor. The annotations of Java are a way to customize 
the software. It is a syntactical feature, too, giving no essential information for 
program comprehension research, which is based on creating formalisms. 

Capturing architecture models or design patterns are not studied, because 
they can be equated to mental models of the user, built gradually from the 
lower level models.   

3.1.2 Ideal goal for the theory 

When planning a new research framework it is essential to discover the ideal 
features for the research plan in order to create a model about an optimal 
solution. The following definition for the ideal of science is from Hoare from the 
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presentation The ideal of program correctness5F

6. It is modified for this research as 
follows: 
 

- purity of materials, which is defined here as a purity of concepts 
- simplicity of reverse engineering theories to be created 
- accuracy of transformations of the process to be created 
- completeness of logic of models and conversions 
- certainty of answers to relevant basic reverse engineering questions 
- correctness of programs of the tool to be created. 

 
Even though the purpose of Hoare is different from the focus of this work, 
which is more specific, we are using the list as a planning methodology to make 
our goals clearer but with the following modifications: 
 

- For building new theories it is better to speak about purity of concepts 
instead of purity of materials.  Clear concepts are the building 
foundation for this work. 

- Simplicity of theory is essential. Thus we have selected a reductionist 
approach for all concepts and theories in order to get the maximum 
expressing power by minimizing complexity, perhaps sacrifying 
performance at the same time. Each set of combined theories that use the 
same foundation, is called a technology space (see 731HFIGURE 3). 

- Accuracy of measurement in this research aims formalizing the main 
structures and processes, which has a logical connection to granularity 
of transformations. There is a comparable reference model for a 
transformation framework in the DMS toolbox (Baxter et al., 2004). 

- Completeness of logic emphasizes the role of logic in the science in 
general. In this research it is used as a method to show the rules between 
technology spaces and within each of them, as the approach here is that 
of logic formulation. 

- Certainty of answers is relevant to program comprehension because of 
the cognitive nature of understanding software. There are two kinds of 
answers: for research problems and for end user enquiries in real-time.  

- Relevancy of questions here has to do with the cognitive approach of 
the research, because user questions are not all simple queries, rather, 
these are complex assumptions about something, on many abstraction 
levels.  

- Correctness of programs means in this research two things: How to 
show the correctness of the user program and how to justify the tool, 
JavaMaster, and simultaneously prove the technology developed.  

 
These seven topics form the body of this chapter.  

                                                 
6  http://www.fst.umac.mo/seminar/2006/sem20060526.html. The ideal of verified 

software: http://www.easychair.org/FLoC-06/CAV-day229.html, referred 20.07.07 
(Computer Aided Verification, CAV2006). 
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3.2 Foundation: Purity of concepts  

Because of the focused approach, where the user has all the control for selecting 
the program comprehension strategy, the focus has an important role. The 
focused element should be flexible to cover both the largest block and the 
smallest particle of the code. Therefore, the outer behavior of each element 
should be similar.  

The unified approach to each element leads to two principles: 1) in 
ontology we define the particles as perfectly as possible from the very 
beginning,  2) in atomistic thinking we use a gradual sharpening method, which 
has its theory background in analytic philosophy,  logical atomism (Russell, 
1918), and atomistic thinking (Anderson et al., 1998).  

The role of the key symbols, S to T, shown in the symbolic layer of 
732HFIGURE 3 is essential in atomistic thinking, which is the approach used in this 
research.  These concepts will be described in the next section. 

 

 

FIGURE 3 Main levels of the methodology.   

3.2.1 Main concepts defining the symbolic layer 

In order to clarify the highest-level terminology we propose a list of main 
concepts, which should cover the dimensions of semiotics (Morris, 1971) from 
the PC approach.   

Goal 2. The main concepts express the metatheoretical relations of the proposed 
PC according to Peirce's semiotics. 

The main concepts that we have selected are symbol (S), object (O), logic 
(L), and model (M) for the following reasons.  In source code the symbols with 
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used in modeling the corresponding behavior (Pennington, 1987;  von 
Mayrhauser et al., 1997). For this reason the symbol (S) is an important interface 
(see 733HFIGURE 3). The internal structure relating to each symbol (Peirce, 1958) is 
an object (O). For making interpretations, logic (L) is needed for describing 
meanings between symbols and objects (Tarski, 1941).  By combining them a 
metaconcept SOL can be created to mean a symbolic approach with its 
interpretation. Furthermore, for combining the elements to be studied, a set is 
needed being a model (M) of the user’s focus. 

This metaconcept SOL should cover the semantics and formalism of each 
source code element starting from the parser and ending to the most advanced 
representation to be shown on the display. The symbolism is compatible with 
Peirce’s semiotic triad (Peirce, 1958), because symbol (S) means a sign and object 
(O) and logic (L) refers to an interpretant.  

Importance of a language is great in semiotics, too (Tarski, 1983). 
Therefore, a symbolic notation is needed as a foundation for all data transfer in 
the tool. For that reason we have created a novel symbolic language, later called 
the Symbolic language.  Definitions for the language are defined in the next goal. 

Goal 3. To emphasize the meaning of the symbolic language: both in translating 
source code into an internal language and further into a metalanguage for 
user interpretations. 

By using the internal language the original source language is transformed into 
an internal intermediate notation (symbolic language), which is used as an 
object language and further as a foundation for interpretations in a 
metalanguage (Tarski, 1941) to describe all the entities and the possible 
relations between them. 

The role of Symbol (S) 

The role of symbols in Java software is to name structures like class, method, 
attribute (field), and variables. These user symbols give an initial mapping from 
the tool to source code and back, but the granularity of user symbols is not 
sufficient for representing e.g. loops or assignments. Therefore, every grammar 
term should have a symbolic name of its own, including all the necessary 
statements and expressions.  6F

7 
In summary, in full symbolic analysis there are the following categories for 

symbols: 
- User symbol that is read from the source code. 
- An automated numbered symbol describing software low-level 

structures. 

                                                 
7 This kind of strict model may be called an atomistic implementation if the symbols have a 

minimum internal semantics created by splitting the contents of the objects into 
object references. 
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- Dynamic symbols referring to the behavior model of the system 
including all intermediate and result values and assignments. These are 
called side effects later in the dissertation. 

As a conclusion, to enable identification for each element, a unified naming 
principle should be created leading to the next goal. 

Goal 4. To establish a convention to define an element for symbolic 
presentation  

The roles of Object (O) 

In interpretations of symbolic analysis there are three kinds of objects: 
- An object of the original Java code has the format of a Java class 

definition. 
- An object that corresponds to the information in the Java object is a 

simulated artifact. 
- An interpretation produces a semiotic object, which has a run-time 

history (side effect). In interpretation it is possible to accumulate all the 
events that refer to the run-time objects. 

 
There are some problems in using a monolithic object model in expressing 
complex connections with hierarchical crosscutting features, because the links 
should be saved into separate objects, which would require complex iteration 
logic to be programmed. This problem can be avoided by resorting to the next 
key factor, i.e., logic. 

The roles of Logic (L) 

Logic implements the following things. It connects the symbols and formalisms 
in a theoretical level. It implements the symbolic language, the foundation of 
the research by predicate logic, here Visual Prolog. It is the base for the tool 
(JavaMaster) containing all the structures, code statements, and transformations 
(parser, model weaver etc). 

In Prolog there is an internal semantics to associatively connect the 
referred elements with each other through variables and by unification 
(Clocksin and Mellish, 1981). This important feature combined with the type 
system of Visual Prolog enables proving the critical low-level structures of the 
tool and allows projecting evidence into the higher logic layer in the context of 
the corresponding technology space and main concepts. 

3.2.2 The user’s side of the methodology 

The symbols for the maintenance task (T), process (P), analysis (A), hypothesis 
(H), and query (Q) will be described later in Sections 3.6 and 3.7. 
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3.3 Simplicity of theories: Technology spaces 

As Kurtev et al. (2002) have proposed, none of the technology spaces is an 
independent island with its own functions. Instead, an essential purpose for 
them is to create bridges with each other and with the user.   Therefore, it is 
important to describe transformation semantics for the whole research as a 
flow.  Our analysis shows that the dataflow from the code to the user should 
contain the following four phases: 

- GrammarWare: For a successful analysis of source code, grammar 
technologies are needed. With these one can avoid problems of 
entangled grammars (Klint, Lämmel, and Verhoef, 2005). For obtaining 
semantics for each parsed structure a good contact to each grammar 
term must be created.  

- ModelWare: For each term, an optimized element is needed to describe 
the terms as a model.  

- SimulationWare: For obtaining behavior information from a model, a 
simulator with included formalism and semantics is needed.   

- KnowledgeWare: The last phase, obtaining knowledge, is the most 
challenging area to be formalized, because it connects the user needs and 
the previous phases in the queries to create interpretations.   

 
734HFIGURE 4   illustrates the main approach in implementing planning. The 
philosophy behind it is that of helping the users in maintenance tasks to make 
changes into code. It covers ModelWare, GrammarWare, KnowledgeWare, and 
SimulationWare, the machine approach, as well as the sectors between them. 

 

FIGURE 4 The main approaches for the program comprehension tool. 
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3.3.1 Commitments to GrammarWare 

Starting from the program and parsing the code makes it natural to select 
grammar technology (GrammarWare) as the first focus area for the 
methodology. The responsibility for the GrammarWare implementation is to 
convert Java-files into a notation of a higher abstraction level that can be used 
for later modeling purposes. 

Some assumptions for GrammarWare are: 
- The parse trees should contain grammar terms with semantics.  
- Unlike in AST, the terms should be in a formalized notation. 
- The purpose is to get as compact structures as possible to create a 

foundation for the whole information flow related to this technology. 
As a formalism GrammarWare should be seen as an acceptor to enable the next 
phase leading to the next goal. 

Goal 5. To implement GrammarWare using a symbolic formalism. 

3.3.2 Commitments to ModelWare 

Several principles have been used for creating complex models and especially 
for creating source code models and design models (Bezevin, 2003) leading to 
ambiguous or too complex implementations (XMI, 1998). 

In order to avoid complexity of models, a better suited technology space 
named ModelWare, is developed for this research to meet the next conditions: 

- To avoid multi-layer structures and to prefer short homogenous 
representation. 

- To implement a unified element architecture with a homogenous 
interface each. 

- To optimize the number of types. In Java1.5 there are 130 term types 
(Java, 2003). 

- To minimize the number of methods in simulation. 
- To maximize extendibility of the model to allow new public functions. 
- To make integrating the model to commercial and public models 

possible. 
 
The definitions above can be presented with the corresponding measures:  L 
(the number of layers), B (the number of different base classes), T (the number 
of types), S (the number of obligatory simulation methods), F (the number of 
public functions), and E ( extendibility). 
Summarizing, a common model architecture can be defined by the following 
tuple: 
 
 model(L, B, T, S, F, E)  
 
For the symbolic model we select the following values: 
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- L is 1, because the purpose is to make a 1 layer model to maximize the 
simplicity. 

- B is 1, assuming that all the elements (objects) can inherit from the same 
base class, providing the symbolic language. 

- T should be only a fraction of Java types. In Chapter 4 it is told that the 
value will be 12 to cover all code element types and two types for 
simulation (14).  

- S  (number of public simulation methods needed for an element) is 
assumed to be as small as possible. Later it is shown that S can be as low 
as 1.  

- Number of features, F, should be unlimited. We assume that it is 
possible to program numerous handlers and callbacks for manipulating 
model information. 

- By appropriate efforts E and F can be large, because the model is 
executable including a variable model or a dynamic extension to contain 
all the results from the simulation. 

 
By summarizing the values of the list above the following model estimate for 
the symbolic model is obtained:  model(1,1,14,1,infinite,infinite). 
The values of the list above are very different compared to MDA-models (MOF-
levels M0...M4) or FAMIX (Demeyer, Tichelaar, and Steyaert, 1999; MDA, 2007), 
which have deep inheritance hierarchies and hundreds of types in the schema.  
As a conclusion, a definition for ModelWare is listed in the next goal. 

Goal 6. To create a model weaver for ModelWare in order to build a 
reductionist model for embedding   Java semantics to it for simulation 
purposes. 

3.3.3 Commitments to SimulationWare 

Analyzing behavior yields the most essential program comprehension 
information about object-oriented code because of the yoyo-phenomenon and 
late bindings (Wilde and Huitt, 1992). For simulating OOP, a technology space 
named SimulationWare is presented. 

As a reference for simulating Java, the best candidate is the Java virtual 
machine 7F

8. As the formalism for Java virtual machine is not presented on a 
statement level, Java’s behavior model should be deduced from the Java 
specification (Java, 2005). The semantic representation of Java is divided into 
levels using formalisms of the Chomsky hierarchy (Chomsky, 1956). The 
semantic representation of Java (Gosling et al., 2005) in this research is divided 
into four technology spaces with different natures: 

- GrammarWare creates symbol tables and static semantics for the code. 
- ModelWare creates the reachability rules including the OOP behavior. 

                                                 
8 In the automata theory the concept abstract machine is used instead of virtual machine, 

because the latter is more language-specific. 
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- SimulationWare handles ambiguous references and dynamic bindings.   
- KnowledgeWare is needed for making selections between ambiguous 

references. 
 
The purpose of simulation is to get an output, a sequence that is comparable 
with a UML sequence diagram as an output. This compatibility should allow a 
functional verification of the tool with dynamic analysis and debuggers. The 
requirements for simulation are listed in the next goal which has two different 
purposes. 

Goal 7. To describe formalism for source code simulation according to the 
automata theory as well as to create a platform for partial simulation. 

3.3.4 Commitments to KnowledgeWare 

 A technology space, KnowledgeWare, is needed for capturing knowledge, i.e., 
program comprehension information, from the code. The responsibility of 
KnowledgeWare is to create a formal definition for maintenance actions and for 
the information of the model concerned according to the known principles of 
program comprehension, in order to help the user in attempting to understand 
and solve actual hypotheses. 

Getting knowledge from data, the output from the PC process, is the final 
result to the user (Ackoff, 1989). It is a set of interpretations based on 
knowledge representations.  Converting data into knowledge requires 
established definitions about what is data and what is its practical use in most 
typical situations. Mapping these things with each other creates knowledge in a 
tool which makes the necessary transformations. We emphasize familiarization, 
testing, and troubleshooting to describe the user interaction side. Further, an 
information ladder for creating knowledge is used  (Ackoff, 1989). 

There are several theories relating to KnowledgeWare like the one of 
Nonaka and Takeuchi (1995), as well as the conceptual graphs of Sowa (1976; 
2000) and semiotics of Peirce (1958). The whole semiotic taxonomy of Peirce, 
including his concepts of rhematic, dicent, and argumentative, is relevant in this 
respect.  

As a more abstract aim, KnowledgeWare should be able to help the user in 
creating more hierarchical mental models by expressing granular worlds 
(Bargiela and Pedrycz, 2002).  The theory of so-called mini-minds (Wells, 2006)  
provides a good starting point to analyze a sequence that is atomistic. There is 
another theory, logic atomism, which studies language understanding and 
concepts as atomistic things  (Russell, 1918).  An abstract definition for 
KnowledgeWare is listed in the next goal. 

Goal 8. To create a bridge between the code model and the user language 
supporting the maintenance approach based on KnowledgeWare.  
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3.4 Accuracy of PC transformations 

PC is shown as a set of automata and transformations in 735HFIGURE 5. Parsing can 
be considered as a special kind of measurement process of the source code. 
Parsing is complete if the grammar of the proposed language has been 
implemented correctly. Starting from parsing the code, the whole process of 
program comprehension can be regarded as a set of transformations, as 
suggested, regarding maintenance, by Baxter, Pidgeon, and Mehlich (2004). 

The main transformations are shown in 736HFIGURE 5, where the given 
automata realize parsing, transforming to the higher symbolic language, 
weaving the model, simulating, and obtaining knowledge. 

The key topics in evaluating the whole process are the coherency, 
consistency, and granularity of the automata, and completeness of the 
corresponding transformations, which have the following notation:      Data I+1 
= Ai:transform(DataI). 

The automata and corresponding data in 737HFIGURE 5 are:  
- D0: Grammar definition for Java as a file.  
- A1: Grammar tool including a parser generator  D1: Parse tree for  Java. 
- A2: Parser (here for Java), D2: Parse tree. 
- A3: Translator to convert parse trees to symbolic notation,  D3: Symbolic 

parse tree. 
- A4: Model weaver to create a model, D4: Model formalism (includes 

elements). 
- A5: Selector for the user to select and control simulation, D5: List of 

selected elements to build a simulation queue (input tape). 
- A6: Simulator for the input tape, D6: Output-tape with dynamic 

(operational) information. 
- A7: User interface to allow knowledge mining from the output tape, D7: 

An information ladder (Longworth, 1996) connecting data, simulated 
sequences, and all specific relations with all actual information.  

- The last phase is planning of changes by using D7. 
 
We assume that the transformation realized by automata A1 to A3 is complete 
and consistent with the features of Java (except the newest features of Java 1.5) 
in a higher notation. The information in A3 is defined by using an intermediate 
language, which has equivalent axiomatic semantics with Java. However, a 
more challenging automaton is needed in SimulationWare, dealing with 
operational semantics. In this research the challenge is to show how completely 
the individual elements of the model can be simulated and connected with each 
other while mirroring their corresponding behavior in JVM. For that, a semantic 
notation is needed (it is called atomistic semantics in Chapter 6).  The main 
function of the last automaton is to implement the computer-side actions 
consisting of successive computations for maintenance queries. 
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FIGURE 5 Program comprehension as automata and transformations.  

3.4.1 Universal transformation formalism 

According to the transformation model of DMS (Baxter and Mehlich, 2002), 
each transformation should be defined and should include its domain (here 
Java in Automaton A1) and schema (AST is widely used, but here the different 
technology spaces have their own, yet still compatible definitions: grammar 
term, model element, simulated sequence, and knowledge unit).  

It is essential to define also the specified semantics. Some other things that 
are specified in the DMS framework are binding, locator, properties, 
metaprogram, and transform process (Baxter et al., 2004).  For each translation it 
is necessary to specify the input and output languages, a foundation for the 
transformation, and a location for transformations. It is also necessary to specify 
a tool, optional databases, and use cases for the process.  A summary goal for 
each automaton is listed next. 

Goal 9. To describe transformations between the technology spaces as 
automata. 
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3.4.2 Type theories 

As said earlier, successive translations are relations between the previous layer 
term relations when they are expressed and formalized by predicate logic. 
Prolog enables associative and recursive structures mix individual data 
structures with each other.  

The general logics between the automata are assumed to be the following: 
- Static code: 1st order logic. 
- Dynamic references:  relations about static code, where constructors 

produce objects as 2nd order relations. 
- Side effects (influences), caused by the code: next level relations from the 

creator. 
- Sequences, simulated separately: next level relations for the simulation 

query. 
- Actions to test and validate sequences: next level relations for the test 

sequences. 
Separating successive orders leads to type theory and set theory, where any 
new set is a combination (set) of the previous sets. Most of them can be 
expressed by using Prolog’s type system and data structures. The topic is then 
how to master the overlapping relations as summarized in the next goal. 

Goal 10. To express the main relations of the captured knowledge as nested 
types. 

3.4.3 Knowledge transformation set 

The knowledge layers of semiotics are defined in the Peircean taxonomy by 
Gudwin (2006) in his theory about computational semiotics. In it rhematic means 
a verbal or symbolic structure (here source code), dicent means a proposition or 
a captured structure from the model, and argumentative means a proved 
explanation, either deductive, inductive, or abductive. These definitions can be 
modelled as transducer functions in the Visual Prolog notation calling these 
automata as follows: 

- Rhematic: StaticKnowledge = access(Model, Parameters) 
- Dicent:  Dynamic knowledge = query(Model, Sequence) 
- Argumentative:   Argument = proof(Model, Sequence, Hypothesis). 
 

We will interpret the knowledge interface for each layer in the following way.  
For rhematic, getting static knowledge, only a simple relation model is needed 
to enable accessing the selected elements that are relevant to the invocation 
parameters.  For getting dicent information, a simulated sequence is needed. 
This is later called an output tape, having its origin in the Turing machine 
(Wells, 2006). The dicent query is then an explanation interpreted from a 
sequence, giving either the whole sequence or a specified subset of it, and 
illustrating a specified flow such as a dataflow.  For getting argument 



  65 

 

information, a proof is done in order to match the assumed hypothesis and the 
corresponding sequence of the model.  As a summary, knowledge access is 
specified in the next goal. 

Goal 11. To realize a knowledge access interface containing the three 
semiotic layers. 

3.4.4 Graph approach (model theory) 

The parse tree is, as its name says, a tree structure. The biggest problem in using 
trees in manipulating code structures is that the tree doesn’t have a semantics 
compatible with programming languages that would allow pointing correctly 
to individual leafs of the tree. Therefore, we argue that a tree should be ignored 
in our case and that a more flexible model is needed. This conclusion leads to 
the definition of ModelWare. Results from ModelWare are mainly sequences, 
but the main aim of the user is to understand complex dependencies caused by 
crosscuttings, hidden object references of methods. Normally they are 
expressed as graphs or networks, which often are very large.  

In this research we are reaching for a dependency model, which is rich in 
the number of elements but has only a limited set of types and associations (link 
types). It is clear that for a computer program (here JavaMaster) it is easier to 
connect existing, semantically correct small elements in order to create a 
dependency graph than to use complex manipulations for splitting larger 
structures into smaller ones in consideration of their semantics. 

From the small elements (these are called atoms later) the tool can 
transitively collect higher level hierarchies such as a graph for a method, for a 
class, and for a package. When these graphs are interconnected, useful program 
comprehension information becomes available.  

This approach leads into the graph theory with its well-established 
practices and methods. In the research we need to use a principle which 
determines that bi-directional links (graph edges) are embedded inside 
elements (graph nodes) and do not need their own elements as would normally 
be required, for example, by Atlas (2005) and XMI (1998). This principle makes 
the graphs atomistic when the elements contain a compact semantics, expressed 
by a single predicate. Thus, evaluating symbolic output graphs connected by 
simple predicates is easy and effective, and no public iterators are needed. All 
elements will then be independent, and the only data structure in the model 
will be the element. This leads to an atomistic approach for graphs and models. 
Each model will be simply a set of elements as a result. 
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3.5 SimulationWare:  Completeness of logic 

In this section the role of logic is discussed against the computation model of 
the source code, where the computing subject, the computant (Wells, 2006), can 
be any of the following possibilities. In the programmer’s Java environment the 
computant is the Java virtual machine, but in the hardware level it is the 
concrete machine, which has its higher level equivalence to an abstract machine 
as the Turing machine metaphor. An idealized analysis performed by the 
corresponding tool works, in symbiosis with the user, as the third possible 
computant, a Decider making any necessary decisions during the analysis. In 
order to minimize the load of the user, the tool should flexibly enable selective 
simulations and computations for interactive and automated proving of the 
source code.  From this point-of-view the whole research can be seen as a 
functional model, whose logic should be as complete as possible. 

Why logic is so essential in computation 

In addition to the fact that logic is the language of science for all of its 
interpretations, it is useful in evaluating complex data structures, code parsing, 
and transforming data into a new notation. If the input of an automaton has an 
exact axiomatic semantics, then an output of the simulation can be evaluated to 
be a set of overlapping relations. Therefore, this is an excellent platform for 
implementing a query system and simulator to derive information for the 
model in order to create maintenance knowledge. Among some attempts to 
build query systems for source code are EDATS (Wilde et al., 1995), SCA (Paul 
and Prakash, 1994), and Tamar Richner (Richner and Ducasse, 2002), but these 
do not have any simulation framework or any specific interface for maintenance 
processes. 

3.5.1 Connection between logic and automaton theory 

The role of automata A1…A7 was described in Section 3.4 to illustrate the 
transformation model in order to formalize the whole program comprehension 
framework. In this section the computation and simulation approach is 
discussed. 

3.5.2 Definition for the smallest computation 

In computability theory several formalisms have been developed for abstract 
machines (Hopcroft and Ullman, 1979) and for computation (Papadimitriou, 
1994). The formalism of a register machine regarding a single source code 
element, which is the foundation for the ModelWare approach, is especially 
interesting ( 738HFIGURE 6).  If the logic of each element can be defined by a single 
structure, in the figure f, which has a number of arguments m1 to mk, then it is 
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possible to build an abstract machine for each mathematical function to execute 
the corresponding computation.  
 

FIGURE 6 Definition of a computable function by a register machine. 

This computation model is useful for any deterministic expression. It is useful 
for any logic expression, too. This formalism can be extended to cover the 
whole syntax of programming languages. However, there are some exceptions 
and problems in modeling logic paths and real-time programs. The 
Entscheidungsproblem (Church, 1936) is a well-known example; it indicates 
that it is not possible to show that any freely selected program with a given set 
of inputs consisting of arguments m1…mk could terminate and produce a certain 
output value n. 

In this research we want to avoid the problem of a non-terminating loop, 
by adding some extra logic for the simulation and for the user. A problematic 
place can be identified as a separate task.  

Java virtual engine or an abstract machine 

The theory of the abstract machine - instead of the one of JVM, which is too 
specific - is used in this research to create the formalisms so that the created 
abstract machine replaces JVM and the symbolic language replaces the 
bytecode as input. 

The following preconditions are assumed to be true in building a 
computational model for Java: 

- Each element should be computable with some arrangements (like 
loops). 

- The memory architecture of SimulationWare should be comparable with 
that of Java so that there is a corresponding memory activity in the 
symbolic notation for each concrete memory activity of Java. 

- The elements should be simulated as in 739HFIGURE 6 returning one value 
each.  

- The outputs from the simulation should be integrated into the model as 
its elements to keep the formalism of the whole model consistent. 

3.5.3 Towards an ideal analysis 

Static and dynamic analyses are the traditional analysis methods. They use as 
their extensions slicing and different traversing or querying algorithms to 
produce the selected outputs (Lucia, 2001). Without capabilities for symbolic 
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processing they cannot express values, i.e., the most detailed information of 
simulation, which has special importance in evaluating complex 
communication software as distributed packages or database transactions.  

It is widely known that static analysis is not sufficient for Java to describe 
its behavior or dynamic semantics. Static analysis is capable of producing 
dependency diagrams, class diagrams, and static call trees. Sequence diagrams 
can, too, be generated directly from the code in order to check the main details 
of program flows (the implementations are tool dependent).  

Dynamic analysis is, on the other hand, very complex for real-life 
applications and projects. In most cases a debugger is employed to run the 
current implementation and on tracing the functions by using selected 
breakpoints and traces. While it is possible for the testers to get a trace, the 
output can contain too much information, possibly obsolete, making 
interpretation thus difficult. Sometimes 98% of the activities in the trace can 
involve useless invocations made within a method (Koskinen, 2006). 

Hence, the requirements for an ideal analysis are:  
- It should be possible to activate a new analysis whenever deemed 

necessary and from any place of the source code consisting of any class, 
any method, any block of statements, or any collection of packages. 

- The analysis should capture all program comprehension information 
such as the flows defined by Pennington (1987) and those by Burkhardt 
and Wiedenbeck (2002). 

- The analysis process should be iterative and recursive and enable 
capturing knowledge cumulatively to form a situation model relating to 
the user’s active problem. 

- The output of the analysis should enable using semantic links and 
dependencies between elements for efficient navigation. 

- The analysis should be controllable by the user for stopping, skipping, 
reactivating, and changing the defaults made by the simulator. 

 
Some of the requirements above form the hard theory to connect formal 
elements, whilst the others form the soft theory to support the user’s 
information needs. 

A complete coverage of the granularity of the ideal analysis is better 
known as complete analyzability. It refers to a sequence of computations where 
every step between the elements involved can be recorded into a trace. 
Typically the traces of a dynamic analysis can record a lot of information, 
tracing every statement in the code at a Java bytecode level or assembly level, 
and a single statement can make numerous computations between registers.  
Later in this dissertation the atomistic semantics is introduced in order to satisfy 
the requirements of complete analyzability.  We will illustrate the unique 
approach of the ideal analysis in the next goal allowing a comparison with static 
and dynamic analysis. 
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3.5.4 Turing machine metaphor - the base of computer simulation  

Each programmed action in a computer occurs in the CPU as a computation. 
Thus the concept of computation is the base of computer acitivities. That's why 
we argue that it is necessary to take the Turing machine metaphor (Turing, 
1950) as a foundation of the formalism of SimulationWare. It defines the laws 
for computations. All computer programs, excluding their parallel features, 
obey the principles of the von Neumann architecture (von Neumann, 1951) 
with its input-process-output nature and sequential functionality, where the 
computation model of a register machine of 740HFIGURE 6 is included. This gives us 
the following ways to extend the usability of this study to a more generic 
concept like natural laws: 

- By using the Turing machine formalism as a foundation it is possible to 
simulate any computer program (there are some restrictions such as 
parallel features). 

- By using a universal Turing machine it is possible to simulate any 
computer. 

- By using our Visual Prolog programs it is possible to approximate the 
state tables of the Turing machine very far. This is the main functionality 
of SimulationWare. 

 
Therefore the purpose of SimulationWare is to mimic the Universal Turing 
Machine. There are several implementations of it (Hodges, 1988), but most of 
them are for simple numeric data and none of them has a distributed logic.  The 
purpose of SimulationWare is to implement an interactive abstract machine, 
which has a distributed logic. The main reason for this decision is the following: 
If the architecture of the model (ModelWare) is distributed, then for getting a 
high-quality architecture for the tool, the logic should be distributed, too. As a 
summary, the main idea for the formalism and simulation of SimulationWare is 
described in the next goal. 

Goal 12. To create a sequential computation model for SimulationWare. 

3.5.5 Simulating parallel features, the starting logic of threads  

In cases where parallel features are used in Java, those features can be thought 
to create separate Turing tapes. Each of these parallel features should reserve a 
tape of its own. For parallel features the communication and synchronization 
between different tapes should be arranged by using the formalism of the 
nondetermistic Turing machine (Hopcroft et al., 1979).  

Although simulating threads and other parallel features is not automated, 
it is useful to employ the thinking model of a Turing tape to describe the 
semantics of each parallel feature. For simulating threads, a manual user 
interface can easily be generated so that the user can synchronize the threads 
interactively. The problem when using several simultaneous tapes is how to 
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master the side effects between them. If this is solved, then it should be possible 
for an application to simulate resource allocation situations like a producer-
consumer function. This topic forms one of the main interests of Microsoft in 
source code analysis (Andrews et al, 2004). 

The next goal is a summary for parallel simulation in this research.  

Goal 13. To investigate how to implement parallel activities, e.g., threads in 
order to capture program flows. 

3.5.6 User as the Decider 

As said earlier, the user (human) has a role to control the simulation process in 
cases of loops, ambiguous references, in simulating parallel features and in 
selecting alternatives due to unknown information, which is typical for partial 
simulation. 

In this role the user completes the simulation process deterministic to the 
level of the decider, which is a concept of the Chomsky hierarchy (Hopcroft et 
al., 1979). The synonym for it is a total Turing machine, which is equipped with 
a feature to terminate in all conditions to return one value. The role of the user 
in deciding about each ambiguous reference in a partial simulation is not too 
laborious, because in static analysis the user should in every case solve all the 
ambiguities when following the code manually. This process is manually 
laborious due to the yoyo-phenomena (Wilde and Huitt, 1992). The computer, 
especially SimulationWare, should help the user in finding all the possible 
alternatives for each case automatically. 

3.5.7 Automated reasoning 

Automated reasoning is a process to simulate sequences in order to produce 
outputs as a symbolic tape. It consists of successive computations, which all 
have the formalism of a register machine. For each computation an input-
output model can be built. Further, for each computation a Hoare’s triple can be 
defined to describe the assumed preconditions and postconditions.8F

9 

3.5.8 The final approach for logic, theorem proving 

Source code is mostly made up of a vast collection of information with a huge 
amount of dependencies. All attempts to visualize it as a whole are deemed to 
fail. The opposite for such a holistic approach is a focused approach to produce 
only pragmatic information.  

For troubleshooting cases the pragmatic information can be found at the 
locations where the errors (faults) may originate from. Also useful but not as 
demanding is to find change candidates in order to list the elements that 
                                                 
9 This atomistic thinking is suggestive of the cognitive theory of Wells' mini-minds (Wells, 

2006).  
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possibly cause problems. Each flow that is directly related to a problematic case 
is a possible definition for a list of change candidates. There are some 
definitions for the important flows that can be used as program comprehension 
information  (Pennington, 1987; Burkhardt et al., 2002). 

The programs form cycling graphs in all situations, where the exceptions 
can only be: 

- Recursive invocations, where the end conditions may be too complex to 
be simulated by symbolic execution, because sometimes the end 
conditions refer to unknown methods or variables or to unknown 
values. 

- Loops with their terminating conditions with the same restriction as 
recursion. 

- Exceptions that create direct branches.  
 
In all other situations all the critical flows can be simulated assuming that the 
necessary information can be evaluated. In those cases where the information 
cannot be converted into a numeric form due to missing data (unknown 
subterms) the symbolic expressions calculated by SimulationWare can still be 
used. 

This typical troubleshooting case can lead to a situation, where the user, 
very eagerly, tries to prove some element flows either correct or incorrect. This 
contrafactual thinking is essential for the user to build a situation model, where 
a synthesis about the most probable place for the bug can be done. 

Sometimes the user may not have the necessary initial knowledge. This 
can then be regarded as the opportunity to create that knowledge by simulating 
the most critical code and by navigating the results and values. In conformance 
with the approach of this research the user will then have “three machines”, 
collected from the four technology spaces, drawn as symbols for automata, see 
741HFIGURE 7.  

The first machine, MGw+MW, which includes both GrammarWare and 
ModelWare, creates an acceptor that can accept or reject input code. The second 
machine, MSW, is SimulationWare, which produces tapes, T, for the last 
machine, MKW, or KnowledgeWare.  

There are some theories to cover a situation, where an executed trace will 
be validated, including manual program verification (Gries, 1981) and 
automatic theorem proving (Duffy, 1991). Deductive testing has been used 
according to a created test case model in industry  and model checking is used 
in general (Visser et al., 2003). The biggest difference between the earlier 
solutions and this novel approach is that in our approach there is a traceable 
predicate describing each grammar term captured from the source code 
(MGw+MW) to the theorem proving interface ready to be used in writing proving 
specifications. 
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FIGURE 7 The research as a three machine model. 

The actual research topic in this approach addresses the question of how to 
describe the rules for a valid, correct or incorrect flow to the computer. Thus, 
creating an interactive user interface for the purpose is essential here.  In 
742HFIGURE 7 a new branch (H) should be added to define the hypothesis. In 
theorem proving one of the aims is to produce a minimum amount of 
information in expressing a valid answer. For each deductive test that succeeds 
only one bit is needed to express the result. This positive result is useful as an 
axiom in a larger test in order to define the coverage of the error.  From the 
user’s point-of-view, connecting information from successive alternative tests 
and simulations will demand the greatest efforts.   

3.6 Relevance of questions: referring to use scenarios 

It has been proposed that human thinking is based on a mental language of 
thoughts (Fodor, 1975) and using  queries and answers should be natural for 
persons exploring code (Letovsky, 1986). Therefore, in order to revitalize our 
thinking we should be able give answers to questions such as:  

- Which are the valid, actual questions? 
- Is it possible to get a computer to analyze these actual questions? 

 
The task here is to automate and maximize the use of those questions that are 
useful for solving typical maintenance tasks. This means searching structures 
from the code, solving possible dependencies, capturing program flows and 
trying to understand any connections between the different use cases of the 
most critical classes or methods. The complexity of OOP must be studied also 
(Walkinshaw, Roper, and Wood, 2005). 

3.6.1 Mental simulation 

The analogy between a human and a computer has been described in several 
articles from a functional point-of-view (Wells, 2006) and by architecture 
comparisons (Walenstein, 2003). The analogy is evident, because the computer 
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design follows the principles of a person who uses a pencil and paper in 
matching serial information (Hodges, 1988).  Furthermore, after its invention 
the computer has often been used as a model when trying to understand the 
main principles that a person might use in memory, processor, input, and 
output processes  (Walenstein, 2002). 

For program comprehension purposes the common feature combining the 
process of a person and a computer is simulation.  Computer simulation is 
described and formalized by the Turing machine, though each programming 
language has its semantics. It corresponds, in personal thinking, to mental 
program simulation (Nakamura et al., 2003). 

There are theories based on using agents in solving complex problems. 
These  include the use of an agenda, a to-do-list (Walenstein, 2002), and a 
process to divide a larger task into smaller ones until the end is reached (von 
Mayrhauser et al., 1997). Rasmussen (1983) has shown that human cognition 
uses three essential layers: skill level, rule level, and knowledge level. 

The concept of action is useful in modeling both what a person does and 
what a computer does.  Action is a term used in task action grammars as well as 
in UML (Rumbaugh, Jacobsen, and Booch, 1999).  The lowest action level in the 
computer is computation which computes only one thing at a time. As a 
conclusion, the message of this section is condensed in the next goal. 

Goal 14. To plan a hierarchical action model to support solving maintenance 
tasks in the known cognition layers. 

3.6.2 Organizational approaches 

Because source code is based on a language, and understanding a language 
requires universal human thinking, the problems of program comprehension 
are universal problems that can be encountered in any size organization. For 
example, there are different situations depending on the size and packaging of 
the software giving rise to these sort of problems. If it is a part of a larger 
delivery, a single package or component can cause some typical problems due 
to incomplete information about the other parts of the software (Sawyer, 2004).  

When simulating total software with the whole code loaded, all 
information can be found both at source code level and at object code level. The 
situation is quite different in an open-source community, where the developers 
face strong challenges trying to discover the behavior of many external 
components in the assumed situations and deciding on how to simulate them 
with or without code.  For this kinds of situations the function of partial 
simulation is very important. 

There are three types of development archetypes with either a sequence, a 
group, or a network as a foundation  (Sawyer, 2004). Communication forms the 
base for the network-based development in the open source community (like 
Linux-projects), where possibly hundreds of people have an access to the 
details of source code and the achievements of others. Because of continuous 
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iteration cycles and change requests there is a need for real-time information 
access within the network. Sawyer (2004) suggests, as shown in 743HTABLE 2, that a 
centralized knowledge base could be a solution for adding connectivity to 
network based organizations. 

TABLE 2 Tool approaches for software development archetypes. 

Archetype Tool approaches Knowledge Strategy 
Sequence Task integration, task automation  Knowledge capture 
Group Collaboration,  process support  Knowledge search 
Network Added connectivity,  inter-operability Knowledge base 

Commitments for Query (Q) 

A query is a command that starts an analysis. There are the following main 
types of low level queries, which are compatible for the program model: 

- The most typical query asks for a flow starting from an element such as a 
critical method. Often it produces a call tree or a slice (Binkley, 2007). 

- A chop-query asks about the flow between two elements (Reps and 
Rosay, 1995).  

- A theorem-query traces a route between a selected number of elements
  (Ball and Laws, 1996). 

 
There are some typical high-level queries, too. A familiarization query typically 
asks about control flow (Pennington, 1987), program flow, or data flow or any 
combination of them, perhaps producing a  dependency graph or an 
architecture diagram as output. A testing query hones into a deductive proof, 
and testing functions. A troubleshooting query asks about a flow either starting 
from a selected test case or use case or starting backwards from the detected 
problem location. The troubleshooting query gets fault candidates as output.  

As a summary, a goal for transforming questions to the model is 
described.  

Goal 15. To express the user’s questions and hypotheses in a formal way, 
referring to a singular element or a flow of the model or to a derived tree.  

By using iterators it is possible to extend the use of simple queries into more 
complex multi-phase processes. One example formalism for queries is 
chopping, which means a query with a certain start element and a certain target 
element in order to pick a selected part of a large model (Reps et al., 1995). 

3.6.3 Familiarization scenario 

Familiarization is a very relevant point-of-view in program comprehension, 
because typically persons change their responsibilities from time to time. If any 
developer has had a large role without a complete substitute at any time, then 
all role changes relating to him/her are critical. Therefore, accelerating the 
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familiarization process by means of program comprehension technology is 
essential. The familiarization process can take several months of a newcomer's 
time. This clearly shows its important economic dimension. 

Familiarization is the process to increase the initial knowledge (K0) of a 
user. In program comprehension the user is assumed to have either the basic 
skills about the current programming language or expertise of the actual 
business domain, but very often a profound knowledge of both of them is 
lacking. 

The theory of information ladder (Longworth and Davies, 1996) 
introduces how to increase knowledge accumulation from data. In this model, 
data is said to contain relations that the user should be able to learn from 
information. The step to the next level is to understand patterns of information 
in order to build new knowledge. 

For object-oriented reverse engineering some practical methods have been 
introduced for climbing up the information ladder, including Read the Code in 
One Hour, Refactor to Understand, and Step through the Execution (Demeyer et 
al., 2003).  They are useful in real life, although they have no scientific base. 

3.6.4 Testing scenario 

Nowadays testing has been outsourced and delegated in practical software 
production into many external distributed teams and organizations. However, 
testing doesn’t improve the quality; it can only prevent the possible bugs from 
moving to the final product. Currently a rather big test package must be built to 
enable tests for dynamic analysis, although it is well-known that the sooner a 
bug is removed the cheaper it is to fix. One reason for this yet unproductive 
practice in source code projects is in the current analysis methodologies, which 
do not allow testing modularly and partially the modules and classes and 
functions, in the order they have been written. This problem makes testing a 
very expensive and complex process. 

Testing is a process where the user has both initial knowledge (K0) and 
default knowledge (K1). The purpose of testing is to find out whether the 
default knowledge is true or not. This process has the clear characteristics of a 
deductive argumentation. When a test succeeds, no new information appears, 
except that the test was done. If the test fails, then there is a contradiction (K2). 
That is very important information and starts the troubleshooting process. 
 

3.6.5 Troubleshooting scenario 

Troubleshooting is the most expensive and challenging part of software 
development if planning of changes is assumed to be included in it. 9F

10 In a 
                                                 
10 In the biggest organizations there are specific persons and teams for troubleshooting, but 

most often the developers and the maintainers are responsible for finding bugs from 
their own code. In this section the persons active in troubleshooting are called 
developers. 
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typical troubleshooting case there are numerous teams involved in building 
either an application platform, a subsystem like a new protocol, or a multi-
function component. Changing application software is the easiest case, whereas 
updating a heavily used multi-function component is the most difficult one. 

Typically in the application there can be numerous interfaces and layers 
starting from the hardware level and ending up in a sophisticated user interface 
for actual users.  The developers can know only some parts of large software in 
detail. The problem is that usually the teams are from separate, individual 
organizations, and there is no common test practice and no common language 
between them.  

Sawyer (2004) has suggested that the biggest challenge for the project and 
its success is the interconnection of troubleshooting skills of individual persons. 
If the only way for the developers to trace possible errors is to read the source 
code of other developers or to opportunistically read class contracts of other 
interfaces, then troubleshooting can be very risky, sometimes almost 
impossible. To alleviate this, a modular, focused approach to possible product 
problems should be created. 

Troubleshooting is a process where reasons for a contradiction are looked 
for. There is the initial knowledge (K0), default knowledge (K1), and the result 
of a testing process (K2). The aim is to find either one or more locations or one 
or more change candidates that can be considered guilty, so to speak. 

3.6.6 Definition for the focused approach towards source code 

The most typical models such as UML models (Rumbaugh et al., 1999) and 
layered models such as reflection models (Pacione, Roper, and Wood, 2003) 
have a holistic purpose to produce a maximum amount of information for a 
user query at each time. This functionality is very natural, because providing 
information is the main purpose of information systems. However, due to the 
nature of source code and its corresponding models these are huge in size and 
almost impossible to visualize in computer screens as screenshots. The opposite 
for the holistic approach is the focused approach where the amount of 
information for the user is the smallest possible, while keeping the selected 
context of the user. Therefore, a focused approach is needed for solving 
individual maintenance tasks. 

It has been proposed that the logic of a maintenance task contains 
different phases, including productive tasks and unproductive delays (Gilb, 
2005). Once the unproductive parts have been removed, then the productive 
side of a maintenance task can be defined to contain: 

- Problem recognition  
- Problem formulation  
- Focused subtasks (1 to N items). 

 
The goal is to create an opportunistic method, where program can be 
understood by means of information about executed actions relating to 
maintenance tasks and subtasks derived from them. The methodology has as its 



  77 

 

main goal to improve program understanding by providing actual focused 
information in order to decrease the user’s work load (Storey, Fracchia and 
Mueller, 1999).  

The motivation for supporting distributed cognition as an independent 
topic is that were a data model (later atomistic model) well-established and 
practical by its nature, it should support communication over tools and 
processes. In this way it should (in the optimum situation) support people talking and 
learning in groups, rather than individuals using the tool alone. Group-based 
learning should enable network-based use scenarios (see 744HTABLE 2). 

Commitments for Hypothesis (H) 

Each action in program comprehension culminates in building a hypothesis 
(Brooks, 1983; von Mayrhauser et al., 1997).  A person uses questions and 
answers in trying to solve a problem in general, as when finding solutions for 
his maintenance task. In creating questions the user is able to create hypotheses. 
von Mayrhauser et al. (1997) have studied the hypotheses of programmers, and 
Letovsky (1986) has proposed that the most typical question words are what, 
why and how. We connect them to PC as follows: 

- Question “What does an element X do?” can be mapped into functionality, 
which can be estimated by recognizing the JDK library invocations 
caused by X. 

- Questions “When and why has element X been activated?” gather 
information for a larger question “What is the purpose of it?”. The former 
question can be mapped into a cause-effect analysis by evaluating the 
external influences (and the internal side effects of them). 

- Question “How does element X work?” can be mapped into the program 
flow. 

 
If there is a data model with a versatile formalism in the tool, which has access 
to the elements and their inter-relations in a unified way, then it is possible to 
connect the questions to the possible queries of the model. The queries should 
then provide a result set as a way of an answer. To show how hypotheses 
should be realized in the tool is described as the next goal. 

Goal 16. To build a demonstration for simulating an example and a 
theoretical approach as regards the captured PC flow using hypotheses.  

3.7 Certainty of the results of analyses (answers) 

It is essential that every computer system should return correct answers. This is 
usually confirmed by using a set of test levels including functional tests, 
module and detail tests. 
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3.7.1 Does the method give correct answers? 

As proposed earlier, the answers are sequences that have been selected in 
accordance with the approach in the current maintenance task. It is the user's 
responsibility to connect the results into a mental model, i.e., a situation model. 

Because each query has a unified functionality and the model is modular 
containing only elements that are not aware of their neighbour elements, it is 
very easy to test the semantics as a detail test session and as a module test, too.  
Extending this model into the functional testing level leads into the outer 
Turing model, where the outputs are Turing output tapes. Because the whole 
process follows a pipes and filters architecture (Bass et al., 2003), 
GrammarWare, ModelWare, SimulationWare, and KnowledgeWare as the user 
interfaces, it is easy to create these functional tests. In cases where some of the 
computations cannot produce alphanumeric information, the simulation 
expression can be used as an evaluation criterion.  

3.7.2 Test evaluation possibilities for the results 

For verifying the certainty of the results of analyses it is sufficient to verify the 
main functionality of each technology space bottom-up as detail tests using the 
follow pragmatics: 

- GrammarWare can be checked by a local loop connecting the parser and 
the pretty printer together, because they are reverse functions of each 
other. 

- Symbol table can be checked by comparing its printouts to manually 
read information. 

- Symbolic model (ModelWare) can be checked by comparing the element 
displays with manually estimated information. 

- SimulationWare can be checked by comparing the output tapes with 
manually estimated information. 

- KnowledgeWare can be checked by using the tool and relevant 
hypotheses to filter the symbolic flow information. 

 
A validating plan for the results is important. It can be created in a modular 
manner for the selected functions. A goal to show the whole data flow correct is 
stated next. 

Goal 17. To validate the process - including all technology spaces - by a 
small sample program by comparing its output tape with a manually 
estimated program flow. 
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3.8 Correctness of programs and the tool 

If one can rely on the answers of the tool, then for proving the correctness of the 
whole tool, only the highest abstraction layer of the tool and the connections 
from the user interface to the technology spaces need to be proved. 

The connections between the UI and the symbolic layer are described next. 
In a PC tool (here JavaMaster) the symbol (S) is a reference to the corresponding 
object (O) (see 745HFIGURE 3). There are two kinds of references: one for the user 
and one for the computer. The computer uses an object handle as a reference, 
but the user may use either the name or the symbol as a string or a symbolic 
name including the type of the symbol, like class X. Thus, through the symbol 
(double-clicking) it is possible for the user to get access to all of its features. The 
computer retrieves the corresponding information using the corresponding 
object handle (4 bytes). A symbol is a means to enable presenting, 
communication, and to control the user interface. 

3.8.1 The functional approach for the tool, Facade 

The tool can be considered to be a black box, the highest abstraction layer, 
which contains only a parser, a model weaver, a simulation mechanism as well 
as a theorem prover to match the initial knowledge of the user with the existing 
model and sequence information. 

The external interface for it can shortly be expressed by the following 
predicate calls: 

- Parsing: ParseTree = GrammarWare:parse(Str) 
- Weaving: Model = ModelWare:weave(ParseTree)  
- Simulating: Sequence = Model:run() 
- Proving: Argument = Sequence:proof(Hypothesis) 

 
These four invocations are necessary to demonstrate the main functionality of 
each technology space. All other technology spaces have a code of their own, 
but simulation will be embedded into the run-method of the element (related to 
ModelWare). 

3.8.2 Programming approach for tools 

In this section programming paradigms are shortly discussed from the tool-
implementation point-of-view.   

OO-programming as a tool implementation methodology 

Although encapsulation is a very useful feature for making abstractions, it has 
its drawbacks (as earlier discussed), because one of its feature, information 
hiding, causes a serious problem for an analysis tool: all the dependency 
information of the application, like object and method references (e.g., 
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croscuttings), must be hidden in methods of classes and objects (DynamicJava, 
2007).  

Expressing dependencies is a problem for all object-oriented languages, 
because if a dependency is programmed to be an object, its information should 
be saved in meta-structures describing both sides of the connection. This 
principle is widely used in model weavers of MDA (Bézivin, Jouault, and 
Valduriez, 2004). Another principle should be to keep dependencies within the 
connected elements in order to build composite elements, but the data model of 
Java is not capable of combining complex dependency information as itself, 
because its type system is very modest. The notations like Atlas (2005) and XMI 
(XMI, 1998) use several types of links and associations that make mastering the 
software very challenging.   

So it is possible to argue that Java might require many metaelements to 
describe dependency information (due to the nature of its type system). 
Programming this kind of dependency system can be rather laborious, because 
the programmer must write several overlapping sets of iterators in order to 
connect all the possible elements with each other. The conclusion is that it is not 
practical, perhaps even not possible to write a formal modeling system for any 
language by using Java as the language. 

Logic programming as a paradigm 

The logic programming paradigm contrasts strongly with OOP, because it has 
been created for connecting different abstractions and terms, including 
language elements or model structures. Logic is open by its nature to enable 
modelling simultaneous parallel artifacts.  

In logic there are operators (connectives) and operands that form formal 
relations. As an implementation for relations Prolog programming language 
contains a relational model of its own, resembling that of a traditional relational 
database system, but it is much richer for programming purposes, because its 
inference engine and the declarative language have a lot of expression power 
for implementing queries for the application model.  The query model of Prolog 
is symbolic by nature, thus allowing easy building of analysis tools. 

For building large systems with large resources, traditional Prolog 
(Clocksin, and Mellish, 1981) proves to be unwieldy. It is too open and 
centralized, suffering from some features of procedural programming where all 
information is kept in a large repository. Furthermore, ISO Prolog (ISOProlog, 
2007) with its interpreting feature can be too slow for practical commercial 
implementations. Making modern multi-layer implementations with up-to-date 
visual user interfaces could hence turn out to be impossible by a traditional 
Prolog. 

3.8.3 Hybrid programming, combining logic and OOP 

As a methodology, the features of the object system of Visual Prolog that 
support making abstractions are useful for source code analysis as follows: 
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- By abstraction it is possible to connect lower-level features like Java 
structures into higher-level concepts in order to create a sophisticated 
class hierarchy. AST is a good example of that. In AST systems an AST 
node is the base class which defines the basic functionality for all kinds 
of nodes. In source code analysis we define the object name 
SymbolicElement to correspond to the AST base class. 

- By specialization it is possible to create the necessary behavior models 
for each element types including loops, assignments, and method calls. 

- One can define the internal information, an internal language between 
elements, by using a common base class. We define a class, Symbolic, to 
make all the connections between the objects formal. This base class 
creates a common language that can be used for formalization and 
model checking purposes.  

 
As pointed out earlier, the logic programming paradigm should provide an 
open and associative data model, and an OO-paradigm should provide an 
excellent abstraction system for the complex information. Combining these 
paradigms was studied, e.g., by Spinellis (Spinellis, 1994) as a goal of multi-
paradigm programming or certain kinds of hybrid programming. This was 
done in order to understand the paradigm differences and to create some 
typical implementations (like those for geographical information systems). 
Nevertheless, the earlier research has not connected these two as completely as 
is the case here for PC purposes. 

From the code modeling point-of-view, the semantics of the tool language 
is not as important as the unified formal structure of the application model, 
which enables unified access to all information as generally as possible. For 
query purposes it is important to enable a simple programming logic for 
queries and for programming intermediate results. The main requirements for 
the programming are: 

- A mechanism to enable creating model verification systems, including 
nondeterministic features. 

- Direct access to model elements without any need to use metastructures 
between the elements in describing dependencies. 

- Support for simple but effective traversing algorithms for scanning and 
querying dependencies without overhead and memory problems due to 
iteration. 

- A compact notation for expressing dependencies, because dependencies 
are, generally, the most important information for program 
comprehension. 

 
This dissertation intends to meet the previous requirements, i.e., to show how 
to implement a formal data processing system for source code analysis to 
enable program comprehension queries for maintenance process purposes.  
This architectural goal is listed next. 
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Goal 18. To create a hybrid construction, combining the benefits of OOP and 
logic programming. 

3.8.4 Knowledge analysis of tasks  

In the theory of knowledge analysis of tasks (KAT) there are the following 
levels (Payne and Green, 1989). Goal substructure explains how a person 
conceptualizes the goal structure of a task. Task plan defines the ordering in 
which subtasks are carried out. Task strategy describes a set of procedures along 
with the circumstances under which these procedures form the strategy to be 
employed. Procedures are a set of actions and objects that form such a 
procedure. Objects and actions are the lowest level, the basic taxonomic 
structure.  

Commitments for the maintenance Task (T) 

In most cases the input that activates a maintenance task is a Change Request 
(CR) (Gilb, 1988). It can refer to an improvement or it can be an impulse for 
adaptive or corrective work. In most cases it requires some familiarization for 
the developer before implementation. 

The task is split into minor activities, into operations that form a plan or a 
process. In the research the flow starting from a task is described by the 
symbols TPHQ meaning Task-Process-Hypothesis-Query. This concept should 
be organized into a comprehensive chain to solve typical maintenance problems 
in corresponding tasks. It belongs to the area of KnowledgeWare in the 
methodology.  A task is split into operations in order to build a plan for it.   

Commitments for the task solving process (P) 

A group of activities to execute a task plan is denoted with a symbol process (P). 
There are the following kinds of processes that relate to the selected use 

scenarios.  
- Familiarization process collects information for the user. That 

information is very useful and can be used for some information 
requests to the model.  

- Testing process is a set of activities to verify some test cases.  
- Troubleshooting process is a set of operations to find the fault 

candidates.  
 

A precondition for a process is the definition of an active code (compared with 
a dead code). If all active code and its elements with their dependencies can be 
found in the symbolic model, then it is a clearcut process for the user to scan 
through all the critical elements. Thus all different kinds of processes are 
reliable and fast and really can remove the discontinuities of different kinds of 
information to form an integrated model. 
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If the requirement for an integrated model succeeds, then each process 
category (above) can be created systematically from any selected point-of-view. 
Demonstrating how the PC approach relates to the lower level work is 
described in the next goal. 

Goal 19. To show how a PC process works leading to low-level actions. 

3.8.5 About the formalization and development tool Visual Prolog 

Like operators in mathematics, logical connectives define operations between 
symbols and other operations. If all grammar terms have been translated into 
predicates in a tool based on a predicate logic (like Visual Prolog) then it is 
possible to connect all the language elements with each other to form axiomatic 
semantics for each structure  (Hoare, 1969).   

The interference engine of Prolog is useful for programming traversing 
algorithms, because it validates all allowed paths automatically and backtracks 
the possible paths without any need for the programmer to implement 
intermediate structures for the query.  

It is very important for the implementation to Java that its invocation 
model is simple, returning only one value from any method. This simple 
call/return-principle makes developing an execution model rather 
straightforward. Therefore, we only need one method with an optional return 
expression in order to simulate calling of elements in the simulation phase. For 
that purpose we have selected in our architecture a method named run to start 
and execute each element in turn. 

The implementation approach of the research is the last goal of this 
section.  

Goal 20. To formalize the main features of the research in Visual Prolog and 
to program the corresponding tool, JavaMaster. 

3.9 Summary of the approach 

In this chapter the selected approach for the research was introduced. The 
approach is characterized by the specified goals that illustrate the pragmatic 
purpose of the corresponding title in the text. The logic behind this chapter and 
its contents comes from the article of Hoare describing the ideals of science 
adapted for this research, including pure concepts, theories about technology 
spaces, transformation formalisms illustrating coherence, completeness of logic 
illustrating consistency, relevancy of questions illustrating the selected 
cognitive architecture, certainty of answers illustrating verification of results, 
and correctness of programs to validate the whole theory set in a tool. 
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The theories are discussed as technology spaces, here GrammarWare 
(GW), ModelWare (MW), SimulationWare (SW), and KnowledgeWare (KW). 
They each have a “pure” main concept as a foundation. Granularity (accuracy) of 
transformations is discussed as formalisms. Completeness of logic is an essential 
topic, which evaluates the coherency of the research. Maximum coherency can 
be reached when a maximum number of concepts can explicitly be formulated 
in the development tool, here Visual Prolog. Relevancy of questions has strong 
connections with cognitive architectures, here relating to the thinking model 
and use scenarios of the maintainer.  Certainty of answers is discussed as 
evaluating the symbolic analysis, which is a new approach to investigate source 
code.  Correctness of programs refers to evaluating a correspondent practical tool 
and its implementation.  As the programming approach a hybrid approach 
combining logic programming and object-oriented programming is introduced 
as a new architecture platform for the tool. 

In 746HFIGURE 8 the research approach is depicted with the specified 
technology spaces in respect to the current comprehension of what is meant by 
computer science (CS) and its sub-fields.   

It is useful to note that the theory about models, the model theory, (relating 
to ModelWare) is not very accurate, because generally speaking everything can 
be said to be a model. On the other hand, the theory about object-oriented 
programming and their models relates to UML and its specific practical issues 
in a large research area and has clear connections to ModelWare.  

The theory about knowledge is large and somewhat ambiguous, because 
there are many different theories about data, information and knowledge. In the 
approach presented in this section we view the theory of cognitive architectures 
as modeling the user and the tool as a connection to KnowledgeWare. 
Furthermore, we use the Peircean taxonomy, Rasmussen specialization model 
and Nonaka knowledge layers to explain the different abstractions of 
KnowledgeWare that the user needs in the practical work.  

The theory about grammars is extensive. The compilation theory is its 
most advanced area, because there are long traditions for writing compilers. 
Another area relating to GrammarWare is the type theory with its connections 
to ontologies. The third link to grammars is its compatibility with the Chomsky 
hierarchy.  Hence, the main information about parsers can be used in 
implementing reverse engineering applications. 

Even though computer simulation has a long history starting from the 
Turing machine model since the '30s, the simulation theory is not used in 
current reverse engineering tools as a foundation. However, in this research we 
try to build a theory via SimulationWare to connect the highest abstraction 
model of the user and the lowest abstraction computation model of the 
computer in order to establish a novel approach for program comprehension 
via the traditional automata theory. Atomistic model is the key element in this 
approach and symbolic analysis is a new idealized way to analyze the weaved 
model in order to support human thinking in evaluating code structures and 
their behavior.  
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FIGURE 8 The research approach and the corresponding theories.  

 
 



 

 

86 

4 GRAMMARWARE 

In this chapter the necessary knowledge for applying grammar-based 
techniques and the corresponding methods is described for the purposes of 
symbolic analysis. GrammarWare is a concept combining the methods that 
have a grammar as their foundation (Klint, Lämmel, and Verhoef, 2005). The 
name comes from the fact that a grammar is an essential information source for 
all these related activities. This description includes the phases of how source 
code information is transferred from terms specified in a grammar into parse 
trees and into a high level notation for later use for a symbolic model. In this 
research GrammarWare is a technology space covering all grammar-related 
functions of the methodology. The bridge from GrammarWare into the 
modeling space, ModelWare, is described in the next chapter. 

The GrammarWare methodology is introduced by using a grammar tool 
SwToolFactory (Laitila, 2006), which was developed in order to generate all the 
necessary grammar based software functions like parsers, pretty printers, and 
code generators 10F

11 . The language implemented in this research is Java1.5, 
whereas the language for modeling, Symbolic, is a new language optimized for 
symbolic analysis of Java programs. It is a domain specific language (Deursen et 
al., 2000), created to increase the abstraction level of the source code and to 
allow program simulation as an augmentation to static and dynamic analyses. 

JavaMaster (see Chapter 8) is a tool that uses the illustrated GrammarWare 
technology in the end-user environment. All formulation of this research and 
the tool itself were done by using the syntax of Visual Prolog 11F

12.  

                                                 
11 The language-independent grammar tool, SwToolFactory, has been used for making 

grammars for some typical programming languages like C++, Pascal,  and Cobol. 
12 Visual Prolog: www.visual-prolog.org (referred 20.12.2007). 
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4.1 Foundation for GrammarWare 

In this section a grammar methodology is defined to enable the symbolic 
paradigm in the tool. It defines the automaton A1..A3, the verbal definition of 
which is: 

Proposition 1. A formal grammar can be defined by a semantic 
structure in such a way that its output, the parser, is able to handle 
symbolic information. This makes it possible to use direct translation in 
translating lower level programming language semantics into a higher 
abstraction symbolic language, such as the Symbolic language, without 
missing the essential original semantics. 

4.1.1 Automaton A1 including the grammar tool 

Definition 1. Grammar 
Let L be a formal language. A grammar for L is a set of production rules 
describing both syntax and axiomatic semantics of L. Each rule is attached into 
a production name. 

In Java there are about 130 different production names (Gosling et al., 
2005). The most important of these are class definition, statement, expression, 
identifier, and literal. 

Definition 2. Grammar production rule 
Let N be a non-terminal production name in grammar G. A grammar 
production rule is a grouped list of specification terms ordered by their priority 
to specify both the syntax and the corresponding semantics. 

A production rule is a list of rule definition lists. The lower list describes 
the rule definitions of a similar parsing priority and the upper list describes the 
priority groups (such as calculating orders of expressions). 
 
PRODUCTION RULE  = RULE_DEFINITION** 
RULE_DEFINITION =  
     rule(GramTok*, SemanticName);  
     prod(GramTok*, term(Name, SubTermNames)) 
 
Because the production names are independent of other contents, it is possible 
to illustrate a grammar modularly by focusing on one production name at a 
time. For example, an internal rule definition for an if-statement is:  X = 
rule([”if”,  ----],   ”iff”). 

Changing an external rule R to an internal production P (to be used in a 
grammar tool) is a process of collecting subterm names from the rule into a list 
in order to build a term data structure. 12F

13 
                                                 
13 From the rule-definition it is possible to automatically build perfect terms that are used in 

each rule for generating parsers. 
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The definition for a grammar term metastructure for a production name 
PN, referred to from outside by termname (PN), is in Visual Prolog as follows: 
 
  term =      
1 name(string);  
2 term(string SemanticId,prodnames);  
3  dom(prodname);  
4  list(prodname). 
 
The internal grammar term, above, has the following alternatives. Line 1 
defines a name, which is an explicit variable reference (class name, attribute 
name, variable name). Line 2 is a reference to lower production names 
connected by 747HDefinition 3. Line 3 specifies a domain reference (a language 
domain such as an integer, a float or a string). Line 4 specifies a list (e.g., a 
statement list is a list of statements). 

Definition 3. Semantic id of a grammar term 
Let PN be a production name including grammar term definitions and M be a 
functor (predicate) describing the use of each grammar term one after another. 
Hence, M is the meaning of the term expressed in a predicate notation. We then 
call M a semantic id for the term. 

For example, the production name Statement has several possible 
alternatives in Java. The meaning for an if-statement can be stated as functor 
(predicate) iff. 
 
Statement = “if” ParExpression Statement Opt_ElseStatement  -> iff 
 
In the predicate notation it contains the arguments, too, giving the notation:  
iff(ParExpression , Statement, Opt_ElseStatement).  
 
A GrammarToken, gramtok, is any token in the grammar meaning either a 
production name, a reserved word or a basic domain to illustrate the type of the 
described language. 

Examples:  
- A production name in Java (according to the Java  specification).  
- A reserved word is written with quotes. 

 
In Visual Prolog: 
 gramtok=  
   termname(prodname)       %  a reference to a term 
   reservedWord(string)            %  reserved word 
  
Examples: 
In the following, a production name AddExpression is defined (line 1). It can 
have either an add-term with two arguments (2) or a sub-expression (3). 
 
1 AddExpression =  
2  AddExpression ”+” AddExpression -> add, 
3          AddExpression ”-” AddExpression -> sub. 
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When terms are separated with a comma (end of line 2), they have the same 
priority. An example about a class definition is as follows: 
 
NormalClassDeclaration =  
  “class” Identifier TypeList Opt_Extends Opt_implements ClassBody 
           ->  normalClass.   
 
The term Statement (Gosling et al., 2005) is defined next by using semantic ids: 
Statement =  
    Block       blk, 
    “assert” Expression Opt_IsExpression ”;”   assert_, 
    “if” ParExpression Statement Opt_ElseStatement    iff, 
    “for” “(“ ForControl “)” Statement     for, 
    “while” ParExpression Statement     while, 
    “do” Statement “while” ParExpression ”;”   do,  
    “try” Block CatchBlock     try, 
    “switch” ParExpression ”{” SwitchBlock ”}”   switch, 
    “synchronized” ParExpression Block    sync, 
    “return” Opt_Expression ”;”     return_, 
    “throw” Expression  ”;”     throw_, 
    “break” Opt_Identifier     break_, 
    “continue” Opt_Identifier     continue_, 
    “;”       emptyStmnt, 
    StatementExpression “;”     stmntExpr, 
    Identifier “:” Statement     labelStmnt. 

Definition 4. Symbolic Grammar Tool 
Let X be a formal language expressed in a symbolic predicate notation. Tool Y is 
a symbolic grammar tool if it can generate parsers and pretty printers for X. 
 
SwToolFactory is a tool to create parsers and pretty printers and other software 
utilities automatically and interactively. Below in 748HFIGURE 9.  

 

FIGURE 9 Defining the Symbolic language. 
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Clause is selected as a term for parser generation. The corresponding Visual 
Prolog domain is shown in the Domains area and the code in the Predicates and 
clauses area, where it is possible to see the parser code for the definition clause 
(defClause). 

Definition 5. Grammar definition file 
A grammar definition file is a file that contains definitions of 749HDefinition 2.  See 
Table 3 for statistics for Java (Gosling et al., 2005). 

TABLE 3 Statistics from the file Java.grm for Java the 3rd edition. 

Size of the Java grammar Numbers 
Production names 247 
Rules 368 
Lists, with 0..n members 43 
Lists, with 1..n members 13 

 
Grammar definitions can be saved into a database according to 750HDefinition 6. 

Definition 6. Grammar database 
Let X be a grammar definition file containing production rules P. A grammar 
database is then a collection of X files containing P-rules identified by the 
language name and the term name. 
 
GrammarRecord = rec(Language, TermName, Rule). 
 
Examples: 
rec(”Java”,”Creator”, rule(ProductionRules)).  
 
creator=creator(optnonwildcardtypearguments,createdname,arrayorclass) 
 
The contents of  ProductionRules to Creator of Java in the database are as follows: 
 
[[prod([termname("OptNonWildcardTypeArguments"),termname("CreatedName"
),termname("ArrayOrClass")],term("creator",[ 
  "OptNonWildcardTypeArguments","CreatedName", "ArrayOrClass"]))]] 
 
Starting from term structures, like the one above for the term creator, it is 
possible to create all typical grammar functions.  A parser generator is 
described next. 

Definition 7. Parser generator (A1) 
Let X be a grammar token list created by a scanner. A term based parser 
generator for a type T is an acceptor, which accepts the required pattern defined 
by sequential grammar tokens from X to capture the term of type T. 

Traditionally parsers to be generated are either left or right oriented, either 
top-down or bottom-up. The method of SwToolFactory is a top-down recursive 
descent parser with LL(k) look ahead  (Laitila, 2006).  
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Because each grammar term is independent of other terms, it is possible to 
create parsers for each term type in Prolog by using a difference list method. 

 
The output for detecting a while loop is: 
1 s_Statement(In, Out) = while(Condition, Statements):- 
2   Input = expect(In,[”while”,”(”]), 
3   Condition = s_condition(Condition,Input, LL2), 
4   Statements = s_Statements(LL2, Out). 
 
The input and the output of the while loop parser are on the first line, input on 
the left side of the equal token and output on the right side. The input will be 
accepted and the output will be generated if the condition part, the lines 2, 3, 
and 4, are accepted before it.  Otherwise the next possible clause will be 
attempted. In the second line the token while will be tested to return the rest of 
the token list in the variable In. In the positive case the contents to the variable 
Condition will be captured by parsing the condition part in the head of the 
variable Out, then returning in the variable LL2 the rest of the list. The last line 
tries to capture the statements for the while loop returning them in the variable 
Statements.  The output for the parser has the form while(Condition, Statements) 
which corresponds to the corresponding grammar form. It has a complete 
axiomatic semantic form, and will be used further in defining ModelWare in 
Chapter 5. 

 
Parsers for some statements  (block, if, for, and do, see 751HDefinition 3) are listed 
next: 
 
  s_statement(INPUT,Output) = blk(Block):-     % block 
  Block = s_block(Input,Output),!. 
s_statement([t(if_,_)|Input],Output) =   % if-statement 
             iff(Condition,Statement,Else):-  !,  

  Condition =  s_parexpression(Input,LL2), 
  Statement =  s_statement(LL2,LL3), 
  Else = s_opt_elsestatement(LL3,Output). 
s_statement([t(for,_)|Input],Output) =   %  for 
   for(ForControl,Statement):-  !,  

  LL2 = expect(t(lpar,0),Input), 
  ForControl =  s_forcontrol(LL2,LL3), 
  LL4 = expect(t(rpar,0),LL3), 
  Statement = s_statement(LL4,Output), 
  !.  
s_statement([t(do_,_)|Input],Output) =   % do  
  do_(Statement,Expression):-  !,  

  Statement =  s_statement(Input,LL2), 
  LL3 = expect(t(while,0),LL2), 
  Expression =  s_parexpression(LL3,LL4), 
 
 
The size of the Java parser in JavaMaster is 3748 lines of Vip code. The 
respective size of the Symbolic parser is 730 lines. A pretty printer is defined 
next in 752HDefinition 8. 
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Definition 8. Pretty printer – generator (A1) 
Let X be a symbolic parse tree. A pretty printer for a specific type T is a 
transducer to translate the corresponding grammar tokens into a string list to be 
modified for the display. 
 
An example for a while loop: 
 
1 p_while(Condition, Statements) = concatList([”while” 
2       ”(”, p_Condition ( Condition), ”) ”, 
3       p_statements ( Statements),”};”]. 
 
There is only one clause in this rule returning, by a Visual Prolog predicate 
concatList, successively the keyword while and both the parentheses and 
semicolon and, by using recursive predicates, the contents of the condition part 
and statements part - all in a correct order. 

4.1.2 Automaton A2, parsing and the Symbolic language 

A parser is a tool to create parse trees.  Its principle is discussed later in this 
chapter. A Visual Prolog based parse tree is a hierarchical data structure, the 
levels of which are grammar structures each.  
 
An example about an interface and one of its methods: 
 
public interface AnswerListener extends java.util.EventListener { 
  public void yes(AnswerEvent e); 
  ..  
} 
 
The corresponding parse tree is the following: 
 
classorif(interfdecl([public_()],normalif(ninterfdecl(id(jvar("AnswerL
istener")),notany(),extends(ext(typelist(reftype(id(jvar("java.util. 
  EventListener")),notany(),[],[]),[]))),  
intfbody([interf([public_()],intmethodorfield(imfd(basictype(void_), 
id(jvar("yes")),intfmethodrest(intfmethoddeclrest(formalparams( 
params(paramdecl(notfinal(),notany(),reftype(id(jvar("AnswerEvent")) 
 notany(),[],[]),[],vardecl(vardeclid(id(jvar("e")),[]),notany())))) 
,[],notany()))))) 

 
It is possible to see that AnswerListener is a public normal interface with its 
parent. Its body (intfbody) contains a structure, where the symbol 
jvar(“AnswerEvent”) can be found with the argument e. 
 
Abstracting formal languages as a specific symbolic notation is described next 
in 753HDefinition 9 and 754HDefinition 10. 

Definition 9. A2 Symbolic code description language (SCDL) 
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Let L1 be a formal language with grammar G1. Symbolic code description 
language L2 is a substitution for L1 where new abstracted types are created for 
each subtype for G1 and the hierarchy contains a minimal amount of levels.  
 

Definition 10. Definition for the Symbolic language 
Symbolic is a symbolic code description language for abstracting Java and other 
programming languages. The definition for Symbolic is a tuple (Clause, Name, 
Type). 
 
interface symbolic 
    
   domains 
1      Clause definition: clause = …     .. % 755HDefinition 11
  
2      Symbolic name:  symbolicName = .. % 756HDefinition 12 
3      Symbolic type:  symbolicType = .. % 757HDefinition 13 
 
end interface symbolic 
 
The whole semantics of Symbolic structures is described by using the term 
clause according to 758HDefinition 11. 

Definition 11. Symbolic clause 
The only base term of Symbolic is clause. Hence, all references of the language 
can be identified as clauses. Clause is the foundation of symbolic processing, 
because all tokens can be parsed and written as clauses. 

In the following list the subtypes of clause and their meanings are listed: 
 

clause = 
 1      Definitions:  def(defClause); 
 2      Creating commands: creator(createClause);  
 3      References:  ref(refClause); 
 4      Method calls:  get(getClause); 
 5      Change clauses: set(setClause); 
 6      Conditional clauses: path(pathClause);   
 7      Loops:  loop(loopClause);   
 8      Operations:  op(opClause); 
 9      Constants:  val(valClause);   
10      Other clauses: other(otherClause); 
 
11      Internal links: at(SymbolicElement, clause*); 
12      Side effects:  seffect(sideEffectClause); 
13      Meta information: meta(metaClause); 
14      Comments:  info(string) 
 
The definition above is intended for expressing the static structure and dynamic 
behavior of Java and that of other languages. The clause structures of lines 1 to 
9 are directly compatible with Java. Those commands that cannot be simulated 
are grouped according to the structure of line 10. Dynamic results are saved 
according to line 12. The groups of lines 1-14 are described in more detail later 
in this section. 
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Symbolic name is a way to express the clauses to the user as follows: 

Definition 12. Symbolic name 
Let X be a symbolic clause. Symbolic name is then a notation, which enables to 
point to X by referencing to its type. 

The names below have been captured from the Java grammar: 
 
 symbolicName =  
 1      Package: package_name(string)   
 2      Class: class_name(string)   
 3      Object: class_handle(string ClassName, string VarName) 
 4      Expression: expression_name(string)  
 5      ..  packageOrTypeName(string) 
 6      Method: method_name(string) 
 7      Attribute: attr_name(string)  
 8      Variable: var_name(string)  
 9      Reference: javaRef(string) 
 
There is a specific name type for each element as a string. In the list (lines 1 and 
2 and 6 to 9) the names obtained directly from Java are shown. Line 4 is an 
example of an internal name for an expression. 
 
The types of Symbolic structures are categorized according to the original Java 
input as follows: 

Definition 13. Symbolic type 
Let X be a variable in a Java program. A symbolic type for X is basic_type(String) 
if the X’s type in Java is a basic type of the language. Otherwise the symbolic 
type is cls(String). 13F

14 
 
symbolicType =  
          Basic type:  basic_type(string);   
          Other type, class:  cls(string) 
 
The values for symbols with the symbolic type basic_type are processed like 
constants.   
 
For keeping the grammar structures consistent, symbol tables and the 
corresponding generator are needed.  

Definition 14. Symbol table generator 
A symbol table generator is a tool to detect class names, method names, class 
parenthood and other else identifiers in order to create a valid symbol table for 
the whole architecture. 

                                                 
14 In Java there are boxing types that are conversion-comparable with basic types.  They are 

converted as cls-types in the symbolic model, described in this methodology. 
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The principle of detecting symbol tables from the code resembles round-
trip engineering. The output of a symbol table generator is capable of building 
class diagrams with associations between classes. 

The symbol table is capable of identifying each symbol (each member) of 
its scope, to retrieve code for each method and to retrieve parent classes of each 
class. 

4.1.3 Automaton A3, abstraction by symbolic transformation 

For translating programming languages into Symbolic a translator is needed. 
Definition 15 describes a high-level translation process and Definition 16 its 
specific version for Java. 

Definition 15. Direct translation (A3) 
Let XT be a semantic grammar term in an input language X with arguments X1.. 
XN and YT the corresponding production name in an isomorphic language Y. 
Hence, a direct translation from XT to YT is a substitution YT = yterm(Y1..YM) 
where the arguments X1.. Xn are recursively translated to Y1..YM by direct 
translation. 

Definition 16. Java to Symbolic – translator. 
Let X be a parse tree expressed in Java in a symbolic format.  Let Y be the 
corresponding Symbolic parse tree. Hence, the tool to translate X to Y is a Java-
to-Symbolic translator. It should be able to make symbol tables for classes in the 
symbolic model. 
 
The Visual Prolog formalism for calling the Java-to-Symbolic translator is as 
follows: 
 
translate_X_to_y(x(Terms)) =  y(translate_Xterms_to_2y(Terms)). 
 
It is a parse tree conversion: 
SymbolicParseTree = java2Symbolic::xlate(ParseTree) 
 
The emphasis in the conversions from Java to Symbolic is in declarativeness 
and backwards compatibility with Java (759HTABLE 4). Thus, there are definitions 
for classes, methods, objects, variables etc. in the Symbolic language.  Let’s, for 
example, translate the statement Sum = A+B+C to Java and further to Symbolic. 
The Java Parse tree for it is 14F

15: 
 ce(cor(coe(cae(ior(eoe(ae(ee(inst(re(se(ae(me(ue(primary( 
     id(name("Sum"),[],notany()),[],notany())), 
  []),[]),[]),[]),notany()), 
  []),[]),[]),[]),[]),[]),notany()),lhs(eq(), 
 
ce(cor(coe(cae(ior(eoe(ae(ee(inst(re(se(ae(me(ue(primary(id(name("A"),

                                                 
15 The semantic ids nested from ce to primary here describe the semantic levels of the Java 

expression. It has 15 nesting levels, which are needed for parsing expressions 
correctly. 
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[],notany()),[],notany())),[]),[add(me(ue(primary(id(name("B"),[],nota
ny()),[],notany())),[])),add(me(ue(primary(id(name("C"),[],notany()),[
],notany())),[]))]),[]),[]),notany()), 
  []),[]),[]),[]),[]),[]),notany()),notany()))) 
 
The resulting parse tree in the Symbolic language is:  
set(assign(basic_type("int"),"Sum",[op(op("+",[ref(refname(var_name("A
"),[]))],[ref(refname(var_name("B"),[]))])),op(op("+",[],[ref(refname(
var_name("C"),[]))]))])) 

TABLE 4 Conversion table between Java and Symbolic. 

Some sample 
conversions 

Java Symbolic 

Class class def(classDef(…)) 
Attribute/Field field def(attrDef(…)) 
Method method def(methodDef(…)) 
Statement statement depends on the Statement 
Expression expression opClause 
Reference reference refClause 
Assignment statement setClause 
Method invocation expression getClause 
Class creator creator expression creatorClause 

 
Example 2: 
An assignment Y = X has the symbolic form: 
set(assign(basic_type("int"),"Y",[ref(refname(var_name("X"),[]))])) 
 
An example translation of an interface to Symbolic: 
 
public interface AnswerListener extends java.util.EventListener { 
  public void yes(AnswerEvent e); 
  public void no(AnswerEvent e); 
  public void cancel(AnswerEvent e); 
 } 
 
The corresponding Symbolic notation is quite short: 
1 [def(interfacedef("AnswerListener",[],["java",”util”,” 
EventListener”], 
2 [def(methoddef("yes",[],basic_type("void"),[], 
3  [def(vardef(cls("AnswerEvent"),"e",[],[]))])), 
4 def(methoddef("no",[],basic_type("void"),[], 
5  [def(vardef(cls("AnswerEvent"),"e",[],[]))])), 
6 def(methoddef("cancel",[],basic_type("void"),[], 
7  [def(vardef(cls("AnswerEvent"),"e",[],[]))]))]))] 
 
Line 1 contains the header for the interface. Lines 2 and 3 contain the yes-
definition and the rest of the lines the remaining methods, two lines per 
method. AnswerEvent has been detected to be a class (not a basic type). 
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4.1.4 Conclusions about GrammarWare (the automata A1..A3) 

Automaton A1 defines the grammar tool, A2 defines the parsing automaton 
and A3 defines the Symbolic language for abstraction.  Referring to Proposition 
1 we have implemented the data flow from the input of A1 to the output of A3 
by programming the corresponding Prolog rules and tested that it produces 
expected elements to the model. Hence, there is a practical proof for 760HProposition 
1.  Automaton A1 requires ca. 2000 lines of code for parser generation.  
Automaton A2 for Java (parser) requires 3.700 lines and Automaton A3, Java-
to-Symbolic translation 3.000 lines. 15F

16. 

4.2 Comparing the foundation with related work 

A formal language is a notation whose structure has been defined by exact rules 
and terms of its grammar (Chomsky, 1956). In addition to the formal language, 
there are specifications for the type system of the language and the agreements 
about its data scope and statement semantics. If the language is object-oriented 
like Java, then the specifications for object features are needed, too. These 
include inheritance, encapsulation rules, and all the reference semantics. 

Each traditional programming language has as its foundation a formal 
context-free grammar, which means that each structure of the source code can 
be parsed completely 16F

17, although the languages can have some minor context-
sensitive features (Sakkinen, 1988; Willink, 2001).   

The overall definition for a formal grammar has the following form 
(Chomsky, 1956; Grune and Jacobs, 1991): 

 
G = <N, ∑, R, S0> 
 

N refers to a divisible term, non-terminal, which contains at least a two-level 
hierarchical structure. ∑ is a list (dictionary) of all reserved words including 
limiters and lowest level symbols, terminals. R refers to a group of production 
rules that list all the valid structures for each N. Each rule R can have multiple 
different terms as its alternatives. For example, the divisible term statement, can 
be either a for loop, while loop, an assignment or some other statement. In Java 
there are about 15 different statement structures. S0 is the start symbol, the 
starting term for parsing. In Java the start symbol, named compilation_unit, 
refers to the definition of a Java file. 

From a grammar definition it is possible to create a corresponding parser 
obeying either left or right oriented algorithm (Grune et al., 1991). There are 
several notations to describe grammars, such as EBNF (EBNF, 2001) and Antlr 

                                                 
16 Being Prolog, the code for A1, A2, and A3, can be proofed step-by-step if necessary. 
17The languages that have dynamic typing, like Ruby and Smalltalk, are not completely 

context-free. 
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(Parr, 2007). A clear difference between these traditional tools  (Lahdelma, 
1988a, 1988b, 1988c, 1989) and the ones that are able to handle symbolic 
information (see 761HDefinition 4) is the fact that in the output of a symbolic 
grammar tool each term should contain both syntax and the correspondent 
semantics packed into the same structure in the way of 762HDefinition 3.  

4.2.1 Symbolic Grammar Term 

In this research the traditional approach for defining formal languages based on 
their syntax is used. In our approach it  is essential that we maintain the 
semantics in parsing and in later processing phases by using a semantic 
grammar term based on 763HDefinition 3 and the Symbolic language based on 
764HDefinition 10.  

Attribute grammars (Paakki, 1991) have some similar features. Attribute 
grammars are an extension into grammar notations that have a syntactical 
addition-like definition for each calculation term, but they cannot be extended 
to cover all the language terms like, for example, when describing the behavior 
of an object-oriented reference. Instead, a way to add a semantic identification 
into a grammar has been proposed by Jensen et al. (1998). We have extended 
Jensen’s approach to cover the whole program comprehension methodology.  

4.2.2 Expressing language semantics in typed Prolog 

Typed Prolog is useful for expressing grammar terms, because its type system 
can match directly all the details of each term. It can even show possible errors, 
because in Prolog the meaning of a semantic identification, which is actually a 
predicate, is indirect and implicit. The predicate is a symbol, not an actual term. 
It makes it possible to create exact abstractions for current grammar terms. 

Next a typed development tool, Visual Prolog (VisualProlog, 2007), is 
described to shed light on implementing grammar development tools, such as 
SwToolFactory (Laitila, 2006).  When using typed Prolog according to 
765HDefinition 4, all the grammar rules of the implemented analysis language like 
Java (and later Symbolic) have a proper control, because the type system of the 
development language knows all the features of the analyzed language.  

As an example, let's consider an if statement. The term statement has a term 
if with the semantic id iff including the condition, the true-block and else-block. 
In typed Prolog it is not possible to refer to an iff term by using illegal grammar 
structures. It is possible, however, to refer to any if statement of the current 
language by this iff id.  So there is a contrafactual two-way correspondence 
between the analyzed language and its formulated notation in the tool. This 
feature is valuable in developing source code analysis, because the structures of 
source code are often very complex. A programming error can cause serious 
troubles in the applications if the development tool doesn’t provide accurate 
type system, which could prevent from using any erroneous types in 
programming the tool.  
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The traditional principle in programming compiled structures uses the 
AST method (Mak, 1996; Gough, 2001). However, AST is very demanding for 
developers, because it doesn’t support model validation. Thus AST 
implementations are error-prone. Another serious problem when using AST is 
that AST information contains a set of individual cells and cell members that do 
not have a combined semantics corresponding to predicate semantics. So it is 
the developers' responsibility to maintain all the semantics features in all the 
analysis phases. In fact when programming AST structures the grammar is in 
the head of the programmer, not in the development tool. This is in opposition 
to the main idea of GrammarWare.   

4.2.3 Symbolic Grammar Rule  

Ordering the rules is necessary to express evaluation (calculation) rules. 
Further, some rules are on the same precedence levels. These include addition 
and subtraction.  For Prolog, advanced precedence groups and parsing 
principles like xy and operator priorities (Clocksin, and Mellish, 1981) have 
been developed. For practical development purposes these are far too detailed.   

4.2.4 Implementing the grammar tool 

With SwToolFactory (see 766HDefinition 4) it is possible to enter grammars and to 
produce grammar-based functionalities (Laitila, 2006). SwToolFactory differs 
from traditional grammar tools in that it is object-oriented, visual and fully 
automated. It contains a scanner, a pretty printer, and, among other 
functionalities, parser and code generator development support. The object-
oriented nature of the tool means that each language is treated as a composite 
object where each rule is a separate language object and each term is an 
independent language object.   This reductionist principle makes developing 
tool functions productive, because each grammar-wide task can be converted 
into small subtasks by just relating one term at a time. Collecting them to cover 
the whole grammar is easy. 

In DCG, which is a non-typed Prolog notation (Clocksin et al., 1981), the 
grammar is too flexible and thus allows erroneous features. This kind of flexible 
definition is hard to remember and validate. When using DCG, the type 
checking code should be written in any case. Another way to write parsers is to 
program parsing into the source code of the tool, but that is too laborious when 
a large scale analysis is needed. 

For implementing a novel, object-oriented grammar tool the following 
definitions  introduce the concepts of metaterm and metarule: 

Definition 17. Metaterm 
Let X be a symbolic grammar term. Metaterm is then an object in a grammar 
tool to define the corresponding grammatical functionality, instantiated for  X. 
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Definition 18. Metarule 
Let X be a symbolic grammar rule. Metarule is then an object to define the 
corresponding grammatical functionality, instantiated for any X. 

 
Combined, the objects metarule and metaterm contain all the features of a 
formal language, and grammar mappings are converted into object-oriented 
mappings of the grammar tool. Statement and expression are examples of 
metaterms. Here a while loop is a metarule object referring to a statement 
object. In the similar way, an if statement, for loop, assignment and other 
statement commands can each reserve a metarule instance which can be 
referred to from a statement object.   

In the following, a top-down parser that uses the recursive descendant 
principle is presented (Willink, 2001). It has earlier been introduced by PDC 17F

18 
(Jensen et al., 1988). This parser uses a difference list principle employing two 
lists, where the first (In) contains current source code information as a token list 
and the second (Out) contains the returning information to the successive 
phases for other rules.  

The rules for parsing have been named so that there is a prefix s_ before 
the name of the corresponding term name. The acceptor procedure has the 
predicate expect to read reserved words and to return the remaining part of the 
token list to parse.  For each rule, one independent starting clause is generated.  
If there are multiple alternatives in the rule, then the separation is done by 
using several clauses. For each priority group, a group of clauses are generated 
and, for each rule instance, a clause is needed. They are numbered in an 
ascending order.  

4.3 Developing the output of parsing 

There have been parsing tools since the '70s. Compared with other software 
technologies, Yacc and Lex tools for Unix were rather early products (Pratt and 
Zelkowitz, 2000). However, there were no well-established ways to handle the 
output of these tools, and that is one reason why the status of source code 
analysis has not been as advanced as parsing in general (Parr and Quong, 1994).   

The most important step for improving parser technology since the time of 
Yacc has been the abstract syntax tree (AST) (Jones, 2003). With AST it is 
possible to construct new models for the output of parsers. AST is an object-
oriented model derived from a parse tree, where the hierarchy of the code has 
been implemented as bindings of AST nodes.  Usually the object hierarchy for 
the tool is programmed and customized for the language to be analyzed. The 
most typical super classes are Command, Expression, Term, and Value, for 

                                                 
18 PDC, Prolog Development Center, A/S, www.pdc.dk (referred 10.08.2007). 
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which AST should be the base class.  A typical AST implementation can be 
found in the Eclipse integrated development environment. 18F

19 
In spite of their straightforward structure AST implementations are hard 

to program, because the nodes often contain language specific variables and 
because AST has a rather complex class hierarchy with its strict integrity rules. 
So the tools are often highly language-dependent. 
 
AST node and its code 

In an AST implementation, AST node is an object. The links of the original 
grammar structure are members (handles) of the substructures of the 
corresponding AST node. When combined, the members/handles of each AST 
form, as a composite object, the contents of the corresponding source code term. 
For example, an assignment LetCommand of Basic contains two or three separate 
AST members: a possible assignment operator, a reference to the left side, and a 
reference to the right side  (Watt, 1990).   
 
LetCommand = D + C (D = Declaration, C = Expression)  
 
If the parts declaration, command and left side are separate, it is difficult, in the 
tool, to maintain the semantics of each structure, because there are in practice 
numerous variations in many AST nodes. Although AST implementations have 
most often been written in Java or C++, Visual Prolog is used here. This is 
because that language will also be used later in the research. 
 
1 interface ast 
2   % abstract super class for AST 
3 end interface ast 
 
4 interface astLetCommand supports ast 
5 
6 end interface asmLetCommand 
 
There is an interface corresponding to AST base class on lines 1-3.  The class 
definition LetCommand (lines 4-6) is straightforward. Below an internal 
definition for the AST node of the Let-command is presented: 
 
1 implement  astLetCommand inherits ast 
    
2 facts 
3       declaration : declaration. 
4       command :     expression. 
 
  end implement  astLetCommand 
 
Because the structure's declaration and command are separated (let on line 1, 
declaration on line 3, and command on line 4), this AST construction model 
cannot be formalized.  This drawback decreases the quality of AST 

                                                 
19 http://www.eclipse.org (10.08.2007).  



 

 

102 

implementations. Thus the model doesn’t cover all the lowest features of the 
grammarware. 

The following construction, 767H4.3.1, is implemented by using Prolog. 

4.3.1 Predicate-augmented AST 

Predicate-augmented AST is an extended AST where the semantics of each 
grammar rule are embedded into the AST node by using a command predicate. 
The difference between AST and the augmented AST is the new predicate, 
command, that contains the whole semantics of the original grammar term as a 
single structure pointing to its leaves via its arguments. So there is no need to 
have separate AST variables as members. The new construction is much simpler 
than the original one.  
 
1 implement  astLetCommand inherits ast 
     
2  facts 
3       contents: let(declaration, expression). 
 
 end implement  astLetCommand 
 
The only necessary structure is the predicate contents, which connects the terms 
declaration and command and the let semantics. This small modification enables 
axiomatizing the output model, because the output structure is a compact 
element that can be traced back into the original code, here Java. Thus, a 
software tool can be used here to capture the semantics of any node simply by 
making it read the contents of the corresponding element. With a typical AST 
this is not possible. Later the contents field label will be replaced with the label 
command field, because that label describes better its functionality. 
 
Prolog-based parse tree (PPT) 

Prolog-based parse tree (see 768HDefinition 7) is a hierarchical notation that uses 
Prolog data structures in saving grammar terms.  In it each grammar rule level 
occupies one hierarchical level. Like AST, a Prolog-based parse tree doesn’t 
contain any discontinuities, because all the information lies hierarchically in the 
same physical structure. This enables moving a parse tree to another location by 
a single assignment.  Parse trees are organized in Prolog according to first-order 
predicate semantics. 

In Java, typically, one file at a time is compiled, so there is a parse tree for 
each file. In source code analysis more modular parsing may be needed. The 
parse trees for these can easily be defined by adding new alternative start 
symbols for the grammar. 
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4.4 Raising the abstraction level 

For abstracting programs a principle called abstract interpretation has been 
developed ( Cousot and Cousot, 1977). This principle is, due to its history, 
limited and is based on a mathematical analysis of some features of the code.  
Abstract interpretation is not capable of covering program flow analysis and 
analyzing object-oriented features of modern languages  (Logozzo and Cortesi, 
2005). 

In this research a new proposal for abstracting, by using a high-level 
symbolic notation, is presented in 769HDefinition 10. Basically, an increase in 
abstraction level is advocated by the MDA and DSM (Mernik, Heering, and 
Sloane, 2006) movements, but there the abstraction has been raised in a formal 
and rigorous way similar to refining specifications to working code using 
refinement calculus. 

4.4.1 Symbolic Code Description Language 

Symbolic Code Description Language (SCDL, see 770HDefinition 9) is a formal 
notation to describe the original programming language and its semantics as a 
high level abstraction language. The greatest benefit of a symbolic notation is 
that the corresponding tool can utilize the intermediate notations of the 
structures in addition to their contents.  

For example, the semantic identification while can be used in identifying 
which statement will be executed next when the contents of the loop are to be 
identified recursively.  There is a strong need to simplify the original source 
code structures in programming tools, because, being directly parsed from a 
context-free language, they are highly hierarchical. For example, a Java 
expression, the condition part of a loop, contains about 20 hierarchical levels 
according to the Java grammar (Java, 2003). These levels are needed for 
expressing all the possible calculation rules and their inter-connections. After 
parsing, however, there is no need to keep these levels, because in the Prolog 
based tool the structures are tightly packed as predicates. By simplifying the 
expressions for abstracting purposes the hierarchy can be minimized to the 
depth of three. 19F

20 For example, a condition can be a relative operation including 
a logical pairwise comparison having only three levels. Another benefit in using 
a symbolic code description language is the possibility to categorize the 
structures in an optimal way for analysis purposes. 

In the AST technology a symbolic language cannot be used, because all the 
members of AST nodes are separated and there are no internal semantics 
between them.  If there is no internal language in the analysis, then all 
semantics and analysis results must be done by programming individual 

                                                 
20 We have improved the capacity and performance of the tool to about 80% calculated 

from typical expressions, measured by the SwToolFactory tool. 
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features, one after the other. Klint et al. (2003) use the term retangled grammars 
for this drawback. 

In contrast to AST, SCDL provides a foundation for all source code 
analysis functionalities, including automatic explanation for the connections 
and for the behavior of the most interesting source code elements.  

4.5 Direct translation 

This section handles the principles of source code translation from the 
viewpoint of symbolic analysis, and does not cover the whole area of 
transformation technologies. Because specific transformation packages have a 
large and complex rule-based theory, including an own transformation 
language as the background, their focus is far from our PC needs. 

4.5.1 The principles and the main goals of translating source code 

Let us consider some implementing issues of translators relating to source code 
analysis: 

- The most logical way to connect things with each other is to use direct 
transformation rules on a semantic level. Translating from syntax into 
syntax is more difficult, because of the burden of reserved words and 
separators (comma, semicolon, parenthesis etc). It is typical for other 
technologies like Stratego, DMS, TXL and ASF+SDF to have an indirect 
transformation language (syntax-to-syntax), which engenders 
complexity in building formalisms. In this work we create a symbolic 
model on top of the programming language syntax, which allows a 
direct translation.  

- The most abstract way to carry out a translation is to save grammar 
terms into the corresponding objects in the tool and to translate the input 
objects to output objects. This principle is typical of XML-technologies 
(Fung, 2000). 

- The best way to connect things with each other is to use associative 
definitions (like in a relational database) by using a symbolic notation. 
Symbolic notation fixes both the presentation and the contents, and there 
is no need then to program low level features one after the other for each 
individual case. 

- The most formal way to interconnect concepts is to use formal languages 
and to switch input and output terms using Prolog predicates, which 
should provide an axiomatized output in all the fundamental situations 
of the transformation. 

 
When the output language can be tailored and optimized for the current 
situation, then it is possible to plan the transformation so that there is no loss of 
information in any structure. 
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4.5.2 Definitions for a direct translation 

Next, translation between two formal languages is described according to 
771HDefinition 15.  Translation is a process to transform one formal input language 
into an output language. Translation engine is a tool or software component to 
implement the translation. One of the best known translation engines is TXL 
(Dean, 2002), which is based on rule based translation. It needs three different 
kinds of information: 

- The type system of the input language (XIn)  
- The type system of the output language (Xout)  
- The transformation rule base (Xin2Xout) 
 

The drawback of the rule based translation is that it contains three different 
grammars that should be mastered, because the rule base contains a language 
of its own. In practice making translations is demanding by using TXL for each 
input-output language pair. A principle different to that of rule based 
translation is direct translation, which is presented in 772HDefinition 15.  In this 
principle the symbolic programming language of the tool, here Visual Prolog, is 
used as third language.  The principle is illustrated in 773HFIGURE 10.  
 

 

FIGURE 10 Direct, semantic translation. 

Using the symbolic language of the tool on a semantic level by utilizing its 
whole symbolic expression power according to 774HDefinition 16 is straightforward, 
because a header and a default body for each translation predicate can be 
automatically generated. Semantic translation is executed recursively from each 
input term into the corresponding output term. All subterm translations are 
called by a recursive assignment that is similar to the call of the main level 
assignment. Because of this recursive assignment, there is no need to use 
separate transformation rules or any independent transformation engine. The 
default code for the translation is captured from the grammar tool, 
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SwToolFactory (Laitila, 2001). The only manual operation required is to pick the 
output terms for each input term. 

Semantic translation (in most typical situations) between the terms of 
input and output languages takes place as follows (see 775HFIGURE 10).  Let In be a 
symbol describing an input term as a hierarchy level N with the semantic id in, 
which has the parameters A1..Ak.  Let the corresponding term in the output 
language be out, with its parameters B1..Bk. The output term is now the 
predicate out(B1.. Bk), where each transformation is executed recursively into 
the lower level N+1, N+2 etc., to the level where there are only indivisible terms 
(terminals).   

Translation between languages has been researched widely (Klint et al., 
2005), but typically the focus has been on demonstrating the problems and 
differences between languages, such as different indexing of the languages 
Pascal and C (Harsu, 1997).20F

21   
Direct translation, based on recursive assignment, forms an essential 

phase for source code analysis purposes. It can guarantee a proven result in all 
compatible situations, which is the prerequisite for the Symbolic language 
presented next. 21F

22 Although the principle of semantic translation may sound 
trivial, it is suitable for all abstraction purposes for this research. The greatest 
benefit of it is to have the translated code as first order predicate logic. Small 
incompatibilities can be programmed away by adding some wrappers into the 
most difficult places.  For example the type system of Java is different of that of 
the symbolic tool, because the latter is based on the type system of the 
development language. Each conversion between types can be programmed 
aside to be used in type reference clauses. The only extension to the principle of 
semantic translation, considering further  requirements in Chapter 5, is 
programming symbol table functions   (Sethi, 1996) to capture the class 
contracts and variable and method definitions for centralized use in the model 
weaver. 

4.6 Symbolic, the symbolic language 

The Symbolic language is a symbolic code description language for program 
comprehension oriented symbolic analysis as defined in 776HDefinition 9. 

 There are many languages such as OCL (Akehurst, and Patrascoiu, 2004) 
describing source code constraints and model features, and there are many 
UML presentations (MDA, 2007), some of which focus on Action semantics 

                                                 
21 There are some incompatibilities between widely used programming languages, and the 

gap between procedural languages like Cobol and object-oriented languages is 
almost impossible to bridge by automatic transformation without manual interaction 
(Kontogiannis et al., 1998).  

22 The purpose is not to implement transformations between paradigms. 
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(Mosses, 2004) and other semantics. UML is suitable for expressing class and 
meta functions, but its granularity is not sufficient for programming language 
features. OCL is neither Java nor C++ compatible, which is a serious drawback. 
It can be argued that there are no compatible integral languages to describe 
both programming language semantics and object-level features to form a 
complete foundation for program comprehension. There is thus a strong need 
to have a fundamentally new language satisfying the requirements indicated, 
because, as it is currently, it is a great burden for a programmer to skip from an 
UML model into code-based data descriptions in the editor and backwards 
numerous times in a typical maintenance session.  In every model transfer a lot 
of information will be lost. 

Symbolic has been planned to keep the uniform model of all source code 
elements as well as the high level structures. In it the relation between 
simplicity and declarativeness of the language has been optimized. 

Some earlier alternatives for mastering complex data structures include 
lambda calculus (Church, 1936), XML and domain specific languages (Mernik et 
al., 2006). Lambda calculus is very flexible, but it is clumsy, because interpreting 
a lambda notation creates a heavy load for the tool. Typical domain specific 
languages, being not universal, are limited for the selected approach. However, 
they can still require an unreasonable number of commands and details to be 
programmed in order to implement a successful analysis. With Prolog all these 
approaches are possible if a suitable optimized language can be written. 

Minimizing language structures of Symbolic 

In the next description we have used the principle that all the structures can be 
expressed by two, or in the most challenging cases by three hierarchical levels. 
Furthermore, only a list notation (*) and a list of lists (**) are allowed in the 
notation to connect terms with each other. They are necessary, because our 
development tool, Visual Prolog, supports them explicitly and they can express 
ordered sequences, bags and nested collections. Adding implicit conversions 
could produce complex data structures, which could damage the architecture of 
the symbolic construction with its atomistic model. 

4.6.1 The Symbolic language 

Symbolic is a formal abstracting language for source code analysis to express 
syntactical structure, semantics, and behavior model of object-oriented 
languages (see 777HDefinition 10). The Symbolic language contains, in accordance 
with the goals of this research, the semantics of Java in order to meet its 
simulation requirements (Laitila, 2006).  More precisely, it contains the 
following type categories:  

- Def:   Definition clauses for all Java terms 
- Creator:   Creating clauses (for objects and tables) 
- Ref:    References to all possible Java elements 
- Get:   Method calls 
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- Set:    The clauses capable of performing memory changes 
- Path:   Conditional clauses and branching clauses (paths) 
- Loop: Program loops 
- Op:    Mathematical-logical operations and transformations 
- Val:    Constants 
- Other:  The clauses that are not simulated 
- At:   Linking elements with each other (a new clause) 
- SideEffect:  Results from simulation actions (a new clause)  
- MetaClause:  Connective structures for argumenting (a new clause) 
- Info:  Comment and verbal explanation (a new clause) 

 
The collection of all the clause types (see 778HDefinition 11) can be described as a 
notation <T>, where  
<T> = Def, Set, Get, Call, Loop, Path, Creator, Op, Val, At, Other, SideEffect, 
MetaClause, and Info. 

From the list above it can be seen that many Java statements and 
structures have been combined into type categories. For example the group 
Loop contains all the possible loop types, while, do-while, and for.   

Type categories of Symbolic 

The Symbolic language has been divided into groups to optimize the 
declarativeness of the language in relation to the specialization needs of the 
language. When Prolog is used in the tool, the type system selection's range 
extends from a monolithic version where all the elements are kept in a parse 
tree to a deeply specialized model where each clause should reserve a class of 
its own like AST systems do.  

The planning rules for the research have been selected in the following 
way: 

- The grammar and type model of Symbolic forms the base class of the 
language. 

- Each type category has been implemented in a class of the tool, making 
specialization possible.  For example, all the program code for all loops 
share the same class. 

 
In this chapter the type category is referred to by a notation <T> or <Ti>. The 
former refers to any Symbolic type and the latter refers to an indexed type i, in 
succession. 

Formal definition for Symbolic 

The Symbolic language has a compact definition that defines all the structures 
and data. The language has a type system of its own (symbolicType, see 
779HDefinition 13) a naming system for all symbols (symbolicName, see 780HDefinition 12), 
and its own instruction set (clause, see 781HDefinition 11).   
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4.6.2 Categories of the Symbolic clause 

The foundation for the Symbolic language is the definition of a clause (see 
782HDefinition 11). It builds the instruction set of the whole language.  Clause is the 
only start symbol for Symbolic. This simplification makes all data transfer and 
the whole architecture straightforward to program and understand. 

The hierarchy of the Symbolic clause has only two levels, because Clause 
contains the type categories as the first level. It is divided into individual 
clauses in the second level. Thus DefClause contains all definitions, SetClause all 
data changes etc.22F

23 
 
   clause = 
 1      Definitions:  def(defClause); 
 2      Creating commands: creator(createClause);  
 3      References:  ref(refClause); 
 4      Method calls:  get(getClause); 
 5      Change clauses: set(setClause); 
 6      Conditional clauses: path(pathClause);   
 7      Loops:  loop(loopClause);   
 8      Operations:  op(opClause); 
 9      Constants:  val(valClause);   
10      Other clauses: other(otherClause); 
 
11      Internal links: at(SymbolicElement, clause*); 
12      Side effects:  seffect(sideEffectClause); 
13      Meta information: meta(metaClause); 
14      Comments:  info(string) 
 
The logic behind the Symbolic clause is the following:  

- There are two kinds of definitions: static definitions and dynamic 
creating clauses. 

- There are two kinds of references, for variables and for methods. 
- There is only one change category. It contains an assignment and 

autoincrementing and autodecrementing features. 
- The statement blocks are conditional blocks and loops.  
- There is only one type category for calculating and evaluating: opClause. 
- The constants are stored into valClause. 
- The definition of otherClause contains the statements that are not 

simulated.  
- The internal links between symbols are stored as atClause. 
- The results from simulations are side effects. They have been saved as 

sideEffect clauses. They can be either intermediate values or final results. 
- When the structures have been combined into a larger clause like a 

metalanguage for argumentation purposes, then metaClause is used. 
 
<T1> Symbolic definition clauses 

                                                 
23 In Java, e.g., there are 20 nesting levels in the structure relating to the opClause. 
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Symbolic definitions have been translated from Java. They are backwards 
compatible with Java including the definitions for a class, attribute, method, 
variable, and an exception in the following format: 
 
defClause =  
  1  Class:        classDef(string, Modifiers, superClass*, clause*)   
  2  Interface:    InterfaceDef(string,symbolicType*,Parents,clause*)  
3  Method:       methodDef(string,Modifiers,symbolicType, 
   clause*,clause*) 

  4  Constructor:  constructorDef(string, clause*, clause*)  
  5  Enumerating:  enumDef (string, clause*, clause*) 
  6  Constant:     constDef (string, symbolicType, clause*) 
  7  Variable:     varDef(symbolicType, string, clause*, clause*)                   
   
The definition clause* refers to a list of clauses, a clauselist. Because the clause is 
the foundation of the language, this definition can be found in any argument. 
The exceptions are modifiers to describe original Java modifiers of the definitions 
and string that is intended for names and the definition superclass for 
superclasses to mean inheritance definitions.  
 
 
<T2> Symbolic creator 

The create operations for a class and for a table are defined as follows: 
 
createClause =    
           Creating a class: newClass(symbolicType*, clause*, 
clause*) 
           Creating a table: createArray(symbolicType, string, 
clause*)   
Both the class creator and the table creator have the identifying part, 
information about what to create, and the punctuation or optional arguments. 
 
<T3> Symbolic reference statement 

The reference statement is based on Java: 
  
    refClause =  
          Variable reference:  refName(symbolicName*, Suffix) 
          this:  this(clause*) 
          super:   super(clause*)                         
The clauses this and super have the same semantics as their corresponding 
entities in Java. 
    
<T4> Symbolic method call 

The method call contains the arguments and the method identification, which is 
referred to as a getObject: 
 
    getClause =    
         Method call:  call(getObject, ArgList)  
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There are two formats for the called object (getObject): one for static 
identification before making the model and one to be used in the model. 
Polymorphism and virtual functions create some complexity for defining these 
structures. That is why the contents of the getObject should consist of lists 
having the following definition:  
 
  getObject =  sGet(symbolicName*);   dGet(symbolicDefElement*) 
  
The definition sGet refers to static code elements (parts of the parse tree) and 
dGet to dynamic model structures. SymbolicDefElement is here a reference to the 
method element (Symbolic Def Element) described in the next section. 
 
<T5> Symbolic change clause 

All the instructions that are capable of making changes into data have been 
concentrated into the same clause group, which is called a setClause. It contains 
the following alternatives: 
 
  setClause =  
        Assignment:  assign_(setObject, AssignOp, clause*) 
        Incrementing:  incr(clause*)   
        Decrementing:  decr(clause*)    
 
The assignment clause has the same feature as the getClause. There are two 
formats: one before model weaving and one for the model containing dynamic 
references. The format of the setObject causing this feature is the following: 
 
 setObject =  sSet(symbolicType, string Var) ;   
              dSet(symbolicDefElement). 
 
In the static definition there are the variable name and its type, but in the 
dynamic definition only a reference to the model element is needed. 
 
<T6> Symbolic path clause 

The conditional statements derived for Java are (sometimes the condition is 
missing): 
 
pathClause =   
         If clause:  iff_(clause*, clause*, clause*) 
         Switch clause: switch_(string, clause*, clause*) 
         Other branch clauses: control(controlCommand, clause*) 
 
The purpose of the path clause is to control the program flow by its conditions 
and direct branching statements. The branching commands can be: 

- Method call:  return 
- Breaking a statement block: break 
- Skipping a clause block: continue 
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<T7> Symbolic loop clause 

The loop derived for Java can be: 
 
loopClause =   
       While: while (clause*, clause*)    
       Do:  doWhile(clause*, clause*)      
       For: for(clause*,  clause*, clause*, clause*) 
 
The three types of loops in Java have their correspondences in Symbolic. The 
while loop has a precondition as the first parameter and an execution part as 
the second parameter. The do loop resembles it, but the first parameter contains 
an execution and the second is a postcondition. The for loop contains one 
parameter for initialization, condition, execution and iteration in the same order 
as they are in the Java grammar. 
 
<T8> Symbolic evaluator, an op clause 

There are multiple operations for calculating, for describing logical relations, 
and for describing type transformations: 
 
  opClause =   
        op(string, clause*, clause*); 
        typeCast (symbolicType, clause*); 
        exprCast (Expression, clause*); 
        preOp(string, clause*); 
        postOp(clause*, clause*, clause*); 
        instance_Of(clause*, symbolicType); 
        math(MathOp, clause*); 
        rel(RelativeOp, clause*); 
        unary(OperatorName, clause*). 
 
Operators can be expressed in many ways in Symbolic. There are operators 
with one and two arguments, cast operations, pre and post processing clauses. 
There is a high backwards compatibility to Java from the Symbolic opClause. 
 
<T9> Symbolic constant, a val clause 

Fixed values have single value, empty, a list, or a tree as the alternatives: 
 
  valClause =  
       empty ;  
       sv(symbolicValue);  
       list(valClause, Arg*).   
         
The type sv means single value. The other alternatives are empty cell or a list. A 
list is capable of expressing Java vectors and matrixes. 
 
<T10> Symbolic otherclause 

The Java clauses that do not have exact operational semantics in Symbolic have 
been collected into otherclause. However, the following notation maintains their 
axiomatic semantic notation as Horn clauses: 
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 otherClause =  
    1 Assert: assert(clause*, clause*); 
    2 Try-catch: try(clause*, clause*); 
    3 Try .. catch: catch(clause*, clause*);  
    4 Synchronized: syncr(clause*, clause*)    
 
There are only four clauses in this group, but these functions can, too, be 
analyzed partially and all the commands inside these blocks can be analyzed as 
they are.  The principles of source code simulation are described in Chapter 6. 
 

4.6.3 Data model of the Symbolic language 

In symbolic analysis the Symbolic language has two roles:  
- To enable abstracting Java via a translation bridge, which can be 

extended for other programming languages, because all axiomatic new 
features can be programmed as extensions of a symbolic name, symbolic 
type, and any other clause. 

- To keep original code information in a model, maintaining original 
semantics. In this role the connections between Symbolic elements are 
dynamic. 

 
Symbolic’s data model 

The data model has been defined by clause. It is needed for automatic analysis. 
The main clause types can be divided into data, code, and object. The contents 
of a clause is the only input for symbolic analysis. The data model is thus very 
straightforward. It will be described more precisely in Chapters 6 and 7. 

4.6.4 Operational model of Symbolic language 

The two ways to analyze object-oriented code are static and dynamic analyses. 
The latter is more challenging requiring an ability to simulate code from the 
tools. That’s why the operational model of Symbolic describes all the functions 
that a clause can produce in simulating the original code. When simulating, it is 
necessary to define an abstract machine to describe the simulation process and 
how to execute clauses in the analysis. The abstract machine is described in 
Chapter 8. 

Although Java is expressed in a very highly abstracted form in the 
Symbolic language, there is a logical backwards compatibility from Symbolic to 
Java. It is possible to trace every Symbolic command into Java code. Thus every 
simulation function can be validated against the original Java semantics.   
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4.7 Summary of  GrammarWare, a bridge to  ModelWare 

The grammar described consists of rules which are used to create a parser for a 
specific language. The parser produces parse trees as outputs, cf. 783HFIGURE 11. 
The definitions for the concepts Prolog-augmented AST, symbolic grammar, 
and symbolic code description language were presented in this chapter, and are 
shown in 784HFIGURE 11. 

A semantic grammar notation was introduced to connect syntax and 
semantics tightly with each other (see 785HDefinition 2).  By using this semantic link 
it is possible to raise the abstraction level higher than by using syntax alone. 
The abstraction in newer symbolic analysis languages that are able to maintain 
the original semantics can thus be utilized.  

Semantic addition described in this chapter can be done with predicate 
logic by employing a single predicate for each grammar rule (786HDefinition 3). 
Predicate notation makes a compact structure that maintains the original 
semantics of each structure of any grammar term. This kind of consistency 
cannot be maintained in implementations where the semantics is split into 
separate individual memory locations, which is typical for AST 
implementations. To enable a formal transfer from the grammar to a model, a 
grammar tool is needed. For this tool, a metadescription of the grammar model 
is needed as well as a database to store grammar definitions for Java, for C++, 
and for other languages. For the grammar tool, an object based architecture was 
presented to reduce the complexity of a formal language into a rule level which 
is easy to master and update.  

In modeling, the most efficient way to describe the original structures is 
describing them on a level higher than that of the original code.  For abstraction 
purposes a new analysis language, Symbolic, was presented ( 787HDefinition 10). By 
using this language instead of Java, about 80 % of the hierarchy can be removed 
without missing code information. For example, a condition expression of Java 
changes to a Symbolic structure, which contains only three levels. In Symbolic 
all its clauses and all the references have been categorized to build an ontology 
of its own to meet both the static and dynamic modeling and analyzing 
requirements. 

For programming languages other than Java the GrammarWare 
methodology is identical provided that the type system of the corresponding 
language is not dynamic. Thus C++ and C# can be modeled in the same way as 
Java.   
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FIGURE 11 Summary of  GrammarWare. 
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5 MODELWARE, THE ATOMISTIC SYMBOLIC 
MODEL 

The main features of any modeling technique are expression power, 
performance, and richness of semantics. OMG distinguishes modularity, 
transformability, traceability, specialization capabilities, and executability as the 
main feature requirements for models. In this section an atomistic, symbolic 
source code model is described, the purpose of which is to meet these 
requirements (Bézivin, 2005).23F

24  

5.1 Foundation for ModelWare 

Specification for ModelWare is described in the following proposition: 

Proposition 2. The contents of the Symbolic language can be 
transformed into an atomistic model, which contains only atomistic 
elements, whose links are embedded into the atoms bi-directionally. 
The operational semantics of the original code can be implemented in 
the run method of each element type making simulation possible. 

 
In this section a symbolic atomistic model is defined. Its base, the atom, is 
defined next. 

Definition 19. Atom (source code atom). 
Let T be a grammar term in a parse tree. A source code atom is a reductionist 
construction containing the semantics of T in a single predicate form. We call 
this predicate a command of the atom. 

                                                 
24 Aspect definition is one of key features, appreciated by OMG, too, but it has no special 

interest in this research from the modeling point of view. Instead, recovering selected 
aspects from the code can be an essential part of source code simulation and is 
described in Chapter  6.  



 

 

117

Because we express the source code element in the Symbolic language, it is 
natural to select the Symbolic clause  (788HDefinition 11) to be the base of the 
command.   

Definition 20. Symbolic-to-atomic conversion. 
Let X be a grammar term having a functor f (X1..XN) as a semantic id with 
arguments X1..XN.  The corresponding atom (789HDefinition 19) is an object, which 
has the weaved grammar term f(Y1,..YN) as its explicit (single) definition, where 
each Yi points to one or more lower atoms, which are created by using a lower 
level symbolic-to-atomic transformation for the corresponding Xi. 

5.1.1 Automaton A4, Symbolic-to-model transformation 

Creating an atomistic model is described next for presenting a model weaver, a 
type constructor and the output, the atomistic model. 

Definition 21. Symbolic model weaver. 
Let X be a node in a parse tree. A symbolic model weaver is a process to convert 
each X into a symbolic model notation Y, where Y is an atom and the arguments 
of its command are created using the Symbolic-to-Atomic conversion 
( 790HDefinition 20). See 791HTABLE 5. 

TABLE 5 The logic behind the symbolic model weaver. 

Clause The new element type (E) Arguments 
classDef(ClassName, 
Modifiers, SuperClass*, 
Code) 

SymbolicDefElement::newClass Super classes are class 
references and class 
members are members of 
the new element (E). 

methoddef(Name, 
Modifiers, ArgList, 
Code) 

SymbolicDefElement:: 
newMethod 

Method arguments are 
elements. 

varDef(Name,  Suffix,..) SymbolicDefElement::newVar If the variable is a table 
then the suffix contains 
weaved arguments. 

Constructors SymbolicObjectElement::new() 
A side effect element is created. 
Its  class name is replaced by the 
element handle (E) 

Weaved arguments  

Loops SymbolicLoopElement::new Weaved arguments 
If and other conditions SymbolicPathElement::new Weaved arguments 
Math.logical operations SymbolicOpElement::new Weaved arguments 
Method call Method name is replaced by the 

element handle (E) 
Weaved arguments 

Assignment The variable is replaced by the 
element handle (E). An optional 
suffix is weaved. 

The right side is weaved. 

Other types Direct substitution - 
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A type constructor for creating model elements is defined next. 

Definition 22. Type constructor (of the model weaver). 
Let C be a clause to be weaved and <T> its type. Type constructor TC is a 
constructor to create an object Symbolic<T>Element to return its handle to the 
calling element. 
 
A short if-example expressed in Java:  if (OldFriend) print(Hello). The 
corresponding model is: 
 
If 1  01480000:path(iff_([at(014965C0,[])],[at(04FAFCC0,[])],[])) 
 
OldFriend 014965C0:def(vardef(basic_type("int"),"OldFriend",[],[])) 
 
print 04FAFCC0:get(call(sget([method_name("print")]), 
   [at(01496450,[])])) 
 
Hello  01496450:def(vardef(basic_type("int"),"Hello",[],[]) 
 
Definition for the atomistic model is simple, because it only consists of atoms. 

Definition 23. Atomistic model. 
An atomistic model is a set of source code atoms. 
 
A short main method (which has something in common with the Server 
program): 
void main() 
      { 
       int port = 1; 
       new Server(port); 
      } 
 
The corresponding atom for the main contains the following command:  
def(methoddef("main",[],basic_type("void"),[],[at(04FD3450,[]), 
     at(04FB2990,[at(04FD3450,[])])]))  
 
It is easy to deduce that 04FD3450 refers to the assignment referring to the 
variable port and the link 04FB2990 refers to the constructor creating a Server 
object.  
 
In the atom there are only two essential data structures: the command and the 
links. The command is described next. 

Definition 24. Atomistic descriptor: atom command. 
The atom command is the description for each atom in order to define their 
operational behavior.  
 
The connections between atoms are essential. They are described next.  
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Definition 25. Link of an atom. 
Let X be an atom. The external links of X are internal facts within X pointing to 
other atoms.  

In the atomistic model the links are embedded into the atoms. Bi-
directional links have their opposite side edges as complementary links. Static 
links are atom invocations in the corresponding command as well as structural 
links implemented by has-a and is-a relationships. Dynamic links are side 
effects, which are new atoms from simulation attached to the host atom by has-
a and is-a links. 

Below, there is an example in Java:  
   listen_socket = new ServerSocket(port);  

 
The corresponding list of links for the variable  listen_socket is the following in 
XML: 
 
1 <element name='listen_socket' handle = ’01496450’ type='var'>  
2  def(vardef(cls("ServerSocket"),"listen_socket",[],[]))   
3  <parent>014965C0:Server</parent>    
4  <child>04FB2000:SEff 3</child>     
5  <fromRef>014965C0:Server, 04FB2BB0:Set 1</fromRef>    
6 </element> 
 
The lines between 1 and 6 define the element and its links.   The atom has the 
type var and its internal handle is shown on line 1. The command is shown on 
line 2. The parent link tells that the parent is Server. On line 4 a side effect 
element (Seff 3) is shown. It is an object  saved from a simulation where the 
ServerSocket object was created. On line 5 the possible cross-cuttings are shown. 
The variable is only assigned in one place, which is the element named Set 1.  

By using the XML – notation it is possible to integrate software 
development tools for analyzing further the symbolic model and its simulation 
results. 

5.1.2 Atomistic architecture 

The atoms are implemented as hybrid objects. This concept is described next. 

Definition 26. Atomistic hybrid object, AHO. 
The atomistic hybrid object, AHO, is an object to implement the atomistic 
architecture,  which consists of an object-oriented interface and contents 
implemented by a predicate combining the logic programming paradigm with 
the object paradigm. 

Atomistic architecture is a reductionist model having the base class 
(SymbolicElement) and specializations Symbolic<T>Element for each type <T>. 
The semantics for an atom is packed on the command field. Simulating the 
model is done by invoking the run method, which gives the result to the caller 
as Symbolic clauses. See 792HFIGURE 12. 
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FIGURE 12 Atomistic hybrid object, AHO, the architecture. 

Each clause type has then its own specialized class. The common base class 
inherits the class Symbolic, which is the foundation for the whole symbolic 
analysis installation. The architecture for the object-oriented AHO model can be 
drawn as in 793HFIGURE 13. 

 

 

FIGURE 13 Class hierarchy of the symbolic atom. 

Below, model elements are described in Visual Prolog. The base class 
SymbolicElement has the class contract: 
 
Class SymbolicElement 
 inherits Symbolic 
 
 facts 
 command: Symbolic::clause. 
 link: (linkType, SymbolicElement) 
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   run: () -> clause*. 
 
End class SymbolicElement  
 
Any subelement of type <T> has the class contract: 
 
Class Symbolic<T>Element 
  inherits SymbolicElement 
 
    facts 
    command: <T>Clause. 
 
Ënd class Symbolic<T>Element  

5.1.3 Conclusions about ModelWare (Automaton A4) 

Automaton A4 defines the model weaver to create an atomistic model for the 
output of A3, the Symbolic language for abstraction. 

5.2 Symbolic model, its definition and features 

The motivation for the symbolic model is related to the approach used in 
symbolic analysis; high level and high quality analysis cannot be done without 
using a comprehensive model to support all the necessary information and its 
dependencies. The term symbolic model has earlier been used for model checking 
purposes (Clarke et al., 1996), which has not focused on program 
comprehension, the purpose of this research. 

 In this section the main features of the symbolic model are presented as 
well as the outputs of the model for the purposes of analysis. In the next section 
the element of the symbolic model is described. This new model aims to a 
uniform presentation of all code information to cover all modeling features at as 
high a level as possible without losing any essential information. 

5.2.1 Atomistic model and its features 

The need to create a uniform model leads to an idea of building an 
implementation where all the elements are as similar as possible in their outer 
behavior. This principle leads further into the concept of atomistic source code 
model of 794HDefinition 23.  

We define atomistic source code model as an object-oriented construction 
that consists only of elements (like atoms), whose semantics are defined by one 
indivisible predicate each and have a similar outer interface. There are then 
only three requirements. The elements are individual objects. The 
indivisibleness requirement can be semantically satisfied by dividing the 



 

 

122 

contents of the corresponding data structure (parse tree) into one-level leaves.24F

25 
The second requirement, a uniform interface, can, from a software point-of-
view, be realized using a class hierarchy where all the elements have a common 
base class. 

“In mathematical logic, an atomic formula or atom is a formula with no 
underlying propositional structure” (Hinman, 2005). Furthermore, in logic 
programming there is the concept of atom to refer to a clause that always exists 
and whose definition is indivisible (Clocksin and Mellish, 1981). 25F

26 Similarly 
every Symbolic clause, derived from a source code like that of Java by using the 
methodology of GrammarWare described in Chapter 4, always exists and its 
definition is indivisible, because in it the initial structure is transferred from its 
original form by using formal translation into compatible higher level 
structures. This chapter shows how this compatibility can be maintained by 
splitting the contents into as small particles as possible, resembling atoms. In an 
atomistic implementation the resulting structure should have all the same 
references as the original clause and the original program installation.   

795HFIGURE 14 depicts a molecular structure and its relations.  
 

FIGURE 14 Atomistic metaphor for the Java main method. 

In this principal representation, the ball at the top of the structure could be 
likened to the main method of a Java application and its arguments to the 
separate balls below it. This figure essentially could describe the behavior of a 
Java application and its program flow from the top downwards. The shadow 
below could be thought of as influences of the application, i.e., an influence 
model. In Java all the influences are references into the JDK library, the only 
interface from Java into the outer world. 
                                                 
25 The word atomos means indivisible in Greece. 
26  An atomic formula is said to be a formula that refers only to fixed fundamental 

structures. 
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This research treats the concept of formal model as a continuum from formal 
language into formal model leading to definition 796H5.2.2 of an atomistic model 

5.2.2 Symbolic atomistic model 

We define symbolic atomistic model as a collection of atomistic elements that 
forms a complete model about the corresponding system (see 797HDefinition 23). 
The necessary semantics is described by a symbolic notation. The symbolic 
notation for the Symbolic language was presented in Chapter 4. The concept of 
atom is abstracted by its reference and its contents (see 798HDefinition 19). 
Information from the atom can be read for example by a call: Atom:getContents(). 

There are many theories and practices related to model checking (Visser et 
al., 2003). Of these the most interesting principles for program comprehension 
purposes are the axiomatized model, program correctness, and definition for an 
executable model, because all of them emphasize the role of logic of the model, 
which is one of the strongest features of the selected approach (see Chapter 3). 
26F

27 
An axiomatic model is a model to apply axiomatic semantics. Axiomatic 

semantics is commonly associated with proving a program to be correct using a 
purely static analysis of the text of the program in the form of the Hoare triple:   
{PRE}  C { POST }. The concept of axiomatic model leads to the concept of 
correctness (Hoare, 1969), which is an application area of the symbolic model, 
because its information allows proving programs.   

Features of an executable model 

A model is executable if it is able to simulate the code elements of the model 
according to the selected formalism, thus having the desired behavior model. 
When the purpose is to simulate Java, then the behavior of an executable model 
should be comparable with that of the Java virtual machine (Qian, 1999), and 
the model should contain an instruction set corresponding to the Java 
instruction set. There is a clear difference between a model and a system 
(Falkenberg at al., 1998). JVM is a system to be modeled by using the technology 
developed in this research. 

There is some discussion about whether UML models are executable or 
not. If the UML models don’t contain the necessary data structures and 
simulation features to respond to the Java environment JVM, then UML models 
cannot be said to be executable (Mellor and Balcer, 2002).  

5.2.3 Creating the model and other model functions 

For creating a model, a model weaver is needed. A model weaver is a technique 
to create a new unique model from the original source by transforming the 
                                                 
27 It is practical to prioritize the logic approach, because in most cases the current model 

checking systems do not have a direct import from the source code. Configuring 
them involves laborious work. 
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source nodes without changing the abstraction level in the transformation  
(Bézivin, Jouault, and Valduriez, 2004). The definition emphasizes that the 
elements' abstraction level doesn’t change in model weaving. Model weavers 
are used widely in OMG research projects (Atlas, 2005)    

The practical use for model weavers is typically to extend the range of the 
original model and to enable transfer of information into new installations that 
have different notations from that of the original one  (Henriksson and Larsson, 
2003).  

Our approach is to produce a symbolic model weaver (see 799HDefinition 21). 
It is a construction that builds a symbolic model by transforming original 
symbolic parse trees into atomistic elements, where the dependency model of 
parse trees is implemented by structure relations and links of the elements (see 
800HDefinition 21). The structure relations are typical is-a-relations, and for 
dependencies between the elements there is a link attribute. 

A symbolic model weaver can be defined as follows: 
- Let the current parse tree handle be a Symbolic predicate 

clauseJ(Arguments) and the current pointer to the model be the element 
Ei.  

- Model weaving is then a substitution from Ei to a new element Ek so that 
the contents of the element Ei are stored into the element Ek as a 
transformed predicate clausej(WeavedArguments), and a pointer from Ei to 
Ek is stored in its bi-directional form to enable navigation. The structure 
WeavedArguments is a weaved structure derived from the expression 
Arguments, where every weaved structure Rm is a substitution from the 
corresponding original argument replaced by an element handle Em. 

 
For example, a while loop while(Condition,StatementList) preserves its semantic 
name but the condition structure, which is in all (except empty) cases an 
opClause, is substituted into a reference to corresponding SymbolicOpElement. 
The statement list is weaved by creating an element for each statement. The 
weaved atomic structure will then have the form while(EC, [E1,… EN]), where EC 
points to the condition element and the elements E1 to EN refer to the 
corresponding statement element. The new while clause is saved into an 
element E0, for example. Then all the calls to this loop will become references 
into the element E0. In each substitution the new element reference is expressed 
by at(SymbolicElement). So a reference into the loop above has the form at(E0). 

Queries to the model 

Element queries utilize the compact nature of atoms. Let the start atom 
(element) be AStart and the target atom ATarget. The sequence starting from AStart 
and ending to ATarget is called a chop (Chop query) (Reps and Rosay, 1995). 
 
Y = y(Start) = AStart    • f1 • f2 • .. • ATarget. 
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Prolog used in this research works by default using the depth-first mode. When 
traversing structures as an element query, Prolog can return the selected 
elements at the selected granularity level.  For example, the Prolog code to 
traverse the model and to return the output for an element query can be of the 
form: 
 
1 chopping(Target) = [f(This)|Sequence]:- 
2   f(NextId, Arguments), 
3   Sequence = NextId:chopping(Target). 
 

Above, the variable This on the first line will be saved into the returned 
sequence. It is assumed that each element has references into other elements 
(handle f). 
The clause above can be activated by a call:  
 
Sequence = StartElement:chopping(TargetElement). 
 
The output of this query resembles the input tape of the Turing machine 
(Copeland, 2004). The output is described with more details in Chapter 6. 

Traversing the model 

Due to the simple data model, a traverser can only use the atomistic contents of 
each element and the links embedded into the elements. The output of the 
traverser is an answer for a specified analysis. It is a logical structure to describe 
the dependencies of the elements meeting the queried conditions. An atomistic 
traverser may be regarded as an ideal analysis approach, because the model 
works like a database engine without serious side effects or preliminary 
preparations before the query. 

A universal traverser can be demonstrated by the following logic: 
 
1  traverser(Query, CallArguments) = [at(This,Arguments)| ResultSet]:- 
2     getLogicalLink(Query, LinkedElement, LinkArguments), 
3     Arguments = evaluate(CallArguments, LinkArguments), 
4     ResultSet = LinkedElement:traverser(Query, Arguments).  
 
On line 1 there is a query with specified arguments on the left side and the 
possible output on the right side. The query can be a control flow, data flow, 
program flow, object flow, or any other combination between clause elements. 
Arguments are used to filter information off or on by using callbacks and 
constraints. The query will be successful for each combination when the call 
getLogicalLink succeeds for the current element, and the evaluating function 
succeeds, too. The parameters for the output will be calculated by the clause 
evaluate. The command traverser is capable of returning a result set that contains, 
for each logical link, an element handle and the evaluated arguments. This 
principle is useful for creating displays, for scanning information for program 
sequences, for analyzing object-oriented features of the OOP code, and even for 
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theorem proving. Because it is a unified principle and completely independent 
of the element type, it supports efficiently focused program comprehension and 
reaches the performance of typical graph traversing algorithms.  

Outputs from the symbolic atomistic model  

The data model of the symbolic atomistic model is described next.  
The three possible output formats from the model are as follows: 
- The output may consist of model elements that form a sequential chain 

like that in an element query. The output can be ordered or not. It has 
the form SymbolicElement*. 

- The output may consist of hierarchical structures as trees in the form of 
clause = xClause(.., clause*). 

- The output may consist of parallel, alternative structures, where the 
parallel structure can be found like in a network. In the following 
expression the symbol || means a parallel definition separating all 
alternative branches by using a nondeterministic predicate call subClause:  
[ Parameter || subClause( Parameter) ] . 

 
Unique for symbolic processing is evaluating, which is a principle to generate 
new values, instances, and branches by using model elements and their 
symbolic clause notation. A motivation for symbolic evaluation can be either an 
analysis that is demanding like a consumer-producer analysis, or a theorem 
proving process, or a simulation of source code model with all its side effects 
and influences. Next, some output possibilities are described. 

Results from the symbolic model 

We define the output of the symbolic model to enable further symbolic 
processing.  Symbolic output model is a result set, i.e., a collection, derived 
from the original source and presented by using symbolic notation to enable 
symbolic further processing.  
By using a symbolic notation it is possible to express the output of 

- the structures as they are, as command fields (801HDefinition 24).  
- the chains between structures as links (802HDefinition 25). 
- an analysis for queries by using the three principles above, including 

simulation values and metastructures (see Section 803H5.3.5).  
 
Because the clause notation combines the elements formally as the output, the 
output can be used as an input for the subsequent analysis. From an output 
model it is then possible to create a new model, which makes it possible to 
create a versatile analyzing process to trace and search for all the problematic 
features relating to the current problem solving task, which might be an 
adaptive or a corrective maintenance task. These features are described in more 
detail in Chapters 7 and 8. 
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Features of symbolic graphs 

The symbolic graph is a network based presentation, which contains the output 
of any analysis from the symbolic model in symbolic notation to enable re-
evaluation and query justification. In general, a graph means a collection of 
nodes and links in a syntactic notation without semantic extensions. There are 
some graph languages, including Rigi (Wong, 1998) and Graphviz (Gansner et 
al., 2006), and tools like CodeCrawler (Lanza, 2003) that have their focus in 
producing graphs as outputs. Their approach is, however, limited, because in 
PC the graph generation should be integrated tightly into navigation in order to 
keep the links between the elements and the graphs in the memory of the 
computer, and not in the memory of the user. The latter requires a lot of 
manpower and a lot of extra work from the user, whereas the former can be 
accomplished by symbolic graphs.  

The symbolic approach for graph generation is more user-friendly, 
because the user can change the focus and the approach flexibly according to 
the current results. The user can re-evaluate the information and to use the best 
possible hypothesis in order to tackle the most critical point in the software. 
Because of the symbolic notation all the transfer between alternative 
visualization modes and user interface components can be done by a direct 
translation technology described in Chapter 4. 

5.3 Symbolic atom 

The motivation for creating a novel construction, a symbolic atom for source 
code analysis, comes from an observation that there must be something in 
common in all the different source code elements, which is related to their 
external behavior and their analysis requirements.  Hence, some informal 
research questions in implementing the symbolic model include:  

- What is the largest common denominator describing the common 
features of source code elements? 

- Should this common denominator describe the essential nature of the 
computer architecture? 

- What is the relation between these common features and the role of 
computer CPU? 

- Can computer software be distributed among independent elements if 
the software code was written for a stand-alone application without 
parallel features? 

 
It is easy to see that the larger the common denominator is the easier it is to 
create analyzing applications, because all the common features can be 
standardized in an object-oriented software analysis tool by its abstracting 
features. 
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In order to address these questions in this study the principle of symbolic 
atom was created. Symbolic atom is really the common denominator (see 
804HDefinition 19). Next it is compared with the specialized structure of a typical 
source code element.  

5.3.1 Special characteristics of symbolic atom 

The symbolic atom is a software element that has been semantically defined by 
an atomistic (indivisible) formulation. Symbolic atoms are created from source 
code, step by step, by splitting larger structures into atomic clauses.  

The contents of the symbolic atom has been defined to be as minimal 
(short) as possible. An atom consists only of its symbolic name, its semantic 
definition and the necessary links describing static dependencies. A symbolic 
atom can be compared with  a traditional AST node (Jones, 2003; Neamtiu, 
Foster, and Hicks, 2005). The project named DynamicJava is a good example 
about how an AST software has been programmed for interpreting Java 
(DynamicJava, 2007).  This project shows that in programming AST nodes 
many compromises must be done, which can lead to the problem of entangled 
grammars (Klint, Lämmel, and Verhoef, 2005). The weakest part of the AST 
technology is, as said in Chapter 4, that the contents of an AST node are 
separated into many variables, and due to this separation the semantics there 
cannot be proved. This is the reason why an AST node is not atomistic. In fact, 
the concept of AST is extremely complex with its functional class hierarchies 
and sub-hierarchies and selected programming practices, which is evident in 
the DynamicJava project.  In AST implementations typically the links have been 
implemented by using independent objects, which is very far from the atomistic 
idea. 

In the case of the symbolic atom the links are embedded into the atoms so 
that for a link only the receiver and a link type must be defined. This principle 
saves much space compared with MDA (MDA, 2007) or XMI models (XMI, 
2007), where associations are divided into numerous external elements.  

The features of the symbolic atom 

As said earlier, the symbolic atom can be seen as the least common 
denominator between all source code elements. One can consider it as an 
atomistic component, the theory of which has been studied widely by Anderson 
and Lebiere (1998) from the cognitive viewpoint. Thus there is a theoretical 
background for the symbolic atom, which is useful in program comprehension.   

Next its semantics is described. Semantics is said to be the “agreement” 
about the interpretation of syntax (Baxter et al., 2004). Semantics describes the 
meaning of words and clauses by their references.  Although much is known 
about programming language syntax, we have less knowledge of how correctly 
define the semantics of a language (Pratt and Zelkowitz, 2000). The problem of 
semantic definition has been the object of theoretical study as long as the 
problem of syntactic definition, but a satisfactory solution for the former has 
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been much more difficult to find. It is confusing that there are so many different 
approaches for semantics. These include grammatical models (summarized in 
(Baxter et al., 2004)), imperative or operational models (including Vienna 
Definition Language, VDL (Wegner, 1972)), applicative models (denotational 
semantics), axiomatic models (extending predicate calculus to include 
programs), and specification models  (Pratt et al., 2000). 

Based on its definition, semantics should be separated from the concepts 
of information and knowledge. Information is a belief that has been well 
argumented. The truth of an assertion (argumentation) and its information 
content are independent of its semantics (Tarski, 1983). Considered from this 
viewpoint, semantics describes the connections by emphasizing the nature of 
data transfer between current words and clauses (Mannoury and Vuysje, 1955).  

From the data transfer viewpoint, therefore, semantics is communication 
between the information sender and the receiver via a selected path. A path can 
be formed by a clause, and the necessary nodes in the clauses are the symbolic 
atoms in the symbolic model. Atomistic symbolic clause implemented by the 
command according to 805HDefinition 24 is then the only media to transmit 
information between elements. This observation resembles the definition of 
semantics (Mannoury and Vuysje, 1955). 

5.3.2 Semantic definition for the symbolic atom 

In order to simplify the complexity of a computer language semantics, we are 
approaching the concept of unified semantic for a symbolic atom and therefore 
for a symbolic model. 

Every symbolic atom except a constant atom (valClause) has connections 
into at least one other atom. All these connections build independent 
responsibility chains to describe the original semantics as a symbolic model. 
Because the constant atom has no internal connections downwards, its function 
is to return itself to all of its callers. The constant atom is equivalent to terminal 
in the grammar theory.  All grammatical expressions from Java or other 
languages that are nonterminals contain the symbolic model's bi-directional 
semantic chains, where the woven elements build semantic chains describing 
the logic of the original code (see 806HFIGURE 15). This principle has been described 
in more detail, with some exceptions, in Chapter 6. 

FIGURE 15 The semantics of the symbolic atom. 

 Answer 

Query 
Caller A Callee B 

 Possible next callees 
before terminals 
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In 807HFIGURE 15 atom A needs atom B for a calculation or for a method call or for 
satisfying any dependency. For computers, bi-directionality of links (see 
808HDefinition 25) is natural, and is known as the call/return-phenomenon. 27F

28 This 
bi-directional feature of any element makes a foundation for the atomistic 
semantic of 809HFIGURE 15. Atom B responds to the caller (A) either by returning 
its contents (if B is a constant) or by continuing the call chain into the next 
element to satisfy all the dependencies. The chain can stop because of missing 
information, which is typical for symbolic processing, but it does not weaken 
the model use, because the returned element can be the answer itself building a 
formula like f(A,B,…). This output is useful, because it still allows the code 
reader to skip to interpret the captured mathematical notation, even if exact 
alpha-numeric information cannot be obtained.  

This atomistic duality is very useful for PC purposes, because all the code 
elements of a very complex expression can be split into atomistic particles that 
can be handled in a standardized way, and this is typical for an equivalent Java 
term also. If some expression cannot be analyzed, then the lowest element can 
return its handle as a variable for user investigation. 

The axiomatic semantics of each atom can be seen and visualized by using 
its contents, the command ( 810HDefinition 24). In the symbolic model the command is 
expressed by a structure named clause and the corresponding element type is 
defined by using the definition <T>. The operational semantic of each atom is in 
the output of each atom combined with the other atoms connected into the 
same semantic chain. Their common behavior creates side effects and influences 
other atoms. This simulation functionality will be described in Chapter 6. 

The command of the atom is the description for each atom in order to 
define its operational behavior as an atomistic (indivisible) formulation.  
Predicate logic is an excellent way to implement the atom command, because 
each command can be implemented by a single fact (a predicate without a 
body). According to its definition, in a symbolic atomistic model the atom 
command is the same as the equivalent grammar term. This explicit 
compatibility makes the model elements traceable to the code and enables 
verifying all model information. 

The term command originates from the Hoare triple, where the goal is to 
study program correctness. For example, each while loop has the following 
axiomatic descriptor:   
 
while(Condition, StatementBlock) 

 
There are no preconditions for the while statement to be seen, but when we 
consider the program flow from the approach of StatementBlock, there is a 
precondition for it named Condition.  StatementBlock can be interpreted as a 

                                                 
28 Goto commands are the biggest exception for this feature, but they are rarely used in 

modern programming languages (Dijkstra, 1968). 
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command. After executing the expression, Condition is evaluated. It is then a 
postcondition, which can enable an exit from the loop. 

In the atom command there cannot be open, non-ground variables, 
because all the links are connected into existing elements. Due to this, the entire 
symbolic model is in the notation of propositional calculus.  

The atom command can be represented in Prolog as follows: 
facts 
  command : clause 
 
The definition for clause was described in Chapter 4. 

5.3.3 Expressing links between atoms 

A link of a symbolic atom is a reference into another atom containing the link 
type and the atom referred (see 811HDefinition 25). Atomistic links are needed for 
analysis and navigation purposes. For example, a class hierarchy is described 
by using atomistic links as well as structure dependencies of the model. 

All links for each atom can be queried by using the command getLinkList. 
There is also the function getLink to return links in succession. This function is 
specified to query and return links as follows:   

- E:getLink() each element that has a connection into element E. 
- E:getLink(hasA)  all structural sub-components for element E. 
- E:getLink(isA)  the structural master components for the element. 
- E:getLink(sCall)  static calls. 
- E:getLink(sRef)  static references (backwards). 
- E:getLink(super) superclasses. 
- E:getLink(sub)  subclasses. 
- E:userLinkTo    links made by the user. 
- E:userLinkFrom  user links (backwards). 

 
In Chapter 6 dynamic dependencies and value bindings are explained. By 
connecting them and all the functionality of the link it is possible to build a 
complete dependency model describing Java semantics and enabling its 
simulation.   

Alternative links are described in 812HTABLE 6. Because dynamic analysis has 
been implemented by using flat tapes (Chapter 6) in the model, there are only 
three types of links: hierarchical structures, static calls connecting elements, and 
mappings made by the user in order to connect the user domain to the model. 

TABLE 6 Categories of atomic links. 

Link level Link type The purpose of the link 
0. Structure hasA, isA Structural form of the application 
1. Static call sCall, sRef Static dependency logic 
2. User links userLinkFrom and  

userLinkTo 
Mapping the model into user problems 
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5.3.4 Arguments of the atom command 

The argument of an atom command is a reference captured from the source 
code and translated by the model weaver to point to the equivalent atom. The 
atomistic argument is then always an element reference. For example, each 
assignment in Java has the form assign(LeftSideExpression, AssignmentOperator, 
RightSideExpression). The symbolic model weaver replaces the left side and the 
right side by elements that can be called by using the variables LeftSide and 
RightSide.  Then the contents of the atom command becomes assign(LeftSide, 
AssignmentOperator, RightSide) with three arguments as in the original 
expression. 

Every atomistic command should have at least one argument. This is 
because the command is based on the Symbolic language, which is compatible 
with the Java grammar. The type of the argument can be: 

- Input, to be calculated and evaluated. 
- Executable, to be simulated as an independent clause. 
- Output, to be returned to the caller. 
- Reference, to continue the semantic chain into the next element. 
- Definition,  memory space allocation, either dynamic or static. 

 
For example, a while command imposes a condition as an input argument, and 
the statement block as an executable argument. From the category above it is 
possible to define a behavior model for each argument. For each element it is 
possible to create a complete black box model. This can then be transitively 
transferred into the next higher level as far as needed in order to create a 
complete behavior model for a class, a packet or a component or, for the whole 
application, to specify its execution model or a test environment for it. 

Functionality of the symbolic atom 

The axiomatic functionality of each atom is the same as its command 
(descriptor). Further, there is a need to analyze the dependencies and the 
execution and the results relating to the operational semantics of the atom.  

5.3.5 Atomistic operations: scanning and searching 

Atomistic operation is a public method of the atom to satisfy either simulating 
or traversing needs for the model.  The functional model of an atom is very 
straightforward. It either simulates itself according to its command or provides 
a method for traversing purposes with other linked atoms. One motivation for 
traversing is transforming model information to XMI notation for other models 
such as UML and for tools using these.  

Because there are neither containers nor main elements to contain the list 
of sub-elements, all the structural hierarchy should be captured by traversing 
the element hierarchy. In 813HFIGURE 16 the top element could be a class, number 2 
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element might be a method, and number 5 an attribute. Atoms 3 and 4 are 
elements within atom 2. 

 

FIGURE 16 Presenting structural dependencies of an atom as links. 

The following short traversing algorithm (findSubElements) searches, starting 
from the current element, the whole structural hierarchy according to the type 
definition (Type). A type definition can be any clause type such as a loop or a 
method call or a reference: 
 
 1  findSubElements(Type) = This:- 
 2     acceptIfSuitableType(Type). 
 3  findSubElements(Type) = SymbolicElement:- 
 4     SubElement = This:getChild(), 
 5     SymbolicElement = SubElement:findSubElements(Type). 
 
 
The nondeterministic algorithm (there are no cuts) returns the subelements one 
after another. On line 2 the command acceptIfSuitableType checks whether the 
type of the current element is type compatible or not. On line 4 in the second 
clause (lines 3-5) the method getChild is used to retrieve all subelements. The 
search, which continues recursively and exhaustively as long as there are 
subelements, is specified on line 5.  

5.3.6 Atom reachability, analyzing sequences and control flows 

Atom reachability defines how atoms can have connections with each other. 
Reachability theory and points-to-analysis (Reps, 1998) investigate 
dependencies of source code. Defining reachability for a software atom is a new 
question. It is evident that atom reachability can be defined to be either direct or 
indirect. The practical question is whether atom A1 has a connection into atom 
A2 or not.  

If the entire method reachability of a chain can be investigated in a call 
order, including method call semantics, then the execution order can be found. 
The most important thing relating to reachability is the program flow (Y), 
which can be defined as the sequence (Horwitz, Reps, and Binkley, 1990): 
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Y =  sequence = A1 •  Ak  • A2 
 
There are some measures describing the reachability chain: 
 

- Atomistic distance is the number of the elements separating the atoms 
from each other.  

- The length of the chain is the number of the elements from the start atom 
to the last atom. 

As an example about reachability and program flows, a control flow (cfg) can be 
specified as a subset of the model to contain the logic and while structures, 
including their branching conditions. 

In the next code example the method cfgSubterms is a default handler that 
returns the information from “non-control-flow” clauses that are processed by 
the method cfgList: 
 
1 cfg(while(Condition,Stmnts)) = while(cfg(Condition),cfg(Stmnts)):-!. 
2 cfg(iff(Condition, Stmnts))  = iff(cfg(Condition), cfg(Stmnts)) :-!. 
3 cfg(Other)                   =  cfgList(cfgSubTerms(Other)).  
 
On lines 1 and 2, while and if statements, returning their commands filtered by 
the method cfg, are detected. There is a default handler on line 3 to seek 
information from other clauses. 

In Java there are three kinds of loops, for, while, and doWhile, which have 
the semantics while(Condition, Block), doWhile(Block, Condition), and for(Init, 
Condition, Block, RepeatBlock) (cf. definition <T5> in Chapter 4). Because of the 
simple loop construction all conditional elements can be captured by the 
following code:  
 
1 getLoopConditions(while(Condition, _)) = Condition. 
2 getLoopConditions(doWhile(_,Condition)) = Condition. 
3 getLoopConditions(for(_,Condition, _)) = Condition. 
4 getLoopConditions(Clause)=getLoopConditions(getLinkedTerms(Clause)). 
 
As in the control flow example, there are actual clauses that still can have sub-
structures containing actual clauses.  Line 4 is for retrieving these sub-
structures. 

5.3.7 Atomistic result processing 

Atomistic result processing is a feature to keep the intermediate results and the 
output of the atomistic model in an atomistic form. It is not clear whether all the 
functions of an atomistic model should keep the model atomistic forever, after 
the multi-phased analysis. The model could be corrupted; the access to the 
atomistic elements can become more difficult if all the necessary conditions 
have not been met when planning the model whilst avoiding any harmful side 
effects (cf. software degeneracy (Lehman, 1985)).  

This is why one of the core technical requirements for an atomistic model 
should be that the model doesn’t produce any harmful side effects, and that all 
the information that it produces should obey the rules of existing model 
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elements. This is a challenging requirement, because it necessitates elimination 
of all the intermediate results, or changing them into atomistic elements. In 
practice, these intermediate results should be programmed without separate 
memory or data structures, which are typically vectors or arrays or a container 
in Java. In programming them, separate nested iterators should be used. 
However, it is impossible to use stacked hardcoded iterators in complex queries 
where the nesting order is dynamic, not static. For the atomistic model, 
implementing a flexible, dynamic query system is not a problem. 

With a traditional programming language, it may be argued, it is almost 
impossible to program atomistic result processing, because these languages are 
so tightly coupled with the computer memory model. Visual Prolog can, 
however, provide a higher abstraction because of its inference engine. As 
shown by the Prolog code examples of control flow analysis, loop analysis and 
chopping above, it is possible to program model traversing without using any 
intermediate results. Sequences can be modeled in Visual Prolog as lists by 
appending new members after the current list. Parallel structures can be 
captured by using breadth-first search and by using findall to capture all the 
alternatives at a time (VisualProlog, 2007). 

As an example about automatic intermediate processing, one could 
consider searching loop variables from loop conditions (the predicate 
getLoopConditions above). It is possible to combine successive searches by using 
the Prolog’s relation model. If the purpose were to investigate all the variables 
that are critical and possibly erroneous and that can cause a fatal error in the 
program, stopping or breaking it down, then all the loop conditions in the 
critical control flow would form the input for a more exact analysis. This could 
happen for example if there were a problem in loop parameters or in method 
calls in the condition part of the loop.  In the following code example the 
findVariableRefs method demonstrates how these critical variables can be found 
from the output of the previous search (in clause notation): 
 
1 findVariableRefs(at(SymbolicElement,_)) = SymbolicElement:- 
2    SymbolicElement:getCommand() = varDef(_, VarName,_,_). 
3 findVariableRefs(Clause) = findVariableRefs(getLinkedTerms(Clause)). 
 
Again there is the resulting clause returning the accepted result on line 1 in the 
SymbolicElement variable. The condition to be satisfied is that the element that is 
referred to must have a varDef (variable definition) as its command, described 
on line 2.  The third line is a recursive call to continue search from all linked 
elements. 

Atomistic searches can be cascaded to build chains of hundreds or 
thousands of successive phases if the search has been done depth-first. Because 
of the principle to avoid side effects in the atomistic model, its programming 
model is rather straightforward. It is described in the next section. 
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5.4 Architecture of the atomistic model 

The atomistic model is to be programmed using a hybrid paradigm which 
combines the benefits of object-oriented approach and logic programming: the 
advantegeous features of each can be used in order to minimize the weaknesses 
of the other. Logic programming suits best for combining different structures 
due to its relation model and wide support for language processing. The object-
oriented paradigm is the best in abstracting and encapsulating objects. These 
two different principles can seamlessly be connected into a hybrid object. 

5.4.1 Programming model for the symbolic model 

A model is in general a software construction to enable integration into other 
technology spaces and tools (Kurtev, Bezivin, and Aksit, 2002). The symbolic 
model is based on elements implementing a true object architecture. In 
simulation it can be used in modularly building the principle of the call/return 
architecture, which is described in Chapter 6. The model could be decorated 
with an external facade, if needed, to build an external interface.  A container 
and a facade would enable data transfer into commercial tools like MS Studio 
(Studio, 2007), Eclipse (Eclipse, 2007) and other tools supporting UML, allowing 
all the information from the model be published in the intranet. Because 
semantics is essential in the symbolic model, its basic behavior model is a data 
flow architecture emphasizing the input and output from each element. 

5.4.2 Atomistic hybrid object 

A hybrid object is defined to be an object that has been programmed by using 
two or more programming paradigms. Spinellis (1994) and others have studied 
multi-paradigm programming, but almost without an exception the focus has 
been to evaluate separate features of the paradigms for programming purposes, 
combining the different features on a functional level. The focus has not been on 
how to merge the paradigms as completely as possible, which is the focus of 
this research.  This tight coupling is implemented by AHO-objects according to 
814HDefinition 26.  

The foundation of AHO is a clause expressed in the logic-based Symbolic 
language.  AHOs internal functionality is defined by one of the Symbolic's 
commands. In AHO the object-oriented "capsule" acts as the handle of the object 
and all the object-based features (see 815HFIGURE 12 and 816HFIGURE 13).  The other 
part of the circle contains the logic and an inference engine (IE). IE is embedded 
into the code of each logic programming rule, including in interpreting the 
command.  In the figure the run method is shown. It is essential in the AHO 
implementation that the whole simulation process can be programmed by 
using the run method only. It can be called successively to make a semantic 
chain in order to emulate the behavior of the original code written in Java, C++, 
or other language.   
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The key idea behind the abstraction features of the AHO object is its class 
hierarchy (see 817HFIGURE 13). Each clause type has its own specialized class. All 
these classes inherit the common base class Symbolic Elements that inherits the 
class Symbolic, which is the foundation for the whole symbolic analysis 
installation.  

5.5 Summary of ModelWare 

This chapter presents a novel idea about an atomistic source code model as well 
as a description about the communication between source code elements that 
are implemented as indivisible structures, atoms. There is no evaluation in this 
chapter, excepting some samples, but correspondency between the original 
code and models can be seen in Annex 3. The semantics of an atomistic model is 
said to be the same as the communication model between the elements, which 
have been weaved from the GrammarWare technology described in Chapter 4.  
This can be checked in 818HTABLE 30. 

An architecture for the symbolic atom is presented. It consists of the 
concept of AHO, an atomistic hybrid object, which is a combination of an 
object-oriented reference model and a reductionist predicate-based logic 
programming structure. Each structure is defined by using just a single Prolog 
fact, making the model formal and executable. 

It has been shown that the atomistic model and each of its elements can be 
traced backwards to the source code via the Symbolic language. Here Java is 
presented as the reverse engineered language, though the methodology is 
language independent.  

Because the elements are so modular that they don’t know the semantics 
of any other elements, it is possible to use the created model for several 
applications like testing, verifying code, and model checking. It is clear that 
refactoring and reorgnization are interesting application areas, which can 
accelerate creating new installations, too. The principle of links that connect the 
elements with each other is bi-directional, providing a foundation for high-
quality navigation applications and for building visual user interfaces.  

In this chapter it is proposed that the atomistic model should be able to 
keep its atomistic formalism in simulation. That feature is essential in building 
functions for partial simulation, in itself a sophisticated high-level analysis, 
symbolic analysis, which is capable of building a focused approach for program 
comprehension purposes - the main idea of this research. Unlike dynamic 
analysis, partial simulation described in more details in SimulationWare (see 
Chapter 6) is a rather flexible end-user function that allows the user to 
selectively make dedicated queries to the model for checking the relevancy and 
correctness of the referred source code model by simulating the correspondent 
sequences. 
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6 SIMULATIONWARE, 
AN ABSTRACT MACHINE FOR SYMBOLIC  

In traditional computer systems code and data are complementary parts. Data 
is of no use there without code and vice versa. However, in modeling 
technologies it is a common practice to introduce data models without 
describing an engine that could make the selected model active. Especially, 
when XML models and ontologies or UML models are presented, the main 
focus is on the contents of the model and its internal semantics, instead of an 
engine and use scenarios. 

The purpose of this chapter is to introduce a novel source code simulation 
technology, SimulationWare, which employs an abstract machine as its main 
construction. This engine is powered by the atomistic model, which enables 
simulation of the original source code at a high abstraction level using the 
Symbolic language and the AHO architecture, as presented in Chapters 4 and 5.  

The purpose of simulation is to mimic execution of the original system, 
here JVM, by using the symbolic model.  We speak about an abstract machine 
instead of a virtual machine, because the selected topic is closer to the automata 
theory than the execution model of a virtual machine. The methodology of 
SimulationWare is then language independent. In simulating a functionality, 
this chapter resembles the one on dynamic analysis. The purpose of this 
chapter, in fact, is to introduce the features of partial simulation that make 
symbolic analysis more flexible by producing more information than dynamic 
analysis. The formalism of the Turing machine is used as far as possible. Here it 
is based on atoms on the input and output tape in order to describe the 
behavioral model of a computer and hence to describe any program from the 
program comprehension viewpoint. 
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6.1 Foundation for SimulationWare 

The specification for SimulationWare is shortly as follows: 

Proposition 3. The atomistic model is simulated as an automaton so 
that the input atoms activating the simulation are packed in an ”input 
tape”, whereas the elements that have been executed with their 
simulation results are stored into the ”output tape”.  

In this section an abstract symbolic machine is defined based on automata A5 
and A6. 

6.1.1 Automaton A5, defining a simulation process 

We describe Automaton A5, the input process to activate simulation, by 
defining an abstract machine model ( 819HDefinition 27), the wanted output as a 
symbolic output tape ( 820HDefinition 28), and a test generator as a sequence builder 
( 821HDefinition 29) as follows. 

Definition 27. Atomistic machine model (automata) 
Let M be an atomistic model (822HDefinition 23). An abstract machine model for 
simulating M is a construction, where there is an input tape for starting a 
simulating queue and an output tape to get the results.  

The input tape and the output tape are vectors or specific objects (classes) 
in the tool. For defining the simulation process the way a test case is defined, 
one only needs to append the corresponding atoms one after another to the 
tape.  

Definition 28. Symbolic output tape 
A symbolic output tape is a result from simulation made by the atomistic 
machine ( 823HDefinition 27) in the execution order. 

Because of the execution order the symbolic output tape contains 
information similar to that of the UML sequence diagram. However, the 
notation of the tape is more accurate and symbolic, making further processing 
flexible for re-evaluating purposes. 

Definition 29. Sequence builder 
Let X be an input tape for a simulation. A sequence builder is a tool to pack the 
necessary atoms to X in the assumed execution order for the atomistic machine 
in order to activate a wanted test case (sequence). 

When simulating a method, only its atom needs to be added to the input 
tape. However, if its arguments contain other than basic types, it is necessary 
for the user and the sequence builder to create an initialization logic for these 
types to precede the atom in the input tape.   

For example, the Connection method in Appendix 1 has the following 
header: 
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  public Connection(Socket client, int priority, Vulture vulture)  
 

For simulating the method, it is necessary to initialize the variables client and 
vulture by calling the object constructors before the method. 

6.1.2 Automaton A6, the simulation process 

We define tools and functions for simulating object-oriented code to include a 
simulator ( 824HDefinition 30), side effect as a simulation result ( 825HDefinition 31), 
partial and interactive simulation (826HDefinition 32 and 827HDefinition 33), selector 
functionality ( 828HDefinition 34), simulation method ( 829HDefinition 35), simulating 
logic ( 830HDefinition 36), atomistic semantics (831HDefinition 37), and formalism for state 
transition tables (832HDefinition 38). 

Definition 30. Simulator 
Let T be an input tape for simulation. A simulator reads an input tape in order 
to simulate the atoms of it by implementing the corresponding semantics. The 
simulator updates the contents of the tape in order to save the execution history 
with the results of it according to 833HDefinition 28. 

Definition 31. Side effect 
Let A be an atom in an atomistic model. A side effect is an output element from 
simulating A containing the influences that A creates in its environment, i.e., in 
other atoms. 

Side effects form a special group in the Symbolic clause (834HDefinition 11).  
This feature makes it possible to connect other clauses and side effects together 
in order to create dynamic dependency models. 

Typical examples of this are calling a method, assigning a value, 
branching, and creating an object, which can be formalized as:  

- Creating an object: obj(Class, Arg*) 
- Creating an array: arr(Array, Suffix*) 
- Repetition in a loop: redo(Code) 
- Assignment: bind(SymbolicElement,AssignOp,Expression) 
- Calculated value: midValue(Def, Input, Output) 
- Branch: branch(FromElement, ToElement) 
- Method call: call(CalledElement, Arg*) 
- JDK reference: jdkRef(Result, Class, Method, Arg*) 

 
Only through symbolic exececution and dynamic analysis can one generate 
such information about every invocation, every variable reference and every 
action caused by commands at the programming language level.  
 
Two modes for simulation are described next: partial and interactive 
simulation. 
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Definition 32. Partial simulation 
Let M be an atomistic model. A partial simulation is an interactive process to 
simulate a subset of M using a focused approach. 

The opposite of partial simulation is the traditional approach, i.e., total 
simulation, which tries to simulate the main goal of the model (in Java, the main 
method).  Each partial simulation is a sequence producing one output tape as a 
result. 

Definition 33. Interactive simulation 
Let M be an atomistic model. An interactive simulation is a process, where the 
user selects the program flow in M to be simulated in ambiguous situations of 
M.  

Interactive simulation corresponds to the sequence builder in 835HDefinition 
29. While the sequence builder is capable of creating batch processes, interactive 
simulation is a navigation method to traverse the selected contexts. A selector 
functionality is required by the user to control the simulation process. 

Definition 34. Selector 
Let X be an ambiguous branch (atom) in an interactive partial simulation 
session.  A selector is a dialog for the user to ask which alternative should be 
selected in that simulation. 

Some typical selections are selecting a type for a variable or an argument 
or a branch for a condition. 

Atomistic simulation 

Atomistic simulation can be defined by the corresponding method, the logic 
inside it, the semantics between atoms, and the state transition table formalism 
as follows: 

Definition 35. Simulating method (run) 
Let A be an atom in an atomistic model M having command C. The run 
simulating method  is a method, which uses the semantics of C in order to 
implement the assumed behavior for A so that the situation of M with side 
effects will be updated in order to allow a recursive simulation of the called 
atoms with their invocations. 

We state that the necessary atom activation for each element type has the 
form:  Result = Atom:run(). 
 
It is necessary to initialize only some atom types before their use. These types 
are methods, some variable types, and dynamic references if no corresponding 
constructors have been run in the sequence before a reference. 
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Definition 36. Simulating logic  
Let A be an atom and C be the corresponding command. A simulating logic is 
an automaton, a state machine, which performs the necessary logic expressed in 
a state transition table (see  836HTABLE 7). 

TABLE 7 The run method as a state transition table. 

State Condition Next State References 
Entry CEntry,2 S1 A1.etc. 
S1 C1,k Sk  
..    
Sk Ck,n Sn Aj 
..    
Sn  Exit  

 
On each line of 837HTABLE 7 there can only be either input or output references. 
 
An example:  An if-clause contains a command: iff(A1, [T1, T2, .. TN], [E1, … 
EM]). It is simulated as follows: 

- At first A1 is evaluated. It responds by a value true or false. 
- If A1 is true, then statements T1.. TN are executed. 
- Otherwise statements E1.. EM are executed.  

Definition 37. Atomistic semantics for state tables 
Let A be an atom and S be the corresponding state table for it. Atomistic 
semantics refers to the semantics of A expressed in S. 

Because the atoms are independent of each other, it is possible to express 
the semantics by a visual notation, typical for automata. 

Definition 38. State transition table formalism 
Let A be an atom and S its state table for simulation. The logic for simulating in 
order to express atomistic semantics for it (compatible with Visual Prolog) 
consists of a set of simulating clauses. 

The notation for a simulating clause, simClause, is the following: 
 
1 simClause = aClause(term Head, term OptionalReturnValue,   
        term OptionalBody). 
 
2    term = 
3        constant(constant); 
4        name(name Name); 
5        compound(term Head, term* Arguments); 
6        none(). 
     
7    name = 
8        identifier(Identifier); 
9        classIdentifier(ClassName, PredicateName); 
10       objectQualifiedIdentifier(ObjectName, PredicateName) 
 
For example, an atom reference A1:run() is expressed by using the term: 
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 compound(“:”, name(“A1”), [name(“run”)])). 
 
These clauses can be translated and moved to Visual Prolog and interpreted in 
it providing that there is necessary logic for compound terms in the interpreter. 

6.1.3 Conclusions about SimulationWare for automata A5 and A6 

Automaton A5 defines a testcase generator, a sequence builder to collect atoms 
to the input for a coming  simulation. Automaton A6 defines the Turing 
machine model for Java code in the notation of the symbolic, atomistic model. 

6.2 Background for the abstract machine 

In model research, when describing the definition and formulation, the main 
interest is perhaps the semantics of the model (Slonneger and Kurtz, 1995). 
Despite this, no satisfactory solution has been found for it (Pratt and Zelkowitz, 
2000). Different kind of semantics are ordered by their specialization degree: 
informal, operational, transformal, and denotational semantics as well as 
models and algebraic semantics (Baxter and Gray, 2005).  

All these types of semantics emphasize the task of presenting the 
interconnections between the modeled elements. From this point-of-view the 
transfer between all language elements is important, although the purpose of 
semantics is not to investigate the contents of the data transfer. This thought, in 
turn, leads to the idea of symbolic evaluation. 

The atomistic model is a construction without any hierarchy. That is why 
the only way to investigate its contents and practical features involves an 
extensive use of semantics. In an atomistic model all the semantics can be 
formally defined by the semantics between its linked elements. An atomistic 
model of this kind is thus a distributed communication system, where the logic 
has been distributed into command fields of each element. A pure and simple 
construction sounds a good principle, but its drawbacks include the lack of 
centralized logic to control the whole system. It is necessary to study whether 
something essential may be missed when dealing with complex object-oriented 
source code models, where there typically are many kinds of dynamic 
functionalities between classes and objects. How far can this symbolic model 
support PC if the model contains multiform object-oriented features? Can this 
model work at all if the whole source code has not been captured into the 
model to cover all the dependencies? 

When extending the focus into the dynamic behavior profile, operational 
semantics must be defined, and there will be a need to define an idealized 
abstract machine behind the model to execute the model. Due to its atomistic 
structure (see 838HFIGURE 12), the execution of the model can be realized using 
command fields of the basic elements. Each element can be thought to form one 
part of a Hoare triple, defining its preconditions and postconditions. It is thus 
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possible to achieve a well-established semantic behavior model for Java starting 
from the element level and extending it over the entire Java level, covering in 
practice all Java applications and all practical situations that may be produced 
using Java as the programming platform. 
839HFIGURE 17 illustrates the role of the abstract machine, i.e., conversion of 
axiomatic semantics into operational semantics. This conversion formalism 
enables making tools that can produce important feedback for programmers to 
allow them understand better all the relations in the source code model.  

 

FIGURE 17 The role of the abstract machine and SimulationWare. 

The purpose of this chapter is to show how object-oriented source code can 
partially be analyzed. Differently from existing partial evaluation (Schultz 
2001), which aims at specializating programs, our purpose is to increase the 
user’s knowledge of the source code behavior using a selective, focused 
approach. We use the concept symbolic analysis to mean partial simulation 
( 840HDefinition 32), which is intended for analyzing selective parts of the source 
code by using a selector functionality ( 841HDefinition 34). While Chapter 5 defines 
axiomatic semantics for the symbolic model, this chapter will transform it into 
operational semantics (842HDefinition 37) by describing the simulation process 
( 843HDefinition 30) for the model.  

6.2.1 Chomsky hierarchy and the corresponding automata 

The different levels describing languages and automata are presented in the 
Chomsky hierarchy in order to emphasize their typical features and, which is 
important, to declare what are the relations and requirements between each 
language type and the corresponding automata (Chomsky and Schützenberger, 
1963).   
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The Turing machine is generally presented as using a tape with bits as its 
input and output.  This simplification has made it possible to create many 
formalisms for various purposes such as the theory of computation (Hopcroft 
and Ullman, 1979). The most interesting feature of the Turing machine is that it 
makes it possible to observe the sequential nature of program models. Each 
operation in a computer system can be thought of as a modular part of the 
larger program having its own input-output model typical for the von 
Neumann computer architecture (von Neumann, 1951). 28F

29  This call/return-
phenomenon allows the code to be analyzed if a similar tape that is typical for 
the Turing machine model can be produced.  The Turing model has many 
connections with program verification (Hopcroft and Ullman, 1979) shedding 
light on program correctness. This, in turn, strongly contributes towards 
program comprehension, troubleshooting being an essential part of it. In the 
next section Turing machine equivalence and Chomsky hierarchy are 
considered from the viewpoint of the atomistic model.  

6.2.2 Principles for computations in the atomistic model 

As a separate construction, each symbolic element, i.e., an atom (844HDefinition 19), 
is a state machine at level 3, because the functionality of each element have been 
defined by a formalized clause of the Symbolic language, and the clause is 
independent of the elements connected to it. It should be noted that the 
hierarchy level of each command is one.  

As described earlier, the semantics of a program is a summary of the 
semantic data transfers between elements (845HDefinition 37).  This feature leads to 
the principle of level 2, a pushdown automaton. The simplest case is when the 
elements that are coupled into the focused element are deterministic containing 
no branches, calls, decisions, or loops. In that case the current element works 
like a state machine at level 3 having the property to terminate always by 
returning only one value. But when the coupled elements are complex, such as 
loops, then the semantics of the focused element exhibits, as seen from outside, 
the same behavior as the corresponding part of the software.    

Each computation uses stack (push) when it calls each of its substructures 
such as a constant or a subformula. When the substructures have been 
evaluated, then the stack will be emptied one term at a time (pop or pull). After 
each calculation, the stack should have the same state as before it. When this 
evaluation process is programmed recursively (normal compilers do that by 
default in method calls), simulating the evaluation process is not a problem, 
because the formalism of method calls in a typical programming language, used 
in the tool, has the push down semantics equivalent to that of Java.29F

30 

                                                 
29 A drawback for this architecture is that it  causes performance problems for conventional 

processors. The processor must wait for the previous command to be executed.  
30 One additional feature that makes developing Java simulators easy is that a method can 

not return values in its arguments, the only output is the return value. 
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Some model elements contain sequential features. For example, while and 
if elements contain a statement block transformed into a list of elements. In the 
Prolog tool used in this dissertation the development language has the 
semantics to simulate sequences as lists (Warren, 1983; Sterling and Shapiro, 
1994).  

6.2.3 Turing machine model 

The Turing machine is a simplification for picking up symbols from the tape 
(input) one after the other and to make correct decisions based on its current 
state according to its state model, where the newest symbol is the key to the 
state table to select corresponding activities.  After each evaluation the machine 
saves the possible intermediate results to the tape (output, see 846HDefinition 28). 
Some authors divide the tape into separate input and output tapes. 

The atomistic model of 847HDefinition 27 is similar to the principle of the 
original Turing machine when the atoms are seen as symbols of the Turing 
tape. The greatest improvement to the latter is that the logic can be distributed 
into the symbols due to the atomistic semantics of 848HDefinition 37; there is no 
need for a centralized logic typical for Turing machine constructions. Another 
significant feature is that the symbol is an atomistic element and the tape is 
either a reverse engineered program or a selected part of it. The keys to the state 
transition table are fetched from the command of the current element, and the 
state transition table resides in the memory of the current element (see 
849HDefinition 26). In order to emphasize the compact nature of the logic (850HDefinition 
36) this local state transition table (851HDefinition 38) has been implemented into the 
selected method (run) of each element type ( 852HDefinition 35). 

An actual research topic for this chapter concerns whether this kind of 
distributed intelligence can produce the same functionality as its equivalent 
Chomsky level. In this chapter each element type will be evaluated, and the 
possible problems in simulating  each element type will be described. 

6.2.4 Symbolic abstract machine (SAM) 

The motivation for a symbolic abstract machine, later called SAM, comes from 
the Turing machine and its theory. Another source of motivation is the theory 
of operational semantics that is intended here for simulation purposes.   

We define the symbolic abstract machine, SAM, to be an automaton to 
execute symbolic code in order to generate a specified behavior model while 
assuming the necessary input and output responsibilities. In 853HFIGURE 18 the 
logic and the principle of this chapter are presented in a notation of a 
technology space (see (Bézivin, 2005)) in order to emphasize the different roles 
of the three main components: 1) Java execution model,  2) the new high level 
simulation environment, the symbolic abstract machine (see 854HDefinition 27) 
based on an atomistic model and the output model for the simulated 
information,  3) the Turing machine with its tape metaphors. The user has its 
role as a Decider (Hopcroft et al., 1979) in controlling such selections (855HDefinition 



 
 

 

147

34) of the run methods that are ambiguous. Due to the user’s actions complete 
tapes can interactively ( 856HDefinition 33) be built.  
 

 

FIGURE 18 The functional principle of the symbolic abstract machine. 

Because Java is the language to be simulated, the execution model of it, Java 
Virtual Machine (JVM), must be the reference to be used as input specification 
for the abstract machine (Hopcroft et al., 1979).  Bytecode is a low level 
instruction set to execute statements, one after the other. JVM includes a class 
loader and its initialization processes as well as a thread mechanism to 
implement concurrent and parallel functionalities. 

In the middle of 857HFIGURE 18 the symbolic abstract machine is depicted. As 
argued above the challenging requirement for SAM is that all the simulation 
between atoms should be done by calling the equivalent run-method of each atom 
one after another (see 858HTABLE 7). The atoms can refer to several other atoms 
either in a sequence or by using the input data from other atoms for selecting the 
next actual clauses or by continuing the call chain to the next deeper level 
(called evaluation) using a formalism of 859HDefinition 38. SAM should be able to 
keep lists of its calling history and the status of the atom within its run method.  
However, it is not allowed for an atom to create intermediate results like 
vectors outside of atoms, because this new data would corrupt the model from 
its formalism point of view (860HTABLE 7). 

At a first glance this kind of very simple but at the same time very 
challenging principle may seem almost impossible to evaluate and present. 
However, there are some excellent ways that the automata theory provides to 
help in implementing it for SAM:  

- Because all the formalism for the model has been defined only by the 
clause-command in Symbolic, loaded originally from Java, the evaluation 
can be divided down into the evaluation of separate clauses, which are 
separate elements in the model.  Therefore evaluation can be defined by 
state transition tables (861HDefinition 37) typical for the Turing machine 
formalism. 
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- The requirement for partial simulation ( 862HDefinition 32) is challenging, 
because all the dynamic features have their own, possibly unknown 
history, when simulation starts ”in the middle of the code”.  To adjust 
and fix the behavior model for this partial simulation model, we simply 
propose a user interface that would allow the user to control the control 
flow according to 863HDefinition 34 in order to trace the program for 
familiarization, verification and test coverage purposes. 

 
In order to prove the completeness of the formalism for each clause, the 
operational semantics of the static and dynamic symbolic clauses is presented in 
this chapter with the results. With the help of these results, it is then possible to 
evaluate each clause and its compatibility compared with the execution of the 
corresponding bytecode (Qian, 1999).  

6.3 Technical preconditions for Java simulation 

Next the preconditions for Java simulation in general are described including 
the nature of a context-free language, known problems of symbolic execution 
(see Section 864H2.5), and the challenges of partial simulation of object-oriented 
code. 

6.3.1 Java execution model    

The execution model for Java has been defined by Sun for each of its versions 
(Gosling et al., 2005). Most features of its behavior model have been specified in 
the semantics of the language itself. The functionality of JVM is not essential 
from the viewpoint of program comprehension, but for debugging purposes it 
is necessary to note the loading protocol for classes and interfaces that are not in 
the memory when the simulation starts. Loading non-existing classes and 
starting their constructions have influence on the control flow of a sequence. 
Understanding the process of memory allocation is not very important from the 
PC point of view, because there is an automatic garbage collector in Java. It is 
important to describe thread simulation, and the command synchronized 
belongs to the same topic. Together these cover the real time behavior of the 
program. Simulating exceptions is a special case that is not described in this 
dissertation because of its narrow scope. 

The JDK library is a versatile package containing all the functional 
interfaces to the outer world from a Java application. JDK calls are widely used 
in all typical classes in Java applications.  Because of its large size it is not 
possible to emulate the whole JDK in this research. Instead, the connections 
between Java code and the JDK library are emphasized. By interpreting these 
connections it is possible to create a functionality model for each Java class, 
method and package. 



 
 

 

149

6.3.2 Sequential computation model 

Like computer architectures in general, Java computation model is sequential 
due to the influence of the Turing model on the background. One command is 
executed after another without any parallel functionality, threads being a 
special exception. Generally, all the commands return the control to the location 
where they were invoked. This makes it easy for the analyzing tool to follow 
the control flow. The exceptions for that call/return principle are return, 
continue, break, and exit commands. All of them are described in pathClause of 
Symbolic, in the sub-command controlCommand. 

6.3.3 Reachability analysis 

Reachability, also known as a points-to analysis, is a functionality to solve how 
program elements refer to each other and what kinds of rules there are for 
referencing. Identifying the methods and variables of Java and connecting the 
references with actual definitions is not a problem in an atomistic model, 
because the model weaver inserts a pointer to the host element for each element 
in order to enable a complete hierarchical identification process (known as 
lookup, in semantics (Sethi, 1996)). By using the host element it is possible for 
the tool to find the definition in all cases, including inheritance. By using the 
pointer to the host element it is possible to identify unnamed classes, inner 
classes, and all special naming features of Java. Virtual functions are a special 
case for references that point outside the current class. These references may be 
cascaded, giving rise to the challenge of identifying the right object to be called. 
All the variable and object references in the symbolic model are found in the 
refClause command, and method references are found in the getClause 
command. 

6.3.4 Problems and limitations of symbolic execution 

Entscheidungsproblem (terminating problem) has been a much discussed 
problem in program verification (Turing, 1936).  Some modifications are needed 
in the simulation tool to avoid the problem. Problems can arise when loop 
variables are not known or the methods behind them cannot be simulated 
(Cheatham et al., 1979; Havlak, 1997). Recursive functions that have an 
inductive logic also cause problems if the induction cannot be simulated 
completely, giving rise to a non-terminating and infinite control flow for the 
simulator. 

For these special cases some additional constraints must be built for the 
simulator. The easiest way is to create a maximum counter for limiting loops. 
An alternative is a user interface for controlling loops manually, which is useful 
in controlling threads in the forever loops of their run methods. 

Because the behavior and loops must be limited in simulation, it weakens 
the completeness of the output. From a program comprehension viewpoint this 
is not a serious drawback, because all the functionality from each loop can be 
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captured after the simulation in the Symbolic language. Once a loop has been 
simulated three times, the information necessary for the user to evaluate 
whether the loop exit logic is valid or not can often be found. If that does not 
become clear from these three runs, the loops can be simulated under the user's 
specific control focusing on the terminating behavior. 

6.3.5 Relations of the abstract machine to hardware and performance 

This chapter shows how atoms can be used so that there is no need for an 
external memory. The instruction fetching process is equivalent for the run 
method of each element, calling other elements according to the semantics of 
each element. Loops, conditional statements, method calls and other commands 
can be employed in this. 

In this research, the performance of the model has not been used as a 
factor in any evaluation criteria. So there is no discussion about whether using 
an external memory or other CPU blocks would be essential to speed up the 
simulation. Instead, the atomistic model has been made to create a clear 
formalism to enable practical tools, too, as applications. In this research we 
extend the concept of register machine, which normally has been directed for 
mathematical and logical operations in Java. Earlier the semantics of the register 
machine has been proposed to cover the semantics of Pascal using lambda 
calculus (Backus, 1978).  One essential precondition for abstracting Java as a 
register machine is that there is a user control ( 865HDefinition 34) for focusing the 
simulation process. The challenges of the object-oriented behavior from the 
program comprehension viewpoint are discussed next. 

6.3.6 Influence of the object-oriented paradigm to simulation 

Much research has been done about the problems of object-oriented programs 
and their dynamic behavior (Wilde and Huitt, 1992). Walkinshaw, Roper and 
Wood (2005) have described these problematic topics (866HFIGURE 19). The 
numbering is added.  

The cases in the figure from 1 to 12 are numbered from the easiest to the 
most difficult. The cases are ordered by their nature (either static or dynamic) 
and by the complexity or ambiguity of the references they can create from the 
viewpoint of source code analysis: 

R1.    JDK references are stored to the model. 
R2.    Static method calls have their calling semantics with returned values. 
R3.    A factory design pattern is used  for objects containing states. 
R4.    References to a super class, including attributes and methods. 
R5.    Methods are inherited from super classes. 
R6.    Conditions for overwritten methods must be detected. 
R7.    Polymorphic calls must be identified according to actual arguments. 
R8.    Different class instances must be identified. 
R9.  Threads and other delocalized operations give rise to distributed 
phenomena. 
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R10.   Object instances and their memory requirements must be identified. 
R11.   Shared object references should be mastered by a read/write logic. 
R12.   Selecting a type for an object depends on commands like instanceOf. 

 

FIGURE 19 Challenges for analyzing OO programs. 

In the following the challenges of the requirements from R1 to R12 that must be 
observed in investigating OOP code will be discussed. 
 

R1. JDK references. The JDK library should be loaded into SAM to 
support analyzing JDK symbols. Two examples of these references 
are direct and indirect (dynamic) invocations: 
a. Instantiation of a new object, e.g., new ServerSocket (see Appendix 

1) is a direct invocation that reveals the structure to be called 
exactly. 

b. System.out.println(“Hello”) contains an indirect branching 
according to the value of the attribute out in the class System. It 
typically points to the PrintStream class that contains the println 
method. 

R2. Static method calls.  The requirements for static calls include the 
description of static simulation, described later in this chapter. The 
process of argument binding and returning the value from a method 
to the caller is also described. Most of the Symbolic clauses are static. 

R3. State model. A state is defined to be an individual set of variable 
values in an object. This is a fairly exact definition, covering also the 
combinations. It is very challenging for the user to understand all the 
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possible states, and all the value combinations.  Each variable is a 
possible source for numerous new state candidates.  The logic 
defines more complex states and the transitions between them. 
Analyzing the state behavior of methods and objects is an interesting 
topic to evaluate by partial simulation. How can states be identified? 
Can a state machine be evaluated by an abstract machine? 

R4. References to a super class, including attributes and methods. Calls 
to the super class can be detected to the underlying code. To provide 
a capability to simulate inheritance requires that the information 
about super classes is stored into each class element.  

R5. Inherited methods in a super class. Inheriting a method is a process 
to direct the method call into the super class in all cases of a closed 
virtual function, where a method corresponding to the argument 
combination cannot be found in the object referred to. Inheritance is 
a lookup searching the method or attribute in the next super class, 
then in the next higher super class, and finally traversing the whole 
hierarchy if needed. 

R6. Overwritten methods in a base class. When a method has been 
invoked by a closed virtual function, then the most detailed 
implementation is selected. 

R7. Polymorphic calls according to current types. When there are many 
methods of the same name with alternative argument and type 
definitions, then the type combination that has exactly the type 
compatible method argument and return type combination is 
selected. In many cases the types are known, and the simulator 
works deterministically and automatically like JVM. However, in 
partial simulation this is a problem if all arguments are not bound. 
The type of the returned value is the most complex thing to be 
analyzed because it cannot be evaluated until the method has been 
executed. For resolving this problem an interface dialog for the user 
is needed to present the possible polymorphic method candidates. 
The user is then the Decider to control the program flow. 

R8. Identifying different class instances. The object handles must be 
stored into the model during simulation. When an object is created, a 
link to the handle value (pointer) from the corresponding method 
and the corresponding type should be saved.  For example, a call 
Connection c = new Connection(…) causes an object Connection to be 
created. The creator clause saves the handle into a link to the variable 
c, but not to the memory of c, because using an atom as a memory 
doesn’t belong to the principles of an atomistic model.  

R9. Threads and other delocalized operations.  Communication from a 
thread to the elements that are not loaded into the model is analyzed 
from the code. Threads must be simulated individually, user-
assisted, because thread processing could require multi-output-tape 
realization as in JVM. 
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R10. Managing object instance and their memory. When object instances 
are created, they have their creators stored as links. So it is possible 
for them to signal to their creators whether they are still alive or not. 

R11. Shared object references. The most complex situation in analyzing 
object-oriented code is the shared pools between objects storing 
object references. The pools can be vectors, matrices, or objects that 
use references as attributes. If the pool is a vector, then vector 
semantics should be added to the model. However, currently there is 
no vector semantics in SAM. It is the responsibility of the user to 
trace the pool references in order to decide about the reference in 
each case. So object pools must be identified as a separate behavior 
model for program comprehension purposes, to enable verification 
of large software. 

R12. Selecting a type in program logic. It is possible to reverse engineer 
type casts and the command instanceOf according to the control flow. 
This simulation resembles the behavior of JVM. 

 
An additional feature to the topics above is the analysis of design patterns 
(Gamma et al., 1995) due to references, but it is not in the scope of this research.  

6.4 The Turing machine as a reference for simulation 

The Turing machine is an abstraction of a computer to illustrate the overall 
behavior of programs. It has not been intended that concrete installations use 
Turing machine as their architecture (Herken, 1995).  However, it is essential 
that every computer program works like the Turing machine. Another very 
important point is that every program can be simulated by an idealized 
Universal Turing Machine (UTM) (Rogozhin, 1998), which can simulate any 
computer. In this research Java has been selected as the programming language, 
and an atomistic model compatible with the main principle of the UTM is 
proposed. 

In this chapter the most important commands of the Symbolic language 
are discussed using the Turing model as a reference. That is why it is essential 
to define how this new construct should use the tapes: 

- An input tape is a collection of atoms that specify the elements to be 
simulated (such as a method, or a sequence containing several elements) 
according to 867HDefinition 29. 

- An output tape is a sequence (868HDefinition 28) containing the commands 
that have been executed as well as the results from them. 

 
Because of the challenges of OOP, it is not assumed that this simulation can be 
executed automatically without manual interaction. That is why a necessary 
user support should be added to the abstract machine to extend it to contain an 
interactive extension for simulation.   
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The symbolic abstract machine (SAM) is a modification from the one-tape 
Turing machine (Hopcroft et al., 1979) (see 869HTABLE 7) with its set of states, its 
finite set of tape symbols, input symbols, the transition function, and final 
(accepted) states.    

The finite state machine is represented by a state transition table 
( 870HDefinition 38) together with its state register. The "external storage medium" is 
the tape. The input to the state machine is the scanned symbol on the tape, the 
command of the atom (871HDefinition 24). In the original Turing machine the output 
of the state machine is a symbol to print or the erase command and tape 
motion-command left or right  (Rogozhin, 1998). 

However, as stated earlier, the atomistic model, due to its distributed 
nature, is a clear opposite of the centralized transition function. This doesn’t 
prevent us from analyzing similar features. The elements of SAM are symbols 
of the Turing machine, because they can store input and output information by 
using their links. 

- When simulation is started first time, the possible set of input states is an 
empty set. But, because each dynamic reference requires preliminary 
actions to initialize the object referred, these actions are the necessary 
input states. 

- If simulation is started from the beginning of any method, then the 
arguments of it must be initialized. There should be a user interface in 
the tool to allow this to be done.  

- The simulation of the whole program or an applet starts from the main 
method, which is a special case.  

- To extend the symbolic model to cover all the behavior of source code, 
an extension for a side effect (SideEffectElement) must be defined to 
implement the simulation result, the side effect defined by 872HDefinition 31. 
This ensures that the whole atomistic model will indeed be atomistic and 
coherent after each simulation.  

6.5 Foundation for source code simulation 

Simulating means mimicking the reality, which is the world around us. The 
purpose is to build a logical model about the world, or an Umwelt. This model 
is typically transformed into a program to be processed by a computer. 

6.5.1 Simulation in computer science 

Computer simulation has its traditions beginning from the start of the computer 
theory (Minsky, 1967; Hein, 1996).  Turing has used the term "simulation" to 
refer to what happens when a computer runs a state transition table by 
describing the state transitions, inputs and outputs of a subject discrete-state 
machine when running a program. The computer thus simulates the subject 
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machine.  Hence, simulation has strong connections to state machines and 
transition systems.   

However, it is not clear how to simulate standard programming languages 
without using external hardware and software library packages. Static analysis 
can be used, but it cannot produce program comprehension information the 
way behavioral models can (Richner and Ducasse, 1999).  

6.5.2 Source code simulation 

We define source code simulation ( 873HDefinition 30) as a functionality that 
simulates the operational semantics of software according to the semantics of 
the programming language in order to provide an execution trace and, by 
means of it, the behavior model for the simulated code. 

There are two special cases in source code simulation: with the use of a 
virtual machine (VM) or without it. There may be an application server to 
control active programs and their status by maintaining the transactional status 
of the whole system. However, it is clear what source code simulation situation 
should do, because this has been specified by the programming language. The 
program is, in fact, a clear specification  of how the computer system should 
work (Reeves, 2005).  

When using Prolog as a simulator’s language, the problems of simulation 
consist of the problems of interpreting the formalism of the state transition table 
logic defined in 874HDefinition 37 and 875HDefinition 38. Furthermore, simulation of 
loops, arrays, complex references, and unknown types are special requirements. 

6.5.3 Complete simulation of the whole application 

Complete simulation is a process that covers all the selected features of an 
application from the user’s point of view.  

In Java typically the main method is the place to start a complete 
simulation. To enable it, the whole application should be loaded into the 
symbolic model. For analyzing JDK references we only load the class contracts 
of JDK into the model, without loading the code of the libraries, because JDK, 
due to its large size, could overload the analyzing tool. 

Complete simulation has a lot in common with dynamic analysis. 
Complete simulation is, however, much more flexible with its options, output 
possibilities, and tracing. 30F

31 

6.5.4 Partial simulation 

Many times a complete simulation of the whole program is too large and 
complex because of the large amount of information in the model.  This is why 
more flexible and granular approaches are needed. Partial simulation 

                                                 
31 The performance aspect of the simulation does not, however, play a key part in symbolic 

abstraction (SAM implementation) 
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( 876HDefinition 32) is intended for a fundamental evaluation of selected critical 
features of the application. This is discussed next. 

We define partial simulation as a functionality that makes it possible for 
the user to create a focused view to the source code by means of simulating 
only selected parts of the code.  Partial simulation of source code (PSSC) has not 
been proposed earlier, because traditionally it has been assumed that a 
simulation should always be complete, returning all the relevant values from 
each object. However, it is seldom practical and possible due to the large 
amount of code information. This mismatch is one reason why Walenstein 
(2002) has argued that current reverse engineering tools have failed. They don’t 
focus on the user’s problem in trying to capture all possible information, 
whether it is relevant or not. 31F

32 
In order to make PSSC possible, some arrangements that are not necessary 

with a complete evaluation of the software must be made: 
- The parsing process (see Section 877H4.1.2) of the analyzing tool, here SAM, 

must be modified to accept parts of software that are smaller than a 
traditional file to be compiled. A good solution for this is to make 
parsing and simulation  more flexible it to modify the start symbol of the 
grammar (see 878HDefinition 1) to contain smaller elements, including 
separated methods and statements and groups of methods and 
statements. In this new abstraction the compiled information should be 
moved into default structures, such as a default class and a default 
model, to contain the created elements. 

- Some semantic principles for references should be made more allowable 
in the Symbolic language (see 879HDefinition 11) than in the original 
language, because not all invocations can be completely recognized in 
simulation. These changes don’t cause interpretation problems if the 
source has been captured from a compiled Java program, because Java 
software has been checked by its integrity rules. Partial simulation 
doesn’t change that. A well-defined user interface to support handling 
all ambiguous or incompletely defined variables and object types must 
be created to fill the gap between the loaded parts and parts that are not 
loaded.  This interface to implement interactive mode is later referred to 
as selector (880HDefinition 33). 

 
The criteria for partial simulation deals with the following questions: 

- Granularity: What is the smallest part of source code that can be 
simulated as a separate session? 

- Correspondence: To what extent can PSSC correspond to the behavior of 
the original program?  This can be evaluated by using dynamic analysis 
as a reference. It is possible to trace the commands that have been 
executed by using both dynamic analysis and PSSC. 

                                                 
32  Instead, partial evaluation is seen as a technique for program optimization by 

specialization. 
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- Coverage:  To what extent can the user influence, in advance, the control 
paths that the simulation process should use? This question is important, 
because through an appropriate user's influence PSSC can provide a 
completely new testing paradigm. 

 
The most important technical prerequisite for partial simulation is the ability to 
use symbolic processing. In cases where a definition of an element cannot be 
found or a value cannot be known (because it is outside of the model), the only 
means for a typical non-symbolic tool to deal with this would be to give an 
error message from an unknown reference. In our approach the Symbolic clause 
enables symbolic references. 

The main task of a tool using PSSC is to deal with the precondition 
problem of the Hoare triple. If all the conditions of the precondition {P} can be 
satisfied considering declared and bound variables and types referred from the 
simulated code, then partial simulation can produce reliable information. 

The levels of PSSC granularity include the following: 
- Statement level: Individual statements are simulated in order to check 

computation and calculation rules and critical parts of algorithms. Loop 
analysis is an essential part of it. 

- Method level: Simulating one method at a time makes it possible to test, 
in detail, each difficult method in order to check its black box behavior as 
well as the grey box. It is possible to find out how the arguments are 
used in order to return the selected value. 

- Class level:  This level describes how a class and its object behavior can 
be evaluated. The good news for the class level simulation is that there is 
no need for any preliminary testing arrangements, except starting the 
constructor to create the dynamic model.  If the class includes a state 
machine, then by partial simulation it is possible to evaluate each 
individual state combination by activating its methods from the selected 
starting locations. Usually the states are encoded by a switch command, 
an if command, a listener, or by other arrangements. All events and their 
behavior can be simulated partially, but in complex models creating 
simulation sequences should be automated. This approach has some 
correspondences with the principles of model checking (Visser et al., 
2003) and theorem proving (Duffy, 1991). 

- Component level:  Component level is important, because often the 
components are coupled tightly with each other, making testing 
laborious. By using PSSC it is possible to simulate each public method of 
the component as well as the selected sequences in any order to validate 
the functionality of the component. 

- Layer level: It is possible to load all the components, related to a 
specified architecture layer, to the model. From a layer structure it is 
possible to get data flow information selectively by reflection models 
(Pacione, Roper, and Wood, 2003). 
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The practical use for PSSC is to enable a focused approach to source code 
simulations by using the selected granularity level. The atomistic model is ideal 
for such construction because of its extreme modularity. However, a symbolic 
notation is the only way to abstract unknown or vaguely known fuzzy 
information, which is typical for any partially loaded application. 

Problems of partial simulation 

The notions or problems related to partial simulation include: 
 

- Reference to an abstract class:  If the variable, having an abstract class 
type as its definition, does not have a known value, then the set for all 
possible references includes the subclasses of the abstract class. 

- Reference to a concrete class: If a variable, referencing a concrete class, 
does not have a value, it is possible for the simulator to use the most 
abstract type for simulation. 

- If there is a reference in the code to a more specialized operation than 
could be enabled by the current object handle (whose type is currently 
more abstract), then the user could change the type of the object 
instantiation to more specified to enable simulation of the more 
specialized function. 

 
A general rule in referencing unknown object variables should be that the tool 
should ask the user whether the corresponding objects are to be initialized by 
their constructors. This is one part of the role of interactive simulation, 
described next. 

Interactive simulation 

As stated earlier, partial simulation cannot be used without the support of the 
user in deciding which control paths should be executed in each case. The main 
task for interactive simulation (compared with automatic simulation) is to 
ensure coverage for PSSC to enable the user to complete the analysis of each 
particle of the source code. We define interactive source code simulation (ISCS, 
see 881HDefinition 33) as a functionality to help the user in partial simulation to 
trace all possible control paths (program flow) in order to verify all the parts of 
the source code successively. The targets for interactive simulation are as 
follows: 

- Variables: to evaluate further expressions (variables with free (non-fixed, 
non-ground) values, especially object variables). 

- Conditions: to create branches needed for verifying critical paths. 
- Types: to verify the wanted class/type in the active class hierarchy. 
- Loops: to verify all loop conditions. 
- Objects: to verify and activate constructors. 
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Interactive simulation gives the user the possibility to be a Decider  (Hopcroft et 
al., 1979), which is the level 0 in the Chomsky hierarchy. By using this principle 
it is possible for the virtual architecture of SAM and the Decider, together, to 
form a minimum architecture to enable verification of the most critical places of 
the studied software. 

There are some prerequisites for ISCS. The information for ISCS should be 
in a symbolic notation. If that is not the case, it is impossible to maintain the 
status of variables and their invocations including control paths and the states 
of conditional expressions. In that case there should be a default model for 
unknown variables, classes, and types. For example, unknown classes should 
be modeled as stub classes without contents if none of its members are known. 

By using the symbolic clause notation, each intermediate value and 
expression can be printed to the user either exactly in the format that the tool 
uses or translated into a verbal form or a picture. The symbolic presentation 
techniques are described in Chapter 8.  

In order to control the logic a simulation selector is needed. We define 
simulation selector to be a control switch for the user to select the control path 
for simulation. The subfunctions for the simulation selector, which support 
interactive simulation, are the following: 

- Condition selector: The user can select the logic paths to be simulated.  
- Type selector: The user can select the types and objects to simulate. 
- Object selector: The user can select the class instances to be simulated. 
- Value selector: The user can select the values a variable can have. 
- Expression selector: The user can skip the logic of an expression 

(operation) if there are some unsolved parameters in it.   
Each of these consists of a set of questions, to be implemented by a simple 
query dialog. 

Simulating state machines 

Because the user interface of the simulator (SAM) works in a command level, it 
is accurate enough to enable simulating all the features of state machines and 
even for verifying the logic of user interface applications, even though the logic 
of them has been embedded inside methods. To satisfy these requirements 
Selector has the switches to control the selected program flow.  For example, to 
decide which event to select, an expression selector is used. For selecting an 
individual path, a condition selector dialog is used.  

6.5.5 Run method, the nucleus of the simulation 

The run method ( 882HDefinition 35) makes simulation possible by being the glue 
which connects the current atom to other actual atoms around it in order to 
make a correct sequence, i.e., a tape with its side effects according to the state 
formalism of 883HDefinition 37. 

A general call for a run method of an element E is the following:  
Output = E:run() 
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If the atom doesn’t return any value, then it results in an empty list ([]). 
Otherwise, if the method calculates a complete and ready value, then Output 
has the form [valClause] meaning a constant. If there are some unknown 
variables or expressions without a value in the command of the element, then 
Output has the form [linkClause]. The logic of the run method is described as a 
state transition table in 884HTABLE 7.  It specifies the states, conditions and 
transitions for each command.   

6.5.6 Limitations of the simulation solutions in this research 

In this research some Java features are excluded because their character is very 
close to the real time behavior of the code. These are coded in otherClause of 
the Symbolic, but the logic within them is simulated normally. They are: 

- Exceptions: These are saved in a try/catch clause. The contents are 
simulated. 

- Threads: A thread is activated by the start method. In a Turing model 
each thread forms a tape of its own.  The run-method of a thread can be 
simulated by a manual dialog step by step. 

- Synchronized command: An equivalent function for this command is to 
activate an event handling resource in the tool to prevent asynchronous 
activities. 

6.6 Simulating static procedural commands 

The semantics of programming languages have been researched with the help 
of many methods including synthesized attributes, attribute grammars, natural 
semantics, denotational semantics, and operational semantics (Sethi, 1996). A 
Prolog version of natural semantics, which is the closest notation to the 
atomistic model, is proposed by Sethi (1996). It has the following definitions 
demonstrating the semantics of constants and addition and multiplication: 

EXAMPLE 1. Natural semantics illustrating a constant, addition, and multiplication. 

(1) num(val) : val 
 
(2) E1 : v1          E2 : v2 

 plus E1, E2 : v1+v2 

 

(3) E1 : v1          E2 : v2 

 times E1, E2 : v1*v2 
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By using such notation it is possible to define the semantics for complete 
languages. There exist some definitions, i.e., for Java semantics (Slonneger et al., 
1995; Attali et al., 1998). 

It can easily be observed that each symbol E in 885HEXAMPLE 1 corresponds 
to an atomistic element. This connection is clear, suggesting that the logic of 
natural semantics can be translated into the formalism of the atomistic model. 
Typically in natural semantics the concept of an environment is needed in order 
to define the current scope and the context. In an atomistic model there are no 
environments because there are no structures in it. The explanation for this is 
below. 

In 886HEXAMPLE 2 there is the equivalent Prolog code for 887HEXAMPLE 1 with 
an addition that specifies the environment Env for the formulas 1-3:  

EXAMPLE 2. Prolog notation for 888HEXAMPLE 1 (Sethi, 1996).  

1  seq(Env, num(Val), Val). 
2  seq(Env, plus(E1, E2), V):- 
3    Seq(Env, E1, V1),   seq(Env, E2, V2), V is V1+V2. 
4  seq(Env, times(E1, E2), V):- 
5    Seq(Env, E1, V1),   seq(Env, E2, V2), V is V1+V2. 
6  seq(Env, var(X), V):- 
7    lookup(X, Env, V). 
 
8  lookup(X, bind(X, V,_), V). 
9  lookup(X, bind(Y,_,Env), V):- 
10    lookup(X, Env, V). 
 
Variable Env is needed to define the scope for variables (lines 6-7) in a formal 
way.  However, that is a drawback, because conveying Env in recursive 
functions in all other formulas makes the notation complex. Some remarks 
relating to 889HEXAMPLE 2 include: 

- Line 1: the constant does not need Env.  
- Lines 2-3: because of recursion Env is needed in sub-terms.  
- Lines 4-5: Env is needed here. 
- Lines 6-7: Env is needed here also. 
- Lines 8-10: The lookup procedure searches for a value (V) for the 

variable (X) recursively. Line 8 returns a value if it can be found in the 
environment by the bind predicate. Otherwise a new connection is found 
on line 9 if there are any (bind predicate). Then a new search is activated 
starting from line 8. 

 
The description above contains the typical logic also for a run method of an 
atomistic element, described in Chapter 5, defined in 890HDefinition 38 and 
formulated in 891HEXAMPLE 7.  Line 1 refers to the constant element, lines 2-5 to 
the operation element, and lines 6-7 to the definition element, where a variable 
has been defined by varDef. 

The structural link that the model weaver has inserted into each element 
shows the reason for avoiding the use of the environment Env. When there is a 
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reference into a variable “X” in the original Java code and a model derived from 
it has been created, then the link field is_A of the calling elements has the 
environment information functioning similarly to the lookup method. That is 
why in the simulation there is no need for a lookup-method, making its 
semantics very straightforward. There are only atom references in the atomistic 
model.  

6.6.1 Extending the symbolic model into a behavioral model 

In an atomistic model the elements are the only places to keep information. The 
original construction, described in Chapter 4, doesn’t contain other elements 
apart from the ones from Java code.  In a behavioral model intermediate results 
and outputs for evaluation are needed, too. For this purpose the symbolic 
model is extended by a new dynamic type,  which is called a SideEffect (see 
892HDefinition 31) and which illustrates the nature of the new information.32F

33 To 
implement it in the model, the following definition is needed. 

We define side effect element (see 893HDefinition 31) as an extension to the 
symbolic model for capturing the dynamic activations from the source code. 
The behavior profile for each simulation is a collection containing all the side 
effect elements from the run. From the tool approach it inherits the base class 
SymbolicElement and with it all the features of the original model element such 
as traversing, printing, navigating and even executing.  
        The purpose of the side effect element is to describe, in detail, the progress 
of the program. The calculated values, branches and evaluated conditions can 
be used for tracing a problem, for code familiarization, and for automatic 
theorem proving in order to verify the logic.  

A lot of effort has been put into researching how to extract information in 
dynamic analysis.  There is a strong need to collect very detailed information of 
this type from dynamic analysis, but there is no accepted information model for 
the results (Denker et al., 2006). Therefore, it has been proposed that a special 
virtual machine is needed, because dynamic analysis is not an ideal analysis to 
collect information, and because it produces its results as side effects from 
executing the code. Thus it is very difficult to control the process of dynamic 
analysis for verifying purposes.   

Connecting elements by an evaluating chain 

The elements must work with each other seamlessly without extra variables or 
flags. That seamless activity is enabled by the call/return architecture, which is 
referred to here as an evaluating chain. Its main purpose is to guarantee 
repeatability for simulation. Its logical equivalence in the Chomsky hierarchy is 

                                                 
33 Partial simulation often refers to elements that are not loaded into the model. Because the 

referred element can be of any type (method, variable, object), all outer references are 
systematically called side effects in the symbolic model. Final outputs are called side 
effects, too. 
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a stack automaton, because, in evaluation, a stack is used in each successive 
invocation.   

In Java and in all non-symbolic computing each variable should have a 
known value or an initialization value, which both are expressed by constants. 
Thus constants ground the expressions. Each route from a calculation operation 
into the constant level and backwards returning a value is called here an 
evaluating chain.  

6.6.2 Simulating a statement block 

Many elements contain a sequence that has its origin in a statement block of 
Java. Some of these statements are if, while, and for.  In the Turing machine 
model a statement block is a part of an input tape. Simulating a block is 
described next.  

A block (clause* in the notation) is a list in the atomistic model containing 
references into atoms that correspond to the original (Java) statements. A block 
is a sequence that returns a value only if it has been interrupted by a break, or a 
continue or return command or an exception has occurred (exception is not 
considered in this dissertation). 

In 894HFIGURE 20 an atom (A1) contains references to atoms C1…Cn, for 
example in the execution part of the condition iff (…, [C1,C2,C… Cn]), 
StatementBlock). Simulating a block succeeds if the simulation of the elements 
C1,..,Cn succeeds without interruptions. In 895HFIGURE 20 each element has been 
replaced by a Prolog predicate 33F

34 (see Appendix 2), here the run method.  Each 
Prolog clause contains an inference engine of its own, which can be illustrated 
by two recursive loops as shown in 896HFIGURE 20.  It works like a state transition 
table, which stacks nesting calls in moving to the deeper levels (see 897HDefinition 
38). 
 

FIGURE 20 Executing a statement block and simulating it by Prolog.   

                                                 
34  The functionality of Prolog predicates is formalized in Warren Abstract Machine 

(Warren, 1983). 

1 2 3 N Atomistic metaphor

Implementation in Prolog

1 2 3 N Atomistic metaphor

Implementation in Prolog
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6.6.3 Constants and their semantics (valClause) 

Constants are, as stated earlier, the lowest level in the ecology of software.  
Simulating a constant as a separate element simplifies the semantics of other 
code elements. With the help of constant elements the behavior of other 
elements can be made equivalent in all situations, and this provides us with a 
unified behavior model for all elements. That is why constants can be found in 
the semantics of all traditional notations including natural semantics (Slonneger 
et al., 1995). 

As a result from simulation a constant returns its value to the caller. Thus, 
for a constant, a state table consisting only of the entry and exit states is feasible. 
The constant elements provide practical means for PC as follows: 

- By using their bi-directional links it is possible to navigate around 
locations where they are used, in order to obtain an image of the 
software ecology. This image can be very useful in data analysis and in 
troubleshooting. 

- Constant elements are excellent for tracing the model and for defining 
critical points in theorem proving.  

6.6.4 Simulating operations (opClause) 

There are many types of operations in Java: 
- Logical, inclusive, exclusive, and bitwise operations for and and or 
- Testing equality and other relative comparisons 
- Transfer operations 
- Mathematical calculations  
- Not, tilde (~), and cast operations 
- Instanceof operation 
- Conditional operator ? 
- This and Super. 

 
Logical operations, comparisons, and calculations are simulated in SAM by a 
simple interpreter as they were in Java-operations, in most cases without any 
difference in the functionality. Casts are simulated by attaching the type of the 
expression into the element. This and super are simulated by referring to the 
corresponding element in the model. 

From the viewpoint of an evaluating chain the operation clauses are 
intermediate phases, or filters, to be more exact. They can hold one or two 
parameters in a parsed form, although in the code the number of parameters 
can be very large. Any parameter can have multiple nesting levels.  

6.6.5 Simulating variable references (refClause) 

Variable references can point either to a single variable or to an array (table), 
which has a suffix described here, by using a clause list for each index. There 
are two possible cases in the simulation approach: the variable can have a value 
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or it can be missing. In the former case the value will be returned to the caller. 
In the latter case there are some alternatives due to symbolic notation and the 
characteristics of partial simulation. If the user wants, he/she can enter any 
value to be assigned to the variable. Otherwise a default value or initialization 
value (as in Java) is used. Array references are calculated by evaluating the 
indexes before pointing to the element. Arrays are simulated by using a sparse 
matrix technique (Tewarson, 1973).   

6.6.6 Simulating assignments (setClause) 

An assignment causes a change to the data. The left side can be either a single 
variable or an array reference, and the right side can be any expression. In the 
symbolic model the right side is simply an atom reference, because it can refer 
either to a variable (or array variable) or to an operation element. The 
assignment operator needs simulation, because there are many alternatives in 
Java including pre- and post–incrementing and decrementing. 

As an output the assignment causes a side effect, which changes the status 
of the program. If the variable is dynamic, it must be reset in exiting the 
dynamic method.34F

35 Saving the side effects of assignments to SAM happens as 
follows: 

- If the right side is a constant, then a link from the variable is made to the 
constant. 

- If the value has been calculated from an expression creating a new 
constant, then the connection from the left side element is created to the 
new constant element. 

- If the right side cannot be evaluated, then the assignment information 
will be saved by the setClause itself (because it is very short). 

- If the user entered a value, then this new value is saved. 
 
Auto-incrementing and auto-decrementing are combined assignments; variable 
references have the behavior of both of them, including the corresponding 
value change.  

6.6.7 Simulating conditional clauses (pathClause) 

The conditional clauses are if and switch-case. In the Symbolic language in the 
same group (pathClause) there are the control commands return, break and 
continue (as well as userBreak and toolBreak), because they all can change the 
execution order. Simulating conditional clauses is made by evaluating the 

                                                 
35 From the viewpoint of PC a static assignment is more complex than a dynamic one, 

because a permanent change causes problems in repeating the code in test cases.  In a 
large application, public attributes, if changed widely in the code, are the most 
difficult part to be mastered. In the symbolic model their influences can be traced. 
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corresponding operations (opClause) of the condition and by selecting the 
corresponding branch based on the result. 

Simulation of an if statement resembles the behavior of the original Java 
statement.  A switch-case structure can be expressed in the symbolic model 
either by a large command or by unpacking it to separate if commands. The 
latter alternative is more complex to program because of the successive case 
branches and the logic of break and default commands.   

6.6.8 Simulating loops (loopClause)  

Loops are the only commands that can cause repetition and recursion. Loop 
commands consist of while, for, and do-while. Simulating them causes problems, 
if a large number of iterations is required. The forever loops are a special case, 
and widely used in threads. Because of huge number of iterations the output 
tape can grow exponentially.  To prevent overloading, simulating loops must be 
controlled by logic. 

In 898HTABLE 8 a state transition table ( 899HTABLE 7) for the while-loop is 
presented as an example of the compatibility between the Turing model and 
Prolog as a tool development language. 

TABLE 8 While command as a state table. 

Current State Condition Next State IO 
Entry   
Condition Decision  
Decision True True:  
Decision False Exit  
True: BlockControl S1  
S1 BlockControl S(i)  
last S(i) BlockControl Condition  

    
Exit  LastStatus 

 
The state table shown in 900HTABLE 8 has been programmed with Visual Prolog in 
901HEXAMPLE 3. The left column of the example, after the line number, contains 
the labels of the left column of 902HTABLE 8.  On the second line the atomistic 
command, a loopClause, is split into condition and execution (LoopStatements) 
parts. Otherwise the conversion is very straightforward, except that there is a 
sub-command runBlock to implement block simulation returning the status of 
the block. 

EXAMPLE 3. The state table of while command in Prolog. 

1 Entry  run(CurrentStatus) = LastStatus:- 
2            getParameters() = [PreCondition, LoopStatements], 
3 Condition  ConditionResult = run(This, PreCondition),             
4 Decision   if       checkIfTrue(This, ConditionResult) = true 
5            then  
6 True:   LoopStatus = runBlock(This, LoopStatements),  
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7 Last S(i)  LastStatus = run(LoopStatus)  
8            else  
9 Exit       LastStatus = [] 
10           end if 
 
Analyzing loops relates to the terminating problem (Entscheidungsproblem). In 
loop simulation it is necessary to constrain the number of iterations, making the 
simulator a Decider. Wrong interpretations caused by limiting iterations can be 
avoided by informing the user about a break generated by the tool with an 
internal signal toolBreak.  

6.6.9 Simulating method calls (getClause)  

Because of the challenges of simulating late binding, described in Section 903H6.3.6, 
it is useful to simplify the notation of a method call to allow multiple 
invocations in the call structure for the run-time decision made by the 
simulator. Then, instead of an atom reference, there is a list of atom references 
in the definition getObject of the getClause. If in the list there is only one 
candidate, then it is selected for simulation if the argument types match with 
the parameters. The selector method is a feature of the tool to allow the user to 
select manually which method to activate.  

In the symbolic model a method call activates the selected element by 
assigning values to the parameters before entering its code. A method can use 
the return command to cause an exit from the method anywhere. The returned 
value can be void or any expression in the range that is compatible with the type 
of the method. Because the parameters are implemented as independent 
elements, the activation model is simple, making simulation straightforward. 
Each parameter value assignment corresponds to a typical assignment clause, 
and the inner part of the method behaves atomistically without knowing its 
activation history.  The data that activates a method invocation is called an 
activation frame. One should save it into the tool, because the information 
about method invocations is the best information for tracing a program. This is 
true, because method calls form a very clear interprocedural concept for PC 
purposes (Horwitz, Reps, and Binkley, 1990b). 

In traditional program analysis interprocedural and intraprocedural 
slicing and dependency analysis are kept apart, giving rise to two different 
research areas (Binkley and Gallagher, 1996). In the atomistic model there are 
no other constructs apart from atoms, making the model uniform. The gap 
between interprocedural and intraprocedural analysis in the symbolic model 
has vanished because of its simple invocation model (904HDefinition 37). Another 
challenge for object-oriented program comprehension is virtual functions, 
described later.  
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6.7 Simulating dynamic object-oriented commands 

Static commands are easy to simulate, because from the atomistic point of view 
they can be thought to be public code where the code of methods have been 
taken into a large code pool, providing that the necessary parameter 
assignments are made correctly. Dynamic commands have their own 
challenges, described in this section. 

6.7.1 Limitations of the partial simulation of object-oriented code 

Being able to interpret object-oriented (OO) code is important from the program 
comprehension viewpoint, the written program and its behavior model greatly 
differing from each other.  Its challenges are shown in 905HFIGURE 19. 

In complete simulation that has been started from the main method, the 
tool is able to find the correct type for each variable, because it is possible to 
identify each constructor call. However, in partial simulation it is not sure how 
an object or an object handle have been initialized, because the initialization 
code is outside of the actual control flow.  

One needs to know whether it is possible, in a partial simulation in the 
atomistic model, to interpret and initialize the referred objects so that by means 
of interactive control, the selector  ( 906HDefinition 34),  it is then possible for the user 
to analyze any part of the OO-code, covering all possible logic paths. 

It is clear that the user should have a consistent comprehension about the 
principal use of the objects containing at least one typical use for each of them 
when starting the simulation. This information forms part of necessary 
initialization knowledge.  In this respect the ecology of objects can be captured 
by manually searching the constructors.  

6.7.2 A protocol to handle unknown types and object handles 

Handling unknown information is a real challenge in any technology. Some 
theories about how to solve the problem come from the expert systems sector 
and other sectors of AI (Copeland, 2004). In source code simulation the user can 
work in many "eagerness" levels, which is described by either systematic or 
opportunistic approach (von Mayrhauser et al., 1997). The different interaction 
levels are useful in their typical situations relating to familiarization and 
troubleshooting. Sometimes the user wants to get an exact numeric answer for 
some expression, but a symbolic expression consisting of the axiomatic notation 
of the sub-structures may result in an expression resembling a mathematical 
formula  such as y = f(X) + C.  

Symbolic evaluation makes it possible to create and to obtain source code 
information according to the user’s eagerness level. The lowest level is the static 
code itself, which, as its output, creates an output tape containing clauses of the 
Symbolic language.  The highest eagerness level is a complete execution 
sequence consisting only of alpha-numeric values resulting from calculations. 
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This level is called Decider in the Chomsky hierarchy. The possible levels 
between these two extreme granularities are not specified, as they are more 
relevant to the area of AI.  

In order to cover all possible situations where an object variable (X) can 
occur in the code in the current control flow (CF), the following list, known as 
the object relevance list (ORL), has been created: 

- A constructor is in CF before there are any references to it. This situation 
is deterministic and complete if the arguments for X can be initialized. 
To solve the object relevance list for the arguments if that is needed is a 
recursive process .  

- In method calls a non-initialized object type X is used as a parameter. If 
the parameter refers to an interface, then there are many possible types 
of which to select depending on the hierarchical level of the interface and 
its subtypes. 

- An object reference to X is found in CF before an assignment to it. There 
are two possibilities. The variable can refer either into an abstract type 
(open virtual function) or to a non-abstract type (closed virtual function). 

 
It is the responsibility of the interactive simulator to consult with the user in 
situations where an object variable is not initialized before being referenced. 
Here the following questions are relevant: 

- What is the type of the object variable (type means here a Java class)? 
- Do you want to initialize it? If so, what constructor (of a list) do you 

want to use? 
 

Because of this interactive logic all references can be mastered, but sometimes it 
can be too laborious to select all the types systematically. In those cases the user 
can skip the questions and use symbolic notations that are close to the static 
notation. 

6.7.3 Simulating create commands (creatorClause) 

In Java there are two kinds of creator clauses: createClass for objects and 
createArray for arrays.  Simulating object creation in the atomistic model is done 
as follows: 

- A new object is created and its handle is saved into the class element 
which will contain all member references to the referred class.  

- The constructor is simulated. Perhaps user interaction is needed for 
selecting the constructor method (in cases where the invocation is 
ambiguous). 

- The handle from the object is returned to the caller. Possibly it is saved 
into an object handle corresponding to the Java assignment.   
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6.7.4 A protocol to simulate polymorphism 

In creating the symbolic model all types cannot be known because of late 
bindings. It makes program comprehension and tool building complex. Here 
we propose a construction, which contains a model that is as simple as possible 
but has the necessary flexibility that is characteristic for object-oriented 
software. In the atomistic model all the methods of the class that have the same 
name are call candidates, atomic references in the call. In simulation, when a 
method is called, the call candidates are checked one after another if their 
parameters match with the caller. How to select a method for execution 
depends on the situation: 

- If the invocation is clear and explicitly points to a suitable method, with 
only one possibility, then there is no need for user interaction. 

- If there is no prototype for the current invocation in the referred class or 
in its class hierarchy, the tool traverses the class hierarchy and shows a 
list of methods to the user. The user selects the method to be activated or 
skips it if it is not an important function for analysis. 

6.8 Atomistic and distributed semantics 

As a conclusion we propose that the symbolic model can be formalized as a 
tuple resembling the formalization of the original Turing machine (Hopcroft et 
al., 1979) as an abstract machine (907HDefinition 27). It can be implemented with or 
without using a blank symbol.   

Hence, SAM = <Q, Γ, Σ, δ , q0, F>,  where the notation is interpreted as: 
 
δ   Transition function to refer to the run method of each element. 
F  Final state to refer to the exit state of the simulation of the element. 
Q  State transition table: the set of states. 
q0  Init state: the entry state for simulation, covering necessary 

initializing actions. 
Γ  Finite set of tape alphabet symbols. 
Σ  Subset of Γ, the set of input symbols.  
 

The formalism remains valid in all granularity levels. A difference to TM is that 
the symbols (Σ) are predicates having multiple atoms as parameters, which 
require more complex interpretations than the original TM. We have 
programmed that logic into the state transition table Q (see 908HDefinition 37) by 
mimicking the original metaphor as far as possible. 

6.8.1 Turing model for the atomistic element 

A motivation for creating a Turing model for an individual element comes from 
the fact that the element is the only computational (”thinking”) part of model. 
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That’s why all semantics, e.g., all intelligence (functionality) in SAM is deemed 
to be in an atom. The transition function,δ , being the only active part of the 
model, is the most important topic of the TM model of the atomistic element 
(see 909HFIGURE 21 and 910HDefinition 36).  
The states are inactive parts of the model containing branching conditions and 
calculations. Formulating an element can be done analytically by investigating 
the individual features of each Symbolic clause, one after another. In 911HFIGURE 
21 the transition function δ  is in the middle of the model (see 912HTABLE 8 for the 
while loop). Activation of the element is shown on the left of the figure. It uses 
the notation of the Symbolic clause containing input elements as atoms.  
 

FIGURE 21 Turing model for an atomistic element. 

The output of the block is described as Ω  enabling a feedback into incoming 
input symbols. These are actually side effect elements ( 913HDefinition 31) in the 
symbolic model. There is no perfect compatibility to the Turing model’s right 
(R) and left (L), but selecting the next movement happens by forward or 
backward movements in the state transition table Q. In 914HFIGURE 21 a 
hypothesized state Q(i) is drawn as well as its predecessor Q(i-1) and successor 
Q(i+1).  In normal situations the atom selects the next state from the right to be 
executed. Loop is almost the only situation, where a backward movement is 
needed. Some forward movements are conditional like an if element or a switch-
case element. There are some specialties for the sake of polymorphism and 
ambiguous calls that are typical for partial simulation:  

- For polymorphism there should be a plural definition instead of a 
singular reference. It is only used in virtual functions and method calls.  

- For ambiguous references there is a selector that enables the user to 
control the program flow by substituting current atom references by 
his/her own. 

- Statement block is a special feature, because some commands have 
influences for incoming statements. These control commands are break, 
continue, and return. For them there should be an exceptional branch 
which should jump either to the input state or the final state of the 
coming elements until the control command were made inactive (to 
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return after exiting the method and to break and continue when exiting 
the blocks). 

6.8.2 Atomistic semantics for defining Java as a high abstraction 

915HTABLE 9 presents a summary of the atomistic model for Java illustrating the 
logic of 916HFIGURE 21 for the most important clauses of Symbolic.  The table 
( 917HDefinition 36) has the following columns: 

- Column 1, which contains the Symbolic type (918HDefinition 13) and the 
clause (919HDefinition 11) 

- Column 2, which describes preconditions for the element in Column 1 
- Column 3, which shows either the input state or the first state depending 

on the clause 
- Column 4, which describes a hypothetic i’th state Q(i) to illustrate a 

possible iteration  
- Column 5, which describes a hypothetic sub-state Q(i+1) illustrating the 

last state  
- Column 6, which describes the transition function for the clause 

( 920HDefinition 38) 
- Column 7, which shows the outputs (Ω) - both the functionality (F) and 

side effects (S), if any.  They are listed as references in 921HTABLE 7. 
 

Each clause has its own logic (922HDefinition 38), but the overall logic behind each 
element contains an initial state (fixed initial state q0 or a dynamic input state 
Q1), a final state (Q(i+1)), and a logic of how the control makes progress 
between them. The only backward movements can be found in the loops on 
lines 7 and 8 and in the assignment (the line 6). Other movements are forward 
transitions making the logic clear.  Pathclauses have conditional logic (lines 9 
and 10) of how to skip right. The call command, on line 3, is the most complex 
of all, because the type and argument polymorphism and other features of 
virtual functions need the user's help if the invocation of a move is ambiguous 
( 923HDefinition 34). A recursive call can logically be seen as a special case of a move, 
where the logic goes backwards to the invocation that already has been 
activated.  

924HTABLE 9 is a summary connecting Java, the Symbolic clause with its 
axiomatic semantics, and the operational model for the clauses shown by 
seeking equivalence to TM. Because there is no centralized logic illustrating a 
traditional CPU, this novel model is atomistic. All the necessary logic for each 
atom can be seen on the corresponding line of the table. This distributed 
behavior model is the foundation for the atomistic semantics (925HDefinition 37). 
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6.9 Summary: describing semantics by an abstract machine 

A method for source code simulation including partial simulation was 
presented in this chapter to change the axiomatic clause notation of each 
element into an output sequence, illustrated as an output tape ( 926HDefinition 28). 
The only active and public part of an atom is the run method (927HDefinition 35), 
which is presented as a state transition table ( 928HDefinition 36), by using its Turing 
machine formalism and by a programming model ( 929HDefinition 38) to show a 
computational approach to it. 

It was shown that with the help of an extension, called a 
SideEffectElement ( 930HDefinition 31), it is possible to create a simulator ( 931HDefinition 
30) which can express the influences and constraints of source code by 
exceptions (e.g. otherClauses).  It should be remembered that in dynamic 
analysis, there is no formal way to collect systematic execution information. 

For enabling partial simulation to allow a focused approach to the code, a 
user interface called Selector ( 932HDefinition 34) is proposed. The main contribution 
of partial simulation of Java (933HDefinition 32) is to make navigating all control 
paths possible, thus enabling a systematic or opportunistic program 
comprehension of object-oriented code. 

The chapter discusses the problems in simulating code blocks, loops, and 
recursions including the means to avoid terminating situations. By systematic 
consideration of the commands (934HDefinition 11) of the Symbolic language, a 
picture about operational semantics of Java is presented.   

The layers of the implementation are shown in 935HFIGURE 22 as a tombstone 
diagram. Java code is translated into the Symbolic language to abstract parse 
trees that are transformed into a symbolic, atomistic model by a model weaver 
(A, see 936HDefinition 21).  The distributed run methods, together, establish an 
environment for the simulator to describe the operational semantics of Java (B). 
All this functionality has been formulated as a software architecture by using a 
class named SymbolicElement as a base class to characterize the atomistic 
element (C, see 937HDefinition 26). It was programmed with Visual Prolog (Vip7.3) 
as a hybrid object (D). All the elements are formalized by the clause definition of 
the Symbolic language. The symbolic tool including all the SAM functionality 
( 938HDefinition 27) is executed as a standalone application in the Windows 
environment (E). 
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TABLE 9 Atomistic semantics for Symbolic with Java compatibility. 

Symbolic 
Command 
vs. Java 
Γ  

Precon-
ditions  
Σ  

Input 
state 
q0 / Q1 

Iterative ith 

state 
Q(i) 

Last or 
i+1’th 
state 
Q(i+1) 

Transition 
δ :  
state changes: 

Output Ω : 
S =Side effect,  
 F  = function  

1. const 
valClause 

- q0= 
Value 

-   F = q0 

2. op 
opClause 

Arg*  push each 
argument 

-push 
-calculate
-pop 

• Push 
arguments 
• Pull result 

S: Result 
F on top of 
stack 

3. ref 
refClause 

Var, 
Suffix* 

 evaluate 
each 
suffix 

-read 
referred  
variable 

 S:Value 
F = read 
value 

4. call 
getClause 

Method*, 
Arg* 

 bind each 
argument 

-select 
method  
-run code 
-return 

• Polymorp-
histic    selec-
tion 

S: Call 
invocation 
F = returned 
value 

5. creator 
creator- 
Clause 

Class, 
Arg* 

 bind each 
argument 

-create 
object 
-call 
const- 
 ructor  

• See 
getClause for 
method 
invocation 

S: creator – 
command 
F = returned 
object 

6. set 
setClause 

Right 
side (rhs) 

Q1:eval
uate rhs 

- -bind 
value 

• Evaluate 
• Assign     
value 

S: Assign-
ment, Q1 

7. loop/ 
while 
loop-
Clause 

Pre- 
con-
dition 

Q1: run 
precond
i-tions 

for each 
statement, 
run, test, 
break 

-goto Q1 • Q(i+1)   Q1 S: break 
status, q0, Q1
 

8. loop/ 
for 
loop-
Clause 

Post- 
con-
dition 

q0: run 
Init 
Q1: next 
iteration 

for each 
statement 

-run post-
 condition 
-incre-
ment 
-goto Q1 

•: Q(i+1)   
Q1 if 
PostCondition 

S: break 
status, q0, Q1
 

9. path/if 
path-
Clause 

Condi-
tion 

q0: run 
Conditi
on 

for each 
statement 

-optional 
else: for 
each else  
statement 

• q0  Q(i),  if 
q0 is true,  else 
q0 -> Q(i+1) 

S: break 
status, q0, Q1

10. path/ 
switch 
path-
Clause 

Selector 
SV  

Q1: run 
Selector 
getting 
value 
SV 

select case 
for  case 
expres-
sion 

-optional 
default 

• Q1   Q(i),  
if  SV match 
case i,  
else Q1  
default 
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status, q0,. 
Q1 

11. varDef  
defClause 

 q0: Ini-
tialize 

   F = value 

12.  met-
hodDef 
defClause 

Parame-
ter* 

q0: Init. 
paramet
ers 

for each 
statement 

-return 
optional 
 value 

 S = activa-
tion record 
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FIGURE 22 Implementation layers for the symbolic abstract machine. 

6.9.1 Simulating Java in Symbolic 

939HTABLE 10 shows the results from the simulation study for all the different 
commands: 

TABLE 10 Simulating Java in Symbolic. 

Symbolic clause Completeness of 
simulation 

Remarks 

Constant Complete  
Conditional clause (if) Complete  
Loop Complete if loop 

variables can be 
evaluated 

Terminating problem if loop variables 
cannot be evaluated. In threads 
forever-loops is a special case. 

Creating objects Created objects  are tool 
dependent 

There can be differences in memory 
handling (not a problem). 

Variable references, 
arrays 

Complete Arrays are simulated as sparse 
matrices. 

Method calls Complete Polymorphism causes some 
modification for the model. 

Return from a method Complete  
Loop control Complete Provides control logic for each break 

or continue block. 
Virtual functions Complete in complete 

simulation. In partial 
simulation user 
interaction is needed. 

The tool solves all invocations that are 
perfect. Otherwise, the user controls 
the program flow. 

References to Java 
libraries 

Complete reference 
model to the Java 
classes. 

Javadoc is the interface from JDK 
classes to the program comprehension 
approach. 
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As a conclusion, by accommodating the incompatibilities between the original 
Java system and the symbolic model programmatically referring to loops, 
arrays, memory processing and virtual functions, it is possible to create a tool 
that is able to simulate code selectively. 

6.9.2 Results from the symbolic model 

There are three different semantic levels, corresponding to the concept rhematic 
in the semiotic taxonomy of Peirce (1958). These levels can be captured from 
Java code as depicted in 940HFIGURE 23: 

- Static structure, which corresponds to Java code. Translated into 
Symbolic, its contents corresponds to the object language in semiotics 
(Tarski, 1983).  

- The behavior model is the output of simulation, the Turing output tape.   
- The value and occurrence model is a collection of side effects that have 

been gathered from the output tape.  
 
Level 2 in 941HFIGURE 23 can be expressed as a sequence diagram in UML. Level 3 
contains symbolic information made by the simulator ( 942HDefinition 30) about the 
side effects ( 943HDefinition 31). That level is the main contribution provided by the 
symbolic analysis, which has practical use in familiarization, troubleshooting, 
and verification.  The most concrete side effects have direct contacts to the 
concrete world via JDK library invocations. Therefore, in 944HFIGURE 23 the IO-
symbols for the keyboard, printer, database, and telecommunication ports are 
shown. 
  

 

FIGURE 23 Information levels, produced by the symbolic model. 

The most important advantages provided by the symbolic analysis with the 
atomistic model are high flexibility by means of partial simulation of object-
oriented code as well as the capability for systematic data collection illustrated 
by level 3 above. All result information is saved into the elements by indirect 
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links ( 945HDefinition 25). This linking method makes it possible for the user to study 
all the elements focusing to the most critical part (see 946H5.3.5). This is in contrast to 
the approach in UML, which tries to explain everything as standard diagrams 
to give a total picture. UML doesn’t succeed in creating a total picture for the 
user, because the amount of information is too large for the user to understand. 
The focused approach, on the other hand, can collect, for example, a 
telecommunication behavior of a large system starting from the low level code 
functions in order to reveal a specific aspect in the code. This feature is very 
useful in typical troubleshooting cases. The next chapter shows how this code 
information can be used, in practice, for maintenance.  

6.9.3 Unified data model for the simulation results 

Because the tape, the formalism of which has been transformed from 
GrammarWare, can present all the information on the basis of the source code 
behavior, it is useful to create a new concept or an axiom to describe it. The 
contents of all outputs of  symbolic simulation are shown, in a symbolic 
notation, as a flow of the elements in the tape ( 947HDefinition 28) in the execution 
order. It is thus natural to call it a symbolic flow. 

Symbolic flow 

We define symbolic flow as a logical chain combining the program flow, data 
flow, object flow, and the side effect information in the program execution 
order. It can be used later for symbolic analysis in its symbolic notation format.  

Information of a static program flow is called a program dependency 
graph (Horwitz, Reps, and Binkley, 1990a). In the symbolic model the symbolic 
flow is more complete than static flow, because of the richness of information in 
the symbolic model. Nevertheless, there is only one uniformed model to 
combine all elements. The flow can contain either symbolic clauses (commands) 
or symbolic elements as follows: 
 
Symbolic Flow =  Clause*   or  SymbolicElement* 

 
The symbolic flow corresponds to the output tape of TM.   
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7 KNOWLEDGEWARE 

This chapter describes knowledge capture from the atomistic model.  In Section 
7.1 the concept of the information ladder (Longworth and Davies, 1996) is 
introduced to characterize learning as well as the Rasmussen’s category for task 
specialization (Rasmussen, 1983). In Section 7.2 for the foundation for 
KnowledgeWare, its main definitions are proposed. Section 7.3 describes an 
information model for each category of the output of the symbolic model. In 
Section 7.4 the corresponding actions for that information are introduced for 
applying the Rasmussen specialization levels. In Section 7.5 a method for 
checking and proving simulation results is introduced. It uses argumentation 
and hypotheses in order to verify the assumptions, which are rather typical in 
the program comprehension activities. The hypotheses are formalized by using 
theorems for a logical formulation, which can be matched with the output 
tapes. Section 7.6 describes an interactive process, which uses the described 
method of Section 7.5 in solving a maintenance task. It has two main purposes: 
familiarization and troubleshooting. In the end of this chapter there is a small 
use case related to Appendix 1 in order to demonstrate how the principles of 
problem recognition, formulation and analysis can be used in searching critical 
places of the program flow.   

7.1 Preliminaries for KnowledgeWare 

Knowledge mining is a popular research area, and therefore several formalisms 
have been proposed (Zeleny, 2006; Aamodt et al., 1995; Longworth et al., 1996), 
some of them for automatic knowledge capture (Halpern and Fagin, 1985). The 
problem of incomplete and non-general definitions for information or 
knowledge remains (Aamodt et al., 1995). An article of Ackoff (1989) has 
inspired many researchers to study how data can be transferred into knowledge 
and vice versa, and an information ladder was proposed as a metaphor for the 
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purpose by one of them. The same idea was presented as a knowledge pyramid, 
which has the levels from data to wisdom  (Longworth et al., 1996).  

Because the atomistic model is flat and non-hierarchical, it doesn’t provide 
the user with the means to understand its structural and hierarchical relations. 
KnowledgeWare, a method for the user to configure hierarchical and network-
based information, addresses this problem.    

7.1.1 Information ladder for knowledge capture 

According to Ackoff (1989) the steps in the information ladder consist of: 1) 
data, 2) information, 3) knowledge, 4) insight, and 5) wisdom, the highest level. 
In this framework the user gets information from data by understanding its 
relations. From this information the user can obtain knowledge by 
understanding the essential patterns of the information. Finally, the user can 
reach the next levels, insight and wisdom, by understanding the principles of 
that knowledge.  

Cleveland describes understanding as a continuum using the ladder 
(1982). In our approach, temporary data does not have necessary information 
for formulating wisdom. Instead, we speak about insight and know-how to 
describe cumulative high level decisions and conclusions captured from 
knowledge, in order to illustrate the understanding process that aims at future 
activities, e.g., in order to implement new software versions.   

In this chapter the motivation is to help the software maintainer to change 
tangible data and information of the source code model into intangible 
knowledge (Nonaka et al., 1995) into skills that enable more productive 
development and safer new installations in the future. It is assumed that the 
maintainer or any other person in the organization has the necessary explicit 
knowledge. As a contribution of the proposed KnowledgeWare the user should 
be able to use explicit knowledge more efficiently in order to create new tacit 
knowledge. 

Applying the information ladder (Longworth et al., 1996)) to the atomistic 
source code model (Chapter 5 and Chapter 6) is described next. The four 
selected categories, in the the context of the human mind (Ackoff, 1989), are the 
following: 

- Data: Related to model elements as symbols. 
- Information: Related to program flow. Each element has the command 

and its links illustrating formal answers to informal questions made by 
the user.  Some typical questions are:  

− Which element is the one called here? 
− What are the elements referring to this place?  
− From where (to where) do the selected references come (go)? 
− When is the element activated (what are the preconditions for it)? 

- Knowledge: Related to "how" each element is called, i.e., what is the 
triple of the focused element like and “what should happen if the 
element were to be changed”. 
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- Know-how: Related to "why" questions. What is the purpose of the 
current method, why has it been written? Can I change, correct, or 
replace it without causing new problems? What is our insight about the 
quality and usability of this element or component based on its behavior 
models? 

 

7.1.2 Hierarchical action model for capturing knowledge 

The area of KnowledgeWare combines the cognitive approach to the 
maintenance and the computational technology in order to accelerate building 
new systems. Anderson proposes two different approaches to knowledge 
referring to memories (ACT-R, 2007). Declarative memory describes adapted 
tangible knowledge, whereas procedural knowledge is needed in the process of 
capturing the necessary information.  Rasmussen (1983) has proposed that the 
user works in three different cognitive levels: skill, rule, and knowledge.   

 In this research the Rasmussen categories are used with the following 
modifications: 

- Skill level activities are based on local perceptions related to the 
symbolic model. 

- The rule level means the activities used for evaluating sequential 
information such as successive statements or a tape. 

- In the knowledge level the user collects information from different rule 
level activities and makes decisions as a conclusion.  

 
Walenstein (2002) has extended the Rasmussen specialization model to cover 
metalevel as the most abstract level in external information search and in 
connecting existing information informally to each other. 

The layers for specializing knowledge information and activities are skill, 
rule, knowledge, and meta. The skill layer is based on fast observations, and the 
rule layer for deducing information for one case at a time. The knowledge layer 
is based on deliberate reasoning and considers multiple alternatives and 
methods at a time. The meta layer is dedicated for connecting information from 
different sources in order to catch information to the other layers. 

7.1.3 An example code and its simulation model 

948HFIGURE 24 shows a short example, a subset of Appendix I, which contains a 
typical JDK reference; in this particular case an Internet socket for a 
communication process is activated. This example illustrates a model captured 
from the code and the corresponding output tape. The code in the example can 
be proved and provides information with which this sequence from the Start 
(the first method is main) to the target can be evaluated by the user and by the 
tool.  

The focus in this example is not in visualizing, but in showing the 
formalism and internal symbolic notation of the symbolic model. From 9 lines 
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of Java code 23 symbolic model elements are generated (in 949HEXAMPLE 4X the 
lowest level elements are not drawn). After simulation every assignment and 
invocation adds their results to the model as side effects. 

FIGURE 24 Sample code for illustrating its data and Turing model. 

Each program line produces a rhematic structure. The flow is a dicent structure, 
whereas all proofs where the sequences are validated are argumentatives. The 
output tape describing the symbolic model is somewhat larger than the code 
(the commands 4, 5, and 7 are ignored, because they do not carry any special 
interest): 

EXAMPLE 4. Simulation results demonstrating 950HFIGURE 24.  

-   1 methodDef  main 
-   2 vardef  port 
-  3a pathClause  if 
-  3b opClause  args.len ==1 
-  3f valClause  1 
-  6a  creatorClause Server 
-  6b  constructorDef Server 
-  6c  varDef  port 
-  8a  pathClause  if 
-  8b  opClause  port == 0 
-  8c  refClause  port 
-  8d  valClause  0 

1 main(String args[])
{

2 int port = 0;
3 if (args.length ==1)

{
4    port = Integer.parseInt(args[0]);
5    catch ( .. ) {port=0;}

}
6 new Server(port);

}  // end of 1

7 Server(int port)
{

8   if (port == 0) port = DEFAULT_PORT;
9   listen_socket=new ServerSocket(port);

} // end of 7

1

3
2

4

6

7

8

10

9

5

1

Target

Start

5

1 main(String args[])
{

2 int port = 0;
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-  8e  setClause  port = 
-  8f  refClause  port 
-  8g  valClause  DEFAULT_PORT 
-  9a  setClause  listen_socket… 
-  9b  refClause  listen_socket 
-  9c  creator  new ServerSocket 
-  9d  refClause  port 

 
The tape can be drawn as a vector as shown in 951HTABLE 11. The elements in 
the output tape have symbolic codes according to the Symbolic language. They 
are in the tape in the execution order. A detailed description about the 
representations of the symbolic Turing model will be given in Chapter 8. The 
presentation shows the successive symbolic elements with a prefix of each 
clause and an increasing number.   

TABLE 11 Server-example (see Appendix 1) as a Turing-tape. 

M1 V1 P1 O1 R1 G1 V1 S1 C1 M2 V3 P1 O2 R2 .. 
 
There were three different presentations about the same code above. A 
principal sequential diagram is in the right side of 952HFIGURE 24. The vector 
showing the corresponding symbolic model is shown in 953HTABLE 11 illustrating 
the symbolic Turing tape.  

7.2 Foundation for KnowledgeWare 

In this section a formalism for capturing knowledge from the symbolic 
atomistic model and its simulation results is defined. The information flow for 
it is described as follows: 

Proposition 4. Information from the atomistic model and its 
simulation results can be comprehended in a layerwise form. By using 
the specified actions the user is able to create high level concepts when 
locating the program flows of interest. 

7.2.1 Domain-independent definitions for knowledge 

According to the Peircean taxonomy, the following definitions form semiotic 
layers. These can be applied for the symbolic atomistic model. 

Definition 39. KnowledgeUnit 
Let M be a symbolic model and S a subset of atoms in M.  A KnowledgeUnit is a 
subset of S , which can be used for building a mental model of the program 
behavior for the user.  
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For example, we may have an output tape which contains an if-command 
with a condition, true-clauses and else-clauses. The KnowledgeUnit is then a 
proposition built from the if-command for understanding the functionality of 
the corresponding command in the Symbolic language. It is characterized in 
every case by the corresponding condition, but the user can consider this 
KnowledgeUnit in multiple ways:  

- In a situation dependent case the user tries to get a value true or false for 
it.  

- In higher-order logic the user tries to prove the command correct or 
incorrect. 

- In evaluating usability of the command the user tries to evaluate 
whether the command is good enough to be used in upcoming software 
versions. 

 
Each clause of the simulation output can be considered both as a proposition 
whether it will become executed or not, or as a proof to verify whether its 
output is correct or not. 

In building knowledge-based systems it is essential to assume that 
knowledge is something that can be identified, modeled, and explicitly 
represented (Aamodt et al., 1995).  In computational semiotics Gudwin (2006) 
defines KnowledgeUnit to contain selectively collected data and information. In 
our research the grammar including its semantic is the starting point. It is then 
changed into a model element. Knowledge units are, as shown in 954HFIGURE 25, 
collections of model elements with relations between them. 

  

FIGURE 25  Bridging from grammar to model, and knowledge unit. 

Knowledge type is a class describing a knowledge unit according to the 
classification. It can be either fundamental, propositional, or argumentative 
knowledge (Gudwin, 2006). 
 
Examples related to Appendix 1: 

- Class Server is a KnowledgeUnit, into which user knowledge is 
accumulated in reading code. 

- The relevant methods are KnowledgeUnits. 

Definition 40. Dependency graph 
Let A be a KnowledgeUnit considering the model M. A dependency graph is a 
network and the created visualization focused on A so that incoming references 
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are drawn in one direction (top to bottom or left to right) and outgoing 
references in the opposite direction.  

A dependency graph is a skill level presentation, making it possible for the 
user to search, match and make decisions on the information in the display.  

Definition 41. Explanation 
Let C be an input sequence (input tape) giving an output tape O ( 955HDefinition 28) 
as a simulation result (see Section 956H6.9.3). An explanation is then a filtered flow 
to transform O into a logical graph containing both the program flow and the 
side effects (see 957HFIGURE 26). 
 

FIGURE 26 A graphic explanation is  a set of causal relations. 

A specialized explanation is a flow-dependent set of Symbolic clauses connected 
with each other. The types of explanations are: 

- Data flow 
- Program flow 
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- Call tree 
- Object flow 
- Control flow 
- Operation flow 

 
List of states and side effects (see 958HDefinition 31). 
It is possible to mix these flows and to filter the information flexibly by using 
regular expressions, selecting side effects etc. The output tape is like a 
hierarchical database, where the invocations form the structural hierarchy for 
the explanation, too.   It is useful to express explanations as text by using 
natural semantics or graphically by visualization: in 959HFIGURE 26 the top element 
is the model, which activates an if atom, which activates a condition atom 
which, if true, gives the statement atoms. 

Definition 42. Argument 
Let E be an explanation considering a symbolic flow (see Section 960H6.9.3). An 
argument is a reasoning result on deciding whether the explanation is correct, 
includes to correct or incorrect cases or gives new information for deciding 
changes for the flow.  
 
Example about Appendix 1: 

- A deductive reasoning chain: The TCP/IP-connection is opened because 
the object ServerSocket is created. The latter was enabled by the 
constructor of Server, which was activated by the main method. 

7.2.2 Problem centric knowledge definitions 

A maintenance task can be seen as a specification either to correct an existing 
error, to find the trouble, to verify the current code, or to plan changes for the 
current version (corrective, adaptive, perfective, and preventive tasks as well as 
re-organization requests). An input for a task is a change request (CR), which is 
either a specific and formal or vague and informal task description. 

A task solving process (P) is a set of activities to complete the task. The 
process contains a problem formulation phase (recognition), a problem analysis, 
and verification phases in order to check the low level features (Gilb, 1988). 

Definition 43. ProgramConcept 
A ProgramConcept is an association made by the user in order to understand 
the underlying atomistic model.  It is a specialization of an abstract concept to 
be used for mapping task actions to code in formulating information retrieval 
from the model.  
 

As examples from the Server program (Appendix 1) consider the 
following: 

- Each class is a ProgramConcept of its own. The ones for classes are 
Server, Connection, and Vulture. Some of them are relevant in a single 
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troubleshooting case and some others are relevant in planning intended 
changes. 

- For tracing an object (a class) there are some essential class 
responsibilities (class contracts) to be handled as individual 
ProgramConcepts, too. 

- The most interesting ProgramConcepts for the methods for Server are the 
main, constructor (in Server), and the run method. The run method is 
interesting, because it opens a connection which responds to the client. 

- More specific ProgramConcepts are the constructor for Connection and its 
run method. 

 
Because ProgramConcept has a pragmatic feature, building ProgramConcepts 
depends on the situation and the user. Once a ProgramConcept has been 
created, it is persistent unless removed (forgotten), illustrating its static 
behavior.  

Definition 44. Object-of-interest (OOI) 
Let M be an atomistic model (containing classes and methods and variables) 
and C be a ProgramConcept selected for investigation.  An Object-of-interest is 
a target in the model, which has a special purpose for understanding data flows 
and program flows. 

In the Server program (Appendix 1) the main functional concepts are 
starting the server and responding to the client. A task of the process of 
problem recognition is to localize these concepts in the code as atom references. 
In starting the TCP/IP-connection the constructor to activate the ServerrSocket 
is OOI. 

Definition 45. ProgramContext 
Let M be an atomistic model and OOI an Object-of-interrest to be inspected. Let 
X be a sequence leading from the selected starting element to OOI in M. The 
group of side effects before OOI in X is called a ProgramContext for OOI 
defining the coming sequence. 

The essential use for a ProgramContext is to understand cross-cuttings 
activated by the ProgramConcept. Because the ProgramContext defines the 
preconditions for the OOI and the simulation process is capable of creating the 
assumed side effects for the code, the definition of ProgramContext leads to a 
construction similar to the Hoare triple, where input side effects work as 
preconditions for the triple and conditional output side effects are 
postconditions for it.  

Unlike ProgramConcept, a ProgramContext provides a dynamic, bottom-
up approach for the model M.  Together the ProgramConcept and the 
ProgramContext form a couple for describing both high level and low level 
functionalities. It is the process of verification which can prove whether the 
assumed high level approach will be implemented by the low level 
presentations made by the model M. 

Examples from the Server program (Appendix 1): 
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- The run method of Server. How many invocations for it are there in the 
code? 

- The constructor for Connection. Are all Connection objects created in the 
same way? 

- The run method of Connection. Is the sequence correct, or are there 
several different use cases for the method? 

 
Understanding cross-cuttings and side effects is the most laborious phase in 
understanding object-oriented software. ProgramContexts can be used as an 
approach for understanding cross-cuttings. In this, collecting bottom-up 
information into higher level concepts is useful. 

Definition 46. Hypothesis 
Let M be a symbolic model and P be a maintenance task solving process. A 
hypothesis H is an assumption related to M, which formalizes the subtarget (or 
target) of P.   

Often auxiliary information must be used for localizing the requirements 
represented in H. For any simulated output a hypothesis H can be expressed as 
a set of lower level theorems, which describe the assumed behavior of the 
program flow with its alternative logic and dependency information. 

In the example 961HFIGURE 24 the most evident hypothesis is named starting a 
server.  It can be formalized to contain any sequence between main and the 
corresponding OOI. 

Definition 47. Theorem 
Let H be a hypothesis. Theorem T is a resolution tree, which defines the logic 
for H based on operands and constraints and connectives for relations between 
program elements. The purpose of T can be either validate or refutate. A 
theorem can be nested containing subtheorems. 

 Because of the formulation of the resolution tree, logic programming and 
constraint solving are recommandable implementations for solving theorems.  

Otherwise in the example 962HFIGURE 24 in a practical case there can be 
several ProgramContexts that lead to the current hypothesis. Therefore 
theorems are often complex, but they can be made easier by splitting the 
sequences shorter. 

7.2.3 Summary illustrating knowledge-related information 

When the informative model of the atomistic model and the proposed 
classification of this section and the Rasmussen category and the Peircean 
taxonomy are combined, the correspondence table (see 963HTABLE 12) is obtained. 
964HTABLE 12 builds a procedural familiarization model for the atomistic model. It 
clarifies the kinds of actions (Column 3, see later Section 965H7.4) the user should 
employ in order to understand the type of information on the left column (see 
Section 966H7.3). 
 



 

 

188 

TABLE 12 The information ladder based on the atomistic model. 

Atomistic model, behavior model 
and conclusions 

Information 
level 

Action 
level 

Equivalence in Peirce’s 
taxonomy 

1. Symbolic model itself Data Skill Rhematic 
• Symbolic name  Data Skill •  Symbolic 
• Object handle Data Skill •  Indexical 
• An element in the tape Data Skill •  Iconic 
• A structure in code, a 
   Symbolic clause 

Data Skill   • Sensorial  

• An object (corresponds to Java 
   object) 

Data Skill   • Object (entity)  

• A side effect Data Skill   • Occurrence (value) 
2. Tape (sequence) Information Rule Dicent 
•  Symbolic Element* Information Rule • Iconic dicent  
• Metaclause connecting 
  elements: clause 

Information Rule • Symbolic dicent 

3. Proof or conclusion Knowledge Knowledge Argumentative 
•  Symbolic output tape Knowledge Knowledge • Deductive reasoning 
• Collection of output tapes Knowledge Knowledge • Inductive 
• Conclusions about inductive 
   reasoning 

Knowledge Knowledge • Abductive 

 
Each term in the symbolic model (Column 1) maps directly to the rhematic 
concept of Peirce (Column 4). If the element can be expressed by words, it is a 
symbolic reference.  Otherwise, it can be either relative being indexical or 
absolute being iconic.  The iconic references can point to either an entity being 
object which has its own life cycle, or to an observation being a sensorial view 
or to an occurrence being a temporary value. 

Furthermore, the Turing tape has a clear correspondence to the dicent 
concept. A tape itself is an iconic dicent, an explanation ( 967HDefinition 41), whereas 
a tape, where the symbolic conditions are expressed is a symbolic dicent. The 
third main concept of the Peircean taxonomy, argumentative ( 968HDefinition 42), is 
similar to a proof where symbolic tapes are tested as ProgramContexts 
( 969HDefinition 45) against user assumptions (hypotheses based on definition 
970HDefinition 46) of their behavior considering the most critical objects (971HDefinition 
44).  

7.3 Illustrating information model for source code 

In this section descriptions for the information layers are presented.  

7.3.1 Information model for an atom 

Each symbolic element of 972HFIGURE 24 can be considered to be a center which 
contains the definition and the links.  An atomistic mental image about a 
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variable, X, is shown in 973HFIGURE 27. The code is listed on the right side of the 
figure.   

 

FIGURE 27 Skill-level presentation (variable X). 

The variable, X, (e.g. port and listen_socket) in 974HTABLE 11 can be seen in the focus 
of the representation with its links so that the structural dependency is shown 
from top to bottom, the contents (data) dependencies from left to right (Y to a) 
and the calling hierarchy from the south west corner to the south east corner (a 
to Y). We suggest that this simple topology is enough for giving the reader an 
insight about the current element showing the syntax, semantic relations, and 
the behavior model. This model illustrates human thinking. It can be extended 
to cover all the other element types, too. 35F

36 
 
Examples: 

- For each variable a data flow is drawn connected with the referencing 
methods. 

- For each method a call tree and a reference tree are drawn. 
- For each class a diagram to show its members and their dependence 

graphs are drawn. 
 

7.3.2 Information model for a flow 

Each symbolic sequence can be thought to be a Hoare triple with its specific 
preconditions and postconditions. A symbolic flow contains all the selected 
elements of the output tape.  

                                                 
36 However, this representation is not optimal for a computer display, because it is not 

scalable. 
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Tape = SymbolicElement* 
 
For each element a Hoare Triple can be defined as {P} C {Q} (see 975HFIGURE 28). 
 

 

FIGURE 28 A causal chain of a sequence with its pre- and postconditions. 

The logic of 976HFIGURE 28 resembles a rule or a cascaded rule. In the proof-of-
concept of the tool (see Chapter 8) there are some use scenarios of how to use 
this rule. Let’s call each use scenario a context. Java is mostly a context-free 
language, but the preconditions can have influences on how the code should be 
interpreted. The causal chain has context-sensitive features if it contains object 
handles not created or variables not initialized before use, but it doesn’t prevent 
the user from exploring the references to the unknown handles statically if the 
dynamic status of an object is not known.   

The model of 977HFIGURE 28 provides two thinking models: a functional 
model, which evaluates input and output as a black box, and a class box model, 
in which all elements in the tape are visible for interpretations.36F

37  
For example, a vector demonstrating 978HFIGURE 28 for the corresponding 

symbolic model of 979HFIGURE 24 is shown in 980HTABLE 11. 

Pre- and postconditions of a sequence 

The main method (main) has a special importance. It has only its arguments as 
its preconditions. Furthermore, static methods do not have preconditions, but 
they still can have an assumed input/output logic with their side effects. On the 
other hand, all dynamic methods have a precondition according to which at 
least a constructor of the corresponding class should be activated before 
simulation. 

Due to the assumptions of how the target sequences should be initialized, 
the symbolic tool should enable selecting the order of the initialization activities 
before each simulation target sequence to define preconditions dynamically, on-
the-fly. This removes the need to prepare code for test purposes, which is the 
laborious phase in dynamic analysis. 

The most important symbolic flows are described next from the viewpoint 
of program comprehension. 

                                                 
37 This representation can be visualised in a computer in several ways, either as sequence 

diagrams or as XML-reports, which is a scalable notation for a large amounts of 
information. 
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Using specialized flows for analyzing sequences 

The result of an analysis is a tape. It consists of an ordered set of elements, 
which contains unordered rhematic information, data. Rhematic refers to all 
elements obtained from a simulation covering the Turing model itself.  It is 
useful to note that a practical meaning for a subset of rhematic information for 
PC purposes is an object life cycle, which is a collection of elements containing 
information about selected object references starting from the constructor. 

Dicent refers to an intermediate information form describing the 
conditions and logical connections between the selected code elements. The 
information needs of PC research (Pennington, 1987), (Burkhardt, Detienne, and 
Wiedenbeck, 2002) are useful in evaluating the dicent information as follows: 

- MainFlow, MF  (Burkhardt et al., 2002) (main goal) 
- Control Flow, CF  (Pennington, 1987) 
- Program Flow, PF (Pennington, 1987) 
- Data Flow, DF  (Pennington, 1987; Dwyer, 1996) 
- Object Flow   (Burkhardt et al., 2002;  Pontelli et al., 1996) 

  
- State Flow  (Pennington, 1987) 

 
It is possible to mix these flows, for example, by adding a control flow, an object 
flow, and a data flow to a control object flow. This new flow creates a useful 
approach for evaluating conditional object flows with their context sensitive 
features. This principle leads to automatic cause-reason analysis, which has 
connections to impact analysis and then to troubleshooting (Ren et al.,  2004). 
 
Examples: 

- All the conditional statements and invocations of 981HFIGURE 24 form the 
program flow. 

- All the data references form the data flow. 
- All the side effects (see Appendix 3) form the state flow.  
- All the object references starting from the constructor form an object 

flow. 

7.3.3 Information model for ProgramContext 

The main purpose of the atomistic model is to remove the gap between the 
interprocedural and the intraprocedural interpretation of the execution, making 
the whole behavior model and the whole interpretation linear.  In source code 
analysis this has been studied in a context of path-profiling (Ball and Laws, 
1996), model checking (Visser et al., 2003), and partial evaluation (Schultz, 2000).  

Our approach provides a semiotic perspective, where each output is an 
argumentative (Peirce, 1958), which has a logical nature describing whether the 
selected sequence or element is acceptable or not ( 982HDefinition 42).  In a deductive 
proof the sequence will be validated. In inductive argumentation the results of 
arguments are collected for the user to evaluate the common features that might 



 

 

192 

have caused an acceptable behavior or an erroneous behavior. By summarizing 
this information the user can plan how to fix the problems.37F

38 
Let’s assume that all critical sequences relating to the most critical element, 

typically a method with its invocation sequence, have been simulated into a 
tape (C) having its preconditions (P) and postconditions (Q) evaluated. The 
focused element, the OOI ( 983HDefinition 44) is shown as C in 984HFIGURE 29 and has 
its internal individual sequence. The resulting control flows due to it include 
the corresponding postconditions and side effects.  Function match where C is 
compared with the constraints forms the proof for the current investigation 
hypotheses. It is expressed as a computation match(C, Constraints). A 
deductive proof gives ok or not ok as an answer. 
 

 
 

FIGURE 29 A model for evaluating a sequence as a Hoare triple. 

The following short example code (see 985HEXAMPLE 5) illustrates the complexity 
of object-oriented code (Pontelli, Ranjan, and Gupta, 1998) from the viewpoint 
of the atomistic model. There is a constructor for the class Connection, which 
obtains as its parameter (on line 1) the handle referring to the JDK class 
SocketImpl, which is defined on line 10.  Because the called class is abstract it is 
not possible to know the type of a concrete object to be referred. There can be 
one or one thousand of classes in the code, which have defined SocketImpl in 
their inheritance path. Therefore, the user should make rough assumptions in 
order to detect all the possible reasons for why some object type may have 
caused a problem in this case in the transform-function (on line 6), which is the 
only method (function) programmed by the user software in this short example.  

EXAMPLE 5. Demonstrating complexity of unknown types.  

1 public Connection(SocketImpl client_socket)  
    { 
        // Give the thread a group, a name, and a priority. 
      
2        client = client_socket; 
     

                                                 
38 Abductive argumentation (Peirce, 1958) is not discussed in this research. 

C
P Q

P

P Q

Q

Constraints
Ok

C
P Q

P

P Q

Q

Constraints
Ok



 
 

 

193

3        in = new DataInputStream(client.getInputStream()); 
4        out = new PrintStream(client.getOutputStream()); 
5        line = in.readLine(); 
6        outline = transform(inline); 
7        out.println(outline); 
          
8        client.close();   
       
    } 
 
10 public abstract class SocketImpl implement SocketOptions … 
 
Thus the type of the variable client_socket is the only critical input precondition 
(P) in this case causing a possible expansion of one to several types to be 
checked.  The only internal constraint here is the transform function, because 
other functions are JDK-references. However, JDK invocations can create side 
effects like memory overload or thread synchronization problems. A tool 
should be able to capture the whole inheritance and reference hierarchy for 
every class and object ( 986HDefinition 14) under the control of the user, which makes 
testing more user-friendly. By using simulation it is possible to trace each input 
combination step-by-step obtaining a side effect model for each use scenario. 

Learning the different use scenarios and the context-sensitive features for 
selected elements or for the selected tape gives knowledge to the user. The 
triple of 987HFIGURE 29 can then be seen as a new third dimension, an extension to 
a sequence of 988HFIGURE 28, or a focus of 989HFIGURE 27, where multiple input paths 
and output paths are added into it to form a ProgramConcept ( 990HDefinition 43). 
Each input combination P(i) (991HDefinition 45) leads to a different context, but it is 
usually possible for the user to inductively create different combinations for 
more abstract context groups.  

7.4 Interaction model using action levels 

In this section the information ladder process from the task to mental models is 
described starting from the source code model and the tape, the outputs of 
Chapter 5 and Chapter 6. 

7.4.1 SkillAction 

The skill-level describes making relatively fast operations through perceptions. 
A stereotype for any skill-based action is defined next. 

We define SkillAction as an action that converts a view, such as a 
computer display describing a part of a program as an atomistic model, into a 
perception in order to make observations about the elements. 

SkillAction is the center of PC, because it enables both learning from a 
perception and necessary information for a decision of how to continue 
problem solving. Some skill-based actions according to the Symbolic language 
are:  
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- Loop:  Detect the end condition or the contents of the loop, or loop 
variables.  

- Condition:  Detect the condition and the true-block. 
- Method definition:  Detect parameters, as well as return-clauses. 
- Method call:  Detect a method call, locate it into the code. 
- Creating an object:  Check from the class hierarchy whether any 

subclasses are created in the constructor. 
 
The three common questions for each element X relating to the skill-level that 
are essential  are: 
 

- Is element X relevant in the current context? 
- Is X correct? 
- Is X acceptable? 

 
Skill actions produce atomistic focused views where the elements are connected 
by the links of the model or by mental connections made by the user. A 
principal display for it is a fish-eye diagram (Wong, 1998). The tool should be 
able to help the user in making observations, because the user makes the 
decisions based on perceptions. 

Most visualization tools produce only static skill-level presentations 
(Pacione, Roper, and Wood, 2003). An important contribution of the symbolic 
notation and the atomistic model for visualization is that they enable dynamic 
presentations, which can be used in gradual navigation controlled by the user. 
In dynamic visualization the links between diagrams are connections between 
elements. Traversing links are called rule actions. 

 
Example considering Appendix 3: 

- For evaluating any loop in 992HTABLE 30 there are lines for loop start and 
loop end as well as for any new iteration (redo). It is a skill level action to 
evaluate whether the loop cycles are correct. 

7.4.2 Rule Action 

For creating expert response by using inference the rule-level is needed. We 
define RuleAction as an operation that goes through a set of linked rules made 
by the linked elements in order to get an explanation ( 993HDefinition 41) for the 
selected logic of rules. 

Rule action is reasoning occupying the memory of the user for the 
inference process, because for the work temporary or permanent memory must 
be used in order to get values for parameters to the rules.  In order to evaluate 
successive rules the user must work like the inference engine of Prolog, because 
both must use stack in going to deeper rules following a formalism of a 
pushdown automaton.  From the viewpoint of the symbolic abstract machine 
(see the logic in 994HDefinition 36) executing an element is like solving a rule, 
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because each command is a predicate, a rule. Each computation of any element 
made by the abstract machine has then the form Result = Element:run(). 

It is possible to compare the performance of a person with that of a 
computer in rule actions. A person does mental simulation and the computer 
automated simulation  (Nakamura et al., 2003). After a simulation of a sequence 
all the influences can be seen in the tape, which eliminates the need of mental 
simulation by reading code. By means of the output tape the rule actions are 
converted into skill actions, which are ready computations. 

Three typical rule-level questions are: 
- Does the sequence Y work as expected? 
- Is the sequence Y relevant to the current context? 
- Is the sequence Y correct and acceptable for later purposes? 
 

Hence, some examples about rule actions are of the form: 
- Loop:  Ensure that the loop is terminating in all situations or prove that 

there is an error (Havlak, 1997). 
- Conditional clause:  Explain whether the block inside the conditional 

clause is activated in the current situation, or not (Ammons and Larust, 
1998). 

- Method call:  Locate a calling method. Be clear about what kind of 
influence it has to the calling logic (Horwitz, Reps, and Binkley, 1990). 

- Creating an object:  Explain what kind of influence the object has to the 
called sequence (Pontelli et al., 1998). 

 
As the verbs above indicate, the basic form for the rule level is to make 
conclusions based on the current symbolic flow, to explain some features by 
means of other attributes generating explanations (995HDefinition 41). It is natural to 
think that each element can, by means of its command, explain to the user what 
its purpose is when it activates the next element to the output tape. This 
explanation process may coincide with natural semantics.  

The principle is shown next in the notation of natural semantics. The 
query deals with reaching atom A3 starting from atom A1 via element A2 in the 
captured flow: 
 

A1 -> A2 => X1 = get Explanation for computation A1 to A2 
A2 -> A3 => X2 = get Explanation for computation A2 to A3 

Explanation    =       [X1, X2] 
Query(A1, A3) = Explanation 

FIGURE 30 An automated explanation based on a flow as natural semantics.  

Generating explanations is a characteristic feature illustrating the rule level. 
Each single step is a computation, which can be a part of the current rule. By 
collecting the relevant results from the computations a summary explanation 
can be generated. 
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7.4.3 Knowledge Action 

At the knowledge level the user solves difficult tasks by using deliberate 
reasoning in order to understand relations between ProgramConcepts 
( 996HDefinition 43) and ProgramContexts (997HDefinition 45) focused on OOIs 
( 998HDefinition 44). In the atomistic model the main concept of the knowledge 
action for PC purposes is the Hoare triple with alternative preconditions and 
postconditions. Because there are several alternative program flows to reach the 
focus area in the application software, it would be a burden for the user to try to 
understand all these contexts ( 999HDefinition 45). Therefore, he/she must use serial 
reasoning case by case. This should be done serially, even though knowledge is 
highly parallel and strongly connected information.  

We define KnowledgeAction as an operation for verifying a piece of 
software in order to understand its relevance and usability and correctness 
according to the corresponding behavior model. Because of the selected focused 
approach to the source code, the knowledge level is in this research the highest 
abstraction of program comprehension. The purpose of it is to ensure that the 
selected element, an OOI (1000HDefinition 44), its definitions, references, and 
assignments are valid in the selected context (1001HDefinition 45). It is the 
responsibility of the user to ensure that this functionality is valid for each 
element to form a proper ProgramConcept ( 1002HDefinition 43). 38F

39  
The purpose of the knowledge level is to enable deductive verification of 

the model selectively, sequence by sequence, in order to enable inductive 
learning from the system. The output is the better the smaller it is  (Kolodner, 
1987). For example, if there is only one explanation for the failure, it can be 
corrected by changing just one element. 

Three typical questions considering the knowledge action Z are: 
- Is the object Z relevant in the current context? 
- Is the current sequence through the object Z valid? 
- What is the responsibility of Z? 
- What kind of contracts can Z provide? 
 

All intermediate values from knowledge actions can be collected into specific 
objects of the symbolic model, which is called a KnowledgeElement. In the 
integrated mental model the output from all traversing of the program is 
referred to as a situation model, and contains both sequences and domain-
specific information.  

Some examples about knowledge based activities are:  
- Method:  Find the collaborations called by the method. 

                                                 
39 It might be asked whether the user's responsibility, or burden, is too heavy here. 

Wouldn't the computer be more useful in drawing bigger views for the user? The 
main purpose of the atomistic model is to concentrate on atomistic operations. 
Perhaps there can be an optimum (a compromise) between large, complex displays 
and the focus of the atomistic model, but finding it is not in the scope of this 
dissertation.  
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- Method call: Analyze the calls to the method. Are they different from the 
current context?  

- Creating an object: Is the object created in different situations? 
 
A typical output from a knowledge action is a tree containing the calls and the 
references of the OOI. The control flow and the values can be seen to be leafs of 
the tree. 

For our example  ( 1003HFIGURE 24) a knowledge action considering its validity 
is to check that all conditions and invocations in the flow between lines 1 to 9 
are correct (as well as that the exeptions have been programmed in the assumed 
way). 

7.4.4 MetaAction 

Capturing metalevel information can partially be automated by round-trip-
engineering (Henriksson and Larsson, 2003). There are several ways to evaluate 
a program manually as metamodels and as architectural solutions.   

A general picture about the metalevel can be drawn by thinking that 
atomistic elements form a dependency model (1004HDefinition 40) with each other to 
contain, in addition to the static and dynamic links, also logical connections, 
associations between classes, and typical meta and meta meta definitions 
classifying the elements for specific groups. That’s why it is necessary to define 
a unified meta-action to describe all the activities in the meta level. MetaAction 
should be an operation to make the dependency model of the problem area 
comprehensible in order to understand its architecture and design.  
Unlike other levels, the metalevel starts from the top (Brooks, 1983) in order to 
create a non-atomistic picture. Thus it complements bottom-up understanding, 
which is supported by the skill, rule and knowledge levels. 

The metalevel has goals that are similar to those of UML diagrams. Three 
questions about the metalevel regarding the component C are: 

- Does the component C contain the specified feature relating to the 
current context? 

- Are there suspicious elements in C? 
- Is the component C acceptable for reengineering? If it is, what is the best 

strategy: to wrap it, to refactor it, or to rewrite it? 
 
For our example MetaActions are actions that need to search information that is 
not visible, typically class contracts and interface definitions. 

7.4.5 Combined Action – model 

The maintenance process can be understood as an iteration that uses skill, rule, 
knowledge and metaactions of the user one after another in order to get 
inductive information about what kind of changes to the source code should be 
done, e.g., in order to avoid the problem  of corrupted architecture (Lehman 
and Belady, 1985). 
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The concept action is widely used in information system research and 
especially in the integrated mental model (von Mayrhauser et al., 1997), where 
the context from the goal to the actions is the same as proposed in this chapter. 
However, the definitions for the proposed hypotheses of the integrated mental 
model are only informal categories for possible activities.  They are too general 
to enable building any contact to the source code from any specific problems 
that are typical in object-oriented programs. By contrast, the atomistic model 
enables creating a formalism from the knowledge level to the skill actions so 
that the user can solve dedicated problems by traversing the model selectively 
according to its focusing approach. 

The main idea of the SRK specialization category (see 1005HFIGURE 31) is to use 
skill–level as much as possible, because it is the most productive way to achieve 
concrete results (Walenstein, 2002). If it doesn’t succeed, then the user should 
fall back to the rule level. If there are no necessary rules or information then a 
fallback to the knowledge-level should be done. In each fallback the user 
obtains and adapts new information, which can change the preference of 
coming new tasks.  

 

 

FIGURE 31 Action levels based on adaptation, preference, and fallback.  

By using specialization it is possible to direct the tasks into the best 
professionals or to the most productive persons. Every person actually uses the 
following logic (Rasmussen, 1983):  

- Can I solve the problem in the skill-level?   
- If not, does rule-based reasoning give the result?   
- If not, fall back to the knowledge-level. 

 
Up to here, the information model for the atomistic source code was described 
in Section 7.2 and the interaction model illustrating user actions in Section 7.3. 
These sections are needed for discussing the maintenance process, which is the 
practical approach to PC.  
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7.5 Method: Configuring hypotheses for familiarization and 
proofing 

A hypothesis is an assumption about the behavior of the program. According to 
Brooks a hypothesis may in fact be the only driver for program comprehension 
(Brooks, 1983).  Letovksy (1986) has proposed that the hypotheses correspond 
to the questions: what, how and why as follows: 

- “Why conjectures hypothesize the purpose of some function or design 
choice. 

- How conjectures hypothesize about the method for accomplishing a 
program goal. 

- What conjectures hypothesize about what something is, for example a 
low level variable or an object handle”. 

7.5.1 Hypotheses are bridges from goals to actions 

The role of hypotheses has been described during an opportunistic 
understanding process of large scale code (von Mayrhauser and Vans, 1997) as 
follows:  

- “Goals and questions are highest level concepts that embody the 
cognitive process by which maintenance engineers understand code. 
Understanding is complete when the mental model consists entirely of a 
complete hierarchy of hypotheses in which the lowest level hypotheses 
are either verified or fail. 

- Programmers use several classes of hypotheses at different levels of 
abstraction. Experts are able to do more questionable hypotheses and 
assumptions more easily than novices. Furthermore, experts very often 
abandon (ignore) some of their understanding actions that are too time 
consuming. Hypotheses cause switching between different mental 
models and levels. The goal and hypothesis resolution is a dynamic 
process consisting of sequences of goal-hypothesis-action triads. 

- There are three ways in which an individual hypothesis can be resolved. 
It can be abandoned, confirmed, or it can fail.”   

7.5.2 Model checking approach for a tape based on resolution trees 

The notion of symbolic output tape is discrete, because the elements are in the 
execution order and the time history has been saved in the indexes of the tape. 
Pnueli (1977) has suggested that temporal logic, a variant of modal logic, could 
be suitable for specifying properties of reactive and concurrent systems, which 
is a larger scope than the tape formalism, but by adding several tapes it is 
possible to model a system, which has a set of infinite sequences of states and 
executions. The specification language Pnueli presented for this purpose is 
linear temporal logic (Emerson, 1990). Its approach quite naturally leads to the 
idea of model checking. Instead of using temporal logic we formulate the model 
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checking approach by using resolution trees, typical for Prolog in order to 
specify functionality for symbolic Turing tapes. Its operations are compatible 
with that of temporal logic. 

In 1006HFIGURE 32 a typical hypothesis resolution situation is described. The 
user has a goal to be performed, which at first will be recognized as a problem 
instance.  It will be encoded (formulated) as a conjunctive normal form 
consisting of individual logical connections. In order to make a proof, a solver is 
needed. Later it is called a theorem prover, which returns to the user either 
satisfied (confirmed) or unsatisfied (fail). The third possibility is that the input 
is not relevant, which leads to ignoring the hypothesis with the current input 
(abandon). The function of the hypothesis can be either to refute or to validate. 
Experts are very flexible in selecting a function that is best in each case (Vessey, 
1985).   

 

FIGURE 32 Hypothesis resolution approach.39F

40 

Each tape is rather simple to be modelled, because it only contains precedence 
constraints. Furhermore, by combining individual tapes it is possible to 
describe more complex situations, different ProgramContexts like state 
machines, and connected behavior models. The problem in connecting the tapes 
is how to evaluate and transmit side effects from a tape into another. But even if 
there are problems in automatic synchronization of side effects between 
separate tapes, there is still a possibility that the output of one simulation can 
help the user in understanding the side effects of the others by its symbolic 
notation. Thus connections between side effects referring to different states and 
model events and actions can be investigated manually by the help of SAM. 

For example, in Appendix 1 there are three threads. They can be 
connected into the program flow by adding the output of each run-method after 
the invocation of the corresponding start-invocation. Without doing it, it is 
possible for the user to simulate each run-method individually in order to 
understand their logic with their side effects. 

                                                 
40  The approach of FIGURE 32 can also be considered related to constraint logic 

programming (CLP), e.g., constraint solvers. These express individual elements of 
the model as node-consistency definitions in arc-consistency rules (van Hentenryck, 
2002). 
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Typical formalism for the hypothesis 

The problem instance in 1007HFIGURE 32 is a Turing tape or a number of them. Input 
H is a  Boolean hypothesis in CNF combining the sub-rules by connectives as a 
resolution tree, typical for any Prolog program.  An example, a hypothesis is 
formally a combination of its lower hypotheses:  H = (H1 OR ¬H2) AND (H5 OR 
¬H7 OR H4) AND etc., where at the lowest levels the sub-hypotheses point to 
the tape elements. They can be expressed by Horn clauses (Clocksin and 
Mellish, 1994). Sub-hypotheses are called theorems.  

In our example ( 1008HFIGURE 24) selecting a value for the parameter port 
contains several clauses. We can define a resolution tree for proving that the 
value for the port is not DEFAULT_PORT on line 9 when creating the socket by 
creating a logical function that connects the lines 1, 2, 3, 4, 5, 6, 7, 8 and 9. Only 
lines 1, 4, and 6 can change the value. 

7.5.3 Building a resolution tree: theorems, operands and constraints 

The following framework to define PC hypotheses for learning code and 
validating programs is downwards compatible with temporal logic having 
similar functionalities.  Typical hypotheses are either assumptions or 
specifications describing the relevant program flow with its side effects. These 
contain, in the time order, critical elements like the main method in the 
beginning and some problematic element as targets of the program flow. 

The main elements of the framework are:  
- An operand, which means an explicit pointer to the ouput tape possibly 

including several tape references. 
- A constraint, the purpose of which is to signal about logical conflicts.  
- A theorem, which is a small logical task for the tool to be proved 

according to the contents of the tape.  
 
For a proof, constraints are needed for validating the operand references. 
However, even a single operand can be a theorem, because a tape is valid only 
if the specified operand can be found in the tape, which rule implements an 
existence theorem.   

Defining operands 

Operand is a subset of the tape, where elements are connected with optional 
operations and list specifiers  (See 1009HFIGURE 33).   An operand can point either to 
a specific atom in the tape, or to a list, or to any logical operation. Furthermore, 
an operand can be justified with its constrained specification. An operand can 
also be any of the alternatives or an internal variable, or a list of constants, or 
ranges. In special cases an operand can point to all elements (like in saving 
information).   
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FIGURE 33 Different functions for an operand to be used in tapes. 

Examples considering 1010HFIGURE 24: 
- The constructor on line 9 is an OOI, an individual operand. 
- A logical connection to define that a port is not DEFAULT_PORT is an 

operation. 

Defining constraints 

1011HFIGURE 34 shows the most typical ways to specify constraints.  

FIGURE 34 Specifying constraints in a tape.  

Any operand can be defined to be inside a class, an object, a method or inside a 
loop. If there is the selected operand in the specified place then true is returned 
(causing no contradiction). The other type of constraint is relative. An operand 
can have a relation before, after or between related to some other operands. 
Otherwise, false is returned. 

The most typical constraint in verifying a computation in the tape is its 
location. The others are causality and precedence rules. There are the following 
alternatives to express a location constraint: 

- Global: The operands can be anywhere in the tape. 
- Inside method: Operands separated between the start and end elements 

of a method. 

Ax ANAkA1

operation

list

atom

value
Var Constant

operation

Ax ANAkA1

operation

list

atom

value
Var Constant

operation

A50A49 ANA40AkAjA3A2A1

Pos

before afterbetween

Inside class

Inside object
Inside method

Inside loop

A50A49 ANA40AkAjA3A2A1

Pos

before afterbetween

Inside class

Inside object
Inside method

Inside loop



 
 

 

203

- Inside object: Operands separated transitively from the method to the 
corresponding object (having a correspondence in the Java object and a 
specific Java class). 

- Inside class: Operands separated transitively from the method to the 
corresponding object (having a correspondency in the Java object and a 
specific Java class). 

- Inside loop: Operands separated in a loop between its start and end 
elements. 

- A place in the tape can be expressed by the definitions before, after and 
between. 

- An explicit place in the tape can be defined by an atom reference. 
- Sometimes any place is accepted. 

 
In the symbolic model and its output tape each method and each loop have side 
effect elements both in the start and in the end. These elements make it possible 
for the user to locate elements inside selected boundaries for specifying the 
critical activities. 
 
Examples considering 1012HFIGURE 24: 

- All activities in the flow before the end of the main method are selected 
in the constraint before . 

- All object instantiations inside the class Server are selected by the 
constraint inside class. 

Creating theorems 

A theorem specifies causalities in the tape as shown in 1013HFIGURE 35. There are 
two kinds of theorems:  

- Forward chaining theorems for impact analysis, which helps in changing 
code. 

- Backward chaining theorems for trouble shooting. They analyze the 
program flow backwards. 

 
In 1014HFIGURE 35 there is a theorem T1, which refers to an operand, which is 
triggered by atoms A1 and A2. It includes a constraint, which assumes that in 
the tape there should be element Ak, which in turn leads into the next cascaded 
theorem T2. The latter theorem assumes that there should be atom AY after Ak 
in the tape. Backward chaining theorems include a similar definition and outer 
functionality, although the scanning direction is backwards. 



 

 

204 

 

FIGURE 35 Sample theorems, forward and backward chaining. 

The simplest theorem is the one that contains only an operand referring to the 
tape (exists, line 1). Its opposite is a negation (not, line 2). The third theorem type 
is a causal relation (causality on line 3) between an operand and another 
theorem. By using this causal relation it is possible to create cascaded influence 
chains, which connect dependent activities with each other.  

A formalism for the types of an influence specifying a correct causality is 
the following: 

- Implies means an implication. 
- Equivalence means a check where both directions, left and right are 

checked. 
- Next means a check, where there should always be a specified successor 

for the current operand. 
- Prev means a check, which proves a predecessor for the current operand. 
- Releases means a check, where control for the specified action is lost. 

Some cases are a new assignment or destroying an object. 
- Since means a check, where an operand should start some activities. 
- Triggered means checking an implicit activation. 
- Once means a check, where an activation is checked only once. 
- ForEach means a check, where in all cases there should exist a specified 

activation. 
- Until means a check to specify the end of the scope for the theorem. 
- Finally is a check for the final situation of the sequence. 
- Historically is a check that accumulates operands in the sequence.  

       
Examples considering 1015HFIGURE 24: 

- To define a sequence from the main method to creating ServerSocket is a 
theorem:  
since main, for each Server method, once new ServerSocket. In the tool all 
these variables are replaced by the corresponding atoms in the tape. 

Summarizing the formalism of the hypothesis 

Each hypothesis is a set of theorems. The simplest hypothesis contains only one 
theorem, which is a reference to any element in the tape. The first assumption 
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for triggering an analysis in a typical Java application is the main method.  
Chopping can be defined by a theorem which has a since definition and a 
triggered definition. The operand can contain separate elements or any logical 
combinations connecting elements with each other. 

Backward slicing can be defined as a causality theorem, which has a until 
definition. In contrast to traditional slicing, the formalism above makes it 
possible to re-evaluate the captured flows and make complex multi-phase 
queries by using operands in order to validate or refute complex parts of the 
software.  

7.5.4 Learning method based on gradual proving 

The results from a proving process vary depending on the problem type and 
the eagerness. In familiarization, in the read-to-recall process (Burkhardt et al., 
2002) the user gets a number of chunks including information about program 
relations (see 1016HTABLE 13). If the task was a troubleshooting problem, then the 
user loads the personal memory as economically as possible without learning 
unnecessary features. Then the output from the proving process is a number of 
matches, where contradictions have an important role. Each contradiction that 
cannot be explained by other matches or other contradictions are possible 
errors.  

When planning changes, each possible place to be modified can be 
considered as a contradiction against the current program model, because there 
is a mismatch between all impacts of the planned modification against the 
current behavior.  As found in 1017HTABLE 13 a proving method can be seen as a 
state transition table, whose state variables are initial/current knowledge, proof 
result and the type of the PC effort. These lead step-by-step to conclusions, to 
next steps either for familiarization or troubleshooting. 

TABLE 13 Making conclusions based on proof results. 

Type of current 
PC phase 

Initial  
knowledge 

Proof result Conclusions and remarks and 
possible decisions 

Familiarization Low Finding relevant 
plans 

Chunking relevant places 

Familiarization Perfect No contradictions As above, no conclusions  
Familiarization Perfect Contradiction A conflict. Either an error or an 

exception. It starts a  
troubleshooting phase 

Troubleshooting Low No contradictions Find relevant places. Use a 
familiarization phase to  increase 
eagerness 

Troubleshooting Moderate Contradiction Find more information by using  
familiarization if needed 

Troubleshooting Moderate No contradictions Continue, skip to next subtask 
Troubleshooting High No contradictions Continue proofing 
Troubleshooting High A contradiction Conclusion: Isolate the problem, 

fix the bug 
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7.6 Extending the method to the maintenance process 

This section describes a computer-aided process, where the maintenance task is 
performed iteratively, in a systematic way, based on user actions and 
computations of the computer. It has the following features: 

- An iterative, gradually deepening process (Deming, 2000) from concepts 
via ProgramConcepts to ProgramContexts.  

- The user has total control for the simulation in order to select all the 
relevant program flows, e.g., ProgramContexts to be analyzed.  

- Each relevant ProgramContext is simulated to produce an output tape. 
 
Next a task flow is described as a sequence via problem recognition, problem 
formulation, and the necessary analysis and through making conclusions. 

7.6.1 Top-down approach considering the change request 

In this section a rational method for executing a maintenance task is described. 

From task to problem  

A typical maintenance task is a change request, cf. (Gallagher, and Lyle, 1991). 
The first phase in solving the task is to reduce it as much as possible 
(Walenstein, 2002). The best way for minimizing a software task is to find the 
smallest problem area that it covers, a problem space. A problem is then 
formulated as a set of desired end results (goal), including necessary operations 
and constraints. This approach leads to a definition for the problem 
(Walenstein, 2002): 
 

Problem = {Goals40F

41, Operations, Constraints}. 
 
Relating to the symbolic model, the operations are either the user’s abstract 
decisions or more concrete user actions (which are defined later in this chapter). 
Abstract operations are actions relating to relevant components or packages of 
software to load and to evaluate critical classes. After the relevant code has been 
selected the next operations for the analysis relate to how to set constraints that 
limit the scope. These include finding the start and target elements and for 
selecting the approach in accordance with the symptom or the nature of task 
definition. This deliberation should lead to selections that control navigation. 
The goal is to create a mental image about an entity that caused the problem or 
that is a candidate to be changed. 

For example a starting problem considering 1018HFIGURE 24: 
- Goal 1: To locate where the server is starting 
- Goal 2: To locate how far the initialization works 

                                                 
41 Walenstein uses here the concept End instead of the concept Goal. 
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7.6.2 Problem recognition 

Problem recognition is the first concrete phase in the corrective and adaptive 
maintenance process (Gilb, 1988). The selected approach for problem 
recognition deals with how to map the problem, i.e., a failure, to any actual part 
of the software.  In Java applications mapping is easy, because almost without 
an exception a problem that can be seen outside can be mapped into a JDK class 
or a method. This includes wrong data or wrong behavior that can be mapped 
into the functionality. 
 
The granularity in problem recognition has the following levels X: 

- Application (the lowest granularity) 
- Model (package or class) 
- Execution path 
- Local function. 

 
The fault types can be data, state, or logic related, or functional, including 
anomalies. If an electronic trace is obtained, for example a log or a trace 
indicating the problem, then most often it can be mapped into the code very 
accurately. 

Problem recognition is said to be completed when the problem is mapped 
into a part of source code (a file or a small area in a file) and the type of the 
problem is known so accurately that the next phase, problem formulating, can 
be started. 

7.6.3 Problem formulation 

Problem formulation is a logical phase to make assumptions about the cause, 
about the sequence that caused the problem. In source code all causes are causal 
chains, results from a program flow. It makes the formulating straightforward. 
When the problem, discovered in the recognition phase, is in the focused 
element, a sequence or a use scenario that goes through this element and causes 
the wrong behavior should be selected. 

Problem formulation is thus a knowledge action giving one or more 
contexts for the problematic function. In most cases it gives multiple sequences 
as results. Some of them are relevant to the problem, some may be erroneous, 
and some of them should be working correctly.  Problem formulation can be 
skipped in the cases where the overall architecture is not known, and wherever 
a clear observation can be made by using a JDK function (like an internet 
function).  In these cases the class where the invocation emanates from, can be 
used as an indicator, a beacon, for a later analysis. 

The task of the user is to detect (prove) the cases which need attention, 
updates or even corrections. This is called problem analysis. 
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7.6.4 Problem analysis 

Problem analysis is an iterative process to identify a cause for the problem from 
several sequences.  There are multiple alternatives according to the granularity 
of problem recognition: 

- If the recognition process remains at the application level, the most 
probable sequence, the main process, is selected. Thereafter a flow is 
selected by using an assumption of the fault type as a selector (data, 
state, object, or control). 

- The selected sequences are verified and the most critical elements are 
found. 

- The most critical elements are set as focus elements. Necessary 
knowledge actions are created for them.  

- The sequences for focused elements are evaluated according to the 
selected hypothesis (see Section 7.5).  The results from the proofs 
(Section 7.5.3) are used in controlling the selection of the next steps of the 
problem analysis. 

- Decisions about the correctness are made, matching the 
ProgramContext, the element, and the initial knowledge about the 
behavior of the ProgramContext. 

 
Problem analysis is a deductive process to prove the selected sequences. 
Proving each sequence is rule level work, which gives explanations as its 
output. The explanations are captured relations from the sequences (like 
subsets of a data flow or a program flow). 

Formulating the problem by using questions 

Programs can be learnt in several eagerness levels. Burkhardt et al. propose two 
levels: ready-to-recall and ready-to-use. Some other eagerness levels relate to 
the type of the task. In familiarization the eagerness is lower than in critical 
troubleshooting, where the fault should be isolated as accurately as possible, 
which can minimize the risks in  modifications.  The following answering logic 
obeys the principles of the Letovsky questions (Letovsky, 1986): 

- Question 1: Do we have enough initialization knowledge?  The user has some 
initialization knowledge, K0, about the program.  If there is no sufficient 
knowledge, thus leaving the user unsure, then a familiarization process 
should be started. 

- Question 2: What should the program do?  The user answers either by 
collecting the information from his/her memory or by using symbolic 
analysis to collect the functionality of the program automatically. If the 
answer is empty then the user gathers more initialization knowledge or 
exits the process. 

- Question 3:  What is the most relevant feature to be investigated? The user 
locates the feature in the code. 
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- Question 4: Does this feature work as assumed? The user simulates the code 
getting a function flow. It is compared with the assumption. If the 
behavior was correct, question 4 is removed and a skip is made to 
question 2. If the behaviour was not as expected then the next question is 
made. 

- Question 5: Specify, how does the function flow work? The answer can be any 
mix of symbolic flows: control flow, data, state, object or operation flow. 
The user checks this flow (skill-level action) in order to see problematic 
places.   

- Question 6: For each target find the position in the flow of which the user 
asks: Why was this target activated and when (under what conditions)? If the 
user finds a problematic place (an illogical answer to a why-question) 
then the flow before the target is investigated until the problem is fixed. 
If there were no answers in the current flow, then the next question is 
needed. 

- Question 7: Select a new start-target-flow combination which produces a 
subset of the flow of question 5. Was the current target activated correctly? 
Use branching and splitting principles in order to decrease the size of the 
current flow. 

 
The PC process ends when the input (a tape or several tapes) has been 
processed in familiarization or, when a contradiction, a conflict has been 
localized in troubleshooting. 

Transforming the problem to questions   

The problem considering the current task is divided into questions and 
subtasks. Structural elements can be divided into subelements and use 
scenarios, and sequences can be divided into smaller groups to be studied. 
Questions may be employed (Letovsky, 1986) to create a base of a 
communication language for the team collaboration. Some examples about the 
questions relating to a problematic element E are of the form: 

- Skill level: Is E relevant? What does it do? Is it correct and acceptable? 
- Rule level: What is the function of element E in the current flow? What is 

the relation between E and the object (O) in this particular sequence? 
What side effects can E and the sequence E to O cause? Is the sequence E 
to O valid? 

- Knowledge level: How does E work in different cases? What is the 
purpose of the element E? What are the parameters of E in different 
cases? How do the collaborations between E and O work? 

- Metalevel: Which external elements have any explicit influence to 
module M?  Which internal elements have some implicit influence to 
module M? 

 
Distributing processing here means that the operations and actions are 

divided into tasks for multiple maintainers. If the persons have a common tool, 
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the language and its notation can enable productive cooperation.  Here the data 
model and simulation capability of SAM can be helpful in this respect. 

In the list above the questions considering skill, rule and knowledge 
correspond to the definitions of rhematic, dicent and argumentative in the 
knowledge unit.X These questions are transformed to model queries next. 

Transforming questions to queries and further on to hypotheses   

Transforming informal questions to queries is not obvious.  The possible 
constraints and parameters for the queries include, among others, the query 
type (fault type), and the elements to be focused. Usually many queries are 
needed, both for getting positive deductive information about successful 
samples and cases and negative information about erroneous situations, in 
order to create an inductive decision.  

7.6.5 A use case:  Using symbolic analysis for capturing knowledge 

Let’s describe a situation where a TCP/IP-server, acting as a class Server (see 
Appendix 1), does not start. All the necessary initial knowledge pertaining to 
the TCP/IP server consists of that the communication is done with the object 
ServerSocket.  The user can employ the initial knowledge about the implemented 
modifications, the history of the software and earlier errors in many different 
ways, in order to locate the problem as efficiently as possibly. 

A general rule for isolating the problem using symbolic analysis is as 
follows:  

- In the knowledge level the user creates a hypothesis about a relation 
between the symptom and its possible cause. If the function doesn’t start 
at all the user may assume that the problem is either a state problem or a 
control flow problem between the main and the focus. 

- The user confirms the hypothesis that the problem can only occur when 
the program is started from the main method (skill action). 

- In the rule level, the user validates the paths and, in the skill level, the 
invocations.  

- In the skill level the user validates all the conditions and their relevancy. 
The user inspects the control paths that are close to the target and in the 
end of the output tape, because it may be assumed that the problem is 
one of the last conditions of the simulation (unless a totally erroneous 
logic path has been selected). 

 
In this particular case the process can be divided into iterative phases as 
follows: 

1. Problem Recognition: 
- The failure is located into an application, which is responsible for 

TCP/IP communication. The process and code for creating a ServerSocket 
object should be found there. 
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2. Problem Formulation: 
- It is found that there is only a main method in the application. Thus, it is 

selected as the start element. The formulation is then to investigate the 
flow between it (main) and the target element, the ServerSocket 
instantiation. 

- Locating the ServerSocket is a search activity that requires skill 
knowledge to identify the possible invocations (skill action). 

- The object ServerSocket is the selected target (problem object), the focused 
element. All possible input paths leading to it are found 
(KnowledgeAction).   

 
 

3. Problem Analysis: 
- When the start and the target are fixed, a complete query can be made 

from the main to creating the object ServerSocket. This is simulated and 
the output tape is created. 

- If an object is not created, then the problem should be in the selected 
sequence.  

- The assignments are checked (variable port etc). 
- The user finds that the only things that can have influence in the variable 

port are the command line and the variable DEFAULT_PORT.  
- The value for DEFAULT_PORT is checked. 
- In this particular case, a problem is found in the side effect element, 

considering the value of the variable DEFAULT_PORT.  
 

4. Change Specification: 
- The modification should be done to the area of the variable port. It can 

be written in several ways. Evaluating the best way can be done by 
means of impact analysis, by using forward chaining theorems for the 
current model in order to minimize the number of impacts.   

 
Unit Testing: 

- After the modification, the same code area with the new code is 
inspected again. The correction can be read from the simulation output 
tape without going through problem formulation or preliminary 
analysis. 

- In these cases where the elements that have been modified to form 
complex logic between their environments a theorem prover can be used 
for showing that the newer version uses valid control paths. Inspecting 
side effects is not necessary if there are no changes in the references. 
Instead, in regression testing all test cases are exhaustively checked. 
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7.7 Summary of KnowledgeWare 

XIn this chapter, concepts for capturing information are presented as a process of 
the information ladder. As an input for KnowledgeWare there is the output 
tape produced by SAM (Chapter 6). For the user it is possible to specify and 
check whether the selected features of the outputs are as assumed by using 
hypotheses and theorems (see Appendix 3).  

Because of the computational power, the computer should be used 
systematically as far as possible in order to make the maintenance systematic 
and reliable. In addition to improved performance, computer support can 
improve the communication between persons, because every member of a team 
can see exactly the same models, sequences, and subsequently discuss the 
problems and assumptions for solving very complex problems, which almost 
without an exception require laborious operations in skill, rule, knowledge, and 
meta levels. 1019HFIGURE 36 shows the overall principle for the methodology.  
 

 

FIGURE 36 Resulting model for KnowledgeWare. 
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The task is transformed into problem recognition, which gives the focused 
elements in the model, and into problem formulation that gives a logical 
notation, which describes the sequences and triples that are critical and need to 
be checked. Checking is done by using the atomistic model as queries that 
activate simulating runs. For these runs, the user does model checking either 
manually or by using the theorem prover that gives a proof.  The actions 
concerning the model are directed at levels specified by Rasmussen (1983), and 
the information is classified according to the principles of the information 
ladder.  

With the help of the actions at the different levels the user can create 
presentations to the computer display and to the personal memory by 
chunking. 
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8 TOOL FOR SYMBOLIC ANALYSIS AND 
ATOMISTIC MODEL 

This chapter describes a tool implementation based on symbolic analysis and an 
atomistic model. Requirements for the implementation, architecture selections, 
a data model for the tool, the user interface, and the analyzing process are 
introduced. 

The tool described has been named JavaMaster. Its main task is to 
demonstrate the Turing model and its different connections to the human 
interaction model and to maintenance. Therefore, it has not been optimized as 
far as its usefulness and efficiency for pragmatic purposes is concerned. The 
main goal is to show that a symbolic atomistic model can be realized and that it 
is useful for increasing the user’s knowhow. 

8.1 Requirements for the tool 

Maintenance tools have been described from the program comprehension 
point-of-view in many publications (Tools, 2007; Storey, 2006; Jackson and 
Rinard, 2000; Müller et al., 2000), but only a few articles have been written from 
the cognitive viewpoint (Walenstein, 2002), where the focus should be to 
balance the load between the user and the tool. 

In the atomistic methodology, understanding one element at a time is a 
skill level action (see Chapter 7). If the user is not able to make a skill level 
decision, then a larger display or a set of automatic information is needed for 
the user to progress to the rule action level. If the rule action information, which 
typically is a chain of successive elements, is not enough, then a wider graph 
should be used to enable making hypotheses about the current situation. 
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8.1.1 Selected features for the tool 

The tool implements all technology spaces: GrammarWare, ModelWare, 
SimulationWare (Symbolic Abstract Machine), and KnowledgeWare. It has the 
special ingredients of the atomistic model that has no hierarchy. This unified 
model for all elements enables the user to change abstraction in his/her mind 
depending on the elements in the display. Unlike in UML, there is no need to 
change the diagram to study elements of different levels. 

In order to satisfy the requirements R6 and R7, the JDK library is loaded 
into the model as class definitions (not their code). A maximum capacity for the 
loaded software is evaluated to be 1-10 million source code lines, which 
corresponds to 5-20 million atoms, because it is the same size as a typical large 
stand-alone application. The number of AST nodes is about the same as the 
number of symbolic atoms, derived from the same source, because both have 
been created by grammar structures.41F

42  However, in practice the size of practical 
models may be closer to the range of 1000 to 100.000 atoms, because the focused 
approach allows ignoring irrelevant parts of the code. 

Abstracting the Turing machine 

The purpose of the tool is to implement a construction of an idealized symbolic 
Turing machine with its tapes.  Here the essential improvement for the original 
TM, which only uses bits as input, is to enable the use of symbolic elements 
expressed by the Symbolic language as inputs and outputs. In some research 
articles TM is considered to have two tapes, one for input and one for output, 
but sometimes only one tape is drawn, which means reading and writing of the 
same tape. In the JavaMaster tool we have selected a two tape system, which 
contains a sequence builder for creating an input sequence corresponding to an 
input tape. All output is directed into an output tape, which is a history about 
all executed elements. All elements in these tapes are atoms. 

Dividing the functions according to knowledge levels 

The intentional goal for the tool is to use the categories of Rasmussen (1983) to 
group the actions for the user in the following way: 

- Skill level: An individual element is focused. Its presentation is a 
centered dependency view. 

- Rule level: A flow between two or more elements is focused. Its input is 
a query (also chop in this meaning). The output is an output tape, which 
in fact is an explanation, which can be visualized in several ways. 

- Knowledge level: A collected focused graph between elements 
containing alternative paths for studying cross-cuttings. Its function is to 

                                                 
42 Word97 (Microsoft ™) has 6 million AST nodes and about 18 million links between these 

nodes (Rajamani, 2005a). 
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show the alternative incoming and outgoing flows from the focused 
element.   

 
Furthermore, the meta level introduced by Walenstein (2002) is important in 
program comprehension, because it helps in building up a complete 
information set to cover both the top-level design presentations and low-level 
code models. The meta level can be characterized by diagrams containing 
dependency information about class structures. This level is highly 
correspondent with UML presentations. 

Special focus in partial evaluation 

The purpose of the tool described is, in contrast to traditional reverse 
engineering tools, to present as small amount of information as possible. This 
focused approach should give the user a better chance to find the most 
important information without a burden to explore unnecessary data or large 
displays. The user should form an active part of the cognitive architecture with 
its different agent roles.   

Symbolic execution provides two principal benefits for supporting 
corrective maintenance: 

 
- Tracing information between components is possible symbolically by 

evaluating the scripts of the data flows. This feature includes the analysis 
of JDBC, RMI, Corba and communication. 

- Tracing program flows inside components is possible both for small and 
large software by using partial simulation (PSSC), including desktop 
applications and application-server installations. 

 
The purpose of the tool is to enable tracing both internal component problems 
and the semantics of external components on the same platform.  

8.2 Selected architecture 

For selecting an architecture for the tool several principles were studied. These 
include MVC (Model View Control) and data centered architectures with 
databases or repositories as the main principle.  

At the first glance the generic MVC architecture, which emphasizes the 
concept of the model seemed promising.  However, using a centered model as a 
base proved to be a wrong decision, because the MVC model is a centralized 
artefact, thus very far from the atomistic model where the elements should 
remain as independent as possible. From the atomistic perspective an object-
oriented architecture would seem a better prospect than a centralized one. 
Preferably, each element should be an independent model, with a controller 
feature and the views typical for that element. 
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8.2.1 PCMEF - architecture 

An appropriate selection for the architecture proved to be PCMEF, which holds 
the layers for Presentation, Controller, Mediator, Entity, and Foundation. 
(Maciaszek and B.Liong, 2005).42F

43  Because it doesn’t define a model layer at all, 
it is possible to embed the model into the architecture. Next it is described from 
the atomistic approach. 

Foundation: The most important layer for the atomistic model is the 
lowest level, the foundation, because the data model is based on the concept of 
atom, which doesn’t have a structure. In JavaMaster tool the lowest layer, 
Foundation, was dedicated to the Symbolic clause, because it is a semantic 
communication type agreement, “a software bus”, connecting all the atoms of 
the model by using a single command field, which has clause as its definition. 

Entity:  The only entity in the tool is the symbolic element (atom) of the 
model. It contains all of its information, the links being located in the elements. 
Because the element is strong and expressive by itself, it is not necessary to 
create a model layer or to use any database. The entity layer thus corresponds 
to the data access layer of a typical architecture. 

Mediator: However, a centre for logic functions of the tool is needed for 
organizing data flows from the user to the tool and to model elements and from 
the results of the activities to the display. This layer is called Mediator. The role 
of Mediator is to create connections between the main function as modules of 
the tool: GrammarWare and ModelWare. They together with KnowledgeWare 
form the tool model, AppModel, to describe the main information flow. This is 
three-dimensional according to the Peircean taxonomy with GrammarWare 
describing syntax, ModelWare semantics, and KnowledgeWare implementing 
pragmatics from the Controller-level. 

Transformations are important invisible functions in the Mediator layer. 
Because the whole architecture is based on the Symbolic language, there is no 
need to write numerous transformations between all possible data notations. It 
is necessary to write a transformation from any input notation into Symbolic 
and from Symbolic to any output notation. All these transformations can be 
written by using direct translation, enabling reliable data transfer and proved 
transformations. Typical transformations are conversions from clauses to trees, 
graphs, table displays and xml documents. 

Controller:  One layer is needed for enabling changes in the system. This 
layer is called Controller. In the tool the main responsibility for high level 
changes in the status of the application is given to the ApplicationController class, 
and the responsibility to execute the application model (AppModel) is given to 
the user via KnowledgeWare and to the computer using a façade named Turing 

                                                 
43 The Presentation layer shows the displays. The Controller layer is both for the user to 

select the functions and for the internal software to select a new internal status for the 
software. The Mediator layer contains the business logic and is the centre of 
activities. The Entity layer contains the data model, and the Foundation layer 
contains typically a database interface, the base for the system data.  
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Machine, which delegates the commands to the symbolic abstract machine 
(SAM), which can explicitly run the model elements.  

Presentation: For generating displays and showing them, a Presentation 
layer is needed. In the tool display, components build up a framework called 
UiFrameWork. All UI controls are inherited from the general class 
AbstractController enabling unified programming regardless of the control type. 
In the sheets of UiFrameWork it is possible to present trees, tables, source code 
as editors, xml information, graphs, text comparisons etc. For each control a 
popup-menu is defined to enable context sensitive navigation. 

8.2.2 Summary of the selected architecture 

1020HFIGURE 37 shows the selected architecture with its layers.   
 

 

FIGURE 37 Architecture levels of the JavaMaster tool. 



 
 

 

219

The Presentation layer includes the concepts ViewFramework and UI 
(UiFramework).  The Controller contains the Turing machine interface and the 
application controller and KnowledgeWare. The Mediator contains the 
transformation framework and the application model. The Entity layer includes 
the Symbolic Element implementing the concept atom. The lowest level (except 
the libraries) is Foundation, containing the Symbolic language. 

The architecture of 1021HFIGURE 37 emphasizes the functionality of the Turing 
machine as a motor for the tool to enable simulation via the Abstract Machine, 
which feature forms SimulationWare (see Chapter 6). The user interface makes 
a focused approach possible for the atomistic model. Commands from the UI 
are directed into the Controller, where the KnowledgeWare module is 
responsible for mastering lower level elements, the Mediator. The main 
components of the Mediator-layer are GrammarWare (Chapter 4) and 
ModelWare (Chapter 5) as well as TransformationFrameWork, which is a 
transparent module implementing transformations.  As proposed in Chapter 3 
(see Figure 7), all the transformations are based on the same homogenous 
principle, which has its foundation in finite domain automata. 

8.2.3 Some measures of the tool implementation 

The current version 3.1 (dated 26.9.2007) of JavaMaster contains 258 classes and 
about 105.000 lines of Visual Prolog code. It is functionally divided into parts in 
1022HTABLE 14. 

TABLE 14 The size of JavaMaster source code: classes and source lines43F

44. 

Functionality Nr of classes Lines %/Lines 
1. Foundation 4 3475 3 
2. Entity 36 10500 10 
3. GrammarWare 6 8400 8 
4. ModelWare 12 7800 8 
5. KnowledgeWare 18 11675 12 
6. SimulationWare 21 8900 9 
7. TransformationFramework 72 17050 17 
8. Presentation 10 20200 20 
9. UI 26 9175 9 
Sum 205 97175 100 

8.2.4 Data flow through the tool 

In the tool, the source code is changed into a symbolic atomistic model, which 
makes it possible for the user to get focused information for the maintenance 
process. It is described as a data flow in 1023HFIGURE 38.  
  
 
                                                 
44The lines are calculated by dividing the size of Prolog files by 40, the average length of a 

Prolog line. 
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FIGURE 38 Data flow of the tool.  

The first phase (1) is loading source code to the tool. It is made by selecting a 
base directory or Java files one after another. The GrammarWare module of the 
tool converts the code into a Java parse tree and further into a Symbolic parse 
tree. This data is an input to the ModelWeaver, which is an essential part of 
ModelWare. By using the model it is possible to formulate the problem by 
seeking critical elements and links (3a).  This information is shown in the tool, 
from which the user can select the sequences that are most problematic or least 
known (3b). Abstract machine is then the tool that changes the input tapes 
(input sequence definitions) to output tapes (4).  This output is the base for all 
later program comprehension activities. There is a proof engine, a theorem 
prover, which validates or invalidates the hypotheses of the selected sequences 
according to the on-the-fly rules defined by the user (5a).  The results from the 
proof process show the change candidates that contain the potential locations to 
be modified (6).  After modifications the same software including the 
modifications will be checked again as in regression testing (7).  The steps 3 and 
4 (Act), 5 (Plan), 6 (Do), and 7 (Check) form a Deming cycle (Deming, 2000), 
explained further in Chapter 7.  Some of its main principles are divide et 
conquer, focusing and systematic approach for unsystematic tasks. All these 
principles are relevant in symbolic analysis and in JavaMaster, where the 
purpose is to keep the focus of the user on the same start to target area until it 
will be validated. However, the user can change the focus at any time in order 
to find a more relevant focus area, because one of the main characteristics of an 
experienced programmer compared with novices is the ability to change 
frequently the understanding strategy (Vessey, 1985).  
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8.3 Low level approach, the technology behind the tool 

This section introduces some detailed features of the data flow of 1024HFIGURE 38.  

8.3.1 Demonstrating the architecture by a small code example 

In this section a small demonstration about a Java code is shown to illustrate 
how a simple loop goes through the tool. It shows the internal structures of the 
tool in detail. A while loop of Java is selected as an example:  

EXAMPLE 1. An example loop to be simulated. 

 
1   while (i<10) 
2     { 
3        print(i);    
4         i++; 
5      } 
 
Partial simulation makes it possible for the tool to create a model for this small 
code particle even though it doesn’t have any class definition or any method 
definition or any definition for the variable i.  The code is assumed to print its 
output via the method print, which is not defined either.  

The symbolic notation 

The following is an intermediate Symbolic correspondence for the Java loop 
(lines 1-5): 
 
30 [loop(while([op(rel("<",[ref(refname(amb_name("i"),[]))], 
31   [val(sv(integer(10)))]))], 
32  [get(call(sget([method_name("print")]), 
33    [ref(refname(amb_name("i"),[]))])), 
34   op(math("++",[ref(refname(amb_name("i"),[]))]))]))] 
 
This notation seems complex, but it is very natural for Prolog to handle 
complex data structures.  Lines 30 and 31 keep the conversion result from line 1, 
lines 32 and 33 the result of line 3 (print) and lines 33 and 34 the result from line 
4. Because of abstraction the size of the parse tree here is only about 10 % of the 
size of the correspondent Java parse tree. There were no definition for the 
variable i, thus it is referred to by amb_name(”i”). If there is a definition then 
the reference should have a typed name. 

8.3.2 Graphic symbols for the symbolic Turing machine 

In this section using the TM model and its general functionality are discussed. 
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The topics include presenting the graphic symbols of the tool and the main 
features of symbolic analysis. A dialog for simulating a small code sample is 
used in invoking the abstract machine. 

Showing symbolic tapes 

A tape is a vector of atoms, demonstrating the methodology. In 1025HFIGURE 39 
there is a list of symbolic elements (all code elements except the type 
otherClause). There is a graphic symbol for each element type to present it on the 
tape. The symbolic names are placed in the upper line and the correspondent 
commands in the lower line. The tape in 1026HFIGURE 39 shows the symbolic icons 
for code elements, which have the following symbols: MyModel (the model 
container), MyClass (class), MyMethod (method), Loop 1 (loop), Op1 (an 
incrementation, ++), If 2 (if-command), new MyClass (constructor), Const 1 
(constant), Set 1 (assignment), MyMethod (method invocation) and Seff 1 (side 
effect number 1). 
 

 
 

FIGURE 39 Symbolic icons, illustrating a symbolic Turing machine. 

User interface for tapes and dialogs 

The tool has an object-oriented architecture to support unified processing of the 
symbolic model with all its elements. The Turing tapes have been programmed 
as Windows controls to enable scrolling, navigating, activating, and other user 
features for searching, evaluating, and making decisions about the results and 
the intermediate information. 

When a mouse is moved across an element in any display, the tool shows 
its atomistic notation (the command field) in the atom toolbar, at the bottom of 
the main frame. For example, for a side effect illustrating a result from 
evaluating a condition forever (i.e. 1) the following information is shown 
1027HFIGURE 40:  

FIGURE 40 Displaying an atom in the atom toolbar. 

In 1028HFIGURE 40 number 1 is the command field, where the arrow shows the 
result of the evaluation. In the list box (2) all links to the atom can be seen. Here 

1 2 31 2 3
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it is shown that the elements refer to the element If 1 (if-clause). With the button 
(3) it is possible for the user to change the status of the element. The value 
at(04D41880,[]) is a temporary pointer to the corresponding element in the 
memory, which is not intended for the end user. 

This small, atomistic, user interface is always active to enable checking, 
controlling and navigating through the neighbors of each element. 1029HFIGURE 40 
is the fundamental skill level interface for the user. If it is not felt necessary by 
the user, then other displays can be activated for obtaining rule level 
information.  

8.3.3 Prototyping small code examples 

By using the dialog shown in 1030HFIGURE 41 it is possible to edit, load, compile, 
and test small Java samples. The resulting elements can be seen in the listbox 
with handles.  

 

FIGURE 41 Entering the test code for the abstract machine.  

The current tape is the topmost control of the dialog.. A demonstration of the 
output of the model weaver (see 1031HDefinition 21) is shown in 1032HFIGURE 42. The 
elements for the code lines 1-5 form a symbolic TM model: 
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FIGURE 42 Input tape of the atomistic model derived from 1033HEXAMPLE 1. 

Because there were no host classes or host methods, a symbolic model of the 
SymbolicModel notation was created. It is the first (leftmost) element. In an 
atomistic model there is no order, because the commands define all the 
behavior features. The body of the loop is the last element in the tape. For loops 
a symbolic name is given with numbering starting from 1. The variable i is 
shown as the third element. The print invocation can be seen as the 4th element.  
There are two operations, the first for a relative condition (i<10) and the second 
for auto incrementing (i++). These elements are members of the model.  The 
constant 10 is not shown on the tape, because it is a part of Op 1.  

Running through the Abstract Machine 

Running the example through an abstract machine gives an output tape that is 
ordered from left to right. The output tape (see 1034HFIGURE 43) tells about the 
behavior of the code. The display has been split into two rows. 

 

FIGURE 43 Output tape derived from the abstract machine for 1035HEXAMPLE 1. 

1036HFIGURE 43 contains new elements of the name SEff X, where X is a counter. 
They are side effects (SideEffectClause in the model).  These are essential in 
troubleshooting and program verification. The first side effect signals about the 
initialization of the variable i to 0, which is the default value for the variables. 
The second side effect (SEff 2) signals that the loop contents will be executed 
(redo-fact), the next one signals for a method invocation (print(0)) and the third 
signals that i will be incremented. By using this principle each loop cycle will 
add three side effects into the output tape (just occupying 12 bytes in the 
memory (4 bytes each)). 

In programming side effects and optimizing the size of the output tape 
many principles can be used. The most interesting thing in formulating the 
output tape is the granularity, because it is possible to detect and save all 

…

…

…

…
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possible small decisions made by a Java simulator if in each run-method there 
are constructors that create the corresponding side effects for each activation 
and inactivation for each element. The highest granularity corresponding to the 
perfect atomistic analysis is a functionality, where each entry of each atom and 
each exit from each atom will be saved as a complete trace. 

8.3.4 Capturing knowledge: KnowledgeWare 

For getting detailed information from the program flow, some presentations 
and visualizations are needed, both textual and graphic.  The simplest textual 
presentation for an element is a translation about its command field. Each 
element can be seen as an atomistic element in the symbolic model, by using the 
following notation, which might be referred to as an atomistic mini language. In 
this notation the command is shown with its arguments that are presented 
either as user names if the member is a user symbol (like print) or otherwise as 
element names (like Op 1).  

For example, loop 1 has the following presentation corresponding to the 
original Java clause (see 1037HFIGURE 41, there are more examples in Appendix 3 
considering clause presentations): 

 
50    Loop 1    :      loop: while ( Op 1.) do  { print.  Op 2. } 
 
The user can browse all the code in this atomistic notation in order to seek for 
the critical operations and other clauses. The main use of this notation is to 
enable making rules (see 1038HFIGURE 44) in order to validate the code. The user can 
”stack” lines of this notation in order to create constraints to specify how the 
program should work (or not work). These atomistic lines can be copied 
(copy/paste and drag/drop) from any display of the tool to be used as 
operands for building model checking theorems and constrains for further 
analysis. 

The scope of an analysis can be system wide, component wide, or a 
smaller analysis considering methods or algorithms inside methods, such as 
this simple loop.  By copying the head of the loop and the loop test command 
into a hypothesis display it is possible for the user to define theorems to be 
shown or discarded. This kind of work, setting hypothesis and in order to seek 
relevant information and further proving this information, is very essential in 
all maintenance tasks. 
 

 

FIGURE 44 A theorem is a selected sequence of atoms, consisting of rules. 
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By using the principle where the tool uses the output tape as input and the kind 
of small hypothesis such as shown in  1039HFIGURE 44 as a definition it is possible 
for the user to validate the code interactively without any need to use external 
rule generators, which are often needed in commercial tools. The simplest way 
to specify low level features is to use existing code models as a base and to 
extend it to cover domain specific, user-centered, and test-specific requirements 
by domain elements. A result from checking the theorem can be true or not 
(typically correct or incorrect). 

8.4 Symbolic Turing machine for symbolic analysis 

There are several TM demonstrations that use simple numbers, symbols or state 
machines in their definitions. The construction of this section is different, 
because all the contents have been derived from the source code (Java) and the 
model is atomistic. The logic behind the model was embedded into the 
elements, command by command. 

8.4.1 Principles of symbolic analysis 

Symbolic analysis is a process to evaluate and study source code and to make 
decisions according to the captured information. The technology behind 
symbolic analysis is in general known as symbolic execution (King, 1976). 
Because of the essential role of symbolic evaluation in it, symbolic analysis has 
two focus areas:   

- 1)  An algorithmic approach, which includes simulation.  
- 2) A logical approach, proving, which is intended for matching user’s 

existing knowledge against the information captured from the behavior 
model.  

 
There are two use cases for matching. The first one, making familiar, uses 
matching in order to seek relevant information for building a mental image 
about the code. The second one, troubleshooting, uses matching for finding 
contradictions, possible problems in the behavior model.  Each contradiction is 
a possible indication about a problem. 

8.4.2 Starting simulation 

By using the simulator options dialog of 1040HFIGURE 45 it is possible to control 
simulation and to avoid the problems of a non-terminating loop (Loop Control). 
In Appendix 3 there is a printout obtained from starting the code of Appendix 
1. 

By using this dialog the user can trace branching (branch control), method 
calls (invocation control), and variable references (variable control). The 
simulation can be either a background job or a modal run that reserves the 
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whole computer for it. In 1041HFIGURE 45 the atom Loop 1 has been selected as the 
start sequence. If it is the main method, then simulation begins in the beginning 
of the application.  By using a sequence builder the user can specify 
initialization sequences with their side effects to be used as a combined element 
for specifying preconditions for the coming simulation run. This feature is very 
useful in testing state machines and event handlers. 

In the tool there can be a lot of tapes and specified sequences at a time.  
Each input tape is activated by adding it to a tape control of the sequence 
builder dialog.  The only prerequisite for partial simulation to become 
successful is a correct order of the elements in the input tape. The side effects 
are meaningful, where creating objects is essential in simulating object oriented 
features. For them the tool contains a sequence builder that has an interactive 
process to create constructor elements to the beginning of the tape to respond to 
a correct initialization. 
 

 

FIGURE 45 Simulator option dialog. 

User functions for simulation 

The purpose of the tool is to enable interactive, partial simulation for source 
code (Java 1.5). In it the user has a complete control for all ambiguous situations 
found in the model including unknown symbols, non-initialized variables, and 
classes and objects that have not been loaded into the model. To ensure this, all 
references to unknown or ambiguous situations have been accomplished by a 
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logic that enables user functions (see Selector in Chapter 6). Because of the 
Selector, the user can simulate any logic path of the software wherever, in order 
to become familiar with what is the behavior model when referring to other 
parts of the software. In partial simulation there are frequently situations like 
selecting a type for an object that require user interaction if the simulation 
options have been selected to interactively ask them. The amount of how much 
work they require from the user depends on the software and the size of the 
focus and the evaluation strategy selected by the user. By selecting the non-
strict evaluation options it is possible to simulate the code quickly, in as an 
automated manner as possible by using lazy evaluation and default values for 
variables. When symbolic evaluation options are maximized, all unknown 
values are replaced by the corresponding references. 

8.4.3 The method to use hypotheses for program comprehension  

A hypothesis is created either by copying atoms (copy/paste or drag/drop) 
from the current tape or by specifying them with the help of an element 
selector. The steps of the hypothesis are successive theorems having an and-
relation with each other. The steps are read from top to bottom as in 1042HFIGURE 
46. In the first step two elements are shown (Loop 1 and Op 2). The next step 
ensures that the loop will be ended correctly. By using this simple definition for 
a hypothesis containing only two element references, it is possible to verify any 
loop in Java code, one after another. 
 

 

FIGURE 46 Configuring a hypothesis for a loop. 

The principle of 1043HFIGURE 46 for making a logical abstraction about the original 
source code resembles the approach of Boolean programs (Ball and Rajamani, 
2000). Microsoft uses Boolean programs for model checking purposes 
(Rajamani, 2005). 

By using a compound term it is possible to define more and more complex 
constraints easily. For example an or-function can be defined by adding an or-
expression line and the selected elements below to form an or-relation. From 
the tool’s viewpoint the or-definition means that the first element in the tape is 
fetched and the pointer will be transferred after it. If no element in the or-
elements matches, then a Boolean result false will be generated. An and-relation 
means that all listed elements should be in the tape. The pointer will be skipped 
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after the last of them; otherwise false will be returned. If any of the steps fails, 
then a contradiction will be shown. 

Theoretically the principle of 1044HFIGURE 46 is a compiler, where the content 
is the object language and the selected hypothesis is the metalanguage (Tarski, 
1983). They form relationships with each other that describe the correctness.  

8.4.4 User interface for proving simulation results 

A dialog to enable a program proving process is shown in 1045HFIGURE 47.  
 

 

FIGURE 47 Interactive theorem prover for Java programs. 

In this display the current tape is in the left control, while the hypothesis will be 
defined in the right control. The proving process works as follows. The first 
thing is to load the simulated tape into the listbox by using button (1). The tape 
is shown below that button. A new theorem about the behavior model can be 
created by clicking button (2). It opens a subtree in the right, here a since-
theorem meaning a start condition. The theorem can be built by copying 
existing elements from the tape by selecting Copy in the tape (3). The elements 
will be shown after the current position of the hypothesis (4). When the theorem 
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is ready, it can be checked by button “Start prover” (5). The result is shown in 
(6).  This was a short description of the automatic proving process. An 
interactive proving process contains successive human actions combined with 
computations of the tool.  

Often there is too much information in the tape, but it can be filtered in 
multiple ways. Subsets from the tape can be selected by omitting irrelevant 
flows (7). This is done by defining an understanding strategy, which activates a 
functional filter that specifies the types of elements that the user wants to follow 
and validate. Furthermore, the depth of element invocations to be shown in the 
display can be limited, and the number of successive elements in the tape (9) 
can be reduced.  

The process based on 1046HFIGURE 47 can better show how the program might 
work incorrectly.  Proving program correctness automatically is not possible, 
but it is possible for the user to check the critical sequences by using hypotheses 
as described in the next section. 

Deductive and inductive proving by using hypotheses 

The hypotheses are connected to the symbolic model and via it to the real life 
by using model elements. Domain elements are special case elements that can 
be mapped, in the tool, to any original element. Domain elements are either test 
cases, pointers to use cases or any specific domains or terms relating to the 
maintenance task.  Especially important items to be mapped to the model are 
JDK invocations, because they build all external influences from any Java 
application (in addition to internal interfaces).   

Deductive proving is a process to show whether a selected tape 
corresponds to the user's initial knowledge or not. The principle of the tool 
relating to that is highly compatible with the definition of Peirce’s deductive 
argumentation (Peirce, 1958). A deductive proof doesn’t create new 
information. It replies either true or false. Although it is a very simple method, 
it can be used exhaustively to test and verify to ensure, opportunistically, a 
large application. 

However, in planning changes and fixing bugs, using deductive proving is 
not enough. Inductive and abductive reasoning are also needed.  By using the 
command feature of the formalism it is possible for the tool to collect 
information to the user for inductive proofs, also. For example, some method 
arguments are important to signal about an erroneous or a valid function. It is 
natural that these arguments are collected systematically to the memory of the 
tool. The user then has an excellent possibility to infer what are the differences 
between the valid and invalid groups.  

8.4.5 Code understanding process 

Code understanding is a process for understanding ProgramConcepts via 
ProgramContexts that are simulated. It is an essential phase of executing each 
maintenance task before making changes.  Usually it is an iterative recursive 
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loop that goes through each step one after another. If the information of a step 
can be found in the relevant tape (a sequence) then the pointer in the tape will 
be transferred and the commands in the next step of the current hypotheses are 
used.  

Hypothesis proving then resembles an acceptor formalism, which 
converts a result from the current tape validated according to a specification to 
a Boolean result true or false. If all the steps can be satisfied to be true then there 
are no contradictions and the process gives the expected answer (no 
contradiction). Otherwise the step that didn’t succeed will be shown to the user 
as a possible problem location.   

8.5 Practical use case  

A typical case for searching an error from an object-oriented program is the 
following: 
 

- The analysis is started from the main method of the critical components.  
These sequences are run to get their program flows. 

- The most probable sequence is simulated. 
- Erroneous situations are defined by using constraints and functions of 

temporal logic (see Chapter 7 for the formalism). 
- The status of each object is inspected to ensure that its start is valid. 
- In simulation the tool informs about illegal values causing a 

contradiction. 
- If no contradictions are found then more and more sequences are 

checked in order to find a side effect that can have an influence to this 
illegal status. 

 
The search stops either to a situation, where change candidates are found, or to 
a situation, where a cause cannot be found, because the problem is outside of 
the model. 

8.5.1 Practical example, a Server 

A demonstration program illustrating the functionality of a TCP/IP-server is 
presented in Appendix 1 to demonstrate theorem proving and the information 
captured from the code  (Flanagan, 2000).   

Let’s assume that there is a problem in the control flow starting from the 
main (line 48) and ending to the constructor Server of line 54 above, which 
prevents executing this flow (a few lines).  From the approach of TM it is a one-
dimensional task of investigation, where a possible error can be localized into a 
certain flow based on the program model (Pennington, 1987). Because of this 
simple approach the error can mathematically be defined by listing the 
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corresponding atoms. This list corresponds to the problem categories of 
1047HFIGURE 49. 

Selected use cases for understanding the Server code 

In this section the following cases are shortly introduced 44F

45: 
- Activating / releasing problem 
- Data-oriented analysis 
- Loop analysis 
- Analyzing object life cycles 

 
Although the selected cases are quite different, all of them can be investigated 
by using simulation. In Appendix 3 we have results from the simulation for the 
code of Appendix 1.  

Activating / starting problem 

In Chapter 7 questions of how to control solving a maintenance task are 
introduced in order to illustrate their process-based nature. In this section a 
more detailed approach for a single output tape is discussed (Letovksy, 1986).  
Typical questions made by a Java programmer in order to understand a startup 
of any activity of an application are the following: 

- What: Does the Server start or did it start? 
- How: How did it start? 
- Why: Why didn’t it start? 

 
The first one, what, is a formulating question. It needs only a skill-level action if 
there is an informative view available. The second one, how, needs normally 
extensive rule-level actions, but the tool can help the user in changing rule-
actions to skill-level perceptions, because the information can be seen in the 
tape without mental simulation. The third one, why, requires troubleshooting 
efforts for scanning the tape backwards.  
Answers for all these activation questions can be obtained by investigating the 
results of simulation, which has properly started with the use of the 
corresponding options (see Appendix 3). 

1048HFIGURE 48 shows a subset of the result of 1049HTABLE 30 in a tool dialog.  It is 
possible to limit the kind of information shown in the figure in many ways. 
With the help of the selector dialog, the most relevant part of the relevant 
sequence can be packed. For example, side effect 9 can be found by selecting 
side effects from any selected method (here the constructor Server).  

                                                 
45  Some typical understanding needs are ignored in this section. For example, 

producer/consumer problems are not discussed, because they require investigating 
two or more tapes simultanoeusly. However, the principle of investingating is the 
same as in using a single tape, but the tapes are thought to be run sequentially. 
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FIGURE 48 Simulation results in the theorem prover dialog. 

Rather than creating concrete PC tools, the purpose of this research is to create a 
formalism for PC. 1050HFIGURE 48 demonstrates a symbolic flow and its 
information, where every line contains an output obtained from a simple pretty 
printer for the Symbolic language. The same results are shown in Appendix 3 in 
1051HTABLE 30. By tuning the output, it is possible to tailor the layout to be used as 
an end-user display, because more sophisticated displays can easily be created 
by transforming this information into a more graphic notation and to XML. 

Each line in the display starting from the left holds information from a 
command.  The side effects are shown as subtrees, including several lines 
showing corresponding parameters such as invocation arguments, values to be 
assigned and calculated values. Next their use in problem analysis is discussed. 

Each starting sequence can be validated and inspected perfectly due to the 
information of the tape. It is recommendable to explore at first the object flow if 
the activating occurs in an object. The next principle to explore is control flow. 
The third one is data flow. If it can be found that there are problems in any of 
these flows then the most critical operations of the elements must be evaluated. 

8.5.2 Problem Recognition 

The problem is mapped to the tool either as a use case, as a test case or as a 
JDK-method call describing a function.  When this simple phase has been done, 
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it is possible to start the analysis. By using meta information, typical for UML-
diagrams, it is possible for the user to focus on the most critical classes and 
objects. These critical elements are called problem objects (Chapter 2). In 
1052HFIGURE 49 the problem objects are selected manually to be the class Server and 
the method ServerSocket (constructor).  For them the tool automatically searches 
the corresponding invocations and proposes the methods main and Server 
(constructor) as the target elements for the problem analysis. 
 

 

FIGURE 49 Problem formulation dialog. 

8.5.3 Problem formulating 

In problem formulation the purpose is to find the program flows that go 
through the target elements and problem objects.  We propose that navigating 
knowledge level information is implemented by using a double tree-controller, 
which has both an incoming tree describing the reference tree of the focused 
element backwards and an outgoing tree forwards describing the called atoms 
with their side effects.  Formulating enables seeking critical control paths in the 
code in two directions: forwards in the invocation tree and backwards by 
seeking the references.  By navigating the call hierarchy the user selects a chop-
query: Start atom – Target atom.  For example, considering our problem 
(Appendix 1) we select the chop with the target new ServerSocket, if the task is 
specified as how to correct a problem in creating a TCP/IP-connection. 
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8.5.4 Simulating critical paths 

Once a critical sequence has been identified, it is then simulated. The simulation 
can be done either for an application, a package, a class or for a method, or even 
for only some statements. Because of the encapsulation feature of OO-programs 
all classes form a unique structure whose behavior can be analyzed apart of 
other classes (except inheritance). By simulation a side effect model can be 
found for each method and each sequence.  

The code to be simulated is selected with the help of the sequence builder. 
Because of the Turing-model and its call/return-architecture each method can 
individually be simulated by starting it in the beginning of the method (when 
the parameters are initialized). For dynamic methods, a constructor invocation 
to the input tape should be defined in the sequence builder for enabling correct 
dynamic bindings. 

8.5.5 General rules for detecting problems in the output tape 

Searching and making observations are skill-level actions based on the tapes.  
However, the biggest problem in analyzing a large program flow is its huge 
size. In order to avoid laborious scanning and reading, the tool provides 
automated functions.  A total of six different types of tool support are described 
in this section. 

Selecting an understanding strategy for analyzing tape information 

Once the tape and the target elements have been detected, the tape at hand can 
be deductively evaluated completely. This is called flow analysis. According to 
the principles of bottom-up PC and object-oriented PC the critical things in the 
code are function (responding to the main goal), control flow (code), data flow, 
state dependencies and operations. These can be selected by clicking the 
corresponding button in 1053HFIGURE 50. 

 

FIGURE 50 Selecting the understanding strategy. 

It is natural to assume that if the PC needs are organized according to the 
categories of 1054HFIGURE 50 then the fault types are classified in the same way. The 
most challenging topic related to object-oriented software is the object life cycle, 
being also the hardest to tackle. These flows are discussed next.  
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Tool support for understanding functionality 

1055HFIGURE 51 shows a snapshot about analyzing frame activities of the code. The 
object referred to is Frame, whose class contract is detected by JavaMaster from 
the source of JDK (the code is on lines 24-28 in Appendix I).   

The display is used as follows. If there are some problems considering UI 
in the application, then all relevant Frame-invocations can be triggered into the 
atomistic double tree. By using problem formulation it is possible to select 
problem objects as candidates which refer to the problem. Thereafter, by 
simulation, it is possible to obtain parameters and sequences for Frame-
activations. If the problem formulation has been made correctly, then the 
sequence should contain the necessary data for solving the problem, which is a 
skill-level action done by the user.  
 

 

FIGURE 51 Display for validating functionality. All functions are shown. 

From 1056HFIGURE 51 it is possible to see that for the method add and for the method 
resize two arguments are fed each. For the addition these are the constant 8 that 
contains a string ”Center” and a variable connection list and for the resizing of 
these are the constants 9 and 10 (not shown in the figure). If there are problems 
in these invocations, a process to create values for the methods where either 
control flow, data flow or object flow contains the necessary information is 
needed. These flows are described next. 

Tool support for understanding control flows 

1057HFIGURE 52 displays the loops and conditions for the selected code.  If the 
problem is a stopping problem, then the reason for it can be found in one of 
these elements. There are as many "guilty" candidates as there are elements in 
the list. The same rule can be used in detecting incorrect logic paths. If there are 
only a few elements in the list then the problem is rather easy to fix. The main 
power of the symbolic analysis is in how it can connect different views into a 
unified focused approach. Loop 2 below synchronizes TCP/IP-connections (on 
the line referring to it). In case of problems the assignments for the variables 
client_socket and connections are very critical if the network communication is 
not valid. They can be traced by analysing the data of 1058HFIGURE 53. 
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FIGURE 52 Display for validating a control flow (side effects not shown). 

Tool support for understanding data flows 

In data analysis the program flow is traced in order to detect definitions for 
variables and their uses. The principle of the gen-kill algorithm is a reference for 
this purpose (Dwyer and Clarke, 1996), because it almost simultaneously 
evaluates variable definitions and their assignments and the user, although 
simulating a tape is mathematically easier considering only one logic path at a 
time.  
 

 

FIGURE 53 Display for validating a data flow. 

1059HFIGURE 53 shows the initialization sequence of the objects of the application 
and after them the assignments of the critical variables port, listen_socket and 
threadgroup. The values to be assigned are below the line containing the equal 
operator. 
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Tool support for understanding object flows 

Research considering object flows is important, because in tools objects are 
invisible and temporary. Therefore it is not possible in typical cases to 
investigate their history or attributes when they are still alive.  In 1060HFIGURE 54 a 
hypothesis has been defined for tracing DataInputStream (see Appendix 1).  

 

FIGURE 54 A hypothesis for tracing objects, here DataInputStream. 

In order to create a valid object flow or any subset that should define a 
valid sequence for it, a theorem can be built be dragging the necessary elements 
from the tape and dropping them to the hypothesis-display. In this way it is 
possible to detect three kinds of problems: 

- Problems in the creating and destroying logic of objects. 
- Problems in invocation parameters of any reference. 
- Problems in precedence of elements. 

 
If the number of possible combinations is too complex to be defined by logic it 
is still possible to gather all the object invocations in a summary, where they can 
manually be investigated. Therefore, the next section discusses the manual 
work, skill-based activities based on the information of the tapes. 
1061HFIGURE 55 displays an object flow, which contains the constructor command 
with its parameters. This display is useful as the first step in cases where there 
are problems in creating objects.  After the constructors have been localized (in 
their order), this information can be used for formulating failures like memory 
allocation or consumer/producer problems. 
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FIGURE 55 Display for validating object flows, constructors. 

Tool support for understanding state-oriented functions and side effects 

In object-oriented code and especially in partial simulation it is essential to 
know the most important states (see 1062HFIGURE 56). These are detected as side 
effects in the symbolic model. The side effects are classified into assignments, 
invocations, branches, tracing loops and many other smaller facts. A side effect 
can describe any function or evaluation in the code that has influence in the 
program flow or data flow. 
 

 
 

FIGURE 56 Display for validating state-oriented functionality. 

It is possible to use the side effect information (the same as the contents of the 
state model) as input for the next simulation with their values. The tool can 
read the previous output tape values to the next output tape. This principle is 
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analogous to the theory of the concept environment in computer semantics. An 
output tape is an environment to the next simulation. 
 

Challenges in understanding individual operations (computations) 

By following the side effects of the tape it is possible to simulate each 
computation both mentally and by machine (see 1063HFIGURE 56).  If a list for valid 
values is known for each side effect then it is a very straightforward process to 
find possible problems in the most relevant flow considering these side effects. 

Challenges in evaluating sequences with missing elements 

In cases where the program flow doesn’t contain wanted elements (such as an 
element that creates a Server object) the user can follow the program flow from 
the hypothesized starting point by simulation. A procedure to solve what is the 
best guess (candidate) to be studied next in order to find where the program 
takes a wrong branch is a deterministic process where two main approaches are 
useful:  

- By using heuristics it is possible to follow the different categories: a 
functionality, control flow, data flow, object flow, or state flow. 

- By splitting the current sequence into smaller and smaller subsequences 
to investigate (for example investigating one half, then splitting it to two 
parts etc) the problematic place can be found.  

 
Based on these preliminary selections the earlier elements in the tape can be 
investigated in order to find the unwanted phenomenon. The tool support for it 
is illustrated in 1064HFIGURE 48, 1065HFIGURE 54, 1066HFIGURE 51, 1067HFIGURE 52, 1068HFIGURE 53, 
1069HFIGURE 55, and 1070HFIGURE 56.  

8.6 The concluding remarks related to the PC process 

8.6.1 Problems in visualization 

1071HFIGURE 57 shows a small snapshot of a relatively large dependency model 
captured from the Server application. 

It can be concluded that displaying dependencies requires, from an 
average work station, a lot of time for drawing and a lot of space for showing 
the result on the screen.  Typically the graphs are generated at night in order to 
avoid computer load during working hours. A large graph can contain 
thousands of nodes. Therefore, it would be useful for the user to use a focused 
approach in tracing critical sequences, which is rather fast in all normal 
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situations. There will be no irrelevant information once the displays have been 
filtered by the fault category. 

The quickest way to get dedicated information from a big mass is to 
request it from the tool, not to navigate large displays like that of 1072HFIGURE 57, 
where a lot of time can be lost in seeking information. Instead, when making a 
first contact to software, more general displays to describe metaknowledge are 
useful.  

FIGURE 57 A draft considering a snapshot of a dependency model. 

8.6.2 Some observations relating to the atomistic model 

Next some observations about the tool and its use for the atomistic model are 
discussed: 

- Implementing a user interface for an atomistic model is not problematic, 
even though there is no standard for them. The atomistic notation, 
shown earlier in the tiny controls, is an ideal way for the user to 
investigate and navigate the code model, because as the most simple 
notation it enables focusing. Furthermore, because all its elements are 
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similar and small and formal, it is possible for the user to trace all atomic 
links between atoms in the traditional way of navigators. 

- UML-displays and typical specialized displays for source code are more 
complex, because most of them do not contain a unified model to 
connect all the elements with each other.    

- Visualizing results is a problem for a focused graph, because studying 
large displays entails much scrolling work for the user and the 
connections (edges) in a graph can easily disappear behind the corners of 
the current display, resulting in scanning problems. 

- The argumentation process is a promising area, because it leads to 
automatic explanation generation from formal, coherent input 
information. The tool based on Prolog is ideal for deductive 
argumentation. By using the method of theorem proving it is possible for 
the user to collect systematic information for inductive reasoning, too. 
The same information is useful for abductive reasoning as well. But in 
the cases of inductive and abductive reasoning the user is mostly the one 
to make the decisions. 

- The theorem proving process described has a formalism of a higher 
order logic, which has a strong theory background. The JavaMaster tool 
allows programming typical model checking and theorem proving 
algorithms, because it is compatible with temporal logic (see 1073HDefinition 
46). 

- The biggest problem for symbolic execution is how JDK references can 
be captured. In the proving process every JDK invocation is a black box 
that should be used as an axiom, not as a function call returning actual 
information from the JDK library. This discontinuity caused by missing 
JDK simulation can be alleviated by using Javadoc information as 
auxiliary information for matching arguments of JDK references. There 
is a possibility to load critical JDK classes to the model, too. 

8.7 Summary of the tool implementation 

The tool demonstrates the methodology of the symbolic atomistic model 
including the realization of GrammarWare, ModelWare, Abstract Machine, and 
KnowledgeWare. In the user interface there are functions for loading code 
(GrammarWare), weaving the model (ModelWare), running simulation 
(Abstract Machine), and capturing information from the simulation results 
(KnowledgeWare). See 1074HFIGURE 58 for these. 

The tool connects source code analysis and model checking and 
verification with the range of test applications on behalf of its interactive 
theorem prover. This unified principle provides several practical use cases both 
in programming and in maintenance, because software development is 
typically iterative work where inspections and modifications are done 
frequently.  The drawback of dynamic analysis when used for each 
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modification step as the only method is the unproductive and laborious 
additional work for filtering the result, due to which the productivity of 
development can remain rather low.  Instead, with the help of symbolic analysis 
monitoring the behavior of an object or a sequence is much more flexible and it 
is easy to focus to the problem area of the code. 

In this chapter the levels of user actions are described based on tool 
features. It is the tool’s contribution to lessen the burden of the user by 
transforming knowledge and rule level actions to skill actions for the user so 
that the user can make explicit observations about the program model. This 
makes it easier for creating and updating the situation model in the user’s head.  
What is remarkable here is that the low level skills can accurately be defined 
according to the grammar terms. This principle makes the skill-level 
understanding process straightforward using ProgramContexts. In this way the 
user can orient and focus according to the statements that are the most 
important in each case. The tool can support this grammar-based thinking to 
filter out those elements that are not relevant. 

 
 

 

FIGURE 58 Layout of the tool. 

In the JavaMaster tool some types of references (refClause) and some operations 
(opClause) have not been programmed completely, due to the efforts that they 
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would require in programming and testing. Our purpose in this chapter was to 
demonstrate that the created model structures work in the user interface and in 
simulation as assumed. The status of the tool can be improved in future 
projects. 

The results obtained from simulation are more accurate than the results 
obtained from the usual dynamic analysis or static analysis.  The main reason 
for the accuracy of the tool is due to symbolic evaluation, the Symbolic 
language, the atomistic model with the atomistic semantics, and the simulation 
process, which has a full access to all small phases of the atoms' run methods. 
Another advantage of the symbolic analysis is better information access, 
because it allows many specific formal analyses to be run based on the 
information of a simulation output. Some examples about more specific 
analyses include analyzing deadlocks, memory consumption, object life cycles 
or producer/consumer-problems. 

As a conclusion, the tool, described in this chapter, demonstrates a 
systematic method to investigate and navigate the source code for 
comprehension purposes. It supports multiple knowledge layers and a focused 
approach for capturing most relevant information.  The only level that the 
computer can do is the rule action, which takes from a computer only some 
billionths of a second. Because the performance of the user in rule-level 
computations is only a fraction of the one of the computer, all possible rule-
level actions should be directed to the computer, whose output should help the 
user for building abstract mental models. 

Because of its symbolic information and the focused approach, the process 
and the tool described in this chapter suit best to corrective and adaptive 
maintenance, where the challenges to follow and trace program behavior are 
strong. For that, dynamic analysis can be inflexible with its preliminary 
arrangements and laborious analysis operations. Symbolic analysis is, on the 
other hand, a thorough analysis method that allows partial simulation and 
evaluation of any sequence of the code in any situation in order to increase the 
user’s knowledge for building the next successive program versions.  
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9 RESULTS: 
A UNIFIED THEORY FOR PROGRAM 
COMPREHENSION  

This chapter summarizes the methodologies and observations related to the 
research. It includes a short history, a summary about the main concepts and 
the technology spaces, as well as a unified transformation model to connect all 
the main theories together. The last section describes shortly the goals that were 
listed in Chapter 3.  

9.1 Short history of the work 

In this section a brief history about the work is presented for the purposes of 
possible future work. 

9.1.1 The first research approach 

This research started in 2004. The initial main focus was to create a Prolog 
notation that could form a base for Java simulation. Early in the beginning it 
became clear that it is possible, by using Prolog structures, to express all formal 
structures of typical programming languages as axiomatic semantics. 
Simulation was then a problem because of inheritance and some other object-
oriented features of Java. As the dissertation was to deal with program 
comprehension, there was a rigorous need to handle all the elements of the 
code in the tool at the same level, and not hierarchically, because the 
programmer had to be able to connect the elements with each other in his/her 
mind, without being dependent on hierarchies. Strong and spontaneous 
connectivity, which is often needed for code investigation processes, demands a 
very compact and small entity as a foundation for the code structures. This 
seemed a very promising idea in the early 2006. 
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9.1.2 Toward a unified theory 

Attempts to maximize the independency of elements lead in summer 2006 to 
the first trials of a reductionist model, where elements were to be indivisible 
atoms. The connecting feature between these elements was found to be a Prolog 
predicate. Thus the construction of an atomistic hybrid object was invented. 

Building a hybrid object became a fruitful, though a difficult, challenge. 
How was one to make a tool to automatically produce very small hybrid objects 
without loosing the semantics between the elements? The model weavers of 
UML in Atlas and other tools seemed simpler, because their structures are more 
natural and the rules between their elements are easier to understand. It was 
thought, in 2006, that the most difficult things in programming are building a 
model weaver and simulating the model. 

For simulation some help was found in AST implementations (Jones, 2003) 
and in attribute grammars (AttributeGrammars, 1998; Sierra and Fern´andez-
Valmayor, 2006), as these sources introduce evaluation features. Nevertheless, 
object-oriented features remained challenges that had not been described in 
code simulation covering the whole language from low level structures to the 
semantics of class hierarchies.  An essential problem area in analyzing 
simulation possibilities for Java was how to define and model dynamic features, 
inheritance and the yoyo-phenomenon.  

After a thorough assessment, a clear decision was made to avoid dynamic 
analysis in all functional features. Dynamic analysis demands preliminary work 
before a program is run and often filtering and sorting information after the 
run, too. A clear goal for the new symbolic analysis, therefore, was to provide, 
as far as possible, a query based user interface which would enable that analysis 
to be done whenever required and without any preliminary arrangements for 
any part of the code. The user should have the responsibility and all the power 
to select the analysis freely. 

Programming the simulation process for the atomistic model seemed a 
very difficult challenge. Some help for solving this problem was found from the 
theory of the abstract machine, automaton, and the Turing machine (Hopcroft 
and Ullman, 1979). When studying the formalism of automaton and atomistic 
elements, it was found that, seen from outside, the elements work in a similar 
way. It was then natural to maximize this similarity in the architecture of the 
model, and a unified operation for the simulation was selected to be the run 
method.  Considering the architecture, it became evident that the symbolic 
language should form the base class for the whole model in order to make it 
formal. The element groups could be its subclasses contributing thus to the 
conceptual hierarchy for the model. 

In the first experiments, early in 2007, the run methods of the elements 
were considered to be typical tailored code, where different elements do not 
have any common features.  However, in studying the formalism of Turing 
machines it became evident that in fact there is a common formalism also 
between all the run methods. Each run method is like a small Turing machine, 
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which can be presented as a state table.  These run methods were programmed 
early in 2007. 

The last phase in the study was to declare the role of knowledge in the 
atomistic program comprehension model. This consideration led to the theory 
of cognitive architectures, where a human is modeled as a virtual architecture.  
In this summary, the ideas from the cognitive research (the information ladder, 
semiotic categories, and others) and the action model described in the chapter 
KnowledgeWare may be thought as the main contribution of this dissertation, 
because these connect the manual work and the automated computation theory 
into a unified program comprehension model. 

In the next section the evaluation of the development process and all the 
resulting feedback since the year 2004 is discussed. This chapter is also a 
summary to connect the most essential definitions into the main parts of the 
work. The description starts from the grammar (Java) and ends to the 
maintenance process. 

9.2 Concepts for PC 

The main concepts are summarized next in order to discuss the methodology 
presented in Chapters 4, 5, 6, and 7. 

9.2.1 Splitting the scope of the research to technology spaces 

The purpose of the symbolic analysis is to automate the transformation process 
as far as possible, but because of the complexity of object-oriented code, some 
decisions must be made in order to remove ambiguities of the selected software.   

Because of the methodology of the interactive partial simulation it is 
possible for the user to specify which classes and types and polymorphic 
methods are simulated.  Thus the user is able to analyze the whole object-oriented 
code piece-by-piece in a preferable order (X in 1075HFIGURE 59).  

FIGURE 59 Data flow in the methodology. 
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This is a significant new contribution, because by using this focused approach 
the user can learn and have confidence on how each part of the code works. The 
problem in partial simulation is how to understand side effects. Therefore, the 
main user interest should be directed into the inputs and outputs of the 
sequences. These have the formulation of the Hoare triple {P} Sequence {Q}, 
where P means input side effects and Q output side effects for other sequences. 

The implementation of the output tape (Y in 1076HFIGURE 59) is effective, 
because only one object handle is needed for each step in the tape, occupying 
only four (4) bytes each. So creating an output tape for a sequence of one 
million instructions requires only four megabytes. 45F

46 The output Turing style 
tapes can reside on a disc or in a database to ensure very challenging simulation 
sessions. The model can also be used in real-time from a database or from a 
disc. 

The purpose of program comprehension is to help creating new 
installations. The result is best if the tool provides a minimum set of 
information for each change candidate; usually the amount of code and its 
dependencies are the biggest challenge for the programmer. Hence, a theorem 
prover would be an excellent tool for minimizing source code information and 
maximizing its practicability in the software process, because it removes all 
valid sequences. Only critical and invalid information can be seen in the 
display, because the output of the theorem prover (Z in 1077HFIGURE 59) expresses 
the contradictions between the initial knowledge of the user and the current 
status of the software.  

In deductive proving the result is either positive or negative, 
corresponding to unit tests and detail tests. The theorem prover enables 
inductive reasoning, too, because the user may want to collect critical 
information such as method activation frames (invocations) in order to enable 
separating valid and invalid sequences from each other.   

The principle of the focused approach aims at immediate verification of 
the code, where the bugs and problems are detected as soon as possible. 
Outsourcing of testing does not remedy this immediate need. That’s why we 
propose a new testing paradigm, agile testing, which should allow the 
organizations to develop their own testing policy. Symbolic analysis provides 
better quality and feedback for the programmer than a strongly distributed 
testing organization alone can.   

The output of simulation (Y) holds the object language information (Tarski 
1983) describing problem flow in the Symbolic language. The relations between 
elements in the tape that are meaningful for the user build up a metalanguage. 
This has a formalism of the metaClause in the Symbolic language. For this 
metalanguage, in relation to problem isolation, the flow categories built on the 
theories of Pennington (1987) and Burkhardt et al. (2002) are useful in 
minimizing the active contents of the tape, including either the control flow, 
data flow, object flow, JDK functions, or side effects. For this minimized 

                                                 
46 The size reserved by the model depends on the development tool. It has not been tested 

in this research, because performance questions were ignored (see Chapter 3). 
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information the user creates his/her hypothesis H in order to learn inductively 
the problematic elements in the code.  The output Z is then a function Z = g(H, 
f(Y)), where H is the current hypothesis and Y is the output from the current 
simulation starting from the element X. 

9.3 Technology spaces 

In this section, short summary tables for each technology space are discussed as 
follows: 

- GrammarWare (Chapter 4). 
- ModelWare (Chapter 5) 
- SimulationWare (Chapter 6) 
- KnowledgeWare (Chapter 7), which has three tables:  KnowledgeWare 

input,  KnowledgeWare process and KnowledgeWare output. 

9.3.1 GrammarWare 

1078HTABLE 15 shows the most essential grammar symbols in expressing the source 
code model.  

TABLE 15 Grammar-oriented symbols of the model. 

ID Name Definition Notation/Use 
S Symbol A code structure, either a user 

symbol or a grammar term. 
SymbolicName. 

O Object Object is the construction behind 
each symbol. 

Object in the tool is a 
class. 

L Link (logic) Links create the logic by using 
predicates between the elements. 

link (linktype, 
Element). 

E Element (Atom) Element is a member of the model 
(object).  

SymbolicElement. 

C Clause The main concept of the symbolic 
language. 

Defined in the 
Symbolic language. 

CMD Command Functionality of an element. clause. 
ARG Command 

Argument 
Argument of a command, 
maintains grammar logic. 

Pointer to a called 
subelement. 

 
During the development of GrammarWare it became evident that using an 
element E as a key symbol is essential. In programming the symbolic model the 
concept of CMD became important to express the formal nature of the model. 
When programming simulation, the argument ARG became essential, because 
the branching logic goes through the arguments. One of the main features of the 
symbolic atomistic model is the run method to convert the axiomatic semantics 
into operational semantics.  
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Results 

Some of the clearest observations from 1079HTABLE 15 are the following: 
- Traceability: All information in the model can be traced backwards to the 

original source code. 
- All information in the model is in the notation of a clause. This makes 

programming rather straightforward. 

9.3.2 ModelWare 

Due to the atomisticity of the model the concept of the model itself should be 
very reduced, because the elements should form the strong part in the model. 
The main symbols related to the symbolic model are given in 1080HTABLE 16. 

TABLE 16 The main symbols of the atomistic model. 

ID Name Definition Notation/Use 
M Model A container to hold model 

elements. 
SymbolicModel, an object 
inherited from 
SymbolicElement . 

A Analysis A function to derive specific 
information from the model. 

Traversing algorithms, a 
metaiterator. 

Q Query Query is a command to start an 
analysis. 

An interface to the model. 

Results  

The observations are: 
 

- A class named SymbolicModel, describing the symbol M, was established 
to contain element handles for XMI generation and for user interface. 

- The conclusion after the development was that there is no need to refer 
to the class SymbolicModel in simulation. This is very important in 
strengthening the idea of atomism. Instead, the references were made to 
the elements E directly. 

- The greatest need for the concept of the model M was in the practical 
approach when programming maintenance tasks, because in problem 
formulating there is a strong need for the user to be able to freely connect 
the different parts of the model in order to make a query, Q. The specific 
needs in problem formulation were responding to the concept A, and 
searching constructors and cross-cuttings within objects. These were 
implemented by high level metaiterators that traverse through the model 
seeking wanted elements. 

- The use of a query Q as the main symbol was replaced later by the 
Turing model. 
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9.3.3 SimulationWare 

For enabling simulation an abstract machine was defined. Its main symbols are 
stated in 1081HTABLE 17.  

TABLE 17 The simulator model. 

ID Name Definition Notation/Use 
SAM Abstract 

Machine 
The part of the tool that 
simulates the code. 

Simulator to contain 
the program logic. 

RUN Run method The method to simulate the 
model. 

Call = Element:run(). 

TM TuringModel Abstract machine is an 
automaton, including input and 
output tapes and a control unit. 

Serial execution model 
with read and write 
heads. 
 

IN InputTape Start of simulation, containing 
elements. 

Input sequency with 
preconditions. 

OUT OutputTape Output of the simulation. List of output 
elements. 

SELECTOR Selector Dialog A tool for enabling object-
oriented simulation. 

A set of dialogs for 
selecting the program 
flow. 

SIDE 
EFFECT 

Side effect SAM writes onto the tape the 
results from each evaluation.  

Side effects illustrate 
the program flow, 
whether good or bad. 

 

Results 

- The idea of SAM came from the theory of operational semantics, where it 
is stated that for implementing operational semantics in practice, an 
assumption about an abstract machine is needed. 

- The role of data capture from the elements is not essential. That is why 
the role of operations of the elements is not essential, except for the run 
method. 

- The Universal Turing machine (UTM) and the Turing machine were 
selected as the main metaphors to describe the simulation model and the 
abstract machine, because their computation model is general and 
universal and is sufficient to analyzing computer programs (Hopcroft 
and Ullman, 1979).   

- The role of input tapes became evident in creating sequences. Each input 
tape is a deliberated sequence to be simulated in order to validate its 
correctness. By configuring an input tape it is possible for the user to 
define any test case or, piece by piece, any use case. 

- The concept, SELECTOR, was selected as a tool within the main tool, 
because of the complexity of the object-oriented code. It became evident 
that if the user had a sophisticated high level dialog at his/her disposal 
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when selecting among alternatives such as methods and logic paths, 
then that user could get a complete analyzing coverage for the whole 
code. 

- The importance of side effects became obvious when building the 
atomistic model; the problem was how to keep the model atomistic 
during the whole simulation process while including all the intermediate 
information and side effects. An independent class in the class hierarchy 
of SymbolicElements was selected as side effects in order just to hold the 
model atomistic during the successive simulating phases. 

9.3.4 KnowledgeWare 

A reductionist approach to the maintenance was opted for the main principle of 
KnowledgeWare, in the beginning of the work. Hence, the main purpose was to 
support maintenance tasks that had been started as a notation of a change 
request (CR). The main concepts of KnowledgeWare are listed in 1082HTABLE 18. 

9.3.4.1 Input of KnowledgeWare  

TABLE 18 Maintenance approach. 

ID Name Definition Notation/Use 
T Task Maintenance task, often vague, 

informal. 
A record in a bug system 
or other. 

P Process A process to solve the 
maintenance task 

Iterative, hierarchical 
work. 

H Hypothesis An assumption of the code 
behavior. 

Preliminary information 
for a query. 

CR ChangeRequest A definition about what to 
change in the program. 

A record. See the task, T, 
above. 

Results 

- Using a change request as the main use case of the tool was a good 
selection and there were no need to alter that decision. 

- In order to maximize the potential of the maintenance tool under 
development, it was important to define a process describing how to 
execute the whole maintenance task as completely as possible by using a 
top-down approach. 

- As seen outside, there was a need to divide these actions into 
subprosesses for searching information for the model (SP), for verifying 
parts of the code (VP), and for supporting troubleshooting (TSP).  

- The role of the hypothesis (H) was to define the rigorous constraints 
which the sequence should satisfy or fail.  These conditions form either 
validation criteria to accept the code or refutation criteria to discard the 
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code. The hypotheses consist of theorems that are built by using only 
operands and constraints between model elements. 

 
Next evaluating the maintenance approach is described in more detail.  
 

9.3.4.2 Process of KnowledgeWare 

Computational semiotics was a useful theory in the development of 
KnowledgeWare.  The concept, KU (see 1083HTABLE 19), opens the systematic part 
of the user's mind. It was natural, in the beginning on creating the atomistic 
model, that the knowledge unit (KU) should have strong connections to the 
concept of the atom in the atomistic model. 

TABLE 19 Foundation for KnowledgeWare. 

ID Name Definition Notation/Use 
KU Knowledge 

Unit 
KU is meaningful data captured 
by the user. 

Computational 
semiotics. 

G/Q Problem,  
Goal, and 
Question 

The highest level of executing a 
task is a problem. The user 
transforms it to a goal by using 
questions. 

Goal is a subset of a 
task expressing a 
meaning. Goal is 
transformed to 
actions. 

ACTION Action An activity created by the user.
  

Skill, Rule, Meta or 
Knowledge Action.  

SKILL 
ACTION 

Skill Action
  

An immediate action based on 
perceptions. 

Similar to a chunk. 

RULE 
ACTION 

Rule Action Deductive process to infer 
information by using existing 
information. 

Scanning a program 
sequence (Turing 
output tape). 

KNOW-
LEDGE 

ACTION 

Knowledge 
Action 

Formulating a hypothesis and a 
query for that. 

A crosscutting 
problem for solving 
complex 
dependencies. 

META 
ACTION 

Meta Action Getting information above the 
level of the atomistic model, 
similar to UML information. 

Associations, 
diagrams and data 
requests, as in UML. 

Results 

- Computational semiotics introduced the Peircean taxonomy (1958) to 
contain several types of knowledge. This was essential in developing 
features for the tool. 

- During the development the theory ACT-R became relevant (ACT-R, 
2007), because it emphasizes the atomistic nature of human thinking 
(Anderson, and Lebiere, 1998). 
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- The Rasmussen category (1983) was found very useful in grouping the 
assumed user actions in order for them to be supported by the tool 
under development. 

- It is promising that the main concepts of von Mayrhauser et al. (1997): 
task,  goal,  hypothesis and lower level actions, can be found in 1084HTABLE 
18 and 1085HTABLE 19, making these two theories comparable. 

9.3.4.3 Output of KnowledgeWare 

According to Chapter 7 it is evident that valuable pragmatic information 
(ProgramConcept) can be captured from the code to the user (see 1086HTABLE 20). 
As an optimal answer to a change request (CR) there is a list of change 
candidates (CC).  The resulted knowledge representations for the levels are 
view, explanation, proof and match from a proof. 

TABLE 20 Results from the KnowledgeWare knowledge presentation. 

ID Name Definition Notation/Use 
CONCEPT ProgramConcept 

(created by the user, 
mapped to contexts) 

Pragmatic information 
grouped by the user for the 
task. 

Target of user 
chunking process. 

CONTEXT ProgramContext 
(collected by the 
user) 

Semantic low-level 
information collected from 
simulations. 

Concepts are 
updated by using 
this information. 

CC Change Candidate The place (tape) that is 
obvious or erroneous. 

One or more 
elements in the 
current context. 

VIEW View display & 
active links 

A display to support skill 
actions based on perceptions. 

A focused picture 
about the current 
focus. 

EXPL Explanation A deductive process to 
illustrate the simulated run 
(output tape). 

Illustrating a 
sequence obtained 
from a simulation. 

PROOF Proof display A collection of mixed cross-
cuttings containing multiple 
sequences. 

Illustrating 
correctness of 
selected sequences. 

MATCH Matching simulation 
against a hypothesis.

A match is a result of a 
hypothesed query to evaluate 
correctness or relevance. 

Matches are either 
results or 
intermediate results 
of finding critical 
elements. 

Results 

- The user creates ProgramConcepts (see 1087HDefinition 43) in order to attach 
the current task to the code.  As links between ProgramConcepts and the 
code are ProgramContexts (see 1088HDefinition 45), which each define a 
situation, i.e., a selected program flow, which is able to invoke the 
selected focus elements. 
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- A view (VIEW) is a presentation, a dependency graph (see 1089HDefinition 40) 
to support skill actions. An explanation (EXPL) is a rule-based 
presentation (see 1090HDefinition 42) to support rule actions because of their 
deductive nature. In the knowledge level a proof (PROOF), an argument 
(see 1091HDefinition 41) emphasizes the high level characteristics of 
knowledge, where argumenting has an important role. Thus each 
knowledge action returns a type of proof to the corresponding concept, 
which is presented as either a semantic, logical, or practical display. 

- A hierarchy was found for illustrating the information in the knowledge 
levels. A skill presentation were to be the localized point. A rule 
presentation would show a list of successive points. A knowledge action 
would then be a tree containing multiple rule presentations together.  In 
proving both start and target elements should be fixed in order to limit 
the captured information. 

- The meta presentation would be a dependency display, typical for UML. 

9.3.5 Program type theory 

In this section the concepts of GrammarWare, ModelWare, KnowledgeWare, 
and the abstract machine (SAM) are summarized in order to create a 
comprehensive picture about the overall dependency model connecting the 
formalism at each level. This particular connecting functionality is essential for 
the programmers in order to allow them to understand the maintenance tasks 
and their influence on the software product cycle. 

Extending the formalism of atomism to higher computations 

As a conclusion, it is possible to evaluate the overall formalism for the atomistic 
model. The base of the formalism lies on the code elements that have explicitly 
been derived from the source code, having the format of 1st order logic (see 
1092HFIGURE 60).  

 

FIGURE 60 Making a formal model for program comprehension. 
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Side effect elements, also inherited from the same SymbolicElement class as the 
code elements, are outputs of element simulation.  It is possible for the user to 
control the program flow as well as the side effects 

In the development process there are numerous places and situations 
where proofs should be used either to find relevant elements or to prove some 
sequences correct or incorrect.  These trials should be grouped into a more 
abstract element, which is called a KnowledgeElement here. This construction 
could be in a form of a container to keep the trials and the history of 
ProofElements, in order to guarantee that the code would be analyzed over a 
necessary coverage, analyzing that coverage as well.  These low level elements 
can be mapped into the domain dependent problem area with the help of the 
Domain Element.  

As a summary, a formal atomistic model for program comprehension, 
including the elements, is shown in 1093HTABLE 21. Because all the elements inherit 
the same base class, SymbolicElement, they have the same outer interface that 
enables simulating and traversing the connections and links from any element 
to other elements. SideEffectElement is a relation about lower level relations, a 
second order logic implementation.  TapeElement is a collection of lower level 
elements having features of the third level logic, resulting from 
SideEffectElements and CodeElements. ProofElement is the next step, made 
from relations of TapeElements.  KnowledgeElement is a summary of 
ProofElements. 

1094HTABLE 21 lists the elements starting from the code elements and partially 
mirroring the type theory of them.  

TABLE 21 Proposed type system to cover reverse engineered elements. 

Element name Relation order References Remarks & origin 
Code Element 1st order Parsing technology. Chomsky hierarchy, 

context free notation. 
Side Effect 
Element 

2nd order relation Simulation technology, 
atoms. 

Language semantics. 
Outputs of each element. 

Tape Element 3rd order relation Emulating sequences of 
code. 

Turing model, Hoare 
triple. 

Proof Element 4th order relation Querying and 
verification technology, 
including model 
checking. 

Program understanding 
is based on Brook’s 
matching (Brooks, 1983). 

Knowledge  
Element 

5th order relation Argumenting and 
familiarizating 
technology. 

Constructive abstraction, 
cognitive architectures. 

Domain 
Element 

-- Interface to the 
practical, domain 
specific area.  

Depends on the 
enterprise architecture. 

 
Each element depends on the lower level elements, thus the elements build a 
complete concept network, where relation order is defined based on how many 
metarelations there are below it as regards the code. Because all the elements 
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are inherited from the same base class, SymbolicElement, the whole model is 
atomistic and therefore will support atomistic thinking. As an example, the user 
can think of the relations of any bug (Domain Element) expressed by loops 
(Code Element) and variable instantiations (Side Effect Element) in specified 
sequences (Tape Element) in order to build a mental image about whether a 
certain element (class as a Code Element) is correct or not against the 
requirements that easily can be configured to the Theorem Prover dialog for 
establishing a proof (Proof Element). The atomistic model allows the user to 
connect these very different concepts freely together 

9.3.6 Mental or automated simulation 

The human and computer models of computation are combined in the TM 
model and in the action model as well. Most of the maintenance activities can 
be automated. These include information search and analyzing a program flow.  

In a skill level action the experience of the user can be very valuable to 
detect what is wrong, resembling an invocation parameter in a method call. In 
analyzing sequences the power of the computer can be very valuable in order to 
find problems or to find situations that are incorrect. For finding them, a 
specification for the computer should be created by the user. This process is 
called program verification. 

In the rule level the person works like a TM, saving information and using 
existing information in order to explain how a program sequence works in each 
phase. Most of the information from an analysis process is temporary and can 
be forgotten after the session. Evaluation information becomes crucial in 
troubleshooting where a contradiction or a mismatch is looked for in order to 
solve a problem, or in verification which seeks to show that some element or 
sequence is valid against the selected hypotheses. 

A feature, similar to minimizing information by an atomistic model and 
developing the software further, can be found in refactoring. If there are only a 
few invocations for a use case or a component and the units are strong inside 
and have only light connections to outer elements, then an optimum has been 
obtained. All exceptions into a direction where either fan-ins or fan-outs of the 
modules are too complex cause poor quality and problems for future 
maintenance.  

9.4 Summary about research goals 

In this section conclusions for the goals of Chapter 3 are shortly recapitulated. 

Goal 1: To find an atomistic representation of source code as a basis for 
higher-order model, simulation, and user interaction 

- “Atomistic presentation for code information:” 
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An atom was selected as a foundation with traceability to the Symbolic 
language. It is an element in each Turing tape, thus it helps in understanding 
the code. The whole methodology described in Chapters 4 to 10 and the 
Appendixes 1 and 3 is based on this goal. See the definition 1095HDefinition 19. 

Goal 2: The main concepts express the metatheoretical relations of the 
proposed PC according to Peirce's semiotics 

- “Metaconcepts illustrating the flow of the methodology” 
 
GrammarWare means syntax, ModelWare semantics, SimulationWare 
executing the semantics and KnowledgeWare the captured information which 
can be transformed into knowledge. This research ideally connects the four 
main technology spaces. See Section 1096H9.3 for the results. The proximity of these 
approaches can best be seen in the evaluation results in Appendix 3. See 1097HTABLE 
28. 
 

Goal 3: To emphasize the meaning of the symbolic language: both in 
translating source code into an internal language and further into a 
metalanguage for user interpretations 

- “Symbolic language”  
 
The symbolic language, Symbolic, is a novel ontology to contain a high-
abstraction model for Java and the corresponding meta-language, too. It is the 
foundation for the architecture of the tool (see Section 1098H8.2.1). See Section 1099H4.6.1 
for the details. 

Goal 4: To establish a convention to define an element for symbolic 
presentation  

- “Naming convention”  
 
The Symbolic language has the definition for a symbolic name for each symbol 
type.  The main elements for the language are described in 1100HDefinition 10 and 
1101HDefinition 12 for the naming convention. 
 

Goal 5: To implement GrammarWare using an symbolic formalism 

- “Implementing  GrammarWare”   
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Chapter 5 illustrates the principles of GrammarWare. There are three automata: 
A1, A2 and A3 that prepare code information to be used in the symbolic model. 
See Section 1102H4.1.4 for conclusions. 
 

Goal 6: To create a model weaver for ModelWare in order to build a 
reductionist model for embedding Java semantics to it for simulation 
purposes 

- “ModelWare, especially Model weaver”  
 
ModelWare has been described in Chapter 5 and defined in Section 1103H5.1. 
Algorithms for the model weaver to be expressed as Automaton A4 (see Section 
1104H5.1.1) were built so that the resulted model contains the original grammar 
commands (1:1) as static Java semantics as well as capabilities to model 
dynamic Java behavior.  
 

Goal 7: To describe formalism for source code simulation according to 
automata theory as well as to create a platform for partial simulation 

- “Simulation platform”  
 
Simulation was modelled by using the Turing machine metaphor with its 
variations and the Chomsky hierarchy in Chapter 6. See Section 1105H6.1 for the 
foundation. 
 

Goal 8: To create a bridge between the code model and the user language 
supporting the maintenance approach based on KnowledgeWare 

- “KnowledgeWare” 
 
KnowledgeWare, described in Chapter 7, makes a synthesis using several 
models for knowledge (see 1106HTABLE 12). For making knowledge atomistic, an 
extension to the Symbolic language was built for expressing KnowledgeUnits 
( 1107HDefinition 39), the necessary causal and parallel relations in order to present 
explanations, proofs and views. Information model for KnowlegeWare is 
presented in Section 7.3 and the corresponding action model in Section 7.4. For 
using them in solving a maintenance task a method is described in Section 7.5 
with the process description in Section 7.6.  

Goal 9: To describe transformations between the technology spaces as 
automata 

- “Using the automata theory in the models “ 
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It was stated (Chapters 6, 7, and 8) that all the models and even subfunctions of 
this research are equivalent with Turing machines or lower order models (like 
finite automata). Each has a simple formalism. The transformation model is 
shown in 1108HFIGURE 5.  
 

Goal 10: To express the main relations of the captured knowledge as nested 
types 

- “Internal relation model including its extensions to type theory”  
 
For understanding relations a type theory is needed to descibe nested relations. 
For that purpose, Section 9.3.5 describes an extension to the atomistic model to 
contain tapes and hypotheses and proofs and knowledge elements. Therefore, 
all of them can be thought of as chunks. These different model elements are 
unified in the atomistic architecture (see Section 1109H5.1.2). 
 

Goal 11: To realize a knowledge access interface containing the three semiotic 
layers 

- “Knowledge access”  
 
The access was principally defined by the action levels: Skill action, Rule action, 
and Knowledge action, and more concretely in the tool in Chapter 8 relating to 
the TM interface. The symbolic flow is described in Section 1110H6.9.3.  The principles 
for obtaining information are described in Section 1111H7.4. 

Goal 12: To create a sequential computation model for SimulationWare 

- “Sequential computation model, the abstract Turing model”  
 
It was interesting to see that the Turing model metaphor works as a simulation 
model for an application, for any program sequence (Turing, 1936) having the 
Symbolic formalism, as well as for a single atom. Side effects (1112HDefinition 31) are 
extensions to the original code model that should be considered in simulating 
necessary successive sequences. The created computation model is summarized 
in Section 1113H6.8. 

Goal 13: To investigate how to implement parallel activities, e.g., threads in 
order to capture program flows 

- “Implementing necessary parallel computation for capturing program flows” 
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We created some features typical for threads in order to enable tracing thread 
activations by the tool for the practical case (see Section 1114H8.5.1). Although this 
functionality is not complete covering only some details of threads, it made it 
possible to understand applications when starting threads.  

Goal 14: To plan a hierarchical action model to support solving maintenance 
tasks in the known cognition layers 

- “Hierarchical action model”  
 
The Rasmussen SRK specialization model is the foundation for the action model 
in Chapter 7. It is described in Section 7.4. Related tool actions are described in 
Section 8.5. 
 

Goal 15: To express user’s questions and hypotheses in a formal way 
referring to a singular element or a flow of the model or to a derived tree 

- “Question and query formalism”  
 
A protocol of how to transform a maintenance task into problem formulations, 
questions, hypotheses, queries and, further, to analyses with the results is 
shown in Section 7.6.4. 
Examples about question formulation are also descibed in Sections 1115H7.6.5 and 
1116H8.5.1 considering the practical example. 

Goal 16: To build a demonstration for simulating an example and a 
theoretical approach considering the captured PC flow using hypotheses 

- “Demonstration for a problem formalism”  
 
The maintenance task formalism was introduced in Chapter 7.  In the tool there 
is a prototype for a computer-aided problem formulation and verification 
method for source code (see 8.4.3). 
 

Goal 17: To validate the process - including all technology spaces - by a small 
sample program by comparing its output tape with the manually estimated 
program flow 

- “Validating the process with Java code”  
 
The process was validated in the tool by using a small sample file, Server.java 
(Flanagan, 2000). There is evaluation information for it in Appendix 3. All 
method invocations in the main flow of the Server-program were checked. 
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Atomistic models were validated by taking samples of several typical code 
statements and class hierarchy combinations. 
 

Goal 18: To create a hybrid construction, combining the benefits of OOP and 
logicprogramming 

- “Atomistic architecture”  
 
The atomistic architecture was programmed to seamlessly combine object-
oriented programming and logic programming (see 1117HDefinition 26). This object 
model is based on an atomistic hybrid object, AHO. Its correctness has been 
validated in several displays of the tool. Results from simulation are shown as 
simulation outputs in Appendix 3. 

Goal 19: To show how a PC process works leading to low-level actions 

- “Convergence of a typical maintenance task” 
 
A process of how to use the KnowledgeWare methodology in solving 
maintenance tasks was proposed in Section 7.6. This iterative and deepening 
principle uses the method of Section 7.5, which is based on the information 
model of Section 7.3 and action model of Section 7.4 (Goal 14). There is a use 
case for the convergence of the code of Appendix 1 in Section 7.6.5. 

Goal 20: To formalize the main features of the research in Visual Prolog and 
to program the corresponding tool, JavaMaster 

- “The tool and the Visual Prolog  formulation” 
 
The most essential data structures, domains, interfaces, and formulations are 
presented in Visual Prolog in Chapters 4, 5, 6, 7, and 8. There is a multi-layer 
architecture in the JavaMaster tool (Chapter 8), which has the Symbolic 
language as the lowest level and the atomistic construction as the second level. 
The other levels complete the architecture with presentations, a controller with 
the user interface, and a mediator to connect the technology spaces and their 
elements with each other.  The PC functionality of the tool was demonstrated in 
pictures from FIGURE 50 to FIGURE 56, where the best-known PC information 
needs are shown as symbolic flows for the code of Appendix 1. 

As a conclusion, all the goals were completed in the research either 
partially or completely. However, there are some limitations in simulating, 
showing that not all commands can automatically be simulated in the category 
otherClause. The complexity of object-oriented programs was analyzed and for 
the ambiguous situations a formalism for the user was proposed in order to 
control program flow.  The tool is not complete in respect to simulating some 
combinations of operations and references. 
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9.4.1 Explaining the main theories by the concepts of systems science 

Brief generalizations for the created “Wares” are described next in order to find 
what is their relation to systems science (Hofkirchner, 1999) and how to argue 
why just these Wares are correct selections for this research: 

- GrammarWare is a theory to help in understanding languages, 
especially for handling syntax. Languages are symbol-oriented, which 
approach extends the scope to symbolism, which is a synonym for 
representationism. 

- ModelWare handles semantics and especially connections between 
elements. That approach is similar to the one of connectionism. 

- SimulationWare is a theory for executing computations of the commands 
to be simulated. Therefore it is natural to extend its approach further to 
computationism, which keeps the Turing machine model as its 
foundation. 

- KnowledgeWare is a process to learn features from the model. This 
approach, where the elements themselves are not as essential as the 
structures connecting the elements, leads to the goal of constructivism.  

 
Once new knowledge has been obtained, it is possible for the user to make the 
code more reliable than it would be without this new information. This new 
feedback is then capable of connecting KnowledgeWare to GrammarWare for 
completing the maintenance task. 

9.5 Summary of results 

The main areas of the atomistic model were discussed in this chapter. The 
formalism to cover the area from a domain specific problem to code elements 
was proposed so that these high level elements could also be atomistic. This 
versatile atomistic conceptualism can act as a platform for building program 
comprehension tools that are able to maintain all the browsing history for each 
session in order to suggest to the user the possible locations for maintenance 
tasks that require more investigation.  
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10 DISCUSSION AND CONCLUSIONS 

This chapter concludes the dissertation by describing the resulting computation 
model. A summary for the research ideals (see Chapter 3) is presented as well 
as simulation correspondences between the hardware and this novel atomistic 
model. Finally, the main contributions to the computer science are shortly 
described.  

The practical goal of the research is shown in 1118HFIGURE 61, which indicates 
that increasing PC knowledge increases system understanding, improvement 
taking place on the lower steps in each case. This process increases the business 
value also, because better understanding makes creating new and more 
accurate business models possible.  

 

FIGURE 61 System understanding controls the software life cycle.    
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10.1 Unified computation model for maintenance  

In this section the data flow of the atomistic model with its contributions is 
described as a unified computation model including the relevant goals of 
Chapter 3. 

1. Using grammars and parsers 

- Description in Chapter 4 considering  • Goal 5  
 

- Typically grammar tools create non-symbolic parsers. Their drawback is 
that in the resulting code the semantics and the syntactical structures are 
separated from each other, which makes programming analysis tools 
hard, because semantics must be hardcoded into the software. Instead, in 
this research the grammar terms are packed into predicates that contain 
both semantics and syntax tightly. It enables symbolic analysis and 
symbolic execution in a formal way. 

2. Abstracting code 

- Description in Chapter 4 considering  • Goal 4 and • Goal 2 
 

- Currently there are a few abstraction methods, most of them 
mathematical or purely logic. Their biggest problem is their coverage, 
because program code contains many kinds of formulations (cf. flows). 
Each of them requires specific processing, although there is a generic 
need to understand flows independent of their contents.  The problem of 
how to unify all information is solved in this research by using a high 
abstraction language, Symbolic. 

3. Symbolic language 

- Description in Chapter 4 considering  • Goal 3 
 

- Currently symbolic languages are not widely used for code analysis. 
Furthermore, symbolic execution is implemented by programming the 
semantics based on the low-level program model. We, however, created 
a formal modeling notation for Java by the Symbolic language. It 
includes Java semantics.  

4. Expressing semantics of Java 

- Description in Chapter 6 considering  • Goal 6 and • Goal 3 
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- Currently several semantic notations are known, but these presentations 
are external languages or libraries causing their own complexity. To 
avoid this we created an atomistic semantics between atoms.  Unlike 
traditional semantics, it is object-oriented. For each command, captured 
from Java, we defined a run method to illustrate its semantics as a 
Turing-machine. It is an extremely reductionist implementation, but still 
useful, because almost all commands of modern languages work in the 
call/return principle.  

5. Source code model 

- Description in Chapter 5 considering  • Goal 1 
 

- Traditional source code models don’t have exact semantics. For eaxmple, 
the members of the AST nodes are not formal, because they are 
independent variables in their host class. Furthermore, there are often 
gaps between layers of code models (like in UML). In order to correct 
these problems in this work, an atomistic model is presented. 

 

6. Model information (contents) 

- Description in Chapter 5 considering  • Goal 6 
 

- Currently the elements of the code models have mainly been designed 
for forward engineering containing much information that is not 
relevant in reverse engineering. Excessive information causes much 
unnecessary work and can prevent from focusing on the main problem.  
Instead, in this work a minimized model was presented. It contains only 
a command and the necessary links for each atom.  

7. Model traversers 

- Description in Chapter 5 considering  • Goal 6 
 

- Currently, because of complexity of the models and the elements, typical 
model visitors are rather complex and hard to program and update. In 
order to avoid complexity in this research we propose a traversing 
principle, which is based on a graph theory based on simple graph 
traversers. This simplification is possible, because all the links in our 
model are similar predicates.  

8. Analyzing theories  

- Description in Chapter 5 considering  • Goal 10 
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- Currently there are many independent theories for source code analysis, 
whose drawback is that most of them are incompatible with each other. 
That’s why they cannot be connected and commercialised in tools. In 
order to eliminate this problem we created a unified simulation model 
that uses only the run method of each element.  It is based on a symbolic 
extension to the Turing machine formalism.   

9.Analysis environment 

- Description in Chapter 6 considering  • Goal 10 and • Goal 11 
 

- Currently, static analysis gives insufficient information about program 
behavior. Dynamic analysis, on the other hand, is insufficient to be used 
for PC. In order to eliminate their problems, we created an intermediate 
form between them, a symbolic analysis, in which symbolic predicates 
make its foundation. Because of the logical background of the research 
architecture (Visual Prolog) and the Symbolic language, creating 
theorem provers is rather straightforward. This novel approach enables 
interactive code verification, and partial simulation, which can be 
directed to any part of the source code.  

10. Abstract machine  

- Description in Chapter 6 considering  • Goal 8, Goal 12 and • Goal 13 
 

- Currently most source code analysis tools are hardcoded by specific 
algorithms like slicing. These algorithms use problem and situation 
specific data structures and low level solutions, which are far from the 
abstract definition of the original task. In order to maintain a direct 
connection between the original task and the code of the analysis, we 
created an abstract machine, which only specifies a state table for each 
element type.  This novel solution is declarative and transparent, because 
it can be abstracted as a state transition table. 

11. Analyzing object-oriented code 

- Description in Chapter 6 considering  • Goal 7 
 

- It is widely known that it is not possible to analyze OOP code statically 
well. There are more than 10 different barriers that prevent this. In order 
to eliminate the barriers for obtaining PC information from code, we 
created a model construction, which contains the necessary intermediate 
information about class hierarchies and about polymorhistic functions so 
that simulation is possible with user aid (the Selector function).  
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12. Information model for PC 

- Description in Chapter 6 considering  • Goal 10 and • Goal 11 
 

- Currently there are some information models for PC and some models of 
analysis. All the dependency information, as well as the program and 
data flows are important. However, in general the PC methods are 
fragmented. In order to find a connecting factor combining the best 
known information models for PC we created a unified symbolic flow 
with a semiotic base. Because it includes all behavior information, this 
new construction can be regarded as a server, which is capable of 
answering to queries.  

13. Method to support PC hypotheses 

- Description in Chapters 7 and 8 considering  • Goal 8 
 

- Currently it is known that the developers use frequently hypotheses in 
exploring code. However, no accurate formalism for these hypotheses 
has been suggested.  In order to formalize the PC exploring process and 
the queries, we created a user interface to JavaMaster for building 
hypotheses for theorem proving.  

14. Information ladder as a cognitive background 

- Description in Chapter 7 considering  • Goal 16 
 

- Currently there is much discussion about program flows and slicing and 
about capturing dependencies, but there is no evident background on 
how to argument the need of any information in a larger context.  In 
order to explain the relations between the source code information and 
their importance, we described an information ladder for knowledge 
capture as a base for gradual learning.  

15. Action model for the tool 

- Description in Chapter 7 considering  • Goal 14 
 

- Currently in theories and models the tasks and actions are seen as 
separated activities far removed from the tools. Instead, the tools are 
regarded only as user interfaces, which should produce “complete 
information” for the user. However, there is no complete information in 
a PC exploring process. There is only intermediate information, the final 
information is accumulated into the head of the user. In order to 
emphasize this approach we built the action stereotypes for the 
Rasmussen category: skill, rule and knowledge actions.  These 
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stereotypes are useful as knowledge representations, because they meet 
the requirements of human thinking and of tool activities for selecting a 
new approach (Walenstein, 2002). 

16. Maintenance support 

- Description in Chapter 7 considering  • Goal 16, • Goal 17 and • Goal 19 
 

- Currently there are specific maintenance tools for finding memory 
problems or detecting deadlocks, bug information systems etc. We argue 
that the most important part of maintenance without conrete tools, the 
approach, which also should be mastered by tools, is PC. That’s why we 
created a stereotype to illustrate a unified maintence task. It covers the 
most probable use cases for program exploration, implementing the 
following maintenance task cycle: 

 1) Problem recognition 
 2) Problem formulation and analysis 
 3) Change specification by impact analysis 
 4) Unit testing (verification) by theorem proving 

17 Tool support 

- Description in Chapters 4 to 8 considering  • Goal 18 and • Goal 20 
 

- Currently tools are often specific, having a narrow scope. It is hard to 
understand their formalism and the programming approach, because the 
structures and models are complex having many abstraction layers.  In 
order to remove unnecessary complexity and to have a tool with a 
transparent principle as its foundation, we created JavaMaster, which 
uses the PCMEF architecture. It uses state transition tables as its 
simulation foundation and the Symbolic language as its foundation for 
all data transfer. As input symbols for this symbolic abstract machine, 
there are high-level commands that have been transformed from Java. 
The JavaMaster tool demonstrates the formalism and the theories. 

10.1.1 Summarizing the maintenance computation model   

Because the research covers several topics of computer and systems science as 
well as more practical areas relating to software engineering and reverse 
engineering research, it is not possible to give, in this section, a completed set of 
the actual references, which should cover all of them. Instead, for getting 
surveys we found some comprehensive summaries that cover the whole area 
topic by topic describing the future of software engineering (Jackson and 
Rinard, 2000), dated in the year 2000. Furthermore, there is an up-to-date report 
about the future of source code analysis (Binkley, 2007), which is capable of 
describing the current status of topics 1 to 12. However, concrete efforts in order 
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to extend the general knowledge about the cognitive approach of PC, related to 
the topics 13, 14, 15, and 16, cannot be found in the literature. That’s why the 
current comprehension about PC is limited to a set of independent activities 
conducted by the user. 

Some essential conclusions can be drawn from these articles describing 
current state-of-the-art and a possible future. Discontinuities between 
formalisms are a big problem. There are gaps between models and grammars 
and other notations as described in Chapter 2. The lack of grounded theories 
relating to models (ModelWare) is obvious, which can be seen in the road map 
for object-oriented models (Engels and Groenewegen, 2000). Hence, the current 
modeling practice, UML, doesn’t have a grounded theoretical foundation, 
although it is still widely used in software development world-wide.  

Instead, in this research a unified computation model is proposed, which 
connects the code elements (topic 1) and the models (2, 3, 4, 5, and 6) and the 
simulation process (topics 8 and 9) with its Turing formalisms (topic 10) even 
for object-oriented code (topic 11) with the most relevant cognitive theories 
(topic 13, 14, and 15) for building a formal description for a practical 
maintenance process, which consists of a few stereotypes for tasks (topic 16) to 
be implemented in a tool (topic 17) as a sharpening action. 

10.2 Scientific ideals 

The ideal goals for a research have been defined by Hoare (2006) from the 
program verification viewpoint, which is relevant to this dissertation, too (see 
Chapter 3).  Next these principles are discussed for the atomistic model. 

10.2.1 Purity of the created concepts 

For each technology space a pure concept was selected as a foundation:  
- For grammars it was natural to select the symbolic grammar term, 

because we found that a grammar can be defined as a composite object 
containing only grammar terms.  Another foundation illustrating the 
contents of the symbolic model is the clause notation of the symbolic 
language. 

- For models an atomistic hybrid object (AHO) was selected to be the 
main element for the symbolic model. Because of the class hierarchy of 
AHO the model is homogenous. 

- For simulation the Turing model with its tape was selected 
implementing a symbolic abstract machine, SAM. It may be seen as a 
glass box with a state transition formalism, which can be derived from a 
large program down to an individual clause. 

- For knowledge mining an information ladder was selected as a 
foundation. It is a symbolic tool for the user to climb upwards from the 
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levels of the previous foundations, the clause, AHO, Turing output tape 
and the relation models connecting all this information.  

10.2.2 Simplicity of the created theories 

Some observations about the modules that show the correspondence of current 
theories and the new approach include: 

- GrammarWare. A theory connecting the grammar term to existing 
practices was introduced. Thus it was shown that the symbolic grammar 
term is downwards compatible with AST and EBNF notations allowing 
transformation from the symbolic grammar to currently widely used 
notations. Upwards compatibility from traditional notations to this novel 
notation is possible by defining a semantic name for each term 
instance. 46F

47 
- ModelWare. The AHO element was shown to be mostly compatible with 

AST nodes, and was easy to compare in the models, too. In this symbolic 
atomistic model the rules of creating the model are, however, very 
rigorous in order to comply with the requirements and status of an 
atomistic model. Therefore, in every element there cannot be more than 
one definition clause. Links excepted, there cannot be any other element 
types within an atom. These rigorous rules are a drawback in the 
development, but benefit it by making the model formal.  From an 
atomistic model it is possible to derive AST models, but the formalism 
will be lost. 

- SimulationWare. The Turing tapes are compatible with finite automata 
and corresponding models, which make it easy to simulate state 
machines by using this new approach. In this methodology all the 
software may be seen as stacked state machines, where parallel features 
are individual tapes, each. 

- KnowledgeWare. The basic element for the investigation and program 
understanding here is a chunk, which is not an automatic function, but a 
function that a human originates. The simplest element in this model is 
an atom expressed in the clause notation. The results derived from the 
model are sequences or more abstract lists that are not in an execution 
order. The highest level of information derived from the model is 
argumentation, either deductive or inductive. This knowledge model 
leads directly to the taxonomy of Peirce. 

 
The technology spaces can be seen as formalisms in the following way: 

                                                 
47 Furthermore, because of the simplicity of the notation of the symbolic grammar, some 

modifications should be used in order to convert optional and nesting structures into 
smaller individual terms, which is very straightforward work. 
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- GrammarWare. The formalism of a parser is an acceptor, which is 
defined in a Chomsky category. The translation formalism is a 
transducer, as in Chomsky. 

- ModelWare. The elements of the symbolic atomistic model are 
individual atoms, which do not know anything about any other atoms, 
thus making the model extremely modular and purely atomistic. A 
model is a collection of atoms, in other words. 

- SimulationWare. All the models introduced in this work obey the 
formalism of an already known automaton. For the novel new 
construction, the AHO element, the new class for semantics was 
introduced with the name of atomistic semantics. This new formulation 
hides only the fact that a link between the atoms can be symbolic (the 
link is not constant then) having a semantic meaning. So in an if-
statement the atomistic links bind the connection and the true-branch 
and the optional else-branch together by call/return-links. The protocol 
of how they are coded in the run method of the AHO element has been 
written by using a state table formalism. 

- KnowledgeWare. Relating to knowledge capture we create two bridges 
between the user cognition and the power of the tool. The higher bridge 
works in the concept level describing the focus of the user in creating 
free associations considering the current maintenance task. The lower 
bridge is in the rule level (Rasmussen, 1983), where the user can simulate 
code mentally or the tool can simulate the code automatically. These two 
approaches create a symbiosis, a co-operation architecture (Walenstein, 
2002), between the user and the tool.  

10.2.3 Accuracy of transformations from code to knowledge 

Accuracy of transformations describes coherency of the technology, shown in 
Figure 1 in Chapter 3. The results about accuracy are shown in 1119HTABLE 22. It can 
be seen that the accuracy is best in all code related automata in parsing and 
transformations A1, A2 and A3 because of their traditional practices. The 
accuracy of the model weaver, Automaton A4, depends on the functionality of 
the tool. We showed in Chapter 6 that the semantics of clauses other than some 
exceptions (otherClause) can be expressed by using Prolog. The accuracy of 
Automaton A6 (SAM) is the most complex question to be estimated. JDK 
references and unknown symbols and values in partial simulation lower the 
accuracy, because in the KnowledgeWare area, in cases of partial simulation 
and complex software, the simulation result depends on user actions and the 
selected evaluation strategy. For maintenance tasks, considering Automaton 
A7, there are some methods of how to divide complex tasks into smaller actions 
and how to organize this kind of work so that all the critical actions can be 
mastered 
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TABLE 22 Accuracy of transformations in the proposed PC environment. 

Automaton Input Output with accuracy 
A1. Parser 
generator  
(a grammar tool). 

Grammar 
definition file 
(Java.grm) 

Parser generator – code (and similar other 
facilities) for the tool. 

A2. Parser. Code. Parse trees 100% if compilation succeeds. 
A3. Translator to 
Symbolic. 

Parse tree. Symbolic parse tree 100%. 

A4. Model 
weaver. 

Symbolic parse 
tree. 

Symbolic model complete, except that “other 
clauses” are approximations. 

A5. Input selector 
for simulating. 

Symbolic model 
with its elements. 

Sequences are correct if the user solves the 
ambiguities relating to unknown symbols. 

A6.  Symbolic 
Turing machine 
(SAM). 

Input sequence. Output sequences are accurate if all ambiguities 
are solved but JDK invocations are skipped. 

A7. Knowledge 
mining. 

Output sequences 
and the whole 
symbolic model 
with possible 
domain elements. 

The actions are human dependent. Skill actions 
are observations and rule actions are 
simulations. Knowledge actions depend on user 
actions, because it is the user who deliberately 
reasons. 

10.2.4 Completeness of the logic of the PC formalism 

Because of the programming language employed, the formalism can 
declaratively be programmed in predicate logic to meet the requirements. Some 
metrics showing the completeness are the following: 
 

- In Java grammar there are 130 individual terms, which cover the whole 
syntax of Java1.5, the 3rd edition. Because of the automated process 
(described in Chapter 8) all the terms will be used for creating a 
complete parser. 

- In Symbolic grammar there are 12 code elements plus some informal 
elements to satisfy all the requirements of the model and the 
methodology. All terms will be mapped to Java in both directions to 
show completeness. 

- In the symbolic model all the selected Symbolic structures are created 
automated. 47F

48 
- The simulator has been implemented in the run method of the 

corresponding element. Thus a complete run method was written for 
each element type except some types of references and expressions. 

                                                 
48  However, in the JavaMaster tool some types of references (refClause) and some 

operations (opClause) have not been programmed completely. The purpose is to 
demonstrate that the created model structures work in simulation as assumed. The 
status of the tool can be improved in future projects. 
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- For KnowledgeWare a user interface was created in order to 
demonstrate the functions of GrammarWare, ModelWare and 
SimulationWare. For obtaining knowledge based results a 
demonstration for an interactive theorem prover was written, but only 
some basic rules were programmed in the JavaMaster tool. 

 
Because of the schedule some approximations were done in order to 
demonstrate some goals like how dynamic binding should happen in method 
invocations and how partial simulation should work in typical situations 
relating to concrete and abstract classes with specific modifier selections. 

10.2.5 Correctness of programs of the created PC formalism 

Because of the great degree of automation most of the software parts are 
reliable. Some remarks about how we have tested the methodology are 
included here: 

- The parser uses a top-down recursive descent method. Therefore it can 
parse reliably all nested structures typical for Java and C++. We have 
used the same technology earlier for parsing Cobol, C++, and Pascal. 

- The model weaver uses a recursive method in splitting the Symbolic 
parse tree into smaller and smaller elements, each creating an atom. 
There is some complexity in programming tools for analyzing programs 
that work polymorphically. We have solved this problem of ambiguous 
situations by saving the possible alternatives (inheritance and 
polymorphism) as specific references to the host element. 

- Because the simulator needs only the run method of the AHO element, 
which is specified by a state transition table, each atom type can 
individually be proved, one by one, by using test atoms as a constant, a 
condition, a loop, a method etc. 

- We can resort to verified explanation generation by using small tapes 
that include typical elements. 

- The proof engine has been tested by using a test sequence and some 
specified patterns, which correspond to a typical hypothesis that 
contains some trivial logic operators. 

 
Because of its rigorous formalisms and the high level programming language 
employed, the proving process of the methodology and the tool can recursively 
be divided into smaller and smaller parts for cases where automatic functional 
testing is not possible. 

10.2.6 Certainty of answers given by the PC formalism 

Certainty of the analysis depends on the validity of the model and on the 
atomistic semantics combining the elements with each other via their 
dependencies. In our approach, all static dependencies can be saved completely 
in the symbolic model. Capturing dynamic dependencies is much more 
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difficult. It succeeds best once the whole code has been loaded and selected to 
be simulated, because all symbols can then be detected. Partial simulation is 
more challenging. For it we have demonstrated that interactive simulation can 
produce useful dependency information to the user gradually. That’s why it 
extends the comprehension of the user towards the current elements, 
augmenting information in a partial manner.  

In cases where the source code model has been partially loaded to 
memory, very often the type system of the model can warn the user that 
something is missing in the model. It suggests to the user that he/she should 
load more code in order to obtain more complete results. In the focused 
approach, on the other hand, knowing everything is not the point, on the 
contrary, the point is how to understand the most interesting dependencies of 
the code. 

10.2.7 Relevancy of questions considering the PC formalism 

The semiotic and cognitive model created in KnowledgeWare sounds 
promising, because it combines the Peircean taxonomy, the Rasmussen 
specialization model, the information ladder, and the atomistic model into a 
unified model for source code knowledge. It emphasizes the idea of a focused 
approach, in which symbolic evaluation by using a symbolic tool is the obvious 
technology. 

The abstract machine model with its cognitive interpretation is a relevant 
approach to describe both the code and the user.  Because the formalisms of 
both of them are comparable in sequential reasoning, in obeying the symbolic 
paradigm, it is possible to create a platform, a virtual architecture, where the 
actions can be transferred from the user into a computer and vice versa. This 
new option opens up numerous possibilities:  

- To delegate tasks by using possible agent models.  
- To automate tasks flexibly with the help of a computer. 
- To create evaluation models for calculating use cases for PC, including 

usability, performance, and coverage of the captured information. 

10.3 Connections to Computer Science  

Constable (2000) has proposed that relevant topics in research of computer 
science consist of experiments, theories, knowledge, discoveries, as well as of 
interdisciplinarity and multidisciplinarity.   These topics are discussed next. 

10.3.1 Experiments in building PC formalism 

A lot of experiments were done during the research, starting with building a 
grammar for Java. After some trials and modifications it was found that all the 
grammar terms and the rules are correct, enabling successive parsing of files.  
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The most ambitious experiments were in creating an atomistic structure 
for the model, because there were rigorous requirements to leave the model 
element ”almost empty” containing only one predicate per object. Another 
challenging experiment was how to implement the simulator, the Turing model 
with a comprehensive architecture. 

10.3.2 Created theories for the technology spaces 

The main theories created in this research are the technology spaces themselves:  
- GrammarWare and the corresponding software architecture were 

introduced. We showed that it is possible to generate parsers by using 
only a few theoretical elements. We defined the semantic grammar 
notation, the corresponding production rule, the grammar file as well as 
the grammar database as the key concepts for automatic parser 
generation. A grammar file for Java and a parser for it were generated as 
well as a perfect language environment for the Symbolic language for 
abstracting Java.  

- Considering ModelWare we showed that Symbolic parse trees can be 
split into an atomistic model, without losing the original Java semantics. 

- Considering SimulationWare we showed that it is possible to simulate 
each atom and each part of the source code so that the behavior 
resembles as far as possible that of the Java virtual machine. For 
unknown types and symbols there is a possibility for the user to control 
the program flow of simulation. 

- Considering KnowledgeWare we showed that the simulation results 
consisting of atoms are a perfect data set for building higher abstraction 
knowledge layers. For building we specified the action layers according 
to the Rasmussen specialization model. This process, starting from low 
level data, is also called an information ladder. For software maintenance 
the principal purpose considering KnowledgeWare is to verify and to 
evaluate the status of the key elements and the key structures of the code 
for planning changes for them. 

10.3.3 Created knowledge to be used in future research 

There are three main types of knowledge created in this work:  
- The unified transformation model to describe the software development 

work presented in Chapter 9 is attractive, because it makes it possible to 
integrate programming tools and UML modeling tools to the same 
platform. 

- The symbolic Turing machine architecture is attractive because of the 
simplicity of its computation model. By using simple state transition 
tables we can model modern programming languages. 

- The symbolic formalism created in this work, based on the Symbolic 
language, enables mathematical formulation of the code, creating 
computation models for each part of the mission-critical software 
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(without defining complex rules) and creating a transformation 
framework for software production, where the Symbolic language could 
be the base language replacing complex XML-notations. The most used 
transformation notation today is XMI.  

- Program restructuring and reorganization are areas where current tools 
are often limited.  This approach is important as restructuring has often 
been skipped in busy programs, which leads to degradation of software, 
which can sometimes become impossible to correct. We have not shown 
it, but it is clear that this new construction could provide valuable 
contribution to current software development by increasing the quality 
of software by allowing free construction and automatic mapping of 
source code elements independent of their location.  

10.3.4 New discoveries to summarize the research 

Some of the most interesting discoveries are: 
- It is possible to create an atomistic model, where the interface of the 

element contains only one method for simulation. The architecture of the 
atom is a discovery which can help in creating new simple tools, 
products and research projects. This finding runs against the grain in 
building multi-layer models, where there is complete, accurate 
information in each model structure and in which there are tight, modal 
rules for each association of the model to be validated in each phase of 
the model construction. 

- Symbolic analysis uses propositional calculus as its base, because its 
origin is the formal language, its grammar terms, the symbolic notation 
and the Turing machine output tape. Thus, symbolic analysis is 
deducible. 

- Object-oriented code can be simulated, although some arrangements 
must be done in the model construction, and the user is needed for 
selecting the program flow, which should be executed in ambiguous 
situations. Similarity of simulation models of any program regardless of 
its size and each atom is a finding, too.  

- It was found that though the technology spaces are compact areas, it is 
still possible to transform information from one to another. All three 
semiotic dimensions of Peirce (1958) - syntactics, semantics and 
pragmatics - are covered when transforming grammar-based code 
information via models and simulation into argumentative knowledge. 

10.3.5 Interdisciplinarity and multidisciplinarity 

This work introduces a novel approach connecting source code analysis and 
cognitive approach via grammars, models, simulation, and knowledge capture. 
It has many connections into different theories of computer science (see 
1120HFIGURE 62):  
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- The foundation for the computer science consists of logic, number 
theory, and universal machine (Turing, 1936). We have borrowed the 
concept of the atom from physics in order to make an extension, which 
should enable implementing automated applications and creating hybrid 
theories in order to combine isolated approaches. 

- Our approach will allow automata theory to be used in simulation 
through SimulationWare as well as grammar theory to be used in 
reading and writing code.  

- For enabling simulation we created ModelWare based on objects, which 
makes it possible to use the graph theory in finding information from the 
model and results. 

- For the software development research we created the symbolic analysis, 
a methodology to help program comprehension, a part of reverse 
engineering.  

- Considering human interaction, psychology and artificial intelligence, 
relating to the most philosophical approach of this research, we created 
KnowledgeWare, which consists of an interface to maintenance tasks 
including a layered action-model for the user as well as principles for 
problem formulation.  

 
The common denominator for these theories is the symbolic paradigm with its 
background in computationalism based on the Turing machine. It is capable of 
modeling sequentially the approaches of the computer, software, and the 
symbolic approach of the user, i.e., the theory of mind. Based on the sequential 
approach the user can build higher-order constructions, e.g., hierarchical 
mental representations including parallel features. 

This research has opened up many new approaches for combining current 
theories of computer science together by using the atomistic model. It also 
shows why to select the various Wares for grammars, models, simulation and 
knowledge as the main theories for this research; in systems science the 
corresponding larger disciplines can be seen to be symbolism, connectionism, 
computationalism and constructivism. Due to this extended view we assume 
that the created construction could be a jump to a possible future, where the 
following research topics would be in a clear continuum to this work: 

- Evaluating performance and usability and memory use of the model. 
- Visualizing an atomistic model and the simulation results. 
- Integrating the results with other tools. 
- Extending the model to other languages (C++ etc). 
- New approaches for developing tools. 
- Getting industrial experience of program comprehension processes. 
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FIGURE 62 Connections to computer science. 
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SUMMARY 

Contrary to what is often thought, information systems and software products 
are not based on stable solutions that can produce continuous profit for the 
developers and users during their whole life cycle without incurring extra costs.  
From the viewpoint of software vendors, each delivery is only a part of a large 
evolution cycle. Although modifications during this cycle are needed from time 
to time, any change may inadvertently result in diminishing the quality and 
increasing the complexity of the product (Lehman, 1985).  

Code maintenance is especially important; the area is expensive, non-
systematic and demanding. As no systematic method has been found, many 
organizations are forced to resort to experimentation with their own task-
centered practices. This, in turn, has decreased the productivity of these 
organizations. The focus of this thesis is on the development of a methodology 
for code comprehension. It is the code that describes the current situation of the 
system most accurately, providing a standard for operations, without which 
safe modifications to the code are not possible (Reeves 2007). 

Chapter 2 of the thesis describes the current situation in the research. Since 
the Unix environments of the '70s it has been common knowledge that a 
computer can retrieve information contents in a code with the help of parser 
technology. Previously, any further processing was hampered by high 
equipment costs and unsuitable tools. It took some time before static analysis 
solutions (Weiser, 1984; Anderson, 2001) appeared. Static analysis, however, is 
not sufficient for dealing with modern object based languages. The other 
alternative, dynamic analysis (Zaidman, 2006), being a very narrowly focused 
specialized method, cannot provide a more general viewpoint to the problem 
under investigation.  

Chapter 3 approaches the area of investigation in a comprehensive 
manner from the viewpoint of ideal analysis. The aim is to create a new 
paradigm for analysis, namely symbolic analysis. The chapter lists and 
describes 20 goals for this novel methodology.  

Four main areas for a general methodology in code comprehension are 
developed in this investigation. The first of these, GrammarWare, described in 
Chapter 4, parses the code and changes it to the format of symbolic predicate 
logic in order to make it suitable for modeling purposes.  Chapter 5 deals with 
ModelWare, which creates, from a program or its segment, an object based 
model, emphasizing its atomisticity. Unlike in traditional model constructions, 
the model developed here is decomposed into primitives or atoms that are as 
small as possible. This enables the processing of all different types of code 
atoms in an identical manner that is not dependent on their original hierarchy 
level. Obviously, this is a very important consideration whenever unknown 
structures such as program parts are spontaneously examined here and there.  
An atom extracted from the code is defined as an object, and a single predicate 
acting as its command part describes its operation. It is due to this strict 
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limitation that each atom can simultaneously be treated as an object and as a 
logic statement which connects different atoms. The third main area (Chapter 6) 
deals with code modeling, i.e., simulation, from which the name 
SimulationWare. In this thesis, operations of all code statements are abstracted 
with the help of a state automaton and tapes of the kind used in Turing 
machine experiments. The starting result produced by the simulation can be 
compared with a UML sequence chart and the behavior model of object based 
software. In the interactive simulation phase, the user can influence the process 
of simulation by selecting a suitable type and initialization data for the 
ambiguous and polymorphous variable under consideration. This mechanism 
makes it possible to simulate code piecewise, in chunks, which is a notable 
advance when compared with the limited opportunities for inspection provided 
in dynamic analysis. Here the inspection can be accurately focused just on the 
critical program segment. The fourth main area in the investigation (Chapter 7), 
dealing with KnowledgeWare, describes how knowledge is obtained from the 
code.  When gathering knowledge the user builds up a mental image in which 
the atoms of the code can be used as structural components on the lowest level. 
By combining these elements with the help of the so-called information ladder 
method (Ackoff, 1989) the user can build up higher level structures based on 
the results of simulation runs and the corresponding use contexts.  The aim here 
is to provide satisfactory information content for the concepts in a more abstract 
level. Typically this is related to argumentation, which can give information 
about whether the functioning of a program segment is correct or incorrect or 
about its quality or usability. For maintenance tasks there is a general 
classification with its specialization levels (Rasmussen, 1983), and a hypothesis 
about code inspection is also presented. With the help of the latter and with the 
tool made available, the correctly functioning and erroneous segments can be 
separated from each other in the simulation result. The aim is thus to make 
code comprehension and error localization easier. 

The methodology investigated here is programmed into JavaMaster 
(Chapter 8), a tool with a multilayer architecture to support symbolic analysis 
and atomistic model. The tool is a kind of Turing machine which simulates a 
program described in the Symbolic language and based on Java. It follows the 
commands contained within the atoms to produce a sequence resembling that 
of the original Java environment. The tool also demostrates the principle of an 
interactive theorem prover, which can be used in argumentation and 
verification tasks. The correct operation of a sequence obtained from a context 
can be defined, on a higher level, as a possible hypothesis to be examined.  

Chapter 9 brings together the results and findings of the investigation. On 
the programming side we are able to show how to seamlessly combine two 
programming paradigms: logic programming and object-oriented 
programming. Logic notation makes it possible to express, as formal predicates, 
the necessary language structures and the mathematical operations needed in 
modeling.  On the other hand, the abstracting potential inherent in object-
oriented technology enables processing atoms the way mathematical symbols 
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are processed, because each atom as seen from outside is simply a reference to a 
variable. This hybrid object architecture can be used in combining many known 
theories including the type theory, the theory of categories, automata, 
grammars and algorithms: all these are based, on their lowest level, on 
computations which the atom models with its semantics.  

Chapter 10 describes the conclusions and the findings of this investigation. 
It seems surprising that even a quite extensive program structure can be 
dismantled to the "atomistic level" in such a way that the structure can be traced 
to the original code and that the semantics, apart from some exclusions, remains 
original. The complete chain has 17 stages and is described in this chapter, up to 
the user level, in a form of a computation theory. Atomic modularity, 
especially, seems promising from the viewpoint of code inspection: the user 
does not need to inspect code that is not relevant and can, therefore, proceed 
directly with solving the task with the tool without losing any relevant 
information. This enables the user to keep in memory a knowledge model 
consisting of several levels if necessary. Due to the formalisms used, crispness 
employed in definitions, and the results obtained, this thesis provides 
numerous novel starting points for further study. The methodology developed 
can be used as a base for tools covering all the programming languages. It is, 
therefore, highly likely that a production version can be contemplated in due 
time. 
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YHTEENVETO (FINNISH SUMMARY) 

Toisin kuin yleisesti luullaan tietojärjestelmät ja ohjelmistotuotteet eivät 
pohjaudu vakaisiin ohjelmistoihin, jotka tuottaisivat ilman panostusta jatkuvaa 
kassavirtaa kehittäjilleen ja sidosryhmilleen koko elinkaarensa ajan. 
Ohjelmistotoimittajien näkökulmasta tilanne on päinvastainen, sillä jokainen 
toimitus on ainoastaan osa laajempaa ylläpitona tunnettua osaa 
kehityskaaresta, jossa tarvitaan jatkuvia muutoksia, vaikka jokaisella 
modifikaatiolla on taipumuksena heikentää järjestelmän laatua ja lisätä tuotteen 
monimutkaisuutta (Lehman, 1985).  

Ylläpidon tutkiminen on erityisen tärkeää, sillä se tunnetaan kalliina, 
epäsystemaattisena ja vaativana alueena. Koska siihen ei ole ollut yleistä 
systemaattista menetelmää eri organisaatiot ovat joutuneet kokemusperäisesti 
soveltamaan omia tapauskohtaisia käytäntöjään, mikä on alentanut 
organisaatioiden tuottavuutta. Tässä tutkimuksessa tarkastelukohteeksi otettiin 
koodin ymmärtämisen metodologian kehittäminen, koska juuri koodissa on 
järjestelmän nykyisen tilanteen täsmällisin kuvaus, toiminnan standardi 
(Reeves, 2007), jota tuntematta ei täysin turvallisia muutoksia ole mahdollista 
tehdä.  

Väitöskirjan luvussa kaksi kuvataan nykyinen tutkimuksen tilanne. Jo 70-
luvun Unix-ympäristöistä alkaen on ollut yleisesti tunnettua, että koodin 
informaatiosisältö voidaan poimia tietokoneelle jäsenninteknologian avulla. 
Aikanaan sen jatkokäsittelyä haittasivat korkeat laitekustannukset ja työkalujen 
heikot ominaisuudet. Niinpä kesti aikansa, ennen kuin päästiin staattisen 
analyysin ratkaisuihin (Weiser 1984). Staattinen analyysi ei kuitenkaan riitä 
modernien oliopohjaisten kielten käsittelyyn. Toinenkaan vaihtoehto, 
dynaaminen analysointi, ei kapea-alaisena erikoismenetelmänä  tarjoa 
yleisempää näkemystä tarkasteltavaan ongelmaan.  

Luvussa kolme tutkimusaluetta lähestytään monipuolisesti ideaalisen 
analyysin näkökulmasta tarkoituksena luoda uusi analysointiparadigma, jolle 
annoimme nimen symbolinen analyysi. Luvussa kuvataan 20 eri tavoitetta 
tulevalle metodologialle. 

Tutkimuksessa kehitettiin neljä pääaluetta lähdekoodin ymmärtämisen 
yleiseksi metodologiaksi. Luvussa 4 kuvattu ensimmäinen osuus, 
GrammarWare, jäsentää koodin ja muuttaa sen symboliseen predikaattilogiikan 
muotoon mallintamista varten. Toinen osuus (luku 5), ModelWare, luo 
käsiteltävästä ohjelmasta tai sen osasta, oliopohjaisen mallin, jonka 
erikoispiirteenä on atomistisuus. Toisin kuin perinteisissä mallikonstruktioissa, 
tässä kehitetty malli on jaettu mahdollisimman pieniin osiin alkioihin, 
atomeihin, jotta kaikki erityyppiset koodialkiot voitaisiin käsitellä niiden 
alkuperäisestä hierarkiatasosta riippumatta identtisellä tavalla, mikä vaatimus 
on ilmeisen tärkeä tutkittaessa tuntemattomia rakenteita kuten ohjelman osia 
spontaanisti sieltä täältä. Koodista saatu atomi määritellään oliona, jonka 
toimintaa kuvaavana komento-osana on vain yksi predikaatti. Tämä tiukka 
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rajaus johtaa siihen, että kutakin alkiota voidaan määritellä samalla kertaa sekä 
oliona että logiikan lauseena, mikä sitoo eri alkioita yhteensä. Kolmas kehitetty 
osuus (luku 6) liittyy koodin mallintamiseen eli simulointiin, mistä tulee 
nimitys SimulationWare.  Tutkimuksessa kaikkien koodin lauseiden toimintaa 
abstrahoidaan Turing-koneen mukaisen tila-automaatin ja nauhojen avulla. 
Simuloinnin tuottamaa lähtötulosta voidaan verrata UML-menetelmän 
sekvenssikaavioon ja olio-ohjelmistojen käyttäytymismalliin. Interaktiivisessa 
simulointiosuudessa käyttäjällä on mahdollisuus vaikuttaa simuloinnin 
etenemiseen valitsemalla käsiteltävälle moniselitteiselle, polymorphistiselle 
muuttujalle sopiva tyyppi ja alustustieto. Tämä mekanismi mahdollistaa koodin 
paloittaisen simuloinnin, mikä on merkittävä edistysaskel dynaamisen 
analyysin hyvin rajoittuneeseen tarkasteluun nähden, sillä fokusoitu tarkastelu 
voidaan tarkasti kohdentaa vain haluttuun kriittiseen ohjelman osaan. Neljäs 
tutkimuksen osa (luku 7), KnowledgeWare, kuvaa tietämyksen muodostamisen 
koodista. Tietämyksen keruu on käyttäjän suorittamaa mielikuvan rakentamista 
siten, että koodin atomit ovat alimman tason rakenneosia, joista käyttäjä 
yhdistelee ns. informaatiotikapuiden menetelmän (Ackoff, 1989)  mukaan 
korkeamman tason rakenteita simulointiajon tulosten ja niitä vastaavien 
käyttökontekstien pohjalta tarkoituksena saavuttaa tyydyttävä tietosisältö 
abstraktimman tason konsepteille. Tyypillisesti tarkoituksena on argumentointi 
eli ohjelmanosan toiminnan toteaminen oikeaksi tai vääräksi tai laadun ja 
käytettävyyden arviointi.  Ylläpitotehtäville esitetään yleinen jaottelu 
erikoistamistasoineen (Rasmussen, 1983) sekä esitys koodin tarkastelun 
hypoteesista, minkä avulla simulointituloksesta voidaan erottaa työkalun 
avulla toimivat ja virheelliset osuudet tarkoituksena helpottaa näin koodiin 
perehtymistä ja vianpaikannusta. 

Tutkimuksen metodologia on ohjelmoitu JavaMaster nimiseen työkaluun 
(luku 8), jossa on asianmukainen monikerrosarkkitehtuuri symbolista analyysiä 
ja atomistista mallia tukemaan. Työkalu on eräänlainen symbolinen Turing-
kone, joka simuloi Javasta muodostettua, symbolisella kielellä kuvattua, 
ohjelmaa atomien sisältämien komentojen mukaisesti saaden aikaan 
alkuperäistä Java-ympäristöä muistuttavan sekvenssin. Työkalu demonstroi 
interaktiivisen teoreeman todistajan periaatetta, jolla käsiteltävästä kontekstista 
saadun sekvenssin toimivuus voidaan määritellä korkeamman tarkastelutason 
mukaan tarkasteluhypoteesina. 

Tutkimuksen ohjelmistoteknisena antina on yhdistää saumattomasti 
keskenään kaksi ohjelmointiparadigmaa: logiikkaohjelmointi ja olio-ohjelmointi 
(luku 9). Logiikan notaatio antaa mahdollisuuden ilmaista tarvittavat kielen 
rakenteet ja mallintamisessa tarvittavat matemaattiset operaatiot formaalina 
predikaattina. Toisaalta oliotekniikan tarjoama abstrahointikyky mahdollistaa 
atomien käsittelyn matematiikan symbolien tavoin, sillä jokainen atomi on 
ulkoa tarkasteltuna vain muuttujaviittaus. Saavutettu hybridiolion 
arkkitehtuuri tarjoaa mahdollisuuden yhdistää monia jo tunnettuja teorioita 
keskenään kuten tyyppiteoria, kategoriateoria, automaatit, kieliopit ja 
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algoritmit, sillä kaikki ne pohjautuvat alimmalla tasollaan tietokoneen 
komputaatioon, jota atomi mallintaa semantiikallaan.   

Tutkimuksen aikana tehtyjä johtopäätöksiä ja havaittuja löytöjä kuvataan 
luvussa 9.  On yllättävää havaita, että laajankin ohjelman rakenne voidaan 
purkaa “atomitasolle” asti siten, että rakenne on jäljitettävissä alkuperäiseen 
koodiin ja että semantiikka voidaan säilyttää alkuperäisenä. Saavutettu 
modulaarisuus on erittäin lupaava asia koodintarkastelun kannalta, sillä 
käyttäjän ei tarvitse tutkia epärelevanttia koodia, joten hän pääsee tehtävää 
työkalulla ratkaistessaan suoraan asiaan, mutta silti voi koota tarvittavan 
monitasoisenkin tietämysmallin muistiinsa. Formalisminsa, selkeytensä ja 
tulostensa ansiosta väitöskirja tarjoaa lukuisia uusia näkökohtia 
jatkotutkimuksiksi.  
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APPENDIX 1 : SERVER - EXAMPLE 

This appendix contains an example about a typical Java program. Although it 
contains only three classes and only some pages of source code it is still useful 
for demonstrating program comprehension challenges and possibilities and 
using a theorem prover for validating the output tape. 

General approach for proving the Server 

The example program, Server.java, is an abstract server, which listens to the 
queries attached into a specified port: 

- The main goal is to open a Server-connection and the corresponding 
objects. 

- The program opens for each query an individual data transfer 
connection. 

- There is a user interface, which shows the opened connections. 
 
The program has the following lower level features: 

- Every connection is processed in an individual thread.    
- Processing queries is made parallel. 
- There is an object to remove excessive garbage. 

 
The mapping of the features to the objects is as follows: 

-   The main object and the corresponding thread is Server, lines 5 – 56. 
-   The object that controls garbage is named Vulture, lines 112 - 135. 
-   The object to process connections is Connection, 58 – 110. 

 
The critical code to open the connection is the following (line numbers left from 
1121HEXAMPLE 6):  
 
33    Server::run() 
        try { 
            while(true) { 
36                Socket client_socket = listen_socket.accept(); 
37                Connection c = new Connection(..) 
 

Overall behavior of the program 

1122HFIGURE 63 shows the principal diagram about the Server example. The 
numbers in it are line numbers from the code below. The three classes can be 
seen in the picture. All of them are threads. The most important JDK-references, 
DataInputStream and DataOutputStream are shown as vertical columns, too.  

The main control flow goes through the Server:main method to the 
constructor of Server and to its run-method, which contains a loop for listening 
client messages. For each message a connection object is created. In the run 
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method of each connection-object, input is read from the client, after which it is 
transformed and printed back to the client.  

Server as a sequence diagram 

1123HFIGURE 63 shows the main goal, the sequence starting from the main according 
to line numbers of the listing in 1124HEXAMPLE 6).  
 

 

FIGURE 63 Server – example as a sequence diagram. 



 

 

306 

Source code for Server.java  

EXAMPLE 6. Server.java. 

// This example is from the book _Java in a Nutshell_ by Flanagan. 
// by David Flanagan.  Copyright (c) 1996 O'Reilly & Associates. 
// You may study, use, modify, and distribute this example. 
// This example is provided WITHOUT WARRANTY. 
 
01 import java.net.*; 
02 import java.io.*; 
03 import java.awt.*; 
04 import java.util.*; 
 
05 public class Server extends Thread { 
06    public final static int DEFAULT_PORT = 6789; 
07    protected int port; 
08    protected ServerSocket listen_socket; 
09    protected ThreadGroup threadgroup; 
10    protected List connection_list; 
11    protected Vector connections; 
12    protected Vulture vulture; 
     
    // Exit with an error message, when an exception occurs. 
13    public static void fail(Exception e, String msg) { 
14        System.err.println(msg + ": " +  e); 
15        System.exit(1); 
16   } 
     
    // Create a ServerSocket to listen for connections on;  start the 
thread. 
17    public Server(int port) { 
        // Create our server thread with a name. 
18        super("Server"); 
19        if (port == 0) port = DEFAULT_PORT; 
20        this.port = port; 
21        try { listen_socket = new ServerSocket(port); } 
22a       catch (IOException e) { fail(e,  
22b              "Exception creating server socket"); } 
        // Create a threadgroup for our connections 
23        threadgroup = new ThreadGroup("Server Connections"); 
 
        // Create a window to display our connections in 
24        Frame f = new Frame("Server Status"); 
25        connection_list = new List(); 
26        f.add("Center", connection_list); 
27        f.resize(400, 200); 
28        f.show(); 
 
        // Initialize a vector to store our connections in 
29        connections = new Vector(); 
 
        // Create a Vulture thread to wait for other threads to die. 
        // It starts itself automatically. 
30        vulture = new Vulture(this); 
 
        // Start the server listening for connections 
31        this.start(); 
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32    } 
     
    // The body of the server thread.  Loop forever, listening for and 
    // accepting connections from clients.  For each connection,  
    // create a Connection object to handle communication through the 
    // new Socket.  When we create a new connection, add it to the 
    // Vector of connections, and display it in the List.   
     
33    public void run() { 
34        try { 
35            while(true) { 
36                Socket client_socket = listen_socket.accept(); 
37a            Connection c = new Connection(client_socket,  
37b                     threadgroup, 3, vulture); 
                  // prevent simultaneous access. 
38                synchronized (connections) { 
39                    connections.addElement(c); 
40                    connection_list.addItem(c.toString()); 
41                } 
42            } 
43        } 
44        catch (IOException e) { 
45            fail(e, "Exception while listening for connections"); 
46        } 
47    } 
     
    // Start the server up, listening on an optionally specified port 
48    public static void main(String[] args) { 
49        int port = 0; 
50        if (args.length == 1) { 
51            try { port = Integer.parseInt(args[0]); } 
52            catch (NumberFormatException e) { port = 0; } 
53        } 
54        new Server(port); 
55    } 
56 } 
 
// This class is the thread to handle all communication with a client 
// It also notifies the Vulture when the connection is dropped. 
60 class Connection extends Thread { 
61    static int connection_number = 0; 
62    protected Socket client; 
63    protected Vulture vulture; 
64    protected DataInputStream in; 
65    protected PrintStream out; 
 
    // Initialize the streams and start the thread 
66a    public Connection(Socket client_socket,  
66b            ThreadGroup threadgroup, int priority, Vulture vulture)  
67    { 
        // Give the thread a group, a name, and a priority. 
68        super(threadgroup, "Connection-" + connection_number++); 
69        this.setPriority(priority); 
        // Save our other arguments away 
70        client = client_socket; 
71        this.vulture = vulture; 
        // Create the streams 
72        try {  
73            in = new DataInputStream(client.getInputStream()); 
74            out = new PrintStream(client.getOutputStream()); 
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75        } 
76        catch (IOException e) { 
77            try { client.close(); } catch (IOException e2) { ; } 
78a             System.err.println( 
78b              "Exception while getting socket streams: " + e); 
79            return; 
80        } 
        // And start the thread up 
81        this.start(); 
82    } 
     
    // Provide the service. 
    // Read a line, reverse it, send it back.   
83    public void run() { 
84        String line; 
85        StringBuffer revline; 
86        int len; 
 
        // Send a welcome message to the client 
87        out.println("Line Reversal Server version 1.0"); 
88        out.println("A service of O'Reilly & Associates"); 
 
89        try { 
90            for(;;) { 
                // read in a line 
91                line = in.readLine(); 
92                if (line == null) break; 
                // reverse it 
93                len = line.length(); 
94                revline = new StringBuffer(len); 
95                for(int i = len-1; i >= 0; i--)  
96                    revline.insert(len-1-i, line.charAt(i)); 
                // and write out the reversed line 
97                out.println(revline); 
98            } 
99        } 
100       catch (IOException e) { ; } 
        // When we're done, for whatever reason, be sure to close 
        // the socket, and to notify the Vulture object.  Note that 
        // we have to use synchronized first to lock the vulture 
        // object before we can call notify() for it. 
101        finally { 
102            try { client.close(); } catch (IOException e2) { ; } 
103            synchronized (vulture) { vulture.notify(); } 
104        } 
105    } 
 
    // This method returns the string info of the Connection. 
    // This is the string that will appear in the GUI List. 
106    public String toString() { 
107        return this.getName() + " connected to: "  
108            + client.getInetAddress().getHostName() 
109            + ":" + client.getPort(); 
110    } 
111 } 
 
// This class waits to be notified that a thread is dying (exiting) 
// and then cleans up the list of threads and the graphical list. 
112 class Vulture extends Thread { 
113    protected Server server; 
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114    protected Vulture(Server s) { 
115        super(s.threadgroup, "Connection Vulture"); 
116        server = s; 
117        this.start(); 
118    } 
 
    // This method waits for notification of exiting threads 
    // and cleans up the lists.  It is a synchronized method, so it 
    // acquires a lock on the `this' object before running.  This is  
    // necessary so that it can call wait() on this.  Even if the  
    // the Connection objects never call notify(), this method wakes  
    // up every five seconds and checks all the connections, just in  
    // case. 
    // Note also that all access to the Vector of connections and to 
    // the GUI List component are within a synchronized block as well. 
    // This prevents the Server class from adding a new connection  
    // while we're removing an old one. 
119    public synchronized void run() { 
120        for(;;) { 
121a            try { this.wait(5000); } catch (InterruptedException 
121b    e) { ; } 
               // prevent simultaneous access 
122            synchronized(server.connections) { 
                   // loop through the connections 
123               for(int i = 0; i < server.connections.size(); i++) { 
124                   Connection c; 
125                   c = (Connection)server.connections.elementAt(i); 
                     // if the connection thread isn't alive anymore,  
                     // remove it from the Vector and List. 
126                  if (!c.isAlive()) { 
127                        server.connections.removeElementAt(i); 
128                        server.connection_list.delItem(i); 
129                        i--; 
130                    } 
131                } 
132            } 
133        } 
134    } 
135 } 
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APPENDIX 2:  TUTORIAL FOR VISUAL PROLOG 

In this section Prolog and the Visual Prolog tool are introduced from the 
viewpoint of symbolic analysis and the atomistic model. 

Introduction, the Prolog engine 

A Prolog program is a finite set of clauses, a collection of terms (Sterling and 
Shapiro, 1994) - see 1125HFIGURE 64. The terms have two modes. They are grounded 
if they don’t contain variables, otherwise they are not grounded.  A compound 
term has a functor and arguments. Goals are atoms or compound terms. A 
substitution is a finite set of pairs of the form X=t, where X is a variable and t is 
a term. A clause is a universally quantified logical sentence (rule) of the form:  
A  B1, B2 … Bk. k>=0, where A and Bis are goals. A is the head. It is implied by 
the conjunction of Bis and is interpreted procedurally to answer the query A by 
answering the conjunctive query B1, B2 as subqueries. B’s are called the body of 
the clause. If k=0, then clause A = fact. A query made outside is a conjunction of 
the form:  A1,  .. An, n> 0, where each Ai is a goal.  

FIGURE 64 Prolog’s computation model.  
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Computation of a logic program P finds an instance of a given query logically 
deducible from P. A goal G is deducible from a program P if there is an instance 
A of G where A  B1, Bn, N>=0 is a grounded instance of a clause in P, and Bis 
are deducible from P. Deduction of a goal from an identical fact is a special case. 

The meaning of the program P is inductively defined using logical 
deduction.  The set of grounded instances of facts in P are in the meaning. The 
grounded goal G is the meaning if there is a grounded instance G  B1, Bn of 
the rule in P such that B1, Bn are in the meaning. The meaning consists of the 
grounded instances that are deducible from the program. 

The intended meaning M of a program is also a set of grounded unit goals. 
The program P is correct with respect to the intended meaning M if M(P) is a 
subset of M. It is complete with respect to M if M is a subset of M(P). A 
grounded goal is true with respect to an intended meaning if it is a member of 
it, else false. 

Each clause can be nondeterministic if it is capable of returning multiple 
results (1126HFIGURE 65).  This capability of Prolog makes building query systems 
and problem solving systems easy, because it is not necessary to manage 
intermediate results or garbage generated by queries. The redo-fail logic of 
Prolog’s clause creates an automatic query tool, as shown in 1127HFIGURE 64. 

FIGURE 65 Each goal (call) tries to get solutions exhaustively. 
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in addition to the standard definition of the list being a collection of its 
elements, also an ordered group of items, a bag and a set.  

Specialities of Visual Prolog  

1129HFIGURE 64 shows the ontology and epistemology of any Prolog program. In 
this section Visual Prolog’s internal meta presentation for the code is 
introduced. The code in Visual Prolog is separated into a dynamic part meaning 
objects (objectQualifiedIdentifier) and a static part meaning classes 
(classQualifiedIdentifier). It is not possible to refer to other parts (see lines 9 and 
10 in 1130HEXAMPLE 7 below). 
From outside, it is possible to refer from classes and objects to methods only. 

EXAMPLE 7. Metaformalism for Visual Prolog and the run method. 

1    aClause = aClause(term Head, term ReturnValue,  term Body). 
2    term = 
3        constant(constant); 
4        name(name Name); 
5        compound(term Head, term* Arguments); 
6        none(). 
7    name = 
8        identifier(string Identifier); 
9        classQualifiedIdentifier(string ClassName, PredicateName); 
10       objectQualifiedIdentifier(string ObjectName, PredicateName) 
 
Objects are created by using a constructor method (typically called new), which 
is defined in the static declaration file (*.cl) between the tags class .. end class.  
The dynamic part is defined between the tags interface .. end interface in an 
interface file (*.i). All the code is written to a .pro file (*.pro). There is an 
automatic memory management for objects in Visual Prolog. 

The object system of Visual Prolog contains multiple inheritance. There 
are several ways to select how a class or an object can reuse code from other 
classes and objects. 

The type system of Visual Prolog is strong and different from traditional 
Prolog, which allows free typing. That is why in Visual Prolog each predicate 
should have all the arguments defined as well as a possible return value. If the 
predicate is not of the default type (all arguments inputs), the flow definition 
for each argument is needed (input or output). 

The strong type system requires a fair amount of time in programming, 
but it has some essential benefits compared with the non-typed Prolog: 

- The type system prevents the use of erroneous types. This feature is 
useful for processing formal languages such as Java, and C++ as well as 
Symbolic. 

- The type system makes it possible for the Vip compiler to optimize the 
code in respect to its compilation speed, run-time performance and 
memory consumption. That is why the performance of the Vip compiler 
is close to that of C++. 
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- Vip-code can be integrated with other formal languages such as C++. 
DLLs can be created by Visual Prolog for other languages, and DLLs 
written in other languages can be integrated into a Vip application. 

Programming the atomistic symbolic model by Visual Prolog 

Visual Prolog, having the following four essential extensions, differs from ISO 
Prolog in this respect: 

- The clauses can return values or expressions such as C functions. 
- The references can point to object handles or to methods of objects. 
- The code can be encapsulated into objects (to the methods). 
- By inheritance it is possible to abstract and specialize classes. 

 
All the following capabilities are necessary for the methodology presented in 
Chapters 4 to 7: 

- By using the return value it is possible to create a cascaded call/return-
architecture, because a typical atom reference is simply Result = 
Atom:run().  

- By using objects and a command as a single predicate it is possible to 
create the atomistic structure. 

- Encapsulation and atom references make it possible to seamlessly 
connect the logic and objects in the code. 

- By using inheritance it is possible to abstract the code elements as objects 
of the selected types.  

Some definitions used in this formulation 

The definitions are expressed in JavaMaster according to 1131HTABLE 23. 

TABLE 23 Reference index to the JavaMaster structures of Chapters 4 to 7. 

Logical 
name 

Chap-
ter 

Definition Implementation in Visual Prolog 

Java 
grammar 

4 A grammar definition 
file 

File Java.grm 

Java 4 Code for Java parser 
and utilities 

Class named Java 

Symbolic 4 Code for the Symbolic 
language 

Interface Symbolic defined semantic 
rules for Symbolic 

Atom 5 Symbolic clause Class SymbolicElement 
Model 5 Containers to keep the 

contents of the model 
Class SymbolicModel containing the 
handles of its members as a command 

Clause 4 The only term of the 
Symbolic language 

A domain named clause 

Tape 6 Simulates the output 
tape of the Turing-
model 

Classes InputTape and OutputTape, 
which have the definition of 
SymbolicElement* 

continues… 
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1132HTABLE 23 continued. 
Triple 6 The Hoare triple A fact named triple with its arguments
Hypot-
hesis 

7  A domain divided into theorems and 
lower level expressions for validating 
an output tape. 

Proof 7  A clause list (clause*). 
 
Some typical Visual Prolog expressions: 

- List: ABC = [A,B,C]  
- List of lists:  X = integer**, where there are lists of integer lists.  
- Head of a list:  If AB = [A,B] then A is the head  
- Tail of a list:  if ABC = [A,B,C] then [B,C] is a tail and C is the tail of [B,C]. 
- Cut: The cut (!) eliminates coming backtracks (after this one). 
- Failure: The fail-command causes a backtrack. 
- Findall:  An expression [ X || getMember([A,B,C])]  returns a list giving 

the items A, B and C one after each other.    

Type system of Visual Prolog 

EXAMPLE 8. Example code for 1133HTABLE 24 considering domain definitions: 

1      domains 
 
2   myType = tobe() ; notToBe(); mayBe(). 
 
3    secondOrderType =  
4              toBeOrNotToBe(myType) ;    
5              javaParseTree(java::program);    % see GrammarWare 
6              atom(symbolicElement) ;    % see ModelWare 
7              outputTape(symbolicElement*) ;    % see SimulationWare 
8              symbolicFlow(symbolic::clause**) ;  % see SimulationWare 
9              hoareTriple(symbolicElement* PreConditions,   symbolicElement* Command, 
 symbolicElement* PostConditions) ;  % see KnowledgeWare 
10            explanation(symbolicElement* Hypothesis,  
                       symbolicElement* Input, clause* Result). % see KnowledgeWare 
11            programFlow(symbolicElement*); 
12            stateMachine(secondOrderType*); 

TABLE 24 Examples from Visual Prolog types. 

Line Declaration 
1 Defines the start of a domain declaration. 
2 A new type, myType, is defined. It can be toBe, notToBe or mayBe. 
3 A new type, secondOrderType,  is defined. It uses the previous type. 
4 The alternative toBeOrNotToBe refers to the type myType, being of higher order 

logic. 
continues… 
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1134HTABLE 24 continued. 
5 The selection javaParseTree refers to a Java parse tree. The whole structure is 

located in the tree (both logically and physically). 
6 The type atom refers to an element of the symbolic model being a user name.  
7 An output tape of SimulationWare is defined as a sequential list of atoms. 
8 Symbolic flow is defined as a list, similar to the output tape, but containing the 

symbolic clauses. 
9 A Hoare triple is defined by using preconditions, the command part and 

postconditions. 
10 An explanation is defined as a tuple, where a hypotheses is an atom list as well as  

the input for the analysis. The result is expressed as symbolic clauses. 
11 Program flow is a list of atoms. 
12 State machine is defined as a list of second-order types. A formal definition for a 

state machine could be a list of cascaded Hoare triples.  

An example of an interface 

An interface in Vip is either a definition for a specified object or a list of domain 
definitions. It is typically located in an *.i-file. 

EXAMPLE 9. Introducing an interface for a myClass object. 

1 interface myClass   supports  symbolic 
2    open core 
 
      domains                    
3       higherOrderLogic = relation(userDomain, symbolic::linkType, 
secondOrderType).    
 
4   predicates 
5     myDynamicCall: () -> thirdOrderType.  
6     run: () -> clause*. 
 
7 end interface myClass 

TABLE 25 A Visual Prolog example interface. 

Line nr Declaration 
1 A myClass object is defined. It inherits the Symbolic class. 
2 External types for this file can be read from an interface, named core. 
3 Higher order logic is defined as a relation of a type userDomain. The type of the 

link is defined in the interface named symbolic. The third argument is of 
secondOrderType described in 1135HTABLE 24.  

4 The area for dynamic predicate definitions begins. 
5 The predicate myDynamicCall is a dynamic predicate, which returns an 

expression of thirdOrderType. 
6 The predicate run returns a list of clauses. If the type is void then the list is 

empty. 
7 The interface definition ends. 
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An example of a class (*.cl) 

A class definition describes a static interface. It can contain a link to the 
corresponding interface defining the inheritance. 

EXAMPLE 10. Defining a class. 

1 class myClass : myClass 
     
2 predicates 
3     myPublicMethod: (integer) -> myType multi. 
 
4    constructors 
5    new: (). 
 
6 end class myClass 

TABLE 26 A Visual Prolog example class. 

Line nr Declaration 
1 A myClass class is defined. The second myClass after the semicolon tells that the 

class has an interface with the same name. 
2 The area for static predicates begins. 
3 An example predicate myPublicMethod is declared to convert an integer to the 

type myType. It is thus an acceptor. The modifier multi indicates that there can 
be multiple answers for an invocation. Therefore, the predicate is 
nondeterministic (see 1136HFIGURE 65).   

4 The area for constructor definitions begins. 
5 The default constructor has the name new with no parameters. It is possible to 

define new constructors for any method name having multiple parameters. 
6 The definition area for the class ends. 

An example of a pro-file (*.pro) 

EXAMPLE 11. A sample about a Visual Prolog implementation. 

1 implement myClass 
2  class facts 
3          myStaticFlag: myType := toBe.  
 
4     facts 
5          myDynamicFlag: myType. 
6     clauses 
7          new():- 
8             myDynamicFlag := toBe. 
 
9      class predicates 
10           myLocalMethod: () -> myType multi. 
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11       clauses 
12           myPublicMethod(0) = toBe.  
13           myPublicMethod(1) = notToBe. 
14           myPublicMethod(_) = mayBe. 
 
15           myLocalMethod() = myStaticFlag:- 
16              not(isErroneous(myStaticFlag)), !. 
17          myLocalMethod() = myPublicMethod(0). 
          
18      myDynamicCall() = typeOf(SecondOrderType):- 
19         SecondOrderType =  clauseList([symbolic::info("This returns Symbolic info")]). 
 
20  end implement myClass 

TABLE 27 A Visual Prolog code file. 

Line nr Declaration 
1 The implementation area for the class begins. 
2 Static attributes, e.g., facts, are defined after these keywords. 
3 The fact myStaticFlag has the type myType. Its default value is toBe. 
4 Dynamic facts are defined after these keywords. 
5 The fact myDynamicFlag has the type toBe. It doesn’t have a default value (it is 

given in the constructor). 
6 The code area begins by clauses. 
7 The constructor new begins. 
8 In the constructor a flag myDynamicFlag is set to toBe. 
9 Local static predicates are defined after these keywords. 
10 The predicate myLocalMethod has no input parameters. It returns an 

expression of the type myType, being nondeterministic. 
11 The code begins. 
12 The first clause (rule) for myPublicMethod, which returns the value toBe for an 

argument 0.  
13 The second clause (rule) for myPublicMethod, which returns the value notToBe 

for 1. 
14 The third clause returns the value maybe. However, it is necessary to notice, 

that in the previous situations (lines 12 and 13) the predicate myPublicMethod 
also returns the value mayBe, because there is no cut (!) ending these clauses.   

15 The local predicate myLocalMethod returns the value myStaticFlag in cases 
when its body succeeds (see next line).  

16 Here it is tested whether the fact myStaticFlag has a value or not. The cut (!) 
ends any resolution to this clause, which prevents the later clauses (line 17) to 
be executed. 

17 If the previous clause didn’t succeed, this predicate returns a value by calling 
directly the predicate myPublicMethod with the argument value 0. 

18 The predicate myDynamicCall returns a third order type by converting a 
variable of the second order type, SecondOrderType, with a domain named 
typeOf.  

19 An input for the variable SecondOrderType is generated by a clause-list, which 
contains one info-string. 

20 The definition for the code of the class myClass ends. 
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Some examples about Visual Prolog data structures 

A list is an ordered set of items. This allows querying the contents of an output 
tape in multiple ways. If the output tape has three items, it can be queried by 
OutputTape = [Atom1, Atom2, Atom3].  It is functionally the same as 
[Atom1|Atom2, Atom3] or [Atom1|[Atom2|Atom3]]. 
 
The findall function to gather members for a list can be expreessed as follows (it 
is assumed that the members can be fetched by the method getObject: 
List = [ X = || getObject(X) ].  
Its older notation is findall(X,  getObject(X), List). 
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APPENDIX 3 : SIMULATION RESULTS OF THE EXAMPLE 

This appendix contains information obtained from simulating the Server 
example (Appendix 1). As it was told in the beginning of Chapter 3, measuring 
performance is not a focus of this research. Instead, it is essential to demonstrate 
that the formalism for PC is correct (see 1137H3.6.6 and 1138H3.7.2) in connecting the 
technologies of Chapters 4 to 7 as well as the architecture and the 
implementation of the tool described in Chapter 8. 

Definition for the simulation model 

The simulation table is presented in successive lines atom by atom in the 
execution order. See 1139HTABLE 28.  

TABLE 28 Layout for presenting simulation results. 

The symbols are: 

- I = the number of simulation steps, i.e., commands to be executed. 
- J = the corresponding line number of Appendix 1 (written manually). 
- Host atom is the atom that invokes other atoms. Here method names are 

shown, not complete atom names. 
- Column 4 (Atom) refers to the symbolic name of the atom. SEff means a 

side effect (see 1140HDefinition 31), others have been captured from Java code 
by transformation. 

- Command (see 1141HDefinition 24) is a pretty printed string obtained from the 
command of the atom. Here it has been truncated to 32 characters. 

- Inputs and outputs are references to other atoms. 

Combining the technology spaces in a metatheory 

All Wares can be seen in 1142HTABLE 28. They connect tightly each other in 
simulation: 

- Each line describes one atom (ModelWare), see 1143HDefinition 19.  Each atom 
is a model, too, because it has a formal definition for its inputs and 
outputs. 

Step Java nr Host Atom Command Inputs Outputs
ModelWare GrammarWare

I J main main (args)  Atom 1, . Target Atom I, .. args
Atom1

SimulationlWare KnowledgelWare
Nested … Hypothesis H
call stacks  * Theorem 1

Target Atom I  *  Sub theorem i
..

return
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- Each atom defines a grammar term (GrammarWare) as a command, see 
1144HDefinition 24. This command can be traced into Java code to a host 
statement. However, the tool doesn’t do that. Therefore there is the 
column for the Java statement nr. 

- Simulating is a movement in the table from the current line into the 
lower lines (SimulationWare), which obeys the rules of the 
corresponding state transition table of the command, see 1145HDefinition 38. 
When a new atom is invoked, it will be set as a host atom.  

- The sequence containing invocations and the corresponding returns 
form a nested call stack. For example, a loop contains atoms for starting 
Loop X and for ending Loop X.  In each cycle of the loop there is a redo 
side effect to signal about a new iteration. 

- Knowledge is building hypotheses (assumptions) on the execution order 
and relations between atoms (KnowledgeWare).  Each line can be used 
as an operand to create a theorem (see 1146HDefinition 47), a resolution tree 
for proving whether it will be true or not (see 1147HDefinition 41). Due to the 
tree based nature this hypothesis is comparable with the call stack 
obtained from simulation. Therefore, the proving process is a match 
between the call stack and the set of theorems of the hypothesis. It 
collects accumulated information for planning changes (see 1148HTABLE 13). 

- All original clauses (except side effects) describe the program flow (see 
1149H6.9.2). Side effects are information about code behavior (see 1150HDefinition 
31). The most useful side effects are for tracing method invocations, 
object instantiations and branching as well as values for assignments. 
The values captured from side effects are information specific only for 
symbolic execution (see  1151H6.9.3). 

- Computability of each atom is defined by the accessibility of its input 
references.  

Starting simulation 

For selecting simulation for the Server application, the only user action needed 
is to create the initialization sequence for the test by adding the main method to 
describe the input tape. See 1152HTABLE 2948F

49 In 1153HFIGURE 5 this phase is described by 
Automaton A5. 

TABLE 29 The input tape from simulation. 

Nr Java 
nr 

Current class  
and method 

Atom name 
 

Command 

  Server:main main  

                                                 
49 Inputs and outputs are not shown, because they require too much space for the lines. 
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Results from simulation 

We started the simulation by defining the input tape 1154HTABLE 29. The results are 
shown in 1155HTABLE 30. In 1156HFIGURE 5 this phase is described by Automaton A6. 

TABLE 30 The output tape from simulation. 

Nr Java 
nr 

Current class  
and method 

Atom name 
 

Command 

0 48 Server:main main method main  args.   port.  If 3 
1  Server:main args (varDef)  args 
2 49 Server:main port (varDef)  port   Const 2. 
3 50 Server:main If 3 if  Op 5. then   try{ Set 7  Int 
4  Server:main new Server new Server ( port.) 
5  Server:main Const 2 0 
6 50 Server:main Op 5 args,length==Const 4 
7  Server:main SEff 1 init args 
8  length (varDef)  length SEff 2 

10  Server:fail Const 4 1 
11  Server:main SEff 3 Condition  Op 5.  false(). 
12 54 Server:main SEff 4 false  Op 5. 
13 17 Server:main SEff 5 new Server  0. 
14  Server:Server Server method Server  port.   super( "S 
15 19 Server:Server port (varDef)  port 
16 21 Server:Server If 1 if  Op 4. then  Set 1  DEFAULT_P 
17 23 Server:Server Set 3 constructor threadgroup = new Th 
18  Server:Server new ThreadGroup new ThreadGroup ( Const 6.) 
19  Server:Server Const 6 Server Connections 
20  Server:Server f (varDef)  f   new Frame  Const 7 
21  Server:Server Set 4 constructor connection_list = ne 
22 29 Server:Server new List new List () 
23  Server:Server Set 5 constructor connections = new Ve 
24 30 Server:Server new Vector new Vector () 
25  Server:Server Set 6 constructor vulture = new Vultur 
26  Server:Server new Vulture new Vulture () 
27  Server:run run method run    try{ Loop 2.} catc 
28  Server:Server Op 4 port==Const 2 
29  Server:Server SEff 6 Condition  Op 4.  true(). 
30  Server:Server SEff 7 true  Op 4. 
31  Server:Server Set 1 constructor port = DEFAULT_PORT. 
32  Server:Server DEFAULT_PORT (varDef)  DEFAULT_PORT   Const 1 
33  Server:Server Const 1 6789 
34  Server:Server SEff 8 port =  6789. 
35  Server:Server Set 2 constructor listen_socket = new  
36 21 Server:Server SEff 9 new ServerSocket  6789. 
37  Server:Server SEff 10 listen_socket =  ServerSocket. 
38  Server:Server SEff 11 new ThreadGroup  "Server Connect 
39  Server:Server SEff 12 threadgroup =  ThreadGroup. 
40 24 Server:Server Const 7 Server Status 
41  Server:Server new Frame new Frame ( Const 7.) 
42  Server:Server SEff 13 new Frame  "Server Status". 

continues…  
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1157HTABLE 30 continued. 
43  Server:Server SEff 14 new List 
44  Server:Server SEff 15 connection_list =  List. 
45  Server:Server SEff 16 call add  Const 8.  connection_l 
46  Frame:add add method add 
47  Server:Server SEff 17 return 
48  Server:Server SEff 18 call resize  Const 9.  Const 10. 
49  Frame:resize resize method resize 
50 28 Server:Server SEff 19 return 
51  Server:Server SEff 20 call show 
52  Frame:show show method show 
53  Server:Server SEff 21 return 
54 29 Server:Server SEff 22 new Vector 
55  Server:Server SEff 23 connections =  Vector. 
56 30 Server:Server SEff 24 new Vulture 
57  Vulture:Vulture Vulture method Vulture  s.   super(  Sym 
58  Vulture:Vulture s (varDef)  s 
59 124 Vulture:Vulture Set 15 constructor server = s. 
60 129 Vulture:run run method run   Loop 9. 
61 120 Vulture:run Loop 9 loop: while () do  {  try{ wait  
62  Vulture:Vulture SEff 25 init s 
63  Vulture:Vulture SEff 26 server = 
64  Vulture:run SEff 27 redo 
65  Vulture:run Const 18 5000 
66  wait (varDef)  wait SEff 28 
67  connections (varDef)  

connections 
SEff 29 

68  Vulture:Vulture server (varDef)  server 
71 123 Vulture:run Loop 10 loop: for {; Op 25.; ;  { c.  Se 
72  Vulture:run SEff 30 redo 
73  Vulture:run c (varDef)  c 
74  Vulture:run SEff 31 init c 
75  Vulture:run Set 16 constructor c = Op 22. 
76  Vulture:run Op 22 Connection server.connections.el 
77  Vulture:run SEff 32 invoke   Symbolic Name 

amb_name( 
78  Vulture:run SEff 33 c = 
79  Vulture:run If 11 if  Op 23. then  server.connecti 
80  Vulture:run Op 23 ! c.isAlive ( ) 
81  Vulture:run SEff 34 invoke c 
82  Vulture:run SEff 35 Condition  Op 23. 
83 129 Vulture:run SEff 36 true  Op 23. 
84  Vulture:run SEff 37 invoke  i. server 
85  Vulture:run SEff 38 invoke  i. server 
86 129 Vulture:run Op 24 i-- 
87  Vulture:run SEff 39 redo 
88  Vulture:run SEff 40 invoke   Symbolic Name 

amb_name( 
89  Vulture:run SEff 41 c = 
90  Vulture:run SEff 42 invoke c 
91  Vulture:run SEff 43 Condition  Op 23. 
92  Vulture:run SEff 44 true  Op 23. 

continues…  
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1158HTABLE 30 continued. 
93  Vulture:run SEff 45 invoke  i. server 
94  Vulture:run SEff 46 invoke  i. server 
95  Vulture:run SEff 47 control(toolbreak()) 
96  Vulture:run SEff 48 end of Loop 10 
97  Vulture:run SEff 49 redo 
98  Vulture:run SEff 50 redo 
99  Vulture:run SEff 51 invoke    

100  Vulture:run SEff 52 c = 
101  Vulture:run SEff 53 invoke c 
102  Vulture:run SEff 54 Condition  Op 23. 
103  Vulture:run SEff 55 true  Op 23. 
104  Vulture:run SEff 56 invoke  i. server 
105  Vulture:run SEff 57 invoke  i. server 
106  Vulture:run SEff 58 redo 
107  Vulture:run SEff 59 invoke    
108  Vulture:run SEff 60 c = 
109  Vulture:run SEff 61 invoke c 
110  Vulture:run SEff 62 Condition  Op 23. 
111  Vulture:run SEff 63 true  Op 23. 
112  Vulture:run SEff 64 invoke  i. server 
113  Vulture:run SEff 65 invoke  i. server 
114  Vulture:run SEff 66 control(toolbreak()) 
115 30 Vulture:run SEff 67 end of Loop 10 
116  Vulture:run SEff 68 control(toolbreak()) 
117 36 Vulture:run SEff 69 end of Loop 9 
118  Server:Server SEff 70 vulture =  Vulture. 
119  Server:run Loop 2 loop: while ( Const 4.) do  { cl 
120 36 Server:run client_socket (varDef)  client_socket   invoke 
121  Server:run c (varDef)  c   new Connection  cl 
122  Server:run SEff 71 redo  Const 4.  1. 
123 37 Server:run SEff 72 call accept 
124  ServerSocket: 

accept 
accept method accept 

125  Server:run SEff 73 return 
126  Server:run new Connection new Connection ( client_socket.  
127  Server:Server threadgroup (varDef)  threadgroup 
128  Server:run Const 11 3 
129  Server:Server vulture (varDef)  vulture 
130  Server:run SEff 74 new Connection  ThreadGroup.  3. 
131 66 Connection: 

Connection 
Connection method Connection  client_socket 

132  Connection: 
Connection 

client_socket (varDef)  client_socket 

133  Connection: 
Connection 

threadgroup (varDef)  threadgroup 

134  Connection: 
Connection 

priority (varDef)  priority 

135  Connection: 
Connection 

vulture (varDef)  vulture 

136  Connection: Conn. setPriority  (varDef)   
137 70 Connection: Conn Set 9 constructor client = client_sock 

continues… 
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1159HTABLE 30 continued. 
138  Connection:run run method run   line.  revline.  le 
139  Connection:run line (varDef)  line 
140  Connection:run revline (varDef)  revline 
141  Connection:run len (varDef)  len 
142  Connection:run SEff 75. init setPriority  "" 
143  Connection: 

Connection 
SEff 76 client =  ThreadGroup. 

144  Connection: 
Connection 

SEff 77 init vulture 

145  Connection: 
Connection 

SEff 78 init vulture 

146  Connection: 
Connection 

Set 10 constructor in = new DataInputSt 

147 73 Connection: 
Connection 

SEff 79 call getInputStream 

148  Socket: 
getInputStream 

getInputStream method getInputStream 

149  Connection: 
Connection 

SEff 80 return 

150  Connection: 
Connection 

SEff 81 new DataInputStream 

151  Connection: 
Connection 

SEff 82 in =  DataInputStream. 

152  Connection: 
Connection 

Set 11 constructor out = new PrintStrea 

153 74 Connection: 
Connection 

SEff 83 call getOutputStream 

154  Socket: 
getOutputStream 

getOutputStream method getOutputStream 

155  Connection: 
Connection 

SEff 84 return 

156  Connection: 
Connection 

SEff 85 new PrintStream 

157  Connection: 
Connection 

SEff 86 out =  PrintStream. 

158  Connection:run SEff 87 init line 
159  Connection:run SEff 88 init revline 
160  Connection:run SEff 89 init len  "". 
161  Connection:run SEff 90 call println  Const 14. 
162  PrintStream:println println method println 
163  Connection:run SEff 91 return 
164  Connection:run SEff 92 call println  Const 15. 
165  Connection:run SEff 93 return 
166  Connection:run Loop 5 loop: while () do  { Set 12  inv 
167  Connection:run SEff 94 redo 
168  Connection:run Set 12 constructor line = invoke [06D70 
169 91 Connection:run SEff 95 call readLine 
170  DataInputStream: 

readLine 
readLine method readLine 

171  Connection:run SEff 96 return 
172  Connection:run SEff 97 line = 
173  Connection:run If 6 if  Op 7. then  break() . 

continues…  
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1160HTABLE 30 continued. 
174  Connection:run Op 7 line==Const 2 
175  Connection:run SEff 98 Condition  Op 7.  false(). 
176  Connection:run SEff 99 false  Op 7. 
177  Connection:run Set 13 constructor len = invoke [0183CC 
178  Connection:run SEff 100 call length 
179  Connection:run SEff 101 return  0. 
180  Connection:run SEff 102 len =  0. 
181 94 Connection:run Set 14 constructor revline = new String 
182  Connection:run SEff 103 new StringBuffer  0. 
183  Connection:run SEff 104 revline =  StringBuffer. 
184  Connection:run Loop 7 loop: for {; Op 14.; ;  { insert 
185  Connection:run SEff 105 redo 
186  Connection:run SEff 106 call insert  Op 11.  charAt) ( i 
187 96 StringBuffer:insert insert method insert 
188  Connection:run SEff 107 return 
189  Connection:run SEff 108 redo 
190  Connection:run SEff 109 call insert  Op 11.  charAt) ( i 
191  Connection:run SEff 110 return 
192  Connection:run SEff 111 control(toolbreak()) 
193  Connection:run SEff 112 end of Loop 7 
194 97 Connection:run SEff 113 call println  revline. 
195  Connection:run SEff 114 return 
196  Connection:run SEff 115 redo 
197  Connection:run SEff 116 call readLine 
198  Connection:run SEff 117 return 
199  Connection:run SEff 118 line = 
200  Connection:run SEff 119 Condition  Op 7.  false(). 
201  Connection:run SEff 120 false  Op 7. 
202  Connection:run SEff 121 call length 
203  Connection:run SEff 122 return  0. 
204  Connection:run SEff 123 len =  0. 
205 94 Connection:run SEff 124 new StringBuffer  0. 
206  Connection:run SEff 125 revline =  StringBuffer. 
207  Connection:run SEff 126 redo 
208  Connection:run SEff 127 call insert  Op 11.  charAt) ( i 
209  Connection:run SEff 128 return 
210  Connection:run SEff 129 redo 
211 96 Connection:run SEff 130 call insert  Op 11.  charAt) ( i 
212  Connection:run SEff 131 return 
213  Connection:run SEff 132 control(toolbreak()) 
214  Connection:run SEff 133 end of Loop 7 
215 97 Connection:run SEff 134 call println  revline. 
216  Connection:run SEff 135 return 
217  Connection:run SEff 136 control(toolbreak()) 
218  Connection:run SEff 137 end of Loop 5 
219  Server:Server connections (varDef)  connections 
220  Server:run SEff 138 call addElement  c. 
221 39 Vector:addElement addElement method addElement 
222  Server:run SEff 139 return 
223  Server:run SEff 140 call addItem  c.  toString. 

continues… 
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1161HTABLE 30 continued. 
224  List:addItem addItem method addItem 
225  Server:run SEff 141 return 
226  Server:run SEff 142 redo  Const 4.  1. 
227  Server:run SEff 143 call addElement  c. 
228  Server:run SEff 144 return 
229 40 Server:run SEff 145 call addItem  c.  toString. 
230  Server:run SEff 146 return 
231  Server:run SEff 147 control(toolbreak()) 
232 43 Server:run SEff 148 end of Loop 2 
234 47 Server:run Seff 149 return 
234 32 Server:main Seff 150 return 

 
Observations and limitations: 

- The simulation goes through all the assumed statements. We evaluated 
the program flow by adding the most actual line numbers to Column 2. 

- The loops are simulated twice, because that was set in the user option. 
This limitation is needed, because otherwise the tape would become 
rather large. Furthermore, often threads contain infinite loops, which 
should be simulated under user control. When the loop counter has 
caused an overrun, then a signal toolbreak is inserted to the tape for the 
user to indicate the reason. 

- Complex references are not completely listed in the table. 

Filtering information to classify the PC needs 

If the tape information is categorized to classes (Pennington, 1987; Burkhardt et. 
al, 2002), then the tool can help the programmer in focusing on the most 
relevant type of information (see 1162HFIGURE 50). Depending on the problem either 
functional (JDK) references, or understanding any flow like control flow, data 
flow or object flow can be relevant. The tool can help the user in understanding 
the states of several tapes by accumulating input and output states. 

Conclusions 

This approach forms a focused way for source code analysis. It was found that 
the simulator can capture program flows under user control. Several simulation 
options can be used in order to define how much information the process 
should cover. The process resembles that of a Turing machine, although this 
process is much more abstract. This novel approach is extremely modular, 
because the code can be selectively simulated at any time, and the results can be 
explored atom by atom.  

This trial has demonstrated the implementability of Goal 17 and actual 
operation of the developed methodology for dealing with object-oriented code 
in case of Java. It has also explicated the main connections between the concepts 
on the theoretical and implementation levels of the methodology (see 1163HFIGURE 
3). 
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