JYVASKYLA STUDIES IN COMPUTING
90

Erkki Laitila

Symbolic Analysis
and Atomistic Model as a Basis
for a Program Comprehension
Methodology

JYVASKYLAN I YLIOPISTO

JYVASKYLA STUDIES IN COMPUTING 90

Erkki Laitila

Symbolic Analysis and
Atomistic Model as a Basis for a Program
Comprehension Methodology

Esitetddn Jyvaskyldn yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston Agora-rakennuksessa (Ag Aud. 3)
huhtikuun 26. paivana 2008 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyvaskyls,
in the Building Agora (Ag Aud. 3), on April 26, 2008 at 12 o'clock noon.

)

UNIVERSITY OF H JYVASKYLA

JYVASKYLA 2008

Symbolic Analysis and

Atomistic Model as a Basis for a Program
Comprehension Methodology

JYVASKYLA STUDIES IN COMPUTING 90

Erkki Laitila

Symbolic Analysis and

Atomistic Model as a Basis for a Program
Comprehension Methodology

®

UNIVERSITY OF H JYVASKYLA

JYVASKYLA 2008

Editors

Tommi Kérkk&dinen

Department of Mathematical Information Technology, University of Jyvaskyld
Irene Ylonen, Marja-Leena Tynkkynen

Publishing Unit, University Library of Jyvaskyla

Cover picture by Erkki Laitila

URN:ISBN:978-951-39-3252-7
ISBN 978-951-39-3252-7 (PDF)

ISBN 978-951-39-2908-4 (nid.)
ISSN 1456-5390

Copyright © 2008, by University of Jyvaskyla

Jyviskyld University Printing House, Jyvaskyld 2008

ABSTRACT

Laitila, Erkki

Symbolic Analysis and Atomistic Model as a Basis for a Program
Comprehension Methodology

Jyvéaskyld: University of Jyvaskyld, 2008, 326 p.

(Jyvéaskyld Studies in Computing,

ISSN 1456-5390; 90)

ISBN 978-951-39-3252-7 (PDF), 978-951-39-2908-4 (nid.)

Finnish summary

Diss.

Research on program comprehension (PC) is very important, because the
amount of source code in mission-critical applications is increasing world-wide.
Software maintenance takes more than one half of all software development
time and the effort to understand code about a half of this. Although of great
importance, research on program comprehension is not yet very advanced.

Notwithstanding with its many excellent qualities, modern object-oriented
code is harder to understand and more difficult to analyze than former
procedural languages due to encapsulation and object bindings. As a solution
for this problem we propose an information flow structure with four stages to
help us in systematically obtaining new knowledge from the code. The first
stage consists of loading the program through GrammarWare into a symbolic
form to function as a construction for the model, as the second stage, which we
call here ModelWare. In our research we wanted to find the smallest possible
structure that could be used for modeling. This gave us the idea of an "atom" in
the source code. The idea was then implemented as a so-called hybrid object,
combining, in an ideal manner, object based abstraction and expressiveness of a
logic language. As a consequence, semantics and associations could be
presented in a symbolic form.

The third stage, code simulation based on SimulationWare enables
symbolic analysis, which brings to light a program simulation functionality that
is comparable with dynamic analysis. The last stage in our methodology,
KnowledgeWare, is aimed for collecting knowledge: the user constructs, stage
by stage, the most suitable representations for the current tasks, which include
code inspection, error detection and verification of current operations.

The methodology is programmed with Visual Prolog and implemented in
our JavaMaster tool, which enables the handling of Java code in accordance
with the main stages. The formalism of the resulting implementation
architecture combines the main functions in program development: reverse
engineering for maintenance, and forward engineering for design of new code.

Keywords: software maintenance, program comprehension, reverse
engineering, grammars and automata, model theory, knowledge capture.

Author’s address

Supervisors

Reviewers

Opponents

Laitila, Erkki

Department of Mathematical Information Technology
University of Jyvaskyld, Finland

P.O. Box 35 (Agora), 40014 University of Jyvaskyla
erkki.laitila@swmaster.fi

Neittaanmaki, Pekka
Department of Mathematical Information Technology
University of Jyvaskyld, Finland

Karkkdinen, Tommi
Department of Mathematical Information Technology
University of Jyviaskyld, Finland

Koskinen, Jussi

Department of Computer Science and Information
Systems

University of Jyvaskyld, Finland

Lahdelma, Risto
Department of Information Technology
University of Turku, Finland

Leiss, Ernst L.
University of Houston, USA

Sajaniemi, Jorma
University of Joensuu, Finland

Seppdnen, Veikko
University of Oulu, Finland

ACKNOWLEDGEMENTS

The primary motivation for this work has its origins in the practical problems
that I had come across in programming. For the past two decades I have been
able to dedicate my company working hours both for implementing industrial
Prolog applications and for studying interesting phenomena in artificial
intelligence. I thank my wife, Maritta, for allowing me this rather flexible life-
style, which finally led to this contribution.

My aspiration towards program comprehension is due to my background
both as a practitioner and an entrepreneur. My participation (2001-2002) in an
educational program sponsored by Tekes aimed for Finnish software
entrepreneurs in the USA allowed me to define, for this research, the most
promising pragmatic stance in software reverse engineering, where static
analysis and dynamic analysis are the current paradigms.

During the re-orientation, Visual Prolog has been my secret weapon, the
means to practice computer-aided invention and to implement prototypes and
applications. My thanks for this excellent product with which one can create
formalisms, such as hybrid-object models, go to Leo Jensen and his colleques in
PDC. Of the topic related conversations that I had, the most pragmatic were
those with Tuomo Tuomikoski and Prof. Veikko Seppédnen from Elektrobit Ltd.

My heartfelt thanks to my principal supervisor, Prof. Pekka Neittaanmaki
for organizing the research work since 2004 when I began to update my initial
knowledge as a computer engineer in order to obtain a PhD degree. I would
like to express my gratitude to the supervisors for reviewing the most critical
chapters. It surely has been a challenging task to assimilate all my proposals - I
extended the scope no less than three times.

Being a proposal for a new paradigm, symbolic code analysis also met
criticism. Doubts were cast on the workings of software atom and on whether
the Turing machine model would be relevant in this work. It was encouraging
when Emeritus Prof. Aarni Perko voluntarily evaluated the thesis and wrote the
tirst positive report about it. Further positive arguments came from Prof. Ernst
Leiss, who saw, in my inclination towards reaching a comprehensive
understanding instead of further specialization, a virtue, not a burden. To him, I
therefore wish to express my sincere gratitude. I would like to thank Prof. Risto
Lahdelma, a specialist in Prolog and software, for several suggestions during
the long examination process, which improved the readability.

I would like to thank COMAS (Jyvaskyld Graduate School in Computing
and Mathematical Sciences) for providing the financial means for my
investigation. I would also like to thank the Ellen and Artturi Nyyssonen
Foundation for their contribution.

During the research Steve Legrand has helped me in completing the text. I
would like to thank Steve for many interesting conversations leading to a
conference trip as far as Mexico, and for nine checked articles. The quality must

have been good, because all of my latest six articles have been accepted for
international conferences.

Finally, I want to salute my children, who patiently supported my efforts
during lonely times when the whole software formalism loomed over my work
like a huge Gordian knot. My special thanks to Ville, who has kept me informed
about the best practices in Java programming.

In Jyvaskyld, Nendinniemi 7.4.2008 Erkki Laitila

FIGURES

FIGURE 1 Program comprehension data flow.........cccccveevinecinicnincninccnnenne. 22
FIGURE 2 Reverse engineering, a horse shoe diagram (Tichelaar, 2001)......... 30
FIGURE 3 Main levels of the methodology.ccccccoiiiiinnniiiiccne 55
FIGURE 4 The main approaches for the program comprehension tool. 58
FIGURE 5 Program comprehension as automata and transformations. 63
FIGURE 6 Definition of a computable function by a register machine. 67
FIGURE 7 The research as a three machine model..............cccccooiinni 72
FIGURE 8 The research approach and the corresponding theories.................... 85
FIGURE 9 Defining the Symbolic language.............cccccoviiiininiiiiiiiiine 89
FIGURE 10 Direct, semantic translation.cooeeeeeeeeeee e eeeeaeens 105
FIGURE 11 Summary of GrammarWare............ccccccouvrueueuioinnniecninncceennenes 115
FIGURE 12 Atomistic hybrid object, AHO, the architecture................cccccceeeeee 120
FIGURE 13 Class hierarchy of the symbolic atom.ccceccceveiiinininiinicnnes 120
FIGURE 14 Atomistic metaphor for the Java main method..........ccccccoecvrenenees 122
FIGURE 15 The semantics of the symbolic atom.cccceevinieiinecincinicnnnes 129
FIGURE 16 Presenting structural dependencies of an atom as links.................. 133
FIGURE 17 The role of the abstract machine and SimulationWare. 144
FIGURE 18 The functional principle of the symbolic abstract machine............ 147
FIGURE 19 Challenges for analyzing OO programs.............ccccccoeeerurueueercrerununes 151
FIGURE 20 Executing a statement block and simulating it by Prolog. 163
FIGURE 21 Turing model for an atomistic element.cccoeeviiiiniiinncnnnes 171
FIGURE 22 Implementation layers for the symbolic abstract machine............. 175
FIGURE 23 Information levels, produced by the symbolic model..................... 176
FIGURE 24 Sample code for illustrating its data and Turing model. 181
FIGURE 25 Bridging from grammar to model, and knowledge unit. 183
FIGURE 26 A graphic explanation is a set of causal relations.c.......... 184
FIGURE 27 Skill-level presentation (variable X).c.cccoccevevennennencnecnnrcennes 189
FIGURE 28 A causal chain of a sequence with its pre- and postconditions. 190
FIGURE 29 A model for evaluating a sequence as a Hoare triple...................... 192

FIGURE 30 An automated explanation based on a flow as natural semantics. 195
FIGURE 31 Action levels based on adaptation, preference, and fallback. 198

FIGURE 32 Hypothesis resolution approach...............ccccccceiiiiinnniiinnnnnnes 200
FIGURE 33 Different functions for an operand to be used in tapes................... 202
FIGURE 34 Specifying constraints in a tape.c.coccceoeoevrrieccoinnneccennennes 202
FIGURE 35 Sample theorems, forward and backward chaining........................ 204
FIGURE 36 Resulting model for KnowledgeWare.cccccoouviiniinninnnnnns 212
FIGURE 37 Architecture levels of the JavaMaster tool.cccceeevvevcvrecrrennnne. 218
FIGURE 38 Data flow of the tool.cccccoiiiiiiiiiiiic 220
FIGURE 39 Symbolic icons, illustrating a symbolic Turing machine. 222
FIGURE 40 Displaying an atom in the atom toolbar................cccccocvieiiinnines 222
FIGURE 41 Entering the test code for the abstract machine.cccc........ 223

FIGURE 42 Input tape of the atomistic model derived from EXAMPLE 1....... 224

FIGURE 43 Output tape derived from the abstract machine for EXAMPLE 1. 224
FIGURE 44 A theorem is a selected sequence of atoms, consisting of rules..... 225

FIGURE 45 Simulator option dialog.cccocceiiinniieiiinniiccinrcccceeeeennes 227
FIGURE 46 Configuring a hypothesis for a loop.ccccccevvciiinnnccccnnnnes 228
FIGURE 47 Interactive theorem prover for Java programes............ccccccceuvueueneee. 229
FIGURE 48 Simulation results in the theorem prover dialog.c..c.c...... 233
FIGURE 49 Problem formulation dialog.cccccccvueirineciniiniiiniciniccniecenes 234
FIGURE 50 Selecting the understanding strategy............cccceceoevrecinecinieinnnccnes 235

FIGURE 51 Display for validating functionality. All functions are shown. 236
FIGURE 52 Display for validating a control flow (side effects not shown). 237

FIGURE 53 Display for validating a data flow...........ccccccccviiiiinnniiiicnnes 237
FIGURE 54 A hypothesis for tracing objects, here DatalnputStream. 238
FIGURE 55 Display for validating object flows, constructors............c..cccccucuc.. 239
FIGURE 56 Display for validating state-oriented functionality. 239
FIGURE 57 A draft considering a snapshot of a dependency model. 241
FIGURE 58 Layout of the tool...........ccccccoiiiiiiiiiiiiiiccccces 243
FIGURE 59 Data flow in the methodology.ccccccoeiiiiiiiiiiiiiiiies 247
FIGURE 60 Making a formal model for program comprehension..................... 255
FIGURE 61 System understanding controls the software life cycle................... 264
FIGURE 62 Connections to computer SCIENCE.ccevvevuerrerereeereerenieiennennenn 279
FIGURE 63 Server - example as a sequence diagram.cccccccceuvuevrueueneuennnes 305
FIGURE 64 Prolog’s computation model.cccoeeiniiiniinincinieiiciieees 310

FIGURE 65 Each goal (call) tries to get solutions exhaustively.c..c.c...... 311

TABLES

TABLE 1
TABLE 2
TABLE 3
TABLE 4
TABLE 5
TABLE 6
TABLE 7
TABLE 8
TABLE 9
TABLE 10
TABLE 11
TABLE 12
TABLE 13
TABLE 14
TABLE 15
TABLE 16
TABLE 17
TABLE 18
TABLE 19
TABLE 20
TABLE 21
TABLE 22
TABLE 23
TABLE 24
TABLE 25
TABLE 26
TABLE 27
TABLE 28
TABLE 29
TABLE 30

Contents of the research.............ccccoociiiiiiii, 24
Tool approaches for software development archetypes. 74
Statistics from the file Java.grm for Java the 3rd edition. 90
Conversion table between Java and Symbolic.............ccoeciricnnnnee. 96
The logic behind the symbolic model weaver.c..cccccceneee. 117
Categories of atomic liNKS........ccoeeviieiinieiniienincinicicecceees 131
The run method as a state transition table.cccocccooeenninnne. 142
While command as a state table.ccccoiiiiiiiiii 166
Atomistic semantics for Symbolic with Java compatibility............ 174
Simulating Java in Symbolic..........cccooeiiiininiciccccce 175
Server-example (see Appendix 1) as a Turing-tape...........cccccoeueeee. 182
The information ladder based on the atomistic model. 188
Making conclusions based on proof results...........cccccoeeirinnnnnnnn. 205
The size of JavaMaster source code: classes and source lines. 219
Grammar-oriented symbols of the model.............cccocceevrininnine. 249
The main symbols of the atomistic model. ... 250
The simulator model.ccocoeoiiiiiiicccce 251
Maintenance approach.cccoeecveennerneinecnncneeseeeeeesenenes 252
Foundation for KnowledgeWare...........ccccccooiiiiiniinniininnne. 253
Results from the KnowledgeWare knowledge presentation.......... 254
Proposed type system to cover reverse engineered elements........ 256
Accuracy of transformations in the proposed PC environment. ... 273

Reference index to the JavaMaster structures of Chapters 4 to 7. . 313
Examples from Visual Prolog types..........cccccoviiiiinnniiicinnnnes 314
A Visual Prolog example interface.ccccoceeeiinnnccinnnnccnne. 315
A Visual Prolog example class..........ccccccoevivnicininnccinnccccene 316
A Visual Prolog code file.ccccooeiniiiiniiniiiiiiiccecce 317
Layout for presenting simulation results.ccccccccvveiniinnnn. 319
The input tape from simulation.cccoeeeveinieinciniinncnene 320

The output tape from simulation.ccocceveevnconerinncnnccnenene. 321

TAXONOMY FOR SYMBOLIC ANALYSIS

Symbols for software engineering

PC Program comprehension
RE Reverse engineering
FE Forward engineering

Technology spaces for the research

GW GrammarWare: technology focusing on grammars.

MW ModelWare: technology focusing on models.

SW SimulationWare: technology focusing on code simulation.
KW KnowledgeWare: technology focusing on knowledge capture.
The semiotic triad

S Symbol

O Object, either Java object or a semiotic object

L Logic, language, and interpretation

Main symbols of the methodology

Task, maintenance task

Process, program understanding process
Hypothesis

Query, question

Analysis

Model

2P0 T

Functional symbols for ModelWare, SimulationWare, and KnowledgeWare
E Element of the model

Atom Symbolic source code element, a software atom

Action Computer action or human action

C Computation, either automatic simulation or a manual inference
N Grammar term

R Rule, production rule, grammar rule

K Knowledge (KO = initial knowledge)

Symbols for grammars and automata, and the corresponding symbolic notation
r Alphabet (Java = Symbolic), list of reserved words

X Input symbols (syntax of source code)

B State transition table of finite automata (usually Q is used)

o Transfer function, semantics

SE Side effect, any result generated from simulation

Symbolic Domain specific language for abstractung Java

Clause The main grammar term of the Symbolic language

™ Turing machine.

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
FIGURES
TABLES
TAXONOMY: SYMBOLIC ANALYSIS AND ATOMISTIC MODEL
CONTENTS
1 INTRODUCTIONcocoiiiiiiiciiireieeeteesee et 19
1.1 Practical challenges for software maintenance............ccccccccueevrcininnnncne. 19
1.2 Research goal..........ccocoiiiiiiiiiiiiiiii s 20
1.3 The overall framework...........ccccccooviiiiiiiiiiiie, 22
1.4 Overview of the contributions..........ccccccoeiiviiiiiiiiiiie 23
1.5 Contents of the dissertation............c.ccccccoeeiiriiiiiiniiiiiicccce, 24
2 BACKGROUND ON PROGRAM COMPREHENSIONccccccovviniiiiinininnn. 26
21 Software development life cycle...........cccoeiiiiiniiniininiiiice 26
2.1.1 Evolution Jaws ... 27
2.1.2 Maintenance means a continuous life cyclecccocccvvveiniinnee. 27
2.1.3 Reverse engineering and reengineeringcccocecevcueeeeerurucucnnee. 29
2.1.4 Best practices of maintenance and reverse engineering................. 30
2.2 PCasan independent disCiplinecccoceveoereinnennciniecnncnccneecee 31
2.2.1 Single-disciplinary approach............ccccceceevviiiniiiiniiniiniiiccnes 32
2.2.2 Influence of individual programmer differences................c.......... 34
2.2.3 Object-Oriented Program Comprehensioncccccecvvcvnueuennneee. 35
23 PCintegrated into code analysiscccccoeevieivineiniiininciniciceeeeene 36
2.3.1 Connecting PC and static analysis...........ccccoeviiiinnniciinnnnne. 37
2.3.2 Connecting PC and dynamic analysis...........ccccccccoeeinniiiinnncnnee. 40
2.4 Dividing PC to research tOpicscccocceivirririciiininincccireccceeeeeee 41
2.4.1 Grammar related approach..........ccocceveenneineinncnncrnccneceeee 42
2.4.2 Model related approachc.cccoeeveeirenieinineiencceeceeee 43
2.4.3 Behavior oriented approach (Simulation)ccceceeeeerencreennennee 46
2.4.4 Knowledge related approachcccocccevveivnccinccnncincineee, 47
2.5 About Symbolic Processing............ccovucueuiininiriciiiininicecireeeeeeeeee 48
2.5.1 Symbolic terminology..........ccccouviiiiiiiiiiiiiiiiicce e 49
2.6 Summary of the related WOTKccceuiiiiiiiiice, 50
3 TOWARDS SYMBOLIC ANALYSIS AND ATOMISTIC MODEL FOR PC...51

3.1 RESCATCI fOCUS ..o eaeneeas 51
3.1.1 Research MeEthodt eae e 52
3.1.2 Ideal goal for the theory ..., 53

3.2 Foundation: Purity of concepts..........ccccccevriiiiiinnniciinnccccreeene. 55

3.2.1 Main concepts defining the symbolic layer...............cccccccciinnnnnie. 55

3.2.2 The user’s side of the methodologycccccoiiiinniiiinnnn. 57
3.3 Simplicity of theories: Technology spacesccccococueicinnecccnnnicnenee. 58
3.3.1 Commitments to GrammarWareccccocovvviviinininiiiinnn, 59
3.3.2 Commitments to ModelWare............ccccoeiiiiiiiiiiniiiiie, 59
3.3.3 Commitments to SimulationWare.ccccooiiiiiiniiinn, 60
3.3.4 Commitments to KnowledgeWare...........c.cccoveiniinninnccnecnnnnes 61
3.4 Accuracy of PC transformations............cccececeveevineineinincninccineceeenen 62
3.4.1 Universal transformation formalism...........c.ccccccoevininiciinnnccnnnee. 63
3.4.2 Type theories..........ccccccviiiiiiiiii e 64
3.4.3 Knowledge transformation set..........c.ccccccoeeeeinniiccinnicccccnnnene 64
3.4.4 Graph approach (model theory) ... 65
3.5 SimulationWare: Completeness of 10giCcccceeiviiiniiiiiiiiniciinnn 66
3.5.1 Connection between logic and automaton theory 66
3.5.2 Definition for the smallest computation...........cceecevveecirccinccnnnnee. 66
3.5.3 Towards an ideal analysis...........cccccoviiiiiniiiiiiiiccce, 67
3.5.4 Turing machine metaphor - the base of computer simulation.......69
3.5.5 Simulating parallel features, the starting logic of threads 69
3.5.6 User as the Deciderccocooiviiiiiiiniiiniiiiiiiccccce, 70
3.5.7 Automated reasoningccoccceevviiinieiniiiinieincee 70
3.5.8 The final approach for logic, theorem proving...........ccccccceueueenneee. 70
3.6 Relevance of questions: referring to use scenariosccceceeveueveuencnnee 72
3.6.1 Mental simulation ... 72
3.6.2 Organizational approaches.............cccoociiiiiiiiiniiiiicce, 73
3.6.3 Familiarization SCENATIOcccccciiviriiiiiiiiiiiciccccce, 74
3.6.4 Testing SCONATIOccoevviiiiiiiiiiiic e 75
3.6.5 Troubleshooting scenario...........cccccceeuvuriecirinniccirirecccereeee, 75
3.6.6 Definition for the focused approach towards source code............. 76
3.7 Certainty of the results of analyses (answers).........ccccceeevieecinccninncnne. 77
3.7.1 Does the method give correct answers?...........ccoccevveecvvccincennnnene. 78
3.7.2 Test evaluation possibilities for the resultscccoevecvvcinccnnneee. 78
3.8 Correctness of programs and the tool.............ccccccooiiiiiiiniiiiiie, 79
3.8.1 The functional approach for the tool, Facade..........cccccoucvneueenncee. 79
3.8.2 Programming approach for tools.............ccccevricioinnnicccnnne 79
3.8.3 Hybrid programming, combining logic and OOP 80
3.8.4 Knowledge analysis of tasks..........ccccceeiniinniiniinnciiciice, 82
3.8.5 About the formalization and development tool Visual Prolog.....83
3.9 Summary of the approach...........cccceeviviieiiniiniiinniiiccccee 83
GRAMMARWARE ..ot 86
41 Foundation for GrammarWare............ccccocoeiviiiiiiiiiiiiinccs 87
4.1.1 Automaton Al including the grammar toolccccoceininnee. 87
4.1.2 Automaton A2, parsing and the Symbolic language...................... 92
4.1.3 Automaton A3, abstraction by symbolic transformation............... 95
4.1.4 Conclusions about GrammarWare (the automata A1..A3)............ 97
42 Comparing the foundation with related work.............c.cccccooiiini 97

4.2.1 Symbolic Grammar Term..........ccccocociiinniiiiiiiiiicinnccccees 98

4.2.2 Expressing language semantics in typed Prolog...............cccccccecee. 98
4.2.3 Symbolic Grammar Rule..........cccccoiiiiiiiiicccccce, 99
4.2.4 Implementing the grammar tool...........ccccccoviiiniiniiniiniie, 99
4.3 Developing the output of parsing...........cccceceveeeveiviinnccniiniiecee, 100
4.3.1 Predicate-augmented ASTccccccooiniiniinniiniinccccee 102
4.4 Raising the abstraction levelccccovivniiiiniiniinicce, 103
4.4.1 Symbolic Code Description Language..........c.ccceveevvrecinreineuennnnene. 103
4.5 Direct translationccccccociiiiiiiiiiini e 104
4.5.1 The principles and the main goals of translating source code104
4.5.2 Definitions for a direct translation...........c.c.ccccccccevniciciinnncccnne. 105
4.6 Symbolic, the symbolic languagecccccceeivriiiinniiccrecccene 106
4.6.1 The Symbolic [anguagecccccevveuecireinieiniiciicieceeeeeees 107
4.6.2 Categories of the Symbolic clause..........ccccceeveciriiiniiiniiniinnne. 109
4.6.3 Data model of the Symbolic languageccceeceevvecirieineininnennn. 113
4.6.4 Operational model of Symbolic languagec.ccccccevirirurucucnnnee. 113
4.7 Summary of GrammarWare, a bridge to ModelWare............................ 114
MODELWARE, THE ATOMISTIC SYMBOLIC MODEL.........cccccccevvinininnnne 116
5.1 Foundation for ModelWare...........ccccccoeiiiiiiiiiiiiiiiicce, 116
5.1.1 Automaton A4, Symbolic-to-model transformation....................... 117
5.1.2 Atomistic architectureccccooviiiiiiiiiiccccces 119
5.1.3 Conclusions about ModelWare (Automaton A4).........ccccceeueenneee. 121
5.2 Symbolic model, its definition and features...............cccccoevniiiiinnnnee. 121
5.2.1 Atomistic model and its featurescccccovricioinniccicnnnene. 121
5.2.2 Symbolic atomistic model............ccoccceviiniiiniiiie, 123
5.2.3 Creating the model and other model functions..............cccccuceee. 123
Outputs from the symbolic atomistic model...........cccoeeiriiniinninnnene. 126
5.3 SymbOlic @atOm......c.ccirieiiiiiiiiiiciicec e 127
5.3.1 Special characteristics of symbolic atom...........cccceeciiiiinicnnne. 128
5.3.2 Semantic definition for the symbolic atom..............ccccceviiiinies 129
5.3.3 Expressing links between atoms...............cccccceevrciinnniccccnnnenee. 131
5.3.4 Arguments of the atom command............cccccoviiiiiniiiiinne. 132
5.3.5 Atomistic operations: scanning and searching...........c.c.ccccccceeuneee. 132
5.3.6 Atom reachability, analyzing sequences and control flows 133
5.3.7 Atomistic result processing...........cocceveuevierecineinieenineineeneeenenes 134
5.4 Architecture of the atomistic model.............ccccociiiiiiii 136
5.4.1 Programming model for the symbolic model..............c..ccccccceenies 136
5.4.2 Atomistic hybrid objectccociiiiiiiiiccce, 136
5.5 Summary of ModelWareccccoiiiiiinniiiiicccee e, 137
SIMULATIONWARE, AN ABSTRACT MACHINE FOR SYMBOLIC........... 138
6.1 Foundation for SimulationWare.............cccooiiiiiiiiiiiiiiie, 139
6.1.1 Automaton A5, defining a simulation process..............ccccccceuruneeee. 139
6.1.2 Automaton A6, the simulation process.........c.coccceeerruerenreenecnennes 140

6.1.3 Conclusions about SimulationWare for automata A5 and A6...... 143

6.2 Background for the abstract machine..............ccccccoiiiiiinin. 143
6.2.1 Chomsky hierarchy and the corresponding automata................... 144
6.2.2 Principles for computations in the atomistic model 145
6.2.3 Turing machine model ..., 146
6.2.4 Symbolic abstract machine (SAM)........cccccccecviviniinnciniiiciee, 146
6.3 Technical preconditions for Java simulationccceceevecenincncncnnennn 148
6.3.1 Java execution MOdel.........c.ocooveevviiiiieiiieciieeeceee e 148
6.3.2 Sequential computation model ..o 149
6.3.3 Reachability analysis...........ccccoeeiiiininiiiiicccccce, 149
6.3.4 Problems and limitations of symbolic execution...............ccce....... 149
6.3.5 Relations of the abstract machine to hardware and performance 150
6.3.6 Influence of the object-oriented paradigm to simulation............... 150
6.4 The Turing machine as a reference for simulationc.cccccccoevennnnn. 153
6.5 Foundation for source code simulation...........ccccccoviiiiiniiiinnnne, 154
6.5.1 Simulation in computer SCiencecccoeeverecireinieenineieeenenne 154
6.5.2 Source code simulation............ccccccoeiiiiiiiiiiiiice, 155
6.5.3 Complete simulation of the whole application...........cccecccevveueeneee. 155
6.5.4 Partial simulation ..o, 155
6.5.5 Run method, the nucleus of the simulationcc.ccceeeeveeeeeeeeeeeennn 159
6.5.6 Limitations of the simulation solutions in this research................. 160
6.6 Simulating static procedural commands.............cccceceiviiiiiiniinine. 160
6.6.1 Extending the symbolic model into a behavioral model................ 162
6.6.2 Simulating a statement block............cccccccoviiiniiniiniiicce, 163
6.6.3 Constants and their semantics (valClause)........c..cccoevecercenecnnnnee. 164
6.6.4 Simulating operations (OpClause)cccccoeueuiiininiciiiiniiiccnne. 164
6.6.5 Simulating variable references (refClause)...........ccccoceeueueerirunucnnnee. 164
6.6.6 Simulating assignments (setClause)............cccoceerciniiiiicininnnnne. 165
6.6.7 Simulating conditional clauses (pathClause)............ccccccccuveinnnee. 165
6.6.8 Simulating loops (100pClause)cccccevveivineiniciniciicicene 166
6.6.9 Simulating method calls (getClause).........c.cccececureinnecinccinccnnnnene. 167
6.7 Simulating dynamic object-oriented commandsccccccceiininnnee. 168
6.7.1 Limitations of the partial simulation of object-oriented code........ 168
6.7.2 A protocol to handle unknown types and object handles.............. 168
6.7.3 Simulating create commands (creatorClause)ccccccceuvurueneeee. 169
6.7.4 A protocol to simulate polymorphism..........c.cccceeviviiiinciniinnnnne. 170
6.8 Atomistic and distributed semanticsc.cccccecviiiiiiiiii 170
6.8.1 Turing model for the atomistic element...........cccccceevrccincinicnnnnene. 170
6.8.2 Atomistic semantics for defining Java as a high abstraction 172
6.9 Summary: describing semantics by an abstract machine......................... 173
6.9.1 Simulating Java in Symbolic..........ccccoiiiiiiiiiiiiiicce 175
6.9.2 Results from the symbolic model.............ccccccooiiiiinnniiine, 176
6.9.3 Unified data model for the simulation results.............ccccccccururuneece. 177
KNOWLEDGEWARE........cccoiiiiininininininiisieesirisisisisiesssissesis s 178
7.1 Preliminaries for KnowledgeWare............cccocociiininiiiinniiiiie, 178

7.1.1 Information ladder for knowledge capture..........ccccoerciininnnnne. 179

7.1.2 Hierarchical action model for capturing knowledge...................... 180

7.1.3 An example code and its simulation model.............cccoccceniricininnns 180
7.2 Foundation for KnowledgeWare............ccccccoiiiiinnniiiiniccce, 182
7.2.1 Domain-independent definitions for knowledge...........c............... 182
7.2.2 Problem centric knowledge definitions...........c.ccccceeeinieinninincnnnes 185
7.2.3 Summary illustrating knowledge-related information 187
7.3 Illustrating information model for source code..........c.ccccoueevniineinnnnee. 188
7.3.1 Information model for an atom...........ccceeiiiiiniiiiinii 188
7.3.2 Information model for a flowcccocoiiiiiiiiiiiiie 189
7.3.3 Information model for ProgramContext.............ccccccocovvirnccinnnnne 191
74 Interaction model using action levels.............cccccoooviiiiiiniiiiie. 193
741 SKILACHON ... 193
7.4.2 Rule Action........ccccoiiiiiiiiiiiiii 194
7.4.3 Knowledge ACHON..........cccouiiiiiiiiiiiiiccccc e, 196
7.4.4 MetaACHON ... 197
7.4.5 Combined Action - model............cccccociiiiiiiiiiiiiie, 197
7.5 Method: Configuring hypotheses for familiarization and proofing199
7.5.1 Hypotheses are bridges from goals to actions...........c.cccccccceveurueneeee. 199
7.5.2 Model checking approach for a tape based on resolution trees....199
7.5.3 Building a resolution tree: theorems, operands and constraints...201
7.5.4 Learning method based on gradual provingccccecccevvvuennenne. 205
7.6 Extending the method to the maintenance process........c..cccceevrueueunnneee. 206
7.6.1 Top-down approach considering the change request 206
7.6.2 Problem recognition...........cccccceeiiiiiiuiiiininiiiicinsccceree e 207
7.6.3 Problem formulation............ccccccooiiiiiiiiiiiicccce 207
7.6.4 Problem analysis..........ccccoviuiiiinniiciieccceceee e 208
7.6.5 A use case: Using symbolic analysis for capturing knowledge....210
7.7 Summary of KnowledgeWarecccccccoviiniiinniiniiiniiiccee 212
TOOL FOR SYMBOLIC ANALYSIS AND ATOMISTIC MODEL................... 214
8.1 Requirements for the toOl.........ccccvueiviiiiinieiiniiinccccceceeeee 214
8.1.1 Selected features for the tooL............ccccoiiiiiinniiiiccce 215
8.2 Selected architeCture...........ccooueueueiininiiicicirc e 216
8.2.1 PCMEF - architecture...........ccccocoeiiiiiiniiiiiiicce 217
8.2.2 Summary of the selected architecture...........c.ccccceeiiiiiniininnnns 218
8.2.3 Some measures of the tool implementationccccccceeveeniruenneee. 219
8.2.4 Data flow through the tool............cccccoiiiiiiiie, 219
8.3 Low level approach, the technology behind the tool 221
8.3.1 Demonstrating the architecture by a small code example.............. 221
8.3.2 Graphic symbols for the symbolic Turing machine........................ 221
8.3.3 Prototyping small code examples...........ccccccceuruiiniinninncineinnnes 223
8.3.4 Capturing knowledge: KnowledgeWare...........c.ccccoeciviinnnnnnne. 225
8.4 Symbolic Turing machine for symbolic analysiscccccoceeiiinnnnaen. 226
8.4.1 Principles of symbolic analysisccccveevnecincinincincinccnee, 226
8.4.2 Starting simulation.............ccccccoviiiiiiiiiie 226

8.4.3 The method to use hypotheses for program comprehension........ 228

10

8.4.4 User interface for proving simulation resultscccccccccvinneee. 229

8.4.5 Code understanding process...........c.ccccceiviriruciiinininicccinrccce, 230
8.5 Practical use Case..........ccccciviiiiiiiiiiiiiii 231
8.5.1 Practical example, @ SETVETccvueueireinieininiciniecneceecneecenes 231
8.5.2 Problem Recognition..........cccceevviuiiiiiiniiiiniiiiniciiccceccce 233
8.5.3 Problem formulating..........cccccceveeiriiiniiiniiiiiniciiccnciccece 234
8.5.4 Simulating critical paths..........ccccccoeiiniininiiiccce 235
8.5.5 General rules for detecting problems in the output tape............... 235
8.6 The concluding remarks related to the PC processcccccccurvnunnnneee. 240
8.6.1 Problems in visualization.............ccccceiiiiiniiiininiiicccce, 240
8.6.2 Some observations relating to the atomistic model 241
8.7 Summary of the tool implementation.............ccccccecevrieciiinniccineee, 242
RESULTS: A UNIFIED THEORY FOR PROGRAM COMPREHENSION245
9.1 Short history of the Work............cccccoviiiiiiiice 245
9.1.1 The first research approach..........cccoceceveeneinncincrenncncenceeaee 245
9.1.2 Toward a unified theory.............cccccoioiniiiiinniiccreecee, 246
9.2 Concepts fOr PC ..ottt 247
9.2.1 Splitting the scope of the research to technology spaces................ 247
9.3 TechnOlogy SPACES......c.cccueiriiiiiiiiiiciicicte e 249
9.3.1 GrammarWare............cccccvvuiiiiiiiiiiiii s 249
9.3.2 ModelWare............cccuiiiiiiiiiiccc e 250
9.3.3 SimulatioNWare.............ccccciiiiiiiiiiicc e, 251
9.3.4 KnowledgeWare............ccccccoiiniiiiiiiniicccecceeee e 252
9.3.5 Program type theorycccccoiiiiiiiiiniiicce, 255
9.3.6 Mental or automated simulation ..., 257
9.4 Summary about research goals..........ccccccoouiiiniiniiiniii 257
9.4.1 Explaining the main theories by the concepts of systems science 263
9.5 Summary of TeSULLS.......ccoeiriiiiiiiiciic e 263
DISCUSSION AND CONCLUSIONS........ccocoviiinininiiiiininninsinsees 264
10.1 Unified computation model for maintenancecocceecevenceecncnencnn. 265
10.1.1 Summarizing the maintenance computation model 269
10.2 Scientific ideals..........ccocoiiiiiiiiiiiiiiii 270
10.2.1 Purity of the created concepts.......c.ccccevveviveinicnnccniccinne. 270
10.2.2 Simplicity of the created theories ..o, 271
10.2.3 Accuracy of transformations from code to knowledge......... 272
10.2.4 Completeness of the logic of the PC formalism 273
10.2.5 Correctness of programs of the created PC formalism 274
10.2.6 Certainty of answers given by the PC formalism 274
10.2.7 Relevancy of questions considering the PC formalism......... 275
10.3 Connections to Computer SCIeNCe..........cccecveiriinieininiiiiiiiiiciccieens 275
10.3.1 Experiments in building PC formalism..........c.ccccccccoeinininnnee. 275
10.3.2 Created theories for the technology spaces.............ccccocoue..e. 276
10.3.3 Created knowledge to be used in future research 276

10.3.4 New discoveries to summarize the researchcccoouevveeenn..... 277

10.3.5 Interdisciplinarity and multidisciplinarityccccccccucueeee. 277

REFERENCES......ccoitit ettt ettt st ettt et sae e 280
SUMMARY ..ottt sttt ettt a e sbe bbbttt et ae s 298
YHTEENVETO (FINNISH SUMMARY).....coeotiiniiininenieinenceeeneeeeeseeeeesveeeene 301
APPENDIX 1 : SERVER - EXAMPLEccocoiiiiiiiininiiieccceneneeeeeeeeeeve e 304
APPENDIX 2: TUTORIAL FOR VISUAL PROLOG........ccccvrtiniriiniiiieienieneeieeeen 310

APPENDIX 3 : SIMULATION RESULTS OF THE EXAMPLE.......ccoceviniiiiiennne. 319

1 INTRODUCTION

Software maintenance is becoming more and more important, because
development times and product lifecycles are shortening and the life around us
is becoming more complex demanding even more complicated features from
new information systems.

In this research the focus is on source code comprehension, which should
help the wuser in planning new implementations based on the current
programming platform. The goal of the research is to create a framework, a
formalism to connect the code, its behavior model, and the corresponding
knowledge in order to aid the user in the problem recognition and problem
analysis phases that are typical at that stage of maintenance where
programming is transformed to code. This idea is very practical, because it
allows a profitable use of the old code as far as possible without any need to
reinvent the wheel. Furthermore, this kind of approach is needed, because
developing software versions step by step involves significant risks in all
situations where current behavior is not well understood. Such incomplete
understanding can lead to erroneous products and weakening architectures,
and to other maintenance problems (Lehman and Belady, 1985).

1.1 Practical challenges for software maintenance

Although the methods of software development have improved much since the
time of procedural programming, there are still problems that decrease
productivity and cause risks and serious quality problems for software
deliveries (Boehm, 1991). This can result in benefits of object-oriented
programming being lost, because programs are nowadays bigger and much
more complex than during the procedural programming era in the '70s and '80s
(Sneed, 2004a).

It is especially laborious to analyze large object-oriented programs, which
contain, e.g., dynamic bindings and layer structures, due to problems in tools

20

and methodologies that are not as comprehensive as the ones in the procedural
era, when the programs were simpler (Arevalo, 2006). For example, the run-
time functionality of modern programs can only be investigated by using
dynamic analysis that requires complex arrangements like code instrumenting
and running of a complete implementation. The problem is that in a large
output typical of dynamic analysis the most interesting thing, possibly a small
feature of the large behavior model, can be lost behind irrelevant data. A
modular and flexible approach is needed to allow selective investigation of
code from the user’s point of view.

Because dynamic analysis has proved to be impractical for testing, there
have been many attempts to decrease the number of the known problems
related to it (Sneed, 2004b). As a solution special testbeds have been
programmed, new software code has been instrumented to enable test
extensions, and even new test modules have been coded for the original
application software modules. Unfortunately the extensions can cause new
problems, because they change the behavior of the original software. They can
slow the program down, resulting in unproductive use of work time to
maintain the special test code. Furthermore, planning test cases is a very
expensive, laborious phase, because the tests should cover the new code and
old versions and their interconnections in minor details. A completely perfect
test environment cannot be created, because there is a vast number of different
approaches and use cases to be covered in detailed tests.

In research, the dependencies of source code, i.e., the most essential code
information, have been studied with a technology known as slicing for twenty
years. Nevertheless, it is not a complete method (Gallagher and Lyle, 1991), and
covers only a special point-of-view at a time. So although providing a large
number of code statements, traditionally a laborious problem for the user to
master, slicing is still too narrow a method, having relevance mainly for static
analysis.

In object-oriented development UML diagrams are widely used to specify
the structure, logic and behavior of the new application, but they are not
specific enough to cover the programming approach (Rumbaugh, et al., 1999).
Thus much work must be done to make the final program complete and that is
why the code and the previous UML plans are not usually compatible after the
programming phase. There are no good technologies to synchronize code and
UML diagrams because UML reverse engineering tools, including ADM
(architecture driven modernization), are not accurate enough to cover the
details of the programming languages (Ulrich, 2005). For this reason they
cannot help in program comprehension efforts.

1.2 Research goal

Taking into account the formal characteristics of the code and the quite different
informal characteristics of the knowledge of maintenance persons as users, it is

21

evident that the goal should be to connect these different viewpoints in order to
create a consistent way for raising the abstraction of the original code to the
level of maintenance. That’s why the challenges of analyzing source code lead
to the following research aims:

- To build a bridge from code to maintenance, a foundation for symbolic
analysis, by the correspondent techniques, later called as technology
spaces, and their transformations.

- To create a novel abstraction by presenting an atomistic, symbolic model
as a key ingredient for the transformation process and program
comprehension support.

- To demonstrate that symbolic analysis and atomistic model can be
implemented for the selected Java software to produce the assumed
behavior model to be understood.

As a solution we are suggesting a unified model, an atomistic construction,
which consists only of atomistic elements to maximize their connectivity when
building higher order views as knowledge presentations for the user. As a
theoretical contribution the atomistic, formal source code model is very
challenging, because it is a clear opposite to holistic UML models and widely-
used metametamodels, where existing data is described by using external
concept layers. The drawback of UML has always been divergence: there are
numerous displays and diagrams and structures that are not compatible with
each other in real-life where information should be transferred seamlessly to the
user (Rumbaugh et al., 1999; Selonen, 2005). The user would be better off
studying the same information from many viewpoints simultaneously, and not
from numerous different displays one after another.

Instead of employing different meta-concepts, the user approach in this
research is object-oriented, meaning that each fact has been described only once
and only in one place. All connections have been described by using logic, a
Prolog predicate that has the formalism of our Symbolic-language. By using this
unique predicate the contents of each atom is made compatible with axiomatic
semantics that has connections to program verification research. Thus the
atomistic model enables creating semiautomatic proofing implementations.

Object-oriented behavior has not been studied earlier from the viewpoint
of that computational theory. This study opens the possibilities for object-
oriented analysis by simulating code, partially focusing on the most critical
area. This focused approach is useful in performing typical maintenance tasks.

As a formalism and a structure the atomistic structure is fully compatible
with network theory. All of its information can be programmed by using
standard mathematical operations, thus connecting mathematics and
programming semantics with each other. This new bridge can have influence
in building large theories for software modeling and for redevelopment
purposes.

22

1.3 The overall framework

In this research a complete framework have been developed to build a
formalism and a comprehensive data flow from software, extending from the
source code into the knowledge capturing phase, in order to utilize the program
comprehension information (FIGURE 1).

The flow starts from the grammar management (GrammarWare), which
makes it possible to define the semantics of the code when parsing Java code for
all later phases. For handling source code behaviour in high abstraction models,
a new symbolic language, Symbolic, was developed. It enables effective
processing while still having a declarative internal notation for programming.

Maintainer

GrammarWare ModelWare Knowledge-
Ware —>
|

™\ N\
Software SimulationWare: . Hardware
Abstract Machine

Know-how for creating
a new installation

A 4
A

»

A

FIGURE1 Program comprehension data flow.

The most important discovery of the study is the atomistic source code model,
presented as ModelWare in FIGURE 1. Because of its simplicity (it only contains
simple elements), it is an ideal construction for modeling purposes. Further, its
architecture is novel as it connects two different paradigms in the tool - the
abstraction features of object-oriented programming and association capabilities
of logic-programming - in order to create a minimal structure as a unifying
element of the model. We call this new structure an atom, because it is the
smallest structure captured from the code that cannot be divided into smaller
parts without it losing its internal semantics. Furthermore, each atom is
backwards compatible to a grammar term.

The atomistic model creates a formal and efficient structure for later
analyses and enables Hoare’s axiomatic semantics to be used in modeling the
behavior of the atoms. However, in analyzing a possible code behavior, the
most essential specification is operational semantics, because it describes the
functionality of the language. For implementing an operational semantics as a
framework, SimulationWare defining an abstract machine is needed: it shows
how an axiomatic structure is changed into a functional behaviour. The
research introduces the theory of abstract machines and automata (Chomsky,

23

1956; Chomsky and Schiitzenberger, 1963; Hopcroft and Ullman, 1979) in order
to show that the formalism of the Turing machine (TM) metaphor is a fruitful
concept for program comprehension purposes with its background of
computation theory including simulation. Simulated computations, evaluating
the code, save time. This allows the user more time for making higher level
computations like testing and proving the program or for considering changes.
The symbolic Turing machine, introduced here as a symbolic abstract machine
(SAM), allows simulating source code as a reductionist atomistic source code
model. We show that, by function, any atomistic element has a behavior
resembling its typical automaton level in the Chomsky hierarchy. All elements
have an equal outer formalism and an internal state-table, compatible with their
origin in the programming language grammar (here Java).

However, the abstract machine with its tapes is not enough for the user to
improve the development process. The developer also needs to obtain new up-
to-date, practical information for solving any specific problem. We have
developed a new framework, KnowledgeWare (FIGURE 1), to describe the
transformation from the output of the abstract machine into user knowledge
that can be used in planning maintenance tasks. This theory has three levels
according to the concept of Rasmussen: knowledge level, rule level, and skill
level (Rasmussen, 1983). Our theory for KnowledgeWare describes action
stereotypes for each level as an information ladder (Longworth, 1996) in the
following way. The original code is data, and the results captured from that
data produce low-level information. Furthermore, the specific analyses produce
argumentative proofs for the user collecting accumulated program knowledge.
This, in turn, improves the current know-how of the user, and the skills of how
to make safe modifications for the current program.

It is essential to observe how the computer can help the user at each level.
The main concept in the automated program comprehension, computation,
illustrates the behavior of the atom and refers strongly to the computational
theory. In the atomistic model all the computations take place modularly at the
element level, a low level, which has the formalism of a simple state-machine.
As this simple state-machine extends itself via its links to all the referring sub-
state machines, it is possible to combine the program knowledge, the source
code model, the theories of state automata, and the computation theory into a
unified formalism to cover the whole scope of program comprehension.

1.4 Overview of the contributions

From the user’s point-of-view the current reverse engineering software tools
almost without an exception transform all their input data into display
information to be studied further (Walenstein, 2002). Thus the human-computer
interaction does not allow interactive, problem-oriented analysis of the
problem. Instead, the focused approach defined in this research allows the user
to modularly define the level of the information to be shown, the most

24

important data flow type and the most difficult area of his/her work to be
validated and brought to the focus. From that focused point of view the user
can navigate interactively in each level at different abstraction levels. This
allows problem recognition, modular simulation of the selected code model and
collection of simulation results in order to build a mental image of the current
problem. The model works like a server, where the query formalism has its
background in the integrated mental model of program comprehension.

From the cognitive viewpoint the research introduces some new
perspectives, because it connects together the Turing machine metaphor
(Turing, 1936), artificial intelligence, source code analysis (Binkley, 2007), and
cognitive models (Rasmussen, 1983 ; Anderson and Lebiere, 1998).

1.5 Contents of the dissertation

The contents of the dissertation are shown in TABLE 1. One can get a quick idea
of the contribution by reading the abstract, introduction and summary. A more
profound understanding can be obtained by reading Chapters 1, 2, and 3 and
Appendix 2 that describes the formalism used, and, as a conclusion, Chapters 9
and 10.

TABLE 1 Contents of the research.

Chapter | Topic Contents
1 Introduction Introduction, this chapter
2 Background Related work describing background on the research area and
the known approaches.
3 Approach Research approach including an abstract and more concrete

goals for the dissertation. The concrete goals are evaluated in
Chapter 9, and the abstract goals are summarized in Chapter
10.

4 GrammarWare Grammar-related methodology. It describes a symbolic
notation for grammars based on predicate logic. A novel
symbolic language, named Symbolic, is presented there.

5 ModelWare Model-based methodology. It describes the motivation for an
atomistic model, and building the model and corresponding
characteristics including the architecture.

6 SimulationWare | Simulating methodology. A symbolic abstract machine is
illustrated. ~ Simulating the atomistic model as a Turing
machine metaphor is introduced. Semantics for the
corresponding model is presented as an atomistic semantics.
Corresponding formalisms are introduced.

7 KnowledgeWare | Knowledge-related methodology. This chapter is a synthesis,
which combines maintenance, the corresponding tool and the
atomistic model to a cognitive architecture.

8 JavaMaster tool A demonstration to model a symbolic Turing machine
including its architecture and user interface as well as an
approach for proving programs.

continues...

25

TABLE 1 continued.
9 Results A summary of the methodology described in Chapters 4 - 7.
Concrete goals from Chapter 2 are evaluated .
10 Conclusions Conclusions including a summary of abstract goals from
Chapter 2.
Summary The summary both in English and Finnish.
App1 | Server example A short Java example of a typical object-oriented program,
which uses threads in communication.
App 2 | Prolog tutorial A short Visual Prolog tutorial.
App 3 | Simulation data Simulation data for the example (Appendix 1).

2 BACKGROUND ON PROGRAM
COMPREHENSION

This chapter describes program comprehension (PC) research starting from
software development process, which is the large context. Maintenance is the
area where the problems of code understanding (a synonym for PC) are
principally found. Creating a theory for solving program comprehension
problems is important, because it could produce clear positive feedback to the
whole development process.

The aim of this research is to create a unified comprehension methodology
for object-oriented programming (OOP). This focus has been selected, because
OOP doesn’t have a well-established theory for analyzing dynamic behavior.
Thus, it is lacking a theory that could provide most valuable information for
solving maintenance tasks and object-oriented programs in general, which are
often identified with serious problems (Sakkinen, 1992; Arevalo, 2006;
Zaidman, 2006; Tichelaar 2001) .

2.1 Software development life cycle

Software development is a relatively new discipline, and doesn’t yet have a
strong theoretical foundation. Therefore its methods are practical rather than
formal, even though the goal to increase formalism in development is apparent
also in organization-centric proposals such as SPICE and CMMI (Raak et al.,
2004; Garcia & Turner, 2006).

Although a number of new technologies have been created since the
1970’s one after another, programming is still laborious work, and object-
oriented programming has its own typical comprehension problems (Bezevin,
2003). One reason for this is that while large software vendors exert a very
strong influence on the strategy of software development organizations, they
are not interested in developing totally new paradigms or new programming or

27

program comprehension theories. That's why commercial tools, research
communities, and practitioners do not come together in the daily work.

2.1.1 Evolution laws

In the long run, software related work rather than being seen as a temporary
activity, should be seen as a continuous process that obeys certain evolution
laws (Lehman and Belady, 1985):

- Continuous change: Software that is used in industrial and practical
applications must evolve and be updated, lest it cease to fulfill its
mission and meet its operational objectives.

- Increasing complexity: When a system evolves, its structure becomes
more complex and brittle unless software engineers take specific actions
to remediate the phenomenon.

- Numerous layers of feedback in the systems: The development processes
are multi-loop, multi-agent feedback systems that are difficult to master.

Lehman’s laws suggest that there are maintenance problems in future, too, due
to continuous change and increasing complexity. By careful maintenance
planning it is still possible to improve the quality of software, but in many cases
it can be laborious and expensive. Therefore, developers need new
methodologies in order to justify future investments in the existing software.

2.1.2 Maintenance means a continuous life cycle

Maintenance is the last part of the whole software production cycle, which aims
at increasing the quality and value of the software implementation (Sneed,
2004a). Much research has been done on making maintenance systematic, but
the theoretical background for the results is rather thin. Generally one
recognizes four types of maintenance activities: corrective, adaptive, perfective,
and preventive (Chapin et al., 2001).

The focus of this study is task based maintenance, which is organized
bottom-up and case-by-case. The larger scale approach, system wide
maintenance, which is organized top-down and involves very abstract planning
for enterprise architectures and organizational goals (Zachman, 1987), is left out
of the scope in this work. Task based maintenance starts from a typical change
request, usually leading to PC needs in the functions of problem recognition,
problem formulation, and deeper analysis.

Corrective maintenance

The most critical type of maintenance is correcting code errors. This has been
studied extensively, but most often the proposed methods can only be used for
procedural languages. (See Tonella et. al, 2007) The most detailed method for a

28

corrective maintenance process was created by Jambor-Sadeghi et al. (1994). It
is described next.

In the “Jambor-Sadeghi process” the application software is described to a
bug management system by using a functionality hierarchy and collected
information about individual bugs. In every new situation where a bug is
identified, that bug is matched with the up-to-date information in order to find
possible problem candidates, which normally are specific execution paths in the
program. The execution paths and structural components selected by the user
from the bug information are mapped together to a test case database to cover
all known malfunctions. Information about each new bug solved is saved, and
the functionality and path information is specified.

The process works well in principle, but there are some problems in
practice, because the software should be rather stable and homogenous to allow
this kind of functionality mapping. In general, it cannot be used in OOP, where
the class hierarchies can be deep and complex. One essential limitation for this
method is that critical execution paths should be executed individually. The
problem is that the analysis method that is currently used, dynamic analysis,
doesn’t allow this. That’s why the “Jambor-Sadeghi process” and other similar
ones are best in static investigation of source code that is characterized by
execution paths and static structures, functionalities and sub-functionalities.
With object-oriented code this is not so simple, because most paths are activated
dynamically in run-time and in layered architectures, and it is not possible to
know all use cases and possible uses such as class contracts. The most serious
drawback of dynamic analysis is that it cannot be used selectively piece by
piece to test the most interesting execution paths or sub-functionalities.

Thus neither static analysis nor dynamic analysis is perfect in
implementing a complete corrective maintenance tool by itself. The same
conclusion has been made in many articles considering OOP (Sneed, 2004b).
Although there are numerous methods for fixing and correcting specific
problems in procedural and object-oriented code, a more general methodology
is needed for a unified approach in corrective maintenance.

Adaptive, perfective and enhancive maintenance

The role of object-oriented programming is important in the pragmatics of
creating new software in all maintenance types other than corrective
maintenance. In each maintenance case, when fixing a bug or making a
modification, the purpose should be to raise the quality of the software in order
to avoid problems of degradation (Lehman et al., 1985). The means usually
employed for raising the quality are design patterns (Gamma et al., 1995) best
practice integrating rules, and architecture recommendations, which are specific
for each organization (Brown et al., 1998; Demeyer, Ducasse, and Nierstratz,
2003; Shawn and Garlan, 1993; Kazman et al., 1994).

Raising quality is not easy, on the contrary it is often very laborious,
because the changes in the code can propagate into numerous other places
causing turbulence. This is a gray area, where there are no good general

29

answers. Refactoring and reorganization (Fowler el al., 1999) are some ways to
make progress (Demeyer et al., 2003), but there are no ready answers for all the
questions. The most problematic topic in maintenance is then the code-related
approach, where the information is the most complex and also the most critical.

2.1.3 Reverse engineering and reengineering

Reverse engineering is a research discipline relating to maintenance and
through it to the whole software development process. By definition, reverse
engineering is the process of analyzing a subject system to create presentations
of the system at a higher level of abstraction (Chikofsky et al., 1992). Reverse
engineering in and of itself does not involve changing the subject system. It is a
process of examination, not a change or replication.

There is a great deal of motivation for reverse engineering in industry,
because there are hundreds of billions of lines of code in mission critical
systems worldwide. Furthermore, technology is changing rapidly, which exerts
continuous modernization pressure. It is problematic that all systems degrade
in quality due to continuous change. So there is a point in time for every
mission critical system at which it either has to be reengineered (that means
developing the system into the next step), rewritten or replaced (Morris,
O’Brian, Smith, and Wrage, 2005).

Software reengineering is a larger concept than reverse engineering,
because its purpose is to modernize the current system (Chikofsky et al., 1992).
It refers to techniques and methodologies that aim to facilitate:

1. Understanding a software system and its components.

2. Increasing functional and non-functional characteristics and properties
of the software system.

3. Collecting, modeling, categorizing and storing information related to
the software system.

Thus reengineering can be regarded as a process to read current source code, to
understand it, to plan the necessary changes, bigger or smaller, in order to
create a new software system implemented at the source code level. It can be
done manually without tools or semi-automatically by using source code
analysis methods.

A horse shoe diagram (FIGURE 2) is a widely used metaphor to describe
how the current source code (the left bottom corner in the figure) will be
transformed into a high abstraction model for problem analysis (Kazman et al.,
1998). In this loop PC is the process to raise the abstraction level. It is needed
also when planning modifications in forward engineering. After understanding
the situation, the modifications can safely be made and programmed into the
code (right lower corner of the figure).

30

The software development process can be considered as a general process,
where reverse engineering is the necessary measurement, a feedback that
should guarantee perfect control for making the production stable, because it is
the principle behind how industrial processes work (Baxter and Mechlich,
1997). It was found in the '70s that maintenance contains numerous complex
multi-layer multi-user feedback-loops (Lehman et al., 1985). Unfortunately these
loops have been too complex to be analyzed and computerized to help the

developers.
New Requirements
‘ Reengineering

Design

—E Models

PC

Reverse Engineering
Forward Engineering

PC

Source Code

FIGURE2 Reverse engineering, a horse shoe diagram (Tichelaar, 2001).

2.1.4 Best practices of maintenance and reverse engineering

In the USA and Canada transforming Cobol-programs into modern
architectures has become very popular (Kontogiannis el al., 1998). Big
organizations like NASA that have invested much in software, have developed
high quality best-practices like SRAH and SMART for systematic reverse
engineering (Olsem, 1995; Morris el al., 2005).

A standard proposal, Software Reengineering Assessment, SRA, is an
evaluating and decision making process with the following principles (Olsem,
1995). SRA is intended to determine whether to maintain, reengineer, or retire
software. It has three phases: technical, economic, and management assessment.
It is mainly focused on technical aspects, because without good technological
preconditions there is no use to migrate code and the implementation into new
platforms. If the technical questions give positive answers and economic

31

conditions are advantageous, it is very easy for the project persons to present, to
the management, the argument that migrating is profitable in a long-run.

SMART (Service-Oriented Migration and Reuse Technique) is a
modernization technology developed for the US Air force and has the following
goals (Morris el al., 2005):

- Establish stakeholder context.

- Describe existing capabilities.

- Describe the future service-based state.

- Analyze the gap between the service-based state and existing

capabilities.
- Develop strategy to service migration.

There are no actual measures for maintenance evaluation. The best of them are
COCOMO-metrics (Boehm, 1981), but they normally provide information that
is too specific and too narrow. The quality of forward engineering processes can
be evaluated by using SPICE and CMMI models (Raak et al., 2004; Garcia et al.,
2006), but these ignore the omni-present role of reverse engineering in the
whole development cycle.

2.2 PC as an independent discipline

Program comprehension is a domain of computing science dealing with the
processes used by software engineers to understand programs during their
evaluation, before their modification (Brooks, 1983). PC is also known as a
synonym for program understanding. In this chapter PC is discussed both as an
independent discipline (this section), and as integrated into a larger context
(next section).

There is a conference series ICPC! on program comprehension (started in
1992), which has focused mostly on the approach of the independent PC
discipline. However, because of its rather narrow scope this forum does not
provide complete answers for industrial software development. A latter
approach, multi disciplinary focus in integrating PC to other technologies, has
attracted very little interest, although it can have more practical value than the
single-disciplinary approach. There are conferences like WCRE (Working
Conference on Reverse Engineering)? and SCAM (Source Code Analysis and
Manipulation)3 , where questions typical for PC are discussed. The topics they
deal with are often rather technical, solving some special problems or covering
a large area of the development process.

1 ICPC, The 15th IEEE International Conference on Program Comprehension,
www.cs.ualberta.ca/icpc2007/index.html.

2 WCRE2007, www.rcost.unisannio.it/wcre2007/program/main_conference_program.htm
(1.11.2007)

3 SCAM2007, www.ieee-scam.org (1.11.2007)

32
2.21 Single-disciplinary approach

Storey's survey has illustrated the past, present, and future of program
comprehension (Storey, 2006). In the following we present some observations
about the survey.

About models and theories

The lack of theories of program comprehension was recognized as being
problematic (Détienne, 2001) already before the '90s, but as the field of program
comprehension matured, research methods and theories were borrowed from
other areas of research, such as text comprehension, problem solving, and
education. The theories for program mental models were created in the '80s and
in the '90s (Brooks, 1983; Pennington, 1987; von Mayrhauser and Vans, 1997).

Mental and cognitive models. A mental model describes a mental
representation of the program as understood by the developer, whereas a
cognitive model describes the cognitive processes and temporary information
structures in the programmer’s head that are used to form the mental model.
Cognitive support refers to support provided for cognitive tasks such as
thinking or reasoning (Walenstein, 2003).

Programming plans. In the '90s, program comprehension became an
important topic as a possible solution for the productivity problem. The best
known model from that area results from Pennington’s research about bottom-
up understanding (Pennington, 1987), where she showed in which order the
students and programming novices learn code features. Its main construct is the
so-called five-tuple: function, control flow, data flow, state, and operation. This
information set is useful to describe the information and even knowledge that
can be captured from a procedural source code.

Top-down comprehension model. In the '80s Brooks developed (Brooks,
1983) a theory for the developer about matching source code with similar
collections of high-level mental concepts. It is useful to note that without
matching of that kind, or without making any assumptions, it is hard to learn
code features.

Integrated metamodel. An important theoretical framework for program
comprehension is the integrated metamodel of von Mayrhauser (von
Mayrhauser et al., 1997), because it connects the theories of other researchers
into a whole. It includes the three main models: the bottom-up model, the top-
down model, and the situation model. According to von Mayrhauser the
relation between maintenance and program comprehension is the following
(von Mayrhauser et al., 1997):

33

“Program comprehension is said to be a first task before maintenance. The biggest
problem in maintenance is the difficulty to understand the current
implementation, all its dependencies and its business relations so that the
program can safely be modified without any risk to cause new problems in the
earlier functionality.”

The top-down model concentrates on high-level plans and what the specified
code element should do. The bottom-up model is suitable for detecting, from
the code, different kinds of flows (control flow, data flow, and program flow),
state dependencies or function of each code element. The situation model is an
accumulated set of information collected in the program investigation phase.
Situation model is needed for understanding relations between domain-specific
dependencies and program structures and flows (von Mayrhauser et al., 1997).
Storey (2006) summarizes the integrated mental model as follows:

- The top-down (domain) model is usually invoked and developed using
an as-needed strategy, when the programming language or code is
familiar. It incorporates domain knowledge as a starting point for
formulating hypotheses.

- The program model may be invoked when the code and application is
completely unfamiliar. The program model is a control-flow abstraction.

- The situation model describes data-flow and functional abstractions in
the program. It may be developed after a partial program model is
formed using systematic or opportunistic strategies.

- The knowledge base consists of information needed to build these three
cognitive models. It represents the programmer’s current knowledge
and is used to store new and inferred knowledge.

- Understanding is formed at several levels of abstraction simultaneously
by switching between the three comprehension processes.

Role of hypotheses in program understanding

Hypotheses have long been recognized as major drivers of program
comprehension (von Mayrhauser et al., 1997). They help to direct further
investigation. Brooks (1983) theorizes that hypotheses are the only drivers of
cognition, because understanding is complete when the mental model consists
entirely of a complete hierarchy of hypotheses in which the lowest level
hypotheses are either verified against the actual code or documentation, or fail.

If we have, for example, a client-server application, which doesn’t respond
to queries, we can make the following assumptions. Either the server has not
been started, the machine is down, or the answering process is blocked. Each of
them is a typical troubleshooting hypothesis. In most cases it is possible for the
user to coarsely localize the hypotheses to the code. Proving which one of them
is erroneous is often difficult because of dynamic behavior of the application.

34
Using questions in exploring programs

Goals or questions embody the cognitive processes by which maintenance
engineers understand code. So goals of program comprehension have a logical
connection to maintenance tasks. Solving a goal consists of lower level
comprehension actions, which the user should perform in order to get a picture
about the current goal. Von Mayrhauser describes the sequence of a goal (von
Mayrhauser et al., 1997) containing the following lower levels: hypothesis, sub-
goal, sub-hypothesis, and an action. The role of this action level is typically to
search or to prove something in the code. She has also described tool
requirements for supporting program comprehension, where selective
navigation has an essential role to play.

Problems in reading object-oriented code

Because of encapsulation, the most difficult thing in understanding object-
oriented source code can be attributed to crosscutting and dynamic bindings.
Those bindings that are dynamic cannot be understood from the caller’s code
without understanding all possible called elements. This is necessary in order to
get real understanding about the real-time behavior (Walkinshaw, Roper, and
Wood, 2005).

Due to encapsulation, the contents of each class are difficult to be read.
The invocations of each class and each method, in particular, cannot be found
without reading the code. This is what is known as a crosscut problem. So
analyzing the behavior automatically in order to automatically find all call
candidates should be the most advantageous feature for the reader.

Static analysis can solve neither the behavior nor invocation paths which
form the real logic and control flow of an object-oriented system. This
invocation logic is called the behavior of the system. In UML it is typically
presented as a sequence diagram (or as a scenario).

Programming paradigms will also impact comprehension strategies.
Object-oriented (OO) programs are often seen as a more natural fit to problems
in the real world, because of ‘is-a” and ‘is-part-of’ relationships in their class
hierarchy and structure, but others argue that objects do not always map easily
to real world problems (Détienne, 2001) .

2.2.2 Influence of individual programmer differences

There are many individual characteristics that will impact on how a
programmer tackles a
comprehension task. These differences also affect the requirements for a
supporting tool. There exist clear differences in programmers' ability and
creativity that cannot be measured simply by their experience (Curtis, 1981).
Vessey (1985) has noted that experts use breadth-first approaches and at
the same time are able to adopt a system view of the problem area, whereas
novices use breadth-first and depth-first approaches but are unable to think in

35

system terms. Moreover, experts tend to reason about programs according to
both functional and object-oriented relationships and consider the algorithm,
whereas novices tend to focus on objects. Burkhardt et al. (2002) performed
experiments to study how object-oriented programs are comprehended. They
observed that novices are less likely than experts to use inheritance and
compositional relationships to guide their comprehension. Furthermore, Davies
(1993) noted that experts tend to externalize low level details, but novices
externalize higher levels of representation related to the problem.

2.2.3 Object-Oriented Program Comprehension

Only a few theories have been developed for understanding object-oriented
programs. The proposal of Burkhardt et al. is one of the most promising,
because it defines the program comprehension approach taking care of the
specialties of OO-programs (Burkhardt et al., 2002):

- Main goals. The main goals of the problem correspond to functions
accomplished by the program viewed at a high level of granularity. They
do not correspond to single program units. Rather, the complex plan
which realizes a single goal is usually a delocalized plan, a set of
distributed activities, in an OO program.

- Problem object(s) (PO). These objects directly model objects of the
problem domain.

- Relationships between problem objects. These consist of the
inheritance and composition relationships between PO'’s.

- Computing or reified objects. An example of a computing, or reified,
object is a string class, which is not a problem domain object per se.
Reified objects are represented at the situation model level inasmuch as
they are necessary to complete the representation of the relationships
between problem objects, i.e., they bundle together program level
elements needed by the domain objects.

- Client-server relationships. = Communication between objects
corresponds to client-server relationships in which one object processes
and supplies data needed by another object. These connections between
objects are the links connecting units of complex delocalized plans. In an
OO system, the actions in a complex plan which performs a main goal
are encapsulated in a set of routines, and the routines are divided among
a set of classes and connected by the control flow. Client-server
relationships represent those delocalized connections.

- Data flow relationships. Communication between variables
corresponds to data flow relationships connecting units of local plans
within a routine.

The list above has only some connections to the procedural Pennington model
(Pennington, 1987), because that list has been created supposing that object-
oriented programs and classes do have many use cases, that code elements have

36

numerous activation models, and, what is important, that a huge number of
details are hidden behind the signatures of the classes. Therefore, in normal
situations the role of the user is initially to investigate the most probable goals
and problem objects in order to find and to understand the most essential
connections, data paths and flows, and objects.

It is essential to observe that the procedural comprehension model
(Pennington, 1987) and its object-oriented equivalent (Burkhardt et al., 2002) can
be connected with each other by creating some generic concepts, i.e., specialized
program flows, that are common for both of them. However, currently there are
no good tools for OOP understanding that would directly support these
comprehension models.

2.3 PC integrated into code analysis

In most surveys of the field it can be seen that PC is considered to be an
independent discipline, which has no connections to other parts of software
development (Storey, 2006) relating to source code analysis in general (Binkley,
2007), which is a wider approach. Rather than being a vivid activity, PC should
be seen as a comprehensive link combining cognitive models and theories and
the practical life of the programmer. There are two main reasons why PC
should also be seen from a multidisciplinary approach:

- von Mayrhauser et al. (1997) have proposed that PC is a mandatory
phase before each maintenance task. That is why it should be integrated
into other technologies and source code analysis tools. Furthermore,
multidisciplinary research should be conducted in order to connect
critical development phases like programming, design, maintenance,
and restructuring together.

- The best-known and most widely used source code analysis methods are
program comprehension methods, because their purpose is to help the
user to understand better the source code. Furthermore, it is not possible
to change the code without understanding how the current functional
and qualitative behavior will change in the modification process.

Creating a comprehensive view to software maintenance

Test cases, analysis methods, and the corresponding tools have been connected
into a comprehensive set of methodology by Sneed (2004b). In his test system
environment, built for a large commercial information system, the roles
between different technologies are the following. Static analysis is used as much
as possible, because the results from a source code can be captured without any
cost (automatically). Dynamic analysis is so expensive that it is used only in
critical phases. So in practical maintenance cases it is useful to find
compromises between different technologies. Integrating various tools with

37

each other in order to make a flexible environment for ensuring software
production quality is very important.

Programming can be seen as the most complex part of maintenance, which
fact, therefore, emphasizes the role of PC. In most cases it is the most expensive
phase, too, and has an important economical value. Thus all means to utilize the
results of programming as perfectly as possible are valuable. The following use
cases serve for extending the scope of PC to a larger software development
context:

- Finding problems in source code.

- Proving programes.

- Improving co-operation and delegation of work by means of better PC

knowledge.

- Avoiding reinventing the wheel by using current code as efficiently as

possible.

- Avoiding degrading the quality of software by systematic familiarization

of code.

- Scheduling the testing and verification phases as early as possible to

minimize error costs.

- Providing feedback to other organizations and teams and stakeholders

by better metrics and more complete models.

Source code can be analyzed either manually or automatically. Manual work is
very expensive whenever we deal with huge amounts of code, often running to
possibly millions of lines. Simply put, programmers have never enough time to
get a very detailed mental image about large applications. Furthermore, it is
hard for the developer to remember dependency information of code elements
that are not in the active focus of the user. So the users must rely on their
memory and use different hypotheses to check individual things case-by-case.
Furthermore, often when the focus is changing then several places in the code
that have already been visited must be re-navigated because of their different
roles in the new task.

2.3.1 Connecting PC and static analysis

Static code analysis produces rather good results for procedural languages,
although pointers cause often serious problems for C developers. Thus pointer-
analysis is a widely investigated area, studied by big organizations like NASA,
Airbus and Boeing.

There are numerous methods and principles for static analysis (Caprile et
al., 2003; Binkley, 2007). The area contains a few basic methodologies and
various ways to analyze, but the role of program comprehension there cannot
easily be seen, because most of the analysis principles are technologically
oriented having no cognitive background.

- The basic methodologies specify algorithms for static analysis and how

to handle internal source code structures. They are based on variations of
abstract-syntax-tree (AST), parse-tree (PT) and feature vector (FV).

38

- Several presentations for semantics have been proposed (Heering and
Clint, 2007) . The best known of them are dependency graph (DG)
providing outputs as flow analysis, abstract syntax graph (ASG) (Dean,
2004), type inference analysis, slicing and clustering tools, transformers,
and different kinds of call graphs. Definitions for them can be found in
the survey by Binkley (2007).

It is problematic that these analysis functions are separate and cannot be used
from one tool to cover all output information. This fragmentation prevents the
industry from using static analysis widely in software development, because
there are no good tools to satisfy all the developers' needs.

There are several specific analysis techniques for meeting the analyzing
challenges described by Binkley (2007). However, most of them are useful for
programmers in the context of program comprehension:

- Program slicing: Useful for detecting dependencies and correcting errors
(Weiser, 1984; Binkley, 1996). Slicing (Weiser, 1984) is a method to locate
statements in the code that can influence the target statement, pointed at
by the user (Lucia, 2001). Because the method returns statements from
the source without abstracting them, it is a low level method. There are
numerous implementations of slicing, including forwards and
backwards slicing and dynamic slicing. The best-known tool
implementation is CodeSurfer (Anderson et al., 2001). The problem is that
often the output of slicing is too large for the user to be used efficiently
in the user’s detailed questions about code behavior.

- Flow analysis: Useful in understanding program flows and influences
(Reps, 1998). Dataflow analysis studies the behavior of data. A well-
known method there, gen-kill, analyses the def, set and use references of
variables in linear time (Dwyer el al., 1996).

- Call graph extraction: This is an essential tool in behavior analysis
(Caprile et al., 2003) (Reps et al., 1995). It relates to the area of control
flow analysis.

- Automatic transformations: These provide utilities for larger tasks
(Cordy et al., 2006; Baxter et al., 2004).

- Clustering: Clustering divides software artifacts to possible subsystems
(Beyer and Noack, 2005).

- Architecture recovery: This gives high-level understanding support
(Sartipi, 2003).

- Class diagram recovery: This helps in synchronizing design and code
(Selonen, 2005).

- Impact analysis: This is essential in troubleshooting and preliminary
tasks for maintenance (Ren el al. 2004).

- Abstract interpretation: This is mostly a theoretical approach without
PC context (Cousot and Cousot, 1977).

39

- Model checking: This approach doesn’t have a direct PC connection
(Rajamani, 2005; Visser et al., 2003), because it studies understanding
model behaviour, which seldom has connections to reverse engineering.

- Different demand algorithms have been developed for query purposes
for source code. The queries are complex because source code
information is strongly hierarchical and has tight connections between
elements. Many of the query implementations use a Prolog-engine and a
database or relational model SCA (Paul and Prakash, 1994) or EDATS
(Wilde, Dietrich, and Calliss, 1995). Some query systems have been
developed for querying the features of object-oriented systems (Richner
and Ducasse, 2002).

- Analyzing hierarchical structures is one area where lambda calculus has
been implemented. It can be used for recovering information from parse
trees or hierarchical expressions.

- Constraint-based implementations have become popular in analyzing
models, especially for model checking purposes. The constraints can be
real-time connections between threads or processes and state machine
conditions for mastering state machine code.

- Studying reachability of elements is important because the dependencies
are the most important things of PC, and they have strong influence in
refactoring, too. The dependencies are hard to describe and model due to
many simultaneous challenges that need to be overcome. These include
implicit connections, nondeterministic features, conditional branches,
dynamic bindings, as well as the semantics of source code languages.
The problem arising from different access possibilities to variable access
can be dealt with the alias analysis.

- Studying logic paths is one part of the area of reachability. Symbolic
execution and path profiling techniques are mostly used for logic path
analysis (Ball, 1999).

Because the research of static analysis is fragmented, the tools are also
differentiated. The most popular slicing tool is CodeSurfer (Anderson and
Teitelbaum, 2001). There are several tools (Bellay and Gall, 1998; Koskinen et al.,
2004), which produce static call graphs (Eclipse, 2007). Other tools produce
automatic documentation for Java and C++, such as UnderstandC#4. The
problem from the viewpoint of the user is that it is not possible to integrate
tools, because they have different data models and different kinds of interfaces
(Dean, 2004). A unified formalism could, to a great extent, eliminate this tool
interoperability problem.

4UnderstandC++(2007). Scientific Toolworks, Inc.,. url=wwuw.scitools.com/products/understand
(10.1.2008).

40
Source code interpretation

Abstract interpretation is a theory for static analysis of software systems to
formalize the notation approximation and abstraction in a mathematical setting,
which is independent of any particular language (Cousot and Cousot, 1977).
Because abstract interpretation conceptualizes only some parts of the software,
it is not a usable method for PC, which should have a generic approach to the
whole code. It has been observed that currently the main assumption for
abstract interpretation, language-independency, has not become true in current
research (Logozzo and Cortesi, 2005). Therefore, abstract interpretation relating
to PC is out of the scope of this research.

2.3.2 Connecting PC and dynamic analysis

Dynamic analysis is mainly based on debugging source code (Ball, 1999). Its
best feature is that it can follow, in a very detailed manner, the final behavior of
the program including dynamic bindings. Its drawbacks include:

- Mandatory preliminary tasks, code instrumentation, before analysis,

- Narrow scope for each debugging session, and

- No standards for the results of dynamic analysis (Denker, Greevy, and

Lanza, 2006).
It is also problematic that the information of dynamic analysis cannot be easily
tiltered to cover only the most interesting details. Furthermore, in most cases,
e.g., in telecommunication software development environments, it is not
possible to use dynamic analysis because of its security and installation
problems.

Zaidman has described different principles for dynamic analysis
(Zaidman, 2006). There are two main approaches for it: a profiler or debugger
based tracing. A profiler is typically used to investigate the performance or
memory requirements of a software system. A debugger, on the other hand, is
frequently used to step through a software system at a very fine-grained level in
order to uncover the reasons for unanticipated behavior. An overview of the
strengths and weaknesses of using dynamic analysis for PC purposes is useful
here. The strengths are its support for polymorphism and goal-oriented
behavior analysis, which produce consistent information about program flows.
The weaknesses are the overhead of the results and the observer's personal
efforts needed for interpreting the results. These drawbacks can make analysis
very laborious if the program logic is complex.

Combining static and dynamic analysis

Because both static analysis and dynamic analysis have their own benefits, it is
natural to connect them to support each other. Connecting them has been
studied in many works (Systd et al., 2001), (Richner and Ducasse, 1999), and
there has been some success, especially in the testing area (Sneed, 2004b). The
approach of Richner and Ducasse is based on storing both statically and

41

dynamically obtained information from a software system in a logic database.
First, static and dynamic facts of an object-oriented application are modelled in
terms of logic facts, after which queries can be formulated to obtain information
about the system (Richner et al., 1999). Another research path that Systd follows
is the combination of static and dynamic information (Systd et al., 2001). One of
the observations made is that when combining static and dynamic information,
one has to choose very early on which of these two sources of information will
be the base layer and which approach will be used to augment this base layer. A
drawback when using this kind of a hybrid analysis approach is that it often
leads to separate subtasks where narrow displays will be generated so that it
can be difficult to build a larger understanding about the application.

Combining a forward model and a reverse model

Combining the captured reverse engineering model and the corresponding
forward engineering model is an interesting idea, because synchronizing them
can automate the feedback from the current installation to the next installation,
which could produce an excellent learning curve for the organization. This
could be helpful for agile development in increasing the abstraction level of
basic refactoring (Fowler et al., 1999). It has been studied in Nokia, where the
reverse engineered model is called the R-model and the forward engineering
model, correspondingly, the F-model (Selonen, 2005). In that Nokia project the
biggest problem was found in adjusting the abstraction levels: forward models
have a general nature whereas reverse models are mostly very detailed. The
data model for the software in that project was FAMIX (Demeyer, Tichelaar,
and Steyaert, 1999), which is not a complete source code model.

2.4 Dividing PC to research topics

Comprehension is a rough synonym for understanding, which is said to be the
limit of conceptualization. In PC, concepts are made from a formal
programming language. That is why the approach of semiotics is relevant.
Positioned between philosophy and language research, semiotics studies
characters, data transfer, and interpretations (Boman, 1997).

We propose that the three dimensions of semiotics describing the role of
syntax, semantics and semiotics are useful in PC research, because all of them
can be recognized in reverse engineering of formal programming languages.
The third dimension, semiotics, could be considered as an interpretation, as
knowledge captured from the model. In other words, semantics is an
interpretation of syntax and knowledge is an interpretation of semantics and
the results. There is, however, a gap between axiomatic semantics describing
the static code and captured knowledge, because the dynamic behavior should
be modeled for dedicated PC purposes. A definition for an abstract machine is
needed to enable simulating the code in order to eliminate that gap.

42

In this section (as well as in this research) the scope of PC has been
divided into four (4) sectors by using the concept of a technology space to
define each sector. A technology space (Kurtev, Bezivin, and Aksit, 2002) is said
to be a concept that employs the following individual features: it has a working
context of its own, a set of concepts, a common representation system, a shared
knowledge and know-how, and finally, a set of tools working on the common
representation system.

The four sectors, the candidates for technology spaces of PC research are:

1. Grammar-based technologies, summarized as GrammarWare (Klint,
Lammel, and Verhoef, 2003), starting from the code and leading to
syntax.

2. Models are necessary in evaluating complex structures leading to
semantics, referred to later as ModelWare.

3. EkaSimulation is a concept to execute a source code model. It leads to a
behavior model of the code by analyzing static and dynamic program
flows. In this research all activities relating to simulation are referred to
as SimulationWare.

4. The cognitive approach for PC leads to semiotics and to the questions of
what is information and what is knowledge. These questions that form
the base of PC research are referred to as KnowledgeWare.

These technology spaces provide the explicit steps to climb up the semiotic
path.

24.1 Grammar related approach

There are many proved techniques for grammars and transformations
including Abstract Syntax Tree, AST (Jones, 2003), ASF+SDF (van den Brand et
al., 2001), Stratego (Visser, 2001), TXL (Dean et al., 2002) and DMS (Baxter et al.,
2004) as well as Antlr (Parr, 2007). All of them support the formalism of context
free grammars, so they are useful in building parsers and language
implementations. Their main focus is how to define syntax patterns in order to
identify and validate any expression of the current language. The biggest
problems related to these are (Klint et al., 2003):

- Implementations are often too language dependent and too narrow to
enable the user to build a comprehensive view for understanding a
program.

- Current practice of grammar implementations is not state-of-the-art,
rather it could be described as hacking. The implementations often are
semi-automatic, which prevents from automating the tools entirely. This
is apparent for example in the free source code of the Koala-project to
implement an interpreter for Java, called DynamicJava (DynamicJava,
2007). Tangled grammars that are hard-coded into the source code of
software are almost impossible to update if the grammar changes.

- The most used grammar notation, EBNF (EBNF, 1996), is not ideal for
describing semantics, because EBNF connects only syntax terms with

43

each other. There have been some attempts, though, to convert EBNF to

models (Wimmer and Kramler, 2005).
If a piece of code was to be translated into any executable model then semantics
should be included. Attribute grammars have been trialed to add evaluation
features to AST, and a principle named ASD+SDF is one way to write
evaluation logic for grammar based models (van den Brand et al., 2001). The
DMS tool has a strong formalism for transformations and for evaluating source
code structures (Baxter et al., 2004), where the transformations are mainly
intended for developing maintenance activities.

Many modern tools have an AST interface as an extension for
programmers to study their own installations (Eclipse, 2007). However, AST
information is very low level data and not practical per se in source code
understanding, because it is too complex for navigating. Thus, the main use of
AST is for compiler construction.

The output of parsers, AST (abstract syntax tree), is a model, too, but such
model is not complete for analysis, because its data structures are tree based
and do not contain the execution semantics. A tree cannot provide an open
access to various levels of code elements. Although AST is very close to the
original syntax, it still doesn’t contain the semantics of the language, among
them access rules, for example, which is an essential part for analysis purposes.
So the value of AST for program comprehension is in its support for browsing
code elements, not in supporting understanding of program behavior.

24.2 Model related approach

Modelling is a common nominator for all modern computer systems, because
all information systems contain only artificial elements, concepts that are
models about wanted phenomena in the physical world (Falkenberg et al.,
1998). The main alternatives for modelling technologies are UML modeling,
including MDA, XML, ontologies and technologies that use grammars as the
foundation (Bézivin, 2005). UML is not a theoretical platform or an innovation
but a widely used industrial standard (Koskimies et al., 2007) in industry for
creating source code design models. It is managed by Object Management
Group (OMG) (MDA, 2007).

Recently, UML-technology has become popular in maintenance based on
round-trip-engineering (Henriksson and Larsson, 2003), which is a technology
capable in connecting class models, current code structures and an interactive
user interface. It helps in learning changes of class structures, but does not help
in recognizing individual control flow structures, because UML cannot express
source code statements in the lowest level of information, i.e., the variable level
and variable semantics.

UML provides several approaches to the model, but most of them are not
relevant to the PC approach. Thus component/package diagrams, use case
diagrams and many constructs are not essential PC topics. The most relevant
view is a sequence diagram, because it lists the actions in the execution order,
which is the goal of the behavior model for PC also.

44

MDA (Model Driven Architectures) is the modeling platform of OMG for
software development (MDA, 2007). Its base, the Meta Object Facility MOF
(MOF, 2004), which has been published in the XMI standard proposal (XMI,
1998) has four levels: M0, M1, M2, and M3. From the PC viewpoint dealing
with multiple layers is annoying, because the user is forced to work with
several mental models one after each other. That may be useful from the
stepwise forward development point of view, but it is likely that all these and
any discontinuities prevent the user from integrating a unified picture about the
current program. Unfortunately the data model of MOF, with M3 as its best
candidate for PC, is too complex for tools in the programming use, because the
information it contains is too detailed (associations).

We argue that the information model of a source code from the PC
perspective should be as flat as possible. When evaluating and capturing a
dependency between the focused elements in relation to all other possible
elements, the approach should be independent of grammatical types. Any
layers in the models make understanding unified dependencies more complex.

There has been some discussion about executable UML models (Mellor
and Balcer, 2002). However, it is widely known that UML models are not
executable, because they do not have a model containing the source code level
inside, or any variable environment or dynamic semantics. Therefore, the UML
models are only models with their constraint described in the OCL language,
which is not compatible with any known programming language (Akehurst
and Patrascoiu, 2004).

Architecture Driven Modernization, ADM

OMG has presented an idea to revitalize the source code of current applications
by Architecture Driven Modernization, ADM (ADM, 2007). Unfortunately
ADM has not had much progress, perhaps due to its complex seven-layer
structure that starts from the AST level. The AST implementation has been
extended by a meta structure, a meta AST layer, ASTM. The next level above it
is Action semantics, the next is the analyzing level, then the metrics, refactoring,
and the last level is about knowledge capturing. This principle sounds
interesting and very informative, but it is still hard to understand how these
highly interconnecting things can be divided into different layers. How can it
help PC if the model is very complex with a lot of ADM discontinuities? ADM
tries to define knowledge capturing in one of its layers. However, what is that
knowledge if in the model there are numerous layers hiding all their specific
data and information. What is the role of the user in ADM in interpreting lower
level information?

The main purpose of ADM, revitalizing source code, is clearly relevant for
the topic of this research. However, in this work our purpose is to open up all
source code element information, not to separate it into different layers. There
are numerous open questions relating to ADM. Solving the semantics of the
underlying model is one of the most difficult ones. It is described next.

45
The influence of language semantics

Although the problem of semantic definition has been the object of theoretical
study for as long as the problem of syntactic definition, a satisfactory solution
has been more difficult to find (Pratt and Zelkowitz, 2000).

Semantics is said to be the “agreement” about the interpretation of syntax.
Semantics is then a data transfer from syntax to a set of interpretations Syntax
> Set (Interpretation), which is also called a meaning function.
Unfortunately the agreement is not so simple, and there are numerous
interpretations (Baxter, 2004):

- Informal Semantics: This information can have any notation, even
natural language. It has been created in order that everybody could be
pretty sure to understand it.

- Operational Semantics: This information describes the model that can be
executed by a well-defined interpreter, which is usually called an
abstract machine.

- Transformational Semantics: This information is a map to a notation
with known semantics.

- Denotational Semantics: This information is a map to lambda calculus.

- Models and Algebraic Semantics: This information models reasoning of
the program by evaluating the correspondent rules such as its algebraic
laws.

It is surprising that there should be so many different semantic notations
without concrete transformations connecting them. In some notations there are
some ambiguities. A valid question considering PC is therefore: Could there be
only one accurate foundation for all the semantics in the PC approach? This is a
novel question without a concrete answer yet.

Java semantics

In general Java is an excellent language for analyzing purposes, because it is
logically isolated from its run time environment (Java Virtual Machine, JVM)
(Qian, 1999). Run-time features and exception handling are the most difficult
things to analyze because of their strong connection to JVM.

Java semantics is, however, much more complex than that of procedural
languages, because it includes inheritance, polymorphism, abstract classes, and
virtual functions that define invocation possibilities. Because of polymorphism
the behavior of the program cannot be evaluated without knowing the types of
the arguments of invocations.

There is a lot of research considering Java semantics, but mostly its
purpose is to demonstrate the connections of the language either in a
specification or in describing the behavior of statements (Attali, Caromel, and
Russo, 1998). For example, action semantics is a framework to combine
operational, denotational, and algebraic semantics in order to avoid their worst
features (Mosses, 2004). Although a good idea, action semantics has not

46

matured yet, because there are no perfect software implementations for
complete languages.

As a demonstration Watt and Brown (2000) have reviewed three notations
to describe dynamic semantics of Java containing control flow, method
invocations, and exceptions. The presentation, covering action semantics too,
considers only a subset of Java, specifying the formal notations only. Therefore
it cannot be used as a simulation specification for PC purposes.

Model checking

Model checking may be understood as the knowledge capturing tool of PC.
There is a separate community that studies model checking as a separate
discipline (Rajamani, 2005). The topics in this field have almost without an
exception a mathematical foundation, often based on mu-calculus, Kripke
graphs or temporal logic, which doesn’t often have any influence on
programming language semantics or on program comprehension. There are
some examples about this kind of academic research (see Visser et al., 2003;
Rajamani, 2005).

Because of the automated error detection, model checking has been
studied in Microsoft for decades. Microsoft has both a static model checking
tool named SLAM (Rajamani, 2005) and a dynamic tool for checking concurrent
software named ZING (Andrews et al., 2004). SLAM is focused on driver
verification, whereas ZING functions as a scalable, systematic state-space
exploration infrastructure.

2.4.3 Behavior oriented approach (Simulation)

Why is understanding of the behavior so important in program
comprehension? The answer is that it describes accurately what the program
does when it works perfectly and what it does when an error occurs. Therefore,
where practical use of static code for troubleshooting is very limited, the
behavior model is the best input for OOP code. Another use for behavior
models is the possibility to analyze the complexity and functionality of
algorithms (Leiss, 2006) like quicksort based on the sequence of computations in
the result of simulation started in the beginning of an algorithm.

Simulation and automata theories

A lot of research considers state machines and the analysis of concurrent and
event-based systems that are typical for object-oriented systems. Almost
without exception the input for the research has been derived from UML
models, from bytecode, from other results of dynamic analysis or from
specifications. Hardly ever has this been captured from the source code. One
reason why original source code has not been used for model evaluation or
simulation purposes is that there are no standards for captured code
information (Denker et al., 2006).

47

In the following list there are some observations about research relating to

simulation and automata theory:

- Automata and automation theory has often been used for academic
writing and for evaluating mathematical formulation (Dams and
Namjoshi, 2005), but this approach does not cover PC purposes.

- The Chomsky hierarchy and Turing machines (TM) are widely used in
education and for modeling simple automaton (Herken, 1995), but they
have not been used for PC applications.

- Side effect analysis is one area which has some relations to PC. It is a
research topic, but a unified definition for side effect is missing. Instead,
it studies, for example, which method is a pure method and what kind of
impurities there are (Salcianu and Rinard, 2005). For PC purposes, the
goal should be to better compute all side effects from the code and to
show the relations between the code and the side effects in order to help
modification and refactoring.

24.4 Knowledge related approach

It is essential to consider the area of program comprehension from the point-of-
view of human cognition. The corresponding theories are attempts to explain
the model of learning and human thinking and how the developers
(maintainers) conduct themselves in their day-to-day work. Hardly ever have
such theories been used for PC, although they could provide essential value for
it. The most relevant theories for PC are ACT-R (Anderson and Lebiere, 1998),
Soar (Newell, 1994) and Step-ladder (Rasmussen, 1983).

In maintenance and PC the input for a maintenance task may be seen as a
domain dependent high-level specification. However, a maintenance task
cannot be solved without understanding the logical relations behind the task
(Suitiala, 1993). Therefore, in the best of the cases the user can transform the
task into a compact logical formulation. If the problem, just formulated, is
computable, then the solution will be generated as automatically as possible.
The complex tasks and actions, which require a lot of preliminary work like
search, should be done by using a computer as a tool to preprocess information.

Walenstein (2002) has argued: “Current tools have seriously failed in
finding a balance between the user and the computer”, which should be the
main goal of all human - computer interfaces. He says that an optimal tool
display screen should show the user only the intersection of the most important
and most difficult elements of the current model.

Rasmussen has developed a substitution hierarchy (Step-ladder), also
called a SRK-model, which contains Skill-level (S) for immediate skilled actions
that are based on a low-level processor of a human’s hardware model. Rule-
level (R) is then the layer for rule-based recognition, which has a rapid
response. Knowledge-level (K) is for deliberate reasoning to be used for solving
problems that are not trivial (Rasmussen, 1983).

Walenstein has extended the SRK-model by the symbol M, for meta, to
describe all implicit information that cannot be solved by using knowledge

48

actions or lower level actions (Walenstein, 2002). We propose that this meta-
feature can have logical connections to those metamodels that are typical for
UML. This would allow the most abstract features of PC and UML models be
connected with each other.

Knowledge capturing methods

The common practice in PC research and in source code analysis in general is to
produce graphs or views, which are meant to be viewed as outputs, for the
user. However, most often the user's capacities are not up to the task
(Walenstein, 2002). Therefore a more focused approach is needed. Some
observations about knowledge related research are:

- There have been some trials to define a cognitive navigation
environment to cover both low-level and high-level navigation as well as
horizontal navigation (Storey, Fracchia, and Mueller, 1999).

- The tool SHriMP introduces a method to support integrated mental
models, but there is no practical experience about how it should work in
a larger context. Its status is not fixed either (Storey, 2003).

- In the reverse engineering roadmap Mueller et al. (2000) propose that
reverse engineering should be done separately for code and data. This
idea sounds a little clumsy, because the purpose of PC is to remove
discontinuities of code and models, not to create new ones.

2.5 About Symbolic processing

It is essential to study symbolic processing in the PC context for two reasons.
Newell has described how a human connects symbols in different cognition
bands (Newell, 1994). Thus, expressing information connected by symbols via
predicates is more effective for PC purposes than showing mere alpha-numeric
information, e.g., constants. The "origins" of the computer are to be found in the
Turing machine, which was designed using the symbolism of a person writing
to a square paper by a pen (Copeland, 2004). This symbolic feature has been lost
in modern computers, because they are alpha-numeric as a default. However,
that feature can be retrieved for computers as symbolic processing (King, 1976).

In computer science there are numerous concepts, which have the prefix
symbolic. Most of them have their origin in symbolic computation. These
concepts include symbolic execution, symbolic analysis (Cheatham et al., 1979),
symbolic evaluation, and symbolic manipulation. Cheatham et al. describe low
level principles in detail: simulating variable references, evaluating conditional
statements, limitations of loop analysis, and a symbolic evaluator, which uses
an expression simplifier. In this section the concept symbolic processing is used
to connect all of these together to emphasize that symbolic processing
(evaluation) is an extension to numerical processing, because its allows using
symbols and symbolic expressions both as inputs and outputs for calculations

49

and logical expressions (Havlak, 1994; King, 1976; Boyer et al., 1975).
Traditional software is not capable of calculating any expressions that have
unknown variables or variables without values. A missing value in a non-
symbolic program can crash the program or even a computer.

The motivation for using symbolic processing for source code analysis
arises from the fact that not all information of all the elements of the source
code is known in each processing phase. Therefore, in symbolic processing it is
natural to substitute the missing variable values by the variable references (their
names or their handles). If there is no value for a variable x in formula y = sin(x)
then the output is sin(x). From a programmer’s point-of-view symbolic
processing is a higher abstraction information level than traditional numeric
processing. Hence, the best way to connect the symbolic needs of the user and
the symbolic abilities of the computer in a tool and in a methodology is to use
symbolic processing in the computer.

251 Symbolic terminology

In a nutshell, the most used symbolic terminology for source code analysis
consists of the following:

- Symbolic execution analyzes if and when errors occur in the code. It can
be used to predict what code statements do to specified inputs and
outputs. It is also important for path traversal. It has difficulties in
dealing with statements which are not purely mathematical (King, 1976;
Rajamani, 2005). However, the scope of symbolic execution does not
extend to complete software installations. Symbolic execution has found
wider use in investigating different problems of source code analysis.

- Symbolic analysis doesn’t have any good definition, because it has two
meanings. The meaning in the domain of mathematical calculation tools
is used more often than the meaning connected to source code analysis.
Symbolic analysis has been used in research of procedural languages
and in compiler construction (Cheatham et al., 1979; Blieberger et al.,
2000; Havlak, 1994; Blieberger et al., 1999; Xie et al., 2003). Cheatham et al.
(1979) have studied symbolic analysis for procedural code in order to
find out about the problems of automatic analysis.

- Symbolic model checking is a research area for verifying software
models (Clarke et al., 1996; Henzinger et al., 1994; Rajamani, 2005). It is an
academic field which has not much influence on PC, because the
formalisms of it are using, as their input, symbolisms that are more
abstract but less formal than source code (Java, C++).

Symbolic execution has been used in numerous research projects for analyzing
some parts of code, most often capturing method invocations (Roover et al.,
2006), control flow information (Xie et al., 2003), or database functions (Ngo et
al., 2006).

Symbolic analysis has been used for optimizing compilers by Havlak
(1994), who introduced the principles of typical flow graphs of the code and the

50

corresponding formula. Because Havlak’s work is focused on creating new
code, its purpose is very far from that of PC.

2.6 Summary of the related work

Program comprehension research has created exceptionally specific theories
and empiric results for specific areas covering different programming
languages, analysis approaches, and program features. The integrated mental
model is one of the more generic approaches, but it doesn’t have a strong
formal base or tools that would enable a wide body of empiric research. It
seems to be too challenging to instantiate such a model in tools, at least we have
not found any such discussions in the most recent conferences ICPC (ICPC,
2007) or SCAM (SCAM, 2006).

The role of tools has been understood to cover only some limited areas like
documentation, browsing, and navigation support, searching and querying,
providing multiple views for the same thing, creating context-driven views, and
giving individual cognitive support (Storey, 2006). The focus, as far as the tools
are concerned, has thus been to aid one separate program comprehension task
at a time, as opposed to the user’s need of being holistic.

One may conclude that the area of PC is fragmented and specialized,
which prevents the researchers and programmers from creating a general idea
about the program itself from all of its possible perspectives. Therefore, in order
to avoid specialization and to enable generalization, contrary to the current PC
approach, a general formalism should be created connecting the code to the
corresponding models including their semantics and the results from the
analyses. There are clear gaps between grammar-based and model-based
technologies and between model-based and analysis-oriented technologies, as
well as between the information in models and the knowledge that is needed
for executing maintenance tasks. As a solution for the gaps different technology
spaces should be identified and integrated to make a unified platform for PC.

3 TOWARDS SYMBOLIC ANALYSIS AND
ATOMISTIC MODEL FOR PC

This chapter describes the research approach and the most important selections
in order to define the goals and commitments for the methodology, which is
presented in the following four chapters in more detail.

3.1 Research focus

Several trials have been done to catch the overall formalism of source code and
the design models in order to synchronize forward engineering and reverse
engineering, which could provide stable development information for the
software production. If this kind of synchronization could be reached, PC could
work as a glue between the reverse and forward directions (Demeyer, Ducasse,
and Nierstratz, 2003; Selonen, 2005).

Some reasons for failures in creating a coherent model to contain all
necessary PC information may be due to many ambiguous definitions and
inaccurate semantics of the code, which have made the elements incompatible
with each other. Furthermore, the UML notation is not compatible with its own
object constraint language, OCL, and none of them are compatible with
semantics of Java or other languages. The analyzing algorithms, methods and
structures are incompatible with other notations (Heering and Clint, 2007).

In this research we bravely assume that the best possible way to solve the
problem of several incompatible ambiguous languages behind the different
notations, is to minimize the model as far as possible. This reductionist
approach leads to a need to use the Occam’s razor in order to minimize the
number and complexity of the elements and concepts by ignoring all irrelevant
information and data.

For efficiently mixing languages and notations, a powerfully expressive
language should be selected as a doctor in order to understand the patients, the
notations to be connected and studied. The widely used proposition for that

52

kind of problem is XML with its schemas and tools. However, it has not
succeeded in solving the interconnection problems of executable models and
languages, because XML doesn't have a real computation model to generate
new information. Futhermore, most software models like FAMIX are only
static (Demeyer et al., 1999). Instead, a real dynamic computation model is
required.

We argue that for investigating the formalism of source code and
corresponding models, a novel approach would be to use predicate logic and
object-oriented modeling tightly together in order to describe all the syntactical
structures and semantics notations as compactly and completely as possible.
For evaluating the captured heterogeneous information, we have chosen to
create a symbolic construction, which would produce as accurate information
as possible about the run-time behavior of object-oriented software by using
only a minimal number of concepts. The pragmatic goal is to accelerate the
maintenance process and to help in building new software installations.

Unlike some traditional approaches this research covers both theory
building and tool construction in order to demonstrate a focused approach, in
which the amount of information to be presented on the display is minimized
for the user. The necessary program comprehension tool, JavaMaster, is
implemented using Visual Prolog >, because that tool is object-oriented
providing a hybrid platform for programming declarative, computable models.
As a strongly typed language it is rather fast providing a performance
comparable with that of traditional languages.

3.1.1 Research Method

As suggested before, the research is done in a bottom-up fashion by defining
tirst the low level structures and concepts in Prolog. These are modeled in order
to build larger and larger theories until the level of the aimed technology space
(see Chapter 2 and (Kurtev, Bezivin, and Aksit, 2002)) is reached. The approach
is reductionist in order to minimize complexity and the number of structures
and to maximize expressiveness.

Many researchers have found that current tools are somewhat too
bounded allowing only a limited approach to the source code model (Zaidman,
2006). To avoid the bottleneck of tool information, our purpose is to allow
partial evaluation and flexible simulation of source code by high-level
structures, even though user interactions would be needed in order to select the
actual program flow.

The basic qualitative attributes the research addresses are:

- Coverage and consistency of the structures in each technology space.

These are to be maximized.

- Simplicity. It is obtained by using a minimal number of terms in each

formulation.

5 Visual Prolog by Prolog Development Center A/S, Denmark: www.visual-prolog.org
(referred 10.08.2007).

53

Because coverage and simplicity are the main features of the implementation, it
is natural to expect that a solution for the formalism is found as a kernel object
of the model to keep it simple, but still expressive. This reasoning leads to the
tirst goal of the work.

Goal 1. To find an atomistic representation of source code as a basis for a
higher-order model, simulation, and user interaction.

There are some topics that are not studied in this research in order to emphasize
the role of the formalism. These are discussed next.

Performance is ignored, because source code is interpreted here
symbolically step-by-step, causing its overload, in order to maximize
information access to the user, who has a limited capacity to adapt new
information. Therefore, the minimum requirement relating to performance is
that the tool should be faster than the user in the selected activities.

No compromises for mixing small atomistic structures with more complex
models are allowed, because this research champions an approach to the code
that is novel but extreme in order to minimize the complexity of the smallest
element of the goal 1. This is important, because mixing more complex models
would break the architecture, even though they could be more practical to use.

No metamodels are used. A serious drawback for metamodels is that they
lead to procedural thinking, where the model is seen as an external box,
separated from the tool programmer’s approach. That's why there should be an
external parser, an external code generator or visitor to read metamodels. An
object-oriented model should open a view into the internal perspective of each
object.

Although visualization is an important feature of PC, it is not studied in
this research, because the first challenge should be to tame the complexity of
source code structures and models. After the formalisms have been created,
they can be used as bases for building new visualization views of the source
code.

The newest features of Java 5, including generics and annotations, are not
studied, because generic definitions are only syntactic sugar that can be treated
by using a simple pre-processor. The annotations of Java are a way to customize
the software. It is a syntactical feature, too, giving no essential information for
program comprehension research, which is based on creating formalisms.

Capturing architecture models or design patterns are not studied, because
they can be equated to mental models of the user, built gradually from the
lower level models.

3.1.2 Ideal goal for the theory

When planning a new research framework it is essential to discover the ideal
features for the research plan in order to create a model about an optimal
solution. The following definition for the ideal of science is from Hoare from the

54

presentation The ideal of program correctness®. It is modified for this research as
follows:

purity of materials, which is defined here as a purity of concepts
simplicity of reverse engineering theories to be created

accuracy of transformations of the process to be created
completeness of logic of models and conversions

certainty of answers to relevant basic reverse engineering questions
correctness of programs of the tool to be created.

Even though the purpose of Hoare is different from the focus of this work,
which is more specific, we are using the list as a planning methodology to make
our goals clearer but with the following modifications:

For building new theories it is better to speak about purity of concepts
instead of purity of materials. Clear concepts are the building
foundation for this work.

Simplicity of theory is essential. Thus we have selected a reductionist
approach for all concepts and theories in order to get the maximum
expressing power by minimizing complexity, perhaps sacrifying
performance at the same time. Each set of combined theories that use the
same foundation, is called a technology space (see FIGURE 3).

Accuracy of measurement in this research aims formalizing the main
structures and processes, which has a logical connection to granularity
of transformations. There is a comparable reference model for a
transformation framework in the DMS toolbox (Baxter et al., 2004).
Completeness of logic emphasizes the role of logic in the science in
general. In this research it is used as a method to show the rules between
technology spaces and within each of them, as the approach here is that
of logic formulation.

Certainty of answers is relevant to program comprehension because of
the cognitive nature of understanding software. There are two kinds of
answers: for research problems and for end user enquiries in real-time.
Relevancy of questions here has to do with the cognitive approach of
the research, because user questions are not all simple queries, rather,
these are complex assumptions about something, on many abstraction
levels.

Correctness of programs means in this research two things: How to
show the correctness of the user program and how to justify the tool,
JavaMaster, and simultaneously prove the technology developed.

These seven topics form the body of this chapter.

6 http:/ /www.fst.umac.mo/seminar/2006/sem20060526.html. The ideal of verified

software: http:/ /www.easychair.org/FLoC-06/ CAV-day229.html, referred 20.07.07
(Computer Aided Verification, CAV2006).

55

3.2 Foundation: Purity of concepts

Because of the focused approach, where the user has all the control for selecting
the program comprehension strategy, the focus has an important role. The
focused element should be flexible to cover both the largest block and the
smallest particle of the code. Therefore, the outer behavior of each element
should be similar.

The unified approach to each element leads to two principles: 1) in
ontology we define the particles as perfectly as possible from the very
beginning, 2) in atomistic thinking we use a gradual sharpening method, which
has its theory background in analytic philosophy, logical atomism (Russell,
1918), and atomistic thinking (Anderson et al., 1998).

The role of the key symbols, S to T, shown in the symbolic layer of
FIGURE 3 is essential in atomistic thinking, which is the approach used in this
research. These concepts will be described in the next section.

Symbol S O L M A Q H T
layer Symbol | | Object Logic | i Model <:> Analysis Query Hypothesis Task

P Process
Tech. Grammar : Model | C=){ Simulation : Knowledge Maintainer
spaces Ware Ware | (— Ware Ware User

Underlying implementation (Prolog) for symbolic analysis

Theories

FIGURE3 Main levels of the methodology.

3.2.1 Main concepts defining the symbolic layer

In order to clarify the highest-level terminology we propose a list of main
concepts, which should cover the dimensions of semiotics (Morris, 1971) from
the PC approach.

Goal 2. The main concepts express the metatheoretical relations of the proposed
PC according to Peirce's semiotics.

The main concepts that we have selected are symbol (S), object (O), logic
(L), and model (M) for the following reasons. In source code the symbols with
their structures defined by the user are important "beacons” in the tool to be

56

used in modeling the corresponding behavior (Pennington, 1987, von
Mayrhauser et al., 1997). For this reason the symbol (S) is an important interface
(see FIGURE 3). The internal structure relating to each symbol (Peirce, 1958) is
an object (O). For making interpretations, logic (L) is needed for describing
meanings between symbols and objects (Tarski, 1941). By combining them a
metaconcept SOL can be created to mean a symbolic approach with its
interpretation. Furthermore, for combining the elements to be studied, a set is
needed being a model (M) of the user’s focus.

This metaconcept SOL should cover the semantics and formalism of each
source code element starting from the parser and ending to the most advanced
representation to be shown on the display. The symbolism is compatible with
Peirce’s semiotic triad (Peirce, 1958), because symbol (S) means a sign and object
(O) and logic (L) refers to an interpretant.

Importance of a language is great in semiotics, too (Tarski, 1983).
Therefore, a symbolic notation is needed as a foundation for all data transfer in
the tool. For that reason we have created a novel symbolic language, later called
the Symbolic language. Definitions for the language are defined in the next goal.

Goal 3. To emphasize the meaning of the symbolic language: both in translating
source code into an internal language and further into a metalanguage for
user interpretations.

By using the internal language the original source language is transformed into
an internal intermediate notation (symbolic language), which is used as an
object language and further as a foundation for interpretations in a
metalanguage (Tarski, 1941) to describe all the entities and the possible
relations between them.

The role of Symbol (S)

The role of symbols in Java software is to name structures like class, method,
attribute (field), and variables. These user symbols give an initial mapping from
the tool to source code and back, but the granularity of user symbols is not
sufficient for representing e.g. loops or assignments. Therefore, every grammar
term should have a symbolic name of its own, including all the necessary
statements and expressions. 7
In summary, in full symbolic analysis there are the following categories for

symbols:

- User symbol that is read from the source code.

- An automated numbered symbol describing software low-level

structures.

7 This kind of strict model may be called an atomistic implementation if the symbols have a
minimum internal semantics created by splitting the contents of the objects into
object references.

57

- Dynamic symbols referring to the behavior model of the system
including all intermediate and result values and assignments. These are
called side effects later in the dissertation.

As a conclusion, to enable identification for each element, a unified naming
principle should be created leading to the next goal.

Goal 4. To establish a convention to define an element for symbolic
presentation

The roles of Object (O)

In interpretations of symbolic analysis there are three kinds of objects:

- An object of the original Java code has the format of a Java class
definition.

- An object that corresponds to the information in the Java object is a
simulated artifact.

- An interpretation produces a semiotic object, which has a run-time
history (side effect). In interpretation it is possible to accumulate all the
events that refer to the run-time objects.

There are some problems in using a monolithic object model in expressing
complex connections with hierarchical crosscutting features, because the links
should be saved into separate objects, which would require complex iteration
logic to be programmed. This problem can be avoided by resorting to the next
key factor, i.e., logic.

The roles of Logic (L)

Logic implements the following things. It connects the symbols and formalisms
in a theoretical level. It implements the symbolic language, the foundation of
the research by predicate logic, here Visual Prolog. It is the base for the tool
(JavaMaster) containing all the structures, code statements, and transformations
(parser, model weaver etc).

In Prolog there is an internal semantics to associatively connect the
referred elements with each other through variables and by unification
(Clocksin and Mellish, 1981). This important feature combined with the type
system of Visual Prolog enables proving the critical low-level structures of the
tool and allows projecting evidence into the higher logic layer in the context of
the corresponding technology space and main concepts.

3.2.2 The user’s side of the methodology

The symbols for the maintenance task (T), process (P), analysis (A), hypothesis
(H), and query (Q) will be described later in Sections 3.6 and 3.7.

58

3.3 Simplicity of theories: Technology spaces

As Kurtev et al. (2002) have proposed, none of the technology spaces is an
independent island with its own functions. Instead, an essential purpose for
them is to create bridges with each other and with the user. Therefore, it is
important to describe transformation semantics for the whole research as a
flow. Our analysis shows that the dataflow from the code to the user should
contain the following four phases:

- GrammarWare: For a successful analysis of source code, grammar
technologies are needed. With these one can avoid problems of
entangled grammars (Klint, Limmel, and Verhoef, 2005). For obtaining
semantics for each parsed structure a good contact to each grammar
term must be created.

- ModelWare: For each term, an optimized element is needed to describe
the terms as a model.

- SimulationWare: For obtaining behavior information from a model, a
simulator with included formalism and semantics is needed.

- KnowledgeWare: The last phase, obtaining knowledge, is the most
challenging area to be formalized, because it connects the user needs and
the previous phases in the queries to create interpretations.

FIGURE 4 illustrates the main approach in implementing planning. The
philosophy behind it is that of helping the users in maintenance tasks to make
changes into code. It covers ModelWare, GrammarWare, KnowledgeWare, and
SimulationWare, the machine approach, as well as the sectors between them.

Mainte-
nance
task

Grammar
Ware

Machine
computation

Human
cognition

Planning
tool

Simulation
Ware

Knowledge
Ware

Making
changes

FIGURE4 The main approaches for the program comprehension tool.

59
3.3.1 Commitments to GrammarWare

Starting from the program and parsing the code makes it natural to select
grammar technology (GrammarWare) as the first focus area for the
methodology. The responsibility for the GrammarWare implementation is to
convert Java-files into a notation of a higher abstraction level that can be used
for later modeling purposes.

Some assumptions for GrammarWare are:

- The parse trees should contain grammar terms with semantics.

- Unlike in AST, the terms should be in a formalized notation.

- The purpose is to get as compact structures as possible to create a

foundation for the whole information flow related to this technology.

As a formalism GrammarWare should be seen as an acceptor to enable the next
phase leading to the next goal.

Goal 5. To implement GrammarWare using a symbolic formalism.

3.3.2 Commitments to ModelWare

Several principles have been used for creating complex models and especially
for creating source code models and design models (Bezevin, 2003) leading to
ambiguous or too complex implementations (XMI, 1998).
In order to avoid complexity of models, a better suited technology space
named ModelWare, is developed for this research to meet the next conditions:
- To avoid multi-layer structures and to prefer short homogenous
representation.
- To implement a unified element architecture with a homogenous
interface each.
- To optimize the number of types. In Javal.5 there are 130 term types
(Java, 2003).
- To minimize the number of methods in simulation.
- To maximize extendibility of the model to allow new public functions.
- To make integrating the model to commercial and public models
possible.

The definitions above can be presented with the corresponding measures: L
(the number of layers), B (the number of different base classes), T (the number
of types), S (the number of obligatory simulation methods), F (the number of
public functions), and E (extendibility).

Summarizing, a common model architecture can be defined by the following
tuple:

model(L, B, T, S, F, E)

For the symbolic model we select the following values:

60

- L is 1, because the purpose is to make a 1 layer model to maximize the
simplicity.

- B is 1, assuming that all the elements (objects) can inherit from the same
base class, providing the symbolic language.

- T should be only a fraction of Java types. In Chapter 4 it is told that the
value will be 12 to cover all code element types and two types for
simulation (14).

-S (number of public simulation methods needed for an element) is
assumed to be as small as possible. Later it is shown that S can be as low
as 1.

- Number of features, F, should be unlimited. We assume that it is
possible to program numerous handlers and callbacks for manipulating
model information.

- By appropriate efforts E and F can be large, because the model is
executable including a variable model or a dynamic extension to contain
all the results from the simulation.

By summarizing the values of the list above the following model estimate for
the symbolic model is obtained: model(1,1,14,1,infinite, infinite).
The values of the list above are very different compared to MDA-models (MOEF-
levels MO0...M4) or FAMIX (Demeyer, Tichelaar, and Steyaert, 1999; MDA, 2007),
which have deep inheritance hierarchies and hundreds of types in the schema.
As a conclusion, a definition for ModelWare is listed in the next goal.

Goal 6. To create a model weaver for ModelWare in order to build a
reductionist model for embedding Java semantics to it for simulation
purposes.

3.3.3 Commitments to SimulationWare

Analyzing behavior yields the most essential program comprehension
information about object-oriented code because of the yoyo-phenomenon and
late bindings (Wilde and Huitt, 1992). For simulating OOP, a technology space
named SimulationWare is presented.

As a reference for simulating Java, the best candidate is the Java virtual
machine8. As the formalism for Java virtual machine is not presented on a
statement level, Java’s behavior model should be deduced from the Java
specification (Java, 2005). The semantic representation of Java is divided into
levels using formalisms of the Chomsky hierarchy (Chomsky, 1956). The
semantic representation of Java (Gosling et al., 2005) in this research is divided
into four technology spaces with different natures:

- GrammarWare creates symbol tables and static semantics for the code.

- ModelWare creates the reachability rules including the OOP behavior.

8 In the automata theory the concept abstract machine is used instead of virtual machine,
because the latter is more language-specific.

61

- SimulationWare handles ambiguous references and dynamic bindings.
- KnowledgeWare is needed for making selections between ambiguous
references.

The purpose of simulation is to get an output, a sequence that is comparable
with a UML sequence diagram as an output. This compatibility should allow a
functional verification of the tool with dynamic analysis and debuggers. The
requirements for simulation are listed in the next goal which has two different
purposes.

Goal 7. To describe formalism for source code simulation according to the
automata theory as well as to create a platform for partial simulation.

3.3.4 Commitments to KnowledgeWare

A technology space, KnowledgeWare, is needed for capturing knowledge, i.e.,
program comprehension information, from the code. The responsibility of
KnowledgeWare is to create a formal definition for maintenance actions and for
the information of the model concerned according to the known principles of
program comprehension, in order to help the user in attempting to understand
and solve actual hypotheses.

Getting knowledge from data, the output from the PC process, is the final
result to the user (Ackoff, 1989). It is a set of interpretations based on
knowledge representations. = Converting data into knowledge requires
established definitions about what is data and what is its practical use in most
typical situations. Mapping these things with each other creates knowledge in a
tool which makes the necessary transformations. We emphasize familiarization,
testing, and troubleshooting to describe the user interaction side. Further, an
information ladder for creating knowledge is used (Ackoff, 1989).

There are several theories relating to KnowledgeWare like the one of
Nonaka and Takeuchi (1995), as well as the conceptual graphs of Sowa (1976;
2000) and semiotics of Peirce (1958). The whole semiotic taxonomy of Peirce,
including his concepts of rhematic, dicent, and argumentative, is relevant in this
respect.

As a more abstract aim, KnowledgeWare should be able to help the user in
creating more hierarchical mental models by expressing granular worlds
(Bargiela and Pedrycz, 2002). The theory of so-called mini-minds (Wells, 2006)
provides a good starting point to analyze a sequence that is atomistic. There is
another theory, logic atomism, which studies language understanding and
concepts as atomistic things (Russell, 1918). An abstract definition for
KnowledgeWare is listed in the next goal.

Goal 8. To create a bridge between the code model and the user language
supporting the maintenance approach based on KnowledgeWare.

62

3.4 Accuracy of PC transformations

PC is shown as a set of automata and transformations in FIGURE 5. Parsing can
be considered as a special kind of measurement process of the source code.
Parsing is complete if the grammar of the proposed language has been
implemented correctly. Starting from parsing the code, the whole process of
program comprehension can be regarded as a set of transformations, as
suggested, regarding maintenance, by Baxter, Pidgeon, and Mehlich (2004).

The main transformations are shown in FIGURE 5, where the given
automata realize parsing, transforming to the higher symbolic language,
weaving the model, simulating, and obtaining knowledge.

The key topics in evaluating the whole process are the coherency,
consistency, and granularity of the automata, and completeness of the
corresponding transformations, which have the following notation: =~ Data ;+1
= Ai:transform(Data,).

The automata and corresponding data in FIGURE 5 are:

- D0: Grammar definition for Java as a file.

- A1: Grammar tool including a parser generator D1: Parse tree for Java.

- A2: Parser (here for Java), D2: Parse tree.

- A3: Translator to convert parse trees to symbolic notation, D3: Symbolic

parse tree.

- A4: Model weaver to create a model, D4: Model formalism (includes

elements).

- A5: Selector for the user to select and control simulation, D5: List of

selected elements to build a simulation queue (input tape).
- A6: Simulator for the input tape, D6: Output-tape with dynamic
(operational) information.

- A7: User interface to allow knowledge mining from the output tape, D7:
An information ladder (Longworth, 1996) connecting data, simulated
sequences, and all specific relations with all actual information.

- The last phase is planning of changes by using D7.

We assume that the transformation realized by automata A1l to A3 is complete
and consistent with the features of Java (except the newest features of Java 1.5)
in a higher notation. The information in A3 is defined by using an intermediate
language, which has equivalent axiomatic semantics with Java. However, a
more challenging automaton is needed in SimulationWare, dealing with
operational semantics. In this research the challenge is to show how completely
the individual elements of the model can be simulated and connected with each
other while mirroring their corresponding behavior in JVM. For that, a semantic
notation is needed (it is called atomistic semantics in Chapter 6). The main
function of the last automaton is to implement the computer-side actions
consisting of successive computations for maintenance queries.

63

DO

| |

A (A2)
lGrammar Parse-

tool 54 treeI D2
T N
A3 Symbolic Ad Symbolic
parse tree model
- D3/ D4)
- N
. . AS Ir_1put fo_r 6 Output- h
SimulationWare __| simulation sequence
Turing machine {_ DS/ R . D6 J
.
~ N
______ {Initial AT Information Possible }
knowledge ladder changes
N\ D7 J

Practical
use

— D8 —

FIGURES5 Program comprehension as automata and transformations.

3.4.1 Universal transformation formalism

According to the transformation model of DMS (Baxter and Mehlich, 2002),
each transformation should be defined and should include its domain (here
Java in Automaton Al) and schema (AST is widely used, but here the different
technology spaces have their own, yet still compatible definitions: grammar
term, model element, simulated sequence, and knowledge unit).

It is essential to define also the specified semantics. Some other things that
are specified in the DMS framework are binding, locator, properties,
metaprogram, and transform process (Baxter et al., 2004). For each translation it
is necessary to specify the input and output languages, a foundation for the
transformation, and a location for transformations. It is also necessary to specify
a tool, optional databases, and use cases for the process. A summary goal for
each automaton is listed next.

Goal 9. To describe transformations between the technology spaces as
automata.

64
3.4.2 Type theories

As said earlier, successive translations are relations between the previous layer
term relations when they are expressed and formalized by predicate logic.
Prolog enables associative and recursive structures mix individual data
structures with each other.
The general logics between the automata are assumed to be the following:
- Static code: 1st order logic.
- Dynamic references: relations about static code, where constructors
produce objects as 2nd order relations.
- Side effects (influences), caused by the code: next level relations from the
creator.
- Sequences, simulated separately: next level relations for the simulation
query.
- Actions to test and validate sequences: next level relations for the test
sequences.
Separating successive orders leads to type theory and set theory, where any
new set is a combination (set) of the previous sets. Most of them can be
expressed by using Prolog’s type system and data structures. The topic is then
how to master the overlapping relations as summarized in the next goal.

Goal 10. To express the main relations of the captured knowledge as nested
types.

3.4.3 Knowledge transformation set

The knowledge layers of semiotics are defined in the Peircean taxonomy by
Gudwin (2006) in his theory about computational semiotics. In it rhematic means
a verbal or symbolic structure (here source code), dicent means a proposition or
a captured structure from the model, and argumentative means a proved
explanation, either deductive, inductive, or abductive. These definitions can be
modelled as transducer functions in the Visual Prolog notation calling these
automata as follows:

- Rhematic: StaticKnowledge = access(Model, Parameters)

- Dicent: Dynamic knowledge = query(Model, Sequence)

- Argumentative: Argument = proof(Model, Sequence, Hypothesis).

We will interpret the knowledge interface for each layer in the following way.
For rhematic, getting static knowledge, only a simple relation model is needed
to enable accessing the selected elements that are relevant to the invocation
parameters. For getting dicent information, a simulated sequence is needed.
This is later called an output tape, having its origin in the Turing machine
(Wells, 2006). The dicent query is then an explanation interpreted from a
sequence, giving either the whole sequence or a specified subset of it, and
illustrating a specified flow such as a dataflow. For getting argument

65

information, a proof is done in order to match the assumed hypothesis and the
corresponding sequence of the model. As a summary, knowledge access is
specified in the next goal.

Goal11. To realize a knowledge access interface containing the three
semiotic layers.

3.4.4 Graph approach (model theory)

The parse tree is, as its name says, a tree structure. The biggest problem in using
trees in manipulating code structures is that the tree doesn’t have a semantics
compatible with programming languages that would allow pointing correctly
to individual leafs of the tree. Therefore, we argue that a tree should be ignored
in our case and that a more flexible model is needed. This conclusion leads to
the definition of ModelWare. Results from ModelWare are mainly sequences,
but the main aim of the user is to understand complex dependencies caused by
crosscuttings, hidden object references of methods. Normally they are
expressed as graphs or networks, which often are very large.

In this research we are reaching for a dependency model, which is rich in
the number of elements but has only a limited set of types and associations (link
types). It is clear that for a computer program (here JavaMaster) it is easier to
connect existing, semantically correct small elements in order to create a
dependency graph than to use complex manipulations for splitting larger
structures into smaller ones in consideration of their semantics.

From the small elements (these are called atoms later) the tool can
transitively collect higher level hierarchies such as a graph for a method, for a
class, and for a package. When these graphs are interconnected, useful program
comprehension information becomes available.

This approach leads into the graph theory with its well-established
practices and methods. In the research we need to use a principle which
determines that bi-directional links (graph edges) are embedded inside
elements (graph nodes) and do not need their own elements as would normally
be required, for example, by Atlas (2005) and XMI (1998). This principle makes
the graphs atomistic when the elements contain a compact semantics, expressed
by a single predicate. Thus, evaluating symbolic output graphs connected by
simple predicates is easy and effective, and no public iterators are needed. All
elements will then be independent, and the only data structure in the model
will be the element. This leads to an atomistic approach for graphs and models.
Each model will be simply a set of elements as a result.

66

3.5 SimulationWare: Completeness of logic

In this section the role of logic is discussed against the computation model of
the source code, where the computing subject, the computant (Wells, 2006), can
be any of the following possibilities. In the programmer’s Java environment the
computant is the Java virtual machine, but in the hardware level it is the
concrete machine, which has its higher level equivalence to an abstract machine
as the Turing machine metaphor. An idealized analysis performed by the
corresponding tool works, in symbiosis with the user, as the third possible
computant, a Decider making any necessary decisions during the analysis. In
order to minimize the load of the user, the tool should flexibly enable selective
simulations and computations for interactive and automated proving of the
source code. From this point-of-view the whole research can be seen as a
functional model, whose logic should be as complete as possible.

Why logic is so essential in computation

In addition to the fact that logic is the language of science for all of its
interpretations, it is useful in evaluating complex data structures, code parsing,
and transforming data into a new notation. If the input of an automaton has an
exact axiomatic semantics, then an output of the simulation can be evaluated to
be a set of overlapping relations. Therefore, this is an excellent platform for
implementing a query system and simulator to derive information for the
model in order to create maintenance knowledge. Among some attempts to
build query systems for source code are EDATS (Wilde et al., 1995), SCA (Paul
and Prakash, 1994), and Tamar Richner (Richner and Ducasse, 2002), but these
do not have any simulation framework or any specific interface for maintenance
processes.

3.5.1 Connection between logic and automaton theory

The role of automata Al...A7 was described in Section 3.4 to illustrate the
transformation model in order to formalize the whole program comprehension
framework. In this section the computation and simulation approach is
discussed.

3.5.2 Definition for the smallest computation

In computability theory several formalisms have been developed for abstract
machines (Hopcroft and Ullman, 1979) and for computation (Papadimitriou,
1994). The formalism of a register machine regarding a single source code
element, which is the foundation for the ModelWare approach, is especially
interesting (FIGURE 6). If the logic of each element can be defined by a single
structure, in the figure f, which has a number of arguments m; to my, then it is

67

possible to build an abstract machine for each mathematical function to execute
the corresponding computation.

- 1 f(m;,m,,

— m,)

FIGURE 6 Definition of a computable function by a register machine.

This computation model is useful for any deterministic expression. It is useful
for any logic expression, too. This formalism can be extended to cover the
whole syntax of programming languages. However, there are some exceptions
and problems in modeling logic paths and real-time programs. The
Entscheidungsproblem (Church, 1936) is a well-known example; it indicates
that it is not possible to show that any freely selected program with a given set
of inputs consisting of arguments m;...m, could terminate and produce a certain
output value n.

In this research we want to avoid the problem of a non-terminating loop,
by adding some extra logic for the simulation and for the user. A problematic
place can be identified as a separate task.

Java virtual engine or an abstract machine

The theory of the abstract machine - instead of the one of JVM, which is too
specific - is used in this research to create the formalisms so that the created
abstract machine replaces JVM and the symbolic language replaces the
bytecode as input.

The following preconditions are assumed to be true in building a

computational model for Java:

- Each element should be computable with some arrangements (like
loops).

- The memory architecture of SimulationWare should be comparable with
that of Java so that there is a corresponding memory activity in the
symbolic notation for each concrete memory activity of Java.

- The elements should be simulated as in FIGURE 6 returning one value
each.

- The outputs from the simulation should be integrated into the model as
its elements to keep the formalism of the whole model consistent.

3.5.3 Towards an ideal analysis
Static and dynamic analyses are the traditional analysis methods. They use as

their extensions slicing and different traversing or querying algorithms to
produce the selected outputs (Lucia, 2001). Without capabilities for symbolic

68

processing they cannot express values, i.e., the most detailed information of
simulation, which has special importance in evaluating complex
communication software as distributed packages or database transactions.

It is widely known that static analysis is not sufficient for Java to describe
its behavior or dynamic semantics. Static analysis is capable of producing
dependency diagrams, class diagrams, and static call trees. Sequence diagrams
can, too, be generated directly from the code in order to check the main details
of program flows (the implementations are tool dependent).

Dynamic analysis is, on the other hand, very complex for real-life
applications and projects. In most cases a debugger is employed to run the
current implementation and on tracing the functions by using selected
breakpoints and traces. While it is possible for the testers to get a trace, the
output can contain too much information, possibly obsolete, making
interpretation thus difficult. Sometimes 98% of the activities in the trace can
involve useless invocations made within a method (Koskinen, 2006).

Hence, the requirements for an ideal analysis are:

- It should be possible to activate a new analysis whenever deemed
necessary and from any place of the source code consisting of any class,
any method, any block of statements, or any collection of packages.

- The analysis should capture all program comprehension information
such as the flows defined by Pennington (1987) and those by Burkhardt
and Wiedenbeck (2002).

- The analysis process should be iterative and recursive and enable
capturing knowledge cumulatively to form a situation model relating to
the user’s active problem.

- The output of the analysis should enable using semantic links and
dependencies between elements for efficient navigation.

- The analysis should be controllable by the user for stopping, skipping,
reactivating, and changing the defaults made by the simulator.

Some of the requirements above form the hard theory to connect formal
elements, whilst the others form the soft theory to support the user’s
information needs.

A complete coverage of the granularity of the ideal analysis is better
known as complete analyzability. It refers to a sequence of computations where
every step between the elements involved can be recorded into a trace.
Typically the traces of a dynamic analysis can record a lot of information,
tracing every statement in the code at a Java bytecode level or assembly level,
and a single statement can make numerous computations between registers.
Later in this dissertation the atomistic semantics is introduced in order to satisfy
the requirements of complete analyzability. We will illustrate the unique
approach of the ideal analysis in the next goal allowing a comparison with static
and dynamic analysis.

69
3.5.4 Turing machine metaphor - the base of computer simulation

Each programmed action in a computer occurs in the CPU as a computation.
Thus the concept of computation is the base of computer acitivities. That's why
we argue that it is necessary to take the Turing machine metaphor (Turing,
1950) as a foundation of the formalism of SimulationWare. It defines the laws
for computations. All computer programs, excluding their parallel features,
obey the principles of the von Neumann architecture (von Neumann, 1951)
with its input-process-output nature and sequential functionality, where the
computation model of a register machine of FIGURE 6 is included. This gives us
the following ways to extend the usability of this study to a more generic
concept like natural laws:

- By using the Turing machine formalism as a foundation it is possible to
simulate any computer program (there are some restrictions such as
parallel features).

- By using a universal Turing machine it is possible to simulate any
computer.

- By using our Visual Prolog programs it is possible to approximate the
state tables of the Turing machine very far. This is the main functionality
of SimulationWare.

Therefore the purpose of SimulationWare is to mimic the Universal Turing
Machine. There are several implementations of it (Hodges, 1988), but most of
them are for simple numeric data and none of them has a distributed logic. The
purpose of SimulationWare is to implement an interactive abstract machine,
which has a distributed logic. The main reason for this decision is the following:
If the architecture of the model (ModelWare) is distributed, then for getting a
high-quality architecture for the tool, the logic should be distributed, too. As a
summary, the main idea for the formalism and simulation of SimulationWare is
described in the next goal.

Goal12. To create a sequential computation model for SimulationWare.

3.5.5 Simulating parallel features, the starting logic of threads

In cases where parallel features are used in Java, those features can be thought
to create separate Turing tapes. Each of these parallel features should reserve a
tape of its own. For parallel features the communication and synchronization
between different tapes should be arranged by using the formalism of the
nondetermistic Turing machine (Hopcroft et al., 1979).

Although simulating threads and other parallel features is not automated,
it is useful to employ the thinking model of a Turing tape to describe the
semantics of each parallel feature. For simulating threads, a manual user
interface can easily be generated so that the user can synchronize the threads
interactively. The problem when using several simultaneous tapes is how to

70

master the side effects between them. If this is solved, then it should be possible
for an application to simulate resource allocation situations like a producer-
consumer function. This topic forms one of the main interests of Microsoft in
source code analysis (Andrews et al, 2004).

The next goal is a summary for parallel simulation in this research.

Goal13. To investigate how to implement parallel activities, e.g., threads in
order to capture program flows.

3.5.6 User as the Decider

As said earlier, the user (human) has a role to control the simulation process in
cases of loops, ambiguous references, in simulating parallel features and in
selecting alternatives due to unknown information, which is typical for partial
simulation.

In this role the user completes the simulation process deterministic to the
level of the decider, which is a concept of the Chomsky hierarchy (Hopcroft et
al., 1979). The synonym for it is a total Turing machine, which is equipped with
a feature to terminate in all conditions to return one value. The role of the user
in deciding about each ambiguous reference in a partial simulation is not too
laborious, because in static analysis the user should in every case solve all the
ambiguities when following the code manually. This process is manually
laborious due to the yoyo-phenomena (Wilde and Huitt, 1992). The computer,
especially SimulationWare, should help the user in finding all the possible
alternatives for each case automatically.

3.5.7 Automated reasoning

Automated reasoning is a process to simulate sequences in order to produce
outputs as a symbolic tape. It consists of successive computations, which all
have the formalism of a register machine. For each computation an input-
output model can be built. Further, for each computation a Hoare’s triple can be
defined to describe the assumed preconditions and postconditions.?

3.5.8 The final approach for logic, theorem proving

Source code is mostly made up of a vast collection of information with a huge
amount of dependencies. All attempts to visualize it as a whole are deemed to
fail. The opposite for such a holistic approach is a focused approach to produce
only pragmatic information.

For troubleshooting cases the pragmatic information can be found at the
locations where the errors (faults) may originate from. Also useful but not as
demanding is to find change candidates in order to list the elements that

9 This atomistic thinking is suggestive of the cognitive theory of Wells' mini-minds (Wells,
2006).

71

possibly cause problems. Each flow that is directly related to a problematic case
is a possible definition for a list of change candidates. There are some
definitions for the important flows that can be used as program comprehension
information (Pennington, 1987; Burkhardt et al., 2002).

The programs form cycling graphs in all situations, where the exceptions

can only be:

- Recursive invocations, where the end conditions may be too complex to
be simulated by symbolic execution, because sometimes the end
conditions refer to unknown methods or variables or to unknown
values.

- Loops with their terminating conditions with the same restriction as
recursion.

- Exceptions that create direct branches.

In all other situations all the critical flows can be simulated assuming that the
necessary information can be evaluated. In those cases where the information
cannot be converted into a numeric form due to missing data (unknown
subterms) the symbolic expressions calculated by SimulationWare can still be
used.

This typical troubleshooting case can lead to a situation, where the user,
very eagerly, tries to prove some element flows either correct or incorrect. This
contrafactual thinking is essential for the user to build a situation model, where
a synthesis about the most probable place for the bug can be done.

Sometimes the user may not have the necessary initial knowledge. This
can then be regarded as the opportunity to create that knowledge by simulating
the most critical code and by navigating the results and values. In conformance
with the approach of this research the user will then have “three machines”,
collected from the four technology spaces, drawn as symbols for automata, see
FIGURE 7.

The first machine, Mgw+mw, which includes both GrammarWare and
ModelWare, creates an acceptor that can accept or reject input code. The second
machine, Msw, is SimulationWare, which produces tapes, T, for the last
machine, Mxw, or KnowledgeWare.

There are some theories to cover a situation, where an executed trace will
be validated, including manual program verification (Gries, 1981) and
automatic theorem proving (Duffy, 1991). Deductive testing has been used
according to a created test case model in industry and model checking is used
in general (Visser et al., 2003). The biggest difference between the earlier
solutions and this novel approach is that in our approach there is a traceable
predicate describing each grammar term captured from the source code
(Mgw+mw) to the theorem proving interface ready to be used in writing proving
specifications.

72

FIGURE 7 The research as a three machine model.

The actual research topic in this approach addresses the question of how to
describe the rules for a valid, correct or incorrect flow to the computer. Thus,
creating an interactive user interface for the purpose is essential here. In
FIGURE 7 a new branch (H) should be added to define the hypothesis. In
theorem proving one of the aims is to produce a minimum amount of
information in expressing a valid answer. For each deductive test that succeeds
only one bit is needed to express the result. This positive result is useful as an
axiom in a larger test in order to define the coverage of the error. From the
user’s point-of-view, connecting information from successive alternative tests
and simulations will demand the greatest efforts.

3.6 Relevance of questions: referring to use scenarios

It has been proposed that human thinking is based on a mental language of
thoughts (Fodor, 1975) and using queries and answers should be natural for
persons exploring code (Letovsky, 1986). Therefore, in order to revitalize our
thinking we should be able give answers to questions such as:

- Which are the valid, actual questions?

- Is it possible to get a computer to analyze these actual questions?

The task here is to automate and maximize the use of those questions that are
useful for solving typical maintenance tasks. This means searching structures
from the code, solving possible dependencies, capturing program flows and
trying to understand any connections between the different use cases of the
most critical classes or methods. The complexity of OOP must be studied also
(Walkinshaw, Roper, and Wood, 2005).

3.6.1 Mental simulation
The analogy between a human and a computer has been described in several

articles from a functional point-of-view (Wells, 2006) and by architecture
comparisons (Walenstein, 2003). The analogy is evident, because the computer

73

design follows the principles of a person who uses a pencil and paper in
matching serial information (Hodges, 1988). Furthermore, after its invention
the computer has often been used as a model when trying to understand the
main principles that a person might use in memory, processor, input, and
output processes (Walenstein, 2002).

For program comprehension purposes the common feature combining the
process of a person and a computer is simulation. Computer simulation is
described and formalized by the Turing machine, though each programming
language has its semantics. It corresponds, in personal thinking, to mental
program simulation (Nakamura et al., 2003).

There are theories based on using agents in solving complex problems.
These include the use of an agenda, a to-do-list (Walenstein, 2002), and a
process to divide a larger task into smaller ones until the end is reached (von
Mayrhauser et al., 1997). Rasmussen (1983) has shown that human cognition
uses three essential layers: skill level, rule level, and knowledge level.

The concept of action is useful in modeling both what a person does and
what a computer does. Action is a term used in task action grammars as well as
in UML (Rumbaugh, Jacobsen, and Booch, 1999). The lowest action level in the
computer is computation which computes only one thing at a time. As a
conclusion, the message of this section is condensed in the next goal.

Goal14. To plan a hierarchical action model to support solving maintenance
tasks in the known cognition layers.

3.6.2 Organizational approaches

Because source code is based on a language, and understanding a language
requires universal human thinking, the problems of program comprehension
are universal problems that can be encountered in any size organization. For
example, there are different situations depending on the size and packaging of
the software giving rise to these sort of problems. If it is a part of a larger
delivery, a single package or component can cause some typical problems due
to incomplete information about the other parts of the software (Sawyer, 2004).

When simulating total software with the whole code loaded, all
information can be found both at source code level and at object code level. The
situation is quite different in an open-source community, where the developers
face strong challenges trying to discover the behavior of many external
components in the assumed situations and deciding on how to simulate them
with or without code. For this kinds of situations the function of partial
simulation is very important.

There are three types of development archetypes with either a sequence, a
group, or a network as a foundation (Sawyer, 2004). Communication forms the
base for the network-based development in the open source community (like
Linux-projects), where possibly hundreds of people have an access to the
details of source code and the achievements of others. Because of continuous

74

iteration cycles and change requests there is a need for real-time information
access within the network. Sawyer (2004) suggests, as shown in TABLE 2, that a
centralized knowledge base could be a solution for adding connectivity to
network based organizations.

TABLE 2 Tool approaches for software development archetypes.

Archetype Tool approaches Knowledge Strategy
Sequence Task integration, task automation Knowledge capture
Group Collaboration, process support Knowledge search
Network Added connectivity, inter-operability | Knowledge base

Commitments for Query (Q)

A query is a command that starts an analysis. There are the following main
types of low level queries, which are compatible for the program model:
- The most typical query asks for a flow starting from an element such as a
critical method. Often it produces a call tree or a slice (Binkley, 2007).
- A chop-query asks about the flow between two elements (Reps and
Rosay, 1995).
- A theorem-query traces a route between a selected number of elements
(Ball and Laws, 1996).

There are some typical high-level queries, too. A familiarization query typically
asks about control flow (Pennington, 1987), program flow, or data flow or any
combination of them, perhaps producing a dependency graph or an
architecture diagram as output. A testing query hones into a deductive proof,
and testing functions. A troubleshooting query asks about a flow either starting
from a selected test case or use case or starting backwards from the detected
problem location. The troubleshooting query gets fault candidates as output.

As a summary, a goal for transforming questions to the model is
described.

Goal15. To express the user’s questions and hypotheses in a formal way,
referring to a singular element or a flow of the model or to a derived tree.

By using iterators it is possible to extend the use of simple queries into more
complex multi-phase processes. One example formalism for queries is
chopping, which means a query with a certain start element and a certain target
element in order to pick a selected part of a large model (Reps et al., 1995).

3.6.3 Familiarization scenario

Familiarization is a very relevant point-of-view in program comprehension,
because typically persons change their responsibilities from time to time. If any
developer has had a large role without a complete substitute at any time, then
all role changes relating to him/her are critical. Therefore, accelerating the

75

familiarization process by means of program comprehension technology is
essential. The familiarization process can take several months of a newcomer's
time. This clearly shows its important economic dimension.

Familiarization is the process to increase the initial knowledge (KO0) of a
user. In program comprehension the user is assumed to have either the basic
skills about the current programming language or expertise of the actual
business domain, but very often a profound knowledge of both of them is
lacking.

The theory of information ladder (Longworth and Davies, 1996)
introduces how to increase knowledge accumulation from data. In this model,
data is said to contain relations that the user should be able to learn from
information. The step to the next level is to understand patterns of information
in order to build new knowledge.

For object-oriented reverse engineering some practical methods have been
introduced for climbing up the information ladder, including Read the Code in
One Hour, Refactor to Understand, and Step through the Execution (Demeyer et
al., 2003). They are useful in real life, although they have no scientific base.

3.6.4 Testing scenario

Nowadays testing has been outsourced and delegated in practical software
production into many external distributed teams and organizations. However,
testing doesn’t improve the quality; it can only prevent the possible bugs from
moving to the final product. Currently a rather big test package must be built to
enable tests for dynamic analysis, although it is well-known that the sooner a
bug is removed the cheaper it is to fix. One reason for this yet unproductive
practice in source code projects is in the current analysis methodologies, which
do not allow testing modularly and partially the modules and classes and
functions, in the order they have been written. This problem makes testing a
very expensive and complex process.

Testing is a process where the user has both initial knowledge (K0) and
default knowledge (K1). The purpose of testing is to find out whether the
default knowledge is true or not. This process has the clear characteristics of a
deductive argumentation. When a test succeeds, no new information appears,
except that the test was done. If the test fails, then there is a contradiction (K2).
That is very important information and starts the troubleshooting process.

3.6.5 Troubleshooting scenario

Troubleshooting is the most expensive and challenging part of software
development if planning of changes is assumed to be included in it.1%In a

10 In the biggest organizations there are specific persons and teams for troubleshooting, but
most often the developers and the maintainers are responsible for finding bugs from
their own code. In this section the persons active in troubleshooting are called
developers.

76

typical troubleshooting case there are numerous teams involved in building
either an application platform, a subsystem like a new protocol, or a multi-
function component. Changing application software is the easiest case, whereas
updating a heavily used multi-function component is the most difficult one.

Typically in the application there can be numerous interfaces and layers
starting from the hardware level and ending up in a sophisticated user interface
for actual users. The developers can know only some parts of large software in
detail. The problem is that usually the teams are from separate, individual
organizations, and there is no common test practice and no common language
between them.

Sawyer (2004) has suggested that the biggest challenge for the project and
its success is the interconnection of troubleshooting skills of individual persons.
If the only way for the developers to trace possible errors is to read the source
code of other developers or to opportunistically read class contracts of other
interfaces, then troubleshooting can be very risky, sometimes almost
impossible. To alleviate this, a modular, focused approach to possible product
problems should be created.

Troubleshooting is a process where reasons for a contradiction are looked
for. There is the initial knowledge (K0), default knowledge (K1), and the result
of a testing process (K2). The aim is to find either one or more locations or one
or more change candidates that can be considered guilty, so to speak.

3.6.6 Definition for the focused approach towards source code

The most typical models such as UML models (Rumbaugh et al., 1999) and
layered models such as reflection models (Pacione, Roper, and Wood, 2003)
have a holistic purpose to produce a maximum amount of information for a
user query at each time. This functionality is very natural, because providing
information is the main purpose of information systems. However, due to the
nature of source code and its corresponding models these are huge in size and
almost impossible to visualize in computer screens as screenshots. The opposite
for the holistic approach is the focused approach where the amount of
information for the user is the smallest possible, while keeping the selected
context of the user. Therefore, a focused approach is needed for solving
individual maintenance tasks.

It has been proposed that the logic of a maintenance task contains
different phases, including productive tasks and unproductive delays (Gilb,
2005). Once the unproductive parts have been removed, then the productive
side of a maintenance task can be defined to contain:

- Problem recognition

- Problem formulation

- Focused subtasks (1 to N items).

The goal is to create an opportunistic method, where program can be
understood by means of information about executed actions relating to
maintenance tasks and subtasks derived from them. The methodology has as its

77

main goal to improve program understanding by providing actual focused
information in order to decrease the user’s work load (Storey, Fracchia and
Mueller, 1999).

The motivation for supporting distributed cognition as an independent
topic is that were a data model (later atomistic model) well-established and
practical by its nature, it should support communication over tools and
processes. In this way it should (in the optimum situation) support people talking and
learning in groups, rather than individuals using the tool alone. Group-based
learning should enable network-based use scenarios (see TABLE 2).

Commitments for Hypothesis (H)

Each action in program comprehension culminates in building a hypothesis
(Brooks, 1983; von Mayrhauser et al., 1997). A person uses questions and
answers in trying to solve a problem in general, as when finding solutions for
his maintenance task. In creating questions the user is able to create hypotheses.
von Mayrhauser et al. (1997) have studied the hypotheses of programmers, and
Letovsky (1986) has proposed that the most typical question words are what,
why and how. We connect them to PC as follows:

- Question “What does an element X do?” can be mapped into functionality,
which can be estimated by recognizing the JDK library invocations
caused by X.

- Questions “When and why has element X been activated?” gather
information for a larger question “What is the purpose of it?”. The former
question can be mapped into a cause-effect analysis by evaluating the
external influences (and the internal side effects of them).

- Question “How does element X work?” can be mapped into the program
flow.

If there is a data model with a versatile formalism in the tool, which has access
to the elements and their inter-relations in a unified way, then it is possible to
connect the questions to the possible queries of the model. The queries should
then provide a result set as a way of an answer. To show how hypotheses
should be realized in the tool is described as the next goal.

Goal16. To build a demonstration for simulating an example and a
theoretical approach as regards the captured PC flow using hypotheses.

3.7 Certainty of the results of analyses (answers)

It is essential that every computer system should return correct answers. This is
usually confirmed by using a set of test levels including functional tests,
module and detail tests.

78
3.7.1 Does the method give correct answers?

As proposed earlier, the answers are sequences that have been selected in
accordance with the approach in the current maintenance task. It is the user's
responsibility to connect the results into a mental model, i.e., a situation model.

Because each query has a unified functionality and the model is modular
containing only elements that are not aware of their neighbour elements, it is
very easy to test the semantics as a detail test session and as a module test, too.
Extending this model into the functional testing level leads into the outer
Turing model, where the outputs are Turing output tapes. Because the whole
process follows a pipes and filters architecture (Bass et al, 2003),
GrammarWare, ModelWare, SimulationWare, and KnowledgeWare as the user
interfaces, it is easy to create these functional tests. In cases where some of the
computations cannot produce alphanumeric information, the simulation
expression can be used as an evaluation criterion.

3.7.2 Test evaluation possibilities for the results

For verifying the certainty of the results of analyses it is sufficient to verify the
main functionality of each technology space bottom-up as detail tests using the
follow pragmatics:

- GrammarWare can be checked by a local loop connecting the parser and
the pretty printer together, because they are reverse functions of each
other.

- Symbol table can be checked by comparing its printouts to manually
read information.

- Symbolic model (ModelWare) can be checked by comparing the element
displays with manually estimated information.

- SimulationWare can be checked by comparing the output tapes with
manually estimated information.

- KnowledgeWare can be checked by using the tool and relevant
hypotheses to filter the symbolic flow information.

A validating plan for the results is important. It can be created in a modular
manner for the selected functions. A goal to show the whole data flow correct is
stated next.

Goal17. To validate the process - including all technology spaces - by a
small sample program by comparing its output tape with a manually
estimated program flow.

79

3.8 Correctness of programs and the tool

If one can rely on the answers of the tool, then for proving the correctness of the
whole tool, only the highest abstraction layer of the tool and the connections
from the user interface to the technology spaces need to be proved.

The connections between the Ul and the symbolic layer are described next.
In a PC tool (here JavaMaster) the symbol (S) is a reference to the corresponding
object (O) (see FIGURE 3). There are two kinds of references: one for the user
and one for the computer. The computer uses an object handle as a reference,
but the user may use either the name or the symbol as a string or a symbolic
name including the type of the symbol, like class X. Thus, through the symbol
(double-clicking) it is possible for the user to get access to all of its features. The
computer retrieves the corresponding information using the corresponding
object handle (4 bytes). A symbol is a means to enable presenting,
communication, and to control the user interface.

3.8.1 The functional approach for the tool, Facade

The tool can be considered to be a black box, the highest abstraction layer,
which contains only a parser, a model weaver, a simulation mechanism as well
as a theorem prover to match the initial knowledge of the user with the existing
model and sequence information.

The external interface for it can shortly be expressed by the following
predicate calls:

- Parsing: ParseTree = GrammarWare:parse(Str)

- Weaving;: Model = ModelWare:weave(ParseTree)

- Simulating;: Sequence = Model:run()

- Proving: Argument = Sequence:proof(Hypothesis)

These four invocations are necessary to demonstrate the main functionality of
each technology space. All other technology spaces have a code of their own,
but simulation will be embedded into the run-method of the element (related to
ModelWare).

3.8.2 Programming approach for tools

In this section programming paradigms are shortly discussed from the tool-
implementation point-of-view.

OO-programming as a tool implementation methodology

Although encapsulation is a very useful feature for making abstractions, it has
its drawbacks (as earlier discussed), because one of its feature, information
hiding, causes a serious problem for an analysis tool: all the dependency
information of the application, like object and method references (e.g.,

80

croscuttings), must be hidden in methods of classes and objects (DynamicJava,
2007).

Expressing dependencies is a problem for all object-oriented languages,
because if a dependency is programmed to be an object, its information should
be saved in meta-structures describing both sides of the connection. This
principle is widely used in model weavers of MDA (Bézivin, Jouault, and
Valduriez, 2004). Another principle should be to keep dependencies within the
connected elements in order to build composite elements, but the data model of
Java is not capable of combining complex dependency information as itself,
because its type system is very modest. The notations like Atlas (2005) and XMI
(XML, 1998) use several types of links and associations that make mastering the
software very challenging.

So it is possible to argue that Java might require many metaelements to
describe dependency information (due to the nature of its type system).
Programming this kind of dependency system can be rather laborious, because
the programmer must write several overlapping sets of iterators in order to
connect all the possible elements with each other. The conclusion is that it is not
practical, perhaps even not possible to write a formal modeling system for any
language by using Java as the language.

Logic programming as a paradigm

The logic programming paradigm contrasts strongly with OOP, because it has
been created for connecting different abstractions and terms, including
language elements or model structures. Logic is open by its nature to enable
modelling simultaneous parallel artifacts.

In logic there are operators (connectives) and operands that form formal
relations. As an implementation for relations Prolog programming language
contains a relational model of its own, resembling that of a traditional relational
database system, but it is much richer for programming purposes, because its
inference engine and the declarative language have a lot of expression power
for implementing queries for the application model. The query model of Prolog
is symbolic by nature, thus allowing easy building of analysis tools.

For building large systems with large resources, traditional Prolog
(Clocksin, and Mellish, 1981) proves to be unwieldy. It is too open and
centralized, suffering from some features of procedural programming where all
information is kept in a large repository. Furthermore, ISO Prolog (ISOProlog,
2007) with its interpreting feature can be too slow for practical commercial
implementations. Making modern multi-layer implementations with up-to-date
visual user interfaces could hence turn out to be impossible by a traditional
Prolog.

3.8.3 Hybrid programming, combining logic and OOP

As a methodology, the features of the object system of Visual Prolog that
support making abstractions are useful for source code analysis as follows:

81

- By abstraction it is possible to connect lower-level features like Java
structures into higher-level concepts in order to create a sophisticated
class hierarchy. AST is a good example of that. In AST systems an AST
node is the base class which defines the basic functionality for all kinds
of nodes. In source code analysis we define the object name
SymbolicElement to correspond to the AST base class.

- By specialization it is possible to create the necessary behavior models
for each element types including loops, assignments, and method calls.

- One can define the internal information, an internal language between
elements, by using a common base class. We define a class, Symbolic, to
make all the connections between the objects formal. This base class
creates a common language that can be used for formalization and
model checking purposes.

As pointed out earlier, the logic programming paradigm should provide an
open and associative data model, and an OO-paradigm should provide an
excellent abstraction system for the complex information. Combining these
paradigms was studied, e.g., by Spinellis (Spinellis, 1994) as a goal of multi-
paradigm programming or certain kinds of hybrid programming. This was
done in order to understand the paradigm differences and to create some
typical implementations (like those for geographical information systems).
Nevertheless, the earlier research has not connected these two as completely as
is the case here for PC purposes.

From the code modeling point-of-view, the semantics of the tool language
is not as important as the unified formal structure of the application model,
which enables unified access to all information as generally as possible. For
query purposes it is important to enable a simple programming logic for
queries and for programming intermediate results. The main requirements for
the programming are:

- A mechanism to enable creating model verification systems, including

nondeterministic features.

- Direct access to model elements without any need to use metastructures
between the elements in describing dependencies.

- Support for simple but effective traversing algorithms for scanning and
querying dependencies without overhead and memory problems due to
iteration.

- A compact notation for expressing dependencies, because dependencies
are, generally, the most important information for program
comprehension.

This dissertation intends to meet the previous requirements, i.e., to show how
to implement a formal data processing system for source code analysis to
enable program comprehension queries for maintenance process purposes.
This architectural goal is listed next.

82

Goal18. To create a hybrid construction, combining the benefits of OOP and
logic programming.

3.8.4 Knowledge analysis of tasks

In the theory of knowledge analysis of tasks (KAT) there are the following
levels (Payne and Green, 1989). Goal substructure explains how a person
conceptualizes the goal structure of a task. Task plan defines the ordering in
which subtasks are carried out. Task strategy describes a set of procedures along
with the circumstances under which these procedures form the strategy to be
employed. Procedures are a set of actions and objects that form such a
procedure. Objects and actions are the lowest level, the basic taxonomic
structure.

Commitments for the maintenance Task (T)

In most cases the input that activates a maintenance task is a Change Request
(CR) (Gilb, 1988). It can refer to an improvement or it can be an impulse for
adaptive or corrective work. In most cases it requires some familiarization for
the developer before implementation.

The task is split into minor activities, into operations that form a plan or a
process. In the research the flow starting from a task is described by the
symbols TPHQ meaning Task-Process-Hypothesis-Query. This concept should
be organized into a comprehensive chain to solve typical maintenance problems
in corresponding tasks. It belongs to the area of KnowledgeWare in the
methodology. A task is split into operations in order to build a plan for it.

Commitments for the task solving process (P)

A group of activities to execute a task plan is denoted with a symbol process (P).

There are the following kinds of processes that relate to the selected use

scenarios.

- Familiarization process collects information for the wuser. That
information is very useful and can be used for some information
requests to the model.

- Testing process is a set of activities to verify some test cases.

- Troubleshooting process is a set of operations to find the fault
candidates.

A precondition for a process is the definition of an active code (compared with
a dead code). If all active code and its elements with their dependencies can be
found in the symbolic model, then it is a clearcut process for the user to scan
through all the critical elements. Thus all different kinds of processes are
reliable and fast and really can remove the discontinuities of different kinds of
information to form an integrated model.

83

If the requirement for an integrated model succeeds, then each process
category (above) can be created systematically from any selected point-of-view.
Demonstrating how the PC approach relates to the lower level work is
described in the next goal.

Goal19. To show how a PC process works leading to low-level actions.

3.8.5 About the formalization and development tool Visual Prolog

Like operators in mathematics, logical connectives define operations between
symbols and other operations. If all grammar terms have been translated into
predicates in a tool based on a predicate logic (like Visual Prolog) then it is
possible to connect all the language elements with each other to form axiomatic
semantics for each structure (Hoare, 1969).

The interference engine of Prolog is useful for programming traversing
algorithms, because it validates all allowed paths automatically and backtracks
the possible paths without any need for the programmer to implement
intermediate structures for the query.

It is very important for the implementation to Java that its invocation
model is simple, returning only one value from any method. This simple
call/return-principle makes developing an execution model rather
straightforward. Therefore, we only need one method with an optional return
expression in order to simulate calling of elements in the simulation phase. For
that purpose we have selected in our architecture a method named run to start
and execute each element in turn.

The implementation approach of the research is the last goal of this
section.

Goal 20. To formalize the main features of the research in Visual Prolog and
to program the corresponding tool, JavaMaster.

3.9 Summary of the approach

In this chapter the selected approach for the research was introduced. The
approach is characterized by the specified goals that illustrate the pragmatic
purpose of the corresponding title in the text. The logic behind this chapter and
its contents comes from the article of Hoare describing the ideals of science
adapted for this research, including pure concepts, theories about technology
spaces, transformation formalisms illustrating coherence, completeness of logic
illustrating consistency, relevancy of questions illustrating the selected
cognitive architecture, certainty of answers illustrating verification of results,
and correctness of programs to validate the whole theory set in a tool.

84

The theories are discussed as technology spaces, here GrammarWare
(GW), ModelWare (MW), SimulationWare (SW), and KnowledgeWare (KW).
They each have a “pure” main concept as a foundation. Granularity (accuracy) of
transformations is discussed as formalisms. Completeness of logic is an essential
topic, which evaluates the coherency of the research. Maximum coherency can
be reached when a maximum number of concepts can explicitly be formulated
in the development tool, here Visual Prolog. Relevancy of questions has strong
connections with cognitive architectures, here relating to the thinking model
and use scenarios of the maintainer. Certainty of answers is discussed as
evaluating the symbolic analysis, which is a new approach to investigate source
code. Correctness of programs refers to evaluating a correspondent practical tool
and its implementation. As the programming approach a hybrid approach
combining logic programming and object-oriented programming is introduced
as a new architecture platform for the tool.

In FIGURE 8 the research approach is depicted with the specified
technology spaces in respect to the current comprehension of what is meant by
computer science (CS) and its sub-fields.

It is useful to note that the theory about models, the model theory, (relating
to ModelWare) is not very accurate, because generally speaking everything can
be said to be a model. On the other hand, the theory about object-oriented
programming and their models relates to UML and its specific practical issues
in a large research area and has clear connections to ModelWare.

The theory about knowledge is large and somewhat ambiguous, because
there are many different theories about data, information and knowledge. In the
approach presented in this section we view the theory of cognitive architectures
as modeling the user and the tool as a connection to KnowledgeWare.
Furthermore, we use the Peircean taxonomy, Rasmussen specialization model
and Nonaka knowledge layers to explain the different abstractions of
KnowledgeWare that the user needs in the practical work.

The theory about grammars is extensive. The compilation theory is its
most advanced area, because there are long traditions for writing compilers.
Another area relating to GrammarWare is the type theory with its connections
to ontologies. The third link to grammars is its compatibility with the Chomsky
hierarchy. Hence, the main information about parsers can be used in
implementing reverse engineering applications.

Even though computer simulation has a long history starting from the
Turing machine model since the '30s, the simulation theory is not used in
current reverse engineering tools as a foundation. However, in this research we
try to build a theory via SimulationWare to connect the highest abstraction
model of the user and the lowest abstraction computation model of the
computer in order to establish a novel approach for program comprehension
via the traditional automata theory. Atomistic model is the key element in this
approach and symbolic analysis is a new idealized way to analyze the weaved
model in order to support human thinking in evaluating code structures and
their behavior.

85

OOP theory
.:—""-H-r-__—
.r“'-'_ﬂ_-_-‘-_
ModelWare Model theory
Cognitive Architectures
KnowledgeWare Category theory
Research —
Approah —__ o
) GrammarWare —— Compilation theory
. . Type theor
__ Automata theory SimulationWare | P Y
Turing machine __ \

———— Chomsky hierarchy

FIGURE 8 The research approach and the corresponding theories.

4 GRAMMARWARE

In this chapter the necessary knowledge for applying grammar-based
techniques and the corresponding methods is described for the purposes of
symbolic analysis. GrammarWare is a concept combining the methods that
have a grammar as their foundation (Klint, Limmel, and Verhoef, 2005). The
name comes from the fact that a grammar is an essential information source for
all these related activities. This description includes the phases of how source
code information is transferred from terms specified in a grammar into parse
trees and into a high level notation for later use for a symbolic model. In this
research GrammarWare is a technology space covering all grammar-related
functions of the methodology. The bridge from GrammarWare into the
modeling space, ModelWare, is described in the next chapter.

The GrammarWare methodology is introduced by using a grammar tool
SwToolFactory (Laitila, 2006), which was developed in order to generate all the
necessary grammar based software functions like parsers, pretty printers, and
code generators 1. The language implemented in this research is Javal.5,
whereas the language for modeling, Symbolic, is a new language optimized for
symbolic analysis of Java programs. It is a domain specific language (Deursen et
al., 2000), created to increase the abstraction level of the source code and to
allow program simulation as an augmentation to static and dynamic analyses.

JavaMaster (see Chapter 8) is a tool that uses the illustrated GrammarWare
technology in the end-user environment. All formulation of this research and
the tool itself were done by using the syntax of Visual Prolog 12.

11 The language-independent grammar tool, SwToolFactory, has been used for making
grammars for some typical programming languages like C++, Pascal, and Cobol.
12 Visual Prolog: www.visual-prolog.org (referred 20.12.2007).

87

4.1 Foundation for GrammarWare

In this section a grammar methodology is defined to enable the symbolic
paradigm in the tool. It defines the automaton A1..A3, the verbal definition of
which is:

Proposition 1. A formal grammar can be defined by a semantic
structure in such a way that its output, the parser, is able to handle
symbolic information. This makes it possible to use direct translation in
translating lower level programming language semantics into a higher
abstraction symbolic language, such as the Symbolic language, without
missing the essential original semantics.

4.1.1 Automaton Al including the grammar tool

Definition 1. Grammar
Let L be a formal language. A grammar for L is a set of production rules
describing both syntax and axiomatic semantics of L. Each rule is attached into
a production name.

In Java there are about 130 different production names (Gosling et al.,
2005). The most important of these are class definition, statement, expression,
identifier, and literal.

Definition 2. Grammar production rule
Let N be a non-terminal production name in grammar G. A grammar
production rule is a grouped list of specification terms ordered by their priority
to specify both the syntax and the corresponding semantics.

A production rule is a list of rule definition lists. The lower list describes
the rule definitions of a similar parsing priority and the upper list describes the
priority groups (such as calculating orders of expressions).

PRODUCTION RULE = RULE_DEFINITION**
RULE_DEFINITION =
rule(GramTok*, SemanticName);
prod(GramTok*, term(Name, SubTermNames))

Because the production names are independent of other contents, it is possible
to illustrate a grammar modularly by focusing on one production name at a
time. For example, an internal rule definition for an if-statement is: X =
rule(["if’, ----1, Tiff).

Changing an external rule R to an internal production P (to be used in a
grammar tool) is a process of collecting subterm names from the rule into a list
in order to build a term data structure. 13

13 From the rule-definition it is possible to automatically build perfect terms that are used in
each rule for generating parsers.

88

The definition for a grammar term metastructure for a production name
PN, referred to from outside by termname (PN), is in Visual Prolog as follows:

term =
name(string);
term(string Semanticld,prodnames);
dom(prodname) ;
list(prodname).

A WNPF

The internal grammar term, above, has the following alternatives. Line 1
defines a name, which is an explicit variable reference (class name, attribute
name, variable name). Line 2 is a reference to lower production names
connected by Definition 3. Line 3 specifies a domain reference (a language
domain such as an integer, a float or a string). Line 4 specifies a list (e.g., a
statement list is a list of statements).

Definition 3. Semantic id of a grammar term
Let PN be a production name including grammar term definitions and M be a
functor (predicate) describing the use of each grammar term one after another.
Hence, M is the meaning of the term expressed in a predicate notation. We then
call M a semantic id for the term.

For example, the production name Statement has several possible
alternatives in Java. The meaning for an if-statement can be stated as functor
(predicate) iff.

Statement = “if” ParExpression Statement Opt ElseStatement -> iff

In the predicate notation it contains the arguments, too, giving the notation:
iff(ParExpression , Statement, Opt_ElseStatement).

A GrammarToken, gramtok, is any token in the grammar meaning either a
production name, a reserved word or a basic domain to illustrate the type of the
described language.

Examples:

- A production name in Java (according to the Java specification).

- A reserved word is written with quotes.

In Visual Prolog:
gramtok=
termname(prodname) % a reference to a term
reservedWord(string) % reserved word
Examples:

In the following, a production name AddExpression is defined (line 1). It can
have either an add-term with two arguments (2) or a sub-expression (3).

1 AddExpression =
2 AddExpression ”’+” AddExpression -> add,
3 AddExpression - AddExpression -> sub.

89

When terms are separated with a comma (end of line 2), they have the same
priority. An example about a class definition is as follows:

NormalClassDeclaration =
“class” ldentifier TypeList Opt_Extends Opt_implements ClassBody
-> normalClass.

The term Statement (Gosling et al., 2005) is defined next by using semantic ids:
Statement =

Block 2 blk,
“assert” Expression Opt_IsExpression ”;” - assert_,
“if” ParExpression Statement Opt_ElseStatement 2> iff,

“for” “(* ForControl *)” Statement -> for,
“while” ParExpression Statement 2> while,

“do” Statement “while” ParExpression ”’;” - do,

“try” Block CatchBlock 2> try,
“switch” ParExpression 7{” SwitchBlock }” - switch,
“synchronized” ParExpression Block - sync,
“return” Opt_Expression ;7 2> return_,
“throw” Expression ”;” -2 throw_,
“break” Opt_ldentifier - break ,
“continue” Opt_ldentifier - continue_,
2> emptyStmnt,
StatementExpression “;” -> stmntExpr,
Identifier “:” Statement - labelStmnt.

Definition 4. Symbolic Grammar Tool
Let X be a formal language expressed in a symbolic predicate notation. Tool Y is
a symbolic grammar tool if it can generate parsers and pretty printers for X.

SwToolFactory is a tool to create parsers and pretty printers and other software
utilities automatically and interactively. Below in FIGURE 9.

M Code Generator for Symbolic

Select Grammar .. Select Generator... | Parser Generator Mew
r Temm hames ————— — Domains
ArgumentList 5 clausze = def[defclauze]; S
o] L creator[createclause);
vl aList geflgetclause;
Hzetcl X
CondClausze set{sstclause] v
Condition - Predicates and Clauses
g;‘%ﬁg?ﬂuse clazs predicates S
- z_clauze: [tok”, tok*] -» clauze determ [i.o].
Ewpreszion
E;égggfaemeters LTS
e b z_clauze(ln,0ut] = def(DefClause]:-
DefClauze = ¢_defclauzelln,Qut].l.
Edit Grammar. | ¥ 1 Term ¢ Al z_clauzelln, Out] = creatar[CreatelClauze]:- 3z

FIGUREY9 Defining the Symbolic language.

90

Clause is selected as a term for parser generation. The corresponding Visual
Prolog domain is shown in the Domains area and the code in the Predicates and
clauses area, where it is possible to see the parser code for the definition clause
(defClause).

Definition 5. Grammar definition file
A grammar definition file is a file that contains definitions of Definition 2. See
Table 3 for statistics for Java (Gosling et al., 2005).

TABLE 3 Statistics from the file Java.grm for Java the 3rd edition.

Size of the Java grammar | Numbers
Production names 247
Rules 368
Lists, with 0..n members 43
Lists, with 1..n members 13

Grammar definitions can be saved into a database according to Definition 6.

Definition 6. Grammar database

Let X be a grammar definition file containing production rules P. A grammar
database is then a collection of X files containing P-rules identified by the
language name and the term name.

GrammarRecord = rec(Language, TermName, Rule).

Examples:
rec(”Java”,” Creator”, rule(ProductionRules)).

creator=creator (optnonwildcardtypearguments,createdname,arrayorclass)

The contents of ProductionRules to Creator of Java in the database are as follows:

[[prod([termname("'OptNonWildcardTypeArguments'™), termname("'CreatedName"
), termname("'ArrayOrClass')],term(*'creator", [
"OptNonWi ldcardTypeArguments',"CreatedName', "ArrayOrClass"]))11

Starting from term structures, like the one above for the term creator, it is
possible to create all typical grammar functions. A parser generator is
described next.

Definition 7. Parser generator (A1)

Let X be a grammar token list created by a scanner. A term based parser

generator for a type T is an acceptor, which accepts the required pattern defined

by sequential grammar tokens from X to capture the term of type T.
Traditionally parsers to be generated are either left or right oriented, either

top-down or bottom-up. The method of SwToolFactory is a top-down recursive

descent parser with LL(k) look ahead (Laitila, 2006).

91

Because each grammar term is independent of other terms, it is possible to
create parsers for each term type in Prolog by using a difference list method.

The output for detecting a while loop is:

1 s_Statement(ln, Out) = while(Condition, Statements):-
2 Input = expect(In,[”while”,”(C]),

3 Condition = s_condition(Condition, Input, LL2),

4 Statements = s_Statements(LL2, Out).

The input and the output of the while loop parser are on the first line, input on
the left side of the equal token and output on the right side. The input will be
accepted and the output will be generated if the condition part, the lines 2, 3,
and 4, are accepted before it. Otherwise the next possible clause will be
attempted. In the second line the token while will be tested to return the rest of
the token list in the variable In. In the positive case the contents to the variable
Condition will be captured by parsing the condition part in the head of the
variable Out, then returning in the variable LL2 the rest of the list. The last line
tries to capture the statements for the while loop returning them in the variable
Statements. The output for the parser has the form while(Condition, Statements)
which corresponds to the corresponding grammar form. It has a complete
axiomatic semantic form, and will be used further in defining ModelWare in
Chapter 5.

Parsers for some statements (block, if, for, and do, see Definition 3) are listed
next:

s_statement(INPUT,Output) = blk(Block):- % block
Block = s block(Input,Output),!.
s_statement([t(if_,)] Input],Output) =
iff(Condition,Statement,Else):- I,
Condition = s _parexpression(lnput,LL2),
Statement = s_statement(LL2,LL3),
Else = s _opt_elsestatement(LL3,0utput).
s_statement([t(for,_)| Input],Output) = % for
for(ForControl ,Statement):- I,
LL2 = expect(t(lpar,0), Input),
ForControl = s forcontrol(LL2,LL3),
LL4 = expect(t(rpar,0),LL3),
Statement = s_statement(LL4,Output),
1
s_statement([t(do_,_)|Input],Output) = % do
do_(Statement,Expression):- I,
Statement = s_statement(lnput,LL2),
LL3 = expect(t(while,0),LL2),
Expression = s_parexpression(LL3,LL4),

X

v 1F-statement

The size of the Java parser in JavaMaster is 3748 lines of Vip code. The
respective size of the Symbolic parser is 730 lines. A pretty printer is defined
next in Definition 8.

92

Definition 8. Pretty printer - generator (A1)

Let X be a symbolic parse tree. A pretty printer for a specific type T is a
transducer to translate the corresponding grammar tokens into a string list to be
modified for the display.

An example for a while loop:

1 p_while(Condition, Statements) = concatList([”while”
2 ”(’, p_Condition (Condition),) 7,
3 p_statements (Statements),”};’].-

There is only one clause in this rule returning, by a Visual Prolog predicate
concatList, successively the keyword while and both the parentheses and
semicolon and, by using recursive predicates, the contents of the condition part
and statements part - all in a correct order.

4.1.2 Automaton A2, parsing and the Symbolic language

A parser is a tool to create parse trees. Its principle is discussed later in this
chapter. A Visual Prolog based parse tree is a hierarchical data structure, the
levels of which are grammar structures each.

An example about an interface and one of its methods:

public interface AnswerListener extends java.util_EventListener {
public void yes(AnswerEvent e);

,
The corresponding parse tree is the following;:

classorif(interfdecl([public_Q],normalif(ninterfdecl (id(jvar("'AnswerL
istener')),notany(),extends(ext(typelist(reftype(id(jvar("java.util.

EventListener™)),notany(Q),[1.[1).[1))).
intfbody([interf([public_Q], intmethodorfield(imfd(basictype(void_),

id(@var('yes™)), intfmethodrest(intfmethoddeclrest(formalparams(
params(paramdecl (notfinal () ,notany(),reftype(id(Jvar("'AnswerkEvent'))
notany(),[1.[1).[1.vardecl (vardeclid(id(var('e™)),[1).notany()))))
.[1.notany())))))

It is possible to see that AnswerListener is a public normal interface with its
parent. Its body (intfbody) contains a structure, where the symbol
jvar(“ AnswerEvent”) can be found with the argument e.

Abstracting formal languages as a specific symbolic notation is described next
in Definition 9 and Definition 10.

Definition 9. A2 Symbolic code description language (SCDL)

93

Let L1 be a formal language with grammar G1. Symbolic code description
language L2 is a substitution for L1 where new abstracted types are created for
each subtype for G1 and the hierarchy contains a minimal amount of levels.

Definition 10. Definition for the Symbolic language
Symbolic is a symbolic code description language for abstracting Java and other
programming languages. The definition for Symbolic is a tuple (Clause, Name,

Type).

interface symbolic

domains
1 Clause definition: clause = .. -- % Definition 11
2 Symbolic name: symbolicName = .. % Definition 12
3 Symbolic type: symbolicType = .. % Definition 13

end interface symbolic

The whole semantics of Symbolic structures is described by using the term
clause according to Definition 11.

Definition 11. Symbolic clause
The only base term of Symbolic is clause. Hence, all references of the language
can be identified as clauses. Clause is the foundation of symbolic processing,
because all tokens can be parsed and written as clauses.

In the following list the subtypes of clause and their meanings are listed:

clause =

1 Definitions: def(defClause);

2 Creating commands: creator(createClause);

3 References: ref(refClause);

4 Method calls: get(getClause);

5 Change clauses: set(setClause);

6 Conditional clauses: path(pathClause);

7 Loops: loop(loopClause);

8 Operations: op(opClause);

9 Constants: val (valClause);

10 Other clauses: other(otherClause);

11 Internal links: at(SymbolicElement, clause*);
12 Side effects: seffect(sideEffectClause);
13 Meta information: meta(metaClause);

14 Comments: info(string)

The definition above is intended for expressing the static structure and dynamic
behavior of Java and that of other languages. The clause structures of lines 1 to
9 are directly compatible with Java. Those commands that cannot be simulated
are grouped according to the structure of line 10. Dynamic results are saved
according to line 12. The groups of lines 1-14 are described in more detail later
in this section.

94

Symbolic name is a way to express the clauses to the user as follows:

Definition 12. Symbolic name
Let X be a symbolic clause. Symbolic name is then a notation, which enables to
point to X by referencing to its type.

The names below have been captured from the Java grammar:

symbolicName =

1 Package: package_name(string)

2 Class: class_name(string)

3 Object: class_handle(string ClassName, string VarName)
4 Expression: expression_name(string)

5 .- packageOrTypeName(string)

6 Method: method_name(string)

7 Attribute: attr_name(string)

8 Variable: var_name(string)

9 Reference: jJavaRef(string)

There is a specific name type for each element as a string. In the list (lines 1 and
2 and 6 to 9) the names obtained directly from Java are shown. Line 4 is an
example of an internal name for an expression.

The types of Symbolic structures are categorized according to the original Java
input as follows:

Definition 13. Symbolic type

Let X be a variable in a Java program. A symbolic type for X is basic_type(String)
if the X’s type in Java is a basic type of the language. Otherwise the symbolic
type is cls(String). 14

symbolicType =
Basic type: basic_type(string);
Other type, class: cls(string)

The values for symbols with the symbolic type basic_type are processed like
constants.

For keeping the grammar structures consistent, symbol tables and the
corresponding generator are needed.

Definition 14. Symbol table generator

A symbol table generator is a tool to detect class names, method names, class
parenthood and other else identifiers in order to create a valid symbol table for
the whole architecture.

14 In Java there are boxing types that are conversion-comparable with basic types. They are
converted as cls-types in the symbolic model, described in this methodology.

95

The principle of detecting symbol tables from the code resembles round-
trip engineering. The output of a symbol table generator is capable of building
class diagrams with associations between classes.

The symbol table is capable of identifying each symbol (each member) of
its scope, to retrieve code for each method and to retrieve parent classes of each
class.

4.1.3 Automaton A3, abstraction by symbolic transformation

For translating programming languages into Symbolic a translator is needed.
Definition 15 describes a high-level translation process and Definition 16 its
specific version for Java.

Definition 15. Direct translation (A3)

Let XT be a semantic grammar term in an input language X with arguments Xj..
Xn and YT the corresponding production name in an isomorphic language Y.
Hence, a direct translation from XT to YT is a substitution YT = yterm(Y1..Ym)
where the arguments X1.. Xn are recursively translated to Yi..Ym by direct
translation.

Definition 16. Java to Symbolic - translator.

Let X be a parse tree expressed in Java in a symbolic format. Let Y be the
corresponding Symbolic parse tree. Hence, the tool to translate X to Y is a Java-
to-Symbolic translator. It should be able to make symbol tables for classes in the
symbolic model.

The Visual Prolog formalism for calling the Java-to-Symbolic translator is as
follows:

translate_X to y(x(Terms)) = y(translate Xterms_to 2y(Terms)).

It is a parse tree conversion:
SymbolicParseTree = java2Symbolic::xlate(ParseTree)

The emphasis in the conversions from Java to Symbolic is in declarativeness
and backwards compatibility with Java (TABLE 4). Thus, there are definitions
for classes, methods, objects, variables etc. in the Symbolic language. Let’s, for
example, translate the statement Sum = A+B+C to Java and further to Symbolic.

The Java Parse tree for it is 15
ce(cor(coe(cae(ior(eoe(ae(ee(inst(re(se(ae(me(ue(primary(
id(name('Sum'), [],notany()),[],notany())),
[DD.[1.[1).[1).notany()),
[D.[D.[D.[D.[D.[1).notany()), Ihs(eq(),

ce(cor(coe(cae(ior(eoe(ae(ee(inst(re(se(ae(me(ue(primary(id(name("A™),

15 The semantic ids nested from ce to primary here describe the semantic levels of the Java
expression. It has 15 nesting levels, which are needed for parsing expressions
correctly.

96

[1.notany()),[1,notany())).[1),[add(me(ue(primary(id(name('B'"),[],nota

ny()).[1,notany())),[1)),add(me(ue(primary(id(name('C"), [],notany()),[

1.notany())).[1D)O)D.[1).[1).notany()),
[D.[D.[D.[D.[1D.[),notany()) ,notany())))

The resulting parse tree in the Symbolic language is:
set(assign(basic_type('int™),"Sum", [op(op('+", [ref(refname(var_name("A
. [D)]., [ref(refname(var_name("'B"™), [1))1)).op(op '+, [1, [ref(refname(
var_name(*'C"), [1))1D)1))

TABLE 4 Conversion table between Java and Symbolic.

Some sample | Java Symbolic

conversions

Class class def(classDef(...))

Attribute/Field field def(attrDef(...))

Method method def(methodDef(...))

Statement statement depends on the Statement

Expression expression opClause

Reference reference refClause

Assignment statement setClause

Method invocation | expression getClause

Class creator creator expression creatorClause
Example 2:

An assignment Y = X has the symbolic form:
set(assign(basic_type("int™),"Y", [ref(refname(var_name("X"),[1D)1))

An example translation of an interface to Symbolic:

public interface AnswerListener extends java.util._.EventListener {
public void yes(AnswerEvent e);
public void no(AnswerEvent e);
public void cancel(AnswerEvent e);

}

The corresponding Symbolic notation is quite short:

1 [def(interfacedef("'AnswerListener”,[],["java",”util”,”

EventListener],
[def(methoddef('yes",[],basic_type(*'void™),[],
[def(vardef(cls("AnswerEvent™),"e",[1.[1D)1)).,

def(methoddef(''no",[],basic_type(*'void™),[1,
[def(vardef(cls("AnswerEvent™),"e",[1.[1D)1)).

def(methoddef(*'cancel™,[],basic_type('void™),[].
[def(vardef(cls("AnswerEvent™),"e" ", [1.[DYDD)OID)]

NoO b WN

Line 1 contains the header for the interface. Lines 2 and 3 contain the yes-
definition and the rest of the lines the remaining methods, two lines per
method. AnswerEvent has been detected to be a class (not a basic type).

97
41.4 Conclusions about GrammarWare (the automata A1..A3)

Automaton Al defines the grammar tool, A2 defines the parsing automaton
and A3 defines the Symbolic language for abstraction. Referring to Proposition
1 we have implemented the data flow from the input of Al to the output of A3
by programming the corresponding Prolog rules and tested that it produces
expected elements to the model. Hence, there is a practical proof for Proposition
1. Automaton Al requires ca. 2000 lines of code for parser generation.
Automaton A2 for Java (parser) requires 3.700 lines and Automaton A3, Java-
to-Symbolic translation 3.000 lines. 16.

4.2 Comparing the foundation with related work

A formal language is a notation whose structure has been defined by exact rules
and terms of its grammar (Chomsky, 1956). In addition to the formal language,
there are specifications for the type system of the language and the agreements
about its data scope and statement semantics. If the language is object-oriented
like Java, then the specifications for object features are needed, too. These
include inheritance, encapsulation rules, and all the reference semantics.

Each traditional programming language has as its foundation a formal
context-free grammar, which means that each structure of the source code can
be parsed completely!”, although the languages can have some minor context-
sensitive features (Sakkinen, 1988; Willink, 2001).

The overall definition for a formal grammar has the following form
(Chomsky, 1956; Grune and Jacobs, 1991):

G=<N,Y,R,S0>

N refers to a divisible term, non-terminal, which contains at least a two-level
hierarchical structure.) is a list (dictionary) of all reserved words including
limiters and lowest level symbols, terminals. R refers to a group of production
rules that list all the valid structures for each N. Each rule R can have multiple
different terms as its alternatives. For example, the divisible term statement, can
be either a for loop, while loop, an assignment or some other statement. In Java
there are about 15 different statement structures. SO is the start symbol, the
starting term for parsing. In Java the start symbol, named compilation_unit,
refers to the definition of a Java file.

From a grammar definition it is possible to create a corresponding parser
obeying either left or right oriented algorithm (Grune et al., 1991). There are
several notations to describe grammars, such as EBNF (EBNF, 2001) and Antlr

16 Being Prolog, the code for A1, A2, and A3, can be proofed step-by-step if necessary.
7The languages that have dynamic typing, like Ruby and Smalltalk, are not completely
context-free.

98

(Parr, 2007). A clear difference between these traditional tools (Lahdelma,
1988a, 1988b, 1988c, 1989) and the ones that are able to handle symbolic
information (see Definition 4) is the fact that in the output of a symbolic
grammar tool each term should contain both syntax and the correspondent
semantics packed into the same structure in the way of Definition 3.

421 Symbolic Grammar Term

In this research the traditional approach for defining formal languages based on
their syntax is used. In our approach it is essential that we maintain the
semantics in parsing and in later processing phases by using a semantic
grammar term based on Definition 3 and the Symbolic language based on
Definition 10.

Attribute grammars (Paakki, 1991) have some similar features. Attribute
grammars are an extension into grammar notations that have a syntactical
addition-like definition for each calculation term, but they cannot be extended
to cover all the language terms like, for example, when describing the behavior
of an object-oriented reference. Instead, a way to add a semantic identification
into a grammar has been proposed by Jensen et al. (1998). We have extended
Jensen’s approach to cover the whole program comprehension methodology.

4.2.2 Expressing language semantics in typed Prolog

Typed Prolog is useful for expressing grammar terms, because its type system
can match directly all the details of each term. It can even show possible errors,
because in Prolog the meaning of a semantic identification, which is actually a
predicate, is indirect and implicit. The predicate is a symbol, not an actual term.
It makes it possible to create exact abstractions for current grammar terms.

Next a typed development tool, Visual Prolog (VisualProlog, 2007), is
described to shed light on implementing grammar development tools, such as
SwToolFactory (Laitila, 2006). @~ When using typed Prolog according to
Definition 4, all the grammar rules of the implemented analysis language like
Java (and later Symbolic) have a proper control, because the type system of the
development language knows all the features of the analyzed language.

As an example, let's consider an if statement. The term statement has a term
if with the semantic id iff including the condition, the true-block and else-block.
In typed Prolog it is not possible to refer to an iff term by using illegal grammar
structures. It is possible, however, to refer to any if statement of the current
language by this iff id. So there is a contrafactual two-way correspondence
between the analyzed language and its formulated notation in the tool. This
feature is valuable in developing source code analysis, because the structures of
source code are often very complex. A programming error can cause serious
troubles in the applications if the development tool doesn’t provide accurate
type system, which could prevent from using any erroneous types in
programming the tool.

99

The traditional principle in programming compiled structures uses the
AST method (Mak, 1996, Gough, 2001). However, AST is very demanding for
developers, because it doesn’'t support model validation. Thus AST
implementations are error-prone. Another serious problem when using AST is
that AST information contains a set of individual cells and cell members that do
not have a combined semantics corresponding to predicate semantics. So it is
the developers' responsibility to maintain all the semantics features in all the
analysis phases. In fact when programming AST structures the grammar is in
the head of the programmer, not in the development tool. This is in opposition
to the main idea of GrammarWare.

4.2.3 Symbolic Grammar Rule

Ordering the rules is necessary to express evaluation (calculation) rules.
Further, some rules are on the same precedence levels. These include addition
and subtraction. For Prolog, advanced precedence groups and parsing
principles like xy and operator priorities (Clocksin, and Mellish, 1981) have
been developed. For practical development purposes these are far too detailed.

4.24 Implementing the grammar tool

With SwToolFactory (see Definition 4) it is possible to enter grammars and to
produce grammar-based functionalities (Laitila, 2006). SwToolFactory differs
from traditional grammar tools in that it is object-oriented, visual and fully
automated. It contains a scanner, a pretty printer, and, among other
functionalities, parser and code generator development support. The object-
oriented nature of the tool means that each language is treated as a composite
object where each rule is a separate language object and each term is an
independent language object. This reductionist principle makes developing
tool functions productive, because each grammar-wide task can be converted
into small subtasks by just relating one term at a time. Collecting them to cover
the whole grammar is easy.

In DCG, which is a non-typed Prolog notation (Clocksin et al., 1981), the
grammar is too flexible and thus allows erroneous features. This kind of flexible
definition is hard to remember and validate. When using DCG, the type
checking code should be written in any case. Another way to write parsers is to
program parsing into the source code of the tool, but that is too laborious when
a large scale analysis is needed.

For implementing a novel, object-oriented grammar tool the following
definitions introduce the concepts of metaterm and metarule:

Definition 17. Metaterm
Let X be a symbolic grammar term. Metaterm is then an object in a grammar
tool to define the corresponding grammatical functionality, instantiated for X.

100

Definition 18. Metarule
Let X be a symbolic grammar rule. Metarule is then an object to define the
corresponding grammatical functionality, instantiated for any X.

Combined, the objects metarule and metaterm contain all the features of a
formal language, and grammar mappings are converted into object-oriented
mappings of the grammar tool. Statement and expression are examples of
metaterms. Here a while loop is a metarule object referring to a statement
object. In the similar way, an if statement, for loop, assignment and other
statement commands can each reserve a metarule instance which can be
referred to from a statement object.

In the following, a top-down parser that uses the recursive descendant
principle is presented (Willink, 2001). It has earlier been introduced by PDC 18
(Jensen et al., 1988). This parser uses a difference list principle employing two
lists, where the first (In) contains current source code information as a token list
and the second (Out) contains the returning information to the successive
phases for other rules.

The rules for parsing have been named so that there is a prefix s_ before
the name of the corresponding term name. The acceptor procedure has the
predicate expect to read reserved words and to return the remaining part of the
token list to parse. For each rule, one independent starting clause is generated.
If there are multiple alternatives in the rule, then the separation is done by
using several clauses. For each priority group, a group of clauses are generated
and, for each rule instance, a clause is needed. They are numbered in an
ascending order.

4.3 Developing the output of parsing

There have been parsing tools since the '70s. Compared with other software
technologies, Yacc and Lex tools for Unix were rather early products (Pratt and
Zelkowitz, 2000). However, there were no well-established ways to handle the
output of these tools, and that is one reason why the status of source code
analysis has not been as advanced as parsing in general (Parr and Quong, 1994).

The most important step for improving parser technology since the time of
Yacc has been the abstract syntax tree (AST) (Jones, 2003). With AST it is
possible to construct new models for the output of parsers. AST is an object-
oriented model derived from a parse tree, where the hierarchy of the code has
been implemented as bindings of AST nodes. Usually the object hierarchy for
the tool is programmed and customized for the language to be analyzed. The
most typical super classes are Command, Expression, Term, and Value, for

18 PDC, Prolog Development Center, A/S, www.pdc.dk (referred 10.08.2007).

101

which AST should be the base class. A typical AST implementation can be
found in the Eclipse integrated development environment.!®

In spite of their straightforward structure AST implementations are hard
to program, because the nodes often contain language specific variables and
because AST has a rather complex class hierarchy with its strict integrity rules.
So the tools are often highly language-dependent.

AST node and its code

In an AST implementation, AST node is an object. The links of the original
grammar structure are members (handles) of the substructures of the
corresponding AST node. When combined, the members/handles of each AST
form, as a composite object, the contents of the corresponding source code term.
For example, an assignment LetCommand of Basic contains two or three separate
AST members: a possible assignment operator, a reference to the left side, and a
reference to the right side (Watt, 1990).

LetCommand = D + C (D = Declaration, C = Expression)

If the parts declaration, command and left side are separate, it is difficult, in the
tool, to maintain the semantics of each structure, because there are in practice
numerous variations in many AST nodes. Although AST implementations have
most often been written in Java or C++, Visual Prolog is used here. This is
because that language will also be used later in the research.

interface ast
% abstract super class for AST
end interface ast

WN P

4 interface astlLetCommand supports ast

5

6 end interface asmLetCommand

There is an interface corresponding to AST base class on lines 1-3. The class
definition LetCommand (lines 4-6) is straightforward. Below an internal
definition for the AST node of the Let-command is presented:

1 implement astlLetCommand inherits ast

2 facts
3 declaration : declaration.
4 command : expression.

end implement astlLetCommand

Because the structure's declaration and command are separated (let on line 1,
declaration on line 3, and command on line 4), this AST construction model
cannot be formalized. This drawback decreases the quality of AST

19 http:/ /www.eclipse.org (10.08.2007).

102

implementations. Thus the model doesn’t cover all the lowest features of the
grammarware.
The following construction, 4.3.1, is implemented by using Prolog.

4.3.1 Predicate-augmented AST

Predicate-augmented AST is an extended AST where the semantics of each
grammar rule are embedded into the AST node by using a command predicate.
The difference between AST and the augmented AST is the new predicate,
command, that contains the whole semantics of the original grammar term as a
single structure pointing to its leaves via its arguments. So there is no need to
have separate AST variables as members. The new construction is much simpler
than the original one.

1 implement astLetCommand inherits ast

2 facts
3 contents: let(declaration, expression).

end implement astLetCommand

The only necessary structure is the predicate contents, which connects the terms
declaration and command and the let semantics. This small modification enables
axiomatizing the output model, because the output structure is a compact
element that can be traced back into the original code, here Java. Thus, a
software tool can be used here to capture the semantics of any node simply by
making it read the contents of the corresponding element. With a typical AST
this is not possible. Later the contents field label will be replaced with the label
command field, because that label describes better its functionality.

Prolog-based parse tree (PPT)

Prolog-based parse tree (see Definition 7) is a hierarchical notation that uses
Prolog data structures in saving grammar terms. In it each grammar rule level
occupies one hierarchical level. Like AST, a Prolog-based parse tree doesn’t
contain any discontinuities, because all the information lies hierarchically in the
same physical structure. This enables moving a parse tree to another location by
a single assignment. Parse trees are organized in Prolog according to first-order
predicate semantics.

In Java, typically, one file at a time is compiled, so there is a parse tree for
each file. In source code analysis more modular parsing may be needed. The
parse trees for these can easily be defined by adding new alternative start
symbols for the grammar.

103

4.4 Raising the abstraction level

For abstracting programs a principle called abstract interpretation has been
developed (Cousot and Cousot, 1977). This principle is, due to its history,
limited and is based on a mathematical analysis of some features of the code.
Abstract interpretation is not capable of covering program flow analysis and
analyzing object-oriented features of modern languages (Logozzo and Cortesi,
2005).

In this research a new proposal for abstracting, by using a high-level
symbolic notation, is presented in Definition 10. Basically, an increase in
abstraction level is advocated by the MDA and DSM (Mernik, Heering, and
Sloane, 2006) movements, but there the abstraction has been raised in a formal
and rigorous way similar to refining specifications to working code using
refinement calculus.

4.4.1 Symbolic Code Description Language

Symbolic Code Description Language (SCDL, see Definition 9) is a formal
notation to describe the original programming language and its semantics as a
high level abstraction language. The greatest benefit of a symbolic notation is
that the corresponding tool can utilize the intermediate notations of the
structures in addition to their contents.

For example, the semantic identification while can be used in identifying
which statement will be executed next when the contents of the loop are to be
identified recursively. There is a strong need to simplify the original source
code structures in programming tools, because, being directly parsed from a
context-free language, they are highly hierarchical. For example, a Java
expression, the condition part of a loop, contains about 20 hierarchical levels
according to the Java grammar (Java, 2003). These levels are needed for
expressing all the possible calculation rules and their inter-connections. After
parsing, however, there is no need to keep these levels, because in the Prolog
based tool the structures are tightly packed as predicates. By simplifying the
expressions for abstracting purposes the hierarchy can be minimized to the
depth of three.?0 For example, a condition can be a relative operation including
a logical pairwise comparison having only three levels. Another benefit in using
a symbolic code description language is the possibility to categorize the
structures in an optimal way for analysis purposes.

In the AST technology a symbolic language cannot be used, because all the
members of AST nodes are separated and there are no internal semantics
between them. If there is no internal language in the analysis, then all
semantics and analysis results must be done by programming individual

20 We have improved the capacity and performance of the tool to about 80% calculated
from typical expressions, measured by the SwToolFactory tool.

104

features, one after the other. Klint et al. (2003) use the term retangled grammars
for this drawback.

In contrast to AST, SCDL provides a foundation for all source code
analysis functionalities, including automatic explanation for the connections
and for the behavior of the most interesting source code elements.

4.5 Direct translation

This section handles the principles of source code translation from the
viewpoint of symbolic analysis, and does not cover the whole area of
transformation technologies. Because specific transformation packages have a
large and complex rule-based theory, including an own transformation
language as the background, their focus is far from our PC needs.

451 The principles and the main goals of translating source code

Let us consider some implementing issues of translators relating to source code
analysis:

- The most logical way to connect things with each other is to use direct
transformation rules on a semantic level. Translating from syntax into
syntax is more difficult, because of the burden of reserved words and
separators (comma, semicolon, parenthesis etc). It is typical for other
technologies like Stratego, DMS, TXL and ASF+SDF to have an indirect
transformation language (syntax-to-syntax), which engenders
complexity in building formalisms. In this work we create a symbolic
model on top of the programming language syntax, which allows a
direct translation.

- The most abstract way to carry out a translation is to save grammar
terms into the corresponding objects in the tool and to translate the input
objects to output objects. This principle is typical of XML-technologies
(Fung, 2000).

- The best way to connect things with each other is to use associative
definitions (like in a relational database) by using a symbolic notation.
Symbolic notation fixes both the presentation and the contents, and there
is no need then to program low level features one after the other for each
individual case.

- The most formal way to interconnect concepts is to use formal languages
and to switch input and output terms using Prolog predicates, which
should provide an axiomatized output in all the fundamental situations
of the transformation.

When the output language can be tailored and optimized for the current
situation, then it is possible to plan the transformation so that there is no loss of
information in any structure.

105
4.5.2 Definitions for a direct translation

Next, translation between two formal languages is described according to
Definition 15. Translation is a process to transform one formal input language
into an output language. Translation engine is a tool or software component to
implement the translation. One of the best known translation engines is TXL
(Dean, 2002), which is based on rule based translation. It needs three different
kinds of information:

- The type system of the input language (XIn)

- The type system of the output language (Xout)

- The transformation rule base (Xin2Xout)

The drawback of the rule based translation is that it contains three different
grammars that should be mastered, because the rule base contains a language
of its own. In practice making translations is demanding by using TXL for each
input-output language pair. A principle different to that of rule based
translation is direct translation, which is presented in Definition 15. In this
principle the symbolic programming language of the tool, here Visual Prolog, is
used as third language. The principle is illustrated in FIGURE 10.

o] N

1 INg.qt Out!
/ N

Iny Out,,

in(Ag,..A)) (out(B,, By)

INN4p Outk

N >

FIGURE 10 Direct, semantic translation.

Using the symbolic language of the tool on a semantic level by utilizing its
whole symbolic expression power according to Definition 16 is straightforward,
because a header and a default body for each translation predicate can be
automatically generated. Semantic translation is executed recursively from each
input term into the corresponding output term. All subterm translations are
called by a recursive assignment that is similar to the call of the main level
assignment. Because of this recursive assignment, there is no need to use
separate transformation rules or any independent transformation engine. The
default code for the translation is captured from the grammar tool,

106

SwToolFactory (Laitila, 2001). The only manual operation required is to pick the
output terms for each input term.

Semantic translation (in most typical situations) between the terms of
input and output languages takes place as follows (see FIGURE 10). Let In be a
symbol describing an input term as a hierarchy level N with the semantic id in,
which has the parameters Ai..Ax. Let the corresponding term in the output
language be out, with its parameters Bi..Brx. The output term is now the
predicate out(B1.. Bk), where each transformation is executed recursively into
the lower level N+1, N+2 etc., to the level where there are only indivisible terms
(terminals).

Translation between languages has been researched widely (Klint et al.,
2005), but typically the focus has been on demonstrating the problems and
differences between languages, such as different indexing of the languages
Pascal and C (Harsu, 1997).21

Direct translation, based on recursive assignment, forms an essential
phase for source code analysis purposes. It can guarantee a proven result in all
compatible situations, which is the prerequisite for the Symbolic language
presented next.?? Although the principle of semantic translation may sound
trivial, it is suitable for all abstraction purposes for this research. The greatest
benefit of it is to have the translated code as first order predicate logic. Small
incompatibilities can be programmed away by adding some wrappers into the
most difficult places. For example the type system of Java is different of that of
the symbolic tool, because the latter is based on the type system of the
development language. Each conversion between types can be programmed
aside to be used in type reference clauses. The only extension to the principle of
semantic translation, considering further requirements in Chapter 5, is
programming symbol table functions (Sethi, 1996) to capture the class
contracts and variable and method definitions for centralized use in the model
weaver.

4.6 Symbolic, the symbolic language

The Symbolic language is a symbolic code description language for program
comprehension oriented symbolic analysis as defined in Definition 9.

There are many languages such as OCL (Akehurst, and Patrascoiu, 2004)
describing source code constraints and model features, and there are many
UML presentations (MDA, 2007), some of which focus on Action semantics

21 There are some incompatibilities between widely used programming languages, and the
gap between procedural languages like Cobol and object-oriented languages is
almost impossible to bridge by automatic transformation without manual interaction
(Kontogiannis et al., 1998).

22 The purpose is not to implement transformations between paradigms.

107

(Mosses, 2004) and other semantics. UML is suitable for expressing class and
meta functions, but its granularity is not sufficient for programming language
features. OCL is neither Java nor C++ compatible, which is a serious drawback.
It can be argued that there are no compatible integral languages to describe
both programming language semantics and object-level features to form a
complete foundation for program comprehension. There is thus a strong need
to have a fundamentally new language satisfying the requirements indicated,
because, as it is currently, it is a great burden for a programmer to skip from an
UML model into code-based data descriptions in the editor and backwards
numerous times in a typical maintenance session. In every model transfer a lot
of information will be lost.

Symbolic has been planned to keep the uniform model of all source code
elements as well as the high level structures. In it the relation between
simplicity and declarativeness of the language has been optimized.

Some earlier alternatives for mastering complex data structures include
lambda calculus (Church, 1936), XML and domain specific languages (Mernik et
al., 2006). Lambda calculus is very flexible, but it is clumsy, because interpreting
a lambda notation creates a heavy load for the tool. Typical domain specific
languages, being not universal, are limited for the selected approach. However,
they can still require an unreasonable number of commands and details to be
programmed in order to implement a successful analysis. With Prolog all these
approaches are possible if a suitable optimized language can be written.

Minimizing language structures of Symbolic

In the next description we have used the principle that all the structures can be
expressed by two, or in the most challenging cases by three hierarchical levels.
Furthermore, only a list notation (*) and a list of lists (**) are allowed in the
notation to connect terms with each other. They are necessary, because our
development tool, Visual Prolog, supports them explicitly and they can express
ordered sequences, bags and nested collections. Adding implicit conversions
could produce complex data structures, which could damage the architecture of
the symbolic construction with its atomistic model.

4.6.1 The Symbolic language

Symbolic is a formal abstracting language for source code analysis to express
syntactical structure, semantics, and behavior model of object-oriented
languages (see Definition 10). The Symbolic language contains, in accordance
with the goals of this research, the semantics of Java in order to meet its
simulation requirements (Laitila, 2006). More precisely, it contains the
following type categories:

- Def: Definition clauses for all Java terms
- Creator: Creating clauses (for objects and tables)
- Ref: References to all possible Java elements

- Get: Method calls

108

- Set: The clauses capable of performing memory changes

- Path: Conditional clauses and branching clauses (paths)

- Loop: Program loops

- Op: Mathematical-logical operations and transformations
- Val: Constants

- Other: The clauses that are not simulated

- At Linking elements with each other (a new clause)

- SideEffect: Results from simulation actions (a new clause)

- MetaClause: Connective structures for argumenting (a new clause)
- Info: Comment and verbal explanation (a new clause)

The collection of all the clause types (see Definition 11) can be described as a
notation <T>, where
<T> = Def, Set, Get, Call, Loop, Path, Creator, Op, Val, At, Other, SideEffect,
MetaClause, and Info.

From the list above it can be seen that many Java statements and
structures have been combined into type categories. For example the group
Loop contains all the possible loop types, while, do-while, and for.

Type categories of Symbolic

The Symbolic language has been divided into groups to optimize the
declarativeness of the language in relation to the specialization needs of the
language. When Prolog is used in the tool, the type system selection's range
extends from a monolithic version where all the elements are kept in a parse
tree to a deeply specialized model where each clause should reserve a class of
its own like AST systems do.
The planning rules for the research have been selected in the following
way:
- The grammar and type model of Symbolic forms the base class of the
language.
- Each type category has been implemented in a class of the tool, making
specialization possible. For example, all the program code for all loops
share the same class.

In this chapter the type category is referred to by a notation <T> or <T;>. The
former refers to any Symbolic type and the latter refers to an indexed type i, in
succession.

Formal definition for Symbolic

The Symbolic language has a compact definition that defines all the structures
and data. The language has a type system of its own (symbolicType, see
Definition 13) a naming system for all symbols (symbolicName, see Definition 12),
and its own instruction set (clause, see Definition 11).

109
4.6.2 Categories of the Symbolic clause

The foundation for the Symbolic language is the definition of a clause (see
Definition 11). It builds the instruction set of the whole language. Clause is the
only start symbol for Symbolic. This simplification makes all data transfer and
the whole architecture straightforward to program and understand.

The hierarchy of the Symbolic clause has only two levels, because Clause
contains the type categories as the first level. It is divided into individual
clauses in the second level. Thus DefClause contains all definitions, SetClause all
data changes etc.?

clause =
1 Definitions: def(defClause);
2 Creating commands: creator(createClause);
3 References: ref(refClause);
4 Method calls: get(getClause);
5 Change clauses: set(setClause);
6 Conditional clauses: path(pathClause);
7 Loops: loop(loopClause);
8 Operations: op(opClause);
9 Constants: val (valClause);
10 Other clauses: other(otherClause);
11 Internal links: at(SymbolicElement, clause*);
12 Side effects: seffect(sideEffectClause);
13 Meta information: meta(metaClause);
14 Comments: info(string)

The logic behind the Symbolic clause is the following:

- There are two kinds of definitions: static definitions and dynamic
creating clauses.

- There are two kinds of references, for variables and for methods.

- There is only one change category. It contains an assignment and
autoincrementing and autodecrementing features.

- The statement blocks are conditional blocks and loops.

- There is only one type category for calculating and evaluating: opClause.

- The constants are stored into valClause.

- The definition of otherClause contains the statements that are not
simulated.

- The internal links between symbols are stored as atClause.

- The results from simulations are side effects. They have been saved as
sideEffect clauses. They can be either intermediate values or final results.

- When the structures have been combined into a larger clause like a
metalanguage for argumentation purposes, then metaClause is used.

<T1> Symbolic definition clauses

23 In Java, e. g., there are 20 nesting levels in the structure relating to the opClause.

110

Symbolic definitions have been translated from Java. They are backwards
compatible with Java including the definitions for a class, attribute, method,
variable, and an exception in the following format:

defClause =
1 Class: classDef(string, Modifiers, superClass*, clause*)
2 Interface: InterfaceDef(string,symbolicType*,Parents,clause*)
3 Method: methodDef(string,Modifiers,symbolicType,
clause*,clause¥*)
4 Constructor: constructorDef(string, clause*, clause¥*)
5 Enumerating: enumDef (string, clause*, clause*)
6 Constant: constDef (string, symbolicType, clause¥*)
7 Variable: varDef(symbolicType, string, clause*, clause¥*)

The definition clause* refers to a list of clauses, a clauselist. Because the clause is
the foundation of the language, this definition can be found in any argument.
The exceptions are modifiers to describe original Java modifiers of the definitions
and string that is intended for names and the definition superclass for
superclasses to mean inheritance definitions.

<T2> Symbolic creator

The create operations for a class and for a table are defined as follows:

createClause =

Creating a class: newClass(symbolicType*, clause*,
clause¥™)

Creating a table: createArray(symbolicType, string,
clause™)

Both the class creator and the table creator have the identifying part,
information about what to create, and the punctuation or optional arguments.

<T3> Symbolic reference statement

The reference statement is based on Java:

refClause =
Variable reference: refName(symbolicName*, Suffix)
this: this(clause¥*)
super: super(clause*)

The clauses this and super have the same semantics as their corresponding
entities in Java.

<T4> Symbolic method call

The method call contains the arguments and the method identification, which is
referred to as a getObject:

getClause =
Method call: call(getObject, ArgList)

111

There are two formats for the called object (getObject): one for static
identification before making the model and one to be used in the model.
Polymorphism and virtual functions create some complexity for defining these
structures. That is why the contents of the getObject should consist of lists
having the following definition:

getObject = sGet(symbolicName*); dGet(symbolicDefElement*)

The definition sGet refers to static code elements (parts of the parse tree) and
dGet to dynamic model structures. SymbolicDefElement is here a reference to the
method element (Symbolic Def Element) described in the next section.

<T5> Symbolic change clause

All the instructions that are capable of making changes into data have been
concentrated into the same clause group, which is called a setClause. It contains
the following alternatives:

setClause =
Assignment: assign_(setObject, AssignOp, clause¥*)
Incrementing: incr(clause*)
Decrementing: decr(clause¥*)

The assignment clause has the same feature as the getClause. There are two
formats: one before model weaving and one for the model containing dynamic
references. The format of the setObject causing this feature is the following;:

setObject = sSet(symbolicType, string Var) ;
dSet(symbolicDefElement).

In the static definition there are the variable name and its type, but in the
dynamic definition only a reference to the model element is needed.

<T6> Symbolic path clause

The conditional statements derived for Java are (sometimes the condition is
missing):

pathClause =
IT clause: iff_(clause*, clause*, clause*)
Switch clause: switch_(string, clause*, clause*)
Other branch clauses: control(controlCommand, clause¥*)

The purpose of the path clause is to control the program flow by its conditions
and direct branching statements. The branching commands can be:

- Method call: return

- Breaking a statement block: break

- Skipping a clause block: continue

112

<T7> Symbolic loop clause

The loop derived for Java can be:

loopClause =
While: while (clause*, clause*)
Do: doWhile(clause*, clause¥®)
For: for(clause*, clause*, clause*, clause¥*)

The three types of loops in Java have their correspondences in Symbolic. The
while loop has a precondition as the first parameter and an execution part as
the second parameter. The do loop resembles it, but the first parameter contains
an execution and the second is a postcondition. The for loop contains one
parameter for initialization, condition, execution and iteration in the same order
as they are in the Java grammar.

<T8> Symbolic evaluator, an op clause

There are multiple operations for calculating, for describing logical relations,
and for describing type transformations:

opClause =
op(string, clause*, clause¥*);
typeCast (symbolicType, clause¥*);
exprCast (Expression, clause*);
preOp(string, clause*);
postOp(clause*, clause*, clause*);
instance_Of(clause*, symbolicType);
math(MathOp, clause¥*);
rel(RelativeOp, clause*);
unary(OperatorName, clause*).

Operators can be expressed in many ways in Symbolic. There are operators
with one and two arguments, cast operations, pre and post processing clauses.
There is a high backwards compatibility to Java from the Symbolic opClause.

<T9> Symbolic constant, a val clause

Fixed values have single value, empty, a list, or a tree as the alternatives:

valClause =
empty ;
sv(symbolicValue);
list(valClause, Arg*).

The type sv means single value. The other alternatives are empty cell or a list. A
list is capable of expressing Java vectors and matrixes.

<T10> Symbolic otherclause

The Java clauses that do not have exact operational semantics in Symbolic have
been collected into otherclause. However, the following notation maintains their
axiomatic semantic notation as Horn clauses:

113

otherClause =
1 Assert: assert(clause*, clause¥*);
2 Try-catch: try(clause*, clause*);
3 Try .. catch: catch(clause*, clause*);

4 Synchronized: syncr(clause*, clause¥*)

There are only four clauses in this group, but these functions can, too, be
analyzed partially and all the commands inside these blocks can be analyzed as
they are. The principles of source code simulation are described in Chapter 6.

4.6.3 Data model of the Symbolic language

In symbolic analysis the Symbolic language has two roles:

- To enable abstracting Java via a translation bridge, which can be
extended for other programming languages, because all axiomatic new
features can be programmed as extensions of a symbolic name, symbolic
type, and any other clause.

- To keep original code information in a model, maintaining original
semantics. In this role the connections between Symbolic elements are
dynamic.

Symbolic’s data model

The data model has been defined by clause. It is needed for automatic analysis.
The main clause types can be divided into data, code, and object. The contents
of a clause is the only input for symbolic analysis. The data model is thus very
straightforward. It will be described more precisely in Chapters 6 and 7.

4.6.4 Operational model of Symbolic language

The two ways to analyze object-oriented code are static and dynamic analyses.
The latter is more challenging requiring an ability to simulate code from the
tools. That's why the operational model of Symbolic describes all the functions
that a clause can produce in simulating the original code. When simulating, it is
necessary to define an abstract machine to describe the simulation process and
how to execute clauses in the analysis. The abstract machine is described in
Chapter 8.

Although Java is expressed in a very highly abstracted form in the
Symbolic language, there is a logical backwards compatibility from Symbolic to
Java. It is possible to trace every Symbolic command into Java code. Thus every
simulation function can be validated against the original Java semantics.

114

4.7 Summary of GrammarWare, a bridge to ModelWare

The grammar described consists of rules which are used to create a parser for a
specific language. The parser produces parse trees as outputs, cf. FIGURE 11.
The definitions for the concepts Prolog-augmented AST, symbolic grammar,
and symbolic code description language were presented in this chapter, and are
shown in FIGURE 11.

A semantic grammar notation was introduced to connect syntax and
semantics tightly with each other (see Definition 2). By using this semantic link
it is possible to raise the abstraction level higher than by using syntax alone.
The abstraction in newer symbolic analysis languages that are able to maintain
the original semantics can thus be utilized.

Semantic addition described in this chapter can be done with predicate
logic by employing a single predicate for each grammar rule (Definition 3).
Predicate notation makes a compact structure that maintains the original
semantics of each structure of any grammar term. This kind of consistency
cannot be maintained in implementations where the semantics is split into
separate individual memory locations, which 1is typical for AST
implementations. To enable a formal transfer from the grammar to a model, a
grammar tool is needed. For this tool, a metadescription of the grammar model
is needed as well as a database to store grammar definitions for Java, for C++,
and for other languages. For the grammar tool, an object based architecture was
presented to reduce the complexity of a formal language into a rule level which
is easy to master and update.

In modeling, the most efficient way to describe the original structures is
describing them on a level higher than that of the original code. For abstraction
purposes a new analysis language, Symbolic, was presented (Definition 10). By
using this language instead of Java, about 80 % of the hierarchy can be removed
without missing code information. For example, a condition expression of Java
changes to a Symbolic structure, which contains only three levels. In Symbolic
all its clauses and all the references have been categorized to build an ontology
of its own to meet both the static and dynamic modeling and analyzing
requirements.

For programming languages other than Java the GrammarWare
methodology is identical provided that the type system of the corresponding
language is not dynamic. Thus C++ and C# can be modeled in the same way as
Java.

i . Java i

Grammar Grammar !« Symbolic
rule database .+ |

i . Ctt H

Parsetree (PT) | N .

Prolog- _E
l augmented AST i u AST
Abstraction !
Abstraction b ! [TrTTTTmmm e g
y Symbolic Grammar i i Java Grammar *)

translation -

- symbolic type, name - -’i - Java type, name

' |

Semantic ‘ i jrmmmmme e -
translation Symbolic Language: ' 1 Java *) '
> Symbolic Clause F=="™ _Class, Method |
N l i 1 -Statement etc E
*) Possible extensions
ModelWare (Chapter 5) to C++, C# etc.

FIGURE 11 Summary of GrammarWare.

115

5 MODELWARE, THE ATOMISTIC SYMBOLIC
MODEL

The main features of any modeling technique are expression power,
performance, and richness of semantics. OMG distinguishes modularity,
transformability, traceability, specialization capabilities, and executability as the
main feature requirements for models. In this section an atomistic, symbolic
source code model is described, the purpose of which is to meet these
requirements (Bézivin, 2005).24

5.1 Foundation for ModelWare

Specification for ModelWare is described in the following proposition:

Proposition 2. The contents of the Symbolic language can be
transformed into an atomistic model, which contains only atomistic
elements, whose links are embedded into the atoms bi-directionally.
The operational semantics of the original code can be implemented in
the run method of each element type making simulation possible.

In this section a symbolic atomistic model is defined. Its base, the atom, is
defined next.

Definition 19. Atom (source code atom).

Let T be a grammar term in a parse tree. A source code atom is a reductionist
construction containing the semantics of T in a single predicate form. We call
this predicate a command of the atom.

2 Aspect definition is one of key features, appreciated by OMG, too, but it has no special
interest in this research from the modeling point of view. Instead, recovering selected
aspects from the code can be an essential part of source code simulation and is
described in Chapter 6.

117

Because we express the source code element in the Symbolic language, it is
natural to select the Symbolic clause (Definition 11) to be the base of the
command.

Definition 20. Symbolic-to-atomic conversion.

Let X be a grammar term having a functor f (X1.Xn) as a semantic id with
arguments Xi..Xn. The corresponding atom (Definition 19) is an object, which
has the weaved grammar term f(Y1,..YN) as its explicit (single) definition, where
each Y points to one or more lower atoms, which are created by using a lower
level symbolic-to-atomic transformation for the corresponding Xi.

5.1.1 Automaton A4, Symbolic-to-model transformation

Creating an atomistic model is described next for presenting a model weaver, a
type constructor and the output, the atomistic model.

Definition 21. Symbolic model weaver.

Let X be a node in a parse tree. A symbolic model weaver is a process to convert
each X into a symbolic model notation Y, where Y is an atom and the arguments
of its command are created using the Symbolic-to-Atomic conversion
(Definition 20). See TABLE 5.

TABLE 5 The logic behind the symbolic model weaver.

Clause The new element type (E) Arguments
classDef(ClassName, SymbolicDefElement::newClass | Super classes are class
Modifiers, SuperClass*, references and class
Code) members are members of
the new element (E).

methoddef(Name, SymbolicDefElement:: Method arguments are
Modifiers, ArglList, | newMethod elements.

Code)

varDef(Name, Suffix,..) | SymbolicDefElement::newVar If the variable is a table
then the suffix contains
weaved arguments.
Constructors SymbolicObjectElement::new () Weaved arguments

A side effect element is created.
Its class name is replaced by the
element handle (E)

Loops SymbolicLoopElement::new Weaved arguments

If and other conditions SymbolicPathElement::new Weaved arguments

Math.logical operations | SymbolicOpElement::new Weaved arguments

Method call Method name is replaced by the | Weaved arguments
element handle (E)

Assignment The variable is replaced by the | The right side is weaved.

element handle (E). An optional
suffix is weaved.
Other types Direct substitution -

118

A type constructor for creating model elements is defined next.

Definition 22. Type constructor (of the model weaver).

Let C be a clause to be weaved and <T> its type. Type constructor TC is a
constructor to create an object Symbolic<T>Element to return its handle to the
calling element.

A short if-example expressed in Java: if (OldFriend) print(Hello). The
corresponding model is:

If1 01480000: path(i ff_([at(014965C0, 1)1, [at(04FAFCCO, [D1.[1D)
OldFriend 014965C0:def(vardef(basic_type('int™),"OldFriend”,[1.[1))

print 04FAFCCO:get(call (sget([method_name("'print)]),
[at(01496450,[D1))

Hello 01496450:def(vardef(basic_type('int™),"Hello",[1.[1)

Definition for the atomistic model is simple, because it only consists of atoms.

Definition 23. Atomistic model.
An atomistic model is a set of source code atoms.

A short main method (which has something in common with the Server
program):
void main()

{
int port = 1;
new Server(port);

}

The corresponding atom for the main contains the following command:
def(methoddef("'main,[],basic_type('void™),[1,[at(04FD3450,[1),
at(04FB2990, [at(04FD3450, [DD1D)

It is easy to deduce that 04FD3450 refers to the assignment referring to the
variable port and the link 04FB2990 refers to the constructor creating a Server
object.

In the atom there are only two essential data structures: the command and the
links. The command is described next.

Definition 24. Atomistic descriptor: atom command.
The atom command is the description for each atom in order to define their
operational behavior.

The connections between atoms are essential. They are described next.

119

Definition 25. Link of an atom.
Let X be an atom. The external links of X are internal facts within X pointing to
other atoms.

In the atomistic model the links are embedded into the atoms. Bi-
directional links have their opposite side edges as complementary links. Static
links are atom invocations in the corresponding command as well as structural
links implemented by has-a and is-a relationships. Dynamic links are side
effects, which are new atoms from simulation attached to the host atom by has-
a and is-a links.

Below, there is an example in Java:
listen_socket = new ServerSocket(port);

The corresponding list of links for the variable listen_socket is the following in
XML:

1 <element name="listen_socket®” handle = *01496450° type="var">
2 def(vardef(cls('ServerSocket™),"listen_socket",[1,[1))
<parent>014965C0:Server</parent>
<chi1d>04FB2000:SEFff 3</child>
<fromRef>014965C0:Server, 04FB2BBO:Set l1</fromRef>
</element>

oO0hw

The lines between 1 and 6 define the element and its links. The atom has the
type var and its internal handle is shown on line 1. The command is shown on
line 2. The parent link tells that the parent is Server. On line 4 a side effect
element (Seff 3) is shown. It is an object saved from a simulation where the
ServerSocket object was created. On line 5 the possible cross-cuttings are shown.
The variable is only assigned in one place, which is the element named Set 1.

By using the XML - notation it is possible to integrate software
development tools for analyzing further the symbolic model and its simulation
results.

5.1.2 Atomistic architecture

The atoms are implemented as hybrid objects. This concept is described next.

Definition 26. Atomistic hybrid object, AHO.

The atomistic hybrid object, AHO, is an object to implement the atomistic
architecture, which consists of an object-oriented interface and contents
implemented by a predicate combining the logic programming paradigm with
the object paradigm.

Atomistic architecture is a reductionist model having the base class
(SymbolicElement) and specializations Symbolic<T>Element for each type <T>.
The semantics for an atom is packed on the command field. Simulating the
model is done by invoking the run method, which gives the result to the caller
as Symbolic clauses. See FIGURE 12.

120

All incoming calls to the atom to the capsule

Object-
oriented
capsule
Logic-oriented
contents

link(s)

command

Atom:run

<>) resuft
call — /‘K it

Inference fail redo
Engine

FIGURE 12 Atomistic hybrid object, AHO, the architecture.

Each clause type has then its own specialized class. The common base class
inherits the class Symbolic, which is the foundation for the whole symbolic
analysis installation. The architecture for the object-oriented AHO model can be
drawn as in FIGURE 13.

Symbolic

clause

T

Symbolic Element
command: clause
link: Element

run(}

2

Symbolic <T= Element

run(}

FIGURE 13 Class hierarchy of the symbolic atom.

Below, model elements are described in Visual Prolog. The base class
SymbolicElement has the class contract:

Class SymbolicElement
inherits Symbolic

facts
command: Symbolic::clause.
link: (linkType, SymbolicElement)

121

run: () -> clause*.

End class SymbolicElement

Any subelement of type <T> has the class contract:

Class Symbolic<T>Element
inherits SymbolicElement

facts
command: <T>Clause.

End class Symbolic<T>Element
5.1.3 Conclusions about ModelWare (Automaton A4)

Automaton A4 defines the model weaver to create an atomistic model for the
output of A3, the Symbolic language for abstraction.

5.2 Symbolic model, its definition and features

The motivation for the symbolic model is related to the approach used in
symbolic analysis; high level and high quality analysis cannot be done without
using a comprehensive model to support all the necessary information and its
dependencies. The term symbolic model has earlier been used for model checking
purposes (Clarke et al, 1996), which has not focused on program
comprehension, the purpose of this research.

In this section the main features of the symbolic model are presented as
well as the outputs of the model for the purposes of analysis. In the next section
the element of the symbolic model is described. This new model aims to a
uniform presentation of all code information to cover all modeling features at as
high a level as possible without losing any essential information.

5.2.1 Atomistic model and its features

The need to create a uniform model leads to an idea of building an
implementation where all the elements are as similar as possible in their outer
behavior. This principle leads further into the concept of atomistic source code
model of Definition 23.

We define atomistic source code model as an object-oriented construction
that consists only of elements (like atoms), whose semantics are defined by one
indivisible predicate each and have a similar outer interface. There are then
only three requirements. The elements are individual objects. The
indivisibleness requirement can be semantically satisfied by dividing the

122

contents of the corresponding data structure (parse tree) into one-level leaves.?
The second requirement, a uniform interface, can, from a software point-of-
view, be realized using a class hierarchy where all the elements have a common
base class.

“In mathematical logic, an atomic formula or atom is a formula with no
underlying propositional structure” (Hinman, 2005). Furthermore, in logic
programming there is the concept of atom to refer to a clause that always exists
and whose definition is indivisible (Clocksin and Mellish, 1981).2¢ Similarly
every Symbolic clause, derived from a source code like that of Java by using the
methodology of GrammarWare described in Chapter 4, always exists and its
definition is indivisible, because in it the initial structure is transferred from its
original form by using formal translation into compatible higher level
structures. This chapter shows how this compatibility can be maintained by
splitting the contents into as small particles as possible, resembling atoms. In an
atomistic implementation the resulting structure should have all the same
references as the original clause and the original program installation.

FIGURE 14 depicts a molecular structure and its relations.

FIGURE 14 Atomistic metaphor for the Java main method.

In this principal representation, the ball at the top of the structure could be
likened to the main method of a Java application and its arguments to the
separate balls below it. This figure essentially could describe the behavior of a
Java application and its program flow from the top downwards. The shadow
below could be thought of as influences of the application, i.e., an influence
model. In Java all the influences are references into the JDK library, the only
interface from Java into the outer world.

% The word atomos means indivisible in Greece.
2% An atomic formula is said to be a formula that refers only to fixed fundamental
structures.

123

This research treats the concept of formal model as a continuum from formal
language into formal model leading to definition 5.2.2 of an atomistic model

5.2.2 Symbolic atomistic model

We define symbolic atomistic model as a collection of atomistic elements that
forms a complete model about the corresponding system (see Definition 23).
The necessary semantics is described by a symbolic notation. The symbolic
notation for the Symbolic language was presented in Chapter 4. The concept of
atom is abstracted by its reference and its contents (see Definition 19).
Information from the atom can be read for example by a call: Atom:getContents().

There are many theories and practices related to model checking (Visser et
al., 2003). Of these the most interesting principles for program comprehension
purposes are the axiomatized model, program correctness, and definition for an
executable model, because all of them emphasize the role of logic of the model,
which is one of the strongest features of the selected approach (see Chapter 3).
27

An axiomatic model is a model to apply axiomatic semantics. Axiomatic
semantics is commonly associated with proving a program to be correct using a
purely static analysis of the text of the program in the form of the Hoare triple:
{PRE} C { POST }. The concept of axiomatic model leads to the concept of
correctness (Hoare, 1969), which is an application area of the symbolic model,
because its information allows proving programs.

Features of an executable model

A model is executable if it is able to simulate the code elements of the model
according to the selected formalism, thus having the desired behavior model.
When the purpose is to simulate Java, then the behavior of an executable model
should be comparable with that of the Java virtual machine (Qian, 1999), and
the model should contain an instruction set corresponding to the Java
instruction set. There is a clear difference between a model and a system
(Falkenberg at al., 1998). JVM is a system to be modeled by using the technology
developed in this research.

There is some discussion about whether UML models are executable or
not. If the UML models don’t contain the necessary data structures and
simulation features to respond to the Java environment JVM, then UML models
cannot be said to be executable (Mellor and Balcer, 2002).

5.2.3 Creating the model and other model functions

For creating a model, a model weaver is needed. A model weaver is a technique
to create a new unique model from the original source by transforming the

271t is practical to prioritize the logic approach, because in most cases the current model
checking systems do not have a direct import from the source code. Configuring
them involves laborious work.

124

source nodes without changing the abstraction level in the transformation
(Bézivin, Jouault, and Valduriez, 2004). The definition emphasizes that the
elements' abstraction level doesn’t change in model weaving. Model weavers
are used widely in OMG research projects (Atlas, 2005)

The practical use for model weavers is typically to extend the range of the
original model and to enable transfer of information into new installations that
have different notations from that of the original one (Henriksson and Larsson,
2003).

Our approach is to produce a symbolic model weaver (see Definition 21).
It is a construction that builds a symbolic model by transforming original
symbolic parse trees into atomistic elements, where the dependency model of
parse trees is implemented by structure relations and links of the elements (see
Definition 21). The structure relations are typical is-a-relations, and for
dependencies between the elements there is a link attribute.

A symbolic model weaver can be defined as follows:

- Let the current parse tree handle be a Symbolic predicate

clause](Arguments) and the current pointer to the model be the element
E.

- Model weaving is then a substitution from E; to a new element Ex so that
the contents of the element E; are stored into the element Ex as a
transformed predicate clausej(WeavedArguments), and a pointer from E; to
Ek is stored in its bi-directional form to enable navigation. The structure
WeavedArguments is a weaved structure derived from the expression
Arguments, where every weaved structure Rn, is a substitution from the
corresponding original argument replaced by an element handle E.

For example, a while loop while(Condition,StatementList) preserves its semantic
name but the condition structure, which is in all (except empty) cases an
opClause, is substituted into a reference to corresponding SymbolicOpElement.
The statement list is weaved by creating an element for each statement. The
weaved atomic structure will then have the form while(Ec, [E,... Ex]), where Ec
points to the condition element and the elements Ei to Ex refer to the
corresponding statement element. The new while clause is saved into an
element Eo, for example. Then all the calls to this loop will become references
into the element Eo. In each substitution the new element reference is expressed
by at(SymbolicElement). So a reference into the loop above has the form at(Ey).

Queries to the model

Element queries utilize the compact nature of atoms. Let the start atom
(element) be Asttand the target atom Ararger. The sequence starting from Asyrt
and ending to Ararg is called a chop (Chop query) (Reps and Rosay, 1995).

Y = y(Start) = AStart e fl « f2 « __ = ATarget.

125

Prolog used in this research works by default using the depth-first mode. When
traversing structures as an element query, Prolog can return the selected
elements at the selected granularity level. For example, the Prolog code to
traverse the model and to return the output for an element query can be of the
form:

1 chopping(Target) = [f(This)|Sequence]:-
2 f(Nextld, Arguments),
3 Sequence = Nextld:chopping(Target).

Above, the variable This on the first line will be saved into the returned

sequence. It is assumed that each element has references into other elements
(handle f).

The clause above can be activated by a call:

Sequence = StartElement:chopping(TargetElement).

The output of this query resembles the input tape of the Turing machine
(Copeland, 2004). The output is described with more details in Chapter 6.

Traversing the model

Due to the simple data model, a traverser can only use the atomistic contents of
each element and the links embedded into the elements. The output of the
traverser is an answer for a specified analysis. It is a logical structure to describe
the dependencies of the elements meeting the queried conditions. An atomistic
traverser may be regarded as an ideal analysis approach, because the model
works like a database engine without serious side effects or preliminary
preparations before the query.
A universal traverser can be demonstrated by the following logic:

1 traverser(Query, CallArguments) = [at(This,Arguments)| ResultSet]:-
2 getLogicalLink(Query, LinkedElement, LinkArguments),

3 Arguments = evaluate(CallArguments, LinkArguments),

4 ResultSet = LinkedElement:traverser(Query, Arguments).

On line 1 there is a query with specified arguments on the left side and the
possible output on the right side. The query can be a control flow, data flow,
program flow, object flow, or any other combination between clause elements.
Arguments are used to filter information off or on by using callbacks and
constraints. The query will be successful for each combination when the call
getLogicalLink succeeds for the current element, and the evaluating function
succeeds, too. The parameters for the output will be calculated by the clause
evaluate. The command traverser is capable of returning a result set that contains,
for each logical link, an element handle and the evaluated arguments. This
principle is useful for creating displays, for scanning information for program
sequences, for analyzing object-oriented features of the OOP code, and even for

126

theorem proving. Because it is a unified principle and completely independent
of the element type, it supports efficiently focused program comprehension and
reaches the performance of typical graph traversing algorithms.

Outputs from the symbolic atomistic model

The data model of the symbolic atomistic model is described next.

The three possible output formats from the model are as follows:

- The output may consist of model elements that form a sequential chain
like that in an element query. The output can be ordered or not. It has
the form SymbolicElement*.

- The output may consist of hierarchical structures as trees in the form of
clause = xClause(.., clause*).

- The output may consist of parallel, alternative structures, where the
parallel structure can be found like in a network. In the following
expression the symbol || means a parallel definition separating all
alternative branches by using a nondeterministic predicate call subClause:
[Parameter | | subClause(Parameter) | .

Unique for symbolic processing is evaluating, which is a principle to generate
new values, instances, and branches by using model elements and their
symbolic clause notation. A motivation for symbolic evaluation can be either an
analysis that is demanding like a consumer-producer analysis, or a theorem
proving process, or a simulation of source code model with all its side effects
and influences. Next, some output possibilities are described.

Results from the symbolic model

We define the output of the symbolic model to enable further symbolic
processing. Symbolic output model is a result set, i.e., a collection, derived
from the original source and presented by using symbolic notation to enable
symbolic further processing.
By using a symbolic notation it is possible to express the output of

- the structures as they are, as command fields (Definition 24).

- the chains between structures as links (Definition 25).

- an analysis for queries by using the three principles above, including

simulation values and metastructures (see Section 5.3.5).

Because the clause notation combines the elements formally as the output, the
output can be used as an input for the subsequent analysis. From an output
model it is then possible to create a new model, which makes it possible to
create a versatile analyzing process to trace and search for all the problematic
features relating to the current problem solving task, which might be an
adaptive or a corrective maintenance task. These features are described in more
detail in Chapters 7 and 8.

127
Features of symbolic graphs

The symbolic graph is a network based presentation, which contains the output
of any analysis from the symbolic model in symbolic notation to enable re-
evaluation and query justification. In general, a graph means a collection of
nodes and links in a syntactic notation without semantic extensions. There are
some graph languages, including Rigi (Wong, 1998) and Graphviz (Gansner et
al., 2006), and tools like CodeCrawler (Lanza, 2003) that have their focus in
producing graphs as outputs. Their approach is, however, limited, because in
PC the graph generation should be integrated tightly into navigation in order to
keep the links between the elements and the graphs in the memory of the
computer, and not in the memory of the user. The latter requires a lot of
manpower and a lot of extra work from the user, whereas the former can be
accomplished by symbolic graphs.

The symbolic approach for graph generation is more user-friendly,
because the user can change the focus and the approach flexibly according to
the current results. The user can re-evaluate the information and to use the best
possible hypothesis in order to tackle the most critical point in the software.
Because of the symbolic notation all the transfer between alternative
visualization modes and user interface components can be done by a direct
translation technology described in Chapter 4.

5.3 Symbolic atom

The motivation for creating a novel construction, a symbolic atom for source
code analysis, comes from an observation that there must be something in
common in all the different source code elements, which is related to their
external behavior and their analysis requirements. Hence, some informal
research questions in implementing the symbolic model include:
- What is the largest common denominator describing the common
features of source code elements?
- Should this common denominator describe the essential nature of the
computer architecture?
- What is the relation between these common features and the role of
computer CPU?
- Can computer software be distributed among independent elements if
the software code was written for a stand-alone application without
parallel features?

It is easy to see that the larger the common denominator is the easier it is to
create analyzing applications, because all the common features can be
standardized in an object-oriented software analysis tool by its abstracting
features.

128

In order to address these questions in this study the principle of symbolic
atom was created. Symbolic atom is really the common denominator (see
Definition 19). Next it is compared with the specialized structure of a typical
source code element.

5.3.1 Special characteristics of symbolic atom

The symbolic atom is a software element that has been semantically defined by
an atomistic (indivisible) formulation. Symbolic atoms are created from source
code, step by step, by splitting larger structures into atomic clauses.

The contents of the symbolic atom has been defined to be as minimal
(short) as possible. An atom consists only of its symbolic name, its semantic
definition and the necessary links describing static dependencies. A symbolic
atom can be compared with a traditional AST node (Jones, 2003; Neamtiu,
Foster, and Hicks, 2005). The project named DynamicJava is a good example
about how an AST software has been programmed for interpreting Java
(DynamicJava, 2007). This project shows that in programming AST nodes
many compromises must be done, which can lead to the problem of entangled
grammars (Klint, Limmel, and Verhoef, 2005). The weakest part of the AST
technology is, as said in Chapter 4, that the contents of an AST node are
separated into many variables, and due to this separation the semantics there
cannot be proved. This is the reason why an AST node is not atomistic. In fact,
the concept of AST is extremely complex with its functional class hierarchies
and sub-hierarchies and selected programming practices, which is evident in
the DynamicJava project. In AST implementations typically the links have been
implemented by using independent objects, which is very far from the atomistic
idea.

In the case of the symbolic atom the links are embedded into the atoms so
that for a link only the receiver and a link type must be defined. This principle
saves much space compared with MDA (MDA, 2007) or XMI models (XMI,
2007), where associations are divided into numerous external elements.

The features of the symbolic atom

As said earlier, the symbolic atom can be seen as the least common
denominator between all source code elements. One can consider it as an
atomistic component, the theory of which has been studied widely by Anderson
and Lebiere (1998) from the cognitive viewpoint. Thus there is a theoretical
background for the symbolic atom, which is useful in program comprehension.
Next its semantics is described. Semantics is said to be the “agreement”
about the interpretation of syntax (Baxter et al., 2004). Semantics describes the
meaning of words and clauses by their references. Although much is known
about programming language syntax, we have less knowledge of how correctly
define the semantics of a language (Pratt and Zelkowitz, 2000). The problem of
semantic definition has been the object of theoretical study as long as the
problem of syntactic definition, but a satisfactory solution for the former has

129

been much more difficult to find. It is confusing that there are so many different
approaches for semantics. These include grammatical models (summarized in
(Baxter et al., 2004)), imperative or operational models (including Vienna
Definition Language, VDL (Wegner, 1972)), applicative models (denotational
semantics), axiomatic models (extending predicate calculus to include
programs), and specification models (Pratt et al., 2000).

Based on its definition, semantics should be separated from the concepts
of information and knowledge. Information is a belief that has been well
argumented. The truth of an assertion (argumentation) and its information
content are independent of its semantics (Tarski, 1983). Considered from this
viewpoint, semantics describes the connections by emphasizing the nature of
data transfer between current words and clauses (Mannoury and Vuysje, 1955).

From the data transfer viewpoint, therefore, semantics is communication
between the information sender and the receiver via a selected path. A path can
be formed by a clause, and the necessary nodes in the clauses are the symbolic
atoms in the symbolic model. Atomistic symbolic clause implemented by the
command according to Definition 24 is then the only media to transmit
information between elements. This observation resembles the definition of
semantics (Mannoury and Vuysje, 1955).

5.3.2 Semantic definition for the symbolic atom

In order to simplify the complexity of a computer language semantics, we are
approaching the concept of unified semantic for a symbolic atom and therefore
for a symbolic model.

Every symbolic atom except a constant atom (valClause) has connections
into at least one other atom. All these connections build independent
responsibility chains to describe the original semantics as a symbolic model.
Because the constant atom has no internal connections downwards, its function
is to return itself to all of its callers. The constant atom is equivalent to terminal
in the grammar theory. All grammatical expressions from Java or other
languages that are nonterminals contain the symbolic model's bi-directional
semantic chains, where the woven elements build semantic chains describing
the logic of the original code (see FIGURE 15). This principle has been described
in more detail, with some exceptions, in Chapter 6.

Answer)
P . Possible next callees
— 7 Ng-mmmem 27 - - _
U S > Ay » before terminals

Query
Caller A Callee B

FIGURE 15 The semantics of the symbolic atom.

130

In FIGURE 15 atom A needs atom B for a calculation or for a method call or for
satisfying any dependency. For computers, bi-directionality of links (see
Definition 25) is natural, and is known as the call/return-phenomenon.?® This
bi-directional feature of any element makes a foundation for the atomistic
semantic of FIGURE 15. Atom B responds to the caller (A) either by returning
its contents (if B is a constant) or by continuing the call chain into the next
element to satisfy all the dependencies. The chain can stop because of missing
information, which is typical for symbolic processing, but it does not weaken
the model use, because the returned element can be the answer itself building a
formula like f(A,B,...). This output is useful, because it still allows the code
reader to skip to interpret the captured mathematical notation, even if exact
alpha-numeric information cannot be obtained.

This atomistic duality is very useful for PC purposes, because all the code
elements of a very complex expression can be split into atomistic particles that
can be handled in a standardized way, and this is typical for an equivalent Java
term also. If some expression cannot be analyzed, then the lowest element can
return its handle as a variable for user investigation.

The axiomatic semantics of each atom can be seen and visualized by using
its contents, the command (Definition 24). In the symbolic model the command is
expressed by a structure named clause and the corresponding element type is
defined by using the definition <T>. The operational semantic of each atom is in
the output of each atom combined with the other atoms connected into the
same semantic chain. Their common behavior creates side effects and influences
other atoms. This simulation functionality will be described in Chapter 6.

The command of the atom is the description for each atom in order to
define its operational behavior as an atomistic (indivisible) formulation.
Predicate logic is an excellent way to implement the atom command, because
each command can be implemented by a single fact (a predicate without a
body). According to its definition, in a symbolic atomistic model the atom
command is the same as the equivalent grammar term. This explicit
compatibility makes the model elements traceable to the code and enables
verifying all model information.

The term command originates from the Hoare triple, where the goal is to
study program correctness. For example, each while loop has the following
axiomatic descriptor:

while(Condition, StatementBlock)

There are no preconditions for the while statement to be seen, but when we
consider the program flow from the approach of StatementBlock, there is a
precondition for it named Condition. StatementBlock can be interpreted as a

28 Goto commands are the biggest exception for this feature, but they are rarely used in
modern programming languages (Dijkstra, 1968).

131

command. After executing the expression, Condition is evaluated. It is then a
postcondition, which can enable an exit from the loop.

In the atom command there cannot be open, non-ground variables,
because all the links are connected into existing elements. Due to this, the entire
symbolic model is in the notation of propositional calculus.

The atom command can be represented in Prolog as follows:
facts
command : clause

The definition for clause was described in Chapter 4.
5.3.3 Expressing links between atoms

A link of a symbolic atom is a reference into another atom containing the link
type and the atom referred (see Definition 25). Atomistic links are needed for
analysis and navigation purposes. For example, a class hierarchy is described
by using atomistic links as well as structure dependencies of the model.

All links for each atom can be queried by using the command getLinkList.
There is also the function getLink to return links in succession. This function is
specified to query and return links as follows:

- E:getLink() each element that has a connection into element E.

- E:getLink(hasA) all structural sub-components for element E.

- E:getLink(isA) the structural master components for the element.

- E:getLink(sCall) static calls.

- E:getLink(sRef) static references (backwards).

- E:getLink(super) superclasses.

- E:getLink(sub) subclasses.

- E:userLinkTo links made by the user.

- E:userLinkFrom user links (backwards).

In Chapter 6 dynamic dependencies and value bindings are explained. By
connecting them and all the functionality of the link it is possible to build a
complete dependency model describing Java semantics and enabling its
simulation.

Alternative links are described in TABLE 6. Because dynamic analysis has
been implemented by using flat tapes (Chapter 6) in the model, there are only
three types of links: hierarchical structures, static calls connecting elements, and
mappings made by the user in order to connect the user domain to the model.

TABLE 6 Categories of atomic links.

Link level Link type The purpose of the link

0. Structure hasA, isA Structural form of the application

1. Static call sCall, sRef Static dependency logic

2. User links userLinkFrom and Mapping the model into user problems
userLinkTo

132
5.3.4 Arguments of the atom command

The argument of an atom command is a reference captured from the source
code and translated by the model weaver to point to the equivalent atom. The
atomistic argument is then always an element reference. For example, each
assignment in Java has the form assign(LeftSideExpression, AssignmentOperator,
RightSideExpression). The symbolic model weaver replaces the left side and the
right side by elements that can be called by using the variables LeftSide and
RightSide. Then the contents of the atom command becomes assign(LeftSide,
AssignmentOperator, RightSide) with three arguments as in the original
expression.

Every atomistic command should have at least one argument. This is
because the command is based on the Symbolic language, which is compatible
with the Java grammar. The type of the argument can be:

- Input, to be calculated and evaluated.

- Executable, to be simulated as an independent clause.

- Output, to be returned to the caller.

- Reference, to continue the semantic chain into the next element.

- Definition, memory space allocation, either dynamic or static.

For example, a while command imposes a condition as an input argument, and
the statement block as an executable argument. From the category above it is
possible to define a behavior model for each argument. For each element it is
possible to create a complete black box model. This can then be transitively
transferred into the next higher level as far as needed in order to create a
complete behavior model for a class, a packet or a component or, for the whole
application, to specify its execution model or a test environment for it.

Functionality of the symbolic atom

The axiomatic functionality of each atom is the same as its command
(descriptor). Further, there is a need to analyze the dependencies and the
execution and the results relating to the operational semantics of the atom.

5.3.5 Atomistic operations: scanning and searching

Atomistic operation is a public method of the atom to satisfy either simulating
or traversing needs for the model. The functional model of an atom is very
straightforward. It either simulates itself according to its command or provides
a method for traversing purposes with other linked atoms. One motivation for
traversing is transforming model information to XMI notation for other models
such as UML and for tools using these.

Because there are neither containers nor main elements to contain the list
of sub-elements, all the structural hierarchy should be captured by traversing
the element hierarchy. In FIGURE 16 the top element could be a class, number 2

133

element might be a method, and number 5 an attribute. Atoms 3 and 4 are
elements within atom 2.

©)
& ©

FIGURE 16 Presenting structural dependencies of an atom as links.

The following short traversing algorithm (findSubElements) searches, starting
from the current element, the whole structural hierarchy according to the type
definition (Type). A type definition can be any clause type such as a loop or a
method call or a reference:

findSubElements(Type) = This:-
acceptlfSuitableType(Type).

findSubElements(Type) = SymbolicElement:-
SubElement = This:getChild(),
SymbolicElement = SubElement:findSubElements(Type).

abhwNPE

The nondeterministic algorithm (there are no cuts) returns the subelements one
after another. On line 2 the command acceptlfSuitableType checks whether the
type of the current element is type compatible or not. On line 4 in the second
clause (lines 3-5) the method getChild is used to retrieve all subelements. The
search, which continues recursively and exhaustively as long as there are
subelements, is specified on line 5.

5.3.6 Atom reachability, analyzing sequences and control flows

Atom reachability defines how atoms can have connections with each other.
Reachability theory and points-to-analysis (Reps, 1998) investigate
dependencies of source code. Defining reachability for a software atom is a new
question. It is evident that atom reachability can be defined to be either direct or
indirect. The practical question is whether atom A1l has a connection into atom
A2 or not.

If the entire method reachability of a chain can be investigated in a call
order, including method call semantics, then the execution order can be found.
The most important thing relating to reachability is the program flow (Y),
which can be defined as the sequence (Horwitz, Reps, and Binkley, 1990):

134
Y = sequence = Al =« Ak < A2
There are some measures describing the reachability chain:

- Atomistic distance is the number of the elements separating the atoms
from each other.
- The length of the chain is the number of the elements from the start atom
to the last atom.
As an example about reachability and program flows, a control flow (cfg) can be
specified as a subset of the model to contain the logic and while structures,
including their branching conditions.
In the next code example the method cfgSubterms is a default handler that
returns the information from “non-control-flow” clauses that are processed by
the method cfgList:

1 cfg(while(Condition,Stmnts))
2 cfg(iff(Condition, Stmnts))
3 cfg(Other)

while(cfg(Condition),cfg(Stmnts)):-1.
iff(cfg(Condition), cfg(Stmnts)) :-1.
cfgList(cfgSubTerms(Other)).

On lines 1 and 2, while and if statements, returning their commands filtered by
the method cfg, are detected. There is a default handler on line 3 to seek
information from other clauses.

In Java there are three kinds of loops, for, while, and doWhile, which have
the semantics while(Condition, Block), doWhile(Block, Condition), and for(Init,
Condition, Block, RepeatBlock) (cf. definition <T5> in Chapter 4). Because of the
simple loop construction all conditional elements can be captured by the
following code:

1 getLoopConditions(while(Condition, _)) = Condition.
2 getLoopConditions(dowhile(_,Condition)) = Condition.
3 getLoopConditions(for(_,Condition, _)) = Condition.
4 getLoopConditions(Clause)=getLoopConditions(getLinkedTerms(Clause)).

As in the control flow example, there are actual clauses that still can have sub-
structures containing actual clauses. Line 4 is for retrieving these sub-
structures.

5.3.7 Atomistic result processing

Atomistic result processing is a feature to keep the intermediate results and the
output of the atomistic model in an atomistic form. It is not clear whether all the
functions of an atomistic model should keep the model atomistic forever, after
the multi-phased analysis. The model could be corrupted; the access to the
atomistic elements can become more difficult if all the necessary conditions
have not been met when planning the model whilst avoiding any harmful side
effects (cf. software degeneracy (Lehman, 1985)).

This is why one of the core technical requirements for an atomistic model
should be that the model doesn’t produce any harmful side effects, and that all
the information that it produces should obey the rules of existing model

135

elements. This is a challenging requirement, because it necessitates elimination
of all the intermediate results, or changing them into atomistic elements. In
practice, these intermediate results should be programmed without separate
memory or data structures, which are typically vectors or arrays or a container
in Java. In programming them, separate nested iterators should be used.
However, it is impossible to use stacked hardcoded iterators in complex queries
where the nesting order is dynamic, not static. For the atomistic model,
implementing a flexible, dynamic query system is not a problem.

With a traditional programming language, it may be argued, it is almost
impossible to program atomistic result processing, because these languages are
so tightly coupled with the computer memory model. Visual Prolog can,
however, provide a higher abstraction because of its inference engine. As
shown by the Prolog code examples of control flow analysis, loop analysis and
chopping above, it is possible to program model traversing without using any
intermediate results. Sequences can be modeled in Visual Prolog as lists by
appending new members after the current list. Parallel structures can be
captured by using breadth-first search and by using findall to capture all the
alternatives at a time (VisualProlog, 2007).

As an example about automatic intermediate processing, one could
consider searching loop variables from loop conditions (the predicate
getLoopConditions above). It is possible to combine successive searches by using
the Prolog’s relation model. If the purpose were to investigate all the variables
that are critical and possibly erroneous and that can cause a fatal error in the
program, stopping or breaking it down, then all the loop conditions in the
critical control flow would form the input for a more exact analysis. This could
happen for example if there were a problem in loop parameters or in method
calls in the condition part of the loop. In the following code example the
findVariableRefs method demonstrates how these critical variables can be found
from the output of the previous search (in clause notation):

1 findVariableRefs(at(SymbolicElement,)) = SymbolicElement:-
2 SymbolicElement:getCommand() = varDef(_, VarName, ,).
3 findVariableRefs(Clause) = findVariableRefs(getLinkedTerms(Clause)).

Again there is the resulting clause returning the accepted result on line 1 in the
SymbolicElement variable. The condition to be satisfied is that the element that is
referred to must have a varDef (variable definition) as its command, described
on line 2. The third line is a recursive call to continue search from all linked
elements.

Atomistic searches can be cascaded to build chains of hundreds or
thousands of successive phases if the search has been done depth-first. Because
of the principle to avoid side effects in the atomistic model, its programming
model is rather straightforward. It is described in the next section.

136

5.4 Architecture of the atomistic model

The atomistic model is to be programmed using a hybrid paradigm which
combines the benefits of object-oriented approach and logic programming: the
advantegeous features of each can be used in order to minimize the weaknesses
of the other. Logic programming suits best for combining different structures
due to its relation model and wide support for language processing. The object-
oriented paradigm is the best in abstracting and encapsulating objects. These
two different principles can seamlessly be connected into a hybrid object.

54.1 Programming model for the symbolic model

A model is in general a software construction to enable integration into other
technology spaces and tools (Kurtev, Bezivin, and Aksit, 2002). The symbolic
model is based on elements implementing a true object architecture. In
simulation it can be used in modularly building the principle of the call/return
architecture, which is described in Chapter 6. The model could be decorated
with an external facade, if needed, to build an external interface. A container
and a facade would enable data transfer into commercial tools like MS Studio
(Studio, 2007), Eclipse (Eclipse, 2007) and other tools supporting UML, allowing
all the information from the model be published in the intranet. Because
semantics is essential in the symbolic model, its basic behavior model is a data
flow architecture emphasizing the input and output from each element.

5.4.2 Atomistic hybrid object

A hybrid object is defined to be an object that has been programmed by using
two or more programming paradigms. Spinellis (1994) and others have studied
multi-paradigm programming, but almost without an exception the focus has
been to evaluate separate features of the paradigms for programming purposes,
combining the different features on a functional level. The focus has not been on
how to merge the paradigms as completely as possible, which is the focus of
this research. This tight coupling is implemented by AHO-objects according to
Definition 26.

The foundation of AHO is a clause expressed in the logic-based Symbolic
language. AHOs internal functionality is defined by one of the Symbolic's
commands. In AHO the object-oriented "capsule" acts as the handle of the object
and all the object-based features (see FIGURE 12 and FIGURE 13). The other
part of the circle contains the logic and an inference engine (IE). IE is embedded
into the code of each logic programming rule, including in interpreting the
command. In the figure the run method is shown. It is essential in the AHO
implementation that the whole simulation process can be programmed by
using the run method only. It can be called successively to make a semantic
chain in order to emulate the behavior of the original code written in Java, C++,
or other language.

137

The key idea behind the abstraction features of the AHO object is its class
hierarchy (see FIGURE 13). Each clause type has its own specialized class. All
these classes inherit the common base class Symbolic Elements that inherits the
class Symbolic, which is the foundation for the whole symbolic analysis
installation.

5.5 Summary of ModelWare

This chapter presents a novel idea about an atomistic source code model as well
as a description about the communication between source code elements that
are implemented as indivisible structures, atoms. There is no evaluation in this
chapter, excepting some samples, but correspondency between the original
code and models can be seen in Annex 3. The semantics of an atomistic model is
said to be the same as the communication model between the elements, which
have been weaved from the GrammarWare technology described in Chapter 4.
This can be checked in TABLE 30.

An architecture for the symbolic atom is presented. It consists of the
concept of AHO, an atomistic hybrid object, which is a combination of an
object-oriented reference model and a reductionist predicate-based logic
programming structure. Each structure is defined by using just a single Prolog
fact, making the model formal and executable.

It has been shown that the atomistic model and each of its elements can be
traced backwards to the source code via the Symbolic language. Here Java is
presented as the reverse engineered language, though the methodology is
language independent.

Because the elements are so modular that they don’t know the semantics
of any other elements, it is possible to use the created model for several
applications like testing, verifying code, and model checking. It is clear that
refactoring and reorgnization are interesting application areas, which can
accelerate creating new installations, too. The principle of links that connect the
elements with each other is bi-directional, providing a foundation for high-
quality navigation applications and for building visual user interfaces.

In this chapter it is proposed that the atomistic model should be able to
keep its atomistic formalism in simulation. That feature is essential in building
functions for partial simulation, in itself a sophisticated high-level analysis,
symbolic analysis, which is capable of building a focused approach for program
comprehension purposes - the main idea of this research. Unlike dynamic
analysis, partial simulation described in more details in SimulationWare (see
Chapter 6) is a rather flexible end-user function that allows the user to
selectively make dedicated queries to the model for checking the relevancy and
correctness of the referred source code model by simulating the correspondent
sequences.

6 SIMULATIONWARE,
AN ABSTRACT MACHINE FOR SYMBOLIC

In traditional computer systems code and data are complementary parts. Data
is of no use there without code and vice versa. However, in modeling
technologies it is a common practice to introduce data models without
describing an engine that could make the selected model active. Especially,
when XML models and ontologies or UML models are presented, the main
focus is on the contents of the model and its internal semantics, instead of an
engine and use scenarios.

The purpose of this chapter is to introduce a novel source code simulation
technology, SimulationWare, which employs an abstract machine as its main
construction. This engine is powered by the atomistic model, which enables
simulation of the original source code at a high abstraction level using the
Symbolic language and the AHO architecture, as presented in Chapters 4 and 5.

The purpose of simulation is to mimic execution of the original system,
here JVM, by using the symbolic model. We speak about an abstract machine
instead of a virtual machine, because the selected topic is closer to the automata
theory than the execution model of a virtual machine. The methodology of
SimulationWare is then language independent. In simulating a functionality,
this chapter resembles the one on dynamic analysis. The purpose of this
chapter, in fact, is to introduce the features of partial simulation that make
symbolic analysis more flexible by producing more information than dynamic
analysis. The formalism of the Turing machine is used as far as possible. Here it
is based on atoms on the input and output tape in order to describe the
behavioral model of a computer and hence to describe any program from the
program comprehension viewpoint.

139

6.1 Foundation for SimulationWare

The specification for SimulationWare is shortly as follows:

Proposition 3. The atomistic model is simulated as an automaton so
that the input atoms activating the simulation are packed in an ”input
tape”, whereas the elements that have been executed with their
simulation results are stored into the ”output tape”.

In this section an abstract symbolic machine is defined based on automata A5
and A6.

6.1.1 Automaton A5, defining a simulation process

We describe Automaton A5, the input process to activate simulation, by
defining an abstract machine model (Definition 27), the wanted output as a
symbolic output tape (Definition 28), and a test generator as a sequence builder
(Definition 29) as follows.

Definition 27. Atomistic machine model (automata)

Let M be an atomistic model (Definition 23). An abstract machine model for
simulating M is a construction, where there is an input tape for starting a
simulating queue and an output tape to get the results.

The input tape and the output tape are vectors or specific objects (classes)
in the tool. For defining the simulation process the way a test case is defined,
one only needs to append the corresponding atoms one after another to the
tape.

Definition 28. Symbolic output tape
A symbolic output tape is a result from simulation made by the atomistic
machine (Definition 27) in the execution order.

Because of the execution order the symbolic output tape contains
information similar to that of the UML sequence diagram. However, the
notation of the tape is more accurate and symbolic, making further processing
tlexible for re-evaluating purposes.

Definition 29. Sequence builder

Let X be an input tape for a simulation. A sequence builder is a tool to pack the
necessary atoms to X in the assumed execution order for the atomistic machine
in order to activate a wanted test case (sequence).

When simulating a method, only its atom needs to be added to the input
tape. However, if its arguments contain other than basic types, it is necessary
for the user and the sequence builder to create an initialization logic for these
types to precede the atom in the input tape.

For example, the Connection method in Appendix 1 has the following
header:

140

public Connection(Socket client, int priority, Vulture vulture)

For simulating the method, it is necessary to initialize the variables client and
vulture by calling the object constructors before the method.

6.1.2 Automaton A6, the simulation process

We define tools and functions for simulating object-oriented code to include a
simulator (Definition 30), side effect as a simulation result (Definition 31),
partial and interactive simulation (Definition 32 and Definition 33), selector
functionality (Definition 34), simulation method (Definition 35), simulating
logic (Definition 36), atomistic semantics (Definition 37), and formalism for state
transition tables (Definition 38).

Definition 30. Simulator

Let T be an input tape for simulation. A simulator reads an input tape in order
to simulate the atoms of it by implementing the corresponding semantics. The
simulator updates the contents of the tape in order to save the execution history
with the results of it according to Definition 28.

Definition 31. Side effect
Let A be an atom in an atomistic model. A side effect is an output element from
simulating A containing the influences that A creates in its environment, i.e., in
other atoms.

Side effects form a special group in the Symbolic clause (Definition 11).
This feature makes it possible to connect other clauses and side effects together
in order to create dynamic dependency models.

Typical examples of this are calling a method, assigning a value,
branching, and creating an object, which can be formalized as:

- Creating an object: obj(Class, Arg*)

- Creating an array: arr(Array, Suffix*)

- Repetition in a loop: redo(Code)

- Assignment: bind(SymbolicElement,AssignOp,Expression)

- Calculated value: midValue(Def, Input, Output)

- Branch: branch(FromElement, ToElement)

- Method call: call(CalledElement, Arg*)

- JDK reference: jdkRef(Result, Class, Method, Arg*)

Only through symbolic exececution and dynamic analysis can one generate
such information about every invocation, every variable reference and every
action caused by commands at the programming language level.

Two modes for simulation are described next: partial and interactive
simulation.

141

Definition 32. Partial simulation
Let M be an atomistic model. A partial simulation is an interactive process to
simulate a subset of M using a focused approach.

The opposite of partial simulation is the traditional approach, i.e., total
simulation, which tries to simulate the main goal of the model (in Java, the main
method). Each partial simulation is a sequence producing one output tape as a
result.

Definition 33. Interactive simulation
Let M be an atomistic model. An interactive simulation is a process, where the
user selects the program flow in M to be simulated in ambiguous situations of
M.

Interactive simulation corresponds to the sequence builder in Definition
29. While the sequence builder is capable of creating batch processes, interactive
simulation is a navigation method to traverse the selected contexts. A selector
functionality is required by the user to control the simulation process.

Definition 34. Selector
Let X be an ambiguous branch (atom) in an interactive partial simulation
session. A selector is a dialog for the user to ask which alternative should be
selected in that simulation.

Some typical selections are selecting a type for a variable or an argument
or a branch for a condition.

Atomistic simulation

Atomistic simulation can be defined by the corresponding method, the logic
inside it, the semantics between atoms, and the state transition table formalism
as follows:

Definition 35. Simulating method (run)
Let A be an atom in an atomistic model M having command C. The run
simulating method is a method, which uses the semantics of C in order to
implement the assumed behavior for A so that the situation of M with side
effects will be updated in order to allow a recursive simulation of the called
atoms with their invocations.

We state that the necessary atom activation for each element type has the
form: Result = Atom:run().

It is necessary to initialize only some atom types before their use. These types
are methods, some variable types, and dynamic references if no corresponding
constructors have been run in the sequence before a reference.

142

Definition 36. Simulating logic

Let A be an atom and C be the corresponding command. A simulating logic is
an automaton, a state machine, which performs the necessary logic expressed in
a state transition table (see TABLE 7).

TABLE 7 The run method as a state transition table.

State Condition Next State References
Entry CEntry,Z Sl Al ,etC .

S Cix Sk

Sk Ck,n Srl A]

Sn Exit

On each line of TABLE 7 there can only be either input or output references.

An example: An if-clause contains a command: iff(Al, [T1, T2, .. TN], [EL, ...
EM)]). It is simulated as follows:

- At first A; is evaluated. It responds by a value true or false.

- If A1 is true, then statements T1.. Tn are executed.

- Otherwise statements E;i.. Em are executed.

Definition 37. Atomistic semantics for state tables
Let A be an atom and S be the corresponding state table for it. Atomistic
semantics refers to the semantics of A expressed in S.

Because the atoms are independent of each other, it is possible to express
the semantics by a visual notation, typical for automata.

Definition 38. State transition table formalism
Let A be an atom and S its state table for simulation. The logic for simulating in
order to express atomistic semantics for it (compatible with Visual Prolog)
consists of a set of simulating clauses.

The notation for a simulating clause, simClause, is the following:

1 simClause = aClause(term Head, term OptionalReturnValue,
term OptionalBody) .

2 term =

3 constant(constant);

4 name(name Name);

5 compound(term Head, term* Arguments);

6 none().

7 name =

8 identifier(ldentifier);

9 classldentifier(ClassName, PredicateName);

10 objectQualifiedldentifier(ObjectName, PredicateName)

For example, an atom reference Al:run() is expressed by using the term:

143

compound(““:”’, name(*“A1”), [name(*‘run”)1)).

These clauses can be translated and moved to Visual Prolog and interpreted in
it providing that there is necessary logic for compound terms in the interpreter.

6.1.3 Conclusions about SimulationWare for automata A5 and A6

Automaton A5 defines a testcase generator, a sequence builder to collect atoms
to the input for a coming simulation. Automaton A6 defines the Turing
machine model for Java code in the notation of the symbolic, atomistic model.

6.2 Background for the abstract machine

In model research, when describing the definition and formulation, the main
interest is perhaps the semantics of the model (Slonneger and Kurtz, 1995).
Despite this, no satisfactory solution has been found for it (Pratt and Zelkowitz,
2000). Different kind of semantics are ordered by their specialization degree:
informal, operational, transformal, and denotational semantics as well as
models and algebraic semantics (Baxter and Gray, 2005).

All these types of semantics emphasize the task of presenting the
interconnections between the modeled elements. From this point-of-view the
transfer between all language elements is important, although the purpose of
semantics is not to investigate the contents of the data transfer. This thought, in
turn, leads to the idea of symbolic evaluation.

The atomistic model is a construction without any hierarchy. That is why
the only way to investigate its contents and practical features involves an
extensive use of semantics. In an atomistic model all the semantics can be
formally defined by the semantics between its linked elements. An atomistic
model of this kind is thus a distributed communication system, where the logic
has been distributed into command fields of each element. A pure and simple
construction sounds a good principle, but its drawbacks include the lack of
centralized logic to control the whole system. It is necessary to study whether
something essential may be missed when dealing with complex object-oriented
source code models, where there typically are many kinds of dynamic
functionalities between classes and objects. How far can this symbolic model
support PC if the model contains multiform object-oriented features? Can this
model work at all if the whole source code has not been captured into the
model to cover all the dependencies?

When extending the focus into the dynamic behavior profile, operational
semantics must be defined, and there will be a need to define an idealized
abstract machine behind the model to execute the model. Due to its atomistic
structure (see FIGURE 12), the execution of the model can be realized using
command fields of the basic elements. Each element can be thought to form one
part of a Hoare triple, defining its preconditions and postconditions. It is thus

144

possible to achieve a well-established semantic behavior model for Java starting
from the element level and extending it over the entire Java level, covering in
practice all Java applications and all practical situations that may be produced
using Java as the programming platform.

FIGURE 17 illustrates the role of the abstract machine, i.e., conversion of
axiomatic semantics into operational semantics. This conversion formalism
enables making tools that can produce important feedback for programmers to
allow them understand better all the relations in the source code model.

Language
to be described GrammarWare

Axiomatic
semantics

ModelWare

| Abstract Machine | SimulationWare

gt

Executable Model

Operational
semantics

Behavior model
for the language

FIGURE 17 The role of the abstract machine and SimulationWare.

The purpose of this chapter is to show how object-oriented source code can
partially be analyzed. Differently from existing partial evaluation (Schultz
2001), which aims at specializating programs, our purpose is to increase the
user’s knowledge of the source code behavior using a selective, focused
approach. We use the concept symbolic analysis to mean partial simulation
(Definition 32), which is intended for analyzing selective parts of the source
code by using a selector functionality (Definition 34). While Chapter 5 defines
axiomatic semantics for the symbolic model, this chapter will transform it into
operational semantics (Definition 37) by describing the simulation process
(Definition 30) for the model.

6.2.1 Chomsky hierarchy and the corresponding automata

The different levels describing languages and automata are presented in the
Chomsky hierarchy in order to emphasize their typical features and, which is
important, to declare what are the relations and requirements between each
language type and the corresponding automata (Chomsky and Schiitzenberger,
1963).

145

The Turing machine is generally presented as using a tape with bits as its
input and output. This simplification has made it possible to create many
formalisms for various purposes such as the theory of computation (Hopcroft
and Ullman, 1979). The most interesting feature of the Turing machine is that it
makes it possible to observe the sequential nature of program models. Each
operation in a computer system can be thought of as a modular part of the
larger program having its own input-output model typical for the von
Neumann computer architecture (von Neumann, 1951).2 This call/return-
phenomenon allows the code to be analyzed if a similar tape that is typical for
the Turing machine model can be produced. The Turing model has many
connections with program verification (Hopcroft and Ullman, 1979) shedding
light on program correctness. This, in turn, strongly contributes towards
program comprehension, troubleshooting being an essential part of it. In the
next section Turing machine equivalence and Chomsky hierarchy are
considered from the viewpoint of the atomistic model.

6.2.2 Principles for computations in the atomistic model

As a separate construction, each symbolic element, i.e., an atom (Definition 19),
is a state machine at level 3, because the functionality of each element have been
defined by a formalized clause of the Symbolic language, and the clause is
independent of the elements connected to it. It should be noted that the
hierarchy level of each command is one.

As described earlier, the semantics of a program is a summary of the
semantic data transfers between elements (Definition 37). This feature leads to
the principle of level 2, a pushdown automaton. The simplest case is when the
elements that are coupled into the focused element are deterministic containing
no branches, calls, decisions, or loops. In that case the current element works
like a state machine at level 3 having the property to terminate always by
returning only one value. But when the coupled elements are complex, such as
loops, then the semantics of the focused element exhibits, as seen from outside,
the same behavior as the corresponding part of the software.

Each computation uses stack (push) when it calls each of its substructures
such as a constant or a subformula. When the substructures have been
evaluated, then the stack will be emptied one term at a time (pop or pull). After
each calculation, the stack should have the same state as before it. When this
evaluation process is programmed recursively (normal compilers do that by
default in method calls), simulating the evaluation process is not a problem,
because the formalism of method calls in a typical programming language, used
in the tool, has the push down semantics equivalent to that of Java.30

29 A drawback for this architecture is that it causes performance problems for conventional
processors. The processor must wait for the previous command to be executed.

30 One additional feature that makes developing Java simulators easy is that a method can
not return values in its arguments, the only output is the return value.

146

Some model elements contain sequential features. For example, while and
if elements contain a statement block transformed into a list of elements. In the
Prolog tool used in this dissertation the development language has the
semantics to simulate sequences as lists (Warren, 1983; Sterling and Shapiro,
1994).

6.2.3 Turing machine model

The Turing machine is a simplification for picking up symbols from the tape
(input) one after the other and to make correct decisions based on its current
state according to its state model, where the newest symbol is the key to the
state table to select corresponding activities. After each evaluation the machine
saves the possible intermediate results to the tape (output, see Definition 28).
Some authors divide the tape into separate input and output tapes.

The atomistic model of Definition 27 is similar to the principle of the
original Turing machine when the atoms are seen as symbols of the Turing
tape. The greatest improvement to the latter is that the logic can be distributed
into the symbols due to the atomistic semantics of Definition 37; there is no
need for a centralized logic typical for Turing machine constructions. Another
significant feature is that the symbol is an atomistic element and the tape is
either a reverse engineered program or a selected part of it. The keys to the state
transition table are fetched from the command of the current element, and the
state transition table resides in the memory of the current element (see
Definition 26). In order to emphasize the compact nature of the logic (Definition
36) this local state transition table (Definition 38) has been implemented into the
selected method (run) of each element type (Definition 35).

An actual research topic for this chapter concerns whether this kind of
distributed intelligence can produce the same functionality as its equivalent
Chomsky level. In this chapter each element type will be evaluated, and the
possible problems in simulating each element type will be described.

6.2.4 Symbolic abstract machine (SAM)

The motivation for a symbolic abstract machine, later called SAM, comes from
the Turing machine and its theory. Another source of motivation is the theory
of operational semantics that is intended here for simulation purposes.

We define the symbolic abstract machine, SAM, to be an automaton to
execute symbolic code in order to generate a specified behavior model while
assuming the necessary input and output responsibilities. In FIGURE 18 the
logic and the principle of this chapter are presented in a notation of a
technology space (see (Bézivin, 2005)) in order to emphasize the different roles
of the three main components: 1) Java execution model, 2) the new high level
simulation environment, the symbolic abstract machine (see Definition 27)
based on an atomistic model and the output model for the simulated
information, 3) the Turing machine with its tape metaphors. The user has its
role as a Decider (Hopcroft et al., 1979) in controlling such selections (Definition

147

34) of the run methods that are ambiguous. Due to the user’s actions complete
tapes can interactively (Definition 33) be built.

User control

Java
Execution
Model

SAM

Run-
method

\Vcise

FIGURE 18 The functional principle of the symbolic abstract machine.

Turing

JVM

Because Java is the language to be simulated, the execution model of it, Java
Virtual Machine (JVM), must be the reference to be used as input specification
for the abstract machine (Hopcroft et al., 1979). Bytecode is a low level
instruction set to execute statements, one after the other. JVM includes a class
loader and its initialization processes as well as a thread mechanism to
implement concurrent and parallel functionalities.

In the middle of FIGURE 18 the symbolic abstract machine is depicted. As
argued above the challenging requirement for SAM is that all the simulation
between atoms should be done by calling the equivalent run-method of each atom
one after another (see TABLE 7). The atoms can refer to several other atoms
either in a sequence or by using the input data from other atoms for selecting the
next actual clauses or by continuing the call chain to the next deeper level
(called evaluation) using a formalism of Definition 38. SAM should be able to
keep lists of its calling history and the status of the atom within its run method.
However, it is not allowed for an atom to create intermediate results like
vectors outside of atoms, because this new data would corrupt the model from
its formalism point of view (TABLE 7).

At a first glance this kind of very simple but at the same time very
challenging principle may seem almost impossible to evaluate and present.
However, there are some excellent ways that the automata theory provides to
help in implementing it for SAM:

- Because all the formalism for the model has been defined only by the
clause-command in Symbolic, loaded originally from Java, the evaluation
can be divided down into the evaluation of separate clauses, which are
separate elements in the model. Therefore evaluation can be defined by
state transition tables (Definition 37) typical for the Turing machine
formalism.

148

- The requirement for partial simulation (Definition 32) is challenging,
because all the dynamic features have their own, possibly unknown
history, when simulation starts ”"in the middle of the code”. To adjust
and fix the behavior model for this partial simulation model, we simply
propose a user interface that would allow the user to control the control
flow according to Definition 34 in order to trace the program for
familiarization, verification and test coverage purposes.

In order to prove the completeness of the formalism for each clause, the
operational semantics of the static and dynamic symbolic clauses is presented in
this chapter with the results. With the help of these results, it is then possible to
evaluate each clause and its compatibility compared with the execution of the
corresponding bytecode (Qian, 1999).

6.3 Technical preconditions for Java simulation

Next the preconditions for Java simulation in general are described including
the nature of a context-free language, known problems of symbolic execution
(see Section 2.5), and the challenges of partial simulation of object-oriented
code.

6.3.1 Java execution model

The execution model for Java has been defined by Sun for each of its versions
(Gosling et al., 2005). Most features of its behavior model have been specified in
the semantics of the language itself. The functionality of JVM is not essential
from the viewpoint of program comprehension, but for debugging purposes it
is necessary to note the loading protocol for classes and interfaces that are not in
the memory when the simulation starts. Loading non-existing classes and
starting their constructions have influence on the control flow of a sequence.
Understanding the process of memory allocation is not very important from the
PC point of view, because there is an automatic garbage collector in Java. It is
important to describe thread simulation, and the command synchronized
belongs to the same topic. Together these cover the real time behavior of the
program. Simulating exceptions is a special case that is not described in this
dissertation because of its narrow scope.

The JDK library is a versatile package containing all the functional
interfaces to the outer world from a Java application. JDK calls are widely used
in all typical classes in Java applications. Because of its large size it is not
possible to emulate the whole JDK in this research. Instead, the connections
between Java code and the JDK library are emphasized. By interpreting these
connections it is possible to create a functionality model for each Java class,
method and package.

149
6.3.2 Sequential computation model

Like computer architectures in general, Java computation model is sequential
due to the influence of the Turing model on the background. One command is
executed after another without any parallel functionality, threads being a
special exception. Generally, all the commands return the control to the location
where they were invoked. This makes it easy for the analyzing tool to follow
the control flow. The exceptions for that call/return principle are return,
continue, break, and exit commands. All of them are described in pathClause of
Symbolic, in the sub-command controlCommand.

6.3.3 Reachability analysis

Reachability, also known as a points-to analysis, is a functionality to solve how
program elements refer to each other and what kinds of rules there are for
referencing. Identifying the methods and variables of Java and connecting the
references with actual definitions is not a problem in an atomistic model,
because the model weaver inserts a pointer to the host element for each element
in order to enable a complete hierarchical identification process (known as
lookup, in semantics (Sethi, 1996)). By using the host element it is possible for
the tool to find the definition in all cases, including inheritance. By using the
pointer to the host element it is possible to identify unnamed classes, inner
classes, and all special naming features of Java. Virtual functions are a special
case for references that point outside the current class. These references may be
cascaded, giving rise to the challenge of identifying the right object to be called.
All the variable and object references in the symbolic model are found in the
refClause command, and method references are found in the getClause
command.

6.3.4 Problems and limitations of symbolic execution

Entscheidungsproblem (terminating problem) has been a much discussed
problem in program verification (Turing, 1936). Some modifications are needed
in the simulation tool to avoid the problem. Problems can arise when loop
variables are not known or the methods behind them cannot be simulated
(Cheatham et al, 1979; Havlak, 1997). Recursive functions that have an
inductive logic also cause problems if the induction cannot be simulated
completely, giving rise to a non-terminating and infinite control flow for the
simulator.

For these special cases some additional constraints must be built for the
simulator. The easiest way is to create a maximum counter for limiting loops.
An alternative is a user interface for controlling loops manually, which is useful
in controlling threads in the forever loops of their run methods.

Because the behavior and loops must be limited in simulation, it weakens
the completeness of the output. From a program comprehension viewpoint this
is not a serious drawback, because all the functionality from each loop can be

150

captured after the simulation in the Symbolic language. Once a loop has been
simulated three times, the information necessary for the user to evaluate
whether the loop exit logic is valid or not can often be found. If that does not
become clear from these three runs, the loops can be simulated under the user's
specific control focusing on the terminating behavior.

6.3.5 Relations of the abstract machine to hardware and performance

This chapter shows how atoms can be used so that there is no need for an
external memory. The instruction fetching process is equivalent for the run
method of each element, calling other elements according to the semantics of
each element. Loops, conditional statements, method calls and other commands
can be employed in this.

In this research, the performance of the model has not been used as a
factor in any evaluation criteria. So there is no discussion about whether using
an external memory or other CPU blocks would be essential to speed up the
simulation. Instead, the atomistic model has been made to create a clear
formalism to enable practical tools, too, as applications. In this research we
extend the concept of register machine, which normally has been directed for
mathematical and logical operations in Java. Earlier the semantics of the register
machine has been proposed to cover the semantics of Pascal using lambda
calculus (Backus, 1978). One essential precondition for abstracting Java as a
register machine is that there is a user control (Definition 34) for focusing the
simulation process. The challenges of the object-oriented behavior from the
program comprehension viewpoint are discussed next.

6.3.6 Influence of the object-oriented paradigm to simulation

Much research has been done about the problems of object-oriented programs
and their dynamic behavior (Wilde and Huitt, 1992). Walkinshaw, Roper and
Wood (2005) have described these problematic topics (FIGURE 19). The
numbering is added.

The cases in the figure from 1 to 12 are numbered from the easiest to the
most difficult. The cases are ordered by their nature (either static or dynamic)
and by the complexity or ambiguity of the references they can create from the
viewpoint of source code analysis:

R1. JDK references are stored to the model.

R2. Static method calls have their calling semantics with returned values.

R3. A factory design pattern is used for objects containing states.

R4. References to a super class, including attributes and methods.

R5. Methods are inherited from super classes.

R6. Conditions for overwritten methods must be detected.

R7. Polymorphic calls must be identified according to actual arguments.

R8. Different class instances must be identified.

R9. Threads and other delocalized operations give rise to distributed

phenomena.

151

R10. Object instances and their memory requirements must be identified.
R11. Shared object references should be mastered by a read/write logic.
R12. Selecting a type for an object depends on commands like instanceOf.

Return values, - ~ Return values J G
~

——==. Return values,- T—~\Return values =
il oo +- o A= 37
M lﬁ d 3 + — \ - [
ethods | 3— ; ; 'f -
\ 2 | |Method Calls | ~—.] !] |~ _
* ¢ ' o \ ! Polymorphic
S , -'Iﬁl'n l» >\ Ay i~ ’\I \ 1 . N
NN SR oS [Len I\’ Binding
Inheritange R Inheritande---" * _| b
I 1 1] i /
1 | 1 1 ;
Class ' Lol ' 6] / |
— ‘\ * I, ‘\ " Mk KN
{ rd N " N Cd ~
"'-——':_ 1 3_/ i /(/ [\ '>\\ K
=~ §= i o 1 I}
'_! > - . ! o Y \
2 — iind.S —] . oy h -
S~ s l \ | ! \ 1]
----- = \,\‘ — \\ ,_,/" | ,l \ ,’ \
- “ \ A ’
=7 at PN N
P Rl [~ S 1 B - N II
7~ S\ ____--—--"*(éhare 3 A f
. o=
=y ar

L d

\\ :1 e Object ;o _I‘n'l'_x Different Class Instances
=" References [t ¥ 10
Class Library - -—

r’d
Reference S

~d”

.
-

FIGURE 19 Challenges for analyzing OO programs.

In the following the challenges of the requirements from R1 to R12 that must be
observed in investigating OOP code will be discussed.

R1. JDK references. The JDK library should be loaded into SAM to
support analyzing JDK symbols. Two examples of these references
are direct and indirect (dynamic) invocations:

a. Instantiation of a new object, e.g., new ServerSocket (see Appendix
1) is a direct invocation that reveals the structure to be called
exactly.

b. System.out.println(“Hello”) contains an indirect branching
according to the value of the attribute out in the class System. It
typically points to the PrintStream class that contains the println
method.

R2. Static method calls. The requirements for static calls include the
description of static simulation, described later in this chapter. The
process of argument binding and returning the value from a method
to the caller is also described. Most of the Symbolic clauses are static.

R3. State model. A state is defined to be an individual set of variable
values in an object. This is a fairly exact definition, covering also the
combinations. It is very challenging for the user to understand all the

152

R4.

RS5.

Re6.

R7.

R8.

R9.

possible states, and all the value combinations. Each variable is a
possible source for numerous new state candidates. The logic
defines more complex states and the transitions between them.
Analyzing the state behavior of methods and objects is an interesting
topic to evaluate by partial simulation. How can states be identified?
Can a state machine be evaluated by an abstract machine?
References to a super class, including attributes and methods. Calls
to the super class can be detected to the underlying code. To provide
a capability to simulate inheritance requires that the information
about super classes is stored into each class element.

Inherited methods in a super class. Inheriting a method is a process
to direct the method call into the super class in all cases of a closed
virtual function, where a method corresponding to the argument
combination cannot be found in the object referred to. Inheritance is
a lookup searching the method or attribute in the next super class,
then in the next higher super class, and finally traversing the whole
hierarchy if needed.

Overwritten methods in a base class. When a method has been
invoked by a closed virtual function, then the most detailed
implementation is selected.

Polymorphic calls according to current types. When there are many
methods of the same name with alternative argument and type
definitions, then the type combination that has exactly the type
compatible method argument and return type combination is
selected. In many cases the types are known, and the simulator
works deterministically and automatically like JVM. However, in
partial simulation this is a problem if all arguments are not bound.
The type of the returned value is the most complex thing to be
analyzed because it cannot be evaluated until the method has been
executed. For resolving this problem an interface dialog for the user
is needed to present the possible polymorphic method candidates.
The user is then the Decider to control the program flow.

Identifying different class instances. The object handles must be
stored into the model during simulation. When an object is created, a
link to the handle value (pointer) from the corresponding method
and the corresponding type should be saved. For example, a call
Connection ¢ = new Connection(...) causes an object Connection to be
created. The creator clause saves the handle into a link to the variable
¢, but not to the memory of ¢, because using an atom as a memory
doesn’t belong to the principles of an atomistic model.

Threads and other delocalized operations. Communication from a
thread to the elements that are not loaded into the model is analyzed
from the code. Threads must be simulated individually, user-
assisted, because thread processing could require multi-output-tape
realization as in JVM.

153

R10. Managing object instance and their memory. When object instances
are created, they have their creators stored as links. So it is possible
for them to signal to their creators whether they are still alive or not.

R11. Shared object references. The most complex situation in analyzing
object-oriented code is the shared pools between objects storing
object references. The pools can be vectors, matrices, or objects that
use references as attributes. If the pool is a vector, then vector
semantics should be added to the model. However, currently there is
no vector semantics in SAM. It is the responsibility of the user to
trace the pool references in order to decide about the reference in
each case. So object pools must be identified as a separate behavior
model for program comprehension purposes, to enable verification
of large software.

R12. Selecting a type in program logic. It is possible to reverse engineer
type casts and the command instanceOf according to the control flow.
This simulation resembles the behavior of JVM.

An additional feature to the topics above is the analysis of design patterns
(Gamma et al., 1995) due to references, but it is not in the scope of this research.

6.4 The Turing machine as a reference for simulation

The Turing machine is an abstraction of a computer to illustrate the overall
behavior of programs. It has not been intended that concrete installations use
Turing machine as their architecture (Herken, 1995). However, it is essential
that every computer program works like the Turing machine. Another very
important point is that every program can be simulated by an idealized
Universal Turing Machine (UTM) (Rogozhin, 1998), which can simulate any
computer. In this research Java has been selected as the programming language,
and an atomistic model compatible with the main principle of the UTM is
proposed.

In this chapter the most important commands of the Symbolic language
are discussed using the Turing model as a reference. That is why it is essential
to define how this new construct should use the tapes:

- An input tape is a collection of atoms that specify the elements to be
simulated (such as a method, or a sequence containing several elements)
according to Definition 29.

- An output tape is a sequence (Definition 28) containing the commands
that have been executed as well as the results from them.

Because of the challenges of OOP, it is not assumed that this simulation can be
executed automatically without manual interaction. That is why a necessary
user support should be added to the abstract machine to extend it to contain an
interactive extension for simulation.

154

The symbolic abstract machine (SAM) is a modification from the one-tape
Turing machine (Hopcroft et al., 1979) (see TABLE 7) with its set of states, its
finite set of tape symbols, input symbols, the transition function, and final
(accepted) states.

The finite state machine is represented by a state transition table
(Definition 38) together with its state register. The "external storage medium" is
the tape. The input to the state machine is the scanned symbol on the tape, the
command of the atom (Definition 24). In the original Turing machine the output
of the state machine is a symbol to print or the erase command and tape
motion-command left or right (Rogozhin, 1998).

However, as stated earlier, the atomistic model, due to its distributed
nature, is a clear opposite of the centralized transition function. This doesn’t
prevent us from analyzing similar features. The elements of SAM are symbols
of the Turing machine, because they can store input and output information by
using their links.

- When simulation is started first time, the possible set of input states is an
empty set. But, because each dynamic reference requires preliminary
actions to initialize the object referred, these actions are the necessary
input states.

- If simulation is started from the beginning of any method, then the
arguments of it must be initialized. There should be a user interface in
the tool to allow this to be done.

- The simulation of the whole program or an applet starts from the main
method, which is a special case.

- To extend the symbolic model to cover all the behavior of source code,
an extension for a side effect (SideEffectElement) must be defined to
implement the simulation result, the side effect defined by Definition 31.
This ensures that the whole atomistic model will indeed be atomistic and
coherent after each simulation.

6.5 Foundation for source code simulation

Simulating means mimicking the reality, which is the world around us. The
purpose is to build a logical model about the world, or an Umwelt. This model
is typically transformed into a program to be processed by a computer.

6.5.1 Simulation in computer science

Computer simulation has its traditions beginning from the start of the computer
theory (Minsky, 1967; Hein, 1996). Turing has used the term "simulation" to
refer to what happens when a computer runs a state transition table by
describing the state transitions, inputs and outputs of a subject discrete-state
machine when running a program. The computer thus simulates the subject

155

machine. Hence, simulation has strong connections to state machines and
transition systems.

However, it is not clear how to simulate standard programming languages
without using external hardware and software library packages. Static analysis
can be used, but it cannot produce program comprehension information the
way behavioral models can (Richner and Ducasse, 1999).

6.5.2 Source code simulation

We define source code simulation (Definition 30) as a functionality that
simulates the operational semantics of software according to the semantics of
the programming language in order to provide an execution trace and, by
means of it, the behavior model for the simulated code.

There are two special cases in source code simulation: with the use of a
virtual machine (VM) or without it. There may be an application server to
control active programs and their status by maintaining the transactional status
of the whole system. However, it is clear what source code simulation situation
should do, because this has been specified by the programming language. The
program is, in fact, a clear specification of how the computer system should
work (Reeves, 2005).

When using Prolog as a simulator’s language, the problems of simulation
consist of the problems of interpreting the formalism of the state transition table
logic defined in Definition 37 and Definition 38. Furthermore, simulation of
loops, arrays, complex references, and unknown types are special requirements.

6.5.3 Complete simulation of the whole application

Complete simulation is a process that covers all the selected features of an
application from the user’s point of view.

In Java typically the main method is the place to start a complete
simulation. To enable it, the whole application should be loaded into the
symbolic model. For analyzing JDK references we only load the class contracts
of JDK into the model, without loading the code of the libraries, because JDK,
due to its large size, could overload the analyzing tool.

Complete simulation has a lot in common with dynamic analysis.
Complete simulation is, however, much more flexible with its options, output
possibilities, and tracing.3!

6.5.4 Partial simulation
Many times a complete simulation of the whole program is too large and

complex because of the large amount of information in the model. This is why
more flexible and granular approaches are needed. Partial simulation

31 The performance aspect of the simulation does not, however, play a key part in symbolic
abstraction (SAM implementation)

156

(Definition 32) is intended for a fundamental evaluation of selected critical
features of the application. This is discussed next.

We define partial simulation as a functionality that makes it possible for
the user to create a focused view to the source code by means of simulating
only selected parts of the code. Partial simulation of source code (PSSC) has not
been proposed earlier, because traditionally it has been assumed that a
simulation should always be complete, returning all the relevant values from
each object. However, it is seldom practical and possible due to the large
amount of code information. This mismatch is one reason why Walenstein
(2002) has argued that current reverse engineering tools have failed. They don’t
focus on the user’s problem in trying to capture all possible information,
whether it is relevant or not. 32

In order to make PSSC possible, some arrangements that are not necessary
with a complete evaluation of the software must be made:

- The parsing process (see Section 4.1.2) of the analyzing tool, here SAM,
must be modified to accept parts of software that are smaller than a
traditional file to be compiled. A good solution for this is to make
parsing and simulation more flexible it to modify the start symbol of the
grammar (see Definition 1) to contain smaller elements, including
separated methods and statements and groups of methods and
statements. In this new abstraction the compiled information should be
moved into default structures, such as a default class and a default
model, to contain the created elements.

- Some semantic principles for references should be made more allowable
in the Symbolic language (see Definition 11) than in the original
language, because not all invocations can be completely recognized in
simulation. These changes don’t cause interpretation problems if the
source has been captured from a compiled Java program, because Java
software has been checked by its integrity rules. Partial simulation
doesn’t change that. A well-defined user interface to support handling
all ambiguous or incompletely defined variables and object types must
be created to fill the gap between the loaded parts and parts that are not
loaded. This interface to implement interactive mode is later referred to
as selector (Definition 33).

The criteria for partial simulation deals with the following questions:

- Granularity: What is the smallest part of source code that can be
simulated as a separate session?

- Correspondence: To what extent can PSSC correspond to the behavior of
the original program? This can be evaluated by using dynamic analysis
as a reference. It is possible to trace the commands that have been
executed by using both dynamic analysis and PSSC.

32 Instead, partial evaluation is seen as a technique for program optimization by
specialization.

157

- Coverage: To what extent can the user influence, in advance, the control
paths that the simulation process should use? This question is important,
because through an appropriate user's influence PSSC can provide a
completely new testing paradigm.

The most important technical prerequisite for partial simulation is the ability to
use symbolic processing. In cases where a definition of an element cannot be
found or a value cannot be known (because it is outside of the model), the only
means for a typical non-symbolic tool to deal with this would be to give an
error message from an unknown reference. In our approach the Symbolic clause
enables symbolic references.

The main task of a tool using PSSC is to deal with the precondition
problem of the Hoare triple. If all the conditions of the precondition {P} can be
satisfied considering declared and bound variables and types referred from the
simulated code, then partial simulation can produce reliable information.

The levels of PSSC granularity include the following:

- Statement level: Individual statements are simulated in order to check
computation and calculation rules and critical parts of algorithms. Loop
analysis is an essential part of it.

- Method level: Simulating one method at a time makes it possible to test,
in detail, each difficult method in order to check its black box behavior as
well as the grey box. It is possible to find out how the arguments are
used in order to return the selected value.

- Class level: This level describes how a class and its object behavior can
be evaluated. The good news for the class level simulation is that there is
no need for any preliminary testing arrangements, except starting the
constructor to create the dynamic model. If the class includes a state
machine, then by partial simulation it is possible to evaluate each
individual state combination by activating its methods from the selected
starting locations. Usually the states are encoded by a switch command,
an if command, a listener, or by other arrangements. All events and their
behavior can be simulated partially, but in complex models creating
simulation sequences should be automated. This approach has some
correspondences with the principles of model checking (Visser et al.,
2003) and theorem proving (Duffy, 1991).

- Component level: Component level is important, because often the
components are coupled tightly with each other, making testing
laborious. By using PSSC it is possible to simulate each public method of
the component as well as the selected sequences in any order to validate
the functionality of the component.

- Layer level: It is possible to load all the components, related to a
specified architecture layer, to the model. From a layer structure it is
possible to get data flow information selectively by reflection models
(Pacione, Roper, and Wood, 2003).

158

The practical use for PSSC is to enable a focused approach to source code
simulations by using the selected granularity level. The atomistic model is ideal
for such construction because of its extreme modularity. However, a symbolic
notation is the only way to abstract unknown or vaguely known fuzzy
information, which is typical for any partially loaded application.

Problems of partial simulation
The notions or problems related to partial simulation include:

- Reference to an abstract class: If the variable, having an abstract class
type as its definition, does not have a known value, then the set for all
possible references includes the subclasses of the abstract class.

- Reference to a concrete class: If a variable, referencing a concrete class,
does not have a value, it is possible for the simulator to use the most
abstract type for simulation.

- If there is a reference in the code to a more specialized operation than
could be enabled by the current object handle (whose type is currently
more abstract), then the user could change the type of the object
instantiation to more specified to enable simulation of the more
specialized function.

A general rule in referencing unknown object variables should be that the tool
should ask the user whether the corresponding objects are to be initialized by
their constructors. This is one part of the role of interactive simulation,
described next.

Interactive simulation

As stated earlier, partial simulation cannot be used without the support of the
user in deciding which control paths should be executed in each case. The main
task for interactive simulation (compared with automatic simulation) is to
ensure coverage for PSSC to enable the user to complete the analysis of each
particle of the source code. We define interactive source code simulation (ISCS,
see Definition 33) as a functionality to help the user in partial simulation to
trace all possible control paths (program flow) in order to verify all the parts of
the source code successively. The targets for interactive simulation are as
follows:

- Variables: to evaluate further expressions (variables with free (non-fixed,

non-ground) values, especially object variables).

- Conditions: to create branches needed for verifying critical paths.

- Types: to verify the wanted class/type in the active class hierarchy.

- Loops: to verify all loop conditions.

- Objects: to verify and activate constructors.

159

Interactive simulation gives the user the possibility to be a Decider (Hopcroft et
al., 1979), which is the level 0 in the Chomsky hierarchy. By using this principle
it is possible for the virtual architecture of SAM and the Decider, together, to
form a minimum architecture to enable verification of the most critical places of
the studied software.

There are some prerequisites for ISCS. The information for ISCS should be
in a symbolic notation. If that is not the case, it is impossible to maintain the
status of variables and their invocations including control paths and the states
of conditional expressions. In that case there should be a default model for
unknown variables, classes, and types. For example, unknown classes should
be modeled as stub classes without contents if none of its members are known.

By using the symbolic clause notation, each intermediate value and
expression can be printed to the user either exactly in the format that the tool
uses or translated into a verbal form or a picture. The symbolic presentation
techniques are described in Chapter 8.

In order to control the logic a simulation selector is needed. We define
simulation selector to be a control switch for the user to select the control path
for simulation. The subfunctions for the simulation selector, which support
interactive simulation, are the following:

- Condition selector: The user can select the logic paths to be simulated.

- Type selector: The user can select the types and objects to simulate.

- Object selector: The user can select the class instances to be simulated.

- Value selector: The user can select the values a variable can have.

- Expression selector: The user can skip the logic of an expression

(operation) if there are some unsolved parameters in it.
Each of these consists of a set of questions, to be implemented by a simple
query dialog.

Simulating state machines

Because the user interface of the simulator (SAM) works in a command level, it
is accurate enough to enable simulating all the features of state machines and
even for verifying the logic of user interface applications, even though the logic
of them has been embedded inside methods. To satisfy these requirements
Selector has the switches to control the selected program flow. For example, to
decide which event to select, an expression selector is used. For selecting an
individual path, a condition selector dialog is used.

6.5.5 Run method, the nucleus of the simulation

The run method (Definition 35) makes simulation possible by being the glue
which connects the current atom to other actual atoms around it in order to
make a correct sequence, i.e., a tape with its side effects according to the state
formalism of Definition 37.

A general call for a run method of an element E is the following;:
Output = E:run(Q

160

If the atom doesn’t return any value, then it results in an empty list ([]).
Otherwise, if the method calculates a complete and ready value, then Output
has the form [valClause] meaning a constant. If there are some unknown
variables or expressions without a value in the command of the element, then
Output has the form [linkClause]. The logic of the run method is described as a
state transition table in TABLE 7. It specifies the states, conditions and
transitions for each command.

6.5.6 Limitations of the simulation solutions in this research

In this research some Java features are excluded because their character is very
close to the real time behavior of the code. These are coded in otherClause of
the Symbolic, but the logic within them is simulated normally. They are:

- Exceptions: These are saved in a try/catch clause. The contents are
simulated.

- Threads: A thread is activated by the start method. In a Turing model
each thread forms a tape of its own. The run-method of a thread can be
simulated by a manual dialog step by step.

- Synchronized command: An equivalent function for this command is to
activate an event handling resource in the tool to prevent asynchronous
activities.

6.6 Simulating static procedural commands

The semantics of programming languages have been researched with the help
of many methods including synthesized attributes, attribute grammars, natural
semantics, denotational semantics, and operational semantics (Sethi, 1996). A
Prolog version of natural semantics, which is the closest notation to the
atomistic model, is proposed by Sethi (1996). It has the following definitions
demonstrating the semantics of constants and addition and multiplication:

EXAMPLE 1. Natural semantics illustrating a constant, addition, and multiplication.
(1) num(val): val

(2 E1:v1 E>:wvo
plus E1, Ez : vit+va

©)) Ei:wv1 E>:wvo
times Ei1, E> : vi*v2

161

By using such notation it is possible to define the semantics for complete
languages. There exist some definitions, i.e., for Java semantics (Slonneger et al.,
1995; Attali et al., 1998).

It can easily be observed that each symbol E in EXAMPLE 1 corresponds
to an atomistic element. This connection is clear, suggesting that the logic of
natural semantics can be translated into the formalism of the atomistic model.
Typically in natural semantics the concept of an environment is needed in order
to define the current scope and the context. In an atomistic model there are no
environments because there are no structures in it. The explanation for this is
below.

In EXAMPLE 2 there is the equivalent Prolog code for EXAMPLE 1 with
an addition that specifies the environment Env for the formulas 1-3:

EXAMPLE 2. Prolog notation for EXAMPLE 1 (Sethi, 1996).

1 seq(Env, num(val), Vval).

2 seq(Env, plus(El, E2), V):-

3 Seq(Env, E1, V1), seq(Env, E2, V2), V is V1+V2.
4 seq(Env, times(El, E2), V):-

5 Seq(Env, E1, V1), seq(Env, E2, V2), V is V1+V2.
6 seq(Env, var(X), V):-

7 lookup(X, Env, V).

8 lookup(X, bind(X, V,), V).

9 lookup(X, bind(Y,_,Env), V):-

10 lookup(X, Env, V).

Variable Env is needed to define the scope for variables (lines 6-7) in a formal
way. However, that is a drawback, because conveying Env in recursive
functions in all other formulas makes the notation complex. Some remarks
relating to EXAMPLE 2 include:

- Line 1: the constant does not need Env.

- Lines 2-3: because of recursion Env is needed in sub-terms.

- Lines 4-5: Env is needed here.

- Lines 6-7: Env is needed here also.

- Lines 8-10: The lookup procedure searches for a value (V) for the
variable (X) recursively. Line 8 returns a value if it can be found in the
environment by the bind predicate. Otherwise a new connection is found
on line 9 if there are any (bind predicate). Then a new search is activated
starting from line 8.

The description above contains the typical logic also for a run method of an
atomistic element, described in Chapter 5, defined in Definition 38 and
formulated in EXAMPLE 7. Line 1 refers to the constant element, lines 2-5 to
the operation element, and lines 6-7 to the definition element, where a variable
has been defined by varDef.

The structural link that the model weaver has inserted into each element
shows the reason for avoiding the use of the environment Env. When there is a

162

reference into a variable “X” in the original Java code and a model derived from
it has been created, then the link field is_A of the calling elements has the
environment information functioning similarly to the lookup method. That is
why in the simulation there is no need for a lookup-method, making its
semantics very straightforward. There are only atom references in the atomistic
model.

6.6.1 Extending the symbolic model into a behavioral model

In an atomistic model the elements are the only places to keep information. The
original construction, described in Chapter 4, doesn’t contain other elements
apart from the ones from Java code. In a behavioral model intermediate results
and outputs for evaluation are needed, too. For this purpose the symbolic
model is extended by a new dynamic type, which is called a SideEffect (see
Definition 31) and which illustrates the nature of the new information.3? To
implement it in the model, the following definition is needed.

We define side effect element (see Definition 31) as an extension to the
symbolic model for capturing the dynamic activations from the source code.
The behavior profile for each simulation is a collection containing all the side
effect elements from the run. From the tool approach it inherits the base class
SymbolicElement and with it all the features of the original model element such
as traversing, printing, navigating and even executing.

The purpose of the side effect element is to describe, in detail, the progress
of the program. The calculated values, branches and evaluated conditions can
be used for tracing a problem, for code familiarization, and for automatic
theorem proving in order to verify the logic.

A lot of effort has been put into researching how to extract information in
dynamic analysis. There is a strong need to collect very detailed information of
this type from dynamic analysis, but there is no accepted information model for
the results (Denker et al., 2006). Therefore, it has been proposed that a special
virtual machine is needed, because dynamic analysis is not an ideal analysis to
collect information, and because it produces its results as side effects from
executing the code. Thus it is very difficult to control the process of dynamic
analysis for verifying purposes.

Connecting elements by an evaluating chain

The elements must work with each other seamlessly without extra variables or
flags. That seamless activity is enabled by the call/return architecture, which is
referred to here as an evaluating chain. Its main purpose is to guarantee
repeatability for simulation. Its logical equivalence in the Chomsky hierarchy is

33 Partial simulation often refers to elements that are not loaded into the model. Because the
referred element can be of any type (method, variable, object), all outer references are
systematically called side effects in the symbolic model. Final outputs are called side
effects, too.

163

a stack automaton, because, in evaluation, a stack is used in each successive
invocation.

In Java and in all non-symbolic computing each variable should have a
known value or an initialization value, which both are expressed by constants.
Thus constants ground the expressions. Each route from a calculation operation
into the constant level and backwards returning a value is called here an
evaluating chain.

6.6.2 Simulating a statement block

Many elements contain a sequence that has its origin in a statement block of
Java. Some of these statements are if, while, and for. In the Turing machine
model a statement block is a part of an input tape. Simulating a block is
described next.

A block (clause* in the notation) is a list in the atomistic model containing
references into atoms that correspond to the original (Java) statements. A block
is a sequence that returns a value only if it has been interrupted by a break, or a
continue or return command or an exception has occurred (exception is not
considered in this dissertation).

In FIGURE 20 an atom (Al) contains references to atoms Ci...C,, for
example in the execution part of the condition iff (..., [C1,CC... Cul),
StatementBlock). Simulating a block succeeds if the simulation of the elements
Cy,..,Cy succeeds without interruptions. In FIGURE 20 each element has been
replaced by a Prolog predicate 34 (see Appendix 2), here the run method. Each
Prolog clause contains an inference engine of its own, which can be illustrated
by two recursive loops as shown in FIGURE 20. It works like a state transition
table, which stacks nesting calls in moving to the deeper levels (see Definition
38).

$—@<_—>@$-@_<_ CIITIILIS Atomistic metaphor

>>(—> —> >
< (b g - <-4 Implementation in Prolog

!

FIGURE 20 Executing a statement block and simulating it by Prolog.

3 The functionality of Prolog predicates is formalized in Warren Abstract Machine
(Warren, 1983).

164
6.6.3 Constants and their semantics (valClause)

Constants are, as stated earlier, the lowest level in the ecology of software.
Simulating a constant as a separate element simplifies the semantics of other
code elements. With the help of constant elements the behavior of other
elements can be made equivalent in all situations, and this provides us with a
unified behavior model for all elements. That is why constants can be found in
the semantics of all traditional notations including natural semantics (Slonneger
et al., 1995).

As a result from simulation a constant returns its value to the caller. Thus,
for a constant, a state table consisting only of the entry and exit states is feasible.
The constant elements provide practical means for PC as follows:

- By using their bi-directional links it is possible to navigate around
locations where they are used, in order to obtain an image of the
software ecology. This image can be very useful in data analysis and in
troubleshooting.

- Constant elements are excellent for tracing the model and for defining
critical points in theorem proving.

6.6.4 Simulating operations (opClause)

There are many types of operations in Java:
- Logical, inclusive, exclusive, and bitwise operations for and and or
- Testing equality and other relative comparisons
- Transfer operations
- Mathematical calculations
- Not, tilde (~), and cast operations
- Instanceof operation
- Conditional operator ?
- This and Super.

Logical operations, comparisons, and calculations are simulated in SAM by a
simple interpreter as they were in Java-operations, in most cases without any
difference in the functionality. Casts are simulated by attaching the type of the
expression into the element. This and super are simulated by referring to the
corresponding element in the model.

From the viewpoint of an evaluating chain the operation clauses are
intermediate phases, or filters, to be more exact. They can hold one or two
parameters in a parsed form, although in the code the number of parameters
can be very large. Any parameter can have multiple nesting levels.

6.6.5 Simulating variable references (refClause)
Variable references can point either to a single variable or to an array (table),

which has a suffix described here, by using a clause list for each index. There
are two possible cases in the simulation approach: the variable can have a value

165

or it can be missing. In the former case the value will be returned to the caller.
In the latter case there are some alternatives due to symbolic notation and the
characteristics of partial simulation. If the user wants, he/she can enter any
value to be assigned to the variable. Otherwise a default value or initialization
value (as in Java) is used. Array references are calculated by evaluating the
indexes before pointing to the element. Arrays are simulated by using a sparse
matrix technique (Tewarson, 1973).

6.6.6 Simulating assignments (setClause)

An assignment causes a change to the data. The left side can be either a single
variable or an array reference, and the right side can be any expression. In the
symbolic model the right side is simply an atom reference, because it can refer
either to a variable (or array variable) or to an operation element. The
assignment operator needs simulation, because there are many alternatives in
Java including pre- and post-incrementing and decrementing.

As an output the assignment causes a side effect, which changes the status
of the program. If the variable is dynamic, it must be reset in exiting the
dynamic method.3> Saving the side effects of assignments to SAM happens as
follows:

- If the right side is a constant, then a link from the variable is made to the

constant.

- If the value has been calculated from an expression creating a new
constant, then the connection from the left side element is created to the
new constant element.

- If the right side cannot be evaluated, then the assignment information
will be saved by the setClause itself (because it is very short).

- If the user entered a value, then this new value is saved.

Auto-incrementing and auto-decrementing are combined assignments; variable
references have the behavior of both of them, including the corresponding
value change.

6.6.7 Simulating conditional clauses (pathClause)

The conditional clauses are if and switch-case. In the Symbolic language in the
same group (pathClause) there are the control commands return, break and
continue (as well as userBreak and toolBreak), because they all can change the
execution order. Simulating conditional clauses is made by evaluating the

35 From the viewpoint of PC a static assignment is more complex than a dynamic one,
because a permanent change causes problems in repeating the code in test cases. Ina
large application, public attributes, if changed widely in the code, are the most
difficult part to be mastered. In the symbolic model their influences can be traced.

166

corresponding operations (opClause) of the condition and by selecting the
corresponding branch based on the result.

Simulation of an if statement resembles the behavior of the original Java
statement. A switch-case structure can be expressed in the symbolic model
either by a large command or by unpacking it to separate if commands. The
latter alternative is more complex to program because of the successive case
branches and the logic of break and default commands.

6.6.8 Simulating loops (loopClause)

Loops are the only commands that can cause repetition and recursion. Loop
commands consist of while, for, and do-while. Simulating them causes problems,
if a large number of iterations is required. The forever loops are a special case,
and widely used in threads. Because of huge number of iterations the output
tape can grow exponentially. To prevent overloading, simulating loops must be
controlled by logic.

In TABLE 8 a state transition table (TABLE 7) for the while-loop is
presented as an example of the compatibility between the Turing model and
Prolog as a tool development language.

TABLE 8 While command as a state table.

Current State Condition Next State 10

Entry

Condition Decision

Decision True True:

Decision False Exit

True: BlockControl S1

S1 BlockControl S(i)

last S(i) BlockControl Condition

Exit LastStatus

The state table shown in TABLE 8 has been programmed with Visual Prolog in
EXAMPLE 3. The left column of the example, after the line number, contains
the labels of the left column of TABLE 8. On the second line the atomistic
command, a loopClause, is split into condition and execution (LoopStatements)
parts. Otherwise the conversion is very straightforward, except that there is a

sub-command runBlock to implement block simulation returning the status of
the block.

EXAMPLE 3. The state table of while command in Prolog.

1 Entry run(CurrentStatus) = LastStatus:-

2 getParameters() = [PreCondition, LoopStatements],
3 Condition ConditionResult = run(This, PreCondition),

4 Decision if checklfTrue(This, ConditionResult) = true
5 then

6 True: LoopStatus = runBlock(This, LoopStatements),

167

7 Last S(i) LastStatus = run(LoopStatus)

8 else
9 Exit LastStatus = []
10 end if

Analyzing loops relates to the terminating problem (Entscheidungsproblem). In
loop simulation it is necessary to constrain the number of iterations, making the
simulator a Decider. Wrong interpretations caused by limiting iterations can be
avoided by informing the user about a break generated by the tool with an
internal signal toolBreak.

6.6.9 Simulating method calls (getClause)

Because of the challenges of simulating late binding, described in Section 6.3.6,
it is useful to simplify the notation of a method call to allow multiple
invocations in the call structure for the run-time decision made by the
simulator. Then, instead of an atom reference, there is a list of atom references
in the definition getObject of the getClause. If in the list there is only one
candidate, then it is selected for simulation if the argument types match with
the parameters. The selector method is a feature of the tool to allow the user to
select manually which method to activate.

In the symbolic model a method call activates the selected element by
assigning values to the parameters before entering its code. A method can use
the return command to cause an exit from the method anywhere. The returned
value can be void or any expression in the range that is compatible with the type
of the method. Because the parameters are implemented as independent
elements, the activation model is simple, making simulation straightforward.
Each parameter value assignment corresponds to a typical assignment clause,
and the inner part of the method behaves atomistically without knowing its
activation history. The data that activates a method invocation is called an
activation frame. One should save it into the tool, because the information
about method invocations is the best information for tracing a program. This is
true, because method calls form a very clear interprocedural concept for PC
purposes (Horwitz, Reps, and Binkley, 1990b).

In traditional program analysis interprocedural and intraprocedural
slicing and dependency analysis are kept apart, giving rise to two different
research areas (Binkley and Gallagher, 1996). In the atomistic model there are
no other constructs apart from atoms, making the model uniform. The gap
between interprocedural and intraprocedural analysis in the symbolic model
has vanished because of its simple invocation model (Definition 37). Another
challenge for object-oriented program comprehension is virtual functions,
described later.

168

6.7 Simulating dynamic object-oriented commands

Static commands are easy to simulate, because from the atomistic point of view
they can be thought to be public code where the code of methods have been
taken into a large code pool, providing that the necessary parameter
assignments are made correctly. Dynamic commands have their own
challenges, described in this section.

6.7.1 Limitations of the partial simulation of object-oriented code

Being able to interpret object-oriented (OO) code is important from the program
comprehension viewpoint, the written program and its behavior model greatly
differing from each other. Its challenges are shown in FIGURE 19.

In complete simulation that has been started from the main method, the
tool is able to find the correct type for each variable, because it is possible to
identify each constructor call. However, in partial simulation it is not sure how
an object or an object handle have been initialized, because the initialization
code is outside of the actual control flow.

One needs to know whether it is possible, in a partial simulation in the
atomistic model, to interpret and initialize the referred objects so that by means
of interactive control, the selector (Definition 34), it is then possible for the user
to analyze any part of the OO-code, covering all possible logic paths.

It is clear that the user should have a consistent comprehension about the
principal use of the objects containing at least one typical use for each of them
when starting the simulation. This information forms part of necessary
initialization knowledge. In this respect the ecology of objects can be captured
by manually searching the constructors.

6.7.2 A protocol to handle unknown types and object handles

Handling unknown information is a real challenge in any technology. Some
theories about how to solve the problem come from the expert systems sector
and other sectors of Al (Copeland, 2004). In source code simulation the user can
work in many "eagerness" levels, which is described by either systematic or
opportunistic approach (von Mayrhauser et al., 1997). The different interaction
levels are useful in their typical situations relating to familiarization and
troubleshooting. Sometimes the user wants to get an exact numeric answer for
some expression, but a symbolic expression consisting of the axiomatic notation
of the sub-structures may result in an expression resembling a mathematical
formula suchasy = f(X) + C.

Symbolic evaluation makes it possible to create and to obtain source code
information according to the user’s eagerness level. The lowest level is the static
code itself, which, as its output, creates an output tape containing clauses of the
Symbolic language. The highest eagerness level is a complete execution
sequence consisting only of alpha-numeric values resulting from calculations.

169

This level is called Decider in the Chomsky hierarchy. The possible levels
between these two extreme granularities are not specified, as they are more
relevant to the area of Al

In order to cover all possible situations where an object variable (X) can

occur in the code in the current control flow (CF), the following list, known as
the object relevance list (ORL), has been created:

- A constructor is in CF before there are any references to it. This situation
is deterministic and complete if the arguments for X can be initialized.
To solve the object relevance list for the arguments if that is needed is a
recursive process .

- In method calls a non-initialized object type X is used as a parameter. If
the parameter refers to an interface, then there are many possible types
of which to select depending on the hierarchical level of the interface and
its subtypes.

- An object reference to X is found in CF before an assignment to it. There
are two possibilities. The variable can refer either into an abstract type
(open virtual function) or to a non-abstract type (closed virtual function).

It is the responsibility of the interactive simulator to consult with the user in
situations where an object variable is not initialized before being referenced.
Here the following questions are relevant:
- What is the type of the object variable (type means here a Java class)?
- Do you want to initialize it? If so, what constructor (of a list) do you
want to use?

Because of this interactive logic all references can be mastered, but sometimes it
can be too laborious to select all the types systematically. In those cases the user
can skip the questions and use symbolic notations that are close to the static
notation.

6.7.3 Simulating create commands (creatorClause)

In Java there are two kinds of creator clauses: createClass for objects and
createArray for arrays. Simulating object creation in the atomistic model is done
as follows:

- A new object is created and its handle is saved into the class element
which will contain all member references to the referred class.

- The constructor is simulated. Perhaps user interaction is needed for
selecting the constructor method (in cases where the invocation is
ambiguous).

- The handle from the object is returned to the caller. Possibly it is saved
into an object handle corresponding to the Java assignment.

170
6.7.4 A protocol to simulate polymorphism

In creating the symbolic model all types cannot be known because of late
bindings. It makes program comprehension and tool building complex. Here
we propose a construction, which contains a model that is as simple as possible
but has the necessary flexibility that is characteristic for object-oriented
software. In the atomistic model all the methods of the class that have the same
name are call candidates, atomic references in the call. In simulation, when a
method is called, the call candidates are checked one after another if their
parameters match with the caller. How to select a method for execution
depends on the situation:
- If the invocation is clear and explicitly points to a suitable method, with
only one possibility, then there is no need for user interaction.
- If there is no prototype for the current invocation in the referred class or
in its class hierarchy, the tool traverses the class hierarchy and shows a
list of methods to the user. The user selects the method to be activated or
skips it if it is not an important function for analysis.

6.8 Atomistic and distributed semantics

As a conclusion we propose that the symbolic model can be formalized as a
tuple resembling the formalization of the original Turing machine (Hopcroft et
al., 1979) as an abstract machine (Definition 27). It can be implemented with or
without using a blank symbol.

Hence, SAM =<Q, T, %, 0, q0, F>, where the notation is interpreted as:

Transition function to refer to the run method of each element.

Final state to refer to the exit state of the simulation of the element.

State transition table: the set of states.

Init state: the entry state for simulation, covering necessary
initializing actions.

r Finite set of tape alphabet symbols.

> Subset of T, the set of input symbols.

20 T,

The formalism remains valid in all granularity levels. A difference to TM is that
the symbols (Z) are predicates having multiple atoms as parameters, which
require more complex interpretations than the original TM. We have
programmed that logic into the state transition table Q (see Definition 37) by
mimicking the original metaphor as far as possible.

6.8.1 Turing model for the atomistic element

A motivation for creating a Turing model for an individual element comes from
the fact that the element is the only computational (”thinking”) part of model.

171

That’s why all semantics, e.g., all intelligence (functionality) in SAM is deemed

to be in an atom. The transition function, O, being the only active part of the
model, is the most important topic of the TM model of the atomistic element
(see FIGURE 21 and Definition 36).

The states are inactive parts of the model containing branching conditions and
calculations. Formulating an element can be done analytically by investigating
the individual features of each Symbolic clause, one after another. In FIGURE

21 the transition function O is in the middle of the model (see TABLE 8 for the
while loop). Activation of the element is shown on the left of the figure. It uses
the notation of the Symbolic clause containing input elements as atoms.

Axiomatic semantics: the Hoare Triple
{ Pre } }

f——— Command ——— | { Post
S5 N

«—

yAcﬁvliuon s Foollod o] o ke [F{Q]

KAtomistic, operational semanticy

FIGURE 21 Turing model for an atomistic element.

The output of the block is described as Q enabling a feedback into incoming
input symbols. These are actually side effect elements (Definition 31) in the
symbolic model. There is no perfect compatibility to the Turing model’s right
(R) and left (L), but selecting the next movement happens by forward or
backward movements in the state transition table Q. In FIGURE 21 a
hypothesized state Q(i) is drawn as well as its predecessor Q(i-1) and successor
Q(i+1). In normal situations the atom selects the next state from the right to be
executed. Loop is almost the only situation, where a backward movement is
needed. Some forward movements are conditional like an if element or a switch-
case element. There are some specialties for the sake of polymorphism and
ambiguous calls that are typical for partial simulation:

- For polymorphism there should be a plural definition instead of a
singular reference. It is only used in virtual functions and method calls.

- For ambiguous references there is a selector that enables the user to
control the program flow by substituting current atom references by
his/her own.

- Statement block is a special feature, because some commands have
influences for incoming statements. These control commands are break,
continue, and return. For them there should be an exceptional branch
which should jump either to the input state or the final state of the
coming elements until the control command were made inactive (to

172

return after exiting the method and to break and continue when exiting
the blocks).

6.8.2 Atomistic semantics for defining Java as a high abstraction

TABLE 9 presents a summary of the atomistic model for Java illustrating the
logic of FIGURE 21 for the most important clauses of Symbolic. The table
(Definition 36) has the following columns:
- Column 1, which contains the Symbolic type (Definition 13) and the
clause (Definition 11)
- Column 2, which describes preconditions for the element in Column 1
- Column 3, which shows either the input state or the first state depending
on the clause
- Column 4, which describes a hypothetic i'th state Q(i) to illustrate a
possible iteration
- Column 5, which describes a hypothetic sub-state Q(i+1) illustrating the

last state
- Column 6, which describes the transition function for the clause
(Definition 38)

- Column 7, which shows the outputs (£2) - both the functionality (F) and
side effects (S), if any. They are listed as references in TABLE 7.

Each clause has its own logic (Definition 38), but the overall logic behind each
element contains an initial state (fixed initial state q0 or a dynamic input state
Q1), a final state (Q(i+1)), and a logic of how the control makes progress
between them. The only backward movements can be found in the loops on
lines 7 and 8 and in the assignment (the line 6). Other movements are forward
transitions making the logic clear. Pathclauses have conditional logic (lines 9
and 10) of how to skip right. The call command, on line 3, is the most complex
of all, because the type and argument polymorphism and other features of
virtual functions need the user's help if the invocation of a move is ambiguous
(Definition 34). A recursive call can logically be seen as a special case of a move,
where the logic goes backwards to the invocation that already has been
activated.

TABLE 9 is a summary connecting Java, the Symbolic clause with its
axiomatic semantics, and the operational model for the clauses shown by
seeking equivalence to TM. Because there is no centralized logic illustrating a
traditional CPU, this novel model is atomistic. All the necessary logic for each
atom can be seen on the corresponding line of the table. This distributed
behavior model is the foundation for the atomistic semantics (Definition 37).

173

6.9 Summary: describing semantics by an abstract machine

A method for source code simulation including partial simulation was
presented in this chapter to change the axiomatic clause notation of each
element into an output sequence, illustrated as an output tape (Definition 28).
The only active and public part of an atom is the run method (Definition 35),
which is presented as a state transition table (Definition 36), by using its Turing
machine formalism and by a programming model (Definition 38) to show a
computational approach to it.

It was shown that with the help of an extension, called a
SideEffectElement (Definition 31), it is possible to create a simulator (Definition
30) which can express the influences and constraints of source code by
exceptions (e.g. otherClauses). It should be remembered that in dynamic
analysis, there is no formal way to collect systematic execution information.

For enabling partial simulation to allow a focused approach to the code, a
user interface called Selector (Definition 34) is proposed. The main contribution
of partial simulation of Java (Definition 32) is to make navigating all control
paths possible, thus enabling a systematic or opportunistic program
comprehension of object-oriented code.

The chapter discusses the problems in simulating code blocks, loops, and
recursions including the means to avoid terminating situations. By systematic
consideration of the commands (Definition 11) of the Symbolic language, a
picture about operational semantics of Java is presented.

The layers of the implementation are shown in FIGURE 22 as a tombstone
diagram. Java code is translated into the Symbolic language to abstract parse
trees that are transformed into a symbolic, atomistic model by a model weaver
(A, see Definition 21). The distributed run methods, together, establish an
environment for the simulator to describe the operational semantics of Java (B).
All this functionality has been formulated as a software architecture by using a
class named SymbolicElement as a base class to characterize the atomistic
element (C, see Definition 26). It was programmed with Visual Prolog (Vip7.3)
as a hybrid object (D). All the elements are formalized by the clause definition of
the Symbolic language. The symbolic tool including all the SAM functionality
(Definition 27) is executed as a standalone application in the Windows
environment (E).

174

TABLE9 Atomistic semantics for Symbolic with Java compatibility.
Symbolic Last or o
Command | Precon- Input Iterative ith | i+1'th Transition Output Q;
vs. Java ditions state state state o : S =Side effect,
r > q0/Q1 Q@) Q@i+1) state changes: F = function
1. const - q0= - F=q0
valClause Value
2.0p Arg* push each | -push e Push S: Result
opClause argument | -calculate | arguments F on top of
-pop o Pull result stack
3. ref Var, evaluate -read S:Value
refClause | Suffix* each referred F =read
suffix variable value
4. call Method?, bind each | -select ¢ Polymorp- S: Call
getClause | Arg* argument | method histic selec- invocation
-run code | tion F = returned
-return value
5. creator Class, bind each | -create ® See S: creator -
creator- Arg* argument | object getClause for command
Clause -call method F = returned
const- invocation object
ructor
6. set Right Qleval | - -bind e Evaluate S: Assign-
setClause | side (rhs) | uate rhs value o Assign ment, Q1
value
7.1loop/ Pre- Ql:run | for each -goto Q1 | e Q(i+1) > Q1 | S: break
while con- precond | statement, status, q0, Q1
loop- dition i-tions run, test,
Clause break
8. loop/ Post- q0:run | for each -run post- | e: Q(i+1) > S: break
for con- Init statement | condition | Q1 if status, q0, Q1
loop- dition Q1: next -incre- PostCondition
Clause iteration ment
-goto Q1
9. path/if | Condi- q0:run | for each -optional | ¢ q0 2> Q(), if | S:break
path- tion Conditi | statement | else: for qO0is true, else | status, q0, Q1
Clause on eachelse | q0->Q(i+1)
statement
10. path/ Selector | Ql:run | selectcase | -optional | e Q1 > Q(i), S: optional
switch SV Selector | for case default if SV match status, q0,.
path- getting | expres- case i, Q1
Clause value sion else Q1 2>
SV default
11. varDef q0: Ini- F = value
defClause tialize
12. met- Parame- | q0:Init. | for each -return S = activa-
hodDef ter* paramet | statement | optional tion record
defClause ers value F = return

175

*%
A. Java
Java
B. Symbolic
Symbolic
C. SAM
SAM
Vip
E. CPU

FIGURE 22 Implementation layers for the symbolic abstract machine.

6.9.1 Simulating Java in Symbolic

TABLE 10 shows the results from the simulation study for all the different
commands:

TABLE 10 Simulating Java in Symbolic.

Symbolic clause Completeness of Remarks
simulation

Constant Complete

Conditional clause (if) | Complete

Loop Complete if loop Terminating problem if loop variables
variables can be cannot be evaluated. In threads
evaluated forever-loops is a special case.

Creating objects Created objects are tool | There can be differences in memory
dependent handling (not a problem).

Variable references, Complete Arrays are simulated as sparse

arrays matrices.

Method calls Complete Polymorphism causes some

modification for the model.

Return from a method | Complete

Loop control Complete Provides control logic for each break

or continue block.

Virtual functions Complete in complete The tool solves all invocations that are
simulation. In partial perfect. Otherwise, the user controls
simulation user the program flow.
interaction is needed.

References to Java Complete reference Javadoc is the interface from JDK

libraries model to the Java classes to the program comprehension

classes. approach.

176

As a conclusion, by accommodating the incompatibilities between the original
Java system and the symbolic model programmatically referring to loops,
arrays, memory processing and virtual functions, it is possible to create a tool
that is able to simulate code selectively.

6.9.2 Results from the symbolic model

There are three different semantic levels, corresponding to the concept rhematic
in the semiotic taxonomy of Peirce (1958). These levels can be captured from
Java code as depicted in FIGURE 23:

- Static structure, which corresponds to Java code. Translated into
Symbolic, its contents corresponds to the object language in semiotics
(Tarski, 1983).

- The behavior model is the output of simulation, the Turing output tape.

- The value and occurrence model is a collection of side effects that have
been gathered from the output tape.

Level 2 in FIGURE 23 can be expressed as a sequence diagram in UML. Level 3
contains symbolic information made by the simulator (Definition 30) about the
side effects (Definition 31). That level is the main contribution provided by the
symbolic analysis, which has practical use in familiarization, troubleshooting,
and verification. The most concrete side effects have direct contacts to the
concrete world via JDK library invocations. Therefore, in FIGURE 23 the 10-
symbols for the keyboard, printer, database, and telecommunication ports are
shown.

1 Static clause L >0 > o > ® > o >0
Call X Return X
2 Dynamic model >0—> 00— 0 —> 0—P9

3 Influence model
* petween elements
* relating to 10
* values, side effects

Tele
|O | Keyboard Data commu | Printer
base nication

FIGURE 23 Information levels, produced by the symbolic model.

The most important advantages provided by the symbolic analysis with the
atomistic model are high flexibility by means of partial simulation of object-
oriented code as well as the capability for systematic data collection illustrated
by level 3 above. All result information is saved into the elements by indirect

177

links (Definition 25). This linking method makes it possible for the user to study
all the elements focusing to the most critical part (see 5.3.5). This is in contrast to
the approach in UML, which tries to explain everything as standard diagrams
to give a total picture. UML doesn’t succeed in creating a total picture for the
user, because the amount of information is too large for the user to understand.
The focused approach, on the other hand, can collect, for example, a
telecommunication behavior of a large system starting from the low level code
functions in order to reveal a specific aspect in the code. This feature is very
useful in typical troubleshooting cases. The next chapter shows how this code
information can be used, in practice, for maintenance.

6.9.3 Unified data model for the simulation results

Because the tape, the formalism of which has been transformed from
GrammarWare, can present all the information on the basis of the source code
behavior, it is useful to create a new concept or an axiom to describe it. The
contents of all outputs of symbolic simulation are shown, in a symbolic
notation, as a flow of the elements in the tape (Definition 28) in the execution
order. It is thus natural to call it a symbolic flow.

Symbolic flow

We define symbolic flow as a logical chain combining the program flow, data
flow, object flow, and the side effect information in the program execution
order. It can be used later for symbolic analysis in its symbolic notation format.

Information of a static program flow is called a program dependency
graph (Horwitz, Reps, and Binkley, 1990a). In the symbolic model the symbolic
flow is more complete than static flow, because of the richness of information in
the symbolic model. Nevertheless, there is only one uniformed model to
combine all elements. The flow can contain either symbolic clauses (commands)
or symbolic elements as follows:

Symbolic Flow = Clause* or SymbolicElement*

The symbolic flow corresponds to the output tape of TM.

7 KNOWLEDGEWARE

This chapter describes knowledge capture from the atomistic model. In Section
7.1 the concept of the information ladder (Longworth and Davies, 1996) is
introduced to characterize learning as well as the Rasmussen’s category for task
specialization (Rasmussen, 1983). In Section 7.2 for the foundation for
KnowledgeWare, its main definitions are proposed. Section 7.3 describes an
information model for each category of the output of the symbolic model. In
Section 7.4 the corresponding actions for that information are introduced for
applying the Rasmussen specialization levels. In Section 7.5 a method for
checking and proving simulation results is introduced. It uses argumentation
and hypotheses in order to verify the assumptions, which are rather typical in
the program comprehension activities. The hypotheses are formalized by using
theorems for a logical formulation, which can be matched with the output
tapes. Section 7.6 describes an interactive process, which uses the described
method of Section 7.5 in solving a maintenance task. It has two main purposes:
familiarization and troubleshooting. In the end of this chapter there is a small
use case related to Appendix 1 in order to demonstrate how the principles of
problem recognition, formulation and analysis can be used in searching critical
places of the program flow.

7.1 Preliminaries for KnowledgeWare

Knowledge mining is a popular research area, and therefore several formalisms
have been proposed (Zeleny, 2006; Aamodt et al., 1995; Longworth et al., 1996),
some of them for automatic knowledge capture (Halpern and Fagin, 1985). The
problem of incomplete and non-general definitions for information or
knowledge remains (Aamodt et al., 1995). An article of Ackoff (1989) has
inspired many researchers to study how data can be transferred into knowledge
and vice versa, and an information ladder was proposed as a metaphor for the

179

purpose by one of them. The same idea was presented as a knowledge pyramid,
which has the levels from data to wisdom (Longworth et al., 1996).

Because the atomistic model is flat and non-hierarchical, it doesn’t provide
the user with the means to understand its structural and hierarchical relations.
KnowledgeWare, a method for the user to configure hierarchical and network-
based information, addresses this problem.

71.1 Information ladder for knowledge capture

According to Ackoff (1989) the steps in the information ladder consist of: 1)
data, 2) information, 3) knowledge, 4) insight, and 5) wisdom, the highest level.
In this framework the user gets information from data by understanding its
relations. From this information the user can obtain knowledge by
understanding the essential patterns of the information. Finally, the user can
reach the next levels, insight and wisdom, by understanding the principles of
that knowledge.

Cleveland describes understanding as a continuum using the ladder
(1982). In our approach, temporary data does not have necessary information
for formulating wisdom. Instead, we speak about insight and know-how to
describe cumulative high level decisions and conclusions captured from
knowledge, in order to illustrate the understanding process that aims at future
activities, e.g., in order to implement new software versions.

In this chapter the motivation is to help the software maintainer to change
tangible data and information of the source code model into intangible
knowledge (Nonaka et al.,, 1995) into skills that enable more productive
development and safer new installations in the future. It is assumed that the
maintainer or any other person in the organization has the necessary explicit
knowledge. As a contribution of the proposed KnowledgeWare the user should
be able to use explicit knowledge more efficiently in order to create new tacit
knowledge.

Applying the information ladder (Longworth et al., 1996)) to the atomistic
source code model (Chapter 5 and Chapter 6) is described next. The four
selected categories, in the the context of the human mind (Ackoff, 1989), are the
following;:

- Data: Related to model elements as symbols.

- Information: Related to program flow. Each element has the command
and its links illustrating formal answers to informal questions made by
the user. Some typical questions are:

— Which element is the one called here?

— What are the elements referring to this place?

— From where (to where) do the selected references come (go)?

— When is the element activated (what are the preconditions for it)?

- Knowledge: Related to "how" each element is called, i.e., what is the
triple of the focused element like and “what should happen if the
element were to be changed”.

180

- Know-how: Related to "why" questions. What is the purpose of the
current method, why has it been written? Can I change, correct, or
replace it without causing new problems? What is our insight about the
quality and usability of this element or component based on its behavior
models?

7.1.2 Hierarchical action model for capturing knowledge

The area of KnowledgeWare combines the cognitive approach to the
maintenance and the computational technology in order to accelerate building
new systems. Anderson proposes two different approaches to knowledge
referring to memories (ACT-R, 2007). Declarative memory describes adapted
tangible knowledge, whereas procedural knowledge is needed in the process of
capturing the necessary information. Rasmussen (1983) has proposed that the
user works in three different cognitive levels: skill, rule, and knowledge.
In this research the Rasmussen categories are used with the following
modifications:
- Skill level activities are based on local perceptions related to the
symbolic model.
- The rule level means the activities used for evaluating sequential
information such as successive statements or a tape.
- In the knowledge level the user collects information from different rule
level activities and makes decisions as a conclusion.

Walenstein (2002) has extended the Rasmussen specialization model to cover
metalevel as the most abstract level in external information search and in
connecting existing information informally to each other.

The layers for specializing knowledge information and activities are skill,
rule, knowledge, and meta. The skill layer is based on fast observations, and the
rule layer for deducing information for one case at a time. The knowledge layer
is based on deliberate reasoning and considers multiple alternatives and
methods at a time. The meta layer is dedicated for connecting information from
different sources in order to catch information to the other layers.

7.1.3 An example code and its simulation model

FIGURE 24 shows a short example, a subset of Appendix I, which contains a
typical JDK reference; in this particular case an Internet socket for a
communication process is activated. This example illustrates a model captured
from the code and the corresponding output tape. The code in the example can
be proved and provides information with which this sequence from the Start
(the first method is main) to the target can be evaluated by the user and by the
tool.

The focus in this example is not in visualizing, but in showing the
formalism and internal symbolic notation of the symbolic model. From 9 lines

181

of Java code 23 symbolic model elements are generated (in EXAMPLE 4 the
lowest level elements are not drawn). After simulation every assignment and
invocation adds their results to the model as side effects.

1 main(String argsl[])

{
int port = 0;
if (args.length ==1)

{
port = Integer.parselnt (args[0]) ;
5 catch (..) {port=0;}

}

6 new Server (port) ;

w N

N

} // end of 1

7 Server (int port)

{
8 if (port == 0) port = DEFAULT PORT;
9 listen socket=new ServerSocket (port) ;

} // end of 7

FIGURE 24 Sample code for illustrating its data and Turing model.

Each program line produces a rhematic structure. The flow is a dicent structure,
whereas all proofs where the sequences are validated are argumentatives. The
output tape describing the symbolic model is somewhat larger than the code
(the commands 4, 5, and 7 are ignored, because they do not carry any special
interest):

EXAMPLE 4. Simulation results demonstrating FIGURE 24.

- 1 methodDef main
- 2 vardef port

- 3a pathClause if

- 3b opClause args.len ==
- 3f wvalClause 1

- 6a creatorClause Server
- 6b constructorDef Server
- 6¢c varDef port

- 8a pathClause if

- 8b opClause port ==
- 8c refClause port

- 8d wvalClause 0

182

- 8e setClause port =
- 8t refClause port
- 8g valClause DEFAULT_PORT
- 9a setClause listen_socket...
- 9b refClause listen_socket
- 9¢c creator new ServerSocket
- 9d refClause port
The tape can be drawn as a vector as shown in TABLE11. The elements in

the output tape have symbolic codes according to the Symbolic language. They
are in the tape in the execution order. A detailed description about the
representations of the symbolic Turing model will be given in Chapter 8. The
presentation shows the successive symbolic elements with a prefix of each
clause and an increasing number.

TABLE 11 Server-example (see Appendix 1) as a Turing-tape.

IM1|[V1|[P1]O1|R1[G1|V1][S1|C1|[M2][V3|[P1][O2|R2]..|

There were three different presentations about the same code above. A
principal sequential diagram is in the right side of FIGURE 24. The vector
showing the corresponding symbolic model is shown in TABLE 11 illustrating
the symbolic Turing tape.

7.2 Foundation for KnowledgeWare

In this section a formalism for capturing knowledge from the symbolic
atomistic model and its simulation results is defined. The information flow for
it is described as follows:

Proposition 4. Information from the atomistic model and its
simulation results can be comprehended in a layerwise form. By using
the specified actions the user is able to create high level concepts when
locating the program flows of interest.

721 Domain-independent definitions for knowledge

According to the Peircean taxonomy, the following definitions form semiotic
layers. These can be applied for the symbolic atomistic model.

Definition 39. KnowledgeUnit

Let M be a symbolic model and S a subset of atoms in M. A KnowledgeUnit is a
subset of S, which can be used for building a mental model of the program
behavior for the user.

183

For example, we may have an output tape which contains an if-command
with a condition, true-clauses and else-clauses. The KnowledgeUnit is then a
proposition built from the if-command for understanding the functionality of
the corresponding command in the Symbolic language. It is characterized in
every case by the corresponding condition, but the user can consider this
KnowledgeUnit in multiple ways:
- In a situation dependent case the user tries to get a value true or false for
it.
- In higher-order logic the user tries to prove the command correct or
incorrect.
- In evaluating usability of the command the user tries to evaluate
whether the command is good enough to be used in upcoming software
versions.

Each clause of the simulation output can be considered both as a proposition
whether it will become executed or not, or as a proof to verify whether its
output is correct or not.

In building knowledge-based systems it is essential to assume that
knowledge is something that can be identified, modeled, and explicitly
represented (Aamodt et al., 1995). In computational semiotics Gudwin (2006)
defines KnowledgeUnit to contain selectively collected data and information. In
our research the grammar including its semantic is the starting point. It is then
changed into a model element. Knowledge units are, as shown in FIGURE 25,
collections of model elements with relations between them.

Grammar L. Symbolic Knowledge
| S _ > .
Term Model Element Unit

1.

FIGURE 25 Bridging from grammar to model, and knowledge unit.

Knowledge type is a class describing a knowledge unit according to the
classification. It can be either fundamental, propositional, or argumentative
knowledge (Gudwin, 2006).

Examples related to Appendix 1:
- Class Server is a KnowledgeUnit, into which user knowledge is
accumulated in reading code.
- The relevant methods are KnowledgeUnits.

Definition 40. Dependency graph
Let A be a KnowledgeUnit considering the model M. A dependency graph is a
network and the created visualization focused on A so that incoming references

184

are drawn in one direction (top to bottom or left to right) and outgoing
references in the opposite direction.

A dependency graph is a skill level presentation, making it possible for the
user to search, match and make decisions on the information in the display.

Definition 41. Explanation

Let C be an input sequence (input tape) giving an output tape O (Definition 28)
as a simulation result (see Section 6.9.3). An explanation is then a filtered flow
to transform O into a logical graph containing both the program flow and the
side effects (see FIGURE 26).

Q306TEED Model |
Modsl

T
05067000 | Il
pathciff
Conditton Then Ele
[” .,

[

£ 1
014865C0 01dFriend
defwvardef |
Tips WarMame Definitions
- ‘ 4 i

-
01496430 Hello
defvardes | v
Typ= Varllame Dafinitions b
Y) .

-
05067BB0 | SEff 1
Thea s seffectinitvar

SymbolicElement | WVarMName | SymbolicTipe Claunse®

-
0306TAAD | SEff 2
B b seffect:midvalue
Funcrion ArgList Clause®

. F
03067890 SEff 3
. seffect:midvalue
Functton Artplist | Clause*

. P

03067CCO | prnt |
getcall

Call Arguments

oy F
05067880 SEff 4
seffectinvoke
ResultType Classmame Method Arp*

05067770 SEff 5
seffectimivar
SymbolicElement | VarName | SymbolicTipe Claaze*

FIGURE 26 A graphic explanation is a set of causal relations.

A specialized explanation is a flow-dependent set of Symbolic clauses connected
with each other. The types of explanations are:

- Data flow

- Program flow

185

- Call tree

- Object flow

- Control flow

- Operation flow

List of states and side effects (see Definition 31).

It is possible to mix these flows and to filter the information flexibly by using
regular expressions, selecting side effects etc. The output tape is like a
hierarchical database, where the invocations form the structural hierarchy for
the explanation, too. It is useful to express explanations as text by using
natural semantics or graphically by visualization: in FIGURE 26 the top element
is the model, which activates an if atom, which activates a condition atom
which, if true, gives the statement atoms.

Definition 42. Argument

Let E be an explanation considering a symbolic flow (see Section 6.9.3). An
argument is a reasoning result on deciding whether the explanation is correct,
includes to correct or incorrect cases or gives new information for deciding
changes for the flow.

Example about Appendix 1:
- A deductive reasoning chain: The TCP/IP-connection is opened because
the object ServerSocket is created. The latter was enabled by the
constructor of Server, which was activated by the main method.

7.2.2 Problem centric knowledge definitions

A maintenance task can be seen as a specification either to correct an existing
error, to find the trouble, to verify the current code, or to plan changes for the
current version (corrective, adaptive, perfective, and preventive tasks as well as
re-organization requests). An input for a task is a change request (CR), which is
either a specific and formal or vague and informal task description.

A task solving process (P) is a set of activities to complete the task. The
process contains a problem formulation phase (recognition), a problem analysis,
and verification phases in order to check the low level features (Gilb, 1988).

Definition 43. ProgramConcept

A ProgramConcept is an association made by the user in order to understand
the underlying atomistic model. It is a specialization of an abstract concept to
be used for mapping task actions to code in formulating information retrieval
from the model.

As examples from the Server program (Appendix 1) consider the
following;:

- Each class is a ProgramConcept of its own. The ones for classes are

Server, Connection, and Vulture. Some of them are relevant in a single

186

troubleshooting case and some others are relevant in planning intended
changes.

- For tracing an object (a class) there are some essential class
responsibilities (class contracts) to be handled as individual
ProgramConcepts, too.

- The most interesting ProgramConcepts for the methods for Server are the
main, constructor (in Server), and the run method. The run method is
interesting, because it opens a connection which responds to the client.

- More specific ProgramConcepts are the constructor for Connection and its
run method.

Because ProgramConcept has a pragmatic feature, building ProgramConcepts
depends on the situation and the user. Once a ProgramConcept has been
created, it is persistent unless removed (forgotten), illustrating its static
behavior.

Definition 44. Object-of-interest (OOI)

Let M be an atomistic model (containing classes and methods and variables)
and C be a ProgramConcept selected for investigation. An Object-of-interest is
a target in the model, which has a special purpose for understanding data flows
and program flows.

In the Server program (Appendix 1) the main functional concepts are
starting the server and responding to the client. A task of the process of
problem recognition is to localize these concepts in the code as atom references.
In starting the TCP/IP-connection the constructor to activate the ServerrSocket
is OOL

Definition 45. ProgramContext

Let M be an atomistic model and OOI an Object-of-interrest to be inspected. Let
X be a sequence leading from the selected starting element to OOI in M. The
group of side effects before OOI in X is called a ProgramContext for OOI
defining the coming sequence.

The essential use for a ProgramContext is to understand cross-cuttings
activated by the ProgramConcept. Because the ProgramContext defines the
preconditions for the OOI and the simulation process is capable of creating the
assumed side effects for the code, the definition of ProgramContext leads to a
construction similar to the Hoare triple, where input side effects work as
preconditions for the triple and conditional output side effects are
postconditions for it.

Unlike ProgramConcept, a ProgramContext provides a dynamic, bottom-
up approach for the model M. Together the ProgramConcept and the
ProgramContext form a couple for describing both high level and low level
functionalities. It is the process of verification which can prove whether the
assumed high level approach will be implemented by the low level
presentations made by the model M.

Examples from the Server program (Appendix 1):

187

- The run method of Server. How many invocations for it are there in the
code?

- The constructor for Connection. Are all Connection objects created in the
same way?

- The run method of Connection. Is the sequence correct, or are there
several different use cases for the method?

Understanding cross-cuttings and side effects is the most laborious phase in
understanding object-oriented software. ProgramContexts can be used as an
approach for understanding cross-cuttings. In this, collecting bottom-up
information into higher level concepts is useful.

Definition 46. Hypothesis

Let M be a symbolic model and P be a maintenance task solving process. A
hypothesis H is an assumption related to M, which formalizes the subtarget (or
target) of P.

Often auxiliary information must be used for localizing the requirements
represented in H. For any simulated output a hypothesis H can be expressed as
a set of lower level theorems, which describe the assumed behavior of the
program flow with its alternative logic and dependency information.

In the example FIGURE 24 the most evident hypothesis is named starting a
server. It can be formalized to contain any sequence between main and the
corresponding OOL

Definition 47. Theorem
Let H be a hypothesis. Theorem T is a resolution tree, which defines the logic
for H based on operands and constraints and connectives for relations between
program elements. The purpose of T can be either validate or refutate. A
theorem can be nested containing subtheorems.
Because of the formulation of the resolution tree, logic programming and
constraint solving are recommandable implementations for solving theorems.
Otherwise in the example FIGURE 24 in a practical case there can be
several ProgramContexts that lead to the current hypothesis. Therefore
theorems are often complex, but they can be made easier by splitting the
sequences shorter.

7.2.3 Summary illustrating knowledge-related information

When the informative model of the atomistic model and the proposed
classification of this section and the Rasmussen category and the Peircean
taxonomy are combined, the correspondence table (see TABLE 12) is obtained.
TABLE 12 builds a procedural familiarization model for the atomistic model. It
clarifies the kinds of actions (Column 3, see later Section 7.4) the user should
employ in order to understand the type of information on the left column (see
Section 7.3).

188

TABLE 12 The information ladder based on the atomistic model.

Atomistic model, behavior model Information | Action Equivalence in Peirce’s

and conclusions level level taxonomy

1. Symbolic model itself Data Skill Rhematic

e Symbolic name Data Skill e Symbolic

e Object handle Data Skill e Indexical

e An element in the tape Data Skill e Iconic

e A structure in code, a Data Skill e Sensorial
Symbolic clause

¢ An object (corresponds to Java | Data Skill ¢ Object (entity)
object)

o A side effect Data Skill e Occurrence (value)

2. Tape (sequence) Information | Rule Dicent

e Symbolic Element* Information | Rule e Iconic dicent

¢ Metaclause connecting Information | Rule e Symbolic dicent
elements: clause

3. Proof or conclusion Knowledge | Knowledge | Argumentative

e Symbolic output tape Knowledge | Knowledge | e Deductive reasoning

e Collection of output tapes Knowledge | Knowledge | ¢ Inductive

¢ Conclusions about inductive Knowledge | Knowledge | ¢ Abductive
reasoning

Each term in the symbolic model (Column 1) maps directly to the rhematic
concept of Peirce (Column 4). If the element can be expressed by words, it is a
symbolic reference. Otherwise, it can be either relative being indexical or
absolute being iconic. The iconic references can point to either an entity being
object which has its own life cycle, or to an observation being a sensorial view
or to an occurrence being a temporary value.

Furthermore, the Turing tape has a clear correspondence to the dicent
concept. A tape itself is an iconic dicent, an explanation (Definition 41), whereas
a tape, where the symbolic conditions are expressed is a symbolic dicent. The
third main concept of the Peircean taxonomy, argumentative (Definition 42), is
similar to a proof where symbolic tapes are tested as ProgramContexts
(Definition 45) against user assumptions (hypotheses based on definition

Definition 46) of their behavior considering the most critical objects (Definition
44).

7.3 Illustrating information model for source code

In this section descriptions for the information layers are presented.
7.3.1 Information model for an atom

Each symbolic element of FIGURE 24 can be considered to be a center which
contains the definition and the links. An atomistic mental image about a

189

variable, X, is shown in FIGURE 27. The code is listed on the right side of the
figure.

void H()

FIGURE 27 Skill-level presentation (variable X).

The variable, X, (e.g. port and listen_socket) in TABLE 11 can be seen in the focus
of the representation with its links so that the structural dependency is shown
from top to bottom, the contents (data) dependencies from left to right (Y to a)
and the calling hierarchy from the south west corner to the south east corner (a
to Y). We suggest that this simple topology is enough for giving the reader an
insight about the current element showing the syntax, semantic relations, and
the behavior model. This model illustrates human thinking. It can be extended
to cover all the other element types, too. 3¢

Examples:
- For each variable a data flow is drawn connected with the referencing
methods.
- For each method a call tree and a reference tree are drawn.
- For each class a diagram to show its members and their dependence
graphs are drawn.

7.3.2 Information model for a flow
Each symbolic sequence can be thought to be a Hoare triple with its specific

preconditions and postconditions. A symbolic flow contains all the selected
elements of the output tape.

% However, this representation is not optimal for a computer display, because it is not
scalable.

190

Tape = SymbolicElement*

For each element a Hoare Triple can be defined as {P} C {Q} (see FIGURE 28).

® 0—0=0—-0| @

FIGURE 28 A causal chain of a sequence with its pre- and postconditions.

The logic of FIGURE 28 resembles a rule or a cascaded rule. In the proof-of-
concept of the tool (see Chapter 8) there are some use scenarios of how to use
this rule. Let’s call each use scenario a context. Java is mostly a context-free
language, but the preconditions can have influences on how the code should be
interpreted. The causal chain has context-sensitive features if it contains object
handles not created or variables not initialized before use, but it doesn’t prevent
the user from exploring the references to the unknown handles statically if the
dynamic status of an object is not known.

The model of FIGURE 28 provides two thinking models: a functional
model, which evaluates input and output as a black box, and a class box model,
in which all elements in the tape are visible for interpretations.3”

For example, a vector demonstrating FIGURE 28 for the corresponding
symbolic model of FIGURE 24 is shown in TABLE 11.

Pre- and postconditions of a sequence

The main method (main) has a special importance. It has only its arguments as
its preconditions. Furthermore, static methods do not have preconditions, but
they still can have an assumed input/output logic with their side effects. On the
other hand, all dynamic methods have a precondition according to which at
least a constructor of the corresponding class should be activated before
simulation.

Due to the assumptions of how the target sequences should be initialized,
the symbolic tool should enable selecting the order of the initialization activities
before each simulation target sequence to define preconditions dynamically, on-
the-fly. This removes the need to prepare code for test purposes, which is the
laborious phase in dynamic analysis.

The most important symbolic flows are described next from the viewpoint
of program comprehension.

37 This representation can be visualised in a computer in several ways, either as sequence
diagrams or as XML-reports, which is a scalable notation for a large amounts of
information.

191

Using specialized flows for analyzing sequences

The result of an analysis is a tape. It consists of an ordered set of elements,
which contains unordered rhematic information, data. Rhematic refers to all
elements obtained from a simulation covering the Turing model itself. It is
useful to note that a practical meaning for a subset of rhematic information for
PC purposes is an object life cycle, which is a collection of elements containing
information about selected object references starting from the constructor.
Dicent refers to an intermediate information form describing the
conditions and logical connections between the selected code elements. The
information needs of PC research (Pennington, 1987), (Burkhardt, Detienne, and
Wiedenbeck, 2002) are useful in evaluating the dicent information as follows:

- MainFlow, MF (Burkhardt et al., 2002) (main goal)

- Control Flow, CF (Pennington, 1987)

- Program Flow, PF (Pennington, 1987)

- Data Flow, DF (Pennington, 1987; Dwyer, 1996)

- Object Flow (Burkhardt et al., 2002; Pontelli et al., 1996)

- State Flow (Pennington, 1987)

It is possible to mix these flows, for example, by adding a control flow, an object
flow, and a data flow to a control object flow. This new flow creates a useful
approach for evaluating conditional object flows with their context sensitive
features. This principle leads to automatic cause-reason analysis, which has
connections to impact analysis and then to troubleshooting (Ren et al., 2004).

Examples:
- All the conditional statements and invocations of FIGURE 24 form the
program flow.
- All the data references form the data flow.
- All the side effects (see Appendix 3) form the state flow.
- All the object references starting from the constructor form an object
flow.

7.3.3 Information model for ProgramContext

The main purpose of the atomistic model is to remove the gap between the
interprocedural and the intraprocedural interpretation of the execution, making
the whole behavior model and the whole interpretation linear. In source code
analysis this has been studied in a context of path-profiling (Ball and Laws,
1996), model checking (Visser et al., 2003), and partial evaluation (Schultz, 2000).

Our approach provides a semiotic perspective, where each output is an
argumentative (Peirce, 1958), which has a logical nature describing whether the
selected sequence or element is acceptable or not (Definition 42). In a deductive
proof the sequence will be validated. In inductive argumentation the results of
arguments are collected for the user to evaluate the common features that might

192

have caused an acceptable behavior or an erroneous behavior. By summarizing
this information the user can plan how to fix the problems.38

Let’s assume that all critical sequences relating to the most critical element,
typically a method with its invocation sequence, have been simulated into a
tape (C) having its preconditions (P) and postconditions (Q) evaluated. The
focused element, the OOI (Definition 44) is shown as C in FIGURE 29 and has
its internal individual sequence. The resulting control flows due to it include
the corresponding postconditions and side effects. Function match where C is
compared with the constraints forms the proof for the current investigation
hypotheses. It is expressed as a computation match(C, Constraints). A
deductive proof gives ok or not ok as an answer.

Q
ELO—O—=0—L0)
Q £ f (@

Constraints

FIGURE 29 A model for evaluating a sequence as a Hoare triple.

The following short example code (see EXAMPLE 5) illustrates the complexity
of object-oriented code (Pontelli, Ranjan, and Gupta, 1998) from the viewpoint
of the atomistic model. There is a constructor for the class Connection, which
obtains as its parameter (on line 1) the handle referring to the JDK class
SocketImpl, which is defined on line 10. Because the called class is abstract it is
not possible to know the type of a concrete object to be referred. There can be
one or one thousand of classes in the code, which have defined SocketIlmpl in
their inheritance path. Therefore, the user should make rough assumptions in
order to detect all the possible reasons for why some object type may have
caused a problem in this case in the transform-function (on line 6), which is the
only method (function) programmed by the user software in this short example.

EXAMPLE 5. Demonstrating complexity of unknown types.
1 public Connection(SocketImpl client_socket)
// Give the thread a group, a name, and a priority.

2 client = client_socket;

3 Abductive argumentation (Peirce, 1958) is not discussed in this research.

193

in = new DatalnputStream(client.getlnputStream());
out = new PrintStream(client.getOutputStream());
line = in.readLine();

outline = transform(inline);

out.printin(outline);

~N~Nooh~hw

[e¢}

client.close();

}

10 public abstract class Socketlmpl implement SocketOptions ..

Thus the type of the variable client_socket is the only critical input precondition
(P) in this case causing a possible expansion of one to several types to be
checked. The only internal constraint here is the transform function, because
other functions are JDK-references. However, JDK invocations can create side
effects like memory overload or thread synchronization problems. A tool
should be able to capture the whole inheritance and reference hierarchy for
every class and object (Definition 14) under the control of the user, which makes
testing more user-friendly. By using simulation it is possible to trace each input
combination step-by-step obtaining a side effect model for each use scenario.

Learning the different use scenarios and the context-sensitive features for
selected elements or for the selected tape gives knowledge to the user. The
triple of FIGURE 29 can then be seen as a new third dimension, an extension to
a sequence of FIGURE 28, or a focus of FIGURE 27, where multiple input paths
and output paths are added into it to form a ProgramConcept (Definition 43).
Each input combination P(i) (Definition 45) leads to a different context, but it is
usually possible for the user to inductively create different combinations for
more abstract context groups.

7.4 Interaction model using action levels

In this section the information ladder process from the task to mental models is
described starting from the source code model and the tape, the outputs of
Chapter 5 and Chapter 6.

7.4.1 SkillAction

The skill-level describes making relatively fast operations through perceptions.
A stereotype for any skill-based action is defined next.

We define SkillAction as an action that converts a view, such as a
computer display describing a part of a program as an atomistic model, into a
perception in order to make observations about the elements.

SkillAction is the center of PC, because it enables both learning from a
perception and necessary information for a decision of how to continue
problem solving. Some skill-based actions according to the Symbolic language
are:

194

- Loop: Detect the end condition or the contents of the loop, or loop
variables.

- Condition: Detect the condition and the true-block.

- Method definition: Detect parameters, as well as return-clauses.

- Method call: Detect a method call, locate it into the code.

- Creating an object: Check from the class hierarchy whether any
subclasses are created in the constructor.

The three common questions for each element X relating to the skill-level that
are essential are:

- Is element X relevant in the current context?
- Is X correct?
- Is X acceptable?

Skill actions produce atomistic focused views where the elements are connected
by the links of the model or by mental connections made by the user. A
principal display for it i