JYVASKYLA LICENTIATE THESES IN COMPUTING

8

Timo Aittokoski

On Optimization of
Simulation Based Design

4

UNIVERSITY OFI JYVASKYLA

JYVASKYLA LICENTIATE THESES IN COMPUTING 8

Timo Aittokoski

On Optimization of
Simulation Based Design

)

UNIVERSITY OF H JYVASKYLA

JYVASKYLA 2007

On Optimization of
Simulation Based Design

JYVASKYLA LICENTIATE THESES IN COMPUTING 8

Timo Aittokoski

On Optimization of
Simulation Based Design

)

UNIVERSITY OF H JYVASKYLA

JYVASKYLA 2007

Editor
Timo Minnikko
Department of Mathematical Information Technology, University of Jyvaskyld

ISBN 978-951-39-2865-0 (PDF), 978-951-39-2788-2 (nid.)
ISSN 1795-9713
Copyright © 2007, by University of Jyvaskyld

Jyviaskyld University Printing House, Jyvaskylda 2007

ABSTRACT

Aittokoski, Timo

On optimization of simulation based design
Jyvéaskyla: University of Jyvaskyld, 2007, 110 p.
(Jyvéaskyla Licentiate Theses in Computing

ISSN 1795-9713; 8)

ISBN 978-951-39-2865-0 (PDF), 978-951-39-2788-2 (nid.)
Finnish summary

In many industrial processes it is imperative to be able to control features (qual-
ity, production cost, strength, etc.) of the end product. Processes can be simulated
using specific mathematical models, upon which the effect of different input vari-
able values of the process can be tested to produce desired end result. Often input
variable values are adjusted by trial-and-error, based on the designer’s expertise,
producing arbitrary results varying from poor to excellent.

With simulation based optimization, designer no longer adjusts single de-
sign variable values, but rather he/she describes the desired end result with a
higher abstraction level, and an appropriate optimization algorithm finds proper
values for any design variable.

In this study, properties (such as maximum power, efficiency and suitability
of gearing to engine properties) of internal combustion engines are optimized.
Our problem setup, as several other real life engineering problems, places some
special requirements for the optimization system, and we consider three impor-
tant characteristics: efficiency (generally, running the simulator is computation-
ally expensive) in terms of objective function evaluations, global search instead of
local one (to avoid local minima often present because of high nonlinearity), and
treating multiple objectives simultaneously in the problem. One more character-
istic of our problem is having no gradient information available. In this study we
give some perspectives to our problem and present cost effective ways to solve it.

In our study, we want to solve efficiently (using a minimal number of objec-
tive function evaluations) and in a global and inherently multiobjective manner a
complex task with a practical value. We alter dimensions and the shape of the ex-
haust pipe of a 2-stroke engine, and thus affect power output characteristics of the
engine. Our objective functions are more complicated than in some of the previ-
ous studies, and we address the very important problem (from the perspective of
vehicle performance) of fitting the engine properties to gearing and transmission.
This study also adheres to an important topic often faced in real world applica-
tions, namely solving optimization tasks in case of several conflicting objectives
via the use of scalarization methods.

Keywords: optimization, multiobjective, global, efficient, simulation, scalariza-
tion, reference point

Author Timo Aittokoski
Department of Mathematical Information Technology
University of Jyvaskyla
Finland
timaitt@jyu.fi

Supervisor Professor Kaisa Miettinen
Helsinki School of Economics
Finland

kaisa.miettinen@hse.fi

Examiners Professor Jouni Lampinen
Department of Information Technology
Lappeenranta University of Technology

Finland
jlampine@lut.fi

Professor Henrik Saxén

Faculty of Technology, Heat Engineering Laboratory
Abo Akademi University

Finland

hsaxen@abo.fi

ACKNOWLEDGEMENTS

This work would not have been possible without the encouragement, expertise
and insights of my supervisor, professor Kaisa Miettinen. For technical issues
related to the integration of NIMBUS software to the optimization system of this
study I am indebted to Vesa Ojalehto. For interest to my work, and for evaluating
my thesis, I would like to thank professor Jouni Lampinen and professor Henrik
Saxén. I would like to thank doctor M.M. Ali for providing the source codes for
the CRS2 and CRS4 algorithms. My lifetime fascination with engine design and
improvement originates from my boyhood years and writings of S. Tiittanen and
late and widely appreciated Gordon Jennings.

This study was financially supported by COMAS graduate school, Acad-
emy of Finland (grant number 104641), Ellen & Artturi Nyyssonen Foundation
and Jenny & Antti Wihuri Foundation.

Finally, I would like to thank my parents for creation of my essence, my
loved ones, friends and colleagues for being there, and last but not least, Fourmyle
of Ceres for the source of amaranthine inspiration.

Jyviaskyld 15th November 2006

Timo Aittokoski

LIST OF FIGURES

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10
FIGURE 11
FIGURE 12
FIGURE 13
FIGURE 14
FIGURE 15

FIGURE 16

FIGURE 17

FIGURE 18

FIGURE 19

FIGURE 20

Overview of the modules of a heterogenous optimization sys-

tem. . ..o Lo 13
An example of a non-convex function with two local and one
global minima.o 00000 19
Nelder-Mead simplices after a reflection and an expansion step.

The original simplex is shown with a dashed line. Figures
from[39]. 24
Nelder-Mead simplices after an outside contraction, an inside
contraction, and a shrink. The original simplex is shown with

a dashed line. Figures from [39]. 24
Niederreiter random sampling using 1000 points in a two di-
mensionalcase. 32
Uncertainty about the function’s value at a point (e.g. x =

8) can be treated as if the value there were a realization of a
normal random variable with mean and standard deviation
given by the DACE predictor and its standard error. Figure
from[32]. 36
An example of SCGA crossover in two dimensions. Figure
from[26]. e 38
Steps of the main loop of the DE algorithm. Notice that a chro-
mosome equals to an individual, and a gene equals to a design
variable in this figure. Figure from [8]. 42
Pareto optimal sets, ideal and nadir objective vectors in two
cases. Figures from [43]. 45
Sample screenshot of NIMBUS software. 50
A flowchart of the NIMBUS algorithm. Figure from [22]. . . . 51
4-stroke engine cycle. Figures from [34]. 54
2-stroke engine cycle. Figures from [34]. 55
Basic pipe shape consisting of four sections: diffuser (aggre-
gated with header pipe), belly, baffle cone and stinger. 59
Waves and pressure distribution inside the exhaust pipe. Fig-

ures from [62].o 60
Simulated and experimental dynamometer results for the Par-

illa engine. Crosses: simulated, solid line: experiment. Figure
basedon[41].o 66
Examples of exhaust pipe shape produced using the Blair model.
Shape is presented to simulator using seven pieces, L1-L7. 69
Two examples of exhaust pipe shapes produced using horn
model. Shape is presented to simulator using seven pieces. . . 72
Inflexibility of the horn model. This shape of the exhaust pipe

is not reachable using horn model. 73
The shape envelope for the FFS model and one resulting shape.

The shape is presented to the simulator using ten sections. 74

FIGURE 21 Bezier curve with two adjustable control points inside their
respective boundaryboxes.o 0 0L 77
FIGURE 22 Example of smooth exhaust pipe shape created using Bezier
model. 78
FIGURE 23 Example of flexibility of Bezier model: approximation of horn
shape.o 78
FIGURE 24 Three possible properties for optimization: maximum power,
integrated power and location emphasized integrated power. . 79
FIGURE 25 Ultimate driving force curve (UDFC) and torque cascades. Fig-
urefrom [13]..o 83
FIGURE 26 Examples of actual pipe shapes using all four models in a
CRS2 run. On top of each shell, the objective function value
and the respective evaluation number in parentheses. 89
FIGURE 27 Examples of pipe shapes and corresponding power curves for
allfourcases.o 96
FIGURE 28 Power curve and corresponding pipe shape of the final inter-
active solution (25.3,0.87,11.2). 100
LIST OF TABLES
TABLE 1 Typical classification scheme based on the nature of the
problem functions as givenin[19]. 18
TABLE 2 Design variables and their bounds for Blair model. 68
TABLE 3 Design variables and their bounds. 71
TABLE 4 Design variables and their bounds for FFS model. 74
TABLE 5 Design variables and their bounds for the Bezier model. 76
TABLE 6 Results using Niederreiter random sampling. The best
function value gained before a given number of evalu-
ations in each cell is on top, and respective evaluation
number is below in parenthesis. 88
TABLE 7 Results using CRS2 and population size 5n. The best func-
tion value gained before a given number of evaluations
in each cell is on top, and respective evaluation number
is below in parenthesis. 88
TABLE 8 Comparison of different global optimization algorithms.
Best function values gained before given number of eval-
uations in each cell are on top, and respective evaluation
number is below in parenthesis. 91
TABLE 9 Ordinal comparison of different global optimization algo-
rithms. Algorithms for each function evaluation level are
ordered columnwise. 92
TABLE 10 Multiobjective optimization results and weights using neu-
tral compromise solution (NCS) and weighted and scaled
Chebychev (WSC) scalarization functions. 93

TABLE 11

TABLE 12

TABLE 13

TABLE 14

Reference points and solutions with different scalariza-
tionmethods.o
Effect of the number of function evaluations to solution.
Reference point: power = 22, coverage = 1.0, bmep = 10.
Effect of the number of function evaluations to solution.
Reference point: power = 25, coverage = 0.88, bmep = 10. .
Interactive solution process.

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES AND TABLES
CONTENTS
1 INTRODUCTION ..couiiiiiiiiiiiiiiiiiiiiiiiiiiii s eeensanaeeeens 11
2 OPTIMIZATION AND SOME METHODSccccceirriiiiiiiiiiinniiiennnnnn. 17
2.1 Local single objective optimization..................cccvviiiinnn 21
2.1.1 Nelder-Mead simplex methodcccn. 22
2.2 Global single objective optimization................ccccceeeiiiiiiin, 23
22.1 Classification of methods..............cc.oooiii 25
222 Niederreiter random sampling.............cccccocoiiiiiinn. 32
2.2.3 Controlled random searchccoooiiiiiiiiiiiinn, 33
224 Efficient Global Optimization...............ccccoeeiiiiiiinn. 34
225 Simplex Coding Genetic Algorithmooo. 37
2.2.6 Simulated Annealing Heuristic Pattern Search, SAHPS 38
2.2.7 Differential Evolution..............c..oooooiiii, 39
2.3 Multiobjective optimization.................ccocoeeiiiiii 42
2.3.1 Scalarization methodscccoooiiiiii 44
3 BASIC OPERATION OF INTERNAL COMBUSTION ENGINES 53
3.1 4-stroke engine cycle.................oiiiiii 53
3.2 2-stroke engine cycle.................coiiiiii 55
3.3 Focus of this study ... 56
3.4 How external ducting worksoooo 58
4 OPTIMIZATION TASK OF AN INTERNAL COMBUSTION ENGINE . 63

4.1 Framework of the optimization system.................ccoooeiiininie. 63
4.2 The engine simulatorccoooviiiiiii 64
43 Modeling the engine configuration...................ccccooo 67
4371 Blairmodeloooniniiiiiii 68
432 Hornmodel ..o 70
4.3.3 Free Form Shape model.................ccooooiiii . 73
434 Beziermodel.....cocooviiiiiiiiii 74
4.4 Defining the objective functionccoooooiii 77
441 On the implementationc.ccoooviiiiiiiii . 82
4.5 Formulation of an optimization problemc....coeiiinnil. 84
451 Single objective case............cooooiiiiiiiiiiiii 84
452 Multiobjective Casecoeeeiiiiiiiiiiiiiiii 85
|] 6 4 1 TN 86
5.1 Single objective case............cccooooiiiiiiiiii 87

5.1.1 Comparison of different shape models............................. 87

5.1.2 Comparison of different optimization methods 90

52 Multiobjective Caseccoouiiiiiiiiiiiiiiiii 93

5.2.1 Comparison of different scalarization functions................ 93

5.2.2 Number of function evaluations and solution quality........ 96

5.2.3 Interactive solution process using NIMBUS...................... 98

6 DISCUSSION AND CONCLUSIONScccceevrrriimiriniiiiiiieeeeeeennnnnnnnnenn. 101
REFERENCES ..ottt e e e 105

YHTEENVETO (FINNISH SUMMARY) eoctvuiiiiiiiiiiiiiiniiiniiniineeineennenn 110

1 INTRODUCTION

Behavior of many real-world systems and devices can often be expressed with
mathematical models. If such a model is implemented using a computer, it can
simulate the behavior of the system, and the resulting software is called a simula-
tor. The simulator evaluates behavior of the system using specific values for the
input variables and calculates corresponding values for the output variables. For
a review of simulation methodology, we refer to [5] and [20]. In industry, sim-
ulators are often used instead of small scale models, extensive testing, building
the device, or creating the system itself. There are certain reasons to this; ever
increasing speed of computing makes the use of simulators more appealing in
terms of invested time and money. Running the simulator is usually far cheaper,
faster and in some cases also safer than implementing the prototype of a real sys-
tem or device. Simulation, among other things, allows the designer to try several
different designs and to explore advantages and disadvantages of each design.

Different simulators are widely used in industry, ranging from simulation of
chemical processes of the paper making line [11] to aircraft flows [66] and internal
combustion engine processes [41]. Although the benefits of simulator usage are
undisputed, some problems still remain. A simulator merely mimics the behavior
of some system, and as such, it gives no information of how exactly that behavior
can be improved. We refer to the problem of selection of values for the parameters
and variables for the simulation as design problem, which remains in human
domain. One of the most prominent problems with simulators is how to manage
numerous input variables and their delicate interactions. It is extremely difficult
to gain results that, for example, a designer is aiming for by manually adjusting
the design variable values. This is where optimization steps in.

Optimization process can be described as a routine where the aim is to find
the best possible value for a given quantity by manipulating design (input) vari-
able values. This quantity can be referred to as an objective function, and the
optimization routine can be seen as a tool for finding the lowest / highest values
of the objective function. Optimization algorithms automatize the search pro-
cedure using different means in judging what values for the design variables
should produce good objective function values. The designer needs only con-

12

struct an objective function (which reflects the goodness of a particular design)
to meet his/her needs and define the boundaries for the search space, i.e. ranges
and other possible constraints for design variables. There are lots of different op-
timization algorithms available for different types of optimization problems. A
more thorough discussion of these can be found for example in [7], [19] and [43].

In real life the designer is rarely so lucky that he/she needs to deal with
only a single objective function. Often there are several objectives that should be
simultaneously optimized and that usually are conflicting. For example, in the
tield of engine design, the designer may want to create a powerful engine, while
(s)he must keep its fuel consumption as low as possible. These two objectives are
obviously conflicting. Problems with multiple objectives are called multiobjec-
tive optimization problems. The usual way to solve a multiobjective optimization
problem is to convert multiple objective functions into a single objective function
using a so-called scalarization function, and finding the optimum for that func-
tion by using methods of single objective optimization [43]. Also, especially in
the field of engineering, multiobjective optimization problems are often solved
using multiobjective evolutionary algorithms.

Simulation based optimization, where the objective function values are de-
rived from the output files of the simulator run, places some special requirements
to the optimization algorithm. Objective function is often a so-called black box
function (the internal mechanism and structure of the function is unknown, and
only input and output characteristics can be employed). The objective function
value produced by the simulation software is often the result of a complex se-
quence of calculations. Due to the complex nature of calculations, relationships
between the decision variables and output variables do not necessarily exist in a
closed form. Also, derivatives which are commonly used to guide the optimiza-
tion process are usually unavailable. Derivatives can be estimated using finite
differences, but this, in turn, would increase computational load. Objective func-
tion evaluations can be extremely expensive computationally, because simulation
of, for example, some complex flow model may take hours or days in the worst
case. Besides, the objective function itself may have lots of locally optimal val-
ues. All the facts above suggest that we are not able to use traditional optimiza-
tion algorithms such as the steepest descent (gradient) method or the sequential
quadratic programming method (SQP), which require gradient information and
are local search methods. In other words, these methods will find the nearest
optimum from the starting point, which could be quite far from the real global
optimum. Facts above suggest that we should use the efficient (in terms of ob-
jective function evaluations) global optimization algorithm. This would help us
to tackle problems caused by several local optima and the execution time of the
optimization algorithm.

There is one more difficulty worth mentioning in simulation based opti-
mization. It is reasonable to distinguish two main parts of the optimization sys-
tem, namely the optimizer (the optimization algorithm itself) and the part which
calculates values for the objective function, in this case, the simulator. With an-
alytic problems, which can be expressed in a closed form, one can often use one

13

1) Optimization
algorithm

2) Design
variable
CONVersion

4) Objective
function value
from output files

FIGURE 1 Overview of the modules of a heterogenous optimization system.

homogenous system, i.e. optimization algorithm and objective function calcu-
lations are implemented using the same programming language, and they can
even reside in the same executable file. While speaking of simulation based op-
timization the whole system becomes easily very heterogenous and can consist
of several modules implemented using different tools and languages. The whole
system can be divided to four separate modules as depicted in Figure 1: the op-
timizer (1), input interface for the simulator (2), the simulator (3) and the output
interface (4) from the simulator to optimizer.

First there is the optimization algorithm module, which guides the whole
optimization procedure by deciding what design variable values should be passed
forward to the next module. The second module receives the design variable val-
ues and generates from them suitable input configuration files for the third mod-
ule, the simulator. For example, for the engine simulator the engine design vari-
ables must be converted to depict the whole internal engine geometry, or some
more specific part of the engine which is to be optimized. To the optimization
system, the simulator is seen as a "black box": it merely receives design variable
values and produces simulation output files which contain detailed information
on how the simulated system performed with a given set of design variable val-
ues. The simulator itself may be an arbitrarily complex set of calculations and
even consist of several software modules. The execution time for a single simula-
tion run may vary from milliseconds to weeks. In the fourth module, the output
tiles of the simulator must be handled to constitute a value for the objective func-
tion, which is finally passed back to the optimization algorithm. Then the loop
starts all over again, and the optimization algorithm uses information of the ob-
jective function value to decide upon new values for the design variables.

As can be seen from Figure 1, the optimization system may be very het-

14

erogenous: each of the four modules may be implemented using different pro-
gramming languages and platforms and they may even run on physically sepa-
rate computers. Regardless of the implementation and structure of the modules
they must interface with each others seamlessly.

Within this study, a system for simulation based optimization process is
created using the above mentioned coarse module guidelines. As a case study
and an example, an optimization system is utilized in the simulator aided in-
ternal combustion engine design process. The simulator numerically solves the
mathematical model of the engine, and can predict the engine properties such as
performance(power and torque), fuel consumption and exhaust gas composition
quite reliably, once the values for design variables are selected. The design vari-
ables may cover some or all of the basic dimensions of the engine (including bore,
stroke, number of valves, sizes, compression ratio, port timing, etc.), shapes and
dimensions of the external ducting (intake and exhaust duct) and also secondary
variables (such as injection / ignition timing settings, boost pressure, etc.) which
do not change the physical essence of the engine but may have a profound effect
on the engine output.

The main problem in the engine design process, as in many other design
processes, is how to select proper values for the design variables. In practice,
there are too many variables for a human to control systemically while pursuing
some predefined property for the engine. It is also often impossible to see the
delicate interactions between the separate design variables with regard to the
pursued predefined property.

The problem of how to find the proper design values has been tackled in
several studies. For example in [58], engine emissions and performance are opti-
mized by adjusting the values for injection parameters (timing and pressure) and
the six parameters defining piston bowl shape using genetic algorithms.

In [15], NOx emissions and fuel consumption and their variances (due to
manufacturing tolerances etc.) in the engine population produced are optimized.
The main difference to [58] is in the consideration of a large engine population
instead of one single engine. This is due to the fact, as the authors state, that it is
the engines at the extremes of the population which determine business success
or failure, not the nominal engine. Among the 15 design variables used a sensi-
tivity analysis is carried out using a Design of Experiment (DoE) method. DoE
takes advantage of orthogonality to reduce the number of experimental runs re-
quired to characterize the shape of the surface formed by objective function val-
ues. The four most significant factors are taken into closer consideration and for
these multi-level full-factorial designs are created and executed to create the re-
sponse surface model (RSM). The optimization is done using the RSM to save
expensive objective function evaluation calls.

In [72], the performance of the engine is optimized by adjusting dimen-
sions of the external ducting, where a performance measure (objective function)
is merely the mass of the air trapped inside the cylinder after the intake valve
closes. Authors consider cases with 3 and 10 variable designs using the Nelder
and Mead simplex method, the two membered evolution strategy and the multi-

15

membered evolution strategy defined in the study. After the maximum of 3500
objective function calls (flow code simulator runs) the optimization algorithm can
find the global optimum with some small tolerance.

In [4], the target of the optimization is a little bit different, namely optimiza-
tion of the sound of an engine by changing muffler and exhaust manifold designs.
By using genetic algorithms and DoE based RSM, target performance level was
achieved using function evaluations in order of tens of thousands.

In [40], cam shape for the four stroke internal combustion engine is opti-
mized. Cam shape is defined by 40 floating point values assigned to correspond-
ing control points of the B-spline curve. The shape is optimized using a floating
point encoded genetic algorithm with a population size of 40 individuals. The
objective function to be optimized is a weighted linear combination of several
objective functions, such as maximum force peak, dynamic force fluctuation, etc.,
which are derived from a simulator model of cam-operated mechanisms. Objec-
tive function is highly multimodal and non-linear. With 10 000 to 40 000 objective
function evaluations the results of the system presented in a paper form suggest
that the system can use simulator programs more effectively than an intuitive
human trial-and-error experimentation does.

In the studies mentioned earlier, the focus was on 4-stroke engines. In this
study the target of the optimization is the performance of a 2-stroke engine. Per-
formance is defined later in a few different ways, but common to all of these
is that all objective function values can be derived from the engine power and
torque curves which are produced by a simulator. In some cases, also the effect
of transmission and gear ratios are taken into account. The optimization is done
by changing the dimensions of external ducting, in this case the dimensions of
an exhaust pipe (expansion chamber). In this sense, we are solving a shape opti-
mization task, remotely similar to the ones in [40] and [58] where a cam shape and
piston bowl shape were optimized. Optimization of the exhaust pipe shape is fer-
tile because the 2-stroke engine is extremely sensitive to exhaust pipe dimension
changes and can easily lack in power more than 50% if a properly shaped exhaust
pipe is missing [12].

In our study, we want to efficiently solve(using a minimal number of objec-
tive function evaluations) a task which is somewhat more complex than in some
of the studies mentioned above and which has some practical value. We alter
the dimensions and the shape of the exhaust pipe of a 2-stroke engine, and thus
affect power output characteristics of that engine. To represent different shapes
of the exhaust pipe, we develop several different models with varying number
of design variables and also with varying flexibility of the model to represent
different shapes. Our objective functions are more complicated than in most of
the previous studies, and we address the very important problem (from the per-
spective of vehicle performance) of fitting the engine properties to gearing and
transmission. This study also adheres to the important topic often faced in real
world applications, namely solving optimization tasks in case of several conflict-
ing objectives. When solving the multiobjective optimization problem, we use
scalarization methods [43], [45] to convert the problem into a single objective opti-

16

mization problem. Scalarized subproblem is then solved using an efficient global
optimization algorithm to assure that the Pareto optimal solution found is not lo-
cal but global. We select some global single objective optimization algorithms to
be used as solvers in our optimization system and compare their properties, such
as efficiency and goodness of solution.

Especially in the field of engineering, multiobjective optimization problems
are often solved using multiobjective evolutionary algorithms. In our study, these
methods are left out of scope, because approximation of a whole Pareto front (set
of mathematically speaking equivalent solutions) is computationally expensive,
and visualization of the resulting Pareto front is innate only in the case of two ob-
jective functions. With three objective functions, visualizations can be produced,
for example, as projections to two dimensions, but with four or more objectives
intuitive and easily understandable visualization is practically impossible. In our
study we wanted to retain the efficiency and expandability of the system to an
arbitrary number of objective functions instead of only two or three. We refer to
[16] for a full coverage of the multiobjective evolutionary algorithms.

This study is organized as follows. The first chapter defines the problem in
general and introduces some related papers. The second chapter gives a short
overview to both local and global single objective optimization, and introduces
the principles and some methods of these classes. Additionally, some scalariza-
tion methods with either local or global optimization algorithms to solve multi-
objective optimization problems are introduced. Depending on the optimization
algorithm used, the resulting solutions are Pareto optimal either locally or glob-
ally.

In the third chapter the basics of both 2- and 4-stroke internal combustion
engines are presented. Additionally, design aspects and problems of the internal
combustion engine are discussed. Based on the conclusions drawn, this study is
focused to optimize properties of an engine by altering the shape of the external
ducting of a 2-stroke engine. At the end of the third chapter, a short overview of
the working principles of external ducting (exhaust pipe in this case) is given.

At the beginning of the fourth chapter an overview of the optimization sys-
tem developed is given. After that separate parts of the system such as the en-
gine simulator, different ways to model the engine configuration (exhaust pipe
shape), the objective function (both single- and multiobjective formulation), and
the scalarization methods are covered more in depth.

The fifth chapter covers the test results of the system created both in the
single- and multiobjective case. The sixth chapter briefly discusses the test re-
sults and the problems found during the testing, and presents some ideas for the
future work to improve the functionality of the optimization system. The seventh
chapter presents the conclusions for this study.

2 OPTIMIZATION AND SOME METHODS

We all are familiar with the basic concepts of optimization. In our everyday life
we continually come across with optimization problems. For example, while
planning a visit to our friend on the other side of the city, we may plan our route
so that it is the shortest or fastest possible. While driving on a highway and notic-
ing that we are a little bit short of fuel, we may adjust our way of driving in order
to save fuel and to get to the next gas station. In both of these situations we are
optimizing some quantity of the system. In the first example we are optimizing
our route, and our objective (function) is to minimize either the distance or time
to the destination. In the second example we are optimizing our fuel consump-
tion, and the objective is to maximize the length of travel before the fuel runs
out.

In both of these cases some single property of the system is identified, and
then optimized(either minimized or maximized). This property is referred to as
an objective or criterion. When it is quantitative, the numerical value for the
goodness of the given solution can be evaluated by using a problem specific ob-
jective function. If in the first example our objective is to minimize the length of
the route, the objective function value is simply the length of the given route.

Sometimes it may be necessary to apply some constraints to design variable
values for the mathematical model to be meaningful and for the optimal design
to be implementable. For example, the length of some physical item may not be
negative, or the volume of some object must be sufficient to house some specified
apparatus.

If there is only one objective to be improved, it is called a single objective
optimization problem. However, in real life, we often face problems with several,
often conflicting objectives. What if, in the previous highway example, we were
short of fuel, and yet in a hurry to a meeting? Driving fast would consume more
fuel, driving slow and we probably would not make it to the meeting in time.
In this case we face a multiobjective optimization problem with two conflicting
objectives. There could be even more objectives to be considered simultaneously.

Optimization problems can be classified in several different ways. Probably
the most obvious distinctions in problems involve variations in the mathematical

18

characters of the objective and constraint functions. The objective function may
be very smooth in some cases, or discontinuous in others. It may be given in
a closed analytic form, or its value may be evaluated solving a series of several
complicated subproblems or running a computationally costly and time consum-
ing simulation. Table 1 given in [19] represents a typical classification scheme
based on the nature of the problem functions, where a significant algorithmic ad-
vantage (the optimization algorithm is suited to the problem function type) can
be taken of each characteristic.

TABLE 1 Typical classification scheme based on the nature of the problem functions as

given in [19].
Properties of objective func- | Properties of constraint
tion function
Function of a single variable | No constraints
Linear function Simple bounds
Sum of squares of linear func- | Linear functions
tions
Quadratic function Sparse linear functions
Sum of squares of nonlinear | Smooth nonlinear functions
functions
Smooth nonlinear function Sparse nonlinear functions
Sparse nonlinear function Non-smooth nonlinear func-
tions
Non-smooth nonlinear func-
tion

There are also other features to distinguish different optimization problems.
One of these is size, or dimensionality (number of design variables) of the prob-
lem. The problem size affects both the storage and the computational effort re-
quired to obtain a solution. Hence techniques that are effective for a problem
with only few decision variables may have a prohibitive cost for problems with
tens or hundreds of decision variables. In problems with linear objective func-
tions dimensions can grow to the order of tens of thousands before the problem
is considered big i.e. of large scale nature, whereas nonlinear problems can be
considered big with essentially lower number of dimensions, depending on the
nature of the functions involved.

One very important distinction is to be made as regards the information that
is available for the optimization algorithm during the solution process. In some
cases it may be possible to compute analytically first (and second) order partial
derivatives of the objective function, while in another case only the function val-
ues may be available. The latter is usually the case if the objective function value
is drawn from some complex external device, such as a simulator. In a multidi-
mensional case the vector consisting of first derivatives is called a gradient. Gra-
dient refers to a rate of change with respect to the distance of a variable quantity
in the direction of the maximum change.

19

Global mandmum

FIGURE 2 An example of a non-convex function with two local and one global minima.

Finally there is one group of objective functions not mentioned in Table 1,
which are non-convex. In this case the problem may have a discontinuous feasi-
ble region, i.e. allowable area defined by constraints, and there may be multiple
locally optimal points. By the type of optima the optimization algorithms are able
to find they can be divided into a local and global optimization algorithms. With
local optimization algorithms the optimum found is one closest to the given start-
ing point of the algorithm. If the problem is convex, local optimum is also global
optimum. See Figure 2 for illustration of non-convex function with two local and
one global minima.

Local optimization algorithms are usually quite fast because they exploit
gradient information, which requires differentiability of the objective function
and constraint functions and depicts precisely the local behavior of objective
function. By certain information called optimality conditions, which is based on
gradient,local optimization algorithm knows when the local optimum is reached.
There are two types of optimality conditions, namely necessary optimality con-
ditions and sufficient optimality conditions. The necessary optimality condition
requires that the gradient at that point equals zero. Every local optimum fulfills
the necessary optimality condition. On the other hand, there exists points which
tulfill the necessary optimality condition, yet they are not local optima. A classic
example of this is the saddle point [19, p 64].

A more strict form of optimality conditions, and one which guarantees op-
timality of the solution, is the sufficient optimality condition, which requires the
gradient to equal zero, and the Hessian matrix (the matrix consisting of second
order partial derivatives) to be positive definite. A discussion of optimality con-
ditions can be found for example in [19, pp 61-82]. Because gradient points in
the direction where objective function values increase most steeply, gradient is
useful in optimization. Methods which use gradient information are called gra-

20

dient based algorithms, and one example of such algorithm is SQP (sequential
quadratic programming) [7].

Although gradient information is not always available, a possible strategy
is to use a gradient based method also in such cases and estimate the gradient
by so-called finite difference approximation. In this technique, the objective func-
tion values are calculated along each dimension very near to the original sam-
pling point to create an approximation of the gradient. For example, a forward

difference approximation for f’(x) can be calculated as w, where h > 0
and some small number. This approach is non-trivial in terms of accuracy and
increased computational load (objective function must be evaluated at several
locations) and implementation also needs some careful consideration [19].

Another method to calculate gradient numerically is so-called automatic
differentiation (AD). As stated in [6], AD is a set of techniques for transforming a
program that calculates numerical values of a function into a program which cal-
culates numerical values for derivatives of that function with about the same ac-
curacy and efficiency as the function values themselves. The basic process of AD
is to take the underlying program which calculates a numerical function value,
and to transform it into the transformed program which calculates the desired
derivative values. The transformed program carries out these derivative calcula-
tions by a repeated use of the chain rule from elementary calculus, but applied to
floating point numerical values rather than to symbolic expressions.

The use of automatic differentiation is not always possible with black-box
type software, which is the case with simulator in this study. For this reason, AD
is not used in this study. We refer to [21] for thorough discussion of the topic.

Gradient free local optimization methods which use only objective function
values are called direct search algorithms. One of the most advanced algorithms
in this group is the Powell’s algorithm [52] (and its modifications), which is on a
par with gradient based methods.

Global optimization algorithms are capable of finding a global optimum of
the problem, instead of a local one. The global optimum is not necessary unique,
since there may exist other optima with the same objective function value. There
is no information similar to the gradient information, in case of global optimiza-
tion, that could be efficiently used: one cannot locally decide where to search
next. Nor there are exact rules similar to optimality conditions of the local opti-
mization to go by when the global optimum has been found, unless very limiting
assumptions are satisfied [63]. Thus convergence of global optimization algo-
rithms is usually stochastic by nature, that is, the probability of finding the global
optimum increases when the optimization process is continued further.

Problems with multiple conflicting objectives are usually solved by convert-
ing them into problems with a single objective using scalarization functions dis-
cussed in Subsection 2.3.1. After scalarization, multiobjective optimization prob-
lems can be solved using methods of single objective optimization on scalarized
objective function. Thus we may face same problems with local and global op-
tima as in the case of single objective optimization and, to assure that the solution
found is global, we must use a global optimization algorithm.

21

In the following sections both single- and multiobjective, and local and
global optimization algorithms are discussed more in depth. As stated in Sec-
tion 1, in this study we restrict our interest to computationally efficient single
and multiobjective global optimization algorithms. A thorough discussion on
optimization in general can be found for example in [7], [19], [43], [63] and [64].

2.1 Local single objective optimization

A general form of the single objective optimization problem is

minimize f(x)

subject to x € S.

Function f : R" — R to be minimized is called an objective function. Without
loss of generality we restrict our consideration to minimization because we can
always convert maximization problems to minimization problems by changing
the sign: maximize f is equal to minimize —f. The aim of the minimization
process is to find the point with the minimum value of the objective function,
i.e. optimum and corresponding design variable values (coordinates). Point x* is
global optimum (minimum), if f(x*) < f(x) with all x € S. If there exists § > 0
so that f(x*) < f(x) with all x € S, for which is valid ||x — x*|| < J, point x* is
local optimum.

Minimization of the objective function is done by altering values of the de-
cision or design variables x € R". The decision variables will lie then within the
decision space R"”. Sometimes all decision variable values within decision space
are not acceptable for some reason, and the acceptable subset S C IR" is called the
feasible region.

If the feasible region is the whole decision space S = IR", the optimization
problem is unconstrained. If, on the other hand, all the decisions are not accept-
able, the optimization problem is constrained. The constraints can be bounds for
the variables and linear or nonlinear equalities or inequalities, and the feasible re-
gion is their intersection. An optimization algorithm tries to locate the optimum
within the feasible region. For this reason feasible region is often referred to also
as search space. In this work we concentrate on box constrained optimization
problems where each of the design variables is bounded between certain mini-
mum and maximum values.

If the objective function is convex, a local optimum is at the same time also
a global optimum. In a non-convex case, a local optimization algorithm can not
be guaranteed to find the global optimum. For this reason, a plethora of global
optimization algorithms have been developed. The basic principles and some
examples of global optimization algorithms are discussed in Section 2.2.

Local single objective optimization in general level is out of scope for this
study. There are several excellent textbooks on the subject, such as [19]. Global
(non-convex) single objective optimization is discussed further in Section 2.2.
Only the general principles of gradient free class of local single objective opti-

22

mization algorithms, namely direct search methods, are given here in a concise
manner. Only one gradient free method, the Nelder-Mead simplex algorithm, in
the class of local single objective optimization, is presented, because concepts of
it are utilized in several global optimization methods.

Direct search methods do not use derivative information of objective and
constraint functions, neither do they compute approximations of derivatives. They
only need objective function values at specific locations, and this information
is used to deduce into what direction search should be directed. Direct search
methods are used, for example, when the computation of partial derivatives is
impossible (which may be the case with noisy functions or with functions con-
taining unpredictable discontinuities) or otherwise difficult (complexity of func-
tions, computationally costly objective function) or when the objective function is
a so-called black box function (internal mechanism and structure of the function
is unknown, and only input and output characteristics can be employed) as is
often the case with different simulator software.

Common concepts for several local optimization methods are the search di-
rection and the step length. At the current point the search direction and the
step length to the search direction are determined, and this process is iteratively
executed until some stopping criterion is met. In direct search methods, search
direction may be determined for example by selecting decreasing directions from
the set of random unit vectors, using each axis as a search direction at a time (uni-
variate search) or testing the behavior of the objective function near the current
location and deducing a direction from that information (pattern search). Step
length may be constant, or it may be adjusted by the local behavior of the objec-
tive function. Two well-known and often referred pattern search methods are the
Hooke and Jeeves direct search algorithm [30] and the Powell’s algorithm [52].
Another main group of algorithms within direct search methods is the set based
algorithms, where set of points are expected to concentrate around the optimum
along the search procedure. Probably the best known of these is the Nelder-Mead
simplex method, which is discussed in Subsection 2.1.1. For a review of direct
search methods, we refer to [38].

2.1.1 Nelder-Mead simplex method

The Nelder-Mead simplex method is a local, gradient free optimization algo-
rithm, and since some global optimization methods to be discussed later borrow
its concept of simplex, this method is shortly introduced here. The Nelder-Mead
simplex method is a commonly used algorithm for nonlinear optimization. It
was presented by Nelder and Mead already in 1965 [49]. The method uses the
concept of a simplex, which is a multi dimensional polygon of n 4 1 vertices in
n dimensions, e.g. a line in 1 dimensional case, a triangle in 2 dimensional case,
and so forth.

The given starting point is used to construct an initial simplex, a shape with
n 4 1 points, where n is the number of design variables. The objective function
values are evaluated at the vertices of the current simplex. The algorithm then

23

chooses to replace worst (in terms of objective function value) of these evaluated
points with a new point. The worst point is thus reflected through the remaining
n points considered as a (hyper)plane. In Figure 3 point x3 is reflected through
centroid X (centroid is a point located spatially in the mean of the coordinates of
the remaining points) and after reflection it is located at x,. After the reflection,
simplex can be expanded, and x; is moved to location x,.

In general, after reflection the algorithm uses the following rules:

- If anew point x, has the best objective function value, simplex is expanded
and new reflection is done through the new centroid.

- If a new point x;, has not the best nor the worst objective function value, the
simplex is not expanded or contracted, but only reflected.

- If a new point x;, has the worst objective function value, the simplex is con-
tracted and a new reflection is done.

In Figure 4 three different operations, the outside contraction, the inside contrac-
tion and the shrink of the simplex are displayed. In outside contraction the worst
point is first reflected through the centroid, and then the simplex is contracted.
In inside contraction there is no reflection phase. In shrink vertices are brought
closer to each other.

The rationale behind the above mentioned rules is that when a better point
is found it is reasonable to stretch along to that direction more. On the other hand,
if the new point is the worst of all, it is detrimental to continue search along to
that direction and thus the simplex is contracted. If the new point is not much
better than the previous value then the step should probably be across a valley,
so it is reasonable to shrink the simplex towards the best point. Progress of the
Nelder-Mead optimization run in a two dimensional case can be visualized as a
shape and size changing triangle flipping its way to a local valley.

The usual stopping criteria for the Nelder-Mead algorithm are to stop search
when fractional change in objective function values falls below predetermined
value, when objective function values at simplex vertices are all alike to some ex-
tent, when the diameter of the simplex by some norm is sufficiently small, when
the volume of the simplex is sufficiently small or when a predetermined budget
for objective function evaluations is exhausted.

2.2 Global single objective optimization

Traditionally most single and multiobjective optimization problems are solved
using well known local methods developed for linear and nonlinear optimiza-
tion. While using these methods, it is often implicitly assumed that the objective
function is formulated analytically in a closed form (although this is not neces-
sary) and that it is convex within search space, i.e., it has only a single optimum
within the search space. It is important to notice that while using local methods,

24

Xr

FIGURE 3 Nelder-Mead simplices after a reflection and an expansion step. The original
simplex is shown with a dashed line. Figures from [39].

[#~]

Fa
Fa
-—— =7
£

e _ g
-
8,
’
¢
’

¢
4
4
ra
ra
I
&
’
L .
F
F
I
E
L
¥’
F
’
.
.
.
s
)

X1

FIGURE 4 Nelder-Mead simplices after an outside contraction, an inside contraction,
and a shrink. The original simplex is shown with a dashed line. Figures
from [39].

25

the resulting solution is only locally optimal in both single and multiobjective
case.

Several practical optimization applications tend to be of global nature. In
these cases the objective function is non-convex and contains several local min-
ima in the search area. Global optimization aims to determine the smallest local
minimum among all the local minima in the search area. In the field of local op-
timization it is easy to judge when optimum is found by checking whether the
solution satisfies the optimality conditions or not. Unfortunately, there exist no
such general criterion for asserting that the real global minimum has been found.

2.2.1 Classification of methods

Many global optimization methods have been suggested since the early years of
the discipline. These methods share common ideas thus making it possible to
define classes covering most of the methods. Such a classification is of course not
unique, but several classification schemes could be used depending on which fea-
tures are used in the classification. Below we describe a classification with some
examples of methods belonging to the classes as given originally in [63] and up-
dated with more recent ideas in [64]. This classification scheme is based on what
kind of a strategy is used to choose the next point to be evaluated. Coarsely, we
can speak of local, global and adaptive schemes. Obviously local scheme can not
work on its own in the field of global optimization, thus it is commonly used
with some global strategy, resulting in a global-local scheme. With global strat-
egy, some technique is used to spread points over the whole search space. With
local strategy, it is assumed that it is possible to find a point with a better objective
function value at the vicinity of the current point. With adaptive strategy, more
effort is put on sampling the search space in the regions where relatively small
function values are found during the optimization.

1. Methods with Guarantees (covering methods)
- Bisection Methods
- Interval Methods
2. Search methods

2.1. Global
- Random Search
- Mode-Seeking

2.2. Adaptive

2.2.1. Single Working Point Methods

- Simulated Annealing

26
2.2.2. Converging Set Methods
- Controlled Random Search
- Genetic Algorithms
2.3. Global-Local
- Multistart
- Clustering Methods
3. Bayesian Methods

- P-Algorithms

Methods with Guarantees

First class, the methods with guaranteed accuracy, are also called covering meth-
ods or branch-and-bound methods. These methods guarantee that a solution
with a given accuracy is obtained. The price to be paid for this guarantee, how-
ever, is that some a priori information of the objective function must be available
or some rather restricting mathematical assumptions must be valid.

For bisection methods [63] the objective function must be Lipschitz contin-
uous and the information required is that a Lipschitz constant K is known at the
given interval for the objective function. Intuitively, Lipschitz constant K gives a
bound to a change rate of the function value, i.e., a line joining two points of the
function between given interval can never have slope steeper than constant K.
Thus, K is the largest magnitude of the function derivative. When a set of points
generated to cover the search space is dense enough, it can then be deduced that
the difference between the true global minimum and the best value found (in
some of the covering points) will be less than some given threshold.

For Interval Methods [63] the objective function is assumed to be twice dif-
ferentiable and the first and second partial derivatives are assumed to have a
finite number of roots. Using interval arithmetic a union of intervals of decreas-
ing size containing the global minimum is obtained at each step. The algorithm
stops when the size reaches some preset limit.

Search Methods

In the second class, search methods with different strategies to choose the next
searching point are further divided to the global, adaptive and global-local scheme.
In a purely global scheme of Random Search [63] points are sampled uniformly
within the whole search space and the best point found is considered as an esti-
mate of the global minimum. This algorithm is mostly used as a part of a more
sophisticated algorithm, seldom on its own.

27

Mode-Seeking [64] is another method based on the global scheme and also
one of the first global optimization method using clustering. It uses uniform sam-
pling, and no local optimization procedure is applied. Instead, the algorithm
aims at partitioning the region into subregions containing a single minimum.
There are also other methods that work on similar principles.

In the Mode-Seeking algorithm the search space is covered by a uniform
sample of points. Some small percentage of the best points is retained. These
points are expected to cluster around some or the best minima within the search
space. The clusters are recognized by using some clustering technique and rated
based on their best objective function value. In each of the highest rated clus-
ters (e.g. the 3 best) the retained points define a subregion of the search space
for which the same overall procedure is applied again until a global solution is
considered to be found.

Adaptive search methods can be divided into single working point and set
(or population) based methods. In single working point methods, the behavior
to choose the next point is adjusted over time, thus ensuring global search at the
early stages of the optimization and convergence in later stages. In set based
methods the set of solutions are manipulated by different means and they are
expected to concentrate around the global optimum during the optimization run.

Simulated Annealing (SA) [35] employs the adaptive scheme in choosing
the search point, and it uses a single working point (only one point is moved at
each iteration of the algorithm). SA borrows its name and main principles from
physics and more specifically from annealing in metallurgy, a technique which
involves heating and controlled cooling of a material to increase the size of its
crystals and reduce their defects. The heat causes the metal atoms to become
loose from their initial positions and change their positions randomly through
higher energy states (unoptimal crystal structure). Slow cooling gives the atoms
more chances of finding configurations with lower internal energy than the initial
one.

By analogy with the physical annealing process, each step of the SA algo-
rithm replaces the current solution by a random "nearby" solution which may
have either a better or worse function value than the current point. A worse
point can be selected if it fulfills the so-called Metropolis criterion. Using the
Metropolis criterion, the worse point is chosen with a probability that depends
on the difference between the corresponding objective function values and on a
global temperature parameter T that is gradually decreased during the optimiza-
tion process. According to the Metropolis criterion, a new point y is selected over
the current point x if e//()=fW)/T > p where p is a uniformly distributed ran-
dom number between 0 and 1.

The temperature dependency (Metropolis criterion), also referred to as the
cooling schedule or acceptance procedure, is such that the current solution changes
almost randomly when T is large, but probability to accept "uphill" moves de-
creases as T approaches zero during the optimization run. The acceptance for
"uphill" moves saves the method from getting stuck at local minima.

28

Controlled Random Search (CRS) [53] is a representative of the adaptive
converging set scheme, and as such it uses the population P of points which are
expected to concentrate around the global minimum. CRS is purely heuristic
with its contraction process where an initial sample of NP points is iteratively
contracted by replacing the worst point with a better point. Further discussion
about CRS is given in Section 2.2.3.

Genetic Algorithm (GA) [48] is another exemplar of the adaptive converg-
ing set scheme. GA is an adoption of biological evolution theories to the global
optimization and as such it uses three main operators to evolve the set of solu-
tions (population): selection, crossover and mutation. Before the execution of GA
is started, number of solution candidates (population size NP) used in optimiza-
tion must be defined. Population size has effect on the convergence properties
of the algorithm: too small population may lead to a premature convergence to
some local optimum, and too large population may slow the convergence of the
algorithm to an unacceptable level.

Starting from a randomly generated initial sample S of solution points within
the search space, the basic idea of GA is to select a subset of the most fit (in terms
of objective function values) individuals for which GA operators’ mutation and
crossover are used to obtain children, i.e. new sampling points. New sampling
points are accepted to the population only if they are fit enough, i.e., have a low
enough objective function value. The traditional, binary coded, way to represent
each solution as an individual is to encode it as a string of 0’s and 1’s, by us-
ing a 10-bit binary number (suitably scaled) for each design variable. In some
cases binary coding may cause problems with accuracy (due to discretization)
or by the excessive length of individual representation with large number of de-
sign variables. A simple solution to these problems is the use of floating point
representation of variables. These GAs are called real-coded GAs, and each in-
dividual is coded as a finite-length string of real numbers corresponding to the
design variables.

In the GA'’s selection step some predetermined number of individuals are
selected as parents for the next generation. These individuals form the subset Q
of individuals, and the composition of this set is biased towards the best indi-
viduals. One often used selection method is the roulette wheel selection, where
the population is mapped onto a roulette wheel where each individual is repre-
sented by a space that proportionally corresponds to the fitness of that partic-
ular individual. Individuals to the subset Q are chosen by repeatedly spinning
the roulette wheel until all the positions in Q are filled. It is worth mentioning
that the selection phase contains a stochastic element due to the randomness of
roulette wheel selection, and thus a small proportion of less fit solutions are also
selected. This helps to keep the diversity (variation in decision variables) of the
population large, which in turn prevents premature convergence to poor local
solutions.

The GA’s crossover operation (mating) means recombination of two par-
ent individuals. It can be implemented, for example, by taking two individuals
from the subset Q, cutting the binary strings at one or more random indices and

29

exchanging those randomly selected parts between individuals. New child indi-
viduals are created as a product. Several different crossover operations exist for
real-coded GAs.

Mutation in GA can be implemented by simply flipping a 0 for a 1 or vice
versa at some random index in the binary string of the child. Mutations are usu-
ally given low occurrence probability per iteration. In real-coded GAs, mutation
slightly changes the child individual.

By using selection, crossover, and mutation operators a new generation of
individuals is created. This new population shares many of the characteristics
of its parent population, but generally the average fitness of the individuals in-
creases since the selection process gravitates towards better individuals. The
process of selection, crossover and mutation is iterated over and over again to
generate new populations until some stopping condition is met.

One often used method to ensure survival of the best solutions over the
generations is to use the elitist selection scheme. In elitism some of the most fit
individuals from the current generation are carried unaltered over to the next
generation.

Methods in the Global-Local search scheme estimate the global minimum
by finding local minima. The starting point for algorithms within this class is the
Multistart algorithm [64]. In Multistart, as the name suggests, the local optimiza-
tion procedure is carried over several times from different starting points. Each of
the local optimization runs will converge to some local minimum. Best of these
local minima is considered as the global optimum. The multistart algorithm is
obviously sensitive to the number and selection of the starting points, which can
be purely random or be based on some heuristic.

Multistart may end up into the same local minimum several times. Some
clustering method is normally used to avoid this. First, a set of uniformly dis-
tributed points within search space is determined. Then the following steps are
performed until some stopping condition is found valid.

1. The point are concentrated to the vicinity of some local minima by either
leaving out points like in the Mode-Seeking algorithm or by performing
few steps of a local optimization algorithm.

2. The clusters are identified by using some cluster analysis technique.

3. Some small percentage of points in each cluster are retained and then the
procedure continues from step 1.

Finally a local optimization algorithm is started from the best point in each clus-
ter, and the best result of these local optimization runs is regarded as the global
optimum. Several modifications of the original method have been developed by
many authors, for example [2] and [65]. A modification where the cluster cen-
ter is directly identified without any clustering technique (Topographical Global
Optimization, TGO) has been developed and applied in [65]. In TGO no actual

30

clusters are formed but, instead, points that are better than a prespecified num-
ber of their nearest neighbours are determined. These points are called topograph
minima and they are used as starting points for local optimization.

Bayesian methods

The approach of using Bayesian methods in global optimization aims at pro-
ducing algorithms that despite having a rather poor efficiency in the worst case
analysis can be used to solve average case problems efficiently. These methods
are called P-Algorithms [63] and they are based on a meta modelling scheme,
where the computationally expensive objective function is replaced with a lower
fidelity surrogate model. Surrogate model may be implemented for example by
Kriging, artificial neural networks etc. The surrogate is created by sampling the
initial set of points within the search space, and after the initial sampling, a sto-
chastic model of the objective function based on all sample points is computed.
Then a utility function (known also as an infill sampling criterion, ISC) reflecting
the rewards of continuing sampling in a particular region is maximized in order
to find the best candidate for a new sample point. The purpose of the utility func-
tion is to find a trade-off between sampling in known, promising regions versus
sampling in under-explored regions or regions where the variation in function
values is high. Due to the large overhead in fitting a sampled dataset to the sur-
rogate model and in selection of sample points, these methods are only suited for
problems where the real objective function is very expensive to evaluate. There
are many methods employing these ideas, and some of them are discussed in
Section 2.2.4.

Other methods

One interesting subclass of methods are hybrid methods, which are not classi-
tied in [64]. According to the classification above they may fall into the category
of Global-Local scheme. Hybrid methods try to, more or less successfully, com-
bine characteristics of different methods in order to produce a method having
the good qualities associated with the original methods without their drawbacks.
One commonly seen hybrid method combines the robustness of meta-heuristic
methods (such as simulated annealing and genetic algorithms) with the effec-
tiveness of local search methods (producing a coupling of stochastic and deter-
ministic methods).

A meta-heuristic is a method for solving a very general class of computa-
tional problems by combining some heuristic procedures. Meta-heuristic meth-
ods are considered to be acceptably good solvers for unconstrained optimization
problems. They are also robust and can deal successfully with a wide range of
problem areas. The drawback of these methods is that they suffer from high
computational cost (in terms of objective function evaluations) due to their slow
convergence. The main reason to their slow convergence is that these methods
explore the search space using more or less random movements without using
much of the local information about promising search directions. In contrast

31

to that, local methods employ local information heavily to determine the most
promising search directions, and thus their movements are logical and efficient.
And, as has already been mentioned earlier, the general problem with local meth-
ods is that they are easily trapped to local minima.

To create more efficient methods meta-heuristic methods can be combined
with local search methods. In general, global search (exploration) is respon-
sible for detecting promising areas, whereas local search refines the solutions
(exploitation). This is the so-called exploration-exploitation procedure, which
results with methods with convergence faster than that of pure meta-heuristic
methods. These resulting methods are not easily trapped to local minima because
they still have global properties of meta-heuristic methods.

In the following some hybrid methods are represented as examples. In [26]
concepts of the local Nelder-Mead simplex method (Nelder-Mead) are combined
with a genetic algorithm. The combined method is called Simplex Coding Genetic
Algorithm (SCGA), and it is discussed further in Section 2.2.5. In [25] concepts
of the local Nelder-Mead simplex method are combined with the simulated an-
nealing method. The resulting method is referred to as Direct Search Simulated
Annealing method (DSSA). Further, in [27] a derivative free method is used to
produce an approximate descent direction at the current solution. This Approxi-
mate Descent Direction method (ADD) is combined with simulated annealing, re-
sulting in a method known as the Simulated Annealing Heuristic Pattern Search
method (SAHPS). This method is discussed further in Section 2.2.6.

Within this study methods with guarantees were left out, since there was no
information available about the objective function required by those algorithms.
Also easily implementable global optimization methods like the genetic algo-
rithms and the simulated annealing (though they have been successfully used
in several studies, [4], [58] and [72] to mention a few) were ruled out because
of the requirement to solve the optimization problem using a minimal number
of objective function evaluations, since they typically require objective function
evaluations at least in the order of thousands. In this study the aim was set to the
maximum of one to two thousand objective function evaluations in order to carry
out the optimization runs within a reasonable time, preferably overnight.

Several methods in the field of global optimization were studied, and a set
of powerful algorithms was identified, including DIRECT [51], Multilevel Co-
ordinate Search (MCS) [31], GROPE [17], Differential Evolution (DE) [61], Con-
trolled Random Search [53] (and its variants) [2], Recursive Random Search al-
gorithm [71], Efficient Global Optimization (EGO) [32], a variant of it, ParEGO
[37], an enhancement of EGO called SuperEGO [57], hybrid methods Simplex
Coding GeneticAlgorithm (SCGA) [26] and the Simulated Annealing Heuristic
Pattern Search method (SAHPS) [27]. Out of these DE, CRS, SuperEGO, SCGA
and SAHPS were selected for further study because of their reported efficiency
(CRS [1] and [59], SCGA [26] and SAHPS [27]) and availability of the source code.
For benchmarking purposes and to make sure there remain no large unsearched

32

areas in the search space the Niederreiter random sampling method was selected
[42], [50].

Using the classification presented earlier, the selected methods fall into the
categories of global search (Niederreiter random sampling), adaptive converg-
ing set methods (CRS, DE), Bayesian methods (SuperEGO), and hybrid methods
(SCGA, SAHPS).

CRS code was supplied by M.M.Ali, SuperEGO code by M.].Sasena, SCGA
[24] and SAHPS [24] and DE [60] were downloaded from the authors” web pages.
The code for Niederreiter random sampling was implemented by Yaohang Li.

2.2.2 Niederreiter random sampling

Strictly speaking, Niederreiter random sampling is not an optimization algorithm
as such, but as seen in Section 2.2, it can be classified as a random search method.
Niederreiter random sampling was used to gain certain confidence in that there
remains no large unexplored areas (due to stagnation of the optimization algo-
rithm to some local optimum) with probably better objective function values than
gained by running optimization algorithms. To attain this, the whole search space
is covered with (quasi) random points. The points are generated using Niederre-
iter quasi random sequence generator developed in [42] and [50], and the objec-
tive function value is evaluated at every point. The generated points try to max-
imally avoid each other and cover the search space relatively uniformly, thus, by
increasing the number of points, the objective function value of the best solution
improves. In Figure 5, 1000 points are displayed in a two dimensional case. In
principle, if the number of the points is increased to infinity, the global optimum
is found.

L S e L)
D.Q—-:: h'. :.-'.‘.0.. :- .::' N ‘.. .: :..: - °:::_
B8L., ™ Lo, St e e L

AP T R T A
D? :.... .: :. s ...o..' .: .. %... :.. .0. %..., .|.: ~..._
aght e, ~ " sy :,"‘...* o

o Y NS e 'ﬂ-'_'e..'. ~ el *'..'e.:
N R I S S A S
RN T A A S
- .. N R AT

.:: ..:ll... :.: :.':.- .'..J-::. .:.‘
0.2:“.. -:."‘ q....:o.. -:,... ~o........: :-' :.: %.._
0.1 ‘ . :."..: o "". . _.-‘ &

e e R .. ‘-_’..'.-’.-
0 L L B 1+ * 4 * « 1 (e *

FIGURE 5 Niederreiter random sampling using 1000 points in a two dimensional case.

33

To create a more realistic optimization algorithm, the best point found by
random sampling could be further refined by executing a local search from that
particular point.

2.2.3 Controlled random search

The Controlled Random Search (CRS) algorithm was presented originally by W.L.
Price [53] already in 1977. Price proposed several versions of the algorithm, the
widely cited method is CRS2 [54].

In general CRS is a population based search algorithm. In the Price’s origi-
nal version the search space is randomly sampled to form the population P. Size
NP of P is much larger than the number of design variables n, the suggested
value for the NP is 10 * n [1]. In the next step a simplex is formed by selecting
n + 1 points randomly from P. A new trial point is generated by selecting one of
the points in the simplex which is reflected through the centroid of the remaining
points (as in the Nelder and Mead simplex method [49] discussed in Subsection
2.1.1). If the objective function value of the trial point is better than the current
worst point in P, the worst point is replaced in the population by the new trial
point. The process of forming a new random simplex and generating the trial
point is then repeated until some stopping criterion is met. The stopping criteria
presented in Subsection 2.1.1 are also valid for the CRS algorithm.

Price himself made the first two improvements to the original CRS algo-
rithm, producing the versions CRS2 and CRS3. In the second version (CRS2) a
more sophisticated use is made of the simplices in obtaining new trial points.
The difference between CRS1 and CRS2 lies in the way the simplex is formed. In
CRS2 the first point of the simplex is always the current best point in the popula-
tion P (others are randomly chosen), whereas the first point is randomly chosen at
CRS1. CRS3 is otherwise similar to CRS2, but it also incorporates a Nelder-Mead
type local search from the best n 4- 1 points of the set P.

After Price’s initial work the ideas of CRS algorithms have been further ex-
tended for example by M.M. Ali and C. Storey [2], who produced the variants
called CRS4 and CRS5. Experiments have proved CRS4 to be superior to CRS5
[3]. Both CRS4 and CRS5 employ a local search phase, which is gradient based in
CRS5. For this reason, CRS5 is omitted in this study.

Unlike in CRS3, in CRS4 there is no Nelder-Mead type local search. Instead,
whenever a new best point x,,;, is found by a manner similar to that in CRS2,
it is "rewarded" by an additional search around it by sampling a predetermined
number 7 of points (e.g. r = 4) from the beta-distribution using the current x,,;,
as its mean and the distance between x,,;,, and x;,,y (the worst point in the popu-
lation) as the standard deviation. This method is reported to be very efficient [1].
In our study we use versions CRS2 and CRS4. A Pascal implementation for both
versions of the algorithm was supplied by M.M. Ali.

34

2.2.4 Efficient Global Optimization

The Efficient Global Optimization (EGO) algorithm to optimize expensive black-
box functions was first introduced and described in [32]. Black-box functions
are viewed primarily in terms of their input and output characteristics without
knowledge of their internal structure. In the field of optimization, a common
form of black-box functions is implemented in simulators, the internal structure
of which is unknown and which also lack the derivative information.

EGO is not simply an optimization algorithm, it also incorporates a meta
modeling scheme. In meta modeling a real and often very expensive objective
function is accompanied with a lower fidelity response surface, i.e. meta mod-
elling summarizes how the function typically behaves, and how much the func-
tion value tends to change as we move by different amounts in each coordinate
direction. It is beneficial if meta model can incorporate estimates of its own accu-
racy.

In the meta model scheme the real objective function is sampled (i.e. func-
tion value is evaluated) only in those points where the meta model suggests that
the value of the objective function should improve the most. This scheme should
decrease the computational load, because only after a modest number of samples
the model should describe the behavior of the true objective function quite accu-
rately. However, it is worth mentioning that fitting the meta model to the existing
data may itself be very time consuming as an optimization task. In some cases,
this computational load may result in prohibitive costs.

EGO makes use of Kriging [14] to model the search landscape from points
sampled during the optimization procedure. More specifically, it exploits a ver-
sion of the design and analysis of computer experiments (DACE) model of [56],
based on Gaussian processes. DACE model has some favorable properties that
can be used as building blocks for an efficient search algorithm: the likelihood of
the sample has a simple closed form expression from which it is possible to com-
pute the maximum likelihood model, and the error in the expected objective func-
tion value of a solution also has a simple closed form expression. Thus, model
estimates its own uncertainty in predicting objective function values. Knowledge
of the possible error in the response surface is a useful property while trying to
locate a minimum on the objective function landscape, and EGO makes use of
this property explicitly, as described in the following paragraphs.

The EGO algorithm begins by first generating a number of sampling points
(approximately ten times the number of design variables [32]) within the search
space. Locations for these points are determined using a Latin hypercube (i.e.
space filling) [67] design. A square grid containing sample point positions is a
Latin square if, and only if, there is only one sample point in each row and each
column of the grid. In a two dimensional case it means that there can not be
two sample points with the same x- or y-coordinate values. Latin hypercube is a
generalization of the Latin square concept to an arbitrary number of dimensions.
By this arrangement sample points are distributed at different locations along
each axis instead of lumping them together, and as a result of that a maximum

35

amount of information about the objective function surface is extracted using a
minimum amount of sample points.

In the next step, DACE model is fitted to the points obtained by Latin hy-
percube sampling. In this phase some optimization algorithm is needed to fit the
DACE model parameters to the existing data so that the model maximizes the
likelihood of the sample.

To generate a new sample point to evaluate, EGO uses a procedure referred
to as the infill sampling criterion (ISC) to decide what point in the search space
should be included in the sample next. ISC of the EGO algorithm searches (and
this is another optimization task within EGO itself in addition to the meta model
titting task) for the point that maximizes what is called in [32] "the expected im-
provement". The idea of the expected improvement is illustrated in Figure 6
where (at the point x = 8) a normal density function is drawn with the mean
and standard deviation suggested by the DACE model. If the function’s value at
the point x = 8 is treated as a realization of the random variable Y with the den-
sity function shown in the figure, then there is a probability that the function’s
value at x = 8 is better than the currently known best function value f,,;,. This
can be seen from the fact that the tail of the density function shown in Figure 6
extends below the line y = f,,;;,. Different amounts of possible improvement are
associated with different density values. When all these possible improvements
are weighted by the associated density value, the resultis a value for the expected
improvement.

The use of the expected improvement effectively means that EGO weighs up
both the predicted value of solutions and the error in this prediction in order to
tind the point that has the greatest potential to improve the minimum objective
function value. EGO does not just choose the solution that the model predicts
would minimize the objective function value. Rather, it automatically balances
exploitation and exploration (global and local search). A solution which has a
low predicted objective function value and low error may not be as desirable as
a solution whose predicted objective function value is higher but whose error of
prediction is also higher.

Every time a new sampling point has been chosen and evaluated using the
true expensive objective function (e.g. simulator run) the DACE model is up-
dated with this new information and the next sampling point is chosen from
the location that maximizes the expected improvement using the updated DACE
model. The steps of the EGO algorithm as given in [57] are the following

1. Use a space-filling design of experiments to obtain an initial sample of the
true expensive objective function.

2. Fit a meta model (Kriging, DACE) to data of points sampled so far.

3. Numerically maximize an infill sampling criterion (ISC) known as the ex-
pected improvement function to determine where to sample the next point.

4. Evaluate the value of the true expensive objective function at the point(s) of
interest and update the meta model.

36

DACE
predictor — %

Standard
error

FIGURE 6 Uncertainty about the function’s value at a point (e.g. x = 8) can be treated
as if the value there were a realization of a normal random variable with
mean and standard deviation given by the DACE predictor and its standard
error. Figure from [32].

5. Stop if the expected improvement function has become sufficiently small,
otherwise return to 2.

For a thorough discussion of the EGO algorithm, see [32] and [57].

SuperEGO [57] by M. Sasena is an extension of the EGO algorithm, which
aims to advance the efficiency and flexibility of the original algorithm. The author
selected the name, superEGO, to signify that the extended algorithm can solve a
superset of the problems EGO was originally designed to solve. This is done, as
the author of [57] outlines, by implementing some improvements. We present
two of them in the following:

1. Improving the Kriging modeling in Step 2 of the EGO algorithm. The DACE
procedure for determining the Kriging model parameters may occasionally
lead to poorly fitting models. A simple strategy for detecting a specific type
of modeling error and a method for correcting the situation is employed by
replacing Gaussian model with a covariance model and introducing an ad-
ditional parameter into the covariance model. This should both improve the
stability of the Kriging system and to enable the non-interpolating Kriging
models.

2. Using alternative ISC in Step 3. EGO uses a criterion known as the expected
improvement criterion to select the next sampling point. Other Bayesian
analysis methods use different criteria, some search for the minimum of the
approximate model, some for the location of maximum uncertainty of the
model, and some compromise between the two. Methods vary in the quan-
tification of these ideas. The ability to use an alternative ISC in superEGO
allows a new degree of flexibility that broadens the application domain of
the algorithm.

37

2.2.5 Simplex Coding Genetic Algorithm

This section is based on [26]. Simplex Coding Genetic Algorithm (SCGA) is a ge-
netic algorithm borrowing concepts from the Nelder-Mead simplex method (see
Section 2.1.1). SCGA uses the main functions of the genetic algorithm; selection,
crossover and mutation, on a population of simplices to explore the search space
and to locate promising areas. Moreover, SCGA exploits the implicit information
of promising areas gained by exploration by trying to improve the initial individ-
uals and new children by applying a local search.

At the final stages of the optimization procedure, SCGA applies the Nelder-
Mead method on the best point reached by the previous exploration-exploitation
procedure. The purpose of this local search is to accelerate the final stages of the
GA procedure. That should be an effective strategy because the GA may have a
difficulty (due to stochastic components) in obtaining some required accuracy, al-
though the GA may quickly approach the neighborhood of the global minimum.

SCGA starts by generating the initial population P that consists of NP indi-
viduals, each individual being a simplex consisting of n + 1 vertices, where 7 is
the number of design variables. The vertices in each simplex are arranged in an
ascending order so that the vertex with the best objective function value becomes
the first. Fitness for each individual (simplex) is defined by the objective function
value of its first vertex.

In the next step, a small number of Nelder-Mead simplex method iterations
are applied to improve each individual in the initial population. Then the set Q
of parents is selected for mating. The size of Q is the same as the size of P, but
more fit members from the population P are selected with higher probability to
be included in set Q, using the roulette wheel selection introduced in the con-
text of genetic algorithms in Section 2.2. Individuals to the set Q are chosen by
repeatedly spinning the roulette wheel until all the positions in Q are filled.

In the crossover phase a random number of parents from the set Q are cho-
sen to mate together to produce children, until each parent in the set Q has mated
at least once. Thus the number of children may vary. In crossover, the first base-
line child simplex is produced by calculating the average of the vertices of all the
parents. In Figure 7(a) a dotted simplex represents a baseline child of the parent
simplices S!, S? and S3. Actual children (as many as parents), are generated by
randomly moving a baseline child within the circular area defined by the radius
of d (d is the maximum distance between pairs of parents) and the centre located
at the baseline child (see Figure 7(b) where children C!, C?> and C? are produced).

After the mating (crossover) process some children are selected for muta-
tion by choosing a random number from an unit interval [0,1] for each child, and
if this number is smaller than the predetermined mutation probability, then that
particular child is mutated. Mutation is executed by randomly selecting one of
the vertices. This vertex is reflected as a mutation. In child population, the orig-
inal child is replaced by its mutated counterpart. After mutation process a small
number of Nelder-Mead simplex method iterations are taken with all child sim-
plices for improvement. The population for the next generation consists of the

38

FIGURE 7 An example of SCGA crossover in two dimensions. Figure from [26].

NP best individuals which are selected from the original population P and from
all the children produced in the crossover and mutation phases.

After each predetermined number of generations, some of the worst mem-
bers are removed from the population P. The GA loop is terminated when the
objective function values at all vertices of the simplex that contains the best point
come sufficiently close to each other (i.e. f(x!"*1) — f(x!11) < ¢, where € is a
small positive number and set to, for example, 1078, and first upper index refers
to a simplex number, and second upper index refers to a vertex number), or the
number of generations exceeds the predetermined number which can be set equal
to min(10n,100). After the GA loop termination, the final stage is reached and
the process is accelerated by constructing a small simplex from the best points
obtained by the above procedures. Then, Kelley’s modification [33] of the Nelder-
Mead simplex method is applied on this simplex to obtain the final solution.

By numerical experiments presented in [26] SCGA seems to work more suc-
cessfully on some well known test functions (e.g. Branin, Goldstein and Price,
Shekel, Rosenbrock and de Joung) than some other meta-heuristic methods do.
The number of function evaluations seems to remain roughly in the region of 100-
500 times the number of design variables, which is acceptable for our purposes.

2.2.6 Simulated Annealing Heuristic Pattern Search, SAHPS

This section is based on [27]. It is stated in [27] that simulated annealing (SA) [35]
(see also Section 2.2) is one of the most effective metaheuristics not only for com-
binatorial optimization (for which it is traditionally employed) but also for con-
tinuous global optimization. However, compared to gradient based optimization
algorithms SA uses objective function calls profligately.

In continuous optimization, hybridizing SA with direct search methods is
a practical remedy to overcome the slow convergence of SA. The authors in [27]
introduce their own derivative free heuristic method to produce an approximate

39

descent direction at the current solution, referred to as the Approximate Descent
Direction (ADD) method. In ADD, the approximate descent direction v is ob-
tained by randomly generating m points close to the current point, and calcu-
lating the direction by using function values and mutual locations of the points.
The ADD method is used as a building block for a new pattern search method
Heuristic Pattern Search (HPS) that the authors present in the same paper. In the
HPS method, the ADD method is used to obtain an approximate descent direc-
tion v at the current point. If a better function value along the direction v with a
certain step length is obtained, this new point is accepted. On the contrary, if no
improvement is obtained along the direction v, then a mesh of points is generated
around the current point. To avoid searching randomly in all these directions, di-
rections which are similar to the direction v by some degree (which is controlled
by the pruning control parameter §) are removed (pruned), as that direction is
already known to be futile.

Finally, SA and HPS are hybridized to construct a global search method,
known as the Simulated Annealing Heuristic Pattern Search (SAHPS) method.
The SAHPS tries to get better movements through the SA acceptance procedure
or by using the HPS procedure. First a new circular neighborhood is created
around the current point with radius e. Within this neighborhood m; trial points
are generated. If more than m,. out of m trials are accepted by the SA acceptance
procedure the next major iteration of SAHPS is taken. Otherwise, within the
same SAHPS iteration, HPS is executed for m; times. The authors of [27] call the
procedure of creating trial points as diversification, and the local HPS procedure
as intensification. In the early stage of the search diversification is needed more
than intensification, while the contrary is true at the final stage of the search. For
this reason, m; is initialized with a moderate value and increased while the search
progresses.

When the cooling schedule is completed (temperature T of SA falls below a
predetermined minimum) or the function values of two consecutive trials are suf-
ticiently close each other or the number of iterations exceed 50 times the number
of design variables, the execution of the main loop of SAHPS is considered ter-
minated. As the final stage of the search the best point obtained so far is further
refined using the Kelley’s modification [33] of the Nelder-Mead simplex method.

According to numerical experiments presented in [27] the SAHPS seems to
work successfully on some well known test functions compared to two other SA
based hybrid optimization methods, especially with slightly higher (n > 5) prob-
lem dimensions. The number of function evaluations seems to remain roughly in
the region of 100-500 times the number of design variables, which is acceptable
for our purposes.

2.2.7 Differential Evolution
This section is based on [8] and [61], which both give a detailed description of the

Differential Evolution (DE) algorithm. The Differential Evolution algorithm is a
member in the family of the evolutionary algorithms, and, to be more accurate, a

40

form of the evolution strategy (ES) [9]. As such, differential evolution is a simple,
population based stochastic optimization algorithm. It was successfully applied
to the optimization of some well known nonlinear, non-differentiable and non-
convex functions by Storn and Price [61] in 1997. DE combines simple arithmetic
operators with the genetic operators (familiar from genetic algorithms) of selec-
tion, crossover and mutation. A randomly generated starting population evolves
to a final population, from which the individual with the best objective function
value is picked up as the final solution when the search procedure terminates.

GA and ES have both similarities and differences. The crossover (also known
as mating or recombination) processes of both methods are similar in that they fa-
cilitate the search process by mixing the successful information contained in more
tit members of the population to create new members. In GA the crossover step
is the main search step, while ES uses it as a secondary operator, or not at all.

In GA, the mutation operator ensures that the genetic material (different
design variable values) contained within a population between successive gen-
erations is sufficiently diverse to prevent premature convergence to some local
optimum. In ES, mutation is the main search step, and was originally imple-
mented as a Gaussian-distributed move away from the current solution vector.
This technique is effective when the average mutation step length, i.e. amount of
change in design variables, away from the current solution is comparable to the
standard deviation of the actual distribution of the design variable values in the
population. However, according to [8] that approach is computationally expen-
sive to implement.

Ideally, the mutation step length is the function of the design variable (range
of variable values) in question and the state of the evolutionary process. DE
avoids the problem of selecting a proper mutation step length explicitly by using
difference vectors formed from design variable values in the evolving population
as a convenient and appropriately scaled source of perturbations. Therefore, as
the part of the search space which is occupied by current population contracts
and expands over generations, the random step length in each dimension adapts
accordingly. This crucial idea differs from the idea of a mutation operator as used
by traditional ES in which predetermined probability distribution functions de-
termine vector perturbations.

As the execution of the DE algorithm starts, the initial population P of DE
is formed and consists of NP individuals (vectors), each with n components. NP
does not change during the optimization process. The initial population of vec-
tors (of real coded design variables) is chosen randomly and should cover the en-
tire search space to encompass sufficient diversity. If some already known good
design is available, the initial population might be generated by disturbing its
coordinates by adding normally distributed random deviations to them.

After the initialization phase, wherein the first parent population is created,
the main loop of the DE algorithm is started with its three distinctive operators,
mutation, crossover and selection. In the mutation phase at step 1 in Figure 8
DE generates the same number of mutated vectors as there are members in the
current population. These mutated vectors are later used in the crossover phase

41

as mates for each member in the parent population. The mutation process begins
by choosing three vectors randomly from the current population, each with a
uniform selection probability. The first selected vector forms the base value for
the mutated vector. The other two vectors are paired to create a difference vector,
whose components represent a random mutation step length for each dimension.
The difference vector is multiplied by a scaler F (this step is not visible in Figure
8, where F is 1) ranging in [0,2] to create the mutation step length vector. Finally,
a mutated vector is created when the first selected base vector is added to the step
length vector. The whole mutation process is repeated in each DE iteration NP
times so that a new mate for each member in the parent population is created.

The rationale of the mutation process above is that the length of the mu-
tation step in each dimension will evolve proportionally over time, taking small
steps when the variation in the values of a given design variable within a popu-
lation is small, and large steps when that variation is large.

In the crossover phase (parameter mixing), at step 2 in Figure 8, the design
variable values from the mutated vector are mixed with the design variable val-
ues from another predetermined vector from the parent population, the target
vector, to yield a so-called trial vector. In DE, each member of the parent popula-
tion serves as a target vector one after another. Thus, each parent is allowed to un-
dergo recombination exactly once per iteration of DE by mating with a mutated
vector. The crossover process in DE thus creates a child population of the same
size as the parent population. Each design variable of the parent is recombined
in a series of Bernoulli trials, where each of the design variable values assigned
to the child comes from either the original parent or the mutated vector. Each of
the design variables is evaluated one after another. The crossover constant, CR,
is used to control the rate at which crossover occurs within a single recombina-
tion cycle. CR can be loosely interpreted as the probability that a given design
variable value will come from the mutated vector rather than the original parent
vector during the Bernoulli trials. If CR = 1, then the trial vector is identical to
the mutated vector. The loose interpretation for Bernoulli trials stems from the
requirement that if all previous Bernoulli trials yield design variable values from
the original parent vector, the final design variable value is deterministically cho-
sen to come from the mutated vector. Thus, the child vector will virtually always
differ from its parent vector by at least one design variable value.

In the selection phase at step 3 in Figure 8, each vector in the child pop-
ulation is evaluated for fitness, on a competitive basis, against the fitness of its
parent vector. The one with a better objective function value of the two survives
into the next generation. Thus, the trial vector replaces the target vector in the
following generation, if the trial vector yields a lower objective function value
than the target vector. The primary benefit of this scheme is that it resists loss of
diversity by forbidding both the parent vector and its respective child vector to
survive. Parent and child vectors have some identical variable values, and if they
both survive, the population may be driven to a homogenous state, where the
diversity of individuals will be low and, thus, the DE will be unable to continue
the search.

42

After the selection phase the new population becomes a new parent popula-
tion and the evolutionary process of mutation, crossover and selection continues
until the fitness of the best vector in the population converges to some specified
value, some termination criteria is valid, or the predetermined budget for gener-
ations or function evaluations is exhausted.

The above scheme is not the only variant of DE. Other DE strategies can be
classified by the notation DE/x/y/z, where x specifies how the vector to be mu-
tated is selected (randomly from a population or the best vector in a population),
y is the number of difference vectors used, and z denotes the crossover scheme.
Using this notation, the basic DE strategy described above can be expressed as
DE/rand/2/bin. "Bin" means that a crossover is made using independent bino-
mial experiments, as explained earlier.

Parent Population y
Step 3 Fitness a b c First_selection Step 1
Selection: > 2264149 0.024074] 6.707100] 2.628748] i = 1 4 2.050385] 4516176 2.988432| i = 7 Mutation:

33.39905| 2.662534)

The selection process :I Sttt [

7.362982| 3962421
0.261289] 722887

i The mutation

H Second and Third (random) selections process selects at
7.644890] 548124] 1501183] i = 5 |leastthree
2.662534] 3.374487] 5.230873] i 2 |chromosomes from

pairs each child against gggég?g ggg?gig
its original parentin a - .

15.37960| 7.644899] 548124] 1501183

tl“d’:ﬂgﬂ':ﬁ Ony 95.09165(6.842637] 3.646995] 0.24673] / | the parsnt
children 'ha.t are more fit 16.39727| 2.050365] 4.516176] 2988432 H Step length vector population and

en ! 26.12057| 4.248105| 2 748423] 4 373105] |} (i=5) - (i=2) |creates a new
than their parents will : ot
sunvive. Thus. for a 10.88702| 0.373252| 7.522934| 1.640361 v mutated vector for
minimization problem, 13.51517] 2.006057] 7.487004] 1982854 NP =10 Mutated chromosome each parent in the

o . j= 1 semeemmeey =n =3 Step Length Yector + First selection population.
the first child is more fit I_i_l_'__[
than its parent and will PR [E T e

replace the parent in the Child Poputlation Step 2

-) Fitness a b [
next generation. [9955731 0.024074] 662208670 746|[Crossover:

33.39805| 2.662534| 3.374487| 5230873||The crossover process is a series of independent Bernoulli trials. [t
23.91859| 0.854826] 7.362082] 3.962421(|determines if the gene value for the child chromosome will come from the
658.56579] 7.051945] 0.261280] 7.22887||mutated chromosome or from the original chromosome in the corresponding
15.37969] 7.644809] 548124] 1.501183||position in the parent population. If a random variable md == CR, then the
095 00165 6.842637] 3 .646085] 024573 gene value is taken from the mutated chromosome. Otherwise, the gene
16.39727| 2.050365| 4.516176] 29858432 value is taken from the original parent chromosome. It is significant to note
26.12057| 4.243105] 2.748423| 4.373105||that CR = 1 for the final bernoulli trial if all preceading trials for a given
10.88702| 0.373252] 7.822084| 1.640361|(chromosome have been unsuccassful. This virtually ensures that each child
13.51517| 2.006057| 7.487004| 1.982054|chromosome differs from its original parent by at least one gene value.

FIGURE 8 Steps of the main loop of the DE algorithm. Notice that a chromosome equals
to an individual, and a gene equals to a design variable in this figure. Figure
from [8].

2.3 Multiobjective optimization

This section is based on [43, Chapter 2]. Multiobjective optimization is needed
whenever there are more than one objective function to be optimized simultane-
ously, as is the case often with real world applications. A general form of the
multiobjective optimization problem is

minimize { f1(x), f2(x), ..., fr(x) }

subjecttox € S,
where
fi(x) is objective function (i = 1, ...,k), whose value depends on design variable
vector x,
k (> 2) is the number of conflicting objective functions.
A vector consisting of the values of all the objective functions, z; = f;(x), is called

43

objective vector z € RF. The space is R where objective function values are
called the objective space.

In multiobjective optimization the concept of optimality is not as straight-
forward and unambiguous as it is in the single objective case. In the multiobjec-
tive case we are trying to minimize the values of all the conflicting objectives at
the same time, but usually there exists no single point within the feasible region
where all the objectives reach their minima simultaneously. Instead, a multiobjec-
tive optimization problem has a set of optimal compromise solutions, which can-
not be mathematically ordered, and we need a human designer (known as the
decision maker in the multiobjective optimization literature) to select one from
the set as the final solution. A set of optimal solutions is called the Pareto optimal
set, and this set can be visualized as a Pareto front (see bold lines in Figure 9). A
solution belongs to the Pareto optimal set if none of the objective function values
can be improved without degrading the value of at least one objective. Math-
ematically, the point x* € S is globally Pareto optimal if there exists no other
feasible point x € S so that f;(x) < fi(x*) withalli = 1,..,k and f;(x) < f;(x*)
for at least one j. The objective vector z* is Pareto optimal, if the corresponding
point x* € S in feasible region is Pareto optimal. Local Pareto optimality can be
defined similarly to the single objective case in the vicinity of the current solution.

A usual way to solve multiobjective optimization problems is to convert
them into single objective optimization problems using the method of scalariza-
tion. The resulting single objective subproblem is then solved using an appro-
priate single objective solver. It is important to emphasize that depending on
whether the solver is local or global, the resulting solutions are either locally or
globally Pareto optimal.

For an ideal scalarization method there are two requirements: it must be
able to find any Pareto optimal solution, and every solution it gives must be
Pareto optimal [43, p 62]. Due to the nature of multiobjective optimization, some
sort of preference information over mathematically equivalued solutions is needed.
Typically we assume that we have a human decision maker available who can
give preference information, and we can then define a Pareto optimal solution
that satisfies the decision maker most as a final solution. In our desert driving
example the driver / decision maker may prefer having the certainty of arriving
to the destination to being there on time. Another driver, under the same circum-
stances, might be anxious to get to the destination on time while taking the risk
of not getting there at all.

Especially in the field of engineering, multiobjective optimization problems
are often solved using multiobjective evolutionary algorithms. In our study, these
methods are left out of scope, because approximation of a whole Pareto front
is computationally expensive, and visualization of the resulting Pareto front is
innate only in the case of two objective functions. With three objective functions
visualizations can be produced, for example, as projections to two dimensions,
but with four or more objectives intuitive and easily understandable visualization
is practically impossible. In our study we wanted to retain the efficiency and
expandability of the system to an arbitrary number of objective functions instead

44

of only two or three. For the above mentioned reasons we concentrate purely on
different scalarization methods in our study. We refer to [16] for full coverage of
multiobjective evolutionary algorithms.

In this study six different scalarization methods are employed. They fall
into three categories of scalarization methods, as discussed in Subsection 2.3.1.
First we use a method producing a neutral compromise solution without any
preference information. In the second method we use different weighting for
each objective function and thus alter their relative emphasis. Then we have
three methods which use a reference point, a vector consisting of aspiration levels
(function values that are satisfactory or desirable) for each objective function. Our
last method is interactive, based on decision maker’s continuous involvement in
the search process via classification of objective functions.

For many scalarization methods some information about the ranges of points
in the Pareto optimal set is needed. The lower bounds are defined by an ideal
objective vector z*, whose components are obtained by minimizing each of the
objective functions individually. With conflicting objectives the ideal objective
vector is not reachable, but it can be considered as a reference point, something
to go for, and it is better than any Pareto optimal solution. A vector strictly better
than z* might be called a utopian objective vector z**.

The upper bounds of the Pareto optimal set are much more difficult to ob-
tain. A vector containing upper bounds is called a nadir objective vector z"*,
and its components can be estimated from a payoff table, which is formed by us-
ing information obtained when calculating the ideal objective vector. The row i
of the payoff table displays the values of all the objective functions calculated at
the point where objective function f; obtains its minimal value. Hence, the com-
ponents of the ideal objective vector are at the main diagonal of the table. The
maximal value of the column 7 in the payoff table can be selected as an estimate
of the upper bound of the objective function f;. This estimated nadir objective
vector may not be very good in all cases. For further details, see [43] and the
references therein.

In Figure 9 there are two objective functions z; and z; and the feasible ob-
jective region Z (the set of all possible solutions of an optimization problem in
the objective function space). The ideal objective vectors are represented by black
points, the grey points represent nadir objective vectors, and the bold line is the
Pareto optimal set.

2.3.1 Scalarization methods

In the case of multiple objectives an optimization problem must be typically
scalarized, i.e. converted into a single objective problem. The single objective op-
timization problems are then solved using appropriate single objective solvers.
Depending on whether the solver is local or global, the resulting Pareto optimal
solutions are also either local or global. There are several different methods for
scalarization. These methods can be classified into different categories according
to different criteria. Here classification given in [43] and based on the participa-

45

Zl z

FIGURE 9 Pareto optimal sets, ideal and nadir objective vectors in two cases. Figures
from [43].

tion of the designer / decision maker in the solution process is presented:

1. Methods where no articulation of preference information is used (no-preference
methods).

2. Methods where a posteriori articulation of preference information is used
(a posteriori methods).

3. Methods where a priori articulation of preference information is used (a
priori methods).

4. Methods where progressive articulation of preference information is used
(interactive methods).

In no-preference methods the opinions of the decision maker are not taken into
consideration. The decision maker may either accept or reject the solution. It
seems reasonable to assume that the solution best satisfying the decision maker
can not be found using methods in this category. This is why these methods are
suitable only for situations where no decision maker is available or the decision
maker does not have any special expectations for the solution and he/she is sat-
isfied simply with some Pareto optimal solution.

In a posteriori methods the Pareto optimal set or at least part of it is gen-
erated and presented to the decision maker, who selects the one that pleases
him/her most. Probably the best-known representative of a posteriori methods
is the weighting method [43, p. 78], where the idea is to associate each objective
function with a weighting coefficient and minimize the weighted sum of the ob-
jectives. A set of different Pareto optimal solutions is produced by creating a set
of different weighting coefficients and solving the corresponding problems.

One of the problems with the weighting method is the weak stability of
the system: an evenly distributed set of weighting vectors does not necessarily

46

produce an evenly distributed representation of the Pareto optimal set. Another
problem of the weighting method is that it does not work with non-convex prob-
lems.

Also, in general, there are some problems with methods of the a posteriori
class. Methods in this class require lots of objective function evaluations and
they are thus computationally expensive. Hence they are only of little value for
problems where the evaluation of objective function value is time consuming, and
computational cost may grow prohibitively. Additionally, for a decision maker it
is difficult to select the final solution among a bulk of the Pareto optimal solutions.
However, it is worth mentioning that the weighting method can be used also as
an a priori method if the decision maker specifies a weighting vector representing
his/her preference information.

In a priori methods the decision maker must specify his/her preferences
before the solution process where a satisfying solution is to be searched. The
difficulty here is that the decision maker does not necessarily know beforehand
what kinds of results it is possible to attain or how realistic his/her expectations
are. A priori methods are often based on some kind of ordering or classifying the
objective functions (value function method, lexicographic ordering, weighting
method) or setting goals or optimistic aspiration levels for the objective functions.
Deviations from these aspiration levels are minimized.

In interactive methods a solution pattern is formed and repeated iteratively,
overcoming many weak points of the three classes above. Only part of the Pareto
optimal set has to be generated and evaluated, and based on this data the decision
maker can further adjust his/her preferences as the solution process continues. In
contrast to other classes, the decision maker can lack knowledge about the global
preference structure. Due to the interactive solution process he/she will learn
about the nature of the problem and will probably have more confidence in the
final solution.

In this study we consider some different scalarization methods. One of the
methods (neutral compromise solution) belongs to the class where no articula-
tion of preference information is used. The next four methods belong to the class
where a priori articulation of preference information is given, one of these uses
weights to manifest the preference information (weighted and scaled Chebyhev
scalarizing function), other three (ACH, GUESS, STOM) are based on the refer-
ence point. Finally we consider the interactive NIMBUS method.

All these methods are selected to give a short overview of the different
methods, and three reference point based methods are used because different
scalarization functions tend to produce slightly different solutions. These three
methods were selected for consideration based on the results of [44] where 15
scalarizing functions are numerically and theoretically compared.

The first of our scalarization functions belongs to the class of methods with
no-preference information. It produces a neutral compromise solution (NCS)
[68], which is Pareto optimal, by solving the problem

47

fi (%) = Zi i
Z;-Md _ Z;k*

minimize 121y [

[y _5. .
_|_pzfl(xd—_zlf”“d, (1)

subjecttox € S,

where foreachi =1, ...,k
**+Znad

Zimid =
fi(x) = Value of i:th objective function at x

z?“d = approximated nadir objective vector component
z;* = approximated utopian objective vector component
p = some small positive value.

A solution gained by this method should be located somewhere in the mid-
dle of the Pareto optimal set because the reference point z; ,,,;; is located precisely
in the middle of the ranges between the upper and lower bounds i.e. the nadir
and ideal objective values. Thus the solution of (1) is a neutral compromise be-
tween conflicting objectives, as its name suggests. It is stated in [68] that neutral
solutions like the one defined above might serve as a starting point for interac-
tion with the decision maker. From that point on the decision maker may balance
between different objectives, and emphasize the ones he/she wishes.

To gain control over different preferences for each objective, the weighted
and scaled Chebychev scalarizing function (WSC) from the a priori class can be
used. With this function the designer manifests his/her preference information
as weights for each objective. The problem with weights is that one objective with
a long range may have a major effect over a shorter ranged objective regardless
of the weight values. Because of the different ranges of the objective function
values, the effect of the weights is a little bit fuzzy. For this reason, the original
weighted Chebychev function which minimizes the weighted distance between
the Pareto optimal set and the approximated ideal vector (given in [43, p. 97]) is
modified to take the different ranges of the objective function into account. It is

formulated as:
minimize ;21"\ {wi (fl—(x) —E)} (2)

*k
Z

subjecttox € S,

assuming z:* # 0 for all i=1,... k.

This is essentially the same as the original weighted Chebychev method,
but the expression in parenthesis is scaled to a similar range between different
objective function values. It is possible to add a so-called augmentation term
into (2) similarly to (1) and (3) to guarantee Pareto optimality of the solution.

48

In general, scalarization functions with augmentation terms produce properly
Pareto optimal solutions with bounded trade-offs [43].

With weight based scalarization functions there is a difficulty in seeing how
weights are related mutually and to actual objectives. For this reason, the result
of the current weighting in terms of separate objective function values can be
evaluated only after the whole optimization run has been completed. A more
straightforward way to manifest preference information is the use of a reference
point, a vector consisting of aspiration levels (objective function values that are
satisfactory or desirable to the decision maker) for each objective function. With
a reference point, preference information can be given in a straightforward way
and without guesswork (in contrast to e.g. weights) using real objective function
values, which are readily familiar and understandable to the designer / decision
maker.

One method relying on designer supplied reference point information is
the achievement scalarizing function (ACH) [45] from the a priori class. It finds
the Pareto optimal solutions closest to the reference point, and different Pareto
optimal solutions can be obtained by adjusting the reference point accordingly.
The problem to be solved is similar to (1) (only the reference point is different),
and it is formulated as:

minimize ;1" {jzflmgd } Z md 3)

1

subject to x € S.

Our second scalarization function exploiting the reference point information comes
from the satisficing trade-off method (STOM), and here we present the formula-
tion given in [45]

max {fz() -]ﬂ)f& (4)

minimize ;. =
= Z; z** z; — 2%’

i i=1 i

subject to x € S.

The third scalarization function which uses reference point is related to the one
used originally in the GUESS method and slightly modified in [45]. An augmen-
tation term that was not used in the original formulation is included in order to
guarantee Pareto optimality, and we assume that z; < z?“d foralli=1,.. k

nad k :
minimize ;% {L} + M, 5
i=1,...k z;?“d—zi pi_zlz?ad_zi ()

subject to x € S.

49

Solutions produced by all the previous scalarization functions are Pareto optimal.
NIMBUS method

NIMBUS (Nondifferentiable Interactive Multiobjective BUndle-based op-
timization System) [43, S. 5.12.] is an interactive multiobjective optimization
method designed especially for efficient handling of nonlinear functions. For that
reason it is capable of solving complicated real-world problems.

In the NIMBUS method the interaction phase has been aimed to be compar-
atively simple and easy to understand for the decision maker. At each iteration
the NIMBUS method offers flexible ways to direct the search according to the de-
signer’s wishes by means of classification including aspiration levels and upper
bounds. Aspiration levels are used because they do not require consistency from
the decision maker and they reflect his/her wishes well. The use of classifica-
tion with aspiration levels avoids using other difficult and artificial concepts for
preference information extraction.

The classification of the objective functions means that the decision maker
indicates what kinds of improvements are desirable and what kinds of impair-
ments are tolerable. The basic idea in classification is that the decision maker
contemplates the current Pareto optimal objective function values f;(x) at each
iteration of the NIMBUS method and assigns each of the objective functions f;
into one of the following five classes depending on his/her preferences:

1. I'™P, function value should be improved as much as possible.

2. I”°P, function value should be improved to a certain aspiration level.
3. I** function value is satisfactory at the moment.

4. 1P function value is allowed to impair to a certain upper bound.

5. /7, function value is temporarily allowed to change freely.

After the decision maker has classified the objective functions using the above
classes, and specified aspiration levels and upper bounds (if required) the orig-
inal multiobjective optimization problem is transformed into a single objective
optimization subproblem, which is then solved. The resulting Pareto optimal
solution reflects the classification as well as possible. Then a new iteration of
method execution starts. In the synchronous version of the NIMBUS method,
several scalarizing functions leading to different subproblems may be utilized us-
ing same preference information. In the synchronous version the decision maker
must define how many (one to four) different scalarizations he/she wishes to use
at each step. Standard NIMBUS scalarization (STD) given in [45] produces Pareto
optimal solutions and is formulated as

max [fi(x) —z} fi(x) =% Ko fi ()
Lo < | /i i /] j i
HIHIZE G Ztd — i+ gl — +pi; iz ©

50

subject to f;(x) < f;(x¢) foralli € [FUISUIT,
fi(x) <egforalli € I=,
x €8S.

Other scalarization functions used in NIMBUS, namely ACH, STOM and GUESS
are given in Equations 3, 4 and 5, respectively. Use of several scalarizations syn-
chronously results with a set of slightly different Pareto optimal solutions from
which the decision maker can choose the best as a starting point for a new classifi-
cation. The decision maker can also generate an arbitrary number of intermediate
solutions between any two Pareto optimal solutions found so far, and use them
as a base for a new classification, if desired.

=0l x|

File Command WYiew Display Method Help

Bl x| @] |erso ~| s facn stom | cuess | &)

Classifier |Generate Alternatives I Visualization I Legend I Values I Method parameters I Messages I

—Classification) nlterna;vesln" =] T | (R
QL @,—_ ﬂ-J g JgsJ =
@ ﬁ' —52? @ I— . 6
o ;. o — B |
7 8 2
B (B B
e = =

—Best candidates

I 4

FIGURE 10 Sample screenshot of NIMBUS software.

In Figure 10 we present an example screenshot of the IND-NIMBUS soft-
ware (which implements the NIMBUS method) tackling a problem with three
objective functions to be minimized. On the left side of the screen, the solution
to be classified is displayed in the form of bars. The end points of the bars rep-
resent the ranges of each objective function in a set of Pareto optimal solutions.
The length of the bar represents the current value of the corresponding objective
function (the less coloured the area is, the better the value).

Classification can be adjusted either by entering the desirable objective func-
tion values to fields f1, f2 and f3, or by clicking the bar with the mouse to in-
dicate a desirable value. Clicking the current value means that it is considered

51

satisfactory and clicking the end point on the left means that the corresponding
function should get as good values as possible. Clicking the right end point or
leaving the function unclassified means that it can change freely for a while. The
right side of the panel contains already found solutions, and anyone of them can
be freely chosen as a base for a new classification. When a solution from the right
side is selected, it is shaded on the right side, and details of it are displayed on
the left side. On the bottom right corner there is an area labelled "Best candi-
dates". This is an area where the designer can drag and drop solutions for latter
inspection or to be used as a starting point for a new classification.

Calculate the neutral compromise
solution as a starting point

l

DM: Classify the objective functions and specify
aspiration levels and upper bounds, if necessary.
Specify the number of new solutions (subproblems) |

Formulate the subproblems and solve them.
Present the old and the new solutions to the DM.

/ﬁ Do you Yes | DM: Specify Calculate and present the

ant to see intermediate : ; . .
solutions?/ their number. intermediate sclutions to the DM.
|

No
DM: Select the most preferred solution.

No
Yes: DM: Do you want ~>—-| Stop.

FIGURE 11 A flowchart of the NIMBUS algorithm. Figure from [22].

In Figure 11 a flowchart of the NIMBUS algorithm is given to illustrate the
role and possibilities of the decision maker (DM) in the solution process. For
further details and more recent advances in the NIMBUS method, see [43] and
[45]. An implementation of NIMBUS operating on the Internet, called WWW-
NIMBUS, can be found at [46]. WWW-NIMBUS offers both local and global un-
derlying solvers for scalarized subproblems. For academic teaching and research
purposes WWW-NIMBUS is free to use.

In this chapter we have provided some perspectives to the field of optimiza-
tion in general, and we have also discussed topics of local and global optimiza-
tion. Further, we have discussed differences between single and multiobjective
approaches. Some aspects related to this study, especially global and multiobjec-
tive optimization, were discussed in a more detailed level. In the next chapter we
discuss the basic principles of operation of internal combustion engine, and from

52

that basis we focus our study to a specified part of engine design problem.

3 BASIC OPERATION OF INTERNAL COMBUSTION
ENGINES

Internal combustion (IC) engine converts chemical energy of fuel into mechanical
energy. This conversion is done by burning the fuel, which converts chemical
energy into thermal energy. This in turn raises the temperature and the pressure
of the gases inside the cylinder. The pressure is turned into mechanical energy
by means of linkage systems which are connected to a rotating shaft, which, in
turn, is used to take power out of the engine. Usually this shaft is connected to a
transmission or power train which directs the energy to its desired final use.

A vast majority of the IC engines used in vehicles (such as cars, motorcy-
cles, mopeds, snowmobiles, water jets, etc) for personal transportation and recre-
ational use fall into two main categories, namely spark ignited 2-stroke and 4-
stroke engines. In the following, we present the basic operation principles of
these two main types of IC engines.

In addition to the two main types, there exists also other types of IC engines,
for example compression ignited (Diesel) engines, and rotating piston (Wankel)
engines. In Section 3.3 we restrict our consideration to 2-stroke engines for the
rest of this study. This chapter is loosely based on [55].

3.1 4-stroke engine cycle

In a 4-stroke engine, one full working cycle consists of two engine shaft rotations,
resulting in four upward and downward piston strokes, hence the name 4-stroke
engine.

In Figure 12, the working principle of a 4-stroke engine is illustrated with
four images, each of them representing one stroke. Explanations for the strokes
are given below.

1. First stroke: intake stroke (Figure 12, a). The piston travels down while
the intake valve is open and the exhaust valve is closed. Free volume in

a)

b) c) d)

FIGURE 12 4-stroke engine cycle. Figures from [34].

the cylinder increases, and this creates a pressure difference between the
cylinder and the atmosphere. As a result of that, fresh air charge flows into
the cylinder and fuel is injected along the way to create a burnable mixture.

Second stroke: compression (Figure 12, b). When the piston reaches a bot-
tom dead centre (BDC), the intake valve is closed (as is also the exhaust
valve), and the piston starts to travel up. The volume in the cylinder de-
creases, and the pressure and the temperature of the air-fuel charge in-
creases.

Combustion (Figure 12, c). Combustion of the compressed air-fuel charge
occurs within a relatively short time period around the top dead centre
(TDC). Combustion starts when the charge is ignited by a spark just before
the compression stroke ends and continues a while to power stroke while
gases expand. At the combustion phase the pressure and the temperature
inside the cylinder rise drastically.

Third stroke: power stroke (Figure 12, c). The pressure created by the com-
bustion pushes the piston down, and this produces the power which is seen
as the engine output power. The gases inside the cylinder expand, while
the pressure and the temperature decrease.

. Fourth stroke: exhaust stroke (Figure 12, d). Before the piston reaches the

bottom dead center (BDC), the exhaust valve is opened and the high pres-
sure exhaust gas flows out. This is called an exhaust blowdown period. Af-
ter the blowdown there still remain exhaust gases inside the cylinder, and
while the piston moves up, it pushes the exhaust gases out via the exhaust
valve. This completes the working cycle, and the process continues with a
new intake stroke, etc.

55

FIGURE 13 2-stroke engine cycle. Figures from [34].

3.2 2-stroke engine cycle

In a 2-stroke engine one full working cycle consists of one engine shaft rotation,
resulting in two upward and downward piston strokes, hence the name 2-stroke
engine.

In Figure 13, the working principle of a 2-stroke engine is illustrated with
three images, of which the first two ones represent two actual strokes. The third
image represents a scavenging phase. Explanations for the strokes are given be-
low.

1. First stroke: compression (Figure 13, a). With all the valves (or to be more ac-
curate in case of the 2-stroke engine, the ports which are carved to the cylin-
der wall) closed, the piston travels up and compresses the air/fuel charge
into a higher pressure and temperature.

2. Combustion (Figure 13, b). Same as in the case of 4-stroke.
3. Second stroke (Figure 13, b): Power stroke, same as in the case of 4-stroke.

4. Exhaust blowdown (not clearly visible in the figures). In a 2-stroke engine
the power stroke ends when the exhaust port opens and the piston is ap-
proximately half way down. This starts an exhaust blowdown period, after
which the cylinder still remains filled with the lower pressure exhaust gas.

5. Scavenging (Figure 13, c). When the piston is approximately 3/4 down of
the stroke length from TDC, the scavenging ports are opened. While the
piston has travelled down, the volume under the piston (crankcase) has
decreased, and the pressure there is higher than in the cylinder which is
now open to the atmosphere via the exhaust port. A flow via the scaveng-
ing ports sweeps the burned charge out of the cylinder and fills it with the

56

fresh air-fuel charge. The scavenging process continues until the scaveng-
ing ports are closed and the piston is approximately 1/4 of the stroke length
up after the bottom dead centre (BDC).

6. Intake (Figure 13, c). While the piston goes up, the volume in the crankcase
under the piston is increased and the pressure drops. After the piston is
over halfway up towards the top dead centre (TDC), the intake port opens,
and the fresh charge flows to the crankcase.

As we can see, in the 2-stroke engine, the volume below the piston (crankcase) is
used efficiently as a pump unlike in the 4-stroke, where only the volume above
the piston is effective, and different strokes are needed to draw the fresh charge in
and push the burnt charge out. Dual action in the 2-stroke engine allows reduc-
tion of the strokes from four to two. Thus, the power strokes appear two times
more frequently, which is the main reason for the high power output of 2-stroke
engines, when compared to their 4-stroke counterparts.

3.3 Focus of this study

In this section, we set the goal of this study in general, and then focus it to a par-
ticular engine design. Although it would be beneficial to solve the engine design
problem from scratch in its entirety, this approach is very demanding because
the problem would be computationally very demanding (high dimensionality)
to solve. So, it is more reasonable to solve the distinct subproblems of the whole
problem separately. Also, in practice, while some fundamental parts of the engine
may remain unchanged when some minor mechanical modifications are done,
these modifications may have profound effects on the engine behavior, as dis-
cussed in following paragraphs. In the future, an increase in the computational
power of computers may enable handling of more complex entities, and also give
more profound understanding of phenomena itself. Before that happens, how-
ever, it is crucial to understand the functionality of each separate subproblem.
For the reasons above we focus this study on the optimization of a selected
part of the engine design process. This focusing is not done on the expense of
generality; the results can also be generalized to other similar problems.

Design aspects and problems of IC engines

There is a wide variety of applications where a different engine may be
needed, ranging from small 30 cubic centimetres and 1 horsepower chainsaw
engines to huge marine diesels capable of producing some 100 000 horsepower
and a displacement of some 22 000 litres! It is self-evident that many properties of
those engines are totally different. Properties of one particular engine are defined
by several design factors such as displacement (cylinder volume), cylinder bore
and piston stroke, size, number and location of valves or ports, camshaft tim-

57

ing, compression ratio, inlet and exhaust ducting (with their resonance effects on
engine breathing), ignition timing, fuel injection timing, etc. Values for all these
factors should be given so that the given needs are met. For further details on
engine design factors, see [55].

Today it is not necessary to actually build the designed engine to evaluate its
performance. Instead, there exists a variety of engine simulator packages capable
of producing, for example, power, torque and emission outputs with acceptable
accuracy (assuming that the underlying mathematical models are sound) for the
desired engine, once the design parameter values are given. From the simulator
outputs it is possible to derive the "goodness" of that particular engine design.
Use of simulators greatly reduces the need of manufacturing different costly pro-
totypes. However, it is important to notice, that in the final phase of the design,
the results must be verified using real mechanical prototypes.

Although simulators can greatly reduce the time needed to attain results
related to any given design, the task of selecting proper values for the design
variables for the application in hand remains still in human domain. This is prob-
lematic, since it is almost impossible to systematically control dozens of variables
and their delicate interactions. Therefore, the need for a tool to automatically se-
lect values or to assist in the selection of values for the design variables is evident.

Goal of this study

As described above, there is a need for a tool to aid in selecting proper val-
ues for the design variables to produce acceptable or even optimal designs. Using
the trial and error method mentioned in the first chapter, a result is considered
good if it is acceptable, i.e., it fulfills some given performance requirements. As a
result of this, a "good" design may or may not be close to the real optimal design
(the best possible design with regard to the given performance indicators) which
would be possible to achieve only if the designer could somehow select proper
values for the design variables.

The goal of this study is to create a system where the design process of an
engine is shifted to a more abstract level, and the design is actually optimal or
at least very close to the optimal with regard to the given requirements. This
is achieved by using tools and methods of global, multiobjective and interactive
optimization.

With this system, designing is no longer done by adjusting the values of
separate design variables and trying to see their effect on the end result, but rather
describing the desired end result in a higher level. This description can be done,
for example, by giving graphically desired power or torque curves (power or
torque plotted against engine rpm), or defining some mathematical formula to
characterize the goodness of the engine, and using this formula as the target of
the optimization process.

58

Practical design variables

In real life, where production and design costs must be taken strictly into ac-
count, there is a tendency to minimize the variety of different components needed
for a new engine. Thus, no new engine is designed from scratch for every appli-
cation, but instead, some base engine is modified to meet the standards currently
posed by altering some of the auxiliary parts.

Easily adjustable auxiliary parts are, for example, the inlet manifold and
the exhaust ducting, carburation, fuel injection and ignition timing changes. If
even more changes in the engine performance are needed, it is possible to alter
some easily changeable parts of the engine, like the cylinder head, camshaft, or
valves. This reasoning holds true especially as regards recreational vehicles, such
as snowmobiles, where one basic engine is used in a variety of models.

To allow possible empirical tests in the future, this study is limited to adjust
those design variables that do not require altering of the basic engine concept,
that is, internals of the engine. As were seen above, this limitation is justified.

Practical engine concept

In this study, we want to alter the behavior of the current engine design
without altering its internal design. 2-stroke engines are known to be very sensi-
tive to changes in the external ducting. For example, the lack of a proper exhaust
pipe may easily drop engine performance by more than 50% [12], and different
exhaust pipes can also alter the engine performance dramatically.

Although 4-stroke engines are widely used in car industry, this is not the
case with recreational vehicles, where emphasis is strictly on performance, weight
and simplicity. By these preferences, 2-stroke engines are superior to their 4-
stroke counterparts. Furthermore, the exhaust pipe of a 2-stroke engine consists
of a series of converging and diverging cones, and as such it is a rather simple
and cheap device to fabricate (keeping in mind possible empirical tests in future).

For its sensitivity to changes in external ducting the 2-stroke engine is a very
suitable target for engine optimization, and it is therefore used as the example in
this study. More accurately, the shape and the dimensions of the exhaust pipes
are altered to optimize the performance of a given engine.

3.4 How external ducting works

The usability of 2-stroke engines still in modern days is largely owing to the use of
properly designed exhaust pipes, or expansion chambers as they are also called.
Without the use of exhaust pipes, 2-stroke engines would be inferior to their 4-
stroke counterparts, in terms of performance and economy.

On a general level, the exhaust pipe is designed as a four section device (see
Figure 14):

59

FIGURE 14 Basic pipe shape consisting of four sections: diffuser (aggregated with
header pipe), belly, baffle cone and stinger.

- the first section is a horn shaped section, known as a diffuser. A factor
defining how trumpet-like the diffuser is, is called a horn coefficient. Some-
times the diffuser is represented as an aggregate of a header pipe and the
diffuser. In this case, the header pipe refers to the first mildly diverging part
of the diffuser. In real life, the diffuser often consists of a series of diverging
cones (for example below in Figure 15 the diffuser consists of 3 cones), or
the cross section of the diffuser may implement the continuous shape of the
exponential curve seen in Figure 14.

- the second section is a parallel walled part, known as a belly section (this
section may also be missing if its length is 0).

- the third section is a converging cone, known as a baffle cone.

- after the baffle cone there is fourth part, a gas outlet, that is known as a
stinger. It functions merely as a bleed resistor to keep a certain pressure
inside the exhaust pipe.

An exhaust pipe harnesses energy of erupting pressure wave first when the ex-
haust port opens to aid scavenging and evacuation of the burned mixture out of
the cylinder. Also just before the exhaust port closes, a reflected pressure wave
pushes the escaped fresh charge back to the cylinder. Thus, the compression
phase starts with the excess of the air/fuel mixture and the volumetric efficiency
of the engine is increased. Because of this the use of the exhaust pipe can be seen
as some sort of supercharging.

The functional operation of the exhaust pipe is based on the basic principles
of the reflection of waves [12] in parallel walled finite pipes in the following way:

- when a positive amplitude (pressure) wave travels along the pipe, and reaches
the open end of this pipe, it is reflected back, and its sign is negated. This
means that the pressure wave is reflected back as a rarefaction or a suction
wave.

- when the wave travels along the pipe, and reaches the closed end of this
pipe, it is reflected back, but it keeps its original sign. Thus the pressure
wave is reflected back as a pressure wave.

Figure 15 composed of seven images illustrates the propagation of the original
pressure wave released by the exhaust port opening and the reflected waves. The

60

FIGURE 15 Waves and pressure distribution inside the exhaust pipe. Figures from [62].

tone value represents the pressure inside the pipe, the darker area represents high
pressure whereas the lighter area represents a low pressure i.e. suction. The
diagram below each image shows pressure distribution along the pipe length at
the current moment, while the reference pressure level (atmospheric pressure) is
the same as the x-axis. Below is a short explanation for each image.

In Figure 15 a), the exhaust port has just opened and a very powerful pos-
itive pressure wave is released to the exhaust pipe. The wave front travels with
the speed of sound, which is in ambient circumstances inside the exhaust pipe
(pressure, temperature, gas composition) approximately 500 meters per second.

In Figures 15 b) and c), the wave front propagates along the first parts of the
expansion chamber, the header pipe and the diffuser. While the positive pressure
wave proceeds along the diffuser, it reflects continuously a negative rarefaction
wave backwards, and can be considered as the continuous open end of the pipe.
The amplitude of this wave is dictated by the steepness of the diffuser at each
location.

61

The shape of the diffuser is designed to produce a reflected rarefaction wave,
which causes suction to the cylinder and thus helps the scavenging process to
drag a fresh air-fuel charge from the crankcase up to the cylinder. The steepness
of the first part of the pipe (header) is rather gentle, and it only lets the exhaust
blowdown happen with a minimal resistance. After the blowdown, the scaveng-
ing ports are opened and in this phase suction can help the scavenging process.
To create a consistent suction the diffuser wall is made to open more and more
steeply until the scavenging process is finished. The diffuser cannot be made
infinitely steep in the hope of creating enormous suction, because the original
pressure wave contains only some limited amount of energy to be dissipated in
the process of scavenging and "supercharging" the cylinder.

In Figure 15 d), the wave travels along the parallel walled and thickest sec-
tion of the exhaust pipe, the belly section. The length of the diffuser is designed so
that the suction ceases when the scavenging phase of the cylinder is over (when
transfer ports are closed) and there is no longer need for the suction. As a by-
product of the scavenging process some fresh air-fuel charge is spilled out of the
cylinder to the exhaust passage. In this phase the wave experiences no changes,
and the belly section is used merely to maintain a proper length for the exhaust
pipe. The length of the pipe is a crucial factor since it dictates the timing of all the
wave actions which must be in harmony with the engine port geometry and the
desired running speed of the engine.

In Figures 15 e) and {), after the belly, the pressure wave hits the converging
cone, the baffle cone, which acts analogously to the continuous closed end of the
pipe. The amplitude of the wave has slightly decreased, since it has lost energy
in the diffuser. The pressure wave does not change its sign, and it is reflected
back from the baffle cone as a pressure wave. The duration and amplitude of the
reflected pressure wave is dictated by the length and steepness of the converging
cone.

In Figure 15 g) the reflected pressure wave travels backwards towards the
cylinder. In this phase the scavenging ports are closed, and the exhaust port
remains still open. The piston is moving up and the volume in the cylinder is
decreasing. This further assists spilling of the fresh charge out of the cylinder,
which could degrade the performance in several ways. With the use of a proper
exhaust pipe, spilling of the charge is not harmful, since the reflected pressure
wave arrives and pushes the fresh charge back to the cylinder while the upward
moving piston closes the exhaust port. An excess of the air-fuel charge is trapped
inside the cylinder, and this improves the volumetric efficiency of the engine.
Power, economy and emissions are improved.

In general steepnesses and lengths of the cones determine the amplitudes
and durations of the reflected waves. The total length of the exhaust pipe is se-
lected to work best at some operating speed of the engine. To change this speed
it is possible to scale all the lengths of the sections within the pipe proportionally
to achieve the desired speed.

The steepness and length of the diffuser and the baffle cone must be selected
carefully to maintain harmony: the diffuser cannot waste too much energy to help

62

the scavenging, because in that case there is no energy left to stuff the spilled
charge back to the cylinder. And, on the other hand, stuffing the charge ragingly
back would be of no benefit if there is no spilled charge in the first place.

In this chapter we have discussed the basic principles of both 2- and 4-stroke
internal combustion engines. We have also focused our design problem to a par-
ticular subproblem, namely we control a 2-stroke engine behavior with changes
in external ducting (i.e., exhaust pipe). In the next chapter we first discuss the
layout of the optimization system as a whole, after which we concentrate on the
separate modules of the system. We discuss engine simulator, introduce some
models to represent exhaust pipe shapes, and finally introduce several different
objective functions, i.e. ways to calculate goodness of a particular engine design
from simulator output files.

4 OPTIMIZATION TASK OF AN INTERNAL
COMBUSTION ENGINE

For optimization one must formulate an optimization problem including an ob-
jective function depending on design variables, and to solve it one needs an opti-
mization algorithm. The optimization algorithm explores the surface formed by
the objective function values (in the search space) to identify the deepest valley,
which is a global minimum, and also the design with optimal values.

In our case the general layout for the optimization system given in Figure 1
is implemented as follows. Objective function values are derived from the output
files of a simulator, which is software mimicking behavior of a specified engine
configuration. The optimization algorithm selects and passes on the design vari-
ables defining the current engine configuration. The design variables are con-
verted into a format understandable to the simulator. The simulator produces
output files that contain, for example, power, torque and fuel consumption val-
ues for that particular engine design at several different running speeds. From
this data, objective function values are derived using methods to be discussed in
the following sections.

Within this study the engine design problem refers to the selection of the
dimensions for the exhaust pipe for a 2-stroke engine. These dimensions cover
all the lengths, diameters and angles for the cones the exhaust pipe consists of.
Varying amounts of design variables are used to control the pipe models, which
depict the true shape of the exhaust pipe. Different pipe models and how they
are converted to simulator input files are discussed in Section 4.3.

4.1 Framework of the optimization system

To implement a functional simulation based optimization system for optimiza-
tion of internal combustion engine, the following components are required:

- asimulator which models the actions of the engine and is capable of produc-
ing the data from which the goodness of the current design can be derived

64
from.

- software to calculate goodness (objective function values) of the current de-
sign using output data of the simulator.

- software to convert the design parameter values given by the optimization
algorithm to a format which is readable for the simulator.

- an effective (by means of objective function evaluations) optimization algo-
rithm.

- in case of a multiobjective optimization problem method to convert multi-
ple objectives into the single objective.

- software to link all the above together to create a functional optimization
system.

All of these components are discussed more in detail in the following sections.

4.2 The engine simulator

The base of an engine simulator is a bunch of mathematical models (e.g. flow
model, combustion model, scavenging model) depicting different physical and
chemical phenomena taking place inside the engine. By solving numerically
these mathematical models the engine simulator imitates physical (gas exchange
flows, compression, heat conduction) and chemical (burn period, emissions) pro-
cesses in the engine.

The purpose of the simulator is to give information about the engine with-
out a need to actually build one. Simulators are rapid and rather cheap tools to
inspect properties of an engine before creating a prototype of it. For the simula-
tor, the physical geometry of the engine must be depicted with a high accuracy.
This includes all the basic dimensions of the engine such as bore, stroke, cylin-
der volume, crankcase volume, head volume, connecting rod length, sizes and
shapes of gas exchange ports and measures of the external ducting. Operating
conditions of the engine must also be defined, for example, ambient air pressure,
ignition timing, fuel characteristics, air/fuel ratio etc. From that input informa-
tion the simulator generates the output data describing the engine behavior, for
example at different running speeds. The output data contains information such
as power, torque, fuel consumption and exhaust gas composition.

For this study, the simulator was selected keeping in mind the fact that for
the planned end use it was necessary to consider especially the time consumed
during a single simulation run and the possibility to link the simulator with the
optimization tool. MOTA 6.1 by J. van Leersum [41] and Ian Williams Tuning
[69] was selected as a simulator. It is widely used among the 2-stroke enthusiasts
and the semi-professional engine designers. Execution time for one single simu-
lation run is typically few minutes using a modern PC (AMD Athlon 2.09 GHz,

65

1.0 GB of RAM), depending on the complexity of the pipe design and the grid
granularity (total amount of rpm steps) for end results. MOTA is also based on
sound scientific principles [41]. This cannot be guaranteed in the case of some
less known simulator.

The equations in MOTA describing conservation of heat, momentum, and
internal energy of quasi one-dimensional compressible flow in a duct of vary-
ing cross-section area are known as the Euler equations. The numerical method
chosen to solve those equations uses a flux conservative Lax-Wendroff type al-
gorithm modified by the use of flux splitting and flux limiters. This enables the
model to cope with specific very high output engines, that is having high engine
power with relation to the engine displacement [41]. These types of engines are
the ones that will benefit the most of optimization, because their performance is
already close to the limit and not so easily treatable by other means.

The MOTA simulator model consists of several submodels depicting the
main processes which occur in a 2-stroke engine, including changes in gas proper-
ties, duct flow model with flux splitting and flux limiters, the purity calculation of
the gas inside the cylinder, the scavenging model and the combustion model. Be-
cause a more detailed discussion of these complex submodels is out of the scope
of this study, and the simulator is used as a black box from the perspective of the
optimization system, we refer to [41] for a full coverage of the topic.

In order to use the simulator successfully in the context of optimization,
the simulator itself should produce results with sufficiently good agreement with
real life experimental data. Otherwise, results of the optimization system are not
applicable to real world problems. As shown in one of the examples in [41], the
MOTA simulation model predicts the position and magnitude of the peak power
for a real Parilla T75 100 cc karting engine well, indicating that the wave speed
modelling mechanism is very good. The slight discrepancies seen in Figure 16
between the experimental data and the model predictions away from the position
of the peak power could be due to the dynamometer error, which was in the order
of under 8 % during a number of different runs, and uncertainties in the following
parameters used in the MOTA simulation model:

the parameters used in the combustion model,

the scavenging parameters describing zones of fresh charge, mixed charge
and short circuiting of fresh charge to the exhaust stream,

the combustion efficiency,

the air-fuel ratio,

the assumed discharge coefficients for various ports of the engine.

Considering the fact that all the parameters listed above, except the last one, vary
to some extent with the engine speed (and in [41] estimated values for these pa-
rameters were taken from the literature, and no attempt was made to "tune" these

66

12 14 16

Power (kW)

10

I | | I I
3000 10000 lzoo0 14000 16000

Engine speed [(rpm)

FIGURE 16 Simulated and experimental dynamometer results for the Parilla engine.
Crosses: simulated, solid line: experiment. Figure based on [41].

values to match the experimental results) the agreement between the dynamome-
ter runs and the results predicted by the model is quite good, as seen also in Fig-
ure 16. This is regarded sufficient for our purposes. It remains as a concern of
a further study to experimentally evaluate the quality of the solutions produced
within this study.

Engine configuration is given to the simulator as a single plain text input
tile in ASCII-format. The input file contains information about mechanical engine
configuration (bore, stroke, port dimensions in cylinder wall, exhaust and intake
channel lengths, carburator size, exhaust pipe dimensions, etc.) and its ambi-
ent operating conditions (air pressure and temperature, ignition timing, air/fuel
ratio). The input file contains also information about user specified simulator
run parameters, such as the number of engine speeds (for which the values are
calculated), initial engine speed and speed increment step size. Exhaust pipe di-
mensions for each design are inserted to the input file, which otherwise remains
intact. These dimensions are given as a list of lengths for each separate section,
and as another list containing start/end diameters for each section.

Output of the simulation run is stored in plain ASCII-files, which can easily
be parsed for objective function evaluation purposes. Output of the simulator
contains all the necessary information such as power, torque, bmep and fuel con-
sumption for all rpm steps that were used during the simulation run.

67

4.3 Modeling the engine configuration

In this study engine configuration modeling refers to a dual technique for the ex-
haust pipe shape representation and it should not be mixed with the simulator
engine model. On the one hand engine configuration model is used to produce
general and modifiable exhaust pipe shape using as few design variables as pos-
sible (to lower the dimension of the optimization problem). On the other hand,
the exhaust pipe shape which is created using as few design variables as possible
must be converted to a form which is usable for the simulator (list of lengths and
diameters). For example, a diffuser shape may be represented by a continuous
curve. This continuous shape must be converted, for the simulator, to separate
sections whose start diameter, end diameter, and length is known.

Exhaust pipe (see Figure 14 and Section 3.4) consists basically only of few
parts: header, diffuser, belly, baffle cone and stinger. Often when the header
and the diffuser are aggregated, this aggregate is referred to, somewhat confus-
ingly, as diffuser. The stinger is the last part of the pipe, although, in real life
applications, a muffler is often fitted after the stinger to absorb noise. If properly
constructed, the muffler has no effect whatsoever on the exhaust pipe, thus it is
excluded from this study.

Earlier, expansion chambers often were so-called "two-cone chambers" mean-
ing that there was, after the parallel walled header pipe, only one shallow cone
which functioned as a diffuser and another steeper converging cone, namely a
baffle cone. Additionally, between the two cones there was often a parallel walled
belly section. This sort of pipe is detrimental to gas flow because it causes tur-
bulence at the sharp joint of the header and the diffuser, and thus wastes wave
energy. This is the reason why today header pipe and diffuser form a single grad-
ually steepening cone, or to be more accurate, a horn. The baffle cone may have
straight or outcurved (convex) walls.

Depending on the manufacturing technology (pressing, hammering, weld-
ing out of cones) the expansion chamber may have a smooth overall shape or
it may be an approximation of the original shape made by series of cones and
cylinders rolled out of sheet metal. For the manufacturing and other purposes
the original continuous pipe shape is often discretized to suitable pieces. By dis-
cretizion we refer to the process where the continuous shape of the pipe is divided
into a discrete number of pieces. For example, the diffuser section in Figure 14
could be divided into five sections in a manner that most efficiently retains the
original shape of the diffuser (see Figure 18).

Likewise, for the simulator the exhaust pipe shape must be represented as
a series of sections for which the start and end diameters and lengths must be
given. For some models below, one needs to carefully consider how continuous
shape can be discretized in such a way as to represent the original shape with
sufficient fidelity.

From the optimization point of view, flexibility of the model used is of im-
portance. Even the best of the optimization algorithms is capable of finding only

68

as good a solution as the model in question is capable of presenting. As a simpli-
fied example of this we can consider exhaust pipe shape that is modelled using
only cylindrical shape, with two design variables, length and diameter. In this
case the result would be extremely poor compared to properly shaped exhaust
pipes. As seen in Chapter 5, some of the models seem to lack sufficient flexibility.

Let us next discuss several possibilities for modeling engine configuration
i.e. the exhaust pipe shape.

4.3.1 Blair model

Blair model given in [12] is a natural starting point for modeling the exhaust pipe
shape since it is widely used among the 2-stroke enthusiasts for calculating the
dimensions of the exhaust pipe for a given engine. While designing an exhaust
pipe, the total length of the exhaust pipe (called tuned length) is the most signif-
icant factor which determines the location of the power peak (maximum power)
of the engine [12]. The shape of the pipe is used to adjust the shape of the power
curve. Because of this it is reasonable to link the lengths of the different pipe
sections to the total length of the pipe. Unlike in Figure 14, the diffuser is not
represented as a continuous curve, but it is replaced with far coarser represen-
tation of the horn function consisting only of three pieces (see Figure 17, L2-1.4)
with predefined length ratios. In addition, lengths for the belly section (L5) and
the baffle cone (L6) are implicitly given as ratios of the tuned length of the whole
pipe, so the designer cannot adjust these explicitly.

TABLE 2 Design variables and their bounds for Blair model.

Design variable Bounds
L;, total length of | Bounds depend on the application’s
pipe (mm) possible rpm scale and are calculated

from a simple formula which con-
verts rpm to length [12].

k1, initial pipe diame- | Bounded between 1.05 - 1.125.

ter coefficient
ko, mid section diam- | Bounded between 2.125 - 3.125 times

eter coefficient of header diameter at cylinder flange.
ks, tail pipe diameter | Bounded between 0.5 - 0.7 times of
coefficient header diameter at cylinder flange.

kj,, horn coefficient Bounded between 1.25 - 2.00.

The Blair model has five design variables as given in Table 2. The bounds for
design variable values are given in [12]. The first of the variables is total length of
the pipe L;. The other four variables are control parameters for formulae given in
[12] and also presented at the end of this section. Initial pipe diameter coefficient
ki determines how conical the first part of the pipe is (see Figure 17, part L1). Mid
section diameter coefficient k; determines the maximum diameter of the pipe, i.e.,
diameter of the section L5. The tail pipe diameter coefficient k3 determines the

69

do di
[L1 L2

FIGURE 17 Examples of exhaust pipe shape produced using the Blair model. Shape is
presented to simulator using seven pieces, L1-L7.

diameter of the end pipe, stinger L7. Horn coefficient kj, determines how hornlike
the diffuser is. Thus diameters for sections L1, L2, L3, L4 and L5 are determined
indirectly by coefficients k1, k» and kj,. Pipe dimensions are determined using the
formulae given in [12]. In this study these are slightly modified. In the original
formulae the total length of the pipe is determined using information such as
desired running speed of the engine, specific power output of the engine and the
port layout of the cylinder. Within this context calculus for the length is omitted,
because the length itself is one design variable and thus value for it is given by
the optimization algorithm, and it is bounded between the designer specified
interval. Thus, the designer must decide the minimum and maximum values for
the pipe length using a simple formula which converts rpm to pipe length. The
formula is given in [12].

When using the Blair model, the model itself represents the pipe as separate
sections. Thus the form of the Blair model can be presented similarly to the simu-
lator and there is no discretization error between the engine configuration model
and simulator input shape.

Symbols in the formulae below refer to diameters (d;) and lengths (L;) of
the pieces in Figure 17, and variable values are the ones mentioned in Table 2.
Constants are based on empirical values established in [12]. Lengths for the first
pipe and diffuser are given as

Ly =01-Ly Ly=0275-L;, L3 =0183 L, Ly =0.092-L; (7)
and lengths for midsection, rear cone and tail pipe are given as
Ls =011-Ly, Le =024-L;, L7 = Le. (8)

It should be noted that the length L; is comprised of lengths Ly, ..., L and, thus,
the length of the tail pipe Ly is not included in L;.
Diameters for all sections except diffuser are

di =ki-do, dy=ky-do, d7 =ks-dy. ©)
Diameters for diffuser sections are given as

dy = dy - X2, dy = dy - eX13 (10)

Ly & d4)
Xp=— 2) ;n(% 11
12 <L2+L3+L4) n(d1 (11)

where

70

and .
Ly + L3)h (d4>
Xig = [—=— 72 -1 — . 12
13 (L2+L3+L4 " dy (12)

Although the Blair model is widely used among the 2-stroke enthusiasts to
calculate the dimensions for the exhaust pipe, it has drawbacks. Lengths L; are
readily given, and they can not be adjusted. Also the shape of the diffuser is
rather coarse, thus it cannot implement a preferred horn shape with high fidelity.
For these reasons, chances to alter engine properties are somewhat limited. Thus,
in the following subsections we introduce different, more flexible models to rep-
resent exhaust pipe shapes.

4.3.2 Horn model

We have developed the Horn model as a generalization of the Blair model. In
contrast to the Blair model, the Horn model implements a continuous diffuser
section using Equations (13) and (14) given later in this section, a parallel walled
belly section and a single piece baffle cone. The total length of the pipe is one de-
sign variable, as is the case with the Blair model, but the lengths for the diffuser,
belly and baffle cone are given as fractions of the total length of the pipe. With
this procedure one can also give the bounds for the design variables of the op-
timization algorithm as fractions of the total length of the exhaust pipe, instead
of giving the bounds as the real lengths, which would vary from case to case.
Thus, the only length which is given as an absolute value is the total length of the
exhaust pipe, whose bounds can be determined relatively easily by using simple
exhaust pipe formulas, found for example in [12].

When the exhaust pipe is designed as a three-section device as described
above, six design variables are needed to fully determine all its physical dimen-
sions. The design variables and their bounds are given in Table 3. The bounds
for the variables are based on empirical values from [12] with the ranges slightly
extended.

Handling length ratios of the diffuser and the belly /baffle is a little bit tricky,
because the sum of the lengths of all the three pieces must equal the total length
of the pipe. This is solved by giving, to each section, a minimum and maximum
length as a proportion of the total length of the pipe, while all the proportional
lengths must be equal to one (the real length of the pipe is scaled to equal 1). De-
sign variables modulate the lengths of sections between minimum and maximum
values.

Below we give the ranges for the proportions for each section of the exhaust
pipe. The extremes of these ranges are later referred to as minimum and maxi-
mum values. Ranges are based on common sense, and they are expanded so that
with the extreme values a pipe shape produced can be readily condemned un-
satisfactory in a visual inspection. The sum of all proportional lengths must be
equal to one.

- the diffuser may be 0.4 to 0.85 times the total length

TABLE 3 Design variables and their bounds.

Design variable

Bounds

x1, total length of
pipe (mm)

The bounds depend on the applica-
tion’s possible rpm scale and are cal-
culated from a simple formula which
converts rpm to length [12].

xp, diameter of belly
(fraction)

Bounded to 2 - 4 times of exhaust port
flange diameter at cylinder.

X3, diameter of
stinger (fraction)

Bounded to 0.5 - 0.7 times of exhaust
port flange diameter at cylinder.

x4, length of diffuser
(fraction)

Bounded between 0 - 1. See below
how this is converted to a real length.

x5, ratio of lengths of
belly and baffle cone
(fraction)

Bounded between 0 - 1. See below
how this is converted to a real length.

X¢, horn coefficient
for diffuser

Bounded between 0 - 2. Zero gives a
conical diffuser, larger values result in

71

an increasingly hornlike diffuser.

- the belly may be 0.0 to 0.45 times the total length
- the baffle cone may be 0.15 to 0.6 times the total length

From the design variable values the proportional length of the diffuser is deter-
mined first. Next we calculate what is left out for the belly when the diffuser and
the baffle cone are in place. In some cases this causes the belly to disappear totally
(when the value is 0). The sum of the proportional lengths of all the pieces must
equal to 1. This is then scaled to equal the real length of the pipe.

Let us, as an example, consider a pipe with the total length of 1000 mm,
while the diffuser proportional length = 0.55 and belly/baffle ratio = 0.6. Now
the real length of the diffuser can be calculated as diffuser min.len. + (diffuser
max.len. - diffuser min.len.) - diffuser length variable value - total length of pipe,
which gives (0.4 + (0.85-0.4) - 0.55 - 1000 = 647.5 mm). This is the same as the
value of the diffuser length variable 0.55 scaled between the diffuser minimum
and maximum lengths multiplied by the total length of the pipe.

Now there is total length - diffuser length (1000-647.5 = 352.5 mm) left for the
belly and the baffle together. This is divided by the value of 0.6 as the belly /baffle
ratio indicates, resulting with the belly length of 352.5 - 0.4 = 141 mm and the
baffle cone length of 352.5 - 0.6 = 211.5 mm.

The Horn shape for the diffuser is calculated using Equations 13 and 14.
These are generalized for the continuous case by the author of this text from the
ones given in [12] and discussed also in Section 4.3.1.

For calculating all the diameters for the pipe, we must first calculate the
diameter D, of the thickest part of the pipe, where the diffuser ends and the pipe
continues as a belly. It is calculated by multiplying the cylinder exhaust port

72

FIGURE 18 Two examples of exhaust pipe shapes produced using horn model. Shape
is presented to simulator using seven pieces.

diameter at flange D; (constant defined by physical engine) by design variable
x2. Diameters for a horn shaped diffuser are calculated using the formula

where l b
Y O T P
X = <L> In D. (14)

D; = the diffuser diameter at location /

D; = the start diameter of the diffuser (defined by engine configuration)
D, = the end diameter of the diffuser, calculated using variable x,

L = the length of the diffuser

k = the horn coefficient.

With this model, for a representation suitable for the simulator the diffuser
is selected to be divided into five subsections to give sufficient fidelity to the horn
shape. Each of these sections will have an equal difference in their diameters,
and thus different lengths depending on the horn coefficient. This is a real world
approximation of the exponential horn curve, given in Equations (13) and (14).

With the five subsections the diffuser follows the diffuser horn curve closely
enough. This is also a usable form for the simulator, producing the whole pipe
shape using seven different pieces. The first diameter of the pipe is constant,
because it is always the same as the diameter of the exhaust channel at the joint
of the cylinder and the exhaust pipe.

In Figure 18 two examples of different designs are presented. The effect of
the horn coefficient is clearly visible in the five diffuser segments. The pipe on
top has a small value for the horn coefficient whereas the pipe at the bottom has
an essentially higher value.

The horn model has one drawback with its flexibility. Although the horn
model is more flexible than the Blair model, it may still not be able to represent
all the possible pipe shapes seen in real world applications. For example, the
quite simple shape depicted in Figure 19 is not reachable with the horn model
because of the multisection outcurved (convex) baffle cone. This drawback is real,
because for example convex baffle cones are frequently seen in real life designs.
The diffuser may also contain more complex shapes than the horn.

73

FIGURE 19 Inflexibility of the horn model. This shape of the exhaust pipe is not reach-
able using horn model.

4.3.3 Free Form Shape model

To overcome shortcomings of the horn model discussed in Section 4.3.2 we next
develop a Free Form Shape (FFS) model. The most severe of the shortcomings of
the horn model is its stiffness, i.e. it always uses a horn shaped diffuser (there
cannot exist a shallower section just before the belly section for example), and
the baffle cone is restricted to be a single cone without any outcurved (convex) or
incurved (concave) shape.

In real life, baffle cones may sometimes be either convex or concave. Free
form shape (FFS) restricts neither the convexity nor the concavity of the baffle.
The FFS model consists of an envelope (see Figure 20) which is divided into ten
sections of equal length. The envelope can be seen as a region wherein the pipe
shape can change freely. Diameters for each section are defined with a factor
between 0 and 1 which modulates the diameter inside the envelope of a given
shape. Thus, in the upper part of Figure 20 the pipe shape with direct lines is
caused by setting all the shape variables to zero (the minimum side of the enve-
lope), whereas a bulky shape is caused by setting all the shape variables to one
(the maximum side of the envelope). Minimum values for the envelope are pro-
duced by drawing a direct line from the exhaust flange to the outer edge of the
stinger having a diameter of 0.55 times of the header. Maximum values are deter-
mined by setting proportionate lengths of the diffuser, belly, and baffle cones to
0.4, 0.4 and 0.2 times of total pipe length, respectively. The maximum diameter is
3.55 times the exhaust flange diameter and the maximum value for the stinger di-
ameter is 0.7 times the exhaust flange diameter. All the previous diameter factors
are based on empirical values given in [12] with the ranges slightly expanded.

In FFS there is no explicitly given diffuser, belly or baffle cone sections, all
of these are implicitly defined by ten design variables. For this reason there are
some restrictions to this model: adjacent diameters should increase up to the
section where the maximum diameter of the pipe is reached, after that the section
diameters must decrease. From the optimization point of view that kind of shape
rule makes search space very fragmented. This fragmentation is illustrated by
the fact that the shape rule filters out a massive amount (> 99.5 %) of randomly
created design variable points. Shape rule is embedded into the FFS model and
thus it is invisible from the perspective of optimization algorithm. The FFS model
returns some predefined sufficiently poor objective function value in case there is
a shape rule violation.

FFS model has eleven design variables given in Table 4. The first of these

74

TABLE 4 Design variables and their bounds for FFS model.

Design variable Bounds
x1, total length of | The bounds depend on the applica-
pipe (mm) tions” possible rpm scale and are cal-

culated from a simple formula which
converts rpm to length [12].

X,...,X11, diameters | Bounded to 0 - 1 times of distance be-
for each locations | tween upper and lower envelope di-
within envelope | ameters.

(fraction)

FIGURE 20 The shape envelope for the FFS model and one resulting shape. The shape
is presented to the simulator using ten sections.

determines the total length of the pipe, and the bounds for it are calculated in a
manner similar to that in the Blair and horn models. The other ten design vari-
ables are so-called shape variables that merely adjust the diameter of the pipe at
each location of the shape envelope. The difference between the minimum and
maximum envelope values is simply multiplied by the value of that particular de-
sign variable. Lengths for the pieces are not explicitly needed, because the total
length of the pipe is divided into ten equally long sections. The first diameter of
the pipe is constant, because it is always the same as the diameter of the exhaust
channel at the joint of the cylinder and the exhaust pipe.

The exhaust pipe shape created using the FFS model is inherently suitable
for the simulator, thus no separate conversion procedure is needed.

4.3.4 Bezier model

To combine the flexibility of the FFS model with the low design variable dimen-
sionality of the horn and Blair models we next develop one more model, the
Bezier model, which is capable of representing very dissimilar pipe shapes us-
ing a Bezier curve and only a few design variables.

In shape optimization literature, for example in [23], the shape is often rep-
resented (or parametrized) using either Bezier curves, or B-spline curves. The
Bezier curve was formally presented in [10] by Pierre Bezier who was trying to

75

formulate representations for smooth surfaces suitable for modelling the car chas-
sis. After that, Bezier curves have been a very common way to display smooth
curves, both in computer graphics and mathematics. The degree of the polyno-
mial curve defining a Bezier curve increases as the number of control points in-
creases. To avoid excessively high order polynomials, a single Bezier curve with
several control points can be divided into several low order Bezier curves, which
is called a B-spline curve. As such, the B-spline curve is an extended version of
the Bezier curve that consists of segments, and each of these segments can be
viewed as an individual Bezier curve.

The main difference of the Bezier and B-spline curves is that no matter the
degree of the Bezier curve, there is no local control property in a single Bezier
curve [23]. Thus, all control points affect the whole curve, and this can be a dis-
advantage when designing smooth shapes with Bezier curves. However, in our
study, this does not seem to be the problem, as seen in Figures 21, 22 and 23, and
it can, in fact, be beneficial that a single Bezier curve with only four control points
allows no sudden changes, which would be detrimental to the pressure / suction
wave propagation, in exhaust pipe shape.

In the Bezier model the pipe shape is defined by the Bezier curve having un-
adjustable start (c1y,c1,) and end (c4y,c4y) control points at both ends of the pipe
(header pipe upper edge and stinger start point upper edge) and two adjustable
control points (c2y,c2,) and (c3y,c3y) (see Figure 21). By moving the control points,
the pipe shape can be altered radically (see Figures 22 and 23). The control points
may move only within their specific regions: C2 is allowed to move in the re-
gion marked with a double line, and C3 in the region marked with a single line.
Region sizes are based on the authors” experiments, and they provide sufficient
diversity for reachable pipe shapes. Regions are defined using total length of the
pipe L; as a practical unit of measure. The region for the control point C2 starts
from the location 0.5 - L;, the width is 0.7 - L;, and the height 0.15 - L;. The region
for the control point C3 starts from the location 0.3 - L;, the width is 0.5 - L;, and
the height 0.2 - L;. The location of the control point inside a region is modulated
via the design variables given in Table 5.

The difference to the FFS model is that Bezier produces always somewhat
smooth shapes, which are generally appealing, but in some rare cases it could
be important to be able to have sudden slightly thicker part for example in the
header pipe to create a momentary stronger vacuum. However, it must be em-
phasized that these are kinds of forms that are extremely rare in real life, whereas
smooth shapes are de-facto in almost all exhaust pipes.

The coordinates, that is, x and y values for a Bezier curve representing the
pipe shape at location t are calculated using the following equations given in [29]:

x(t) = (cly+t- (—cly -3+t (3 cly —cly- 1))
(32 +t- (=62 + 2,3 1)) (15)
+t-t-(By-3—cBy-3-t)+ chy-t

76

and:
y(t) = (cly+t-(—cly -3+t (3-cly—cly-t)))
+t- (32 4+t (—6-c2+c2y-3-1t)) (16)
+t-t-(c3y-3—c3y-3-t)+cdy- 1
where

cny = x coordinate of control point n
cny = y coordinate of control point n
0<t<1

TABLE 5 Design variables and their bounds for the Bezier model.

Design variable Bounds
L;, total length of | The bounds depend on the applica-
pipe (mm) tions” possible rpm scale and are cal-

culated from a simple formula which
converts rpm to length [12].

c2y, X-location of con- | Bounded between O - 1.

trol point 1
2y, y-location of con- | Bounded between 0 - 1.
trol point 1
¢3y, x-location of con- | Bounded between O - 1.

trol point 2

c3y, y-location of con- | Bounded between 0 - 1.

trol point 2

k¢, tail pipe diameter | Bounded between 0.5 - 0.7 times of
coefficient the header diameter at the cylinder

flange.

The Bezier model has six design variables as given in Table 5. The first
of them is the total length of the pipe, which is defined similarly to the models
previously introduced. Four next variables are x and y coordinate locations for
the two control points of the Bezier curve. The last design variable, tail pipe
diameter coefficient determines the diameter of the end pipe, stinger.

Continuous Bezier curve shape is discretized to a piecewise representation
for the simulator using six sections for the diffuser and three sections for the baffle
cone. There is no separate belly section. The lengths for the diffuser sections are
found by requiring that all the adjacent diffuser sections must have the same
difference in their diameter. For example, if the header diameter at the exhaust
flange is 30 mm and the diameter of the belly is 90 mm, then the total difference in
their diameter is 60 mm. If the diffuser is divided into five sections, the diameter
difference for the adjacent sections is 12 mm, and thus the set of diameters from
the header to the belly is: 30, 42, 54, 66, 78, 90.

To retain sufficient fidelity to the original Bezier curve, the lengths for the
baffle cone sections are determined in a somewhat more complex way. Here dif-
ferences in diameters are not the same between each section, they are ratios of

77

c2 e c3

FIGURE 21 Bezier curve with two adjustable control points inside their respective
boundary boxes.

sums of a geometric series. The sum S, of the geometric series to the element r
can be calculated (as any textbook of calculus would indicate) as

a-(1—-q")
S, = ——= 17
=" (17)
where
a = first term, here 1.0,
g = ratio between adjacent elements, here 2.5,
r = ordinal number for the element where to sum is calculated, r=1,2,3.

Diameters for each of the baffle cone sections are calculated as

S
dr - dmax - =

S : (dmax - dmin) (18)
R

where

d, = diameter for baffle cone section r,

dmax = maximum diameter of baffle (next to belly),

din = minimum diameter of baffle (next to stinger),

S, = sum of geometric series to element 7,

Sr = sum of whole geometric series, where total number of baffle sections R = 3.

As an example, baffle cone with d,,x = 90 mm and d,,,;,, = 20 mm results a in
a descending set of diameters of 90, 83, 65 and 20 mm. Diameter differences for
the baffle cone sections are calculated using (17) and (18) to produce lengthwise
shortening series of baffles and to follow Bezier curve closely by having smaller
diameter differences near the belly section. Lengthwise distribution of sections
can be altered by changing the values of a, 4 and R. Here these values are based
on the author’s experience. See Figure 22 to see the arrangement of baffle cone
sections.

4.4 Defining the objective function

This section is loosely based on [13], [18], [47] and [70]. For the optimization,
one or more properties of the system to be improved must be identified to be
improved. In this section we present five different properties of the engine or

78

cs\

A o R I

/

\(E
c1 L ——— N

e | | D

FIGURE 23 Example of flexibility of Bezier model: approximation of horn shape.

engine / vehicle combination, and some of them we use later as our objective
functions. Four of these properties are derivatives of the engine performance
only, namely maximum power, integrated power, location emphasized integrated power
and bmep (efficiency). The fifth one, namely coverage, reflects compatibility of the
engine properties with gearing / transmission from the perspective of vehicle
performance. All of these are discussed in the following.

While speaking of engines, the easiest and probably most common way
to compare engines is by finding out which one of them has the highest maxi-
mum power output, Py.y. Unfortunately, this type of comparison is potentially
very misleading. An engine with an extremely high power output may have a
razor-sharp power band and may prove inferior in terms of usable power to its
low power counterpart, which may have a nicely shaped and widespread power
band. Power band is a somewhat vague term, but usually it means the location,
width (both in rpm scale) and shape of the power curve in the interval where the
engine produces its maximum power (peak power). For example, in Figure 24
we could say that the power band begins at 11000 or 11500 rpm and continues to
give good power up to 13500 rpm.

One possible way to compare power curve with power distribution is to
calculate integrated power P;,; in some predefined interval. Integrated power is
merely the area under the power curve in some predefined interval.

Integrated power does not take the location of the power peak into con-
sideration. Sometimes the designer may want to set the power peak at a desired
location, for example, to restrict mechanical stresses to engine. For this reason, we
introduce location emphasized integrated power, and refer to it as Py;,. While calcu-
lating Pj,;, we must give the desired location in rpm scale for the power peak, and
define the rpm interval before and after peak power. If the actual power peak is
not co-located with the desired peak, the true area under the curve between a
given interval is reduced by a factor of differences between real peak power and
power at a desired peak. Let us consider an example where the desired peak is

79

30

28 /
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
|
|
|
:
|
|
|
|
|

24 /
22 /

20 /

14 /

16

14

12

10 T . -
8000 10000 11000 12000 153000 14000

FIGURE 24 Three possible properties for optimization: maximum power, integrated
power and location emphasized integrated power.

at 12000 rpm, the rpm interval is 2000 rpm before the peak and 1000 rpm after
the peak (the resulting band being 3000 rpm between 10000 to 13000 rpm). Now,
if the integrated area between 10000-13000 is 400, and the real peak is located at
13000 rpm with a peak power of 26 hp, and power at the desired peak (12000 rpm)
is 24 hp, the true integrated area will be reduced by a factor of 24/26 = 0.923, and
the resulting function value Py, is 0.923 - 400 = 369. Thus better function values
are produced when the real power peak matches with the desired power peak.

In Figure 24 an imaginary power curve can be seen together with exam-
ples of the maximum power (a vertical dashed line at 12500 rpm), the integrated
power in a given interval (the area between vertical solid lines at 11000 and 13000
and under the power curve resulting band of 2000 rpm) and location emphasized
integrated power (the desired peak at 12500, the interval before the peak is 1500
and the interval after the peak is 500).

In addition to the maximum power, to the integrated power and to the loca-
tion emphasized integrated power, there is also a fourth factor which can be used
to restrict the location of the peak power. In general, there are only two ways to
improve the maximum power of an engine: by increasing the operating speed
of the engine or by increasing the pressure inside the cylinder during the power
stroke (volumetric efficiency). The latter is to be preferred, since increasing the
operating speed of the engine results in increased mechanical stresses, decreased
mechanical efficiency due to increased friction, and exposes the engine to a fail-
ure.

80

A factor to describe the pressure inside the cylinder during the power stroke
is known as bmep (brake mean effective pressure), and it can be understood as a
measure of effectiveness of the engine: the higher the bmep at a given rpm, the
higher the efficiency. Here, Bmep is calculated as

bmep(P,rs,cc) = %, (19)

where

P = power of the engine at the speed rpm, kW

rs = speed of the engine at the maximum power, revolutions/second
cc = engine displacement (constant), cubic centimeters

As seen in the formula, bmep can be calculated at whatever running speed
of the engine, but we are only interested in the special case of the maximum
power and the corresponding running speed of the engine. In the given formula
for the bmep we can see that if there are two identical engines in terms of dis-
placement and maximum power, the one which produces maximum power at a
lower running speed has a higher bmep. The purpose of using bmep is to find
a preferred engine design which gives the maximum power at some reasonable
running speed.

In this study we do not only examine the goodness of the engine alone (i.e.,
with the four properties above), the goodness is also seen from a somewhat wider
perspective in which the engine is used to motorize some vehicle. In this case,
the goodness of the engine design is affected, in addition to the characteristics
of power curve, also by the compatibility of the power curve and the type and
implementation of a power transmission and gearbox design (gear ratios). A
vehicle must be able to operate at very different speeds, for example, a regular
car must cover all speeds from a slow walking speed to fast freeway speeds up to
200 km/h. No engine is capable to such flexibility, and thus some sort of gearing
is needed for adjusting the ratio between the rotational speeds of the engine and
the tyres of a vehicle. In general, the gearbox can contain a set of paired pinions,
where two pinions form one gear ratio. Usually the vehicle has four to six gears.

Another type of gearing is a continuously variable transmission (CVT), which
is implemented using a belt drive and pulleys which are capable of changing
their diameter [28] and thus the gear ratio. In principle the CVT can fully use
the potential of the engine, but because of mechanical losses and durability is-
sues the normal pinion gearbox is generally used. The pinion gearbox cannot
use the full potential of the engine, but ratios of the different gears with regard
to the engine’s behaviour and power band define how well the engine-gearbox
combination suits to a particular engine.

The goodness of the engine-gearbox design may be regarded as a strict sci-
ence only in some limited cases, because different users normally have different
preferences; their driving styles and skills may be totally different, and even the
purpose of the vehicle may be very different. In general, application of the en-
gine must be taken into account. Below there are some factors as examples to be

81
considered:
- wide gearbox ratios require a wide power band.

- for everyday use the engine must be "elastic" and "smooth" (flat power
curve without sudden humps and dips) at the expense of the maximum
power. This reduces the need to change the gears all the time and makes
driving flexible.

- for racing purposes usability is sacrificed in quest of the maximum power,
because a close ratio gearbox (one having at least six gears, which are by
ratio close to each other) allows utilization of the razor sharp power band.

As a general rule of thumb, the power band of the engine should be wide enough
to allow switching from gear to gear without dropping out of the power band.
It is possible to examine the tendency to drop out of the power band by plotting
a cascade of torque curves acquired using all gears against a so-called ultimate
driving force curve (UDFC), see Figure 25. The UDFC is the imagined optimal
case where the transmission is continuously variable, and thus the vehicle can
utilize maximum power of the engine at all road speeds, which produces for ex-
ample fastest acceleration of the vehicle. Ultimate driving force F, ;5 in Newtons
is calculated using the formula

3600 P

Fudf(v) - v (20)

where
P = maximum power of the engine, kKW
V =road speed, km/h.

The torque cascades for all gears are calculated similarly to the UDFC, but
this time maximum power of the engine is not used. Instead, we use for each
road speed power that the engine produces at the chosen gear at that particular
speed. The real driving force F4y is calculated for each gear using the formula

Fuf(8, V) = —Vv (21)

where
Py, = power of engine at gear g running at speed v, kW
V =road speed, km/h.

To see how well a particular engine suits to a particular gearing, we calculate
the value of coverage, which is derived from the UDFC and the set of torque
cascades. The coverage c is the ratio between the areas of the torque cascades and
the UDFC, and is calculated as

Atc

, 22
Audfc ()

C =

82

where
Ay = area under the torque cascade lines
Audfc = area under the ultimate driving force line.

If full potential (power) of the engine were usable at all road speeds, the
coverage would be one, and this is the optimum case. In Figure 25, the ultimate
driving force is plotted as a dashed line against road speed of the vehicle. Torque
cascades are plotted as solid lines. The coverage is the ratio of the areas under the
ultimate force line and the torque cascades.

In real life, consideration of the coverage only is not enough. It is possi-
ble to have an engine-gearbox combination with a very high coverage, while the
peak power of the engine is low. This is obviously not a good solution. Therefore,
the coverage and the maximum power are conflicting objectives and they must be
considered in unison. The overall performance of an engine/vehicle combination
can be determined and controlled by three factors: coverage, maximum power
and bmep. When considering the goodness of a particular engine-gearbox com-
bination all three of them must be taken into account. It is possible to consider all
of them simultaneously as three objective function values (coverage, power and
bmep) and formulate a multiobjective optimization problem.

For example, one engine may have a high maximum power and a poor cov-
erage, and another one may have a low maximum power and a good coverage.
There is no mathematically justified means to decide which one of these designs
is actually better, and thus the decision must be left to the engine designer. The
situation described above is common in the field of multiobjective optimization,
and it is discussed in Section 2.3.

4.4.1 On the implementation

Our system for simulation based optimization consists of several heterogenous
software modules. The most prominent of these are the engine simulator and
several different optimization algorithms. All the software runs on Windows XP
environment and the optimization algorithms are either stand-alone applications
or Matlab scripts.

MOTA simulator is a stand-alone application which consists of a graphical
user interface and a separate executable, which forms the calculational core of
the simulator. As input, the simulator reads the engine configuration file, which
contains full information about geometrical properties of the engine and external
ducting and operating conditions of the engine. The input file also contains sim-
ulation run specific data, such as the number of rpm steps, initial rpm, and rpm
step size. After a simulation run, the simulator produces an output file, which
contains lots of data, but the most important for us are the power and torque
values for all given rpm steps. The values for objective functions are constructed
from power, torque and rpm values.

To put all the the pieces together we wrote some additional Java code, which
conceals the complex configuration file structure of the simulator. The simulator

83

\{::l Ultimate force line

1000

s

i First \ N |

Driving force (N))
=
/
7

Second = S~

Third

/

400 4 | 94
Fourth o

”

Fifth Sixth |—+

|

Road speed (km/hr) €

40 S0 G0 T0 il O] 100 H{]l 120 130 140 150
| L . B i 1

16}

170

FIGURE 25 Ultimate driving force curve (UDFC) and torque cascades. Figure from [13].

84

can be called via a simple Java function call. The Java code takes care of con-
verting design variables into simulator configuration files (measures of external
ducting are inserted in the configuration file, which is otherwise left intact) and
executing the calculation core of the simulator with a given engine configuration.
The code also calculates the objective function values from the simulator output
files.

Control flow starts from the optimization algorithm. In the case of Matlab
scripts, algorithms can call Java code directly via the Matlab’s own Java inter-
face. While using stand-alone optimization algorithms, direct call to Java code is
not always possible. In this case, calling Java code is done in a somewhat more
complex way. Design variable values are written into an external ASCII file, after
which Java execution is invoked via a command file call in the optimization al-
gorithm. An objective function value is once again written to the external ASCII
file by Java code after the completion of the simulator run. Finally the objective
function value is read from the file by the optimization algorithm.

Use of Java implemented interfacing code in our optimization system vir-
tually enables use of any optimization algorithm (assuming that the source file is
provided) and simulator combination.

4.5 Formulation of an optimization problem

4.5.1 Single objective case

Although performance studies of a particular engine should be done related to
the planned use of the engine and also to the gearing of the vehicle, these are often
omitted, and performance study is based merely on power and torque curves.
For this reason, performance consideration can be done simply by evaluating the
properties of the power curve of that particular engine and ignoring the effect of
the gearing and the gear ratios as described in Section 4.4.

Because the use of maximum power has only limited value in estimating
engine performance, and we want some control over peak power location, we
prefer to maximize location emphasized integrated power (like depicted in Fig-
ure 24) in this study. In this case the single objective optimization problem is of
the form

maximize F(x), (23)

subjecttox € S,

where
F(x1, ..., Xn)=Pjip, location emphasized integrated power (area under curve).

The feasible design variable space S is limited by the upper and lower bounds
for each variable. The variable can have any value between its bounds, and thus

85

the problem has box constraints. The design variables were discussed more in
depth in Section 4.3. One specific design variable common to all models is tuned
length, and in our study it is bounded from 700 to 800 mm. Note that the numbers
vary depending on which model is used to depict the exhaust pipe shape.

4.5.2 Multiobjective case

If gearing is taken into account while judging the goodness of some particular en-
gine / vehicle combination, the problem at hand is a multiobjective optimization
problem of the form

maximize {Fy(x), F2(x), F3(x)} (24)

subjecttox € S,

where

F1(x1, ..., Xn) = Ppax, maximum power of the engine
F(x1,...,Xn) = ¢, coverage

F3(xq, ..., xn) = bmep, effectiviness of the engine.

The feasible design variable space S is limited similarly to a single objective
case by upper and lower bounds for each variable.

In this chapter we have discussed the layout of the optimization system as
a whole, and also some details of its modules, exhaust pipe models and differ-
ent ways to calculate objective function values. In the next chapter we outline
how we compared different exhaust pipe models and different optimization al-
gorithms both in a single and in a multiobjective case. We also report results
obtained by different scalarization methods.

5 RESULTS

We have tested our simulation based optimization system using as a target en-
gine an air-cooled high rpm Yamaha YZ-80 motocross engine with 6 gears. This
particular engine was chosen because it is a representative of high output, high
rpm 2-stroke engine and the configuration for it was given as a sample file in the
MOTA distribution package. For calculation of coverage, the following gear ra-
tios were used: 1st = 2.545, 2nd = 1.933, 3rd = 1.571, 4th = 1.333, 5th = 1.166, 6th =
1.045.

The simulator was set to calculate engine output values in a rpm range from
9000 to 14000 rpm, with a step of 250 rpm, resulting in 21 different engine speeds.
This data was used in production of objective function values.

Our test procedure was divided into a two somewhat distinct phases, namely
a single and a multiobjective phase. In the single objective phase our intention
was to employ a simple problem formulation, and compare the performance of
different global optimization algorithms and different ways to model exhaust
pipe shape, and select the best of those to be used in the more complex multi-
objective phase. In the multiobjective phase our aim was to compare different
scalarization methods from three separate scalarization method classes.

In the single objective phase different exhaust pipe shape models were com-
pared using both the CRS2 algorithm and the Niederreiter random sampling to
decide which model has most potential. By this comparison only one model, the
Bezier model, was selected for further study to avoid the need to examine all pos-
sible shape model / optimization algorithm combinations. Finally, several global
optimization algorithms, CRS2, CRS4, SAHPS, SCGA, DE and SuperEGO, were
tested upon the Bezier model to find out which optimization algorithm had the
best potential in this particular problem.

In the multiobjective phase the exhaust pipe shape model and the optimiza-
tion algorithm selected in the single objective phase were used. To convert the
multiobjective optimization problem into a single objective one, five different
scalarization functions and the interactive NIMBUS method were employed, and
their features were examined. One of the scalarization functions employed no
preference information (neutral compromise solution), another employed prefer-

87

ence information given by weights (weighted and scaled Chebychev function),
and the rest three relied on reference points. Effects of specifying different refer-
ence points on solutions obtained are shown in four sample cases with three dif-
ferent scalarization functions. Finally we tested the interactive NIMBUS method,
and we were able to reduce the total number of function evaluations with the
help of intermediate solutions.

5.1 Single objective case

In the single objective case our aim was to compare different models to represent
exhaust pipe shape and also different optimization algorithms, and then choose
one model and one optimization algorithm to be used with multiobjective opti-
mization.

Our single objective optimization problem was formulated as given in Equa-
tion 23. For our objective function we selected location emphasized integrated
power P,;,, because it has most practical potential of the objective functions dis-
cussed in Section 4.4, and by using it we could have good control over power
peak location. Py, was calculated with the desired peak location set at 12500
rpm, the interval before the peak at 2000 rpm and the interval after the peak at
500 rpm.

5.1.1 Comparison of different shape models

Different models were initially compared using the Niederreiter random sam-
pling to get a coarse impression of the capabilities of each exhaust pipe model,
and also of the search space structure and the distribution of good solutions
within search space. We assumed that more potent and flexible models should
produce better solutions than their more rigid counterparts if search space is sam-
pled with equal density of covering. A maximum of 2695 objective function eval-
uations were executed for each of the Bezier, horn, Blair and FFS models, and the
best objective function values found before 500, 1000, 1500, 2000 and 2500 evalua-
tions were recorded. Special attention was paid also to the best objective function
value reached before 245n iterations to compare the behavior in relation to de-
sign variable number 7. This data is presented in Table 6, where in each cell the
best objective function value before a given number of evaluations is presented
together with the evaluation number, which produced that value, in parenthesis.

With fewer than 500 and 1000 function evaluations, the Blair model pro-
duced the best objective function values, probably due its low number of design
variables. With more function evaluations, the Bezier model dominated, and it
also produced the best objective function value with respect to 245n iterations.
FFS was far behind the other models, probably because of its higher dimension-
ality. When comparing with the Niederreiter random sampling, the Bezier and
Blair models seemed to be more effective. Nevertheless, this kind of comparison

88

TABLE 6 Results using Niederreiter random sampling. The best function value gained
before a given number of evaluations in each cell is on top, and respective
evaluation number is below in parenthesis.

Model | n | Bef. Bef. Bef. Bef. Bef. Bef. 245n

500 1000 1500 2000 2500 245n

Bezier | 6 | 388.941| 389.812| 400.786| 400.786| 400.786| 400.786| 1470

(193) | (534) | (1222) | (1222) | (1222) | (1222)

Horn | 6 | 393.012| 393.012| 393.012| 393.643| 393.643| 393.012| 1470

(450) | (450) | (450) | (1525) | (1525) | (450)

Blair |5 | 396.909| 399.925| 399.925| 399.925| 399.925| 399.925| 1225

(123) | (731) | (731) | (731) | (731) | (731)

FFS 11 | 382.755| 385.500] 385.500| 385.500| 385.758| 385.758| 2695

(263) | (672) | (672) | (672) | (2099) | (2099)

only gives a very rough estimate of the behavior of the model, and thus we fur-
ther studied the models using the CRS2 algorithm. CRS2 was selected for our
initial comparison because it is a widely cited and well-known algorithm, and
some studies, such as [1] and [59], also indicate that it is efficient. Population
size NP of CRS2 was set for each model to 5n and a maximum of 2695 objec-
tive function evaluations were executed. Data similar to the Niederreiter random
sampling was recorded. The results of the CRS2 run are presented in Table 7.

TABLE 7 Results using CRS2 and population size 5n. The best function value gained
before a given number of evaluations in each cell is on top, and respective
evaluation number is below in parenthesis.

Model | NP Bef. Bef. Bef. Bef. Bef. Bef. 245n

500 1000 1500 2000 2500 245n

Bezier | 30 | 404.761| 406.160| 406.515| 406.523| 406.623| 406.515| 1470

(463) | (997) | (1288) | (1994) | (2005) | (1288)

Horn | 30 | 403.896| 405.642| 405.888| 406.083| 406.083| 405.888| 1470

(455) | (974) | (1451) | (1607) | (1607) | (1451)

Blair | 25 | 399.026| 399.226| 399.331| 399.375| 399.508| 399.266| 1225

(493) | (968) | (1385) | (1949) | (2145) | (1057)

FFS 55| 337.903| 385.427| 396.514| 401.545| 403.378| 404.180| 2695

(15) (992) | (1494) | (1957) | (2409) | (2615)

As can be seen in Table 7, the Bezier model dominated comprehensively,
and the horn model surpassed the Blair model, as was expected due to the better
flexibility of the horn model. As the number of function evaluation counts in-
creased, the FFS model produced better and better solutions, but FFS obviously
suffered of high dimensionality, and for this reason the absolute number of func-
tion evaluations grew to an intolerably high level.

From the results of Tables 6 and 7 we can speculate that the greater the
flexibility of the model with respect to the number of design variables, the better

89

the performance of that model. The Bezier model with its high flexibility and
its modest number of six design variables performed better that its more rigid
counterparts, the horn and Blair models. The Blair model reached an objective
function value level of approximately 399 at very early evaluations, and could
not improve it essentially, probably due to the rigidity of the model. The FFS
model is the most flexible of all four models, but at the same time it suffers of
high dimensionality. We can assume that if we had used function evaluations
profligately, FFS would eventually have performed very well.

Method Over 400 Best
Bezier 401.001 (154) 406.623 (2005)

\\\\\\\\

Horn 400.594 (259) 406.083 (1607)

Blair 399.508 (2145) 399.508 (2145)

FFS 400.00 (1807) 404.180 (2615)

FIGURE 26 Examples of actual pipe shapes using all four models in a CRS2 run. On
top of each shell, the objective function value and the respective evaluation
number in parentheses.

In Figure 26, we present two pipe shapes for each model gained during
a CRS2 run. The first shape is from a situation where the objective function
value passed a level of 400 for the first time, and the second shape corresponds
to the best objective function value of the whole optimization run. Above the
pipe shape, the objective function value and the respective evaluation number are
given in parentheses. Images in Figure 26 depict the pipe shape represented to the
simulator, and thus differences in shape models (sections and their dimensions)
can be compared. The Bezier and Horn models produce a very similar looking
diffuser and baffle cone sections, although the general outline of the pipe with the
horn model is more chiselled. Also the resulting objective function values with
both of the shapes are very close to each other. The Blair model produces a some-
what thinner exhaust pipe, and the diffuser is a far coarser representation of the
horn shape as is the case with the Bezier and horn models, due to the rigidity of
the Blair model. Probably for these reasons performance remains lower than with
the Bezier and horn models. The FFS model produced visible irregularity to the
diffuser section, which is probably detrimental to performance, and it is slighter
after more function evaluations. Probably with even more function evaluations
the FFS model would have reached the performance level of the Bezier and horn
models.

90

5.1.2 Comparison of different optimization methods

For good results, flexibility and a modest number of design variables we selected
the Bezier model for comparisons between different global optimization meth-
ods, namely CRS2, CRS4, SAHPS, SCGA, DE and SuperEGO. For these compar-
isons we tightened our demands, and only allowed a maximum of 1000 objective
function evaluations for each algorithm. This number of function evaluations
corresponds roughly to amount of calculation that can be executed outside of-
tice hours during night-time. A thousand evaluations was considered a sufficient
number to adequately demonstrate the capabilities of each algorithm, while al-
lowing the total calculation time for all of the algorithm comparisons to be kept
at a reasonable level. Nevertheless, it took a few weeks calculational time to pro-
duce the data displayed in Table 8.

With CRS2, CRS4 and DE, the effect of the size of the population was also
examined. With DE, the effect of crossover parameter CR and mutation parame-
ter F was also tested with the best population size. For each test case, the best
function values gained are reported before 100, 200, 300, 400, 500 and 1000 func-
tion evaluations. The results of the optimization algorithm comparison are pre-
sented in Table 8. In the first column a method name is given with a population
size with regard to the problem size n (where applicable). The second column
indicates population size NP, and the rest of the columns are the best function
values gained before a defined number of evaluations. With a function value, the
corresponding evaluation number is given in parenthesis.

Overall, CRS variants seemed to work most efficiently, especially CRS2. Sur-
prisingly, a moderate population size of 5n produced the best performance. At
the beginning, SuperEGO produced the second best function values after CRS2,
but as the number of function evaluations grew, the computational overhead of
the SuperEGO algorithm itself became prohibitive. While other algorithms had
negligible overheads and could be executed at a constant pace of approximately
1200 iterations per day (24 h), SuperEGO managed to go through a mere 300 itera-
tions per day, with ever decreasing rate, meaning that SuperEGO was the slowest
algorithm of all, regardless of the number of function evaluations.

DE performed best with even smaller population (377) than CRS2, a majority
of the DE runs used crossover parameter CR = 0.9 and mutation parameter F =
0.8 as suggested in [60], except in the case marked with an asterisk in Table 8§,
where CR = 0.8 and F = 0.5, and in the case marked with a double asterisk where
CR = 0.7 and F = 0.2. The effect of the mutation parameter is clearly visible in
results, as expected. With the smaller values of F, search is expected to converge
faster with the expense of higher risk to get stuck on some local optimum. With
F = 0.5 search was somewhat faster than with F = 0.8, but reducing F further
down to 0.3 obviously lead to a premature convergence to some local optimum.
The majority of the DE runs were executed using the DE/best/2/bin strategy,
three runs referred to as DE2 were executed using the DE/rand/1/bin strategy,
with CR = 0.9 and F = 0.8. DE2 did not perform nearly as well as DE, thus no
further parameter tweaking was studied.

91

TABLE 8 Comparison of different global optimization algorithms. Best function val-
ues gained before given number of evaluations in each cell are on top, and
respective evaluation number is below in parenthesis.

Method| NP| Bef. Bef. Bef. Bef. Bef. Bef.

100 200 300 400 500 1000
CRS2 | 18 | 382.124 | 396.699 | 400.086 | 401.280 | 401.713 | 402.619
3n (93) (173) | 218) | (399) | (490) | (918)
CRS2 | 30 | 387.714 | 401.001 | 401.951 | 403.684 | 404.761 | 406.160
5n (61) (154) | (295) | (382) | (496) | (997)
CRS2 | 42 | 381.333 | 388.295 | 397.683 | 401.083 | 403.143 | 405.735
6n (89) (123) | (280) | (353) | (497) | (984)
CRS2 | 50 | 364.191 | 395.376 | 398.086 | 403.259 | 404.655 | 405.189
10n (76) (144) | 42) | @371 | (@91) | (861)
CRS4 | 18 | 347.396 | 354.826 | 355.334 | 356.156 | 356.653 | 357.088
3n (98) (174) | (298) | (399) | (450) | (956)
CRS4 | 30 | 371.240 | 388.614 | 401.206 | 402.136 | 402.476 | 404.489
5n (84) (191) | (288) | (499) | (495) | (997)
CRS4 | 60 | 344.700 | 387.489 | 387.489 | 390.318 | 394.401 | 402.966
10n (89) (164) | (164) | (367) | (494) | (997)
SAHPS | - | 156.531 | 165.465 | 232.328 | 232.3278 232.328 | 279.829
1) 196) | 21) | (21) | (221) | (671)
SCGA |- | 154392 | 164.202 | 175.129 | 222.200 | 222.200 | 228.124

(16) (196) | (295) | (329) | (329) | (882)
DE3n | 18 | 389.534 | 395.559 | 398.586 | 398.700 | 402.301 | 405.170
(60) (113) | 21) | (349) | (421) | (924)
DE 3n | 18 | 397.113 | 399.166 | 400.931 | 402.590 | 404.135 | 405.645

* (68) 166) | (251) | (347) | 490) | (918)
DE 3n | 18 | 388.483 | 393.528 | 394.026 | 394.250 | 394.391 | 394.486
o (95) 193) | (279) | (379) | 488) | (794)

DE5n | 30 | 382.180 | 389.109 | 398.273 | 398.273 | 398.273 | 403.866
(99) (183) | (249) | (249) | (249) | (980)

DE 60 | 369.928 | 374.911 | 374911 | 374.911 | 391.96 | 401.856
10n (25) (164) | (164) | (164) | (494) | (821)
DE2 | 18 | 379.015 | 394.292 | 398.83 | 398.83 | 399.7 | 403.483
3n (97) (137) | 261) | (261) | (438) | (967)
DE2 | 30 | 387.798 | 396.819 | 396.819 | 399.284 | 401.416 | 404.08
5n (87) (128) | (128) | (367) | (486) | (819)
DE2 | 60 | 344317 | 375.905 | 378.876 | 389.728 | 395.896 | 398.331
10n (72) (116) | 214) | (394) | (488) | (676)
Super |- | 379.820 | 398.555 | 401.556 | 401.566 | - -
EGO (90) (168) | (289) | (329)

With DE and SAHPS implementations used there was a problem with de-
sign variable bounds, because both algorithms tried to proceed searching out of
the feasible region, i.e. intervals for design variables. In some cases this is not
acceptable, because, for example, it may result non physical solutions, such as

92

sections having negative length etc. For this reason, the objective function was
modified to give worse values as bounds were broken and summing the absolute
values of those design variables that were violated. Thus search procedure was
not encouraged to proceed out of the feasible region. SAHPS and SCGA both per-
formed very poorly, probably because of their complicated structure, and both of

them produced quite poor objective function values with regard to other meth-
ods.

TABLE 9 Ordinal comparison of different global optimization algorithms. Algorithms
for each function evaluation level are ordered columnwise.

Bef. 100 Bef. 200 Bef. 300 Bef. 400 Bef. 500 Bef. 1000
DE 3n * CRS2 5n CRS2 5n CRS2 5n CRS2 5n CRS2 5n
DE 3n DE 3n * SuperEGO | CRS210n | CRS210n | CRS2 6n
DE 3n ** SuperEGO | CRS4 5n DE 3n * DE 3n * DE 3n *
DE2 5n DE2 5n DE 3n * CRS4 5n CRS2 6n CRS2 10n
CRS2 5n CRS2 3n CRS2 3n SuperEGO | CRS4 5n DE 3n
DE 5n DE 3n DE2 3n CRS2 3n DE 3n CRS4 5n
CRS2 3n CRS210n | DE 3n CRS2 6n CRS2 3n DE2 5n
CRS2 6n DE2 3n DE 5n DE2 5n DE2 5n DE 5n
SuperEGO | DE 3n ** CRS210n | DE23n DE2 3n DE2 3n
DE2 3n DE 5n CRS2 6n DE 3n DE 5n CRS4 10n
CRS4 5n CRS4 5n DE2 5n DE 5n DE2 10n CRS2 3n
DE 10n CRS2 6n DE 3n ** DE 3n ** CRS410n | DE 10n
CRS210n | CRS410n | CRS410n | CRS410n | DE 3n ** DE2 10n
CRS54 3n DE2 10n DE2 10n DE2 10n DE 10n DE 3n **
CRS5410n | DE 10n DE 10n DE 10n CRS4 3n CRS4 3n
DE2 10n CRS54 3n CRS4 3n CRS4 3n SAHPS SAHPS
SAHPS SAHPS SAHPS SAHPS SCGA SCGA
SCGA SCGA SCGA SCGA SuperEGO | SuperEGO

In Table 9 ordinal comparison of algorithms is presented. In each column
methods are in the order of superiority by the best function value achieved be-
fore 100, 200, 300, 400, 500 and 1000 function evaluations, the best one at the top.
From this data we can extend implications made from the data in Table 8, and
see that CRS2 was overall working most efficiently with the current problem set-
ting. DE produced almost as good results as CRS2, but as there are many critical
parameters to set (population size, values for crossover and mutation parameters
and selection of DE-strategy) which affect the performance of the algorithm, DE
is more complicated to use and leaves certain amount of uncertainty for the de-
signer to be dealt with. In fact, selection of parameters for DE is an optimization
problem itself. For these reasons we chose to exclusively use the CRS2 method,
with a population size of 57, as the optimization algorithm in the multiobjective
case, and depict pipe shape using the Bezier model.

93

5.2 Multiobjective case

In the multiobjective case we had three conflicting objectives, maximum power,
coverage, and bmep, as defined in Section 4.4. Simulator setup was similar to
that in the single objective case, and exhaust pipe shape was modelled using the
Bezier model. Different scalarization methods were used to convert the problem
into a single objective one, and the resulting single objective problem was solved
using the CRS2 algorithm with a population size of 5n.

5.2.1 Comparison of different scalarization functions

First we made a rough comparison of methods between different classes (no
preference information, weight based preference information and reference point
based preference information) allowing a maximum of 200 objective function
evaluations. Some of the best methods were then further tested with an ever-
decreasing number of objective function calls to evaluate how this affects the
quality of the solution.

For normalizing purposes, our scalarization functions require information
about ideal and nadir objective function values. In our study, ideal and nadir
points were not calculated explicitly, because it would have required lots of com-
puting time. Instead, the value 0 was used for all the components of the nadir
objective vector. For the components of the ideal objective vector, the maximum
power was set to 34 hp, the coverage was set to 1, and bmep to 15. All these
three values are sufficiently good and cannot be reached and can, thus, serve as
components of the ideal objective vector.

In Table 10 we show the results of the neutral compromise solution (NCS)
(no preference method) and weighted and scaled Chebychev (WSC) scalariza-
tion (weight based preference information) functions with four different sets of
weights. The neutral compromise solution shows quite acceptable objective func-
tion values, considering the fact that there was no preference information avail-
able. If the designer lacks expertise of a specific domain, (s)he can get some usable
solution using the NCS function.

TABLE 10 Multiobjective optimization results and weights using neutral compromise
solution (NCS) and weighted and scaled Chebychev (WSC) scalarization
functions.

NCS | WSCCasel1l | WSC Case 2 | WSC Case 3 | WSC Case 4
Values | Wgts | Vals | Wgts | Vals | Wgts | Vals | Wgts | Vals
Power 2532 | 033 | 18.69 | 0.25 | 18.05 | 0.18 | 17.83 | 0.13 | 25.19
Coverage | 085 | 033 | 096 | 050 | 097 | 0.65 | 0.97 | 0.80 | 0.55
Bmep 1117 | 033 | 896 | 0.25 | 8.66 | 0.18 | 837 | 0.07 | 12.08

With the WSC function we first defined identical weights for all the objec-
tives in Case 1. This resulted in a very high coverage, and in quite poor power

94

and bmep values. In Case 2 we wanted to gain more power and bmep and less
coverage, thus the weights were adjusted accordingly. Surprisingly, this caused
no changes in the objective function values. In Case 3, the weights were further
adjusted to gain more power and bmep at the expense of coverage, but we still
failed to see any significant changes in the objective function values. In Case 4,
we further sacrificed coverage, and emphasized bmep over power. This resulted
in a dramatic increase in both power and bmep, and in an equally dramatic de-
crease in coverage. This erratic behavior probably implies the that task at hand is
somewhat demanding, and that a weight based approach is not appropriate for
solving it.

Data in Table 10 clearly demonstrates the weakness of the weight based
scalarization function: there is no direct relationship between the weight values
and the resulting objective function values. In our case, weight adjustment in the
middle range did not produce significant changes, if any, but changes near the
extreme values had a remarkable effect. Thus, selecting values for weights is a
kind of guesswork, and the results can be seen only after a time consuming com-
pletion of the optimization process when the designer is able to assess whether
the selected weights led to the desired output or not.

Problems of weight based scalarization can be overcome using reference
point based scalarization. In reference point based scalarization, preference in-
formation is given as a vector consisting of desirable objective function values,
i.e. reference point.

We show the effects of specifying different preferences (in the form of differ-
ent reference points) on solutions obtained in four sample cases with three differ-
ent scalarizations discussed in Subsection 2.3.1, namely achievement scalarizing
function (ACH) Equation 3, function from satisficing trade-off method (STOM)
Equation 4 and the one used in GUESS method Equation 5. Additionally, for
comparison, we show results using the standard NIMBUS method subproblem
formulation (STD) given in [45] and implemented in IND-NIMBUS software. In
first two cases we were essentially optimizing only a single objective at a time, ei-
ther bmep (Case 1) or maximum power (Case 2), to see how this affects the other
two objectives, and also to show the weakness of the single objective approach.

In Case 3, we aimed at maximum coverage and wanted to keep power and
bmep at a reasonable level at the same time. In Case 4, we slightly relaxed our
demand for maximum coverage, and aimed at a somewhat higher power output
while retaining the bmep requirement at the same level as in Case 3. The exact
reference point values (Ref) and obtained Pareto optimal objective function val-
ues produced (Pwr, Cov and Bmp) with different scalarizations (after a modest
amount of 200 simulator calls for each case) are shown in Table 11.

From the results given in Table 11 we can deduce that power and bmep are
not such conflicting objectives as we first thought. Case 1 aimed at maximum
bmep, and Case 2 for maximum power, and yet power and bmep values between
those cases do not differ significantly. However, coverage is a different matter.
In Cases 1 and 2, coverage is rather poor, and despite of high power output and

95

TABLE 11 Reference points and solutions with different scalarization methods.
Case 1 Case 2 Case 3 Case 4
Pwr | Cov | Bmp | Pwr | Cov | Bmp | Pwr | Cov | Bmp | Pwr | Cov | Bmp
Ref 0 0 15 34 0 0 22 1 10 25 | 0.88 10
STD 258 | 054 | 121 | 269 | 049 | 10.8 | 22.1 | 093 | 104 | 25.7 | 0.88 | 10.3
ACH | 256 | 075 | 120 | 270 | 049 | 11.3 | 20.1 | 095 | 945 | 2563 | 0.89 | 10.5
STOM | 258 | 055 | 121 | 26.6 | 0.59 | 10.7 | 17.8 | 0.97 | 854 | 25.6 | 0.89 | 10.3
GUESS | 271 | 043 | 113 | 272 | 049 | 11.8 | 20.8 | 095 | 10.2 | 25.2 | 0.88 | 10.7

high bmep, a bike equipped with this engine would probably perform poorly on
the racetrack. In Case 3, we wanted to maximize coverage and keep power and
bmep at a reasonable level at the same time. As we can see, there is a moderate
decrease in maximum power, a slight decrease in bmep, but a huge increase in
coverage. This setup would probably perform quite well also on the racetrack.
In Case 4, we wanted to have more maximum power, and thus we relaxed the
coverage requirement and required more power. When using a more realistic ref-
erence point, all three desirable objective function levels were reached as a result.
As can be seen in Table 11, our optimization system obtained very satisfying re-
sults with regard to the reference point used. It is also important to notice how
easy and straightforward it is to compare preference information with the result-
ing objective function values. The data also indicates that different scalarization
functions produce slightly different Pareto optimal solutions, yet they all can be
used to guide solution to the desired direction.

In Figure 27, some exhaust pipe designs with the resulting power curves
are presented as examples. For each case, the results of a scalarization function
that has produced in some sense the best values have been selected. In Case 1,
the pipe shape looks credible, power output is sufficient and power peak is at
a reasonable rpm level (slightly under 12 000 rpm). However, the power curve
looks very "peaky". In Case 2, where the aim was to attain maximum power, the
resulting pipe shape is not very appealing according to the traditions of the trade,
and the power curve is fluctuating, which would make the bike very unpleasant
to drive. In addition, the power peak is located quite high as expected, slightly
under 14 000 rpm, which would compromise mechanical reliability of the engine.
From these two cases we can deduce that the single objective approach with a
simple objective function definition (here maximum power or bmep) is not ade-
quate, and it may be even grossly misleading if the designer lacks expertise of the
domain.

In Case 3, we wanted to obtain such values for maximum power, coverage
and bmep that would result with a good performance in a real life situation. Peak
power is here somewhat smaller than in the previous cases, but the shape of the
power curve is very pleasant with an even delivery of power, resulting in much
more integrated power (the area under the power curve between some given
interval). In Case 4, we wanted to gain more power at the expense of coverage.
The power curve looks again very pleasant, the peak power has increased and the
power peak has shifted a bit higher on rpm scale, as expected. If the requirement

96

Case 1 ACH Case 2 STOM

[\

[7 2 & 3 i aisieiriei 9

Case 3 STD Case 4 GUESS

=0 EL]

== 25

20

FIGURE 27 Examples of pipe shapes and corresponding power curves for all four cases.

for bmep had been higher, the power peak would have been lower in the rpm
scale. In visual inspection, the exhaust pipe shapes in Cases 3 and 4 are very
appealing and very similar to the ones used in real racing engines.

Overall, results with reference point based scalarization are very pleasing,
and preference information can be given straightforwardly and without guess-
work, in contrast to weight based scalarization. The results follow reference
point information rather accurately with a modest number of only 200 evalua-
tions. Defined this way, the reference point is reachable. Playing with preference
information also allows the designer to learn about the problem itself by seeing

what kinds of function values can or cannot be reached, and how they affect each
other.

5.2.2 Number of function evaluations and solution quality

We wanted to study further effects of reduced number of evaluations to solu-
tion quality. This data is presented in Tables 12 and 13, where the best scalariza-
tion function values are presented within the intervals of 25 function evaluations
along with separate objective function values. In Table 12 the reference point used
(22.0, 1.0, 10.0) was the same as in Case 3 in Table 11, and in Table 13 the reference
point used (25.0, 0.88, 10.0) was the same as in Case 4 in Table 11. Blank cells
mean that there was no improvement to the previous evaluation count level.

97

TABLE 12 Effect of the number of function evaluations to solution. Reference point:
power = 22, coverage = 1.0, bmep = 10.

ACH STOM GUESS
Evals | Pwr | Cov | Bmp | Pwr | Cov | Bmp | Pwr | Cov | Bmp
25 | 21.321 | 0.940 | 9.598 | 17.632 | 0.963 | 9.045 | 19.226 | 0.911 | 9.863
50 | 20.131 | 0.952 | 9.448 19.791 | 0.945 | 9.922
75 23.884 | 0.905 | 10.752
100 21.005 | 0.936 | 9.859
125
150
175 17.804 | 0.971 | 8.538 | 20.760 | 0.945 | 10.177

In Table 12 the reference point value for coverage was set to an unreachable
theoretical maximum 1.0, and this is clearly visible in function values: coverage
climbed quite high, whereas power and bmep lagged behind reference point val-
ues. In this sense, the reference point was not realistic nor reachable. A multitude
of blank cells with ACH and STOM functions suggests that Pareto optimal results
satisfying the preferences were hard to come by using these functions. GUESS
could improve results more consistently, and its final solution would probably be
slightly better than that of ACH and STOM functions.

TABLE 13 Effect of the number of function evaluations to solution. Reference point:
power = 25, coverage = 0.88, bmep = 10.

ACH STOM GUESS
Evals | Pwr | Cov | Bmp Pwr | Cov | Bmp Pwr | Cov | Bmp

25 | 23994 | 0.871 | 11.027 | 24.325 | 0.917 | 10.319 | 24.305 | 0.841 | 11.655
50 | 24.268 | 0.885 | 10.925 24.392 | 0.866 | 10.761
75 | 24964 | 0.876 | 10.198

100 24.381 | 0.883 | 10.976 | 25.104 | 0.878 | 10.649

125 | 24.927 | 0.878 | 10.782 | 25.121 | 0.878 | 10.656

150 25.616 | 0.889 | 10.274

175 | 25.114 | 0.884 | 10.653 25.183 | 0.884 | 10.683

In Table 13 the reference point was adjusted to a more realistic and reach-
able level, coverage was decreased to 0.88, power was increased to 25, and bmep
was kept at the same level with a value of 10. With this preference information all
methods produced rather steady improvement on function values (minor part of
blank cells) as the number of function evaluations allowed was increased. Even
at the very beginning, with under 25 function evaluations, all methods produced
solutions quite close to a given reference point, and after 175 function evalua-
tions all methods had exceeded given reference point values. With this prefer-
ence information ACH and GUESS behaved almost identically, whereas STOM
produced a slightly lower bmep value and a slightly higher maximum power.

From Tables 12 and 13 we can deduce that reference point based scalar-
ization functions are very usable because of their straightforward use of prefer-

98

ence information, which directly relate to real function values. Also, using an
extremely modest number of iterations, rather good solutions can be found. It
is possible to assess their usability from the designers point of view and further
adjust preference information to meet the designer’s goal. It is also beneficial for
the designer to be able to get a grasp of the reachable objective function value
ranges by playing with preference information, and thus learn something of the
system itself. This, in turn, offers a natural basis for the use of interactive meth-
ods. In addition, in an interactive solution process, the number of function eval-
uations used, i.e. computational accuracy, can be adjusted dynamically. At the
tinal stages of the interactive procedure, when the designer decides that the opti-
mal mutual emphasis of separate objectives is found, (s)he can execute the final
optimization run with a higher number of function evaluations, ranging from
hundreds to thousand, to make certain the resulting solution is optimal.

5.2.3 Interactive solution process using NIMBUS

In Table 14 we present the results of an interactive optimization run using NIM-
BUS software [45] with in-built ACH scalarization and the CRS2 algorithm as an
underlying solver. With NIMBUS several different scalarization functions can be
employed synchronously, but as the data in Tables 10, 11, 12 and 13 indicates,
differences in results between scalarization functions are negligible, and thus we
chose to use only ACH scalarization in order to decrease the computational bur-
den.

Normally IND-NIMBUS initially calculates the ideal and nadir objective
vectors, and updates these values during the optimization run as necessary. In
our case, these values were given beforehand manually. The nadir objective vec-
tor values for maximum power, coverage and bmep were 0.0, 0.0, 0.0 respectively,
and the ideal objective vector values were 34.0, 1.0, 15.0. The values for both vec-
tors were selected so that they are not reachable in real life.

With IND-NIMBUS it is possible to generate a set of intermediate Pareto op-
timal solutions between any two Pareto optimal solutions to assess, for example,
variations in function values. This feature was not exploited in our example case.

In Table 14 we present, for each classification step, the desirable objective
function values (Cls), corresponding results (Res) and the number of function
evaluations (Evals) used in that step. We denote solution as values for all three
functions with triplet (f1, f2, f3). In Step 1 the neutral compromise solution was
calculated using 200 function evaluations. After that, the classification steps were
executed with only 50 function evaluations for each new classification. Only the
tinal two steps were executed to 1000 evaluations.

In Step 1 a neutral compromise solution was calculated using 200 iterations,
resulting in the solution (26.0, 0.78, 11.3). In Step 2 new classification was done
based on the result of Step 1. The aim was to gain higher coverage, thus power
was allowed to degrade to 25.0, coverage was required to improve to 0.85 and for
bmep slight degradation to 11.0 was allowed. The resulting solution (24.6, 0.86,

99

TABLE 14 Interactive solution process.

Pwr Cov Bmp
Step 1 Cls - - -
Evals: 200 | Res 26.0 0.78 11.3
Step2 | Cls | [P#"4(25.0) | I%°P(0.85) | IP°“"4(11.0)
Evals: 50 | Res 24.6 0.86 10.9
Step3 | Cls | ["#"4(24.0) | I%P(0.9) | I*P(11.5)
Evals: 50 | Res 22.7 0.87 11.1
Step4 | Cls | I°P(25.5) 1757(0.9) | Ibound(10.5)
Evals: 1000 | Res 25.5 0.9 10.6
Step5 | Cls | I’"(25.5) | I"“"4(0.88) | I°P(11.2)
Evals: 1000 | Res 25.3 0.87 11.2

10.9) was quite close to the given classification regardless of only 50 iterations.

In Step 3 classification was done based on the result of Step 2. The aim was
to gain even more coverage and slightly more bmep, thus power was allowed
to degrade to 24.0, and coverage and bmep were required to improve to 0.9 and
11.5, respectively. As a result (22.7, 0.87, 11.1) power dropped quite a lot and
coverage and bmep were increased only slightly, probably due to the tiny number
of 50 iterations. In Step 4 we continued classification from the solution of Step 3.
We wanted to approach the final solution with quite a high demand for power
and coverage (25.5 and 0.9), at the same time we allowed degradation of bmep
to 10.6. With 1000 function evaluations a given classification was achieved and
partly exceeded with the solution (25.5, 0.9, 10.6). This solution had the power
peak at a quite high level (25.5 hp at 13250 rpm), thus, in classification at Step 5
we wanted to keep power at the same level (25.5), and relaxed the demand for
coverage slightly to 0.88 and required bmep to improve to 11.2. The result was
as expected, and all the objectives followed a given classification quite accurately
with the solution (25.3, 0.87, 11.2), and power peak settled at a reasonable level
with 25.3 hp at 12500 rpm. In Figure 28 the power curve and the corresponding
exhaust pipe shape of the final solution of the interactive optimization procedure
is displayed.

The interactive optimization procedure allowed us to guide the solution to
the desired direction step by step, and also learn about what kind of solutions
are attainable. In intermediate steps, only a minimal number of the 50 function
evaluations were used, yet the solutions obtained followed the given classifica-
tions accurately enough to allow guidance of solutions to a desired direction. In
the final two steps, 1000 function evaluations were used, and this lead to a good
tinal solution, as the numbers and figures in Figure 28 indicate: the power curve
is smooth and wide, and the exhaust pipe shape resembles the shapes used in
real racing engines.

100

8000 10000 11000 12000 13000 14000

FIGURE 28 Power curve and corresponding pipe shape of the final interactive solution
(25.3,0.87,11.2).

6 DISCUSSION AND CONCLUSIONS

In many industrial processes it is imperative to be able to control features (quality,
production cost, strength, etc.) of the end product. Processes can be simulated
using specific mathematical models, upon which the effects of different input
variable values of the process can be tested to produce a desired end result. Of-
ten, input variable values are adjusted by trial-and-error, based on the designer’s
expertise, producing results of varying quality.

Instead, with simulation based optimization, the designer no longer adjusts
design variable values manually, but rather he/she describes the desired end re-
sult with a higher abstraction level, and an appropriate optimization algorithm
finds such values for the design variables, that give an optimal result in the sense
the designer wished.

In this study, we considered three important characteristics of simulation
based optimization systems: efficiency (generally, running the simulator is com-
putationally expensive) in terms of objective function evaluations, global search
instead of local one (to avoid local minima often present because of high nonlin-
earity), and the treatment of the problem as a multiobjective optimization one.
Additionally, the gradient information is often unavailable, as was the case also
with our problem.

In our study, the aim was to relieve the burden of the designer in the de-
sign process by replacing the manual trial and error process with a computer
implemented optimization system, which is capable of operating without contin-
uous human intervention, as is required in the time consuming trial and error
processes. With an optimization system, we can achieve optimal results, in con-
trast to the trial and error process, where the process ends when some satisfactory
result, which may still be arbitrarily far from the real optimum, is found.

To relieve the burden of design process we created a system for simulation
based optimization, which consisted of several heterogenous software modules.
The most prominent of those were the engine simulator and different optimiza-
tion algorithms. With a specifically written adapter and interfacing code, our
system enabled virtually the use of any optimization algorithm and simulator
combination.

102

Our example case concerned internal combustion engine design. More specif-
ically, we optimized the performance of a 2-stroke engine by altering the exhaust
pipe shape. We created some novel ways to model the exhaust pipe shape us-
ing only a modest number of design variables, while retaining the generality and
flexibility of the model. We defined several ways for measuring the goodness of
a particular engine design (objective functions), and we also addressed the im-
portant topic of viewing the optimization problem from the perspective of the
vehicle performance as a whole. From these objectives we formulated both sin-
gle and multiobjective optimization problems, which we solved using efficient
global optimization algorithms and different scalarization methods. As a whole,
we solved the engine design problem with a somewhat more practical value than
in some of the previous studies where objective functions were defined in a trivial
way and objective function evaluations were splurged, which is not allowable if
objective function values are produced via a time-consuming simulation process.

To create an efficient, global and multiobjective optimization system, we
had to do the following: identify or create an efficient and flexible way to model
the exhaust pipe shape, select an efficient global optimization algorithm, and se-
lect appropriate scalarization function(s) to be used. To justify our selections,
we conducted a series of comparisons as depicted below. Furthermore, we em-
ployed the interactive NIMBUS method, and made attempts to reduce the num-
ber of function evaluations required and yet were able to guide the optimization
process to the desired direction.

With the single objective optimization task we compared four different ways
to model the exhaust pipe shape using the Niederreiter random sampling and the
CRS2 optimization algorithm. The Bezier model, which produced the best objec-
tive function values, with respect to function evaluations used, was deemed the
best. This was probably due to the low number of design variables (n = 6) used,
and also to the flexibility of the model (i.e., it was able to capture large variety
of possible pipe shapes). In general, we can assume that while the flexibility of
the model increases, and the number of design variables decreases, the usability
and efficiency of the model improves from the perspective of the optimization
algorithm.

Once the Bezier model had been selected, different global optimization al-
gorithms were compared using the Bezier model and a single objective optimiza-
tion task. Here, the CRS2 algorithm was chosen, because it proved to be superior,
and it was also pleasant to use, because there were no parameters except the pop-
ulation size to be set for the algorithm itself. The DE algorithm got very close
in performance to CRS2, and it is possible that with some additional parame-
ter tweaking it might have outperformed CRS2. However, the drawback of the
DE algorithm lies in the difficulty of choosing proper values for all the parame-
ters and the DE strategy. Somewhat surprisingly, hybrid optimization algorithms
performed poorly, probably due to their complex structure. The method based
on statistical modeling of objective function performed otherwise well, but the
overhead of the algorithm itself proved to be prohibitive. One possible way to
improve its performance could be to decrease the rate of fitting of the statisti-

103

cal model. Currently the model is fitted after each function evaluation, and as
the number of already performed evaluations grows, fitting of the model takes a
very long time.

For the multiobjective optimization case, and for the comparison of differ-
ent scalarization functions, we chose to use the Bezier model with the CRS2 al-
gorithm. Multiple objectives were scalarized into a single objective using several
different types of scalarization functions, and their properties were compared. In
our case, the method with no preference information produced a rather good so-
lution, although the quality of the solution obtained obviously depends on nadir
and ideal point values, which were only estimated in this study.

From the class of scalarization methods that use preference information
we used both weight and reference point based functions. Weight based func-
tion proved to be impractical, because there was no direct relationship between
weights and objective function values. Also results of current weighting were
seen after a completion of the whole time consuming optimization run. This
made it very difficult to control objective function values.

Instead, reference point based functions provided practical means to repre-
sent the preference information and to control the solution process. A reference
point consists directly of desirable function values, and whenever reference point
values were reachable, a solution was found with quite a low number of function
evaluations. According to our comparison, there were no significant differences
in solutions that different reference point based scalarization functions used pro-
duced.

The interactive NIMBUS method offers some benefits over plain use of scalar-
ization function. With NIMBUS the user classifies function values of an already
found solution by allowing them either improve, degrade, keep their current
value, or have whatever value. From the current solution, a new solution with
user preferences is created, and the iterative process is continued until the de-
cision maker finds the final solution. With an interactive process, the decision
maker can also learn about the nature of the problem. By using different classifi-
cations it is possible to learn how objectives affect each other, and also what kinds
of solutions in general can or cannot be reached. This gives the decision maker
a good opportunity to solve the problem as a whole, instead of tweaking each of
the objectives at a time. A deeper understanding of the problem is likely to make
the decision maker very confident of the quality of the final solution.

With the interactive method, we also could decrease the number of function
evaluations to a rather low level, and yet guide the solution process to a desired
direction. This means time savings, and retains the interactive nature (which is
endangered by time consuming simulation runs) of the process to some extent.
To be assured of the goodness of the final solution, we used a larger number of
function evaluations to get to the final solution.

In this study we compared several global optimization algorithms, different
ways to model exhaust pipe shape, and different scalarization functions. Also,
several ways to define goodness of the particular engine were formulated. By

104

employing multiobjective methods in general, and interactive NIMBUS method
in particular, we could guide the solution process and also learn about interrela-
tionships between different objective functions.

In practice, we discovered the usefulness and practicality of multiobjective
optimization in general and of reference point scalarization methods in particular.
By using them we could guide the solution process to the direction we wished by
simply giving desirable values for each of the objective functions. Also, use of
the interactive NIMBUS method allowed us to decrease the number of function
evaluations and yet be able to guide the solution process efficiently.

Results gained using the optimization system seem very credible by the tra-
ditions of the trade. The optimized pipe shapes resemble closely to the ones seen
in the aftermarket performance exhaust pipes, and respective power curves sug-
gest high usability for the optimized pipes. Unfortunately, resources budgeted
for this study did not allow us to empirically verify the real performance of the
exhaust pipes neither using the dynamometer nor on the racetrack, and thus we
can say that the results are optimal only if the simulator itself is trustworthy:.

Anyhow, we believe that the methods depicted in this study can be ex-
ploited in several different fields of engineering. Especially, we have addressed
solving of nonlinear, multiobjective and multimodal problems (frequently faced
in engineering problems), without forcing them to a restrictive single objective
format in the modelling phase, or solving them only locally. With our approach,
problems retain their original characteristics, and the designer / decision maker
can freely pursue a solution which best corresponds to his/her desires, while
having certainty that the solution found is globally optimal.

In the future, the two key areas for further research will be the development
of even more efficient global optimization algorithms and the usability of current
tools. Although computational power of hardware is constantly increasing, so is
the complexity and reliability of the simulation models. Thus, the need for more
efficient global optimization algorithms is evident. Although the CRS2 algorithm
performed well, there are also interesting prospects in the direction of surrogate
modelling and advanced clustering techniques as parts of global optimization
algorithms.

In addition, usability and ease of use play an important role when the de-
signer is familiarizing with, or evaluating an optimization system. In the current
system, objective function values are both numerically and visually displayed,
but the designer would benefit if (s)he could use some additional information.
In our example case of engine design process, an additional display with power
curves and exhaust pipe shapes related to each solution would have been useful.

Furthermore, although not with the highest order of importance from the
perspective of development of optimization tools and methods, it would be in-
teresting to study how well the optimized exhaust pipes of this study perform
compared to the best known aftermarket performance exhaust pipes, either in
simulated environments, or in real life applications.

REFERENCES

[1] MM. Ali and C. Khompatraporn and Z.B. Zabinsky (2005): A Numerical
Evaluation of Several Stochastic Algorithms on Selected Continuous Global
Optimization Test Problems, Journal of Global Optimization 31:635-672.

[2] MM. Ali and C. Storey (1994): Modified Controlled Random Search Algo-
rithms, International Journal of Computer Mathematics 54: 229-235.

[3] MM. Ali, C. Storey and A. Torn (1997): Application of some Stochastic
Global Optimization Algorithms to Practical Problems. Journal of Optimiza-
tion Theory and Applications 95: 545-563.

[4] I. Arbuckle, S. Naylor and M. Worthington (2002): Optimization Strategies
Applied to Exhaust System Design. Published in Computer Simulation for
Automotive Applications. R. Ballinger and G. Steen (editors). Society of Au-
tomotive Engineers, Inc., 111 - 117.

[5] J. Banks (1998): Handbook of Simulation : Principles, Methodology, Ad-
vances, Applications, and Practice. John Wiley & Sons.

[6] M. Bartholomew-Biggs, S. Brown, B. Christianson, L. Dixon (2000): Auto-
matic differentiation of algorithms. Journal of Computational and Applied
Mathematics 124, 171-190.

[7] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty (1993): Nonlinear Program-
ming: Theory and Algorithms. John Wiley and Sons, New York, 2nd edition.

[8] PK. Bergey, C. Ragsdale (2005): Modified differential evolution: a greedy
random strategy for genetic recombination. Omega 33, 255-265.

[9] H.-G. Beyer and H.-P. Schwefel (2002): Evolution Strategies: A Comprehen-
sive Introduction. Natural Computing, Vol. 1, No. 1, 3-52.

[10] P. Bezier (1970): Emploi des Machines a Commande Numerique". Masson et
Cie. Paris.

[11] L.T. Biegler (1989): Chemical Process Simulation. Chemical Engineering
Progress, 85(10), 50-61.

[12] G. P. Blair (1996): Design and Simulation of two-stroke Engines. Society of
Automotive Engineers, Inc.

[13] J. Bradley (1996): The Racing Motorcycle - A technical guide for constructors.
Broadland Leisure Publications.

[14] N. Cressie (1990): The origins of kriging. Mathematical Geology, 22, 197-202.

[15] A.Dave and G.J. Hampson (2003): Robust Engine Design Using Engine Sim-
ulations. Published in Modeling of SI Engines. T. Morel (editor). Society of
Automotive Engineers, Inc., 65 - 77.

106

[16] K. Deb (2001): Multi-Objective Optimization Using Evolutionary Algo-
rithms. John Wiley & Sons.

[17] J. E Elder IV (1992): Global Rd Optimization when Probes are Expensive: the
GROPE Algorithm. Proceedings IEEE International Conference on Systems,
Man, and Cybernetics, Chicago, Illinois, October 18-21, 1992

[18] T. D. Gillespie (1992): Fundamentals of Vehicle Dynamics. Society of Auto-
motive Engineers, Inc.

[19] P. E. Gill, W. Murray, M. H. Wright (1981): Practical Optimization. Academic
Press.

[20] T.J. Gogg and J.R.A. Mott (1996): Improve Quality & Productivity with Sim-
ulation, 3rd Edition. JMI Consulting Group.

[21] A. Griewank (2000): Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. Society for Industrial & Applied Mathematics.

[22]]J. Hakanen (2004): Challenges of Process Integration to Interactive Multiob-
jective Optimization. Licentiate Thesis, Department of Mathematical Infor-
mation Technology, University of Jyvaskyla.

[23]]J. Haslinger and R.A.E. Mékinen (2003): Introduction to Shape Optimization
- Theory, Approximation and Computation. Siam. Philadelphia.

[24] A-R. Hedar (referenced at 11.11.2005): Global
Optimization <http:/ /www-optima.amp.i.kyoto-
u.ac.jp/member/student/hedar/Hedar_files/go.htm>.

[25] A-R. Hedar and M. Fukushima (2002): Hybrid simulated annealing and di-
rect search method for nonlinear unconstrained global Optimization. Opti-
mization Methods and Software, 17, 891-912.

[26] A-R.Hedar and M. Fukushima (2003): Minimizing multimodal functions by
simplex coding genetic algorithm. Optimization Methods and Software, 18,
265-282.

[27] A-R. Hedar and M. Fukushima (2003): Heuristic Pattern Search and Its Hy-
bridization with Simulated Annealing for Nonlinear Global Optimization.
Optimization Methods and Software, 19, 291-308.

[28] H. Heisler (2002): Advanced Vehicle Technology. Butterworth-Heinemann.

[29] M. Hoefer (referenced at 28.11.2005): Bezier Curve Demo.
<http:/ /www.math.ucla.edu/ baker/java/hoefer/Bezier.htm>.

[30] R. Hooke and T. Jeeves (1961): Direct search solutions of numerical and sta-
tistical problems. Journal of the Association for Computing Machinery, 8,
212-229.

107

[31] W. Huyer and A. Neumaier (1999), Global optimization by multilevel coor-
dinate search. Journal of Global Optimization 14, 331-355

[32] D.R. Jones, M.Schonlau and W.].Welch (1998): Efficient Global Optimization
of Expensive Black-Box Functions. Kluwer Academic Publishers.

[33] C.T. Kelley (1999): Detection and remediation of stagnation in the Nelder-
Mead algorithm using a sufficient decrease condition. SIAM Journal of Op-
timization, 10, 43-55.

[34] M. Keveney (referenced at 12.1.2006): Animated Engines.
<http:/ /www.keveney.com/Engines.html>.

[35] S. Kirkpatrick, C.D. Gelatt Jr. and M.P. Vecchi (1983): Optimisation by simu-
lated annealing. Science, 220, 671-680.

[36] J. Knowles (referenced at 11.11.2005): ParEGO: an algo-
rithm for multiobjective optimization of expensive functions
<http:/ /dbk.ch.umist.ac.uk/knowles/parego/>.

[37] J. Knowles (2006): ParEGO: A Hybrid Algorithm with On-line Landscape
Approximation for Expensive Multiobjective Optimization Problems. IEEE
Transactions on Evolutionary Computation. 10 (1), 50-66.

[38] T. G. Kolda, R. M. Lewis, V. Torczon (2003): Optimization by Direct Search:
New Perspectives on Some Classical and Modern Methods. SIAM Review,
Vol. 45, No. 3, 385-482.

[39] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright (1998): Conver-
gence properties of the Nelder-Mead Simplex method in low dimensions.
SIAM Journal of Optimization Vol. 9, No. 1, 112-147.

[40] J. Lampinen (2003): Cam shape optimization by genetic algorithm.
Computer-Aided Design 35, 727-737.

[41] J. van Leersum (1998): A numerical model of a high performance two-stroke
engine. Applied Numerical Mathematics 27, 83-108.

[42] Lidl and H. Niederreiter(1983): Finite Fields, Vol. 20 in the Encyclopedia of
Mathematics and its Applications. Addison-Wesley.

[43] K. Miettinen (1999): Nonlinear Multiobjective Optimization. Kluwer Acad-
emic Publishers, Boston.

[44] K. Miettinen and M.M. Mikeld (2002): On scalarizing functions in multiob-
jective optimization. OR Spektrum 24, 193-213.

[45] K. Miettinen and M.M. Mikeld (2006): Synchronous approach in interactive
multiobjective optimization. European Journal of Operational Research 170,
909-922.

108

[46] K. Miettinen and M.M. Mikela (referenced at 13.6.2006): WWW-NIMBUS.
<http:/ /nimbus.mit.jyu.fi/>.

[47] W. E. Milliken and D. L. Milliken (1995): Race Car Vehicle Dynamics. SAE
International.

[48] M. Mitchell (1998): An Introduction to Genetic Algorithms. The MIT Press.

[49] J.A. Nelder and R. Mead (1965): A simplex method for function minimiza-
tion. Computer Journal, 7, 308-313.

[50] H. Niederreiter (1992): Random number generation and quasi-Monte Carlo
methods. Society for Industrial and Applied Mathematics.

[51] C.D. Perttunen, D.R. Jones and B.E. Stuckman (1993): Lipschitzian optimiza-
tion without the Lipschitz constant. Journal of Optimization Theory and Ap-
plication, 79, 157-181.

[52] M.].D. Powell (1964): An Efficient Method for Finding the Minimum of a
Function of Several Variables without Calculating Derivatives. Computer
Journal 7, No. 2, 155-162.

[53] W.L. Price (1977): Global Optimization by Controlled Random Search. Com-
p y
puter Journal 20: 367-370.

[54] W.L. Price (1983): Global optimization by controlled random search. Journal
of Optimization Theory and Applications, 40, 333-348.

[65] W. W. Pulkrabek (2003): Engineering Fundamentals of the Internal Combus-
tion Engine, 2nd Edition. Prentice Hall.

[56] J. Sacks, W. Welch, T. Mitchell and H. Wynn (1989): Design and analysis of
computer experiments (with discussion), Statistical Science, 4, 409-435.

[57] M.]. Sasena (2002): Flexibility and Efficiency Enhancements for Constrained
Global Design Optimization with Kriging Approximations. Dissertation.
University of Michigan.

[58] PK. Senecal, E. Pomraning and K.J.Richards (2002): Multi-Mode Genetic Al-
gorithm Optimization of Combustion Chamber Geometry for Low Emis-
sions. Published in Compression Ignition Combustion and In-Cylinder
Diesel Particulates and NOx Control. R. Radovanovic, S.J. Charlton, C.Y.
Choi, Y. Daisho, A. Osborn (editors). Society of Automotive Engineers, Inc.,
91 -101.

[59] D.P. Solomatine (1998): Genetic and other global optimization algorithms -
comparison and use in calibration problems. Balkema Publishers.

[60] R. Storn (referenced at 16.11.2005): Differential Evolution Homepage
<http:/ /www.icsi.berkeley.edu/ storn/code.html>.

109

[61] R.Storn, K.Price (1997): Differential evolution - a simple and efficient heuris-
tic for global optimization over continuous spaces. Journal of Global Opti-
mization, 11, 341-359.

[62] S. Tiittanen (1983): Motocross-mekaanikon kasikirja. Published by the au-
thor.

[63] A.Torn and A. Zilinskas (1989): Global Optimization. Springer-Verlag.

[64] A. Torn (referenced at 10.01.2006): Global Optimization.
<http:/ /www.abo.fi/ ~atorn/Globopt.html>.

[65] A. Torn, S. Viitanen (1994): Topographical Global Optimization Using Pre-
Sampled Points. Journal of Global Optimization 5, 267-276.

[66]]J.B. Vosa, A. Rizzib, D. Darracqc, E.H. Hirschel (2002): Navier-Stokes solvers
in European aircraft design. Progress in Aerospace Sciences 38, 601-697.

[67] W.]. Welch, R. J. Buck, J. Sacks, H. P. Wynn, T. J. Mitchell, and M. D. Morris
(1992). Screening, predicting, and computer experiments, Technometrics, 34,
pp. 15-25.

[68] A.P. Wierzbicki (1999): Reference point approaches. Published in Multicrite-
ria Decision Making: Advances in MCDM Models, Algorithms, Theory, and
Applications. T. Gal, T. J. Stewart and T. Hanne (editors). Kluwer Academic
Publishers. 9-1 - 9-39.

[69] 1. Williams (referenced at 12.1.2006): Ian Williams Tuning Homepage.
<http:/ /www.iwt.com.au/index2.html>.

[70] J. Y. Wong (2001): Theory of Ground Vehicles, 3rd Edition. John Wiley &
Sons, Inc.

[71] T. Ye and S. Kalyanaraman (2003): A Recursive Random Search Algorithm
For Large-Scale Network Parameter Configuration. Published in Proceed-
ings of the 2003 ACM SIGMETRICS. 196 - 205.

[72] W. Zucker, R.R. Maly and S. Wagner (2001): Evolution-Strategy Based, Fully
Automatic, Numerical Optimization of Gas-Exchange Systems for IC En-
gines. Published in SI Engine Modeling and Simulation. T. Morel (editor).
Society of Automotive Engineers, Inc., 29 - 41.

YHTEENVETO (FINNISH SUMMARY)

Useissa teollisissa prosesseissa on valttdimatontd pystya hallitsemaan lopputuot-
teen ominaisuuksia (laatua, tuotantokustannuksia, lujuutta, yms.). Prosesseja
voidaan simuloida erityisid matemaattisia tietokonemalleja kédyttden. N4illd mal-
leilla voidaan testata erilaisten suunnittelumuuttujien vaikutusta lopputulok-
seen, ja pyrkid ndin saavuttamaan haluttu lopputulos. Usein suunnittelumuut-
tujia sdddetddn suunnittelijan ammattitaitoon perustuen yrityksen ja erehdyksen
periaatteella, mutta ndin menetellen lopputuloksen laatu saattaa vaihdella suu-
resti.

Perinteisen yrityksen ja erehdyksen periaatteella tapahtuvan suunnittelun
vaihtoehdoksi tdssd tyossd esitellddn simulaatiopohjaisen optimoinnin tarjoa-
mia mahdollisuuksia suunnitteluprosessiin. Simulaatiopohjaisessa optimoinnis-
sa suunittelija ei endd sddda yksittdisid suunnittelumuuttujia, vaan sen sijaan ku-
vaa halutun lopputuloksen korkeammalla abstraktiotasolla, ja sopiva optimoin-
tialgoritmi hakee tdimé&n lopputuloksen tuottavat arvot suunnittelumuuttujille.

Tama tyd keskittyy polttomoottorin ominaisuuksien (kuten hyotysuhde,
suurin teho ja moottorin ominaisuuksien sopivuus vaihteistovalityksiin) opti-
mointiin. Késiteltava ongelma, kuten monet muutkin tosieldmén tekniset suun-
nitteluongelmat, asettaa muutamia erityisvaatimuksia kdytettdvélle optimointi-
jarjestelmalle. Tassd tutkimuksessa keskitytddan tarkastelemaan kolmea tarkedd
erityispiirrettd: tehokkuutta (yleisesti ottaen simulaattorin ajaminen on lasken-
nallisesti kallista) suhteessa objektifunktion evaluointeihin, globaalia hakua lo-
kaalin sijaan (ongelmat ovat usein epélineaarisia ja sisdltdvét useita lokaaleja mi-
nimejd), sekd ongelman késittelemistd monitavoitteisena optimointiongelmana.
Kéaytdnnossa ei aina gradientti-informaatiota ole saatavilla, ja ndin on my®os ta-
mén tutkimuksen esimerkkitapauksessa. Tédssd tyossd tarkastellaan muutamia
ndkokulmia ongelmaan, seki esitetddn tehokas tapa ratkaista kyseinen ongelma.

Tyon tavoitteena on ratkaista tehokkaasti (kdyttden vain mahdollisimman
vdhdinen maardn objektifunktion evaluointeja), globaalisti, sekd monitavoittei-
sella tavalla monimutkaisen kdytannonldheinen ongelma. Muuttamalla 2-tahti-
moottorin pakoputken mittasuhteita ja muotoa vaikutetaan moottorin ominai-
suuksiin, kuten tehoon ja vadntomomenttiin. Kaytetyt objektifunktiot ovat moni-
mutkaisempia kuin joissakin aikaisemmissa tutkimuksissa, ja lisdksi tarkastelta-
vana on koko laitteen suorituskyvyn kannalta tdarked ongelma, moottorin ominai-
suuksien sovittaminen ajoneuvon vaihteistovélityksiin. Lisdksi tdima tyo kasitte-
lee tosieldamadssd usein kohdattavaa ongelmaa, nimittdin useita ristiriitaisia objek-
tifunktioita sisdltdvan ongelman ratkaisemista monitavoiteoptimoinnin skalari-
sointifunktioita hyodyntden.

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	1 INTRODUCTION
	2 OPTIMIZATION AND SOME METHODS
	2.1 Local single objective optimization
	2.2 Global single objective optimization
	2.3 Multiobjective optimization

	3 BASIC OPERATION OF INTERNAL COMBUSTIONENGINES
	3.1 4-stroke engine cycle
	3.2 2-stroke engine cycle
	3.3 Focus of this study
	3.4 How external ducting works

	4 OPTIMIZATION TASK OF AN INTERNALCOMBUSTION ENGINE
	4.1 Framework of the optimization system
	4.2 The engine simulator
	4.3 Modeling the engine configuration
	4.4 Defining the objective function
	4.5 Formulation of an optimization problem

	5 RESULTS
	5.1 Single objective case
	5.2 Multiobjective case

	6 DISCUSSION AND CONCLUSIONS
	REFERENCES
	YHTEENVETO (FINNISH SUMMARY)

	Text1: ISBN 978-951-39-2865-0 (PDF), 978-951-39-2788-2 (nid.)

