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Abstract

Maunuksela, Jussi
Scaling and Noise in Slow Combustion of Paper
Jyväskylä: University of Jyväskylä, 2003, 114 p.
(Research report/Department of Physics, University of Jyväskylä,
ISSN 0075-465X; 1/2003)
ISBN 951-39-1462-3
diss.

Theory of non-equilibrium interface dynamics is well developed but experiments
often do not conform with theoretical predictions. The main purpose of the work
reviewed in this Thesis is to demonstrate in detail that asymptotically the scaling
behaviour of slow-combustion fronts is consistent with that of the Kardar-Parisi-
Zhang (KPZ) equation with uncorrelated noise. This is achieved by determining the
scaling exponents, universal amplitude ratios, and the scaling function of the local
interface width from the experimental data. Results are also obtained for the persis-
tence properties of front-height fluctuations. Asymptotically temporal and spatial
first-return properties follow the theoretical expectations for the stationary state,
but the stationary short-range and transient behaviour of the fronts is found to be
non-Markovian. Estimates for all the parameters of the KPZ equation are obtained
by an inverse method and from the slope-dependent local velocity of the fronts. The
observed short-range behaviour is shown to originate from the effective correlated
noise, which consists of structural and dynamical contributions.

Keywords slow combustion, scaling, noise, KPZ equation, non-equilibrium phe-
nomena
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Chapter 1

Introduction

This thesis is devoted to an experiment-based survey and analysis of dynamics and
kinetic roughening of interfaces propagating in a random medium. Kinetic rough-
ening of moving interfaces is a ubiquitous phenomenon in nature, ranging from sur-
face growth to propagation of various kinds of fronts in random media. The term
kinetic roughening implies a process by which the noisy local displacement dynam-
ics of an interface is transformed into scale-invariant fluctuations of the interface
position. Extensive theoretical work during the last decade and a half has led to a
classification of these phenomena according to the asymptotic behaviour of the scal-
ing properties of various quantities such as surface roughness. This classification, in
many cases, can also be obtained by identifying the interface dynamics with that
of an appropriate Langevin equation. In practice the effective noise may have sys-
tem specific correlations and/or an anomalous magnitude distribution, which both
affect the scaling behaviour.

The position of an interface is assumed to be described by a single-valued func-
tion h = h(x, t). If this function remains unchanged upon anisotropic rescaling by
an arbitrary factor λ, h(x, t) ' λ−χh(λx, λzt), the interface is called self-affine. Here
“'” implies equivalent statistical properties. The scaling properties of fluctuations in
the interface position (height) can be analysed e.g. via the height-height correlation
function (see Section 2.1 below) of the interface. For self-affine interfaces this cor-
relation function is also invariant upon similar rescaling, Cq(r, t) ' λ−χCq(λr, λzt),
with χ between zero and one. These exponents, χ and z, correspond to stationary
and ‘dynamic’ scaling of the interface fluctuations, respectively.

The theory of (non-equilibrium) interface dynamics was well developed by the
mid 1990’s, and had produced a detailed description of various scaling properties
and fluctuation distributions of especially one-dimensional interfaces, but experi-
ments did not typically conform with theoretical predictions [71,26,9,52]. The mea-
sured one-dimensional interfaces included those of fluid penetrating into a porous
medium [66,28,30], growing bacterial colonies [72], and advancing slow-combustion
fronts in paper [74]. Later measurements were also done on magnetic flux fronts
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penetrating a high-Tc thin-film superconductor [69].
Although the kinetically roughened interfaces appeared to be self-affine in

each of these systems, their behaviour was ’anomalous’, at least at small length
scales, such that the measured roughness exponent typically exceeded the KPZ
value for one-dimensional interfaces, χ = 1/2 (assuming uncorrelated Gaussian
noise). Experiments e.g. on fluid penetration into a porous medium [66,28,30], most-
ly yielded a roughness exponent χ that varied in a wide range 0.65 − 0.91, except
for the one reported in Ref. [30] for the asymptotic behaviour at long length scales,
χ ' 0.49. In [30] the temporal scaling of the interface was also determined with the
result β ' 0.65 for the growth exponent. This was the first reported measurement of
the growth exponent, and the result also exceeded the KPZ value β = 1/3.

The unexplained variation in the measured scaling exponents, their deviation
typically from the KPZ values, and the fact that only the roughness exponent had
usually been measured, were the main motivations of the present work: We wanted
to measure all scaling exponents for one system, with statistics enough for reliable
averaging, and to probe its true scaling behaviour in more detail by measuring
also its various fluctuation distributions. For the system to be studied we chose the
flameless burning of a random two-dimensional medium, easily realised by slow
combustion of sheets of paper. Zhang et al. [74] had already performed one such
experiment, but they had estimated only the roughness exponent with a result well
above the KPZ value. In this experiment only one front was however determined
for each sample, so averaging over noise could not be very extensive.

In our experiments sheets of paper were positioned inside a combustion cham-
ber and ignited at one end with a heating wire stretched over the sample. The prop-
agation of the slow-combustion front thus produced was then recorded with a CCD-
camera system and stored in digital form. This made it possible for us to study the
time- and space-dependent behaviour of the combustion fronts in great detail, and
with good statistics. For copier-paper burns e.g., results can be given as averages
over up to about 40 000 individual fronts.



Chapter 2

Analysis of Scaling Properties of
Interfaces

Typically, late stages of growth processes are characterised by generic scale invari-
ance of the relevant correlation functions, which is reflected in their power-law be-
haviours in both space and time. Since the corresponding scaling exponents do not
usually depend on the microscopic details of the system under investigation, but
only reflect its underlying symmetries, growth processes are often divided into ki-
netic universality classes according to the values of these characteristic exponents
[9,52,68]. Likewise this scale invariance is reflected in the universal scaling forms for
correlation functions, interface width, and various fluctuation distributions [9, 52].

In this chapter we thus give a short introduction to the analysis tools employed
here in the determination of scaling exponents and scaling functions: height-height
correlation functions, structure factor, interface width, and first-return distributions.

2.1 Height-height correlation function

Scaling exponents can be determined by analysing the scaling behaviour of correla-
tion functions such as the height-height correlation function [52]

G(r, t) =
〈
[δh(r + x, t)− δh(x, t)]2

〉
≡ r2χg(r/ξ(t)), (2.1)

where δh(x, t) ≡ h(x, t)−h is height fluctuation of a moving interface (or front) above
point x on a baseline of dimension d = 1, h(t) is the average height of the front of
length L (the width of the system under investigation), and 〈 · 〉 an average over all
fronts. The roughness exponent χ characterises the saturated regime, in which the
horizontal correlation length ξ(t) ∼ t1/z (z is the so called dynamic exponent) has
reached a value larger than the system size L. The behaviour of the scaling function
g(x) is correspondingly divided into two regimes by the value of the correlation

3



4

length such that

g(x) ∼
{

x−2χ for x � 1

const for x � 1
. (2.2)

For the interface heights h(x, t), we can also consider the q’th order height-
height correlation functions

Cq(r, τ) = 〈[δh(x, t)− δh(x + r, t + τ)]q〉x,t , (2.3)

where 〈 · 〉x,t denotes average over all fronts. In the stationary state we define [53,11,
10, 8, 57]

Gq(r) ≡ Cq(r, 0) ∼ rqχq , (2.4)

and
Cq(τ) ≡ Cq(0, τ) ∼ τ qβq , (2.5)

which can be used to extract estimates for the roughness and growth exponents χq

and βq, respectively. Note that in the q’th order height-height correlation functions
as defined in Eq. (2.3), q is both positive and even. For interfaces that obey the KPZ
equation with Gaussian noise (see Section 3.2), Eqs. (2.4) and (2.5) give constant
χq =: χ and βq =: β. Figure 2.1 displays the spatial and temporal height-height
correlation functions Cq(r, τ) with q = 2 for three sets of experimental data. The q’th
order correlation functions are said to exhibit a nontrivial multiscaling behaviour
if e.g. χq varies continuously with q at least for some region of the q values [11].
It has been suggested that interfaces generated by models (see e.g. Ref. [75]) with
large-rare-events dominated roughening are examples of this ‘multiaffine’ scaling,
and require an infinite family of exponents for a full description of their scaling
behaviour [8].

We determined the scaling region, the scaling exponents χ and β, and their
accuracy, by using running exponents determined e.g. from Eq. (2.4). (A variant of
this approach is to use consecutive slopes [9].) The running exponent is defined as

χeff(r) =
1

q

log10[Gq(r
′)/Gq(r)]

log10(r
′/r)

, (2.6)

where a convenient choice for r′ is e.g. r ′ = 4r. By plotting the running exponent as a
function of the length scale r, we obtained an estimate for the scaling region, where
χeff(r) ' const. The scaling exponent χ was then determined by performing a linear
least-squares analysis of e.g. log10 Gq(r) = qχq log10 r + const in the scaling region,
and the accuracy of the scaling exponent was estimated as the standard deviation of
the running exponent χeff(r) from χ in the scaling region.

Accidental inhomogeneities and short-range correlated noise in the data will
cause non-zero offsets at the origin in the correlation functions, and they complicate
accurate determination of possible scaling exponents. In order to get rid of these
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FIGURE 2.1 The (a) spatial and (b) temporal height-height correlation functions G2(r)
and C2(t), respectively. The results are averages over 10 of the 70 g/m2 (◦) and 6 of
the 80 g/m2 (�) copier paper burns, and 32 of the 9.1 g/m2 lens paper burns (F). The
crossover scales rc and tc are shown by dotted vertical lines, and the solid lines indicate
slopes that correspond to the exponents shown in Tables 6.1 and 6.2.

(supposedly) additive constant factors in the correlation functions, we performed
linear least-squares analysis of e.g. log10 [Gq(2r) − Gq(r)] = qχq log10 (r) + const, in
the same spirit as how the ’intrinsic’ width is removed from the interface width (see
Section 2.3 below).

Since the correlation functions are calculated in the stationary state, a rough
initial front line does not hamper the accurate determination of the scaling behavi-
our, especially the time-dependent scaling. On the contrary, in some experiments
the stationary state was reached only because of rough ignition. Also, in practice the
finite spatial resolution in the experimental data influences the observed scaling be-
haviour. Therefore, our preferred tool for the scaling analysis was the height-height
correlation function Eq. (2.3), where corrections due to finite resolution can be ne-
glected [12].
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2.2 Structure factor

For the determination of scaling exponents we can also measure the power spectrum
of the interface, i.e., the structure factor, which is essentially the Fourier transform of
the height-height correlation function, [68]

S(k, t) = 〈ĥ(k, t)ĥ(−k, t)〉

(
=

1

2

∑
r

(δk,0 − eik · r)G(r, t)

)
≡ k−γs(kzt), (2.7)

in which γ = 2χ + d and ĥ(k, t) = L−1/2
∑

x[h(x, t) − h(t)]eik · x, with h(t) the spatial
average of h(x, t). In this case the asymptotics of the scaling function are [68]

s(x) ∼
{

xγ/z, γ > z

x, γ ≤ z
(2.8)

for x � 1, and
s(x) = const for x � 1. (2.9)

The limiting behaviour Eq. (2.8) follows from the fact that noise in the system is not
renormalised for γ ≤ z as can be shown by power counting. Thus the k modes with
k < 2π/ξ(t) propagate in an uncorrelated fashion, S(k, t) ∼ tkz−γ . For γ > z this is
no longer possible since, in the limit k → 0, S(k, t) must not have a singularity at
a finite time. Hence, noise is now renormalised, which happens e.g. in the Kardar-
Parisi-Zhang equation [35].

The structure factor is sensitive to the global slope of the interface. The power
spectrum of a linear ramp has slope−2, which is also the slope (−γ = −2χ−1) of the
power spectrum of a one-dimensional self-affine interface with roughness exponent
χ = 1/2 [67]. Also, density of points is low in the asymptotic region (small k) of the
(discrete) structure factor, in which we expect to find the KPZ behaviour. Therefore
we did not typically use the structure factor in our analysis of the scaling properties.

2.3 Interface width

Perhaps the most traditional approach to study the scaling behaviour of interfaces
is to consider their width W defined as [68, 21]

W 2(t, L) ≡ L−1
∑

x

〈[h(x, t)− h(t)]2〉

≡ L−1
∑

k

S(k, t) ≡ 1

2L

∑
r

G(r, t) . (2.10)
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Interface width satisfies the Family-Vicsek scaling relation [18]

W (t, L) ∼ Lχf

(
t

Lz

)
∼
{

tβ for ξ � L

Lχ for ξ � L
, (2.11)

where the correlation length ξ is the characteristic distance over which the local
heights are correlated. When an interface begins to propagate, ξ grows with time.
When it reaches the size of the system L, the entire interface becomes correlated,
which leads to saturation of the interface width. Thus at saturation ξ ∼ L, and ac-
cording to Eq. (2.11) this saturation occurs at a time t× ∼ Lz. By replacing L with ξ,
correlation length behaves as ξ ∼ t1/z for t � t×.

An estimate for the roughness exponent χ can as well be obtained from the
local interface width [52], defined as

w2(`, t) =
〈 〈

[h(x, t)− 〈h(x, t)〉`]2
〉̀ 〉

=
〈
〈h2(x, t)〉` − 〈h(x, t)〉2`

〉
, (2.12)

where the notation 〈 · 〉` denotes spatial averaging over a subsystem of size ` and
〈 · 〉 over all subsystems of size ` in a system of total size L. In order to improve the
estimates for the scaling exponents, the ‘intrinsic’ width of the interfaces should first
be subtracted from the data in the spirit of the usual convolution ansatz [73, 36, 19].
For growing self-affine interfaces, the local width with intrinsic width subtracted
also follows Eq. (2.11), which now takes the form [36]

w2(`, t)− w2
i ∼

{
t2β for t � `z

`2χ for t � `z , (2.13)

and the intrinsic width can be subtracted by writing e.g.

w2(`, 2t)− w2(`, t) = [a(2t)2β + w2
i ]− [at2β + w2

i ] (2.14a)

= a(22β − 1)t2β , (2.14b)

where t � `z and a is independent of L. The scaling exponents can be determined by
a simple linear least-squares analysis of log10[w

2(2t)−w2(t)] = 2β log10 t+const in the
scaling regime determined from the running exponent results (see Section 2.1) after
the intrinsic width was subtracted. Figure 2.2 displays the local width w(`) before
and after the intrinsic width was subtracted and the running roughness exponent
χeff calculated for three different paper grades.

The local width w(`, t) allows, furthermore, for the determination of the scaling
function related to that of Eq. (2.11) from experimental data. This can be done by
plotting the quantity w(`, t)/`χ against t/`z and observing the data collapse.

Interface width is not a particularly good quantity to determine the temporal
scaling behaviour [Eqs. (2.10) and (2.11)] as, in the experiments, interfaces do not
start as straight horizontal fronts. Also, it is difficult to get enough statistics as one
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FIGURE 2.2 (a) The local width w(`) calculated from 10 of the 70 g/m2 (◦) and 6 of
the 80 g/m2 (�) copier paper burns, and 32 of the 9.1 g/m2 lens paper burns (F), and
(b) the local width with the intrinsic width subtracted. (a) The crossover lengths `c =
12(7), 14(6), and 18.8(4)mm for these paper grades, respectively, are shown by the
vertical dashed lines, and (a)-(b) the solid lines indicate slopes that correspond to the
exponents in Tables 6.1 and 6.2. The running roughness exponents χeff calculated from
the local width before (c) and after (d) the intrinsic width was subtracted are also
shown. The theoretical value χ = 1/2 is indicated by the horizontal dashed line.

burn produces only one W (t, L) curve. Therefore we did not typically use interface
width in data analysis. On the other hand, the scaling properties of the local width
Eq. (2.13) do not suffer from these shortcomings, and this quantity was regularly
used to determine both β and χ.

2.4 First-return distributions

A particularly topical problem in non-equilibrium dynamics is persistence, which
can be defined as the probability P (t) that, at point x, a fluctuating non-equilibrium
field h(x, t) does not change sign up to time t [46, 44]. This probability may decay
algebraically, P (t) ∼ t−θ, in analogy with the scaling behaviours of the correlation
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functions and interface width considered above, and thus defines a persistence expo-
nent θ. In our case the non-equilibrium field is of course the local height fluctuation
at time t of slow-combustion fronts.

Persistence can be analysed by considering the first-return distributions
f temp
± (τ), i.e., the distribution for return time τ , defined as the time the considered

variable stays above (+) or below (−) a given reference level. The persistence expo-
nents θ temp

± describe the decay of the related temporal persistence probabilities, and
are defined via [39, 45]

P temp
± (τ) ∼ τ−θ temp

± , (2.15)

where τ denotes the persistence time-scale. The temporal persistence probabilities
[39] are related to the corresponding first-return distributions f temp

± (τ) via

P temp
± (τ) ≡ P (τ± ≥ τ) = 1−

∫ τ

−∞
f temp
± (τ ′) dτ ′ . (2.16)

For general self-affine interfaces which need not be Gaussian [27,49], it can be shown
that the temporal first-return distributions satisfy f temp

± (τ) ∼ τ−θ temp
± −1, where for the

KPZ equation the conjecture θ temp
+ = θtemp

− ≡ θs = 1 − β is expected to hold in the
stationary state [27, 49, 15, 39].

One may likewise consider any particular front at a fixed time t and look at
the interface profile as a stochastic process [45]. In analogy with the temporal case,
the spatial persistence probabilities P spat

± (`) that the interface stays above or below
a given reference level, may have a power-law decay described by exponents θ spat

± ,

P spat
± (`) ∼ `−θ spat

± . (2.17)

Here ` denotes the persistence length scale and the persistence probability is related
to the first-return distribution f spat

± (`) via

P spat
± (`) ≡ P (`± ≥ `) = 1−

∫ `

−∞
f spat
± (` ′) d` ′ . (2.18)

For the stationary state, the spatial persistence is expected to be related to the inter-
face morphology via θ spat

+ = θ spat
− = 1− χ.

In general, the temporal persistence behaviour can be characterised by consid-
ering the scaling functions of the general persistence probability P (t0, t), where t is
measured beginning from time t0 after the start of the kinetics from a flat initial pro-
file [34]. Kallabis and Krug [34] observed, starting from a numerical growth model,
that this has two limiting behaviours, the transient behaviour for t0 before saturation
and the stationary-state behaviour for t0 after it, thus defining two persistence expo-
nents. For the transient regime, Kallabis and Krug observed, e.g., that persistence
depends on the up-down asymmetry of the dynamics, in their model with values
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1.2 and 1.6 for the transient temporal persistence exponents for fluctuations in the
up and down directions, respectively [34].

In practice, e.g, the first-return times τ± can be determined by following the
fluctuations δh(x, t) at a fixed point x = x0 and time t, when the interface prop-
agates with a finite average velocity v. For practical purposes we can then define
the return times such that τ+ is the length of the time interval between t1 and t2
with δh(x0, t1) = 0 = δh(x0, t2), and δh(x0, t) > 0 ∀ t ∈ ]t1, t2[. The return time τ−
is defined analogously for δh(x0, t) < 0. For discrete sampling times the crossing
times t1 and t2 can be determined by using linear interpolation: Find all t for which
δh(x, t) < 0 ≤ δh(x, t + ∆t) or δh(x, t) > 0 ≥ δh(x, t + ∆t). The interpolated cross-
ing times ti are then determined as ti = t − ∆t [δh(x, t)/(δh(x, t + ∆t) − δh(x, t))],
where ∆t is the sampling time. The corresponding spatial quantities at fixed times
are defined analogously.

In determining the first-return distributions, we measure the histogram of re-
turn times τ±. As explained in Ref. [47], in discrete time (and also in discrete space)
sampling, one misses very short excursions, and correct normalisations of P temp

±
and P spat

± are difficult. Therefore, we prefer to use the distributions f temp
± and f spat

± ,
instead of their integrals, for determination of the persistence exponents (see Fig-
ure 6.4). In the limit of long time and length scales, the problems in these functions
due to discrete sampling should disappear.



Chapter 3

Langevin Equation

Roughening behaviour can be classified by identifying the observed dynamics with
that of a known Langevin equation. In this chapter we first (briefly) review results
for two generic Langevin equations that are supposed to generally describe equilib-
rium and non-equilibrium interface dynamics. In the subsequent sections we then
describe methods that can be used to identify the relevant parameters of the appro-
priate Langevin equation from experimental data.

3.1 Edwards-Wilkinson (EW) equation

The simplest linear equation describing the fluctuations of an equilibrium interface
is a continuum partial differential equation first proposed by Edwards and Wilkin-
son [16] in their attempt to understand the inherently probabilistic process of parti-
cle sedimentation within a liquid. The Edwards-Wilkinson (EW) equation is given
by

∂h

∂t
= ν∇2h + η , (3.1)

for the height h(x, t) of the sedimented layer. Here ν is called a ’surface tension’ due
to the tendency of the ν∇2h term to smooth the interface. The noise η ≡ η(x, t) is
assumed to be spatially and temporally uncorrelated and Gaussian, described by

〈η(x, t)〉 = 0, (3.2)

〈η(x, t)η(x′, t′)〉 = 2Dδ(x− x′)δ(t− t′) . (3.3)

The fluctuations of the equilibrium interface described by the EW equation Eq. (3.1)
are around 〈h〉 = const, i.e., neither of the two domains separated by the equilib-
rium interface grows at the expense of the other. A review of the properties of the
EW equation and of the linear interface theory more generally can be found e.g. in
Ref. [9].

11
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3.2 Kardar-Parisi-Zhang (KPZ) equation

Kardar, Parisi and Zhang proposed a generic model for the evolution of the height
of a growing interface in Ref. [35]. The simplest nonlinear Langevin equation in 1+1

dimensions for the local growth of this height in a moving coordinate system for
which 〈h(x, t)〉 = 0, such that it is invariant under the transformation

h → h + εx, x → x + b εt , (3.4)

is given by
∂h

∂t
= ν∇2h +

λ

2
(∇h)2 + η . (3.5)

The transformation Eq. (3.4) corresponds to tilting of the interface by a small angle.
Random fluctuations of the height, represented by η ≡ η(x, t), are again taken to be
Gaussian white noise described by Eqs. (3.2) and (3.3).

The physical origin of the nonlinear term in Eq. (3.5) is [26] in the local prop-
agation (driving) of the interface along the outward normal. When this driving is
projected onto the vertical axis, we find that the effective advance is proportional to√

1 + (∇h)2 ≈ 1 +
1

2
(∇h)2 − 1

8
(∇h)4 +

1

16
(∇h)6 − . . . , (3.6)

when (∇h)2 is assumed small.
Due to a Galilean invariance [35, 54], invariance under the transformation

Eq. (3.4) above, the exponents χ and z (≡ χ/β) are linked by an identity χ + z = 2.
In 1 + 1 dimensions (d = 1), Eq. (3.5) also satisfies a fluctuation-dissipation theo-
rem [14] (FDT), from which one can obtain exactly that χ = 1

2
. In this d = 1 case it is

in fact possible to solve exactly all scaling exponents [25,24] and some of the scaling
functions [61, 62].

3.3 Annealed and quenched noise

The character of the noise η in Eqs. (3.1) and (3.5) has a major influence on the scaling
exponents (see Table 3.1). There are two main types of noise discussed in literature
[26, 9]: (i) “thermal” or “annealed” depending on time such that η = η(x, t) and (ii)
“quenched” depending on time only via the position such that η = η(x, h(x, t)).

If the noise is quenched, a continuous motion of the interface requires applica-
tion of a driving force F . There exists a critical force Fc below which, i.e., for F < Fc,
the interface will become pinned by the disorder after some finite time. For F > Fc,
the interface moves indefinitely with an average velocity v(F ). At the depinning
transition (F = Fc), it is sufficient to consider Eqs. (3.1) and (3.5) augmented with a
driving force F and quenched disorder [4,9,26]. For F → Fc, the moving interface is
not self-affine and has effective exponents for short length and time scales; quenched
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TABLE 3.1 Numerical estimates of the scaling exponents for one-dimensional inter-
face roughening with annealed and quenched noise. For definitions of the symbols,
see the related text below.

Model χ β Reference

EW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/2 1/4 [16]

KPZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/2 1/3 [35]

quenched EW [4, 70, 42]
pinned (F < Fc) . . . . . . . . . . . . . . . . . . . . . . ≈ 1 ≈ 0.88
transition (F → F+

c ) . . . . . . . . . . . . . . . . . . ≈ 0.92 ≈ 0.86
moving (F � Fc) . . . . . . . . . . . . . . . . . . . . . ≈ 0.48 ≈ 0.25

quenched KPZ [4, 70, 42]
pinned (F < Fc) . . . . . . . . . . . . . . . . . . . . . . ≈ 0.63 ≈ 0.63
transition (F → F+

c ) . . . . . . . . . . . . . . . . . . ≈ 0.75 ≈ 0.75
moving (F � Fc) . . . . . . . . . . . . . . . . . . . . . ≈ 0.50 ≈ 0.30

KPZ with power-law distributed noise [75, 38, 13]
µ = 2 < µc ≈ 4 . . . . . . . . . . . . . . . . . . . . . . . . 1 1
µ = 3 < µc ≈ 4 . . . . . . . . . . . . . . . . . . . . . . . . 3/4 3/5
µ > µc ≈ 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/2 1/3

KPZ with spatially correlated noise [54, 26]
1/4 ≤ ρ < 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.50− 1.0 0.33− 1.0
ρ → 0+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≈ 0.5 ≈ 0.33

KPZ with temporally correlated noise [54, 26]
0.167 < θ < 0.5 . . . . . . . . . . . . . . . . . . . . . . . . 0.50− 1.059 0.33− 0.677
θ < 0.167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/2 1/3

noise becomes asymptotically irrelevant and the annealed case is recovered.

The noise may also be uncorrelated but distributed by a power law instead of a
Gaussian (we return to this problem in Section 6.2), or spatially and/or temporally
correlated. The latter problem was investigated by Medina et al. in Ref. [54] by using
the dynamic renormalization group method on the KPZ equation with the noise
correlation [54]

〈η(x, t)η(x′, t′)〉 ∼ |x− x′|2ρ−d |t− t′|2θ−1 , (3.7)

where d is the dimension of the interface. If the noise is spatially correlated, i.e.,
〈η(x, t)η(x′, t′)〉 ∼ |x−x′|2ρ−1δ(t−t′), the scaling exponents obey the relation χ+z = 2,
and are approximated by [26] χ = (1+2ρ)/3, β = (1+2ρ)/(5−2ρ) with 1/4 < ρ < 1,
while for 0 < ρ < 1/4 the exponents have the values χ = 1/2 and β = 1/3.

For the temporally correlated noise, i.e., 〈η(x, t)η(x′, t′)〉 ∼ δ(x−x′)|t−t′|2θ−1 for
a one-dimensional interface, Medina et al. [54] found that for θ < 0.167 the situation
becomes equivalent to that of short-range correlated noise with χ = 1/2 and β = 1/3.
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For 0.167 < θ < 0.5, the temporal correlations are relevant, and the exponents are
approximated by χ(θ) = 1.69θ + 0.22 and β(θ) = (1 + 2θ)χ(θ)/(2χ(θ) + 1). For more
details on this subject see e.g. the review by Halpin-Healy and Zhang [26].

3.4 KPZ model parameters I

3.4.1 λ from the local velocity

One way to measure c and λ (from experimental data) is based on the fact that in-
terface velocity, in the length scale being considered, depends on the average tilt of
the interface in that length scale. For an interface, whose dynamics is governed by
the KPZ equation, Eq. (3.5), the average velocity v in scale l is given by

v = v0 +
λ

l

∫ l

0

dx
√

1 + (∇h)2 , (3.8)

where v0 is the drift velocity due to external forces acting on the interface, and we
have kept the full square root term in this expression. Assuming (∇h)2 is small, the
above expression can be expanded as usual so that

v ≈ v0 +
λ

l

∫ l

0

dx

[
1 +

1

2
(∇h)2 − 1

8
(∇h)4 + . . .

]
(3.9a)

= c +
λ

2l

∫ l

0

dx (∇h)2 +O [(∇h)4] , (3.9b)

where c ≡ v0 + λ is the zero-slope velocity.
If there is now a tilt or an average slope m ≡ 〈∇h〉 within an interval of length

l of the interface, the result Eq. (3.9b) means that the velocity of the interface within
that interval is approximately given by

v(m) ≈ c +
λ

2
m2. (3.10)

This v(m) is thus the slope-dependent velocity which should be observed in the
coarse-grained scale l. One should find a parabolic dependence which, when fitted
by Eq. (3.10), gives an estimate for the coefficient of the nonlinear term, λ [26, 9].

From experimental data the slope-dependent interface velocity can be evalu-
ated by applying, e.g., the procedure described by Albert et al. [1]: the discretised
interface hi(t) of length N (= L/∆x) is partitioned into overlapping segments of
length l. The local slope si(t) of each segment i at time t is determined by a linear fit
to the interval (i, i + l − 1), with i = 1, 2, . . . , (N − l + 1). The same partitioning and
linear fits are then repeated for the interface at time t + τ , and the average (local)
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velocity of each segment is determined from

ui(t) =
1

l

l−1∑
j=0

[
hi+j(t + τ)− hi+j(t)

τ

]
. (3.11)

The average velocity of all segments with average slope s (averaged over the
initial (at time t) and ’final’ slope (at time t + τ )), is then given by

u(s) =
1

N(s)

∑
i,t

ui(t) , (3.12)

where si(t) ∈ ]s−∆s/2, s+∆s/2] with ∆s a suitable discretisation length for slopes,
and N(s) is the number of such segments. If this u(s) plotted as a function of s

indeed has a parabolic form, it indicates that a slope-dependent nonlinear term is
present in the growth equation.

3.4.2 D/ν from the equal time correlation functions

Since for one-dimensional interfaces stationary height fluctuations are independent
of the nonlinear term in Eq. (3.5), all stationary, equal-time correlation functions can
be easily computed. The stationary distribution is Gaussian, with variance [40]

lim
t→∞

〈| ĥ(k, t)| 2〉 =
D

νLk2
(3.13)

for the discrete Fourier modes (see Eqs. (3.25) and (3.22) below). Consequently, the
amplitude of the spatial correlation function in Eq. (3.15), for large r, is given by
A = D/ν.

3.4.3 Universal (dimensionless) quantities

In a typical dynamic renormalization group (DRG) analysis, one obtains a RG flow
for a dimensionless coupling constant, which provides a measure of the effective
nonlinearity present in the system. For the KPZ equation, this coupling constant
is [35, 26]

g(b) =

(
λ2(b) D(b)

ν3(b)

)1/2

b(2−d)/2 , (3.14)

where b is the scale of coarse graining, and λ(b), D(b), and ν(b) are renormalised pa-
rameters. The scaling exponents are then evaluated at the fixed point of the RG flow,
g∗ = g(b →∞). Hwa and Frey [32] showed that g∗ plays the role of a crossover scale
between the correlation function’s space-dependent and time-dependent regimes,
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and may also be expressed in terms of a universal ratio of amplitudes A and B,

G2(r) = A r2χ; C2(t) = B t2β , (3.15)

such that

g∗ =
λ

2

(
A

Bz/2

)1/χ

. (3.16)

They solved the dimensionless form of the universal scaling function, which the
correlation function obeys, for an arbitrary substrate dimension d, and explicitly for
d = 1 using mode-coupling theory. The value predicted by them for the universal
coupling constant is g∗ ' 0.87.

Using a scaling approach, Amar and Family derived an expression for the cor-
relation function amplitudes as a function of macroscopic parameters of the KPZ
equation [3]:

RG =
B

|λ|2βAβ+1
, (3.17)

where A and B are determined in Eq. (3.15) above. For the KPZ equation in 1 + 1

dimensions, from simulations of its three different discrete realisations and from
a mode-coupling calculation, they determined the correlation function amplitudes
RG ' 0.71 (g∗ ' 0.834) and RG ' 0.63 (g∗ ' 0.999), respectively. It is also possible to
derive an expression for the behaviour of the asymptotic surface width amplitudes
[2, 3]:

R =
Ct

|λ|βCβ+1
L

; Ct = w(∞, t)/tβ and CL = w(L,∞)/Lχ . (3.18)

The amplitude ratio R has not been determined for our experiments due to difficul-
ties in obtaining accurate values for the interface width w(t).

3.5 KPZ model parameters II

In this section two methods used to identify at the same time all the parameters of
the evolution equation are summarised. The methods for the extraction of the scal-
ing behaviour from experimental data using the correlation functions were already
covered in Chapter 2. With these two methods, it would in principle be possible to
determine also the form of the effective evolution equation, but practical difficulties
related e.g. to discreteness and statistics effects prevent them from adequately treat-
ing terms that include higher-order derivatives. Their use thus appears to be limited
to the leading terms only, i.e., to equations like the KPZ equation.
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3.5.1 Inverse method

The inverse method applied here closely follows the general approach proposed by
Lam and Sander [41]: the evolution equation for the fronts is first written in the form

∂h(x, t)

∂t
= a · H(x, t) + η(x, t), (3.19)

where a is a vector containing the relevant coefficients of the equation, e.g. a =

(ν, λ/2, . . . ), and H(x, t) is a vector containing derivatives of h(x, t) and powers of
these derivatives. Since the observed quantities are determined from the experimen-
tal data that are composed of digital front images, the single-valued function h(x, t)

is replaced by hi(t) with subscript i the lattice index. The lattice has spacing ∆x

and N ≡ L/∆x sites, where L is the sample width. The time interval between con-
secutive images is denoted by ∆t. One then discretises Eq. (3.5) so that it is coarse
grained up to length l and up to time τ (a multiple of ∆t), such that

∆hi(t)

τ
' a · Hi(t) + ηi(t) . (3.20)

For the KPZ equation, Eq. (3.5), the parameter vector a and the interface derivative
vector H, respectively, are of the form

a =

[
c, ν,

λ

2

]
and Hi(t) =

[
1,∇2h, (∇h)2

]
. (3.21)

Since the average height of the fronts h(t) = (1/N)
∑

i hi(t) had in all cases a clear
linear trend in time, the zero-slope velocity c was assumed to be constant. To deter-
mine Hi(t), all the fronts are first coarse grained by truncating their Fourier compo-
nents with wavelengths smaller than l. This means that from the (discrete) Fourier
transforms of the front heights,

ĥqn(t) =

∫ L/2

−L/2

dx h(x, t) e−i qnx , (3.22)

all wavelength components ĥqn(t) with a wavenumber q ≥ π/l are set to zero. For
∆hi(t)/τ we used the forward difference approximation with ∆hi(t) = hi(t + τ) −
hi(t). Subsequent differentiations and multiplications were carried out in the Fourier
and the real spaces, respectively. The parameter vector a was then determined by
solving mina J (a), where

J (a) =

〈[
∆hi(t)

τ
− a · Hi(t)

]2
〉

i,t

. (3.23)
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Notice that in Eq. (3.23) it is implicitly assumed that the noise characteristics are
the same for all experimental data. Moreover, basically one should also include in
Eq. (3.23) the restriction of relevant coefficients into physically reasonable values
(e.g., c and ν should be positive). Here, the relevance is checked only afterwards.
Once a minimiser a∗ of Eq. (3.23) is determined, the noise correlator D follows from

D =
lτ

2
J (a) . (3.24)

All the parameters c, ν, λ, and D thus obtained depend on both the spatial and the
temporal resolution l and τ , respectively. For c and λ convergence to constant values
independent of coarse graining should however appear, while such convergence is
not expected for ν nor D.

3.5.2 Pseudo-spectral method

Giacometti and Rossi [20] have proposed a method for extracting the coupling pa-
rameters of the KPZ equation from experimental snapshots of successive interface
profiles. This method hinges on two main ingredients. First, a pseudo-spectral sche-
me is used to simulate the KPZ equation, and this scheme can be considered as an
improved discretisation in comparison with the standard real-space finite-difference
ones. Using

h(x, t) =
1

L

+∞∑
n=−∞

ĥqn(t)eiqn x , (3.25)

where the Fourier components are associated with wave numbers qn = 2πn/L, in
Eq. (3.5), an infinite system of coupled Langevin equation is obtained:

dĥqn(t)

dt
= cLδn,0 − νq2

nĥqn(t) +

− λ

2L

∞∑
m,m′=−∞

qmqm′ĥqm(t)ĥqm′ (t)δn,m+m′ + η̂qn(t) . (3.26)

The spectral approximation now amounts to projecting the above infinite system on
the space of periodic functions of period L with a finite number of Fourier modes
ĥqn (|qn| ≤ qN/2). All equations retain their original form with the proviso that the
infinite sums

∑∞
n=−∞ are now replaced by finite ones

∑N/2
n=−N/2. This procedure thus

assumes that ĥqn = 0 for any n > N/2, and the original continuum equation is
reduced to a set of N + 1 real Langevin equations. As a matter of fact, this preserves
both the correct steady state distribution and the coarse-graining properties of the
corresponding continuum equation.

Second, the reconstruction algorithm is based on the time evolution of cor-
relation functions. The evolution equations for correlation functions follow from
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Eq. (3.26) and can be written in the form

d

dt
g2(t) = −2νg4(t) + 2DQ2 and

d

dt
g0(t) = cL +

λ

2
g2(t) (3.27)

where g0(t) ≡ 〈ĥq0(t)〉, g2p(t) ≡ L−1
∑N/2

n=−N/2 q2p
n 〈|ĥqn(t)|2〉 for p = 1, 2, . . . , and

Q2 =
∑N/2

−N/2 q2
n. These functions do satisfy a deterministic evolution equation, which

allows the use of standard least-squares procedures to identify the coupling param-
eters.

For a given realisation, the experimental interface is observed at times tk =

k∆t; k = 1, 2, . . . , pM , where ∆t is the measurement sampling time. By integrating
Eqs. (3.27) during p sampling times ∆t, one obtains

g2(Tk+1)− g2(Tk)

Tk+1 − Tk

= −2ν
1

Tk+1 − Tk

∫ Tk+1

Tk

g4(t) dt + 2DQ2 , (3.28)

where time Tk = kp∆t (k = 1, . . . ,M), and

g0(Tk+1)− g0(Tk)

Tk+1 − Tk

= cL +
λ

2

1

Tk+1 − Tk

∫ Tk+1

Tk

g2(t) dt . (3.29)

If ∆t is smaller than the characteristic time of the dynamics, one may approximate
the time integrals in Eqs. (3.28) and (3.29) as averages over the p intermediate sam-
pling times, thereby obtaining M − 1 linear constrains on the parameters ν, D and c,
λ. A simple least-squares calculation then determines ν and D from Eq. (3.28), and c

and λ from Eq. (3.29).
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Chapter 4

Experiments and Data

A convenient approach to study kinetic roughening experimentally is to analyse
the propagation of slow-combustion fronts in paper sheets. An early attempt was
made by Zhang et al. [74], whose experiments were very helpful for the design and
construction of our own experimental set up. Experiments on flame fronts in paper
were later carried out by Balankin and Matamoros [7]. However, this latter exper-
iment was a ‘post-mortem’ study, i.e., the flame fronts were quenched after they
reached the middle line of the sheet, and the quenched fronts were scanned. Both
these studies reported estimates only for the roughness exponent χ.

Our experiments were conducted under controlled conditions inside a com-
bustion chamber, where the air flow and the angle between it and the paper sheets
were adjustable. The paper sheets were ignited from one end using a heating wire,
and the time evolution of the combustion front was recorded using a three-CCD-
camera system connected to a computer. The time-coded digital images of the com-
bustion fronts were then post-processed to map the position of the front line with a
discrete single-valued function. The experimental arrangement and the camera set
up are shown in Figure 4.1.

The post-processing of the digital gray-scale images from the three cameras
included compression of the individual frames, determination of the front position
in each of them, correction of the cylindrical distortions, and joining of the three
height functions thus determined. In more detail this process can be divided into
four separate steps.

1. The frames were compressed by recording a narrow stripe around the front
line. Since the images were taken in darkness, the only visible object was the
combustion front.

2. The front height position in each frame was determined by finding the pixels
brighter than a given gray-scale value. A single-valued front line was fitted
into the brightness profile. In the intervals, where a front line could not be
identified, an interpolating straight line was fitted.

21
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FIGURE 4.1 The experimental arrangement (left) incorporated a combustion cham-
ber, with an adjustable paper holder and a three-CCD-camera setup (right) that was
connected to a computer with necessary hardware and software for recording and
processing digital images.

3. The cylindrical image distortions caused by the lenses were corrected using
nonlinear warping. The method needs a collection of two-dimensional land-
mark points whose true locations are known together with their distorted im-
ages. These were then used to define a global warping function, that was used
to correct the position data of the individual cameras before joining them.

4. Since the camera system was moved in regular intervals along the direction of
propagation, and the front height h(x, t) was given as the perpendicular dis-
tance from the lower edge of the image, the actual value of the front height had
to be estimated by first determining the average front height h(t) ≡ 〈h(x, t)〉x
and then fitting straight lines into the (t, h(t)) data between camera moves.
These fitted lines were then used to extrapolate the position of the lower edge
of the image after the camera moves.

An example of a mapped position of a front line from lens-paper burns, and indi-
vidual images it was reconstructed from, is displayed in Figure 4.2.

Experiments were done on sample sheets of mainly three different paper gra-
des. In order to study the effects of the properties of the random medium on front
propagation, the sample sheets were chosen with varying basis weight, i.e., 70 and
80 g/m2 for the two copier-paper grades, and 9.1 g/m2 for the lens-paper grade, re-
spectively. Tests were also done on samples of cigarette paper that is anisotropic
and contains nontrivial correlations, and is therefore less than optimal for studies of
propagating interfaces in random medium. Despite this fact, the results for cigarette
paper [50] were consistent with those for the copier papers.
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FIGURE 4.2 (a) The mapped position of the front line from a lens-paper burn. The
edges of the recorded images are shown by the vertical dashed lines. The insets show
the individual images recorded from the three CCD-cameras. (b) The single-valued
front-height function h(x, t) after the cylindrical image distortions were corrected and
the data were joined together.

To guarantee flameless burning (smouldering fronts) and a continuous front
line, the sheets were treated with a potassium nitrate (KNO3) solution. A detailed
description of the experimental arrangements, the samples, and sample preparation,
can be found in Refs. [50, 57] and in the PhD Thesis by Markko Myllys [56].

Our results were obtained by analysing those burns in which the front did not
get pinned and the accidental defects in the observed data were few. By accidental
defects we mean digitising errors and sharp natural defects caused e.g. by ash mask-
ing the front position. Such burns, where the front was clearly lagging behind on the
edges of the sheet, were in some cases also discarded. In most cases, this last effect
was restricted to within a few centimetres along the edges of the sheet, so we just
omitted these strips from the analyses. Therefore, the system sizes were approxi-
mately 28 and 14 cm for the copier-paper and the lens-paper burns, respectively. The
volume of the combustion chamber limited the maximum size of the sample sheets
to 400×600 mm. The smaller system size in the case of lens paper was also due to the
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higher velocity of the fronts, which led to a shorter period of saturated behaviour at
the end of the burns than in the case of copier-paper samples of similar width.

The limited size of the samples had to be taken into account when we wanted
to analyse the scaling behaviour of the smouldering fronts in the saturated regime.
If the ignited front was very straight (in fact technically quite difficult to achieve),
the evolving front reached the saturated regime only at the last stages of the burn,
and its scaling behaviour could not be analysed with high enough accuracy. This
problem was bypassed by having a somewhat uneven ignition so that an initial
roughness was created in the fronts. In this way a much longer saturated regime
was achieved. The possible effects of initial roughness were later studied by sim-
ulations of a discretised KPZ equation, and the scaling properties in the saturated
regime of the evolving fronts were found to be independent of initial roughness.
The initial roughness of the fronts was however a reason to analyse their dynamic
scaling from the temporal height-height correlation functions rather than from the
interface widths. Finite-size scaling of local width could however be used in addi-
tion to correlation functions.

It proved to be of crucial importance to do extensive averaging over indepen-
dent slow-combustion fronts. In all samples there was quenched noise due to den-
sity variations typical of paper-like materials, and the noise affecting the fronts also
included dynamical effects, such that there were wide fluctuations in individual
fronts, also from burn to burn. Dynamical fluctuations can be related to fluctuating
flow of air created by a burning front, and this flow will give rise to fluctuations in
the ’effective’ heat conductivity (due to convective transfer of heat) and in cooling.
We found that averaging over approximately ten independent burns is needed for
fairly reliable estimates for the quantities measured. For copier burns this means
in practice averaging over up to about 40 000 individual fronts, and for lens paper,
with much faster propagating fronts, over several thousand individual fronts. For
the lens paper, averaging was hampered by the shortness of the saturated regime.

The averaging of the data was done by first calculating for each burn sepa-
rately the mean value of the quantity to be averaged. The average value for the set
of burns was then calculated as a weighted average of these mean values such that
the weight of a burn is the fraction of fronts in that burn from the total number of
fronts in the set.



Chapter 5

Filtering of Erratic Noise

In this chapter we briefly describe the new filtering method used to reduce digitising
errors and other erratic factors in the recorded fronts. For digital images containing
noise and other degradations due to non-Gaussian distributions and outliers, so-
called robust methods must be applied for proper restoration (see e.g., [31, 65] and
references therein). The basic principle behind such methodology is simple: whereas
the discrete, univariate sample mean minµ2

∑N
i=1 |µ2 − xi|2, i.e.

∑N
i=1(µ

∗
2 − xi) = 0,

is sensitive to the actual distance between the estimator and the given data, the
corresponding median minµ1

∑N
i=1 |µ1 − xi|, i.e.

∑N
i=1 sign(µ∗1 − xi) = 0, is not. Here

the variables marked with an asterisk are solutions of the respective minimisation
problems.

The most commonly used robust image restoration method is the so-called
median filter which uses an a priori chosen or an adaptively determined window
for locating the seek of the median value [23]. Although this procedure is robust
for single outliers, the median filter does not contain any control of smoothness of
the restored image. This is why the obtained result has a staircase- or rump-like
structure for small windows, becomes more and more blurred when the window
size increases.

Next we describe the main ideas of the restoration scheme in a continuous
setting. The restored image u(x, t) is obtained as the solution of the optimisation
problem

min
u
J (u) for J (u) =

∫
Ω

[
|u− z|+ β1

2

∣∣∣∣∂u

∂x

∣∣∣∣2 +
β2

2

∣∣∣∣∂u

∂t

∣∣∣∣2
]

dx dt , (5.1)

where z represents the experimental data. The cost functional to be minimised in
Eq. (5.1) consists of two parts, where the first part introduces a robust and outlier-
insensitive fitting between the solution and the noisy observation in the L1-norm.
The second part controls the regularity of the solution in an orthotropic manner
allowing one to impose different kinds of behaviour in the x and t directions. For
β1, β2 > 0, J (u) is strictly convex, so that Eq. (5.1) admits a unique solution u∗
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[17]. However, due to the L1-term, J (u) is non-differentiable in the classical sense
(derivative of function |x| at zero is multi valued) so that ordinary optimisation
methods like the steepest descents or conjugate gradient method, cannot be applied
for solving Eq. (5.1) [48, 60].

The actual discrete counterpart of Eq. (5.1) is given by

min
u∈RN

J(u) for J(u) = |M(u− z)|1 +
β1

2
uT Kx u +

β2

2
uT Ky u. (5.2)

Here, |v|1 =
∑

i |vi| denotes the discrete l1-norm, vT the transpose of a vector v, Kx,
Ky directional stiffness matrices and M the diagonal, lumped mass matrix of FEM
discretization of Eq. (5.1) [37]. The heuristic interpretation of Eq. (5.2) is the follow-
ing. Locally a median-like value is restored and global smoothness is assured by
the orthotropic regularization that defines a norm which is equivalent to a (discrete)
H1-norm. Both the shape of the local neighbourhood and the strongness of fitting
are determined by the chosen values of β1 and β2.

In practice, we first apply a technique similar to that of Eq. (5.2) on the one-
dimensional boundary of the experimental data. These presmoothed values are then
used as a non-homogeneous boundary condition in Eq. (5.2). The algorithm used in
this work can be found in the Appendix of Ref. [51] and a more detailed discussion
in Ref. [22]. One example of the effect of filtering on the data is shown in Figure 5.1.
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FIGURE 5.1 The original (h(x, t)) and filtered (hfiltered(x, t)) front-height data for a
lens-paper burn. In filtering β1 = β2 = 0.01 were used.



Chapter 6

Results and Discussion

6.1 Scaling of correlation functions and front width

The evolution and the scaling behaviour of the fluctuating slow-combustion fronts
were monitored by measuring first of all the height-height correlation functions
(HHCF) and the local width (LW) (see Chapter 2). The results of the observed scal-
ing behaviour are given here for the two grades of copier paper, and a grade of lens
paper.

6.1.1 Crossover behaviour

The height-height correlation functions and local front width all show a crossover
from a short-scale to an asymptotic behaviour which prevails at large temporal and
spatial scales. Such a crossover is observed for all paper grades (Figures 2.1). The
related crossover scale was for the spatial behaviour rc = 4.7 − 11 mm, and for the
temporal behaviour tc = 3.7 − 27 s (see Table I in Ref. [57]). The crossover scales rc

and tc provide an extra time and an extra length scale, respectively, in addition to
the sample width, and the correlation length and the related time scale. These addi-
tional scales should be taken into account when analysing the scaling properties of
moving fronts. In the usual scaling hypothesis one assumes that the sample width
and the correlation length are the only relevant length scales in the system (Chap-
ter 2). The crossover values given above [57] were determined as the crossing points
of power laws fitted separately to the short-range (SR) and long-range (LR) parts of
the curves.

This crossover phenomenon was first observed [30] in fluid-flow experiments,
and very recently also [69] in magnetic flux fronts penetrating in a high-Tc thin-film
superconductor. Several possible mechanisms have been suggested for this phe-
nomenon, i.e., quenched [70,42,43] or power-law correlated [54,8] or power-law dis-
tributed [75] noise or directed percolation depinning (DPD) [6,5,4] (see also Ref. [26]
for a review). Before the present work, the reasons for the crossover behaviour were

27
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not cleared up, although power-law distributed amplitudes in the effective noise
were reported in Ref. [29].

It appears that the SR correlations in the effective noise, either quenched or an-
nealed or both, are likely to be responsible for the crossovers and the related higher
apparent exponents at short range, see below. Also, at least in the present case, the
effective noise clearly is partly of dynamical origin as mentioned in Chapter 4. This
becomes evident from the fact that the temporal crossover scales are always longer
than the related spatial crossover scales along the fronts divided by the average front
velocities.

For a more detailed analysis of this noise, including simulation results for a
discrete KPZ equation with real (mass distributions measured on paper samples)
and randomised noise, we refer to the Ph.D. Thesis by Markko Myllys [56].

6.1.2 Kardar-Parisi-Zhang scaling

The long-range (asymptotic) behaviour is similar in all paper grades. In the log-log
scale the correlations functions, e.g., display asymptotically linear behaviours with
slopes independent of the grade of paper. The possible scaling can be most reliably
resolved by analysing the running values of the effective exponents for the height-
height correlation functions, χeff as defined in Eq. (2.6), and similarly for βeff .

It is evident from Figure 6.1 that the running effective exponents asymptoti-
cally have clear plateaux with values χeff ' 1/2 and βeff ' 1/3. This proves that, be-
yond the crossover scales, the dynamics of slow-combustion fronts in paper belong
to the KPZ universality class (with uncorrelated white noise). For a more accurate
determination of the scaling exponents one can now analyse in different ways the
asymptotic regimes of the correlation functions and also the interface width.

The scaling exponents shown in Table 6.1 were determined by performing lin-
ear least-squares fits to the corresponding height-height correlation functions
[Eq. (2.3)] in the LR scaling regime. An independent estimate for the roughness ex-
ponent χ was obtained by fitting the appropriate power law in the LR local width
data. The early-time behaviour of the front width also gave an estimate for the
growth exponent β. As noted in Chapter 2, a more accurate determination of the
scaling exponents necessitates the removal of the ‘intrinsic’ widths from the corre-
lation functions and local front widths. The values obtained in this way are denoted
by asterisks in the "Method" column of Table 6.1. The most reliable results in Ta-
ble 6.1 (6.2) were obtained using the height-height correlation function and the local
width [57], and they were averages over 10-11 burns of the 70 g/m2 and 6-18 burns
of the 80 g/m2 copier paper, and 24-32 burns of the 9.1 g/m2 lens paper.

The largest deviations are displayed by the lens paper as in this case the sat-
urated regime was too short for an accurate determination of β. Also the poor time
resolution in the 70 g/m2 copier papers case, affected the temporal scaling but main-
ly in the SR regime (see below). Because of experimental limitations and the relative
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FIGURE 6.1 The running exponents (a) χeff(r) and (b) βeff(t) calculated for three pa-
per grades from the height-height correlation functions G2(r) and C2(t) (Figure 2.1),
respectively, after the intrinsic widths were subtracted. The results were averages over
10 of the 70 g/m2 (◦) and 6 of the 80 g/m2 (�) copier paper burns, and 32 of the 9.1 g/m2

lens paper burns (F). The dashed lines in the above figures denote (a) χeff ' 1/2 and
(b) βeff ' 1/3, respectively.

TABLE 6.1 Scaling exponents for the Kardar-Parisi-Zhang-like scaling in slow com-
bustion of paper. ((∗)Estimates were obtained after an intrinsic width was subtracted
from the correlation function or the local front width.)

Scaling Paper grade Method Reference
exponent

70 g/m2 80 g/m2 9.1 g/m2

βLR – 0.32(1) – HHCF [50]
0.40(3) 0.39(3) 0.46(2) HHCF [57]
0.29(3) 0.32(3) 0.28(5) LW [57]

0.36(3) 0.34(4) 0.43(6) HHCF(∗) [57]

χLR – 0.48(1) – HHCF [50]
0.53(3) 0.51(3) 0.53(4) HHCF [57]
0.57(1) 0.55(2) 0.56(2) LW [57]

0.50(4) 0.47(4) 0.50(6) HHCF(∗) [57]
0.56(1) 0.52(5) 0.51(1) LW(∗) [57]
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sizes of the crossover scales, the range in which we were able to observe the (asymp-
totic) scaling was somewhat limited. It is not realistic to significantly increase the
width of the paper samples so as to extend the scaling regime by e.g. an order of
magnitude. In the case of the structure factor S(k) (Figure 6.2) doubling the system
size would increase the points in the asymptotic region only by one. The only way
to achieve a notable increase in the size of the scaling regime would thus be to find
a material with much smaller crossover scales. Obviously we can also support the
conclusions by analysing the scaling behaviour through other quantities in addition
to the mere scaling exponents.
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FIGURE 6.2 The structure factor S(k) determined for slow-combustion fronts in
9.1 g/m2 lens paper and 80 g/m2 copier paper. The dotted line corresponds to the
asymptotic KPZ value χ = 1/2 via S(k) ∼ k−2χ−1.

As already noted above, both the growth and the roughening exponent were
determined and found consistent with those of the KPZ equation with uncorrelated
white noise. Previous experiments had mostly obtained values for only the rough-
ness exponent χ (see, e.g., Refs. [66, 30, 72, 33]), and these values exceeded the KPZ
result χ = 1/2. The only exceptions to this general trend were Refs. [33, 30], where
values consistent with that of the KPZ equation were reported. First indications that
the slow-combustion fronts in paper follow the KPZ scaling at large enough time
and length scales were reported in Ref. [50]. We expect that the higher values re-
ported for the scaling exponents can be related to the short-range behaviours in the
systems analysed, before the asymptotic KPZ behaviour sets in, as these values are
similar to the SR apparent exponents found in the present case, and are caused by
system specific noise. Also it was crucial to do extensive averaging over indepen-
dent slow combustion fronts. There is also theoretical indication [63, 64] that slow-
combustion fronts should asymptotically display KPZ dynamics.
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6.1.3 Anomalous scaling

The running effective exponents in Figure 6.1 also show that there appears to be
no true scaling below the crossover scales, i.e., the running exponents do not show
plateaux there, given the resolution of the experimental setup. The estimates for
the apparent exponents in the SR regimes, shown in Table 6.2, were calculated by
performing linear least-squares fits to the corresponding height-height correlation
functions, Eq. (2.3), and the local width, Eq. (2.12). The methods used in these fits
were the same as the ones used for the asymptotic scaling in Section 6.1.2, including
the removal of additive constant factors in the correlation functions and the local
front widths.

The results in Table 6.2 show that in the SR regime below the crossover length,
the spatial height-height correlation function appears to scale with a rather large
effective exponent χSR ' 0.9 for the copier paper grades, and 0.85 for the lens paper.
The temporal correlation functions with the intrinsic width removed were analysed
in the SR regime only for the heavier copier paper and the lens paper due to the
poor time resolution (∆t = 4.2 s) in the 70 g/m2 paper data. The short-time growth
exponent βSR was, again, rather large, βSR = 0.75(5) and 0.64(3) for the 80 g/m2

copier paper and 9.1 g/m2 lens paper, respectively. In either cases, our measured
SR exponents did not agree with the expectation β ' χ ' 0.75 based on the DPD
model [42, 6].

TABLE 6.2 The apparent scaling exponents at short time and length scales.
((∗)Estimates were obtained after an intrinsic width was subtracted from the corre-
lation function or the local front width.)

Scaling Paper grade Method Reference
exponent

70 g/m2 80 g/m2 9.1 g/m2

βSR 0.59(4) 0.69(2) 0.61(2) HHCF [57]

- 0.75(5) 0.64(3) HHCF(∗) [57]

χSR 0.88(2) 0.89(2) 0.83(1) HHCF [57]
0.81(6) 0.83(5) 0.81(1) LW [57]

0.90(3) 0.90(4) 0.85(1) HHCF(∗) [57]
0.84(6) 0.87(8) 0.95(6) LW(∗) [57]

Higher-order correlation functions, Eq. (2.3), were also determined to check
the possible multiscaling properties of the slow-combustion fronts [58, 57]. The be-
haviour of these higher-order correlation functions indicates that, in the asymp-
totic KPZ regime, the interfaces are simply self-affine. On the other hand, in the
SR regime, the slopes of the spatial and temporal correlation functions depend on
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the order q of the correlation function, i.e., they show apparent multiscaling [11,10,8].
As there is no SR scaling regime (as deduced from the running exponents), there is
no true self affinity nor multiscaling. This agrees qualitatively with the numerical
study [42] of Leschhorn in which he showed that the moving interfaces described
by the quenched KPZ equation for F slightly larger than Fc are not self-affine. How-
ever, while in Ref. [42] the effective growth and roughness exponents at very short
time and length scales were roughly independent of q, in our case they display a
strong q dependence. The possible reasons for this are discussed in Section 6.2 be-
low.
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FIGURE 6.3 The (a) spatial and (b) temporal qth order correlation functions Gq(r)
and Cq(t) averaged over 10 burns for the 70 g/m2 copier paper and 20 burns for the
80 g/m2 copier paper, respectively.

Concerning the origin of the apparent multiscaling, it is evident that regions
with high gradient (in absolute value) are amplified in the higher-order correlation
functions. Distinct regions of such high gradient values are evident if successive
fronts are plotted as surface diagrams (see Figure 5.1). Digitising errors and sharp
natural defects in the observed data also make a contribution to the apparent multi-
scaling properties, and should be filtered out as artifacts. Also some SR effects due
to asymptotically irrelevant terms in the evolution equation could not be ruled out
based on our simulation results [56] and the results given by the inverse methods
(see below).

6.2 Scaling and noise

Since various experiments on kinetic roughening have mostly failed to demonstrate
the KPZ scaling, it has been suggested that this could result from nontrivial effec-
tive noise: Medina, Hwa, and Kardar [54] carried out simulations for spatially and
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temporally correlated Gaussian noise, and Zhang [75] introduced a power-law dis-
tribution for noise amplitudes. It was also proposed that the observed scaling could
be understood in terms of the DPD model [6, 4]. As noise is also expected to be rel-
evant for the short-range behaviour of slow-combustion fronts, we determined the
noise affecting the propagating fronts.

The effective noise can be analysed [29] by considering the fluctuations of local
velocities, i.e., δu(x, t) = u(x, t) − u(t), with u(x, t) ≡ [h(x, t + τ) − h(x, t)]/τ . For
convenience we considered in practice noise multiplied by the time scale used to
determine the velocity, i.e., the (scaled) noise amplitude used in the following is
given by

η(x, t) = δh(x, t + τ)− δh(x, t) ≡ τδu(x, t) . (6.1)

We used this formulation since the camera system was moved in regular intervals
and the actual value of the front height h(t) had to be estimated after the camera
moves (see Chapter 4). We have used this scaled noise amplitude to estimate the
amplitude distribution P (η) ≡ N(η)/

∑
η ′ N(η ′) in the steady-state regime. Here

N(η) is the number of positions where η has the same value, and the sum goes over
all values of η. Because of the temporal crossover behaviour, one has to analyse the
effective noise below (τ < τc) and above (τ > τc) the crossover scale.

We showed [58, 57] that for short time steps the noise-amplitude distributions
clearly have a power-law tail of the form

P (η) = c η−(µ+1). (6.2)

For the shortest time steps used, µ ' 1.7 for the lens-paper [57] samples and µ ' 2.7

for the two copier papers [58]. For increasing τ the power-law contributions in the
tails of P (η) became less visible, and the exponent µ increased towards µ ' 5,
around which value distributions became indistinguishable from Gaussian distri-
butions. This latter behaviour was similar in all paper grades. There are also other
factors which may contribute to the tails of the velocity-fluctuation distributions,
such as skewness [59], but we do not consider these factors here.

Two-point correlation functions of the local velocity fluctuations δu(x, t) were
used to determine possible spatial and temporal correlations in the effective noise.
Effective noise was found to be uncorrelated above the crossover scales rc and tc,
which is in agreement with the asymptotic KPZ behaviour. Below the crossover
scales we found the noise to be correlated in both space and time [58, 57], and the
decay ’lengths’ of these correlations seemed roughly to coincide with the crossover
scales in the height-height correlation functions.

It thus, appears that the short-range correlations in the noise affecting the
fronts, caused either by quenched noise or by correlated fluctuating disturbances,
or both, are likely to be responsible for the crossovers and the related higher ap-
parent exponents at short range. The continuous decay of short-range correlations
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would also explain the lack of true scaling in that regime, i.e., the running exponents
do not show plateaux there.

6.3 Persistence

In order to determine the persistence properties, we chose to analyse the data for
the 80 g/m2 copier paper since they have the best statistics. Figure 6.4 shows our
experimental results for temporal and spatial persistence in the stationary state. It
is evident that above the corresponding crossover scales, both these figures indicate
agreement with the theoretical conjectures, θtemp

+ = θtemp
− = 1 − β and (roughly)

θspat
+ = θspat

− = 1 − χ. No exact derivation of these exponents is available for KPZ
systems. Below the crossover scales the data in Figure 6.4 show no real scaling, in
analogy with the height-height correlation functions. We find no difference between
the first-return distributions in the positive and negative directions since our distri-
butions are normalised to one, and anisotropy does not appear in the plots.
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FIGURE 6.4 The stationary temporal (left) and spatial (right) first-return distributions.
The dashed lines correspond to the asymptotic KPZ values of β and χ in Ref. [57], via
the conjectures f(τ) ∼ τ−(2−β) (temporal) and f(`) ∼ `−(2−χ) (spatial).

The expected persistence behaviour takes place only at long enough scales,
where the physics is coarse-grained so as to obey the KPZ equation. There are ef-
fective correlations in the noise, with decay scales of a few seconds and a few mil-
limetres [58]. In the short-range regime of the stationary state data, the spatial and
temporal statistics are quite far from the scaling conjecture ‘θ = 1 − β’. This agrees
with the fact that the dynamics becomes Markovian only asymptotically. The short-
range persistence does not result from an effectively stationary process that would
differ from the long-range dynamics only by the fact that the height-height expo-
nents are not defined. The deviation is greatest in the case of temporal behaviour,
for which persistence decays slower than expected from the correlation function.
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The first-return distributions for the transient regime of the dynamics are
shown in Figure 4 in Ref. [55]. In our data the spatial long-range scaling turns out to
be reminiscent of the stationary state. Also, there is no simple short range behaviour
below the crossover scales. In some cases the short range scalings resemble power
law ones, but the effective persistence exponents are never in agreement with those
related to the decay of correlations. The spatial transient distribution, where the
asymptotics are better defined, is given by `−(2−χ) with χ = 1/2 as in the saturated
regime.

In principle, for a time window above the crossover time τc but below the satu-
ration time some ’expected’ (KPZ) temporal transient behaviour could be observed.
However, the typically wide [57] crossover region around τc would interfere with it,
unless the saturation time could be made long enough by, e.g., considerably increas-
ing the system size. Note that the up-down asymmetry [34] of the interface can be
visible only for τ > τc and ` > `c [57].

6.4 Model parameters

6.4.1 Amplitudes, dimensionless constants and λ

The experimental determination of the universal amplitude ratios and the univer-
sal coupling constant (see Section 3.4.3) was slightly hampered by the presence of
the crossover scales as, for these purposes, the correlation functions needed to be
considered in the true scaling regime only. Despite the somewhat limited size of the
scaling regime, the results are in rather good agreement with the theoretical pre-
dictions. In any case, correlation functions provide more accurate values for these
quantities than the front widths, and we therefore used them here.

These quantities were augmented by an independent measurement of λ using
the approach described in Section 3.4.1. The interface velocity was determined at
each location with a time interval τ long enough to attain the KPZ regime, with a
simultaneous determination of the local interface slope. The velocity versus slope
data were then fitted by a parabola using slopes between −0.5 and 0.5, correspond-
ing typically to about a half of all the slopes.

We determined the prefactors A and B of the spatial and temporal correlation
functions, respectively, Eq. (3.15), from the measured correlation functions with χ

and β fixed at 1/2 and 1/3. The values found in this way for A and B, and those for
the other parameters, are shown in Table 6.3.

Combining the results for λ, A, and B with the exact KPZ exponents, we ob-
tain for the coupling constant g∗ and the universal amplitude ratio RG the values
shown in Table 6.3. Recalling that the mode-coupling value is g∗ ' 0.87 [32], it is
evident that the results are in good agreement with theory. If we use the measured
exponents instead, g∗ becomes 0.8(2), 0.8(2), and 2.7(4) for the 70 g/m2, 80 g/m2, and
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TABLE 6.3 The correlation function amplitudes, λ and the universal RG and g∗ as
extracted from the experimental data by using χ = 1/2 and β = 1/3. [57]

Quantity Paper grade

70 g/m2 80 g/m2 9.1 g/m2

A 0.52(2) 0.475(7) 3.4(1)
B 0.186(12) 0.14(1) 8.0(8)
λ 0.465(2) 0.370(1) 4.0(4)

RG 0.74(6) 0.73(5) 0.62(8)
g∗ 0.79(9) 0.76(8) 1.0(2)

9.1 g/m2 grades, respectively. The last value is due to the large effective β for the
lens paper, caused by the very short saturated regime, and thereby poor statistics
in the temporal correlation function. As the mode-coupling and simulation results
for RG vary in the range RG = 0.63 − 0.71, agreement with theoretical predictions
is good also in this case. Notice that (i) g∗ and RG are functionally related when the
exact KPZ exponents are used in their expressions, and (ii) A (see Section 3.4.2) can
be used as an independent estimate for the D/ν-ratio defined by the inverse method
(see Section 3.5.1) for which results are shown in the next section.

Although the interface width could not be used to obtain an estimate for the
asymptotic surface width amplitude Ct used in Eq. (3.18) and, thereby, for the R, the
local width allows for the determination of the universal scaling function from the
experimental data as described in Section 2.3. On can show [2, 3] that

w(`, t) = C``
χF

(
|λ|C`t

`z

)
, (6.3)

where C` is determined from the asymptotic value w(`, t = ∞) = C``
χ. Using a

maximum value of ` ' 14 cm, and fitting the C` values for the three grades, one can
collapse the time-dependent data with the aid of the λ values as measured from the
slope-dependent local velocities [2, 3]. The result is shown in Figure 12 in Ref. [57].
As the measured λ and C` values are not very accurate, we show in the inset of this
figure the best collapse of the data achieved using C` essentially as a free parameter.

6.4.2 KPZ and its parameters by inversion from observed fronts

We have verified the KPZ equation and determined its effective coefficients us-
ing the inverse method (see Section 3.5.1) and independent estimates for c and λ

were obtained using the slope-dependent velocity (see Section 3.4.1). The results
are shown in Table 6.4 for the 80 g/m2 copier and the 9.1 g/m2 lens paper grades,
and magnetic flux fronts penetrating a thin-film high-Tc superconductor [51]. The
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TABLE 6.4 Measured average values for KPZ coeffients and the ratio D/ν. For the
slow-combustion fronts l = 11.6 . . . 17.6 mm and τ = 0.4 s, and for the magnetic flux
fronts l = 11.2 . . . 19.6 µm and τ = 0.5 s, were used as the coarse-graining scales for c
and λ. The scaled ν and the D/ν ratio were determined for ` = 17.5 mm and τ = 25.6 s
(copier-paper), and ` = 17.6 mm and τ = 1.6 s (lens-paper). The D/ν ratio for the
magnetic flux was determined for ` = 22.4 µm and τ = 3.5 s.

Coefficient Inverse method Slope-dependent velocity

Copier Lens Flux Copier Lens Flux
×10−3 ×10−3

c [mm/s] 0.49(2) 9.2(5) 27.0(1) 0.485(2) 9.1(2) 27.1(2)
λ [mm/s] 0.40(2) 4.1(2) 15.9(8) 0.37(3) 5.1(2) 17.4(2)

ν
(

τ
∆t

)−1/3
[mm2/s] 0.049(3) 2.0(1) – – – –

D/ν [mm] 0.83(5) 4.6(1.1) 6(3) – – –

behaviour of the coefficients and the D/ν-ratio as functions of coarse graining is
displayed for the 80 g/m2 copier paper in Figures 6.5 and 6.6.

We have also tested the inverse method for non-KPZ equation by including
higher-order terms with related coefficients, and comparing the results with those
from numerical simulations of a discrete KPZ equation with real noise as deter-
mined by optical scans of lens-paper samples. It appears that the inverse method
finds it difficult to distinguish, e.g., a fourth-order derivative from noise, while the
other KPZ parameters seemed to be more or less unaffected by inclusion of this term.
On the other hand, the data produced by KPZ simulations with real noise gave as
well rise to a non-zero fourth-order derivative when the inverse method was ap-
plied to these data. Also, the coefficient of the fourth-order derivative was higher
for the simulated data than for the measured data. In this sense we can conclude
that no evidence was found for the existence (asymptotically) of higher-order terms
in the equation of motion for the measured fronts.

The parabolic dependence of the local front velocity on the local slope of the
front provides fairly direct independent evidence of the existence of a KPZ type
nonlinear term in the evolution equation. Furthermore, higher-order polynomial fits
to the slope-dependent front velocity of the lens-paper fronts lend some support to a
square-root form of the slope dependence, expected when driving is along the local
normal. This shows up at short length scales, asymptotically the higher-order terms
are irrelevant.

The estimates for the zero-slope velocity c and the nonlinear term λ could be
determined using both of the above mentioned methods, and they were in good
agreement with each others. The estimates for the ratio D/ν of the noise correlator
D and the ’surface tension’ ν were obtained using the inverse method. For slow
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FIGURE 6.5 Model parameters c, λ, ν and D determined by the inverse method and
averaged over 18 burns of the 80 g/m2 copier-paper, as functions of the cutoff length `
for τ = 0.4 ( · ) . . . 25.6 (�) s.
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FIGURE 6.6 Measured D/ν as a function of cutoff length ` for the 80 g/m2 copier-
paper burns.



39

combustion fronts the D/ν thus obtained could be compared with a previous result
[57] for the asymptotic amplitude of the spatial height-height correlation function,
A = D/ν, shown in Table 6.3 with again good agreement. In all cases this ratio was
found to converge quite well for increasing coarse-graining scales ` and τ . For ν a
τ -dependent scaling form was determined for the slow-combustion fronts.

For the magnetic flux fronts the values were obtained by averaging over 9
sets of fronts measured on the same sample. The inverse method and the system
size set an upper limit for the feasible coarse-graining length for the used sets of
fronts, which is somewhat smaller than he crossover length estimated from the spa-
tial height-height correlation function in Ref. [69]. Since all nine measurements were
made on the same sample, noise averaging (over structural defects in the sample)
was less extensive than for the slow combustion fronts, and saturation of the pa-
rameter values was not quite as good. Both c and λ were also estimated using the
slope-dependent approach, and we think the values by the inverse method are how-
ever fairly reliable as they are consistent with the other estimates.
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Chapter 7

Conclusions

The main result of our experimental work was to demonstrate in detail that asymp-
totically the scaling behaviour of slow-combustion fronts are consistent with those
of the Kardar-Parisi-Zhang equation with uncorrelated Gaussian noise. To achieve
this result extensive averaging over noise turned out to be necessary. This is of
course something one should realize already on theoretical grounds, but apparently
had not been sufficiently appreciated earlier.

The scaling properties of this system were analysed perhaps in more detail
than those of any other single experimental non-equilibrium system before. In ad-
dition to the typical scaling exponents, the strong-coupling fixed point, a universal
amplitude ratio, and an estimate of the scaling function of the local interface width,
were also determined. By an inverse method, and also from the slope-dependent lo-
cal velocity of the fronts, basically all the parameters of the KPZ equation applicable
to slow-combustion fronts were determined, specific of course to the three grades
of paper used in the samples. Indication was also found for higher order terms not
being relevant in the proper Langevin equation, but no definite conclusions could
be drawn.

Having firmly established that the system indeed displays KPZ dynamics, we
then proceeded to analyse the persistence properties of front-height fluctuations. In
the KPZ case, the theoretical results for these fluctuations are somewhat less cer-
tain than the scaling properties described above. We could show again that, asymp-
totically, persistence of stationary height fluctuations display well defined scaling
behaviour, temporal as well as spatial fluctuations, with scaling exponents in agree-
ment with the respective conjectures for the KPZ universality class. Results were
also obtained for the transient persistence, especially of the spatial height fluctua-
tions. These results will hopefully motivate future theoretical work in this area.

In all the quantities analysed so far, the asymptotic KPZ scaling was preceded
by crossover from a different kind of short-range behaviour. Running-exponent
analysis of this short-range behaviour revealed that, at least within the present ex-
perimental accuracy, there is no true scaling regime at short scales. In log-log scale
even the short-range parts of e.g. height-height correlation functions looked how-
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ever fairly linear, and linear fits of them provided apparent scaling exponents typ-
ically much higher than the corresponding KPZ exponents. The short-range parts
of the correlation functions also displayed apparent ’multiscaling’. The persistence
properties of the front-height fluctuations indicate in particular that the stochastic
process behind the short-range behaviour is non-Markovian.

The reason for the observed short-range behaviour could be traced down to
the properties of effective noise. This noise was measured from the velocity fluctu-
ations of the fronts, and was found to have short-range spatial and temporal corre-
lations, as well as a power-law tail in its amplitude distribution at short time scales.
The decay rates of the correlations, and the disappearance of the non-trivial ampli-
tude distribution, were all approximately related to the observed crossover lengths
and times from the short-range regime to the asymptotic KPZ regime. The spatial
crossover scale seems to be mainly related to, but not completely determined by,
the structural disorder in the samples. The temporal crossover on the other hand
seems to be clearly affected by dynamical effects, as it was typically much longer
than one would expect from the spatial crossover length and the front velocity. The
non-trivial amplitude distribution and apparent multiscaling appear to completely
arise from dynamical effects.

The effective noise thus gives rise to a new time and a new length scale, the
crossover scales, in the behaviour of the fronts, and these additional scales must
properly be taken into account when analysing the scaling properties of the fronts.
We would expect similar features to arise quite naturally in all experimental sys-
tems. It may well be that the large variation in the experimental scaling exponents is
partly related to this feature, in addition to possible inadequacies in noise averaging.
It is also evident that our theoretical understanding of stochastic processes which are
non-Markovian at short time and length scales, but are Markovian asymptotically,
is still very rudimentary.
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