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Abstract

Toppari, Jussi
Transport phenomena and decoherence in short Josephson junction arrays
Jyväskylä: University of Jyväskylä, 2003, 96 p.
(Research report/Department of Physics, University of Jyväskylä,
ISSN 0075-465X; 9/2003)
ISBN 951-39-1631-6
diss.

In this thesis transport phenomena in the arrays consisting of two (SSET) or three
(CPP) or more Josephson junctions are discussed. A quantitative theory of adiabatic
Cooper pair transport in phase biased arrays is developed. The theory predicts that
the quantum inaccuracy of the Cooper pair pumping in arrays with a small num-
ber of junctions is very large. The effects due to inhomogeneous arrays or nonideal
gating sequences are also quantitatively treated. It is also shown explicitly how the
pumped charge in the Cooper pair pump can be understood as a partial derivative
of Berry’s phase with respect to the phase difference ϕ across the array. This makes
possible to obtain information about Berry’s phase by measuring the pumped cur-
rent in the CPP.

Also the decoherence time τϕ, which is one of the central quantities in quantum
computing, is quantitatively estimated in a dissipative electromagnetic environment
of the circuit. This method allows comparison of the suitability of a system as a
quantum bit. Also a direct measurement of τϕ as a crossover between coherent and
incoherent pumping in the single Cooper pair pump is suggested.

In experiments with Cooper pair pump it is demonstrated in practise how the
CPP can be used as a turnstile with help of dissipation. Also a regular pumping ex-
periment is performed. To explain the twofold behavior of the CPP, sometimes yield-
ing e-periodicity while sometimes 2e-periodicity, the energy-minimisation model is
developed. It is shown also experimentally that Nb based junctions with high crit-
ical temperature (Tc ≈ 8.5 K) and Josephson coupling can be fabricated using the
regular self-alignment technique. The measured Al/Nb/Al SSETs show a clear sig-
nature of resonant tunnelling of Cooper pairs combined with elastic cotunnelling of
quasiparticles, q-MQT, through the barrier of ∆Nb.

Keywords Tunnelling, Josephson effect, Cooper pair pump, decoherence, super-
conductivity, quantum computing
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1 Introduction

1.1 Significance of size

During the past couple of decades the steady progress in microelectronics and the
tendency to build smaller and smaller devices have pushed industry to the point
where the limit of classical technologies lies no more in the remote future. Some
modern commercial apparatuses are already now operating in the conditions where
classical behaviour is perturbed due to the effects arising from the small size. These
effects are getting more pronounced when the size is going to be further reduced and
structures are entering the regime where one has to take into account the effects of
quantum mechanics. In the extreme limit there exists the smallest structures of the
nature; particles like quarks, electrons, atoms built of them etc., which have been
proven to strictly obey the laws of quantum mechanics. This leaves an interesting
gap between the classical behaviour of the macroscopic objects and the quantum
behaviour of the microscopic ones.

Modern fabrication methods have made it possible to build mesoscopic elec-
tronic devices laying in this intermediate regime, concretely showing the effects of
quantum mechanics and still being much larger than the usual microscopic objects
and thus partly operating as classical systems. The operation of these devices is of-
ten based on the quantum mechanical tunnelling phenomenon and especially on
the possibility of an electron to tunnel through a very thin insulation layer. This
situation can be arranged in practise by two metallic electrodes with an artificial
thin insulation layer separating them. This kind of setup is called a tunnel junc-
tion and it can be characterised by the capacitance C due to its classical proper-
ties and construction, and the tunnelling resistance RT = RK/(4πNT ) originating
from the current due to electron tunnelling. Here T is the barrier transmission coef-
ficient, N is the number of independent electron channels through the barrier and
RK = h/e2 ' 25.8 kΩ is the resistance quantum. [17]

In standard electronics a single electron does not play any major role due to
a huge number of them involved in current flow and the ability of them to contin-
uously move in the ionic background [40]. The possibility to see the effects pro-
duced by single electrons arises from the small size and thus the small capaci-
tance C of the tunnel junction, which considerably increases the electrostatic energy
EC = e2/2C needed to charge the junction with one electron. By combining this fact

9



10 1. INTRODUCTION

with the modern cooling methods, e.g., dilution refrigeration, capable of producing
subkelvin temperatures T , it is possible in practise to reach the necessary limit

EC � kBT, (1.1)

where the charging effects of invidual electrons are not anymore smeared by the
thermal fluctuations.

1.2 Basic normal-metal single electron devices

1.2.1 Single electron box

To observe the charging effects of single electrons to its full extent it is not enough
to satisfy the relation Eq. (1.1). In addition, it is necessary to have a metallic island
galvanically separated from other metallic regions so that the charge on the island
can change only by electron tunnelling via tunnel junction or junctions. Also the
tunnelling resistance of the junction has to be larger than the resistance quantum,
RT � RK, to have the wave function of an electron to be localised on the island.

Vg

Cg C RT

n

FIGURE 1.1 Single electron box consisting of one tunnel junction in series with a gate
capacitance Cg and a voltage source Vg. The number of excess electrons on the island
is n.

The simplest structure fulfilling these requirements is a so-called single elec-
tron box (SEB) consisting of one tunnel junction in series with a gate capacitance
Cg and a voltage source Vg as shown in Fig. 1.1. The total charge of the island is
now quantised and characterised by the number of excess electrons n on the island,
associated with a charging energy EC = e2/2(C + Cg). The effect of the voltage Vg

is to change the polarisation charge in the gate capacitance and thus the effective
charge of the junction becomes Q = VgCg − ne. The charging energy of the whole
circuit can be calculated by treating the junction as a regular capacitance after the
last tunnelling, and it obtains a form

ECh =
(VgCg − ne)2

2(Cg + C)
. (1.2)
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FIGURE 1.2 Charging energy of the single electron box consisting of a set of parabolas
each corresponding to a certain value of n given by the x coordinate at the minimum.
EC = e2/2(C + Cg) is the charging energy of the SEB.

This represents a set of parabolas as a function of Vg, each one corresponding to
a certain value of n. These parabolas are separated by Cg/e in x direction as depicted
in Fig. 1.2. From the figure one can immediately see that the number of electrons n is
stable, yielding the minimum energy if the voltage is between e(n − 1/2) < VgCg <

e(n+1/2). As soon as Vg reaches the value e(n+1/2)/Cg, an electron tunnels into the
island and n is increased by one, i.e., one electron has been ‘added to the box’. Thus,
it is possible to control the number of electrons on the island one by one by the
voltage Vg. At zero temperature this control is accurate but at finite temperatures
the sharp changes in n are smeared by Boltzmann distribution. This quantisation
of the island charge and controlling it by the gate voltage was first demonstrated
experimentally in [90].

1.2.2 Single electron transistor

Another simple device with only one island is a single electron transistor (SET). It is
composed of two tunnel junctions in series with bias voltage V . In addition, a gate
voltage Vg is capacitively coupled to the island through Cg. The schematic view of a
SET is shown in Fig. 1.3. The major difference compared to the SEB is that now an
electron can tunnel onto the island trough one junction and discharge the island by
tunnelling out via another one, thus inducing a net current through the device.

The total charging energy is of the same form as in the case of SEB except
that one has to include the work done by the voltage source V in carrying a charge
through the device:

ECh = EC

(
u2 + 2CV/e

)
− peV, (1.3)

where EC = e2/2CΣ is the charging energy, CΣ = 2C + Cg is the total capacitance
of the island and u = VgCg/e − n. Integer number p is the number of electrons
tunnelled through the system, sometimes called a flow index. Figure 1.2 represents
also the energy of the SET but only in case of V = 0 and with EC = e2/2CΣ. If the
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Cg

C CRT RT
n

Vg

V/2−V/2

FIGURE 1.3 Schematic view of a single electron transistor. The system is assumed
to be symmetric with both junctions having the same capacitance C and tunnelling
resistance RT. The gate voltage Vg is connected to the island through capacitance Cg

and the system is biased with voltage V .

gate voltage is zero, Vg = 0, the energy ofEC−eV/2 is needed to charge the island by
one electron. At zero temperature this energy has to be provided by the bias voltage,
and therefore the current cannot flow, if |V | is smaller than e/CΣ. At voltages above
that the current is linear, i.e., ohmic with an offset±e/CΣ and a slope determined by
the tunnelling resistance, I = V/RT± e/CΣ. This phenomenon of suppression of the
current at small voltages is called Coulomb blockade and it makes it possible to have
a well fixed number of electrons n on the island.

As in the case of SEB the gate voltage can be used to change the effective charge
of the island as seen in Eq. 1.3. This makes the threshold voltage of Coulomb block-
ade depend on the gate charge. By electrostatic considerations one finds that n is
stable inside the regions

e
(
n− 1

2

)
< 1

2
CΣV + CgVg < e

(
n+ 1

2

)
. (1.4)

This represents rhombic shaped regions in (V, Vg) plane and inside each region a
certain n is stable and no current is flowing. This also makes possible to control the
current by the gate voltage Vg at a suitably fixed bias voltage V [77]. That is why the
device is called single electron transistor and it was first demonstrated experimen-
tally already in 1987 [60].

Since at certain voltages near the Coulomb threshold the current is very sen-
sitive to the gate voltage, it is possible to use the SET as an ultrasensitive electrom-
eter [41, 87, 113] by connecting the system under study capacitively to the island.
Due to this property the SET is also suggested to be used as a read-out device of a
quantum bit consisting of the superconducting SEB ("squbit") [96, 116].

1.2.3 Devices with several islands

By increasing the number of islands and the complexity of the circuit it is possible to
construct more sophisticated and versatile devices. However, usually the SEB and
SET are still used as basic building blocks.

The simplest two island device is the single electron trap, i.e., an irreversible
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(a) (b) (c)

V/2 −V/2Cg

C C C C

Vg

V/2 −V/2

Vg

Cg C C

FIGURE 1.4 A schematic view of a (a) single electron trap, (b) turnstile and (c) pump.

single electron box. It is constructed by introducing a second junction in series with
the one already included in a SEB as shown in Fig. 1.4(a). The behaviour of the single
electron trap is very much similar to the box, except that it is hysteretic. This means
that during the increase of gate voltage the threshold to move an electron onto the
island is different from the value one has to reduce the voltage to, to get it out. (see,
e.g., [51])

A different type of device is formed when connecting two traps together shar-
ing the middle island with a gate voltage coupled to it. This device is called a single
electron turnstile and it is depicted in Fig. 1.4(b). The principle of the device is to
make use of the hysteretic behaviour of the trap and controllable transfer current
through the array. The middle island can now be charged and discharged by tun-
ing the gate voltage with suitable amplitude. The applied bias voltage V makes the
trap structures hysteretic thus ensuring that the island is charged always from one
direction and discharged into another. Hence it is possible to induce a DC-current
through the device by applying a small bias voltage and an AC-drive of frequency
f to the gate. The obtained current is I = nef , where n is an integer which depends
on the amplitude of the AC-voltage. Turnstiles have been experimentally shown to
operate well both in the normal metal state and also in superconducting state [9,62].

An interesting device can be formed by extending a SET to include three junc-
tions in series with gate voltages capacitively coupled to the two islands. This de-
vice is called a single electron pump and its superconducting counterpart Cooper
pair pump is the main topic of this thesis. With pump it is possible to induce a DC-
current (pumped current) without any bias voltage by varying the gate voltages, e.g.,
by applying two sinusoidal AC-voltages with 90◦ phase difference to the two gates.
The current is again of the form I = nef in the normal metal pump and I = 2nef in
the Cooper pair pump. Here f is the frequency of the applied AC-signal. The device
is depicted in Fig. 1.4(c) and the operating principles are discussed in more detail in
the following chapters.
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2 Josephson tunnelling

2.1 Superconductivity

Superconductivity was observed for the first time in 1911 by Kamerlingh Onnes in
Leiden [105,106,107], when he noted the resistance of mercury to completely disap-
pear below the temperature of liquefied helium. Since that, this same phenomenon
of vanishing of resistance in a small temperature range at a so-called critical temper-
ature Tc has been observed in many metals and compounds. The critical temperature
is a characteristic of the material and the perfect conductivity at temperatures below
it has been proven by the current flowing in the superconducting ring over a year
without any attenuation. The measured decay constant of this supercurrent was not
less than 100,000 years [56].

Another important property of a superconductor is the perfect diamagnetism
[98], i.e., any magnetic field inside the metal is expelled as the metal is turned into
the superconducting state. This is called Meissner effect and it predicts the supercon-
ductivity to be destroyed in magnetic fields higher than the so-called critical field Hc.
This has been experimentally verified and temperature dependence of the critical
field has been empirically found to obey the formula Hc(T ) ≈ Hc(0)

[
1− (T/Tc)

2] in
type I superconductors. In type II superconductors vortices are formed at magnetic
fields between the two critical fields Hc,1 and Hc,2. The vortices existing in this mixed
state of superconductor, are normal in their center, thus enabling a flux quantum
Φ0 = h/(2e) to penetrate though the superconductor inside each of them. At second
critical field the maximum density of vortices is reached and the material becomes
normal.

There exists two main theories about the classical superconductivity. The BCS
theory by Bardeen, Cooper and Schrieffer [23] is based on the microscopic properties
of the Fermi-sea of electrons. It shows that even a very weak attractive interaction
between electrons, e.g., the second order interaction via lattice phonons, causes elec-
trons to form pairs, so-called Cooper pairs at low enough temperatures. These pairs
are formed by electrons with opposite momentum and spin, and as a consequence
of this pairing an energy gap ∆ is opened around the Fermi surface in the density
of quasiparticle states. The spatial extension of Cooper pairs is of the order of the
coherence length ξ0 = 2~vF/π∆, where vF is the Fermi velocity. The zero resistiv-
ity can be qualitatively explained by the Cooper pairs having a total spin of one and

15



16 2. JOSEPHSON TUNNELLING

thus acting like bosons, which condense to Fermi surface at low temperatures. These
condensated ‘bosons’ do not interact with each other so they can conduct electricity
without any attenuation. The most important prediction of the theory is the mini-
mum energy 2∆(T ) needed to break the pair, which induces a gap in the density of
quasiparticle states. This gap increases from the zero at Tc to the maximum value of
2∆(0) = 3.528kBTc. Theory also yields the correct value for the jump in specific heat
at Tc and the Meissner effect [98] can be derived from it. The principles of the BCS
theory have also been successfully applied to explain superfluids [99, 130].

The other theory, Ginzburg-Landau (GL) theory [65] is more phenomenologi-
cal and introduces a complex pseudowavefunction ψ as an order parameter in Lan-
dau’s general theory of second order phase transitions. It is based on the variational
principle and on the expansion of the free energy in powers of ψ and∇ψ. GL theory
also includes coherence length defined as ξ(T ) = ~|2m∗α(T )|−1/2, which charac-
terises the distance over which ψ(~r) can vary without undue energy increase. Here
m∗ is the mass of the superconducting charge carriers (∼2melectron) and α(T ) is the
temperature dependent constant determined by the GL equation [65].

2.1.1 AC and DC Josephson effects

When two large superconductors with phases ϕ1 and ϕ2 of the (GL) order param-
eter ψ(~r) = |ψ(~r)|eiϕ(~r), describing the collective state of the (BCS) Cooper pairs,
are weakly connected to each other through the so-called Josephson junction [79], the
supercurrent of the form

Is = Ic sin(ϕ2 − ϕ1) (2.1)

is induced between these superconductors. In principle Josephson junction can be
any kind of a weak link, but in this work it consists of a regular tunnel junction,
described earlier in Ch. 1, with both electrodes made of a superconductor. The su-
percurrent Is arises due to the overlap of the two wavefunctions across the junction
and their interference with each other. The critical current Ic is the maximum current
that the junction can support.

This same line of reasoning leads also to another important result: if voltage is
applied across the Josephson junction the phase difference δϕ = ϕ1 − ϕ2 will evolve
according to

dδϕ

dt
=

2eV

~
. (2.2)

The two effects determined by Eqs. (2.1) and (2.2) are called the DC and AC Josephson
effects and they were experimentally verified shortly after Josephson’s prediction in
[79]. The modern Josephson voltage standard used in many institutes of metrology,
is based on these effects.

From (2.1) and (2.2) one can also derive the electrical work done by the current
source and thus the energy stored in the junction while the δϕ is changing. This can
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be obtained by integrating
∫
IsV dt =

∫
Is~/(2e)d(δϕ), which yields

E = −EJ cos δϕ, (2.3)

where EJ ≡ ~Ic/2e is the Josephson coupling energy.

2.1.2 Ambegaokar-Baratoff formula

From the GL theory [65] one can derive the critical current Ic for the general weak
link, ‘bridge’ in this case, of length L� ξ and with the cross-sectional area of A:

Ic = (2e~ψ2
∞/m

∗)(A/L), (2.4)

where ψ∞ is the absolute value of the order parameter in both superconductors.
By applying a similar reasoning to the case of tunnel junction, Ambegaokar and
Baratoff worked out the expression for the critical current and thus for EJ in a
Josephson tunnel junction [8]. The general expression with the two electrodes hav-
ing energy gaps ∆1 and ∆2 can be obtained in the limit kBT � ∆1,∆2 [44]

EJ =
2RQ

πRT

∆1∆2

∆1 + ∆2

K
(
|∆1 −∆2|
∆1 + ∆2

)
. (2.5)

Here RQ = h/(2e)2 ≈ 6.5 kΩ is the resistance quantum for the Cooper pairs and
K(x) is the complete elliptic integral of the first kind. In the case of identical super-
conductors, ∆1 = ∆2 ≡ ∆, one obtains a general expression at any T

EJ =
∆

2

RQ

RT

tanh

(
∆

2kBT

)
. (2.6)

2.2 Experimental techniques

Since the following sections treating the properties of the superconducting single
charge, i.e., single Cooper pair devices involves also experimental data, it is useful
to discuss the particular experimental principles at this point.

2.2.1 Sample fabrication

All the samples used in the experiments of this thesis were fabricated using electron
beam lithography and self-aligning shadow evaporation techniques [43], which is
the most commonly used combination of methods in fabrication of tunnel junctions.
The basic shadow evaporation technique, in which two different evaporation angles
are used with a stencil mask to form a tunnel junction between the tiny overlapping
areas of the evaporated wires, is illustrated in Fig. 2.1.
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FIGURE 2.1 Principle of the self-aligning shadow evaporation technique. The tunnel
junction is formed between the two metallic layers (usually Al) evaporated at different
angles so that they overlap slightly. The tunnelling barrier is formed by oxidising the
first layer before evaporating the second one. As a side effect of the technique there
will be some extra lines, which are not used in measurements.

In fabrication of the aluminium samples the procedure was following: First, for
the e-beam lithography a double layer resist of poly(methyl methacrylate) (PMMA)
and copolymer (P(MMA-MAA)) containing PMMA and methacrylic acid (MAA),
with thicknesses of 300 nm and 400 nm, respectively, was spun on an oxidized sili-
con substrate (see Fig. 2.1). The resists were baked at 160◦C for 45 min (the bottom
layer) and for 60 min (the upper layer). The patterns were drawn using a scanning
electron microscope (SEM; JEOL JSM 840A) after which the sample was immersed
in a mixed (1:2) solution of methyl-iso-butylketon (MIBK) and isopropylic alcohol
for ∼30 s to develop the upper layer of the PMMA resist. The lower layer, P(MMA-
MAA), was developed in a mixture of (1:2) methyl glycol and methanol for ∼8 s
to produce the undercut profile shown in Fig. 2.1. Before evaporation the uncovered
SiO2 surfaces were cleaned in a reactive ion etcher (AXIC BenchMark) for 30 s at 30
mTorr pressure with 50 sccm flow of oxygen and 48 W RF-power.

The evaporation was done in an ultrahigh vacuum (UHV) chamber equipped
with a cryopump (Cryo-Torr High vacuum pump, CTI-Cryogenics) and a liquid-
nitrogen trap, the pressure being 10−8 - 10−9 mbar during the evaporation. The evap-
oration rate for the Al was ∼0.5 nm/s and layer thicknesses were 40 nm and and 60
nm. The tunnelling barrier was formed in situ by oxidising the surface of the first
layer of Al under a steady flow of oxygen with pressure being usually ∼16 mbar for
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three minutes. This produces a 1 - 2 nm thick layer of insulating AlOx, which acts
as a tunnelling barrier. The oxidation parameters were slightly varied from sample
to sample to obtain desired resistances. The process was completed by the lift-off, in
which the sample was immersed in a warmed acetone to remove all the resists and
the extra metal at the top of it, and final cleaning by reactive ion etching, with same
parameters as before, to remove all the remnants of the resist.

In fabrication of the Cooper pair pump measured in Ref. [6] and briefly re-
viewed in chapter 6 the extra ex situ process was included to first pattern the larger
structures; the contact pads, grounded shielding planes and gate lines for RF-signals.
These structures were fabricated using the same method as described above except
that only one angle was needed in evaporation and the material was chosen to be
gold to prevent any possible problems with large superconducting planes and to
ensure good electrical contact to the small Al structures. Also a thin layer of tita-
nium was evaporated under the gold to improve adhesion. After that the sample
itself was fabricated on top of this structure using the regular shadow evaporation
processing with an extra aligning process step.

The self-aligning shadow evaporation method has been successfully applied
for soft metals like Cu, Pb and Al, the last one being the most common material
in single electron devices since it can be operated both in the normal and in the
superconducting state, and especially because it easily forms a relatively stable tun-
nel barrier. However, recent developments in the field of superconducting devices
have raised a new demand for a more suitable material with larger energy gap, ∆.
One candidate for this is niobium (Nb) since its critical temperature is as high as
9.3 K yielding ∼1.5 meV for the gap, which is much higher than the 0.2 meV gap
of aluminium. Yet, it is known to be difficult to apply self alignment technique for
refractory metals like Nb due to a poor film quality usually obtained using it.

This deterioration of the Nb film is manifested as critical temperature Tc and
thus the energy gap ∆ being far below the bulk value [45, 72, 83]. One problem is
the contamination of the Nb film by outgassing from the resists during the evapo-
ration [45, 83]. To overcome this the authors of Refs. [45] and [44] used trilayer re-
sist with bottom layer made of thermostable phenylen-ether-sulfone (PES) polymer,
which has a glass temperature and decomposition temperature much higher than
those of PMMA resist. By fabricating Nb wires with this process they reached Tc of
8.2 K. However, the process itself is more complicated than the conventional PMMA
process. Even more complicated method was developed by authors of Ref. [109]
where they used spin-on glass planarisation technique and several ex situ process
steps to form wiring between vertical Nb/Al/AlOx/Nb-junctions fabricated in situ.
Advantage of this process is the reliability of the insulating layer and the high qual-
ity of the superconducting Nb electrodes. Yet using this process it is difficult to re-
duce the size of the junction from (300× 300) µm2 and thus to increase the charging
energy EC, which is essential for single charge devices.
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Almost all the earlier reports on the fabrication of superconducting single elec-
tron devices using niobium have come to a conclusion that it is not possible to
make high quality Nb-based devices using conventional shadow evaporation tech-
nique with PMMA as a resist. Nevertheless, the Al/Nb/Al SETs used in the experi-
ments in Ref. [7] and in chapter 3, were fabricated with regular shadow evaporation
technique but along a slightly more sophisticated process compared to the sam-
ples made of aluminium. The modifications in fabrication process included slightly
thicker bottom layer of the resist and thicker SiO2 layer at the substrate, to provide
larger undercut, which is essential for the fabrication ensuring the removal of rem-
nants of the resist and therefore, reducing the outgassing during the evaporation.
The outgassing was even more reduced by using a long distance (&40 cm) between
the Nb source and the sample during the evaporation thus reducing temperature of
the evaporated Nb hitting the sample. To be on the safe side couple of extra steps
were also performed, but the effectiveness of them is not very clear. After the etch-
ing and just before the evaporation, the mask was baked below 90◦ for 30 min to get
rid of the possible moisture and to glaze the mask to endure the excessive heating
by the niobium at the evaporation. The aluminum leads were evaporated first to
enable the forming of the tunnelling barrier by oxidation and to provide an extra
protective layer at the top of the resist, while evaporating the niobium. To ensure
the stability and hardness of the evaporated Al layer it was let to cool down for at
least 5 minutes before evaporating Nb.

2.2.2 Measurement setups

All the measurements included in this thesis were done at temperatures below 10
K using two different dilution refrigerators with different measurement setups. The
measurements included in this chapter and in chapter 3 [7] were carried out in a
small dilution refrigerator (Nanoway, PDR50) with the base temperature slightly
below 100 mK. The temperature was usually measured using a resistance bridge
(Picowatt AVS-47) and a carbon resistor, calibrated against the primary Coulomb
blockade thermometer (Nanoway CBT). In measurements of chapter 3, we used
a commercial calibrated Cernox resistor with good thermal anchoring in the very
vicinity of the sample. Current and voltage measurements were done using the
battery powered DL-Instrument’s 1211 current preamplifier and the 1201 low-noise
preamplifier, respectively.

The fridge was placed inside an electrically shielded room (Euroshield) which
provided low external noise level for the measurements. The preamplified signals
were conducted out of the shielded room through the highly efficient low pass filters
(Euroshield) mounted in the wall and fed to the data acquisition card in a computer
(NI PCI-6035E DAQ card). All the measuring wires in the cryostat contained com-
mercial π-filters at room temperature and at 4.2 K. To reduce a heat leak, resistive
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manganin wires were used between the filters. These wires were placed inside a
CuNi tube for electric shielding. In addition, so-called strip filters were mounted
into the lines at the sample stage and in measurements of chapter 3 also at the 1
kelvin plate. These filters were commercial stress gauges (KYOWA KFG-2-350-D1-
23 and KFG-2-120-D1-23) squeezed between two ground planes forming continuous
RC strip line filters [129]. The mounting of the sample was done using ultrasonic
bonding with aluminium wires.

The measurements of the Cooper pair pump were carried out in an S.H.E.
Corporation DRI-420 dilution refrigerator whose minimum temperature is∼10 mK.
Temperature was measured using directly the primary CBT thermometer or the car-
bon resistor calibrated by it. No shielded room was used, but the lower parts of the
cryostat were surrounded by lead over the vacuum jacket in the helium bath for
extra magnetic shielding. Due to the more sensitive measurements and the lack of
shielded room an extra attention was paid to the filtering involved in the wiring.

The fridge has 14 highly filtered lines for DC-signals (Fig. 2.2 (a)). These lines
include low pass filtering at three different temperatures. At room temperature we
used again commercial low pass π-filters (Tusonix 4101, -55 dB at 100 MHz) which
were connected directly at the top of the cryostat. From room temperature down to
600 mK all DC-signals are fed through coaxial cables with Nb as an inner conductor
and stainless steel as the outer one. Between 600 mK and 60 mK plate we have 1.5 m
long pieces of Thermocoax cable which also form the next filtering stage (-200 dB at
20 GHz) [134]. At both ends of Thermocoax cables there are 1 kΩ resistors in series
to improve filtering at low frequencies (100 kHz . f < 1 GHz). The last filtering
stage is at the sample stage at the base temperature. As before, these filters were
continuous RC strip line filters made of commercial stress gauges (KYOWA KFG-
2-350-D1-23). Short wires at the sample stage were made of Cu and were soldered
to a printed circuit board (PCB). This again was ultrasonically bonded to the DC
electrode of the sample with aluminium wires.

DRI-420 refrigerator has also four lines for RF-signals (Fig. 2.2 (a)). At room
temperature we used 400 MHz low pass filters (Mini-circuits SBLP-400) and -6 dB
fixed attenuators (Inmet). These were directly connected to the top of the cryostat
and all other room temperature connections were made by using flexible SUHNER
Sucoflex 104P cables with SMA connectors. From room temperature down to 4.2
K RF-signals are fed through Cu coaxial cables. At low temperatures we use BeCu
coaxial cables, except that between 600 mK and the sample stage we use semirigid
stainless steel coaxial cables for better thermal isolation. As a whole the RF lines
have -33 dB attenuation at low temperatures: -20 dB at 4.2 K, -10 dB at 600 mK and
-3 dB at the sample stage temperature (Inmet fixed attenuators). At the sample stage
MCX connectors are used and all other connectors are of SMA type. The sample is
directly ultrasonically bonded by Al bonding wire to a co-planar transmission line
mounted on the sample stage. When all these lines are connected to the coldest parts
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FIGURE 2.2 (a) Measurement wiring of the S.H.E. DRI-420 dilution refrigerator. (b)
Schematics of the room temperature RF-signal connections. The dotted line shows the
part included in the integrated domestic circuit. The compensation circuit was not
needed in the measurements due to the low crosscoupling in the sample.

of the refrigerator, the base temperature is lifted up to ∼20 mK, as compared to the
∼10 mK base temperature without these lines.

Measurement of current was again done using the DL-Instrument’s 1211 pream-
plifier but all DC-voltage measurements were done by using HMS Electronics model
568 low-noise preamlifiers. Both amplifiers were powered by battery sources only.
Between preamplifier and data acquisition (NI PCI-6036E DAQ card) a domestic
battery powered analog optoisolation was used to avoid ground loops and digital
noise in the measurements.

In Fig. 2.2(b) we show schematics of the gating signal connections used in the
experiment of the Cooper pair pump. For gating we used a HP8656B signal gener-
ator and divided the RF-signal by using an INMET 6014-2 power divider. One of
these signals was fed through a phase shifter while the other went directly into the
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custom made circuit 1 schematically consisting of two bias-Ts and a possibility to
add negative crosscoupling between the two signals to compensate for the undesir-
able capacitive coupling between the gates in the CPP. The circuit also contained a
high quality RF-circuit-board and optoisolated linking to the computer, which could
be used to program all the gains used in bias-Ts, DC-offsets, compensation and as
a main amplification. The control program2 also included a possibility to automate
the measurements.

2.3 Superconducting single island devices

eV

SET =⇒ SSET

2.3.1 Parity effect in a superconducting SET

When all the metallic parts of the single electron transistor are superconducting the
tunnel junctions become Josephson junctions and a new energy scale, Josepson cou-
pling energy, EJ, starts to interplay with the charging energy. However, a more pro-
nounced effects emerge due to the energy gap ∆, opened in superconductor, which
is also the minimum excitation energy of the quasiparticles at zero temperature. If
the number of excess electrons on the island n is odd there is one electron which
cannot be paired and remains as a quasiparticle excitation, which raises the total
energy of the system by ∆. If n is even all electrons can be paired and condensed
into Cooper pairs. Otherwise the Coulomb energy, EC, has the same form as in the
normal state (1.3). This situation is illustrated in Fig. 2.3, where the charging energy
is plotted as a function of gate charge qg and with several different n, taking also the
extra energy of ∆ into account.

1Designed and constructed by Kari Loberg, at the Department of Physics, University of Jyväskylä.
2Made with LabView by Sampo Tuukkanen in his master thesis.
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FIGURE 2.3 LEFT: Charging energy of the superconducting single electron transistor
at V = 0, consisting of a set of parabolas each corresponding to a certain value of n
given by the value of the x coordinate at the minimum. The states with odd n are lifted
due to the minimum excitation energy ∆ of the superconductor. RIGHT: The same plot
in the case ∆ > EC, which yields always the even n as a ground state. EC = e2/2CΣ is
the charging energy of the SET.

On the left hand side of Fig. 2.3 ∆ is smaller than EC and it only changes the
points where different parabolas cross each other and thus the ranges with odd n as
a ground state are narrowing and those with even n are widening. If ∆ > EC as on
the right hand side of the figure, the ground state is always given by even n. This also
affects the Coulomb blockade oscillations in the current through the SET [17, 123],
so that it becomes 2e-periodic in VgCg. This so-called parity effect has been predicted
in [22] and is artistically depicted in figure above. Experimentally it was verified for
the first time in [126], where also a more general condition to observe 2e-periodicity
at any temperature, T , was derived. The minimum free energy of the quasiparticle
excitation at finite temperature is

D(t) = ∆(T = 0)− kBT lnNdg, (2.7)

whereNdg is the order of the degeneracy of the ground state with odd n and one non-
paired electron, i.e., the number of different possibilities to choose the non-paired
electron.

Usually the experimental observation of the 2e-periodicity is not so easy as it
sounds. First, it should be observed only in the supercurrent at zero bias or very
small bias voltages V � ∆. Nevertheless, it is not seen every time it theoreti-
cally should be. This discrepancy has been thought to be due to a high frequency
noise and non-equilibrium quasiparticles at the sample from higher temparatures
via measuring lines. The high frequency noise, which could break Cooper pairs and
induce quasiparticle excitations inside the sample can be avoided by effective filter-
ing at different temperatures along the measuring lines (see previous section). The
non-equilibrium quasiparticles are more difficult to prevent and several methods
have been suggested to reduce their appearance or effects due to them.

One trick is to embed normal metal parts to the biasing lines near the sample
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FIGURE 2.4 LEFT: I-V characteristics of a superconducting SET (SSET) measured at
several different gate voltages Vg. The upper left inset is the blow up from the small
bias voltages showing the supercurrent and the lower right inset shows the ampli-
tudes of the 2e-periodic and e-periodic contributions to the Coulomb blockade mod-
ulation at several different bias voltages. Parity effect is seen only at small voltages
and the large current at high voltages V > 4∆ ≈ 0.9 mV is due to the sequential
tunnelling of electrons. RIGHT: Modulation curves measured at three different bias
voltages showing a clear e-periodicity (V = 1 mV > 4∆/e), 2e-periodicity (V = 70
µV), and combination of these two (V = 0.15 mV).

(At the distance . 5 µm) [80,89]. These would act as localised Fermi seas with plenty
of free single electron states below the gap level ∆. Non-equilibrium quasiparticles
can now ‘drop’ to these states from the top of the gap and get stuck on these so-
called quasiparticle traps. The authors of [11] suggest another method and claim that
2e-periodicity should be seen more reliably if the gap of the island is higher than in
the two electrodes, ∆Island > ∆Electrode. This appears as an extra potential barrier to
the quasiparticles and prevents them from entering the island. An extreme example
of this behaviour was noted already in [48] where the authors observed clear 2e-
periodicity in normal-metal/superconductor/normal-metal -structures.

We have measured several superconducting SETs (SSET) to test whether the
quasiparticle traps help to observe the parity effect or not. Statistical analysis was
not done but the result was clear: parity effect was observed at small voltages in
all of the measured samples with embedded traps and not observed in almost any
of the samples without the traps. The total number of samples measured was over
ten. I-V characteristics measured with several gate voltages Vg are shown on the left
in Fig. 2.4. The upper left inset is the blow up from the small bias regime showing
the supercurrent and its modulation by the gate. The lower right inset shows the
amplitudes of the 2e-periodic and e-periodic contributions to the Coulomb blockade
modulation of the current at the different bias voltages. This clearly shows that the
parity effect is seen at very small voltages, where the current is carried by Cooper
pairs, i.e., by supercurrent. Since the tunnelling of Cooper pairs is elastic (if not
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considering the effect of the electromagnetic environment, which is usually small,
see chapter 4.2.1), it is forbidden at the bias voltages significantly different from zero.
This is seen as a flat region with almost vanishing current in the I-V curves. The
symmetric peaks at V ' ±2∆/e are due to so-called Josephson quasiparticle cycle
(JQP), where a Cooper pair tunnels through one junction and two quasiparticles
through the other. At voltages higher than 4∆/e sequential tunnelling of electrons
becomes possible. This is seen as a steep increase in the current at V = ±4∆/e

and the e-periodic modulation at voltages higher than that proves the current to be
carried by electrons. On the right side of the figure we show the modulation curves
measured at three different bias voltages exhibiting a clear e-periodicity (V = 1 mV
> 4∆/e), 2e-periodicity (V = 70 µV), and a combination of these (V = 0.15 mV).

The simplest Hamiltonian describing the SSET with Josephson coupling reads

H = Hch +HJ. (2.8)

The charging energy part of the Hamiltonian is of the form 〈m|HCh|m〉 = ECh(n =

2m), where ECh(n) is given by Eq. (1.3), and the Josephson part is obtained from
Eq. (2.3), HJ = −

∑
i=1,2EJ,i cos δϕi. The charge states |m〉, are the eigenstates of the

HCh and m = n/2 means the number of the Cooper pairs on the island. The effect
of the Josephson coupling is to remove the degeneracy at the crossing points of the
even n parabolas of the charging energyECh by opening an energy gap proportional
to EJ as in the case of Bloch states. This is illustrated in Fig. 2.5(a) where the energy
of the system is plotted as a function of normalised gate charge with several differ-
ent values of the ratio EJ/EC. The new eigenstates are superpositions of the charge
states |m〉. This is illustrated in Fig. 2.5(b) for the two charge states |m = 0〉 and
|m = 1〉. The eigenstates are now given by the superpositions |Ψ±〉 = α|0〉 ∓ β|1〉, (α
and β real) where − and + correspond to the ground state and the excited state and
α2 + β2 = 1.

If the gate voltage is now adiabatically changed from zero to Vg = 2e/Cg the
probabilities α and β are continuously changing so that one Cooper pair is coher-
ently transferred through the junction in the direction depending whether the sys-
tem is in its ground state or in the first excited state:

|Ψ−,i〉 ≈ |0〉
|Ψ+,i〉 ≈ |1〉

}
⇒
{
|Ψ−,f〉 ≈ |1〉
|Ψ+,f〉 ≈ |0〉

(2.9)

Coherent tunnelling of a Cooper pair is obtained if the operation is done adi-
abatically, i.e., the probability of band crossing, the so-called Landau-Zener (LZ)
tunnelling is negligible [133]. This probability can be written as [38, 94]

PLZ = exp

(
− πE2

J

8~ECq̇

)
≡ exp (−fLZ/f) , (2.10)
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FIGURE 2.5 (a) The eigenenergy of the superconducting SET as a function of nor-
malised gate charge with several different values of the ratio EJ/EC in the ground
state and in the first excited state. Two charge states, |0〉 and |1〉, are included in
the calculation. (b) The eigenstates of the system are given by the superpositions
|Ψ±〉 = α|0〉 ± β|1〉, where α2 + β2 = 1. α2 is plotted as a function of the normalised
gate charge.

where q = VgCg/2e is the normalised gate charge, fLZ is the Landau-Zener frequency
determined from the equation above and f ∝ q̇ is the operating frequency.

2.3.2 Cooper pair box

The same parity effect applies also to the single Cooper pair box (SCB), i.e., a super-
conducting single electron box, so that the number of electrons on the island, n, is
always changed by two as the gate voltage is varied. Thus, it is reasonable to talk
about the number of Cooper pairs on the island, mSCB, instead. This effect can be
experimentally observed using a SET as an electrometer, (see Ch. 1.2.2), to measure
the charge of the SCB island uSCB ≡ mSCB − qSCB. Here qSCB ≡ Cg,SCBVg,SCB/(2e) is
the normalised gate charge. Since current in the SET, ISET, is a function of the charge
of the SCB island one expects to see a sawtooth like structure, when Vg,SCB is varied:
value of uSCB is changed along qSCB until one Cooper pair tunnels onto or out of
the island. This changes uSCB back to the minimum value and the cycle starts over
again, resulting in a sawtooth like behaviour as seen in Fig. 2.6, which shows the
measurement of the SCB using the SSET as an electrometer.

A schematic picture and an SEM image of the measured sample is shown in
Fig. 2.7. The sample consisted of a SCB and a SSET fabricated on the same silicon
chip with islands capacitively coupled. Also the SCB was fabricated in the shape of
an SET. This enabled the characterisation of the circuit by using it as a SSET. When
the biasing lines are shorted, as during the measurement, the circuit forms a SCB.
From the measured sample parameters one can determine that the periodicity of the
sawtooth shown in Fig. 2.6 is 2e-periodic.
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FIGURE 2.6 Charge (potential) of the SCB island as a function of gate voltage applied.
The measurement was done using a SSET as an electrometer.
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FIGURE 2.7 LEFT: A schematic view of the sample consisting of the single Cooper
pair box with the island capacitively connected to the island of the SSET used as an
electrometer. RIGHT: An SEM image of the sample measured. Large metallic planes
at both sides between the SCB and SSET are ground planes, which reduce the direct
crosscoupling of the Vg,SCB to the island of the SSET. Three angle shadow evapora-
tion was used to fabricate also the quasiparticle traps on the biasing lines in situ. The
traps were made of copper, which is seen as slightly brighter areas, as compared to
aluminium. Also an extra ex situ process step was necessary to fabricate the vertical
line extending under the both islands and coupling them capacitively. The line has
an electrical contact to the island of SSET but is galvanically separated from the SCB
island by the evaporated layer of Al2O3.



3 Superconducting Al/Nb/Al SET

3.1 Benefits of using niobium

In most of the cases the undisturbed manipulation of the Cooper pairs is mandatory
for the device to operate properly. Therefore, it is important to have a high suppres-
sion of quasiparticles. This can be obtained by the parity effect, as discussed in the
previous chapter. However, the parity effect furthermore sets the upper limit for the
charging energy (2.7), which usually also needs to be high. This can be a problem
in the case of aluminium and certainly limits the range of useful sample parame-
ters. The larger superconducting gap of niobium would push this limit higher and
also provide a better suppression of the quasiparticle tunnelling, since the condition
(2.7) is well fulfilled and tolerates better any additional sources of energy, e.g., high
frequency noise.

The larger gap also produces a larger Josephson coupling energy EJ in ultra-
small junctions (2.5), which makes it possible to have both the high charging energy
and the Josephson energy, and still have the high enough normal state resistance of
the junctions RT.

3.2 Measurements

The measured samples were superconducting SETs (SSET) with Nb island and Al
electrodes consisting of two Nb/AlOx/Al junctions. Also the single Nb/AlOx/Al
and Al/AlOx/Al junctions as well as all-aluminium SETs were measured as a com-
parison. The samples were fabricated along the recipes explained in Ch. 2.2.1 and
all the measurements were carried out in a small dilution refrigerator (Nanoway,
PDR50) with the base temperature below 100 mK. The measurement setup is ex-
plained in detail in Ch. 2.2.2. The schematics of the measurement and the SEM image
of one of the measured SETs is shown in Fig. 3.1.

3.2.1 Characterisation of the samples

The charging energies,EC = e2/(2CΣ), whereCΣ = 2C+Cg, of the SETs were derived
from the normal state conductance curve measured at 4.2 K with magnetic field of
B ∼ 5 T [54]. Obtained charging energies varied between EC ≈ 34 − 78 µeV. The

29
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C

Cg
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Vg

V

FIGURE 3.1 LEFT: The schematics of the measurement. RIGHT: SEM image of one of
the measured samples. Brighter lines are niobium and darker aluminium.

Josephson coupling energy was obtained from Eq. (2.5) which yielded EJ ≈ 41−123

µeV. Thus, the ratio EJ/EC varied between 0.53 and 3.62.
The critical temperature TNb

c as well as the second critical field of niobium HNb
c,2

were determined from the zero bias conductance of the sample as a function of tem-
perature or magnetic field, respectively. An example of determining TNb

c is shown in
Fig. 3.2, where the sudden transition from the strong temperature dependence de-
termined by the reduction of ∆Nb(T ), to the weaker dependence of Coulomb block-
ade [54], is clearly visible at the critical temperature. The critical temperatures ob-
tained were 7.8, 8.1 and 8.5 K in the three best samples and above 7.5 K in all others.
This is already very close to TNb

c = 9.3 K in bulk Nb and higher than in the earlier
measurements of [44], [45] and [72]. The obtained critical fields were of the order of
HNb

c,2 ≈ 2.5− 4.5 T.
In Fig. 3.3 I-V characteristics and a dI/dV -curve are shown from one of the

samples with EC ∼ 35 µeV and EJ ≈ 92 µeV at temperature below 100 mK. The gap
of width 4(∆Al + ∆Nb)/e is clearly visible and the maximums in the dI/dV -curve
yield ∆Nb ≈ 1.45 meV. Here we have assumed ∆Al ≈ 0.2 meV [33, 61, 72, 126]. The
oscillations seen in the dI/dV -curve near the supercurrent at V = 0 are explained in
the next section.

An interesting observation is also that in every sample the steep raise of quasi-
particle current at the gap voltage |V | = 2(∆Nb + ∆Al) was very smeared, which can
be seen also in Fig. 3.3. This smearing is quite common problem in Nb junctions and
there is no recipe that would produce Nb junctions with very steep rise of quasipar-
ticle current at the gap bias voltage. This feature has been typically associated with
the difficulties in the fabrication of small junctions out off refractory metals that
would degrade the quality of the junction and the material itself. In general, it looks
as if the leak currents associated with the presence of subgap excitations are a con-
stant feature of small Nb junctions. Below we sketch another possible explanation,
which stems from more fundamental issues.

The Pippard coherence length of Al is ξAl
0 ≈ 1.6 µm, which is almost an order

of magnitude larger than that of Nb, ξNb
0 ≈ 0.2 µm. For pure metals, the Ginzburg-
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FIGURE 3.2 An example of deter-
mining the critical temperature, Tc,
in one of the SSETs. Circles are the
measured zero bias conductances ob-
tained from the experimental dI/dV -
curves shown in the inset. The dashed
and the dotted lines are linear fits to
the data below and above Tc, respec-
tively.
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FIGURE 3.3 The I-V characteristics
(solid) and dI/dV -curve (dotted) mea-
sured from one of the SSETs with EC ∼
35 µeV and EJ ≈ 92 µeV.

Landau coherence length ξ(T ) = 0.74ξ0(1 − T/T0)
−1/2 will be then very different

for Al and Nb at any temperature. In the case of thin films (d ≈ 30 − 40 nm) we
can assume that the mean free path ` is limited by surface scattering, therefore ` ≈
d. The Ginzburg-Landau coherence length for dirty films, e.g., thin films, ξ(T ) =

0.855
√
ξ0`(1−T/T0)

−1/2 will then be still much larger in the case of Al. Furthermore,
in real Nb films ` is often significantly shorter than the film thickness, ` ∼ 3 nm [83].

Although the GL equation is strictly valid only close to the critical temperature,
in many situations it gives a good qualitative insight about what happens at low
temperatures too. In our case, at T = 0 K we can see that the GL coherence length
for Nb would be of about 21 nm, which is less than the film thickness, while for
Al it is larger by a factor of ∼10. If one analyses the GL equation in the absence of
magnetic fields [123], with f = ψ/ψ∞ as the reduced order parameter, ξ2(T )∆f +

f − f 3 = 0, we see that for samples with GL coherence length much larger than the
thickness of the sample ξ(T ) � d the order parameter is constant. This means that
for Al films, the superconducting order parameter is almost constant in a transversal
section. In contrast, in Nb films this constraint does not hold. Therefore, the order
parameter can vary across the sample and still satisfy the GL equation. Hence, there
could be regions in the Nb electrode with a depressed or smeared gap. The current
corresponding to tunnelling from/into these regions will appear at a smaller value
of the bias voltage than ∆Al + ∆Nb in one Al/AlOx/Nb junction.

The smearing could also be induced by the so-called depairing effect. This ef-
fect, due to a finite lifetime of quasiparticles near the energy gap ∆, smears the fea-
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tures in the density of states and so also the I-V curves [46]. Niobium is a strong
coupling superconductor, which usually have a high depairing effect and also thin
Nb films are granular which emphasises the effect [47].

3.2.2 Resonant tunnelling of Cooper pairs

In three of the measured samples there exists clear oscillations in the dI/dV -curve
near the supercurrent as seen in Fig. 3.3. These oscillations are due to gate dependent
peaks as seen in the zoomed I-V curves plotted as a function of both the bias voltage
V and the gate voltage Vg in the left hand side of Fig. 3.4. The pattern visible at the
bias voltages below V . 0.9 mV has equal spacing in both V and Vg, and appears
at the onset of the superconductivity on the aluminium leads, while decreasing the
magnetic field. Furthermore, it was verified that the position of the peaks does not
depend on the value of the gap of the aluminum electrodes, which was tested by
applying an external magnetic field.

The pattern is similar to the one observed usually in the case of so-called
Josephson quasiparticle (JQP) cycles, where a Cooper pair tunnels through one junc-
tion and two quasiparticles through another [61], and thus the authors of [44], where
similar pattern was observed, claim it to be due to that. However, the pattern is
not due to JQP cycles since the features of it appear only at much higher voltages,
∆Nb+∆Al+EC ≤ eV ≤ ∆Nb+∆Al+3EC, which, e.g., for the sample of Fig. 3.3, yields
1.72 mV . V . 1.87 mV [33, 101]. To rule out the possibility that these resonances
would be due to the coupling of the Josephson oscillations to the electromagnetic
environment of the sample, we have fabricated Al-only single junctions and SSET’s
with the same design and measured them in the same dilution refrigerator using the
same set-up. The subgap conductances of these samples can be regarded as a spec-
tral analysis of the environment, as seen by the sample. The obtained results showed
that mild resonances do exist but only below 0.15 meV. Above this value (and up to
the quasiparticle threshold voltage) the I-V ’s and the conductances were exactly
flat, for all the samples measured. The strong gate dependency in the position of the
peaks, as seen in Fig. 3.4, also proves them not to appear due to resonances in the
electromagnetic environment.

The phenomena explaining these peaks is resonant tunnelling of Cooper pairs.
If we consider the simplest and the most probable resonant tunnelling event where
one Cooper pair tunnels onto or off the island through left or right junction in
Fig. 3.1, we obtain the constraint

1
2
CΣV ± CgVg ±Q0 − e = 0 (3.1)

for the necessary resonant condition in a symmetric SSET [76]. Here − sign corre-
sponds to tunnelling through the left junction and + through the right one, Q0 is the
charge on the island before the tunnelling event, i.e., Q0 is n × 2e or n × 2e + e de-
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FIGURE 3.4 LEFT: The peaks appearing due to the resonant tunnelling of Cooper pairs
as a function of both V and Vg. The data is measured from the sample with EC ∼ 37
µeV and EJ ≈ 89 µeV while a small magnetic field H ≈ 23 mT . HAl

c was applied.
RIGHT: The same data as a contour plot with background subtracted, showing a clear
diamond shaped pattern.

pending on the parity condition, and n is an integer. This equation yields a diamond
shaped pattern in (V, Vg) plane for the resonances. The resonance tunnelling itself is
not enough to carry a current since it only charges the island with 2e. This excess
charge has to be carried out by another process in the circuit before a next resonant
tunnelling event can take place. This again requires inelastic tunnelling of quasipar-
ticles, whose rate depends strongly on the electromagnetic environment [76, 77].

If we take a closer look at the resonance peaks appearing in the measured data
at V . 0.9 meV and plot them as a contour plot with the background subtracted,
it explicitly demonstrates the diamond shaped pattern of the resonant tunnelling of
Cooper pairs as seen in the right hand side of Fig. 3.4. If we let Q0 in Eq. (3.1) be
either e or 2e, i.e., assume e-periodicity of the structure, the spacing of the measured
pattern in the direction of V yields EC ≈ 34 µeV, which agrees with the value EC ∼
37 µeV estimated earlier for that sample. The e-periodicity of the pattern indicates
the presence of the non-equilibrium quasiparticles in our system.
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3.2.3 q-MQT in superconducting SET

There exists also another interesting feature in the I-V curves; a smooth broader
step in the baseline at around the same bias voltages as the resonance peaks. The
position and the height of this step depend on the applied magnetic field as shown
in Fig. 3.5(a), where the baselines of the I-V curves are plotted in various magnetic
fields ranging from H = 0 to H & HAl

c . The baseline was obtained by simple aver-
aging of the current over all the Vg values at certain bias voltage and over the bias
range comparable to the spacing of resonance peaks. Thus the supercurrent is also
unrealistically smeared in the figure. Figure 3.5(b) shows a more critical compari-
son between the position of this baseline step (peak in the conductance) in various
samples and the gap of aluminium obtained by measuring the magnetic field de-
pendence of a single Al/AlOx/Al junction. In Fig. 3.5(c) the same comparison is
done for the height of the step obtained from the difference between the measured
current and the current obtained with the highest magnetic field (Al in normal state;
∆Al = 0) at the bias voltage in the middle of the plateau (minimum in the conduc-
tance). The figures clearly demonstrate that the step position and the height both
follow the voltage determined by V = 2∆Al/e. Due to variations in the fabrication
process (film thickness and purity) and in the measuring conditions, especially in
the position of the sample inside the magnet, the critical field (in fact, the current in
the magnet to obtain HAl

c ) varied from sample to sample. To overcome these devia-
tions we scaled the current applied to the magnet by the current yielding HAl

c in that
particular sample.

Since the feature of the baseline follows the voltage determined by V = 2∆Al/e,
there has to be a tunnelling mechanism that activates at this bias voltage. Several
processes are known to produce structures in the I-V curve of SSET at bias voltages
below the quasiparticle branch [57,71], but most of them are excluded in this case by
the fact that they leave an excitation on the island. This is forbidden, since at about
V = 2∆Al/e the system cannot provide enough energy to break the Cooper pairs in
Nb (∆Al � ∆Nb). In fact, only two processes are left: the so-called Andreev-Andreev
cycle [57] and the elastic cotunnelling of quasiparticles [20, 21].

The first one can be described as follows: an electron, i.e., electron-like quasi-
particle in fact, is Andreev-reflected as a hole-like quasiparticle through the left junc-
tion, with the creation of a Cooper pair propagating to the right on the island.
Then the same Andreev-like process happens at the right junction, resulting in an
electron-like excitation propagating on the right electrode. The energy threshold for
each of these processes is ∆Al/e, therefore, neglecting the effect of the charging en-
ergy, it follows that the whole AA cycle should become important at about twice the
gap of aluminium.

If this were the case for measured SSETs, it would mean that the Andreev-
like reflection should be visible also in a single junction. To check this, we fabricated
and measured several Al/AlOx/Nb single junctions. For this structure, the theory of
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FIGURE 3.5 (a) Averaged over Vg I-V curves measured at several different magnetic
fields ranging from H = 0 (highest absolute value of current) to H & HAl

c (lowest
absolute value of current). The baseline was obtained by simple averaging over the
resonance peaks. (b) Comparison between the position of this baseline step in various
samples and the gap of aluminium obtained by measuring the magnetic field depen-
dence of a single Al/Al junction. Open circles are the data measured from single Al/Al
junction and other symbols correspond to the data extracted from the I-V curves of
three different samples. The I-V curves shown in (a) correspond to a sample marked
as solid triangles. (c) The gap of the aluminium (circles) and step position (triangle) as
in (b), as well as the height of the step (star) as a function of the magnetic field.

multiple Andreev reflection [32,84,103] and multiple-particle tunneling [75,114] pre-
dict a conductance peak (corresponding to a step in the current) at ∆Al/e for a single
Andreev reflection. In fact, the general structure predicted by these theories is much
more complicated, with peaks at 2∆Al/2ne, 2∆Nb/2ne, and (∆Nb + ∆Al)/(2n + 1)e.
None of these structures have been observed in our single-junctions. However, some
leak currents at various voltages, probably due to other processes that one cannot
yet characterize well, were seen. It was carefully checked that the activation voltage
for these processes does not depend on the gap of Al (by sweeping the temperature
up to the critical temperature for Al), therefore, even if they might contribute to the
background current in the SSET, they cannot account completely for the variation of
the current with the Al gap.

These measurements of the single junctions also rule out the possibility that
the baseline feature would be due to the sequential tunnelling through the subgap
quasiparticle states in Nb, which are the most probable reason for the smearing of
the I-V characteristics as discussed before. If the observed baseline step would be
due to these extra quasiparticle states it should be visible also at the single junction
I-V curves [47] and it should show gate modulation with an amplitude comparable
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FIGURE 3.6 Schematic view of the elastic cotunnelling of an electron-like quasiparti-
cle from the left electrode (below the gap of Al) to the right electrode (above the gap
of Al), via a virtual excitation on the island with energy Eex > ∆Nb. The effective and
the virtual processes are shown by thick arrows. The vertical axis is the energy and
the horizontal is the density of the electron states in the two Al electrodes. Dashed
lines show the Fermi energy of the corresponding electrode or island and the dotted
lines correspond to the Coulomb states in the island due to the charging energy EC.
It is clearly seen that the threshold voltage for the cotunnelling event to happen is
eV = 2∆Al. Since EC � ∆Nb the effect of the charging energy and thus the effect of
the gate voltage is negligible.

to the modulation due to the resonant tunnelling of Cooper pairs. The lack of this
feature in the single junction measurements and the lack of the gate modulation
proves that this is not the case.

The second process (elastic cotunnelling) can explain the properties of the
background feature as will be seen. Elastic cotunnelling means that an electron-
like quasiparticle on the left electrode below the energy gap, i.e., with an energy
ε < EF −∆Al, tunnels onto the island as a virtual excitation. It stays on the island a
time ∝ ~/∆Nb (the charging energy in our case is negligible in comparison with the
gap of Nb) then it tunnels into the right electrode above the energy gap as shown in
Fig. 3.6. The whole process requires an energy 2∆Al as the quasiparticle tunnelling
in the regular Josephson tunnel junction. The theory of the elastic cotunnelling un-
der a Coulomb barrier (that is, for normal-metal SET) has been developed in [20]
and [67], and reviewed at [21].

Under the simplifying assumption that the tunnelling matrix elements are real
and independent of the wave vector k the elastic contribution to the current at zero
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temperature reads1:

Iel =
1

eReff

∞∫
∆Al

dEL

∞∫
∆Al

dER
ELER√

E2
L −∆2

Al

√
E2

R −∆2
Al

T 2
eff(EL, ER)δ(eV − EL − ER), (3.2)

where Reff = RT,1RT,2/RK, RT,1 and RT,2 are the resistances of the two junctions,
and

Teff(EL, ER) = 2π

∞∫
∆Nb

dE
E√

E2 −∆2
Nb

[
1

E1 + E − EL

− 1

E2 − E + ER

]
(3.3)

where E1 and E2 are defined in [20].
One can readily see that the first formula is analog to the quasiparticle tun-

nelling current between two Al superconductors

Iqp =
1

eRT

∞∫
∆Al

dEL

∞∫
∆Al

dER
ELER√

E2
L −∆2

Al

√
E2

R −∆2
Al

δ(eV − EL − ER), (3.4)

with an effective junction resistance RT → Reff and with an energy-dependent nor-
malised tunnelling matrix element Teff , describing the barrier formed by ∆Nb. Usu-
ally it is assumed that |T |2 is energy-independent and is included in the definition
of RT. Also it shows that the elastic current starts at 2∆Al and the corresponding I-V
feature will be step-like with the height proportional to the ∆Al, as in the regular
Josephson tunnel junction. In the limit of charging energy and bias voltages much
smaller then the Nb gap, these equations indicate that Teff is in fact independent
of the energies E1 and E2. Therefore, one expects a gate voltage insensitivity of the
background. All these predicted features agree with the measurements as seen in
Fig. 3.5 for the ∆Al proportionality and in Fig. 3.4 for the gate insensitivity.

In a normal-metal SET the inelastic cotunnelling usually dominates over the
elastic one, which is due to the fact ε � EC, where ε is the spacing of the single
electron states in the metal [18, 20]. Since any excitation with an excess electron in
the island is now exponentially suppressed Iinel ∝ e−D(T )/kBT at low temperatures,
the inelastic cotunnelling (which always leaves the excitation on the island) is sig-
nificantly reduced. Here D(T ) is given by Eq. (2.7) with ∆Nb. Also one might quali-
tatively interprete the lowest excitation energy of the island ∆Nb � EC as a spacing
of the single electron states in the vicinity of the Fermi surface. This indicates the
elastic cotunnelling being the dominant process.

1A better theory should be supplemented with a description of the diffusion of the electron inside
the island as in [20, 21].
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4 Decoherence in circuits of small
Josephson junctions

4.1 Quantum computing

As mentioned already at the very beginning of this thesis, the rapid progress in the
field of microelectronics during the past years and the strong effort to miniaturise
any circuit have pushed the size of the electrical devices down steadily. This has,
among other things, forced the information and computing science to reconsider
its historical connection to classical physics, and expand the insight to include also
quantum mechanics as a part of information theory. This has led to the emergence
of a new field of quantum computing in 1980’s and it has undergone a rapid develop-
ment in 1990’s.

Quantum computing connects the information theory very tightly to its phys-
ical realisation. From that point of view, it is no longer reasonable to talk about ab-
stract information, but rather one has to always take into account the physical sys-
tem the information is coded in. This means that information is part of the system
and the amount of it affects the entropy of the whole system. Furthermore, this also
yields that wasting of information costs energy, which was the key to the answer of
the famous old thermodynamic paradox called Maxwell’s Demon.

4.1.1 Qubit

Classical information is formed of bits, whereas quantum information is formed
of quantum bits, so-called qubits. A classical bit can have a value 0 or 1, which is
determined by a threshold property of a macroscopic system, e.g., voltage below or
above 2.5 V. Thus, a register of n bits can have any of the 2n values between 000 . . . 0

and 111 . . . 1. The qubit is usually presented and stored in a microscopic system, e.g.,
the electron or photon, where some definite and distinguished quantum mechanical
states, {|Ψ〉}i, represent the classical states 0 and 1 and form a basis. For example,
the spin of an electron has the definite states |↓ 〉 ≡ 0 and |↑ 〉 ≡ 1 in magnetic field.

Unlike a classical bit, a qubit can also have any superposition of 0 and 1 as
its value, e.g.,

√
1/2(|0〉 ± |1〉). Nevertheless, this does not mean the same as fuzzy

logic, in which a classical bit is allowed to have any value between 0 and 1, but qubit
contains also the quantum mechanical phase. For example, the state

√
1/2(|0〉+ i|1〉)

39
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is different from the states above. In general the state of the register with n qubits
can be written in the form

|Ψ〉 =
11...1∑

x=00...0

cx|x〉, (4.1)

where cx are complex numbers satisfying the relation
∑

x |cx|2 = 1. Thus the register
can simultaneously contain all the 2n classical states in a superposition.

When measuring the state of the qubit it ‘collapses’, however, to either of the
basis states so that the general state |Ψ〉 = α|0〉+ β|1〉 gives an answer 0 with proba-
bility of |α|2 and 1 with probability |β|2. Anyway, the basis of the qubit does not need
to be fixed during the operations and we can perform measurement of the state as
well using, e.g., the basis of |±〉 =

√
1/2(|0〉 ± |1〉). The same general state as above

reads in this basis |Ψ〉 =
√

1/2[(α + β)|+〉 − (α − β)|−〉], and the result is |+〉 with
probability |α+ β|2/2 and |−〉 with probability |α− β|2/2.

Another important difference between a qubit and a classical bit is that an un-
known state of a quantum bit cannot be fully copied. This principle is a consequence of
the nature of quantum mechanics and was proven by Wootters and Zurek, and by
Dieks in 1982 [42, 132]. It prevents the use of regular classical error correction algo-
rithms in qubits, since they always involve copying of the original bit, and it also
prevents one to get around the principle of destructive measurement.

4.1.2 Entanglement

A general state of the register with n qubits (4.1) naturally contains all the combina-
tions of the single qubit states, e.g., in the register of two qubits a state

√
1/2(|00〉+

|01〉) = |0〉 ⊗
√

1/2(|0〉 + |1〉), but it also contains the states like
√

1/2(|00〉 + |11〉),
which cannot be expressed as a tensor product of the two single qubit states. It
means that neither of the two qubits has a definite state of its own even if the system
of these two qubits has a definite state [26]. This kind of states are called entangled. In
the case of n qubits most of the states are entangled and the true power of quantum
computing is based on the manipulation of the states like this.

The state
√

1/2(|00〉+|11〉) mentioned above is the so-called EPR-state (Einstein-
Podolsky-Rosen) and it has a maximal entanglement between the two qubits. This
state can be used, e.g., to produce superdense coding [26] or quantum teleportation
[24, 26]. In both of these phenomena the EPR-pair is split between the sender and
the receiver so that the entanglement is not disturbed. For example quantum tele-
portation, in which an unknown quantum state is transferred far away, is achieved
now by only sending two bits of classical data, e.g., by phone. Yet, this does not
violate the rule of denied copying.



4.1. QUANTUM COMPUTING 41

4.1.3 Gates and quantum parallelism

Classic computing is done using elementary logical gates. The output of a classic
logical gate is usually one bit, whereas more than one input bit is often needed,
e.g., in the AND-gate {(2 bits7→1 bit) : (11) → 1; (01), (10), (00) → 0}. The output
can also include more than one bit, but almost all the time the number of input bits
is larger than of output bits. Thus, this computing is irreversible and energy is lost
during computation since every gate operation reduces the number of bits and so
the total amount of information in the system is reduced. In quantum computing it
is essential to preserve all the quantum mechanical properties of the state such as
entanglement. Thus, the gates used in quantum computing are unitary transforma-
tions, which reversibly operate to the state vectors without losing any information.
This also makes it possible to use tiny systems in computing, since there is almost
no energy lost during the computation that would easily heat the small structures.

There are only three ‘Basis’ gates needed to form any gate in quantum com-
puting. The usual choice for this basis consists of the phase shift gate:

Φ(ϕ) =

(
1 0

0 eiϕ

)
, (4.2)

which can change the phase of the state, e.g., Φ(ϕ)(α|0〉 + β|1〉) = α|0〉 + βeiϕ|1〉.
Another gate needed is the Hadamard gate

H =
1√
2

(
1 1

1 −1

)
, (4.3)

which can be used in creation of superposition states needed as an initial state in
many computation algorithms, e.g., 23/2H1H2H3|000〉 = |000〉 + |001〉 + |010〉 + · · · +
|110〉 + |111〉. Both these gates are single qubit gates operating on one qubit. In ad-
dition, to form a full basis one needs a two gubit gate C-NOT (Controlled NOT)

C =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 : C|y〉|x〉 = |y ⊕ x〉|x〉, (4.4)

where |x〉 and |y〉 are any states of kind α|0〉 + β|1〉, and y ⊕ x means, in the case of
classic logical states, that y is flipped if x = 1.

As mentioned above the register of qubits can simultaneously contain all the
possible classical combinations as one superposition. Using this kind of a state as
an initial state of the computation procedure one can simultaneously obtain the re-
sults corresponding to all the initial conditions by single computation. This is called
a massive quantum parallelism. Nevertheless, making use of it is not as simple as it
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sounds. Even the resulting state obtained by the parallel calculation contains all the
answers corresponding to the different initial conditions, the measurement of this fi-
nal state gives out only one result, which is chosen along the probability distribution
determined by the multipliers in the superposition. Thus, to track out all the results
and their probabilities one has to repeat the calculation at least as many times as
there are different initial conditions and usually much more. This same amount of
calculation would have been needed in solving the problem using classical compu-
tation and hence all the advantages of quantum parallelism have been lost. There-
fore, it is essential to develop good computation algorithms, specially designed for
the quantum computing, which can make use of all the advantages of quantum par-
allelism. The most famous quantum algorithms are encryption and cryptography
algorithms [26, 120], the searching algorithm of Grover [70] and the Shor’s factori-
sation algorithm that can be used to quickly decode the encryption methods used
nowadays [118].

4.1.4 Realisation and decoherence

In principle, any quantum mechanical system, which can exist in any superposition
of two basis states, can serve as a qubit. However, in realisation of such a device one
has to take into account also the requirement that the system needs to be decoupled
from the rest of the universe. That is the only way to preserve all the quantum me-
chanical information in the system. Any coupling, e.g., measurement, to the outside
world would induce a growing entanglement between the system states and the
states of the outside world. This process means that at the end the system does not
have a state of its own, and the quantum coherence has been shared with the outside
world, which makes the system behave as a classical statistical mixture instead of a
pure quantum mechanical state with a definite phase.

This process is called decoherence and the stronger the coupling to the outside
world is, the faster it is. This is why everyday physical systems behave classically
[136]. In any macroscopic object the contact to the outside world is so strong that
decoherence happens in a time scale too fast to perceive and we observe only clas-
sical behaviour of the system. We can also think that the outside world is constantly
measuring the system and thus the wave vector of the (sub)system ‘collapses’. The
decoherence is one of the biggest problems in realisation of solid state qubits.

4.1.5 Squbit

The most obvious representation of a qubit would be any spin-1/2 particle, e.g.,
an electron, or a photon with two different polarisations. These options have been
widely studied and in some experiments the qubit, which can be manipulated with
lasers, has been successfully constructed using atoms or ions [25, 49, 50]. Also the
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photon excitations in a microwave cavity have operated as a qubit and the entan-
glement between two qubits of this kind has been experimentally demonstrated
[73, 127].

The major disadvantage of the qubits above is that scalability is very ques-
tionable. It would be extremely difficult to increase the number of connected or
interacting qubits in any of these systems. Thus, the suggestions to use supercon-
ducting nanostructures as a qubit, to be called squbit in what follows [14, 30, 31, 95,
96, 108, 116, 117], have gained lots of interest due to their relatively easy scalabil-
ity and expandability to structures involving several squbits or even squbit net-
works. There have been several experiments in which the operation of a squbit
has been successfully demonstrated in practice, with promisingly long decoherence
times [4, 15, 28, 35, 36, 52] potentially allowing quantum manipulations and applica-
tion of specially developed error correction codes [35, 59, 102, 128, 131].

The principle of the squbit is based on the possible superposition of the charge
states in the CPB [96] or in the arrays of Josephson junctions [14] (charge squbit), or
on the superposition of supercurrents flowing in two different directions in SQUIDS
(Superconducting quantum interference device) [108] (flux squbit). The simplest squ-
bit is the CPB where the basis states can be chosen to be |0〉 and |1〉, with zero or
one Cooper pairs on the island, respectively. As explained in Ch. 2.3, the Josephson
coupling induces the new eigenstates of the system, which are superpositions of
these charge states as shown in Fig. 2.5. The CPB can now be operated as a squbit
by using only the ground state and the gate voltage to manipulate the multipliers in
the superposition state.

4.2 Decoherence in superconducting nanostructures

4.2.1 ‘P(E)’-Theory

As described in the previous chapter decoherence is the most limiting phenomenon
in realising a squbit, and it arises due to a coupling to the outside world. In case of
Josephson junctions one of the major sources of decoherence is the electromagnetic
environment in the vicinity of the sample. In most cases it is strongly coupled to
the system under study and can have a significant effect on the behaviour of the
circuit [1, 53, 77]. Fortunately, it is a controllable source of decoherence, unlike, e.g.,
random motion of background charges near the sample.

There exists a well developed theory of the electromagnetic environment and
how it affects the tunnelling in small tunnel junctions [1, 69, 77, 125]. Here only the
results for a superconducting Josephson junction are presented. The environment
is modelled as an infinite number of harmonic LC-oscillators, which can represent
an arbitrary environment as explained in [34]. The dissipation in the system under
study arises from the coupling of the degrees of freedom, i.e.,Q and ϕ, to the degrees



44 4. DECOHERENCE IN CIRCUITS OF SMALL JOSEPHSON JUNCTIONS

of freedom of the environment. Here Q is the charge of the junction and ϕ is the
Josephson phase across it. The Hamiltonian describing this coupling can be written
in the form

Henv =
Q̃2

2C
+
∞∑

n=1

[
q2
n

2Cn

+

(
~
e

)2
1

2Ln

(ϕ̃− ϕn)2

]
, (4.5)

where ϕ̃(t) = ϕ(t) − (2e/~)V t and Q̃ = Q − CV are the fluctuations around the
mean values determined by the bias voltage V (2.2). The symbols with subscript n
correspond to the environmental LC-modes with frequencies ωn = 1/

√
LnCn. These

modes are bilinearly coupled to the phase of the tunnel junction.

To calculate the supercurrent using (4.5) with environment taken into account,
one has to treat the Josephson coupling (2.1) as a perturbation and use the golden
rule to obtain probability rates for forward (

→
Γ) and backward (

←
Γ) tunnelling. These

rates can then be written in the form [77]

�
Γ (V ) =

π

2~
E2

JP (±2eV ), (4.6)

where the Gaussian like function P (E) describes the probability of the system to
emit (absorb) energy E ≥ 0 (E < 0) to the environment during the tunnelling, thus
making the tunnelling inelastic. The P (E) function depends on the properties of the
environment and can be calculated as a Fourier transformation

P (E) =
1

2π~

∞∫
−∞

exp

[
J(t) +

i

~
Et

]
dt (4.7)

of the so called phase-phase correlation function

J(t) = 〈[ϕ̃(t)− ϕ̃(0)] ϕ̃(0)〉, (4.8)

which again can be calculated from the impedance of the electromagnetic environ-
ment Z(ω). The total impedance seen by the pure tunnelling element of the junction
is the impedance of the environment parallel to the capacitance C of the junction:

Zt(ω) = [iωC + Z−1(ω)]−1 (4.9)

as illustrated in Fig. 4.1. The final form for the J(t) can be obtained using the fluctuation-
dissipation theorem [86]

J(t) = 2

∞∫
0

ReZt(ω)

ωRQ

{
coth

(
~ω

2kBT

)
[cos(ωt)− 1]− i sin(ωt)

}
dω. (4.10)

Since the sequential tunnelling events are uncorrelated the supercurrent can



4.2. DECOHERENCE IN SUPERCONDUCTING NANOSTRUCTURES 45

Z (w)

V

R CT

Z (w)t

V

RT

Z (w)

V

RT

C

FIGURE 4.1 Description of the total external impedance seen by the pure tunnelling
element of the Josephson junction. The total impedance is of the form Zt(ω) =
[iωC + Z−1(ω)]−1

be calculated as a difference between the opposite tunnelling rates, which yields

IS = 2e
[→
Γ (V )−

←
Γ (V )

]
=
πeE2

J

~
[P (2eV )− P (−2eV )] . (4.11)

The P (E) obeys the so-called detailed balance relation P (−E) = P (E) exp[−E/(kBT )],
which indicates that at the low temperatures P (E) is peaked around a positive E
near zero. Thus, (4.11) represents the two antisymmetric peaks around the zero volt-
age, with the property I(V = 0) = 0. This is the usual shape of the supercurrent ob-
served in experiments (see, e.g., Fig. 2.4). The smaller the environment impedance
Z(ω) is, the sharper the peaks are, and more closer to zero bias they are located. On
the limit of high environment Z(ω) � RQ the peaks are broad and centered around
the bias corresponding to the charging energy V = ±EC/e.

4.2.2 Decoherence due to electromagnetic environment

In small Josephson junctions the decoherence is closely related to dephasing, which
means that the initially well defined Josephson phase ϕ across the junction becomes
more and more arbitrary. This process is best characterised by the quantity 〈[ϕ(t) −
ϕ(0)]2〉 = 〈(∆ϕ)2〉, the deviation of the phase fluctuations from their value at t = 0.
In charge squbits the phase needs to be fixed and thus the bias voltage has to be
zero. Due to that, ϕ̃ = ϕ − (2e/~)V t = ϕ and the phase-phase correlation function
J(t) relates directly the Josephson phases at different times. This connection can
now be used to relate the quantity 〈(∆ϕ)2〉 to the electromagnetic environment [4].
Using 〈ϕ(t)2〉 = 〈ϕ(0)2〉, which is a consequence of the stationarity of equilibrium
correlation functions, one can write

〈∆ϕ2〉 = 〈ϕ(t)2〉 − 〈ϕ(0)ϕ(t)〉 − 〈ϕ(t)ϕ(0)〉+ 〈ϕ(0)2〉
= −〈ϕ(0)[ϕ(t)− ϕ(0)]〉 − 〈[ϕ(t)− ϕ(0)]ϕ(0)〉. (4.12)
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Now using the fact that ϕ(t) is hermitian one obtains

〈(∆ϕ)2〉 = −2ReJ(t), (4.13)

which directly relates the dephasing to the electromagnetic environment via phase-
phase correlation function J(t). One can also show that the decoherence rate is re-
lated to the same quantity [5]. To simplify the calculations, we do this only in the
case of a CPB and with the basis of {|n〉} = {|0〉, |1〉}.

First, we have to split the Hamiltonian (4.5) to the energy of the pure envi-
ronment Henv =

∑
j ~ωj(b

†
jbj + 1/2) and to the Hamiltonian, Hint, describing the

interaction between the junction and its environment. Here b†j and bj are the creation
and annihilation operators of the bosonic environmental modes j with energy ~ωj ,
respectively. The total Hamiltonian reads now

H = Hch +HJ +Henv +Hint, (4.14)

and the total wavefunction Ψ is a tensor product of the charge state |n〉 and the state
of the environment |~k〉: Ψ = |n〉 ⊗ |~k〉, where n is the number of Cooper pairs in
the island and ~k = (k1, k2, · · · ) is the configuration of environmental modes with
occupation numbers kj . We can now write the density matrix ρ~k in the given basis as

ρ
~k =: ρ⊗ |~k〉 = ΨΨ† ⊗ |~k〉 =

(
a1

a2

)
(a∗1a

∗
2)⊗ |~k〉

=

(
|a1|2 a1a

∗
2

a2a
∗
1 |a2|2

)
⊗ |~k〉 :=

(
ρ

~k
11 ρ

~k
12

ρ
~k
21 ρ

~k
22

)
. (4.15)

In the density matrix the nondiagonal elements are directly related to the coherence
of the state. If these so-called coherence elements are of the form aia

∗
j as shown in

(4.15) the state is a pure quantum mechanical state. On the contrary if these elements
vanish the density matrix has to be presented as a sum of different states and it
represents a classical statistical mixture. Thus the effect of decoherence is to reduce
these elements until they vanish.

Now the Hamiltonian describing the interaction between the CPB and the en-
vironment can be written in this basis as [34]

Hint = −i
√
π
∑

j

~ωj

√
Zj

RQ

 (
bj − b†j

)
0

0 −
(
bj − b†j

)  , (4.16)

where Zj is the impedance of the mode j. In the interaction picture one can write:
H = H0 +V , where H0 = HCh +HJ +Henv and V = Hint [37]. In this picture the state
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vectors are given by ΨI(t) = eiH0t/~Ψ(t) and

VI(t)=eiH0t/~V e−iH0t/~

=−i
√
π
∑

j

~ωj

√
Zj

RQ

(
eiH0t/~bje

−iH0t/~ − eiH0t/~b†je
−iH0t/~

)(1 0

0 −1

)

=−i
√
π
∑

j

~ωj

√
Zj

RQ

(
e

i
∑
k

b†kbkωkt
bje
−i

∑
k

b†kbkωkt
− e

i
∑
k

b†kbkωkt
b†je
−i

∑
k

b†kbkωkt
)(

1 0

0 −1

)

=−i
√
π
∑

j

~ωj

√
Zj

RQ

 (
bje
−iωjt − b†je

iωjt
)

0

0 −
(
bje
−iωjt − b†je

iωjt
)  .

In the last step the commutation rule [bi, b
†
j] = δij was used. The equation of motion

for ρ~k
I := ρ

~k (for simplicity) is given by the Liouville equation:

i~
dρ

~k(t)

dt
=
[
VI, ρ

~k(t)
]
. (4.17)

For the commutator [VI(t), ρ
~k(t)] we obtain

[VI(t), ρ
~k(t)] = −2i

√
π
∑

j

~ωj

√
Zj

RQ

(
bje
−iωjt − b†je

iωjt
)( 0 ρ

~k
12

−ρ~k
21 0

)
,

which yields the differential equation for the coherence matrix elements ρ~k
12(t) =

ρ
~k∗
21(t)

i~
dρ

~k
12(t)

dt
= −2i

√
π
∑

j

~ωj

√
Zj

RQ

(
bje
−iωjt − b†je

iωjt
)
ρ

~k
12(t).

By integrating the differential equation from t = 0 to t we obtain

ρ
~k
12(t)

ρ
~k
12(0)

=
∏

j

exp

{
−2i

√
π

√
Zj

RQ

[
bj
(
1− e−iωjt

)
+ b†j

(
1− eiωjt

)]}
.

Next we have to trace out the environmental configurations ~k. This can be done
using the relation

∑
~k ρ

~k
ij = ρij and applying the Glauber formula for non-zero tem-

perature [66]:

〈
exp

[
γ
(
νb+ ν∗b†

)]〉
= exp

[
−1

2
|ν|2 coth

(
~ω

2kBT

)
γ2

]
. (4.18)
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e e

FIGURE 4.2 Schematic illustration of an N -junction array with purely resistive elec-
tromagnetic environment.

This yields

ρ12(t)

ρ12(0)
=
∏

j

exp

[
2πZj

RQ

coth

(
~ω

2kBT

)(
1− e−iωjt

) (
1− eiωjt

)]
.

As a last step we can get rid of the discreteness of the environmental modes ωj

using
∑

j f(ωj)Zj =
∫∞

0
dω
ω
f(ω)ReZ(ω) [91]. Then

ρ12(t)

ρ12(0)
= exp

−4

∞∫
0

dω

ω

ReZ(ω)

RQ

coth

(
~ω

2kBT

)
[cos(ωt)− 1]

 , (4.19)

whereby we finally arrive at

ρ12(t)

ρ12(0)
= exp [−2ReJ(t)] . (4.20)

Thus as a consequence of coupling to the electromagnetic environment the coher-
ence elements decay exactly at the same rate as in dephasing.

Using the method above the decoherence time can be calculated for any circuit
with any kind of electromagnetic impedance. To keep the calculations more trans-
parent only the case of an array ofN superconducting tunnel junctions is considered
here as an example, but it is straightforward to generalise the method also to other
circuits with an arbitrary environment, Z(ω). The array is also assumed to be ho-
mogeneous, C1 = C2 = · · · = CN ≡ C, and the electromagnetic environment to be
purely resistive Z(ω) = Re as shown in Fig. 4.2. With these assumptions we obtain
using Eq. (4.9), for the total resistance seen by the array Zt(ω) = Re/(1+ iωτ), where
τ = ReC/N . The real part of this can be written in a form

ReZt(ω) =
Re

1 + ω2τ 2
. (4.21)

Inserting this into Eq. (4.10) and using the result for J(t) when ReZt(ω) assumes the
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Lorentzian form of Eq. (4.21) [39,68] we obtain an expression for 〈(∆ϕ)2〉. In the limit
of zero temperature (T → 0) we immediately get for t� τ [4]

〈
(∆ϕ)2〉 = 4

Re

RQ

[ ln(t/τ) + γ] , (4.22)

where γ ' 0.57721 is Euler’s constant. In the case of non-zero temperature only the
long time (πkBTt/~ � 1) limit is relevant in most cases, except in the case of very
large Re. The long time expansion yields

〈
(∆ϕ)2〉 ' 4

Re

RQ

[
πkBT

~
t− ln

(
2πkBTτ

~

)
+ γ

]
, (4.23)

which is valid only at non-zero temperatures and therefore Eq. (4.22) cannot be re-
covered from Eq. (4.23) in the limit of T → 0. At a realistic measurement tempera-
ture, e.g. T = 50 mK, the result is valid in the range t � 50 ps, which is the region
region of interest usually.

If we define the dephasing time τϕ as the value of t for which 〈(∆ϕ)2〉 = (π/2)2,
we obtain

τϕ = τ exp

(
π2

16

RQ

Re

− γ

)
, (T = 0) (4.24)

and

τϕ '
π

16

~
kBT

RQ

Re

, (T > 0). (4.25)

For an array with N = 3 and C = 10−15 F, and for the environment of the
order of the free space impedance Re = Z0 ≈ 377 Ω we obtain τϕ ≈ 2.7 ns at zero
temperature. A resistance of the environment of Re = 100 Ω, yields τϕ ≈ 1 h. With
the same parameters at T = 50 mK the decoherence is very fast: τϕ ≈ 0.51 ns and
τϕ ≈ 1.9 ns for Re = Z0 and Re = 100 Ω, respectively [4]1.

Figure 4.3 shows the dependence of τϕ on the resistance of the environment,Re,
for a homogeneous three junction array at several different temperatures. Also the
zero temperature limit (solid line) corresponding to Eq. (4.24), is shown. It forms an
envelope curve for the finite temperature curves calculated from Eq. (4.23). It is also
seen that only in the limit of low environmental resistance, Re ≤ 1 Ω, one can obtain
long enough decoherence times τϕ > 1 µs at realistic measurement temperatures.

1ERRATUM: In [4] there is a minor quantitative error throughout the paper. In all equations there
(especially in Eq. (1)) the resistance quantum Re = h/e2 should be replaced by RQ = h/(2e)2 corre-
sponding to the charge of a Cooper pair and thus to the real Josephson phase. This yields an extra
factor of four to the final results in there. Nevertheless, this does not affect the physical picture or
the conclusions of the paper. This extra factor of four is taken into account in every result introduced
here and also in the corrected Fig. 4.3.
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FIGURE 4.3 Dephasing time, τϕ, for a three junction array as a function of the series
resistance Re of the electromagnetic environment. The array is assumed to be homo-
geneous with junction capacitances of 1.0 fF. The zero temperature curve forms an
envelope of the curves corresponding to non-zero temperatures. The curves in the
case of non-zero temperature are obtained using Eq. (4.23), and they are shown only
over their range of validity.

This indicates that any normal metal part in the circuit would most probable induce
extremely rapid decoherence. An efficient and maybe the only way to avoid rapid
decoherence is to use all superconducting (closed) circuits as suggested, e.g., in [55].



5 Cooper pair pump

The Cooper pair pump (CPP) consists of three or more mesoscopic Josephson junc-
tions in series with gate voltages capacitively coupled to each of the islands in be-
tween. It is in focus due to the many studies carried out concerning the parametric
pumping of charge, an idea originally introduced by Thouless in 1982 [122]. This
phenomenon is based on the ability of a propagating potential well to carry a charge
q through a system. This again makes controlled pumping possible, by periodically
changing the system parameters at a frequency f to induce propagation of charge
during every cycle. This yields a DC-current I = qf through the system.

The parametric pumping of charge can be obtained in many different kinds
of devices, but most of the attention has been directed towards systems where the
charge q passed through during each cycle is quantised at a certain number of
electrons, q = ne, where n is an integer. This can be realised, e.g., by semicon-
ductor quantum dots by varying the height of the tunnelling barriers [85] or by
one-dimensional ballistic channels in a so-called SAW-pump, where the transport
is induced by a surface acoustoelectric wave (SAW) [115, 121]. The most promis-
ing candidate so far is the so-called single electron pump consisting of an array
of three or more mesoscopic metallic tunnel junctions in the Coulomb blockade
regime [81, 82, 111]. Due to the Coulomb blockade the number of electrons in the
islands of the array is very accurate and the pumping can be induced by phase-
shifted gate voltages, yielding a current I = nef . Here f is the frequency of the RF-
signal applied to the gates and the integer number n depends on the amplitude of
the operating trajectory in the gate variables. These devices are more accurate than
those based on semiconductors and they are able to provide high precision, even
sufficient for metrological applications [81, 82]. Due to its high accuracy the single
electron pump has been proposed to close the metrological triangle by providing
the standard for electrical current [74, 81, 82, 92].

The only drawback in the single electron pump is the low operating frequency
f . 5 MHz, which cannot provide high enough current for metrological applica-
tions. At higher frequencies the accuracy is lost due to coherent higher order charge
transfer processes known as (in)elastic co-tunneling [18, 20, 63] and other sources of
error discussed in [19], [58], [78] and [97]. The maximum operating frequency could
possibly be pushed higher by using a Cooper pair pump (CPP). The pumping in the
CPP is achieved similarly by the gate voltages and the charge is quantised at dis-
crete numbers of Cooper pairs in the islands yielding a current I = n2ef . Due to the
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coherent nature of Cooper pair tunnelling the operating frequency is now limited
by the Landau-Zener (LZ) transitions [133], which yields several 100 MHz for the
upper limit of the operation frequency, depending on the parameters of the device.
For the same reason the CPP is also subject to intensive cotunnelling, which reduces
the accuracy significantly in short arrays [2, 3]. To increase the accuracy one should
use longer arrays or suppress the cotunnelling by other means [135, 104].

The CPP is of some interest also because it has been proposed that two capaci-
tively coupled Josephson junction arrays similar to the CPP could form a squbit and
also that the CPP could be used to transport information in a more complicated de-
vice [14]. When operated in a suitable electromagnetic environment the CPP could
also provide a method to directly measure the decoherence time [5, 55] as will be
explained later.

5.1 Model and Hamiltonian

The CPP is characterised by several energy scales. The ratio between the typical
Josephson coupling energy and the charging energy, EJ/EC, is a major parameter
in determining the behaviour of the device. To be able to obtain pumping of single
charges, we have to restrict ourselves to the limit EJ � EC, where the dynamics
are mainly determined by discrete tunnelling of charge carriers, i.e., Cooper pairs.
In addition, the charging energy has to be larger than the thermal energy kBT to
prevent thermal excitations, but smaller than the superconducting gap ∆ to prevent
quasiparticle poisoning. This yields the usual chain of inequalities kBT < EJ �
EC < ∆.

FIGURE 5.1 A superconducting array of three Josephson junctions (CPP). Here Ck and
EJ,k are the capacitance and the Josephson energy of the kth junction, respectively, and
Cg,i and Vg,i are the gate capacitance and the externally controlled gate voltage of the
ith island.

Including only Josephson and charging energies and neglecting quasiparticle
tunnelling as well as other degrees of freedom the Hamiltonian of the system obtains
the form of Eq. (2.8) as in the case of the SSET [2,64]. The charging Hamiltonian HCh
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can be calculated classically by treating all the junctions as capacitances as illustrated
for the three junction CPP in Fig. 5.2 [64, 88, 111]. To include also the work done by
the external voltage source due to the charge redistribution in the array, we have to
include a load capacitance CL in the calculations. The Lagrangian of the symmetric
three junction CPP can now be easily written as the sum of the charging energies of
all the capacitances (5.1). To clarify the congruity between the classical Lagrangian
mechanics, the notation V = ~/(2e)ϕ̇ (2.2) is used to represent the voltage drop
across the junction.

L =
C

2

~2

(2e)2

(
ϕ̇2

a + ϕ̇2
b + ϕ̇2

c

)
+
Cg

2

~2

(2e)2

(
ϕ̇2

g,1 + ϕ̇2
g,2

)
+
CL

2

~2

(2e)2
ϕ̇2, (5.1)

where the indices are from Fig. 5.2 and the voltages are related by the Kirchhoff’s
rules:

ϕ̇a + ϕ̇b + ϕ̇c + ϕ̇ = 0

ϕ̇g,1 + ϕ̇a + (2e/~)Vg,1 = 0

ϕ̇g,2 + ϕ̇a + ϕ̇b + (2e/~)Vg,2 = 0

reducing the number of free parameters to three.

L

a

a

b c

0 1 2 3

FIGURE 5.2 Classical schematics used in the calculation of the charging energy of the
three junction Cooper pair pump. For clarity some of the most obvious variables are
not shown in the figure.

The conjugate variable ofϕx is kx, the number of Cooper pairs tunnelled through
the junction (x is a,b or c), obeying the commutation relation [ϕ, k] = i. Since we are
interested in the limit EC � EJ the phases of the single junctions ϕx are undeter-
mined due to large quantum fluctuations. Due to the constantly flowing supercur-
rent kx is not well defined either and thus it is not a good quantum number. Instead,
the excess charges on the islands are good quantum numbers and their conjugate
variables are ‘phases of the islands’ ϕ1 and ϕ2. In addition, we must include the third
free parameter which is the phase across the whole array ϕ = ϕ1 + ϕ2 + ϕ3. Even
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though the phases of the invidual junctions are undetermined, the total phase ϕ is
constant of motion and thus fixed. We also determine the phases ϕ3 and ϕ0 (see
Fig. 5.2) and the zero of the potential is chosen so that ϕ̇0 ≡ 0. The new variables can
easily be expressed using the old ones through Kirchhoff’s rules above:

ϕ̇a = −ϕ̇1 ϕ̇ = ϕ̇3

ϕ̇b = ϕ̇1 − ϕ̇2 ϕ̇g,1 = ϕ̇1 − (2e/~)Vg,1

ϕ̇c = ϕ̇2 − ϕ̇ ϕ̇g,2 = ϕ̇2 − (2e/~)Vg,2.

Inserting these new variables into Eq. (5.1) we can write the Lagrangian in the matrix
form:

L =
1

2

~2

(2e)2
ϕ̇iCijϕ̇j −

~
2e
Jiϕ̇i, (i, j = 1, 2, 3) (5.2)

where we have, for clarity, not written the sums explicitly out but the existence of
the same index twice means summing over it. Symbol Cij is the capacitance matrix
defined as

Cij ≡ C

 αg −1 0

−1 αg −1

0 −1 αL

 and Ji ≡

 Qg,1

Qg,2

0

 . (5.3)

Here αg :=2 + Cg/C, αL :=1 + CL/C and Qg,i :=CgVg,i. Now the canonical momenta
can be calculated using the definition

Pi =
∂L
∂ ~

2e
ϕ̇i

=
~
2e
Cijϕ̇i − Ji ⇒ ϕ̇i =

2e

~
C−1

ij (Pi + Ji), (5.4)

which yields

P1 = − ~
2e
Cϕ̇a +

~
2e
Cϕ̇b + CgVg,1 = Q1

P2 = − ~
2e
Cϕ̇b +

~
2e
Cϕ̇c + CgVg,2 = Q2 (5.5)

P3 = − ~
2e
Cϕ̇c +

~
2e
CLϕ̇ = −Qc +QL := Q

The Hamiltonian describing the charging effects can now be calculated from
the Lagrangian

HCh =
~
2e
ϕ̇iPi − L

=
~
2e
ϕ̇iPi −

1

2

~2

(2e)2
ϕ̇iCijϕ̇j +

~
2e
Jiϕ̇i

= 1
2
PiC

−1
ij Pj + JiC

−1
ij Pj, (5.6)
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where we have used the right hand side of Eq. (5.4). Since usually Cg � C one can
approximate αg ≈ 2. Now, by inserting all the variables into Eq. (5.6) and keeping
track only of the terms depending on Q1 or Q2, we obtain the charging part of the
Hamiltonian

HCh =
EC

3− 2/αL

[(
2− 1

αL

)
u2

1 + 2u2
2 + 2u1u2 − 2u1

q

αL

− 4u2
q

αL

]
, (5.7)

where ui = ni − qi, ni = Qi/(2e), qi = −Qg,i/(2e), q = Q/(2e) and EC = (2e)2/(2C) is
the unit of charging energy. The integer ni is the number of Cooper pairs on the ith
island. As mentioned before some constant terms are omitted or added for clarity.

To get rid of the load capacitance CL and to describe the Cooper pair pump
with a bias voltage V supplied, one has to consider the limit: CL → ∞. This yields
immediately QL → ∞ and αL → ∞. Nevertheless, the last two terms in Eq. (5.7)
obtain a finite form:

Q

αLC
=
QL −Q3

C + CL

CL→∞−−−−−−−−→
QL→∞

QL

CL

= V.

Thus, in this limit we may write

HCh = EC
8

3

[
u2

1 + u2
2 + u1u2 −

CV

2e
(u1 + 2u2)

]
− p2eV. (5.8)

Here we have added the necessary term −p2eV, which takes into account the fact
that a Cooper pair can eventually tunnel through the whole array and the voltage
source has to carry it back to the initial side of the array to retain the equilibrium.
Integer p is the number of Cooper pairs tunnelled through the system as mentioned
already in Ch. 1. At zero bias, V = 0, Eq. (5.8) yields a honeycomb like stability
diagram shown in Fig. 5.3(a) [2, 6, 64]. Inside each hexagon the system is stable and
there is one charge state |n1n2〉, i.e., the eigenstate of the charging Hamiltonian, HCh,
as a ground state. At the edges of the hexagons and at the triple nodes, two or three
charge states are degenerate, respectively.

The other part of the total Hamiltonian (2.8) the Josephson (tunnelling) Hamil-
tonian is given by

HJ = −
3∑

k=1

EJ,k cos(ϕk) (5.9)

= −
3∑

~n,k=1

EJ,k

2
(|~n+ ~δk〉〈~n|eiϕ/3 + H.c. ),

where EJ,k and ϕk are the Josephson coupling energy and the phase difference
across the kth junction, respectively. The tunnelling vector ~δk describes the change
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FIGURE 5.3 (a) Stability diagram of the CPP at zero bias V = 0 on the plane deter-
mined by the normalised gate charges qi = Vg,iCg,i/2e. The stable configuration inside
each of the hexagons is shown by the kets |n1n2〉. (b) Zoomed view of one of the triple
nodes. The dotted lines correspond to V = 0. Solid and dashed lines show the reso-
nance condition for Cooper pair tunnelling and cotunnelling in the presence of bias
voltage CV/2e = 0.1.

of ~n = (n1, n2) due to tunnelling of one Cooper pair through the kth junction. Each
tunnelling in the ’forward’ direction is thus associated with a phase factor eiϕ/3.
The Josephson coupling induces new eigenstates and an energy gap will open as
explained in the case of the SSET in Ch. 2.3.1 [2, 94]. This model Hamiltonian is
described in detail in [3], [12] and [13].

Tunnelling events in CPP take place as a coherent tunnelling of a Cooper pair,
in which the system travels adiabatically from the initial charge state to the final
charge state along the eigenstate of the full Hamiltonian of Eq. (2.8) (see Ch. 2.3.1).
Thus a Cooper pair is tunnelled when the resonance in (q1, q2) plane is passed [17,
33]. Here the resonance means that the initial and the final charge state have the
same energy. These resonances for the coherent Cooper pair tunnelling are shown
as dotted and solid lines in Fig. 5.3(b) at V = 0 and V > 0, respectively. Similar
resonances for the second order process, cotunnelling of a Cooper pair, are shown
by dashed lines at V > 0. With zero bias these resonances and the first order reso-
nances (Coherent tunnelling) overlap. Cotunneling of Cooper pairs (see, e.g., [93])
means the coherent tunnelling through two junctions simultaneously which is qual-
itatively similar to cotunnelling in normal state [18, 20, 63] or cotunnelling of quasi-
particles in SSET explained in Ch. 3.2.3. This means that when passing the resonance
at V = 0, e.g., between the states |00〉 and |10〉 the Cooper pair has some probabil-
ity to tunnel in from the ‘right’ via the virtual state |01〉 involving two tunnelling
events, instead of tunnelling through the ‘left’ junction. These cotunnelling events
lead to the quantum inaccuracy of Cooper pair pumping, as will be shown in the
next section.
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5.2 Pumped current

Pumping of Cooper pairs at V = 0 is achieved by adiabatically varying the gate
voltages along the path encircling one of the triple nodes. This is achieved, e.g., in
the case of three junction pump by the sinusoidal signals fed to the gates with 90◦

phase difference producing a circular path around the node as shown in Fig. 5.4(a),
or by the pulses shown in Fig. 5.4(b) which produce a triangular path.

q

q

1

i

q
2

1

1

0

0

t

(a) (b)

FIGURE 5.4 (a) The states with minimum charging energy of the uniform N = 3
pump on the (q1, q2) plane. The small schematic figures illustrate the stable charge
configuration inside each hexagon. Two different pumping paths are shown by thick
arrows. A circular path is produced by two sinusoidal gate voltages with 90 degree
phase difference, and the triangular path by the gating sequence shown in (b).

The current pumped through an array ofN junctions when circling around the
pumping path can be calculated using the adiabatic approximation of quantum me-
chanics. The basis of instantaneous eigenstates {|m(t)〉} with eigenenergies {Em(t)}
of the full Hamiltonian (2.8) for a given ~q(t) = (q1, q2, . . .), is introduced for each
instant of time t. If the state of the system is |m(t0)〉 at time t0 we can calculate the
state at t0 + δt using the time-dependent Schrödinger equation with the initial con-
dition |ψ(t0)〉 = |m(t0)〉. Assuming slowly varying gate voltages we may solve the
equation and obtain

|ψ(t0 + δt)〉 = e−iEm(t0)δt/~|m(t0)〉

+
∑
l 6=m

e−iEl(t0)δt/~ − e−iEm(t0)δt/~

i(El(t0)− Em(t0))/~
〈l(t0)|~∇~qm(t0)〉 · (∂~q/∂t)|l(t0)〉

:= |m(t0 + δt)〉+ |δm(δt)〉, (5.10)

where the term |~∇~qm(t0)〉 · (∂~q/∂t) is the directional derivative of the state |m(t0)〉
with respect to the change in gate charges ~q. The amount of charge passed through
the kth junction, δQk, during a short time interval δt, can now be calculated by inte-
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grating the expectation value of the supercurrent operator

IS,k = −eEJ,k

~
∑

~n

(
−i|~n+ ~δk〉〈~n|eiϕ/N + H.c.

)
(5.11)

over time δt, which yields

δQk =

∫ t0+δt

t0

〈ψ(t)|IS,k|ψ(t)〉dt

= δt〈IS,k〉|m(t0)〉 + 2Re

[∫ t0+δt

t0

〈m(t)|IS,k|δm(t− t0)〉dt
]

(5.12)

= δt〈IS,k〉|m(t0)〉 − 2~
∑
l 6=m

Im

[
〈m|IS,k|l〉〈l|δm〉

El − Em

]

where |δm〉 is the change in the instantaneous eigenstate induced by the change
~q(t0) → ~q(t0 + δt). We have neglected the term quadratic in |δm〉 and oscillatory
terms by assuming small variation δ~q and that δt� ~/(El − Em) holds for all l.

For a closed paths the total transferred charge must be equal for all the junc-
tions due to the conservation of charge. Thus it is convenient to define also the (av-
erage) supercurrent operator IS by

IS =
1

N

N∑
j=1

IS,j =
(−2e)

~
∂H

∂ϕ
. (5.13)

The second equality follows from the ϕ-independence ofHCh and the relation
∑

k ϕk

= ϕ. The common expectation value of IS and IS,k in a stationary state |m〉 is given
by (−2e/~)∂Em/∂ϕ where Em is the corresponding eigenenergy. Using IS we can
express the total charge transferred through the array during one cycle along the
closed path

Q

−2e
=

Qs

−2e
+

QP

−2e
=

1

~

∫ τ

0

∂Em(t)

∂φ
dt− 2~

−2e

∮ ∑
l 6=m

Im

[
〈m|IS|l〉〈l|dm〉
El − Em

]
, (5.14)

where τ is the duration of the cycle.
The obtained adiabatic evolution of the eigenstates splits the transferred charge

into two parts: the pumped charge QP and the charge QS carried by the constantly
flowing supercurrent IS. The latter one of these can be calculated as the ϕ-derivative
of the dynamical phase ηm = −

∫ t

0
(Em(τ)/~)dτ in the state |m〉, QS/2e = −∂ηm/∂ϕ,

while the pumped charge is related to the ϕ-derivative of Berry’s phase [27] as will
be shown later.

For the three junction pump the pumped charge along the circular path shown
in Fig. 5.4(a), can be calculated analytically in the lowest order in EJ/EC considering
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the six charge states |00〉, |10〉, |01〉, |11〉, |1 -1〉 and | -11〉 using Eq. (5.14). This yields

QP

2e
= 1− 6

(
1

3
√

2 δ
+

1

2− 3
√

2 δ
+

1
3√
5
δ

+
1

1− 3√
5
δ

)
EJ

EC

, (5.15)

where δ ≡ [(q1 − 1/3)2 + (q2 − 1/3)2]
1/2 is the radius of the trajectory. This result of

smallEJ/EC and the numerical calculations with several values ofEJ/EC are shown
in Fig. 5.5.

(a) (b)

FIGURE 5.5 Numerical results of quantum inaccuracy of a uniform 3-pump for dif-
ferent values of EJ/EC. The sudden drops in (a) are due to the increasing number of
nodes caught inside the trajectory as it widens. The analytical result of Eq. (5.15), ex-
act in the limit of small EJ/EC, is shown by a solid line in (b) and it overlaps with the
curve of EJ/EC = 0.001.

In case of longer arrays the harmonic gate signals are not applicable and one
has to use pulses similar to the triangular gating shown in Fig. 5.4(b). By using this
gate trajectory and perturbation theory in EJ a general result for N junction pump
in the limit of small EJ/EC can be calculated yielding

QP

2e
= 1− NN−1(N − 1)

(N − 2)!

(
EJ

8EC

)N−2

cosϕ . (5.16)

The results of Eqs. (5.15) and (5.16) for N = 3 almost coincide for the optimum
radius of δ ' 0.3.

From the results above it is clear that the quantum inaccuracy in pumping is
very significant: For three junction pump it is more than 20 % at EJ/EC = 0.03, (see
Eq. (5.15)) which value ofEJ/EC is already very small. The accurate coherent pump-
ing is thus practically impossible in the N = 3 pumps. Increasing the number of
the junctions helps according to Eq. (5.16). It is physically clear that this conclusion
should remain qualitatively valid also for non-uniform arrays, which are analysed
in detail in [3]. Also the effects arising from other non-idealities are discussed in
there.



60 5. COOPER PAIR PUMP

5.3 Measurement of the decoherence time

Although the quantum inaccuracy in Cooper pair pumping prevents or at least lim-
its the precise pumping of Cooper pairs, it can be used as a way to measure the de-
coherence time in the CPP. This is a very timely motivated topic since the obtained
results should be valid also for other circuits, e.g., squbits.

Because the quantity we want to measure is the inaccuracy of the pumping,
it is reasonable to use the three junction CPP, since it has the largest deviation in
the pumped current. The principle of using the CPP to measure the decoherence
time is simple and explained in following. To produce a measurable current one has
to repeat the pumping cycle fast enough with frequency f . Ideally this yields the
DC-current of I = 2ef , but as explained the pumped charge per cycle QP < 2e and
thus the current does not yield the accurate result. From Eq. (5.16) we obtain for the
pumped current in the three junction CPP

I

2ef
' 1− 9

EJ

EC

cos(ϕ). (5.17)

Yet, if the gates are operated slowly enough 1/f � τϕ or the integration time
of the measurement τm is too long, τm � τϕ, the cos(ϕ) term tends to average to
〈cos(ϕ)〉 ∼= 0 during one cycle or during the measurement, and the pumping be-
comes accurate. However, to be able to measure a current and not to destroy the
coherent superposition one has to measure the expectation value of the pumped
current which means averaging over a large number of pumping cycles, τm � 1/f .
Thus the result of Eq. (5.17) can be realised only if the following inequalities hold:
1/f � τm < τϕ. Another fundamental limit comes from the Landau-Zener band
crossing, which sets an upper limit for the operation frequency fLZ, which is typi-
cally around 100 MHz (2.10).

Based on these limitations we expect the following dependence of the pump
performance at different frequencies (Fig. 5.6). Here we have chosen the product
τmf � 1 to be fixed.

1. τm > τϕ:

I/2ef ' 1 because
pumping is adiabatic
but the phase is undeter-
mined during each cycle
( 〈cos(ϕ)〉 = 0 ).

2. τ−1
ϕ < τ−1

m � f ≤ fLZ :

I/2ef'1−9EJ/EC cos(ϕ),
pumping is adiabatic and
coherent. The phase ϕ
will still drift on a time
scale longer than τϕ.
(Shaded area in Fig. 5.6)

3. f � τ−1
m > fLZ :

I/2ef decays because the
condition for no band
crossing is lost and charge
transport does not follow
the gating sequence adia-
batically.

Since τϕ is presently expected to fall in the range τϕ & 0.1 µs [35,128], in a care-
fully designed experiment, we would have τ−1

ϕ < 50 MHz, yielding a clear separa-
tion of the three pumping regimes. In particular, if the decoherence time of a squbit
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FIGURE 5.6 A schematic presentation of the expected behaviour of the pumped cur-
rent in the three junction Cooper pair pump as a function of inverse of the measuring
time 1/τm. The product of the pumping frequency f and the measuring time is sup-
posed to be fixed τmf � 1. The shaded area covers the different values of the phase
difference ϕ across the array.

and thus also τϕ turns out to be of the order of 1 µs [4], which would allow quantum
computation by Josephson qubits in this respect, τ−1

ϕ would give an experimentally
convenient crossover frequency in the MHz range.

5.4 Berry’s phase and its relation to pumped current

In 1984 Berry pointed out that if the system undergoes an adiabatic change, i.e., the
system parameters ~p = {pi}i in its Hamiltonian H(~pi) are adiabatically altered, the
eigenstate |ψ〉 attains a geometrical phase factor exp[iγ(Γ)], in addition to the regular
dynamic phase [27]. This phase, γ, is called Berry’s phase and it depends on the
path Γ in the parameter space along which the system has traversed. Particularly, if
the parameters are returned to their original values the eigenstate will return to its
original form apart from the phase factor. This phase cannot be directly measured
except via interference between another state, e.g., a similar state which has been
stationary from the beginning of the process. The dynamical phase obtained along
the adiabatic change depends on the path and the duration of the process whereas
Berry’s phase depends only on the path chosen. It has also been proposed that a
squbit could be constructed using Berry’s phase instead of charge or flux [52].

To derive a general formula for the Berry’s phase attained during traversing
the path Γ, the basis consisting of the eigenvectors |m(~p )〉 with energies Em(~p ) is
introduced so that H(~p )|m(~p )〉 = Em(~p )|m(~p )〉. Now we make an ansatz for the
eigenstate at the time t

|ψ(t)〉 = e
iγm(t)− i

~

t∫
0

Em(~p (t′))dt′

|m (~p (t))〉 (5.18)
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and insert that into the time dependent Schrödinger equation, which immediately
yields

dγm(t)

dt
= i

〈
m(~p (t))

∣∣∣∣ ddt
∣∣∣∣m(~p (t))

〉
, (5.19)

whereby

γm(t) = i

∫ t

0

〈
m(~p (t′))

∣∣∣∣ ddt′
∣∣∣∣m(~p (t′))

〉
dt′

= i

∫ ~p (t)

~p (0)

〈
m(~p )

∣∣∣~∇~p

∣∣∣m(~p )
〉
d~p

=: i

∫ ~p (t)

~p (0)

〈m|dm〉, (5.20)

where |dm〉 is given by Eq. (5.10). This equation is naturally a general form of Berry’s
phase in any system with eigenvectors |m〉. The notation we use is similar to the one
used in derivation of the pumped current to clarify the relation between them. In
the case of the CPP {pi}i=1,...,N = {qi, ϕ}i=1,...,N−1. For a closed path Γ : t 7→ ~p (t) with
t ∈ [0, τ ] and ~p (0) = ~p (τ), the last integral and thus Berry’s phase seem to vanish.
However, the integrand is not necessarily a total derivative, especially if the path
encircles a node in the parameter space, e.g., the triple node in the stability diagram
of the CPP, which yields

γm(Γ) = i

∮
Γ

〈m|dm〉 6= 0. (5.21)

Using Stokes theorem and the methods of differential geometry it can be shown
that Berry’s phase for a closed path Γ can be calculated by integrating Berry’s curva-
ture over a two-surface [5, 100, 119]

γm(Γ) = i

N∑
k=1

N∑
l=1

∫∫
SΓ

∂〈m|
∂qk

∂|m〉
∂ql

dqk ∧ dql, (5.22)

where the boundary of SΓ is the path Γ. 1 To show how the pumped current in the
CPP is related to Berry’s phase we construct an extended path for which Berry’s
phase is proportional to the charge pumped along the path Γ. To do that a class
of closed paths {Γφ} has to be defined as Γφ : t 7→ ~p (t) = (~q (t), ϕ(t) + φ), where
t ∈ [0, τ ], so that Γ0 = Γ, and also another class of paths {φ~p} is defined according
to φ~p : t 7→ (~q, ϕ + tφ), where t ∈ [0, 1]. The inverse of a path φ−1

~p is the same path
traversed in the opposite direction. The extended path

Γφ
ext := Γ0 ◦ φ~p (0) ◦ Γ−1

φ ◦ φ−1
~p (0) (5.23)

1It suffices to state that dx ∧ dy = −dy ∧ dx is a generalisation of two-dimensional integral onto
curved manifolds and that for a flat surface it reduces to the conventional dxdy.
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is also closed and spans a two-dimensional integration surface whose width in ϕ-
direction is φ as shown in Fig. 5.7(b). By traversing the boundary the contributions
from φ~p (0) and φ−1

~p (0) naturally cancel, and we find

γ(Γφ
ext) = γ(Γ)− γ(Γφ). (5.24)

The pumped charge along the path Γ is given by Eq. (5.14) and can also be
written as [13]

QP

−2e
= 2

∮
Γ

Re
[
〈m|M̂ |dm〉

]
,

= i
N∑

k=1

∮
Γ

[
∂〈m|
∂ϕ

∂|m〉
∂qk

− ∂〈m|
∂qk

∂|m〉
∂ϕ

]
dqk, (5.25)

where M̂ = −i∂/∂ϕ is the operator for the average number of tunnelled Cooper
pairs. This closely reminds the formulas (5.22) and (5.21) on Berry’s phase.

Considering the extended path Γφ
ext in the limit φ → 0, i.e., in the case of a

strip of infinitesimal width dϕ between Γdϕ and Γ0, one can express Berry’s phase
attained, γm(Γdϕ

ext), using Eq. (5.22). Now in Eq. (5.22) either dqk = dϕ or dql = dϕ

as the full length of integration. Thus dϕ can be factored out from the expression
yielding the result of Eq. (5.25) multiplied by −dϕ. The same result can be written
using Eq. (5.24) and by taking the limit limφ→0[γ(Γ)− γ(Γφ)]/φ, one obtains [5]

QP/2e = ∂γm/∂ϕ (5.26)

similarly to
QS/2e = ∂ηm/∂ϕ . (5.27)

Let us consider a closed path Γ corresponding to a fixed value of ϕ0 as in
Ref. [2]. Under ideal operation of gate and bias voltages one can change ϕ slightly
between each cycle to evenly cover a strip in the parameter space {pi}i=1,...,N =

{qi, ϕ}i=1,...,N−1 bounded by the planes ϕ = ϕ0 and ϕ = ϕ0+φ as shown in Fig. 5.7(d).
On the other hand by integrating Eq. (5.26) with respect to ϕ over the set {Γφ}, the
average pumped charge QP,ave can be defined as

QP,ave =
1

φ

∫ φ

0

QP(Γϕ)dϕ =
γ(Γ0)− γ(Γφ)

φ
. (5.28)

Combining these two results one obtains an important result for an ideal CPP: the
measured pumped charge per cycle (i.e. QP,ave) yields direct information about dif-
ferences of Berry’s phases.

In a real experiment neither the phase difference, ϕ, nor the gate voltages are
ideally controlled. Yet, it has to be assumed that the gate voltages are operated ac-
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FIGURE 5.7 (a) A projection of path Γ in the (q1, q2)-plane. (b) A strip of finite width
φ based on the path Γ. (c) The fluctuations of ϕ on a single pumping cycle, `. (d)
Ideal operation of gate voltages produces a strip bounded by the planes ϕ = ϕ0 and
ϕ = ϕ0 + φ. The same result is obtained approximately after many cycles ` shown in
(c) with restricted, stochastic fluctuations of ϕ.

curately enough, so that the projections onto (q1, q2) plane (see Fig. 5.7(a)) nearly
coincide during every cycle. Instead, the stochastic fluctuations of ϕ can be taken
approximately into account, since they are effectively restricted to a finite range
[ϕ1, ϕ2] 3 ϕ0 during time intervals shorter than the decoherence time, τϕ [4]. For
times larger than τϕ the fluctuations mount up too large and the phase coherence
of the system is lost. If sufficiently many (identical) cycles of gate voltages are per-
formed during this time, the fluctuations of ϕ yield a relatively thick mesh of trajec-
tories within the strip. Although the ’weights’ of different values of ϕ are uneven,
the mesh can be approximated by a uniform distribution within a subset of the
range [ϕ1, ϕ2]. This corresponds to a well-defined strip of the ideal case presented
in Fig. 5.7(d). A cycle `, with exaggerated fluctuations in ϕ, is shown in Fig. 5.7(c).
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5.5 Turnstile kind of behaviour

As everything in the last section was derived at zero bias, in this section the effects
due to non-zero bias voltage applied to the system are considered. Since the res-
onances of coherent tunnelling and cotunnelling separate at non-zero bias voltage
V as explained in Ch. 5.1, each degeneracy node in stability diagram is split into
a triangle determined by the first order tunnelling resonances, as shown by solid
lines in Fig. 5.3(b) [29, 64]. Inside the triangles the state of the CPP depends on the
path along which the system has reached the point, thus opening the possibility for
hysteretic behavior leading to a turnstile kind of operation.

The operation of the three junction pump as a turnstile is achieved by travers-
ing back and forth along a path in (q1, q2) plane with the constraint q1 = q2 + k2e,
exiting the triangle at both extremes as pictured in Fig. 5.8(a). Here k is any integer
number. The simplest way to describe the behaviour is to assume that at every res-
onance, the system is driven to the state with lower energy. This simple reasoning
alone is enough to explain the turnstile kind of behaviour: within every traversal of
the path one Cooper pair is transferred through the array in the direction of the bias
voltage.

To explain this principle of operation in more detail one has to take into ac-
count the dissipation in the system. The adiabatic passing through the degeneracy
line of charging energy HCh will induce the coherent tunnelling of a Cooper pair as
explained in Ch. 2.3.1 and the limit for the adiabaticity is determined by Eq. (2.10)
with q =

√
q2
1 + q2

2 . In the absence of dissipation the probability for band crossing
is equal in both directions, i.e., to excite or relax the system, but with dissipation
the symmetry breaks. The probability to excite the system retains the same ampli-
tude, PLZ, but the probability for relaxation PRel = 1 − PLZ + P 2

LZ is significantly
increased, and reaches almost unity in the case of strong coupling to a dissipative
element [10, 94]. Thus, to really obtain the hysteretic behavior one needs dissipa-
tion in the system. This can be provided, e.g., by the electromagnetic environment
or quasiparticles, which both can absorb any amount of energy dissipated from the
system.

The energy diagram of the CPP along the path, [t 7→ (q1, q2) : q1(t) = q2(t)+k2e]

crossing the triangle as shown in Fig. 5.8(a) is plotted in Fig. 5.8(b). To be able to
properly explain the behaviour we have to include in our notation the number of
Cooper pairs tunnelled through the array: instead of |n1n2〉 we write |n1n2, p〉. If
the system is initially in the state |00, 0〉 and we start to increase both gates, i.e.,
to move from left to right along the x-axis in Fig. 5.8(b), we come to the point of
resonance for tunnelling through two junctions simultaneously, i.e., cotunnelling, to
the state |01, 0〉. In the case of cotunnelling the total coupling for one Cooper pair
to tunnel through two junctions, Eco

J , depends on the EJ of the junctions and the
energy of the intermediate virtual state. This resonance condition is indicated by a
dashed line in Fig. 5.8(a) and the cotunnelling is now assumed to take place. When
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FIGURE 5.8 (a) The path [t 7→ (q1, q2) : q1(t) = q2(t) + k2e], where k is an integer,
used in the turnstile measurements (dotted line). It is centered at (1/3, 1/3) the de-
generacy node of V = 0 and exits the triangle around this node at both extremes. (b)
Energy diagram of the CPP plotted along the path in (a). The solid lines represent the
eigenstates of the system and the dashed lines are energies of the pure charge states
of HCh, which are indicated at right by kets. The arrows show the method of transfer-
ring one Cooper pair per cycle through the CPP in the direction of the bias voltage as
in a turnstile. The dashed arrows correspond to the relaxation into the lower energy
eigenstate at around resonances while the solid arrays indicate coherent tunnelling or
cotunnelling. The thin vertical dotted lines are there to clarify corresponding locations
between (a) and (b). The diagram has been calculated using parameters EJ/EC = 0.2
and CV/2e = 0.16.
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continuing along the path, the system is retained in state |01, 0〉 due to relaxation
at the resonances crossed. When coming back along the same path the system is
driven to the state |00, 1〉 due to a first order resonance, shown by a solid line in
Fig. 5.8(a), yielding coherent tunnelling and kept there by relaxation (see Fig. 5.8(b)).
Then the cycle starts over again with |00, 1〉 as an initial state. Since the situation is
fully asymmetric with respect to bias, the operation carries one Cooper pair per
cycle through the array in the direction of the applied bias voltage V .
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FIGURE 5.9 Evolution of the CPP along the gate path of Fig. 5.8(a). The wavy arrows
numbered as 1 show a couple of examples of possible undesirable inelastic tunnellings
of a Cooper pair (or of two quasiparticles), which is the most significant source of
errors in the cycle of Fig. 5.8(b). However, these are not affecting the final outcome
of the gate cycle unless there happens several of them during one cycle. The thick
solid (straight and wavy) arrows show an example of a cycle with several inelastic
tunnellings happening. The charge transferred in that particular cycle is two Cooper
pairs, i.e., 4e. Striked out wavy arrows numbered as 2 indicate similar inelastic relax-
ations which would instantly induce errors in pumping. These are luckily suppressed
due to the large number of intermediate tunnelling events needed.

The most significant source of errors in the cycle described above is the inelas-
tic tunnelling of Cooper pairs, which is also induced by coupling to a dissipative
environment as described in Ch. 4.2.1 [77]. Examples of possible undesirable inelas-
tic tunnelling events are shown in Fig. 5.9 by wavy arrows numbered as 1. As one
can figure out from the energy diagram, these are not affecting the final outcome
of the gate cycle unless there happens at least two of them during one cycle. This
would induce transfer of two or more Cooper pairs during that particular cycle as in
the example shown by thick solid arrows in Fig. 5.9. Also similar inelastic relaxation
events which would instantly destroy the outcome of the excursion, are indicated.
Fortunately though, these relaxation processes are likely to be largely suppressed
due to the many virtual tunnelling events, i.e., higher order of cotunnelling, needed
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in them. These processes are shown by thin wavy arrows striked out and numbered
as 2. Thus, the system is fairly rigidly ’locked’ to transfer only one Cooper pair per
cycle.



6 Experiments with the Cooper pair
pump

In this chapter experiments on a Cooper pair pump are presented. As all the mea-
surements are explained in detail in Ref. [7], only the major results are reviewed
here. The Cooper pair pump was measured to test the preceding theoretical models
of the pumping and turnstile kind of behaviour. The measured sample was fabri-
cated along the recipe presented in Ch. 2.2.1 and the experimental setup used was
explained already in Ch. 2.2.2. All the measurements were carried out at the base
temperature ∼20 mK. Since room temperature equipment was used in the biasing
circuit, the decoherence rate obtained was supposed to be extremely fast preventing
any possibility to observe coherence induced inaccuracy in the pumping. Neverthe-
less, even the incoherent pumping resulting in the current I = 2ef has not been
reliably observed in a CPP [64, 135].

6.1 Sample characterisation

In Fig. 6.1 I-V characteristics of the sample, taken with different combinations of
gate voltages Vg,1 and Vg,2 are presented. It shows sharp jumps at the beginning of
the quasiparticle tunnelling branches at bias voltage V '±6∆Al/e≈±1.2 mV. Also
all four major peaks in subgap regime corresponding to different possibilities of
JQP -cycles are clearly visible [16, 33, 61, 101]. In the large scale figure (a) the current
around zero bias is not visible but it is seen in the blow up (b). The supercurrent,
i.e., the feature around zero bias, is not present at V = 0 but it is peaked around it,
having the maximum at |V |�EC/e (see Fig. 6.1(b)). The shape of the supercurrent
feature indicates electromagnetic environment Z(ω), with very low impedance of
0<Re[Z(ω)]�RQ (see Ch. 4.2.1). This agrees well with the impedance of the biasing
lines, which is of the order of the vacuum impedance

√
µ0/ε0 ' 377 Ω. Resonance

peaks symmetrically around zero bias at V ≈±80 µV, are also visible in this figure,
and they are due to the effect of the bias voltage on the stability diagram [7]. The
gate modulation is most pronounced at the gap edge as well as in the region of JQP-
peaks and the supercurrent. The obtained sample parameters are presented in Table
6.1.

69
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FIGURE 6.1 (a) I-V characteristics of the measured sample, taken with different com-
binations of gate voltages Vg,1 and Vg,2. (b) The blow up of the I-V curves near zero
bias.

RT ' 34 kΩ Normal state resistance per junction
EJ ≈ 19 µeV Josephson coupling energy
EC ≈ 129 µeV Charging energy e2/2C
∆Al ∼ 200 µeV Energy gap
CT ≈ 0.62 fF Capacitance per junction
Cg ≈ 70 aF Gate capacitances

C1↔2 ∼ 0.16 Cg Crosscoupling

TABLE 6.1 Sample parameters obtained from the measurements [7].

6.2 Gate modulation

To find the correct working point for the pumping and the turnstile operation the
gate dependence of the supercurrent IS(Vg,1, Vg,2) was mapped. This was done by
applying a small bias voltage to maximize IS and measuring the current while pass-
ing systematically all combinations of gate voltages. Since IS = −(2e/~)(∂H/∂ϕ) it
is clear that it should follow the honeycomb like stability diagram of the CPP (see
Fig. 5.3(a)), increasing at every degeneracy line and obtaining maximum value at
the triple nodes. The modulation curve obtained experimentally is presented as a
contour plot in Fig. 6.2. It does not show the expected pure honeycomb like struc-
ture and its period in CgVg,i is e instead of 2e. This indicates the existence of non-
equilibrium quasiparticles in our system. Nevertheless, the observed pattern cannot
be explained by the pure stability diagram of the quasiparticles, i.e., e-periodic hon-
eycomb, either.

The effect of extra quasiparticles tunnelling into and out from the islands is
to change the gate charge by one electron and thus to shift the 2e-periodic stability
diagram half a period (i.e., e-period) in the corresponding direction. Since the shift
due to quasiparticle tunnelling is exactly half of the period of the stability diagram,
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FIGURE 6.2 Supercurrent IS as a function of two gate voltages Vg,1 and Vg,2. The
lighter the color is, the higher is the current. The structure is composed of four dif-
ferent 2e-periodic honeycombs each corresponding to the expected stability diagram
of the CPP. These honeycombs are separated by half a period due to different config-
urations of quasiparticles, which act like discrete variations in the gate charge. Lines
drawn in the figure present each one of these different honeycombs in the case of a
symmetric array and they fit the data exactly, with the gate capacitances Cg,i and the
crosscouplings, C12 and C21, as fitting parameters. A small bias voltage of V ∼ 15
µV was applied during the measurement to sit approximately at the maximum of the
supercurrent.
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two shifts in one direction restores the original honeycomb pattern. This feature
can be seen in the charging Hamiltonian, HCh, i.e., tunnelling of two quasiparticles
through the same junction has the same effect on the charging energy as the tun-
nelling of a Cooper pair. Thus, any quasiparticle configuration (nqp,1, nqp,2) can be
reduced to {ñqp,i = nqp,i mod 2}i=1,2 and it is enough to consider only four differ-
ent honeycombs corresponding to, e.g., quasiparticle distributions (0, 0), (1, 0), (0, 1)

and (1, 1).
Resulting current modulation in (q1, q2) plane when quasiparticles are taken

into account, can be constructed by using the fully stochastic model for quasiparti-
cles where quasiparticle tunnelling is assumed to happen randomly in both time and
direction with certain average time constant. This is the usual assumption in meso-
scopic superconducting devices consisting of Josephson junctions [124]. If the rate of
these tunnelling events is higher than inverse of the measuring time τm (≥ 100 µs in
our case), the current obtained is an average over the four 2e-periodic honeycombs
corresponding to the basic distributions of quasiparticles, and separated by half a
period from each other as explained above.

The measured pattern of Fig. 6.2 indeed composes of four shifted 2e-periodic
honeycombs each corresponding to the stability diagram of the CPP in the absence
of quasiparticles. These four honeycombs separated by half of the 2e-period are il-
lustrated as lines. The lines are fitted to the data with the gate capacitances and
crosscouplings as fitting parameters and they correspond to the symmetric array.
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FIGURE 6.3 Supercurrent IS as a function of two gate voltages Vg,1 and Vg,2 with two
different bias voltages applied: (a) V ' 0 (Adjusted to the maximum of the supercur-
rent) and (b) V ' 64 µV. The lighter the color is, the higher is the current. In (b) the
theoretically calculated resonance conditions for coherent tunnelling of Cooper pairs
are presented as lines. These lines coincide with the pattern of enhanced current in the
experimental data.
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As explained in Ch. 5.1 applying the bias voltage V changes the stability di-
agram so that each degeneracy node is split into a triangle as shown in Fig. 5.3(b).
These triangles are clearly visible at the modulation plane measured at V = 64 µV
and shown in Fig. 6.3(b). Also theoretically calculated degeneracy lines giving the
first order resonance condition for Cooper pair tunnelling, are drawn in the figure.
These lines are calculated using the parameters in Table 6.1. Figure 6.3(a) shows the
same modulation plane but at V = 0. It is clearly visible that the triangles are formed
around the nodes of the structure presented in Figs. 6.3(a) and 5.3(a).

Good agreement between theoretical resonance lines and the experimental
data and also the reduction of the current inside the triangles proves the measured
current to be mainly carried by the supercurrent, IS. Thus, quasiparticles present in
the system are not acting as major carriers of current and the inelastic tunnelling
of Cooper pairs (see Ch. 4.2.1), is also not important, since both these phenomena
should increase the current inside the whole triangle [29]. Using parameters ob-
tained for the sample we can calculate that the triangles around the neighbouring
zero bias nodes start to overlap, forming a new triple node with as high current
as the supercurrent, at V = 83 µV, which is exactly the voltage where the highest
resonance peaks are located in the experimental I-V curve (see Fig. 6.1(b)).

6.3 In-phase experiments

6.3.1 Measurements with a small RF amplitude

To test whether the former line of reasoning for turnstile kind of behaviour holds
the DC gate voltages were frozen to the values corresponding to one of the degen-
eracy nodes and the RF-signal with the frequency of f and the amplitude of 1/6

times the 2e-period was fed to the two gates in-phase, as in Fig. 5.8(a). The full I-V
dependence was measured at different frequencies to find the correct bias voltage,
0 < V < 83 µV, where the applied gate path would be optimum for turnstile kind of
behavior. Some of these measured I-V curves are shown in Fig. 6.4(a).

From the I-V curves we can recognize the resonance point at V ' 80 µV and
the optimum operation point is the minimum between that and zero voltage, i.e.,
around V ' ±50 µV. If we extract the current at V = 50 µV and plot it against f
we obtain the dependence shown in Fig. 6.4(b). The dashed line shows the ideal
I = 2ef dependence which should be obtained if the CPP operates as a turnstile as
explained in Ch. 5.5.

At low f the current increases as I ' 2ef but starts to lack behind at around
25 MHz. This saturation effect is due to the Landau-Zener crossing (2.10) but in ad-
dition, there is also a leak current which depends linearly on f . The existence of this
leak current can be physically justified as the result of the undesirable inelastic tun-
nelling events of Cooper pairs explained in Ch 5.5. If we assume the probability for
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(a) (b)

FIGURE 6.4 (a) The I-V curves measured with DC gate voltages tuned to one of the
degeneracy nodes and in-phase sinusoidal RF signals added to the two gates corre-
sponding to the path shown in Fig. 5.8(a). Amplitude used was 1/6 × 2e-period and
frequencies corresponding to I-V curves from lowest to highest absolute current level
are 0.5, 6, 12, 18, 26, 40 and 60 MHz. (b) Current ∆I ≡ I − I0 extracted from the I-V
curves in (a) at V = 50 µV as a function of the frequency of the RF signals applied
in-phase to the two gates. The solid line is the fit by Eq. (6.1) and values for the fit
parameters are shown in the first line of Table 6.2 with the exception of I0. The inset
shows the same current with the leak current subtracted and the dashed line shows
the ideal 2ef dependence predicted by the theory.

inelastic tunnelling PIT to be independent of frequency, we obtain an approximate
expression for the leak current, Ileak = [2eP 2

IT +O(P 4
IT)]f , which depends linearly on

f . The function which was used to fit the data and is shown in Fig. 6.4(b), is of the
form

I = 2efQP

(
1− e−fLZ/f

)
+ 2efQL + I0, (6.1)

where the fit parameters are fLZ, I0 the offset in current, QP and QL, which are the
charges transferred and leaked during one cycle in units of 2e, respectively. The
analysis of the data was done both at negative and positive bias voltages. We also
repeated the measurement in another node with slightly larger amplitude (1/4× 2e-
period) of RF signal and these results are also shown in Table 6.2.

As seen from Table 6.2, the obtained frequency dependence agrees with the
theoretical prediction of 2ef at low frequencies, i.e., QP ≈ 1. However, the Landau-
Zener frequency obtained, fLZ ∼ 30 MHz, is lower than that estimated ∼ 65 MHz
for cotunnelling. This discrepancy can be explained with the small inhomogeneity
of the sample [6]. For the leaked charge we obtained QL ∼ 0.17, which corresponds
to a 17 % probability for an extra Cooper pair to leak via inelastic tunnelling events
shown in Fig. 5.9, during one cycle.
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Amplitude, bias QP (2e) fLZ (MHz) QL (2e)
A = 2e/6, V > 0 0.985± 0.068 26.2± 4.4 0.127± 0.046
A = 2e/6, V < 0 0.956± 0.080 29.1± 6.5 0.142± 0.068
A = 2e/4, V > 0 0.996± 0.049 35.1± 4.4 0.132± 0.031
A = 2e/4, V < 0 0.976± 0.100 24.7± 5.0 0.229± 0.030
A = 2e/3, V > 0 4.0± 2.3 3.5± 1.8 0.546± 0.029
A = 2e/3, V < 0 3.8± 1.3 4.4± 1.4 0.481± 0.027

TABLE 6.2 Fit parameters using Eq. (6.1) under various experimental conditions. The
current scale was shifted to set I0 to zero.

6.3.2 Energy-minimisation model for quasiparticle tunnelling

The obtained accurate operation in the in-phase measurements is contradicting the
general assumption that quasiparticles are tunnelling fully stochastically, which
should prevent the correct operation of the measurement as long as quasiparticle
tunnelling is happening at the rate faster than the inverse measuring time τ−1

m ≤ (100

µs)−1, which indeed was assumed to explain the result of the DC-modulation mea-
surement in Ch. 6.2.

However, we can also explain these four honeycombs by means of quasiparti-
cle tunnelling and that the system with degrees of freedom evolves via states of the lowest
energy. In case of a biased array, the system can always lower its energy by increas-
ing the number p of Cooper pairs tunneled through it in Eq. (5.8). Thus, it will try to
maximize the current. If we consider the system as a whole including quasiparticles
and assume them to have freedom to move, they will organize themselves to the
configuration providing the highest Cooper pair current. This means that the quasi-
particles do not carry the current themselves, which can be the case due to Coulomb
blockade and the energy gap ∆. The tunnelling of quasiparticles can be justified by
the same means as in the fully stochastic model [124] except now the direction of
the tunnelling events is not stochastic. According to this energy-minimisation model,
the system always changes the quasiparticle configuration to the one corresponding
to the maximum of the supercurrent, while varying the voltages Vg,i in the mea-
surement of the gate modulation thus yielding the same combination of four hon-
eycombs for the measured current, as we would obtain if the quasiparticles tunnel
fully stochastically.

In addition, the relatively accurate behaviour in the in-phase measurements
agrees with the energy-minimisation model: as long as the amplitude of the RF-
signal is small enough that the system stays near one degeneracy node and thus at
the largest possible current given by the different choices of quasiparticle configura-
tions, as is the case in the previous measurements, no quasiparticle tunnelling hap-
pens and the system is locked to a certain configuration yielding accurate operation.
But, as soon as we increase the amplitude too much the quasiparticle configuration
starts to change and thus prevents accurate pumping.
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FIGURE 6.5 (a) Trajectory of the gates, shown by the thick dashed arrow, in the in-
phase measurement using the largest amplitude ∼ 1/3× 2e-period. Thin dotted lines
show the two honeycomb patterns at V = 0 corresponding to quasiparticle configu-
rations (0, 0) and (1, 1). Black circle is the operating point tuned by DC gate voltages.
Solid and dashed lines show the 2e-periodic stability diagrams at V = 50 µV corre-
sponding to quasiparticle configurations (0, 0) and (1, 1). (b) Current at the degeneracy
node as a function of the frequency of the applied in-phase RF signal of ∼ 1/3 × 2e-
period amplitude. The data is taken at the optimum bias voltage V ≈ −50 µV and the
solid line is the fit by Eq. (6.1) with parameters shown on the last row of Table 6.2.

To further test this model the in-phase measurement was carried out using two
times larger amplitude (∼ 1/3× 2e-period) of the in-phase RF signal corresponding
to the trajectory shown in Fig. 6.5(a). The results obtained at V = −50 µV are shown
in the last two lines of Table 6.2 and plotted in Fig. 6.5(b) with a fit by Eq. (6.1). In
the absence of quasiparticle tunnelling and thus with a stable 2e-periodic stability
diagram, one would expect a twice larger QP (QP = 2) than in the data presented,
e.g., in Fig. 6.4(b), since the trajectory of gates crosses two triangles during one cy-
cle. As expected, the measurements did not yield such a slope, but QP ≈ 4 instead,
which can be explained with the energy-minimisation model. As seen in Fig. 6.5(b)
the trajectory already moves over the neighbouring triangle corresponding to a dif-
ferent quasiparticle configuration. Thus the configuration is changed from (0,0) to
(1,1) and back during every cycle. These extra quasiparticles responsible for chang-
ing the configuration are naturally always driven in the direction of the bias voltage
thus yielding extra charge of 2e carried during every cycle. If one takes into account
these two quasiparticles transferred and the three triangles crossed during the cycle,
one corresponding to quasiparticle configuration (1,1) and two to (0,0), as shown in
Fig. 6.5(a), we obtain 8e for the total charge carried per cycle. This explains the pecu-
liar result of effectively four Cooper pairs transferred per cycle in the measurement.
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6.4 Out-of-phase experiments

To complement the turnstile-type of in-phase measurements described in the previ-
ous chapter, the same sample was also measured with 90 degree phase-shifted RF
signals applied to the two gates providing a circular path around the chosen degen-
eracy node. At non-zero bias voltage one should traverse around the whole triangle
to achieve proper pumping. The pumped current was measured at several differ-
ent nodes and with different amplitudes of the out-of-phase RF-signals: 1/9, 1/6,
1/4 and 1/3 times the 2e-period. In Fig. 6.6 some of the I-V curves measured using
the largest of these amplitudes are shown. They exhibit clear frequency dependence
which, in turn, varies with the bias voltage.

The most surprising detail in these I-V curves is that they reproduce the fea-
ture observed in the in-phase measurement, so that the pumped current is always
in the direction of the bias voltage. Thus out-of-phase RF signal increases the bias
driven current no matter what direction we wind around the node, i.e., the cur-
rent does not make a distinction whether the phase difference is +90◦ or −90◦.
This behaviour could be approximately explained by the similar energy minimi-
sation argument as was done to interpret the in-phase measurements: system will
always choose the state corresponding to a lower energy when the resonance is
passed adiabatically. This does not fully explain the observed magnitude of cur-
rent |I| = 2ef when pumping in the direction against the bias voltage [6]. But, it
agrees with a strong cotunnelling in the experiment, which is due to the large ratio
of EJ/EC ≈ 0.15.

Ampl. (2e) V (µV) QP(2e) f0 (MHz)
1/9 −83 0.65± 0.12 48± 16
1/9 83 0.99± 0.20 31.5± 7.0
1/5 −83 0.97± 0.18 26.4± 4.6
1/5 83 0.97± 0.34 26.2± 9.0
1/4 250 → 350 1.00± 0.26 24.0± 7.0
1/4 −350 → −70 0.886± 0.060 29.0± 2.4
1/4 365 1.000± 0.074 22.1± 1.6
1/4 −320 0.934± 0.086 23.1± 2.3
1/4 310 1.05± 0.15 22.9± 3.4
1/3 75 1.91± 0.10 25.1± 1.7
1/3 55 1.986± 0.062 28.2± 1.2
1/3 35 2.130± 0.060 32.4± 1.4
1/3 −75 1.529± 0.094 24.1± 1.9
1/3 305 1.53± 0.10 16.6± 1.1

TABLE 6.3 Results of the data fits of the out-of-phase measurements. Parameters as
in Eq. (6.2).



78 6. EXPERIMENTS WITH THE COOPER PAIR PUMP

FIGURE 6.6 I-V curves measured
at one of the degeneracy nodes with
sinusoidal RF signal added to the
two gates with 90 degree phase dif-
ference. The amplitude of the RF
signal was 1/3 × 2e-period and the
frequencies were 0.1, 0.5, 1, 3, 6, 8,
10, 12, 14, 18, and 22 MHz from
the smallest to the highest absolute
level of the current.

FIGURE 6.7 Current as a function of the
pumping frequency. The radius of the cir-
cular trajectory of gates was 1/4 × 2e-
period. The data have been taken at V =
365 µV and the dashed line corresponds to
∆I = 2ef . Solid lines are fits by Eq. (6.2),
with parameters given in Table 6.3.

As in the in-phase measurements the current was examined at fixed voltages
against the frequency. One example of these plots is shown in Fig. 6.7. The general
behaviour of the current is somewhat similar to that observed in the in-phase mea-
surements. The current increases first approximately linearly but the slope decreases
at around 30 MHz. After that the out-of-phase results differ from the in-phase ones,
since now the behaviour has no general tendency. The only common feature is that
the slope tends to increase again. That is why the fitting of the formula similar to
Eq. (6.1) does not give a satisfactory result. To find the initial slope and an approxi-
mate value of the critical frequency f0 ∼ fLZ for LZ-crossover, we used an empirical
function

I(f) ≡ 2efQP − 2eQ2

(
1− e−f/f0

)
f + I0, (6.2)

which represents an exponential crossover from the initial slope 2eQP to another,
2e(QP − Q2), with the transit frequency f0. Obtained slopes and critical frequencies
from the fits using Eq. (6.2) are shown in Table 6.3.

6.5 Parity effect revisited

The failure to observe pure 2e-periodicity in the DC modulation in Al/Nb/Al SSET
(see Ch. 3) and in the three junction CPP measurement indicates an active presence
of non-equilibrium quasiparticles in the system, as in many other earlier experi-
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ments [62, 64, 90, 135]. In the case of Al/Al/Al SSET and the CPB the quasiparticle
traps included in the biasing lines improved the situation and pure 2e-periodicity
was observed in many samples (see Ch. 2.3.1). Nevertheless, these traps had no ef-
fect in the measurements of the CPP, which could be the case due to the extra middle
junction not connected to any trap directly. Pure 2e-periodicity has been observed
in the similar structure, but with the middle junction much more transparent com-
pared to outer ones, thus turning the configuration towards the SSET [28].

In the experiments with Al/Nb/Al SSET the quasiparticle traps were not in-
cluded since all the extra fabrication steps were removed not to intrude the sensitive
fabrication process of niobium, and since the layout of the device clearly fulfilled the
demand for the robust 2e-periodicity stated in [11]. Obviously these requirements
were not enough and it is not clear that the use of Nb would improve the parity ef-
fect in any device. The reason for the lack of the parity effect in Nb based structures
could be the subgap quasiparticle states, which are, e.g., due to depairing effect or
the granularity of the Nb-film inducing variations in ∆Nb.

If one assumes that there is always some extra undesirable subgap quasiparti-
cle states in the samples, then the tunnelling rate of the quasiparticles, Γ would be
essentially determined by the charging energy and the general golden rule expres-
sion in the limit EC � kBT : Γ ≈ EC/(e

2R∗T) exp(−EC/kBT ), where R∗T = RT/η
2 and

η ' 10−4 is the relative density of quasiparticle states inside the gap [47, 110]. With
parameters corresponding to the sample used in the measurement of the CPP and
with temperature of 30 mK, this yields ∼ 1055 hours for the average time between
the quasiparticle tunnelling, which is infinite in the time scale of the measurements.
Yet, this time depends strongly on the temperature and if the electronic temperature
of the sample would be higher, e.g., 300 mK, which could be the case due to inad-
equate filtering or thermalisation of the measurement lines, the time between the
quasiparticle tunnelling events would be ∼500 ms resulting in e-periodicity in the
measurement. This argument yields the same threshold temperature of∼250 mK for
2e-periodicity as the earlier measurements in [80], [89] and [126], and could explain
why the 2e-periodicity is sometimes seen and sometimes not, even if the sample
parameters would suggest clear parity effect.
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7 Conclusion

In this thesis a quantitative theory of adiabatic Cooper pair transport in one-dimen-
sional arrays of Josephson junctions in an environment with vanishing impedance,
has been developed. The theory predicts, among other things, that the quantum in-
accuracy of the Cooper pair pumping in arrays with a small number of junctions is
very large. The effects due to inhomogeneous arrays or nonideal gating sequences
are also quantitatively treated. The theoretical predictions have been verified by
numerical calculations, but whether the model is realistic enough to give quanti-
tatively, or at least qualitatively, correct results will be ultimately tested in experi-
ments.

A method to quantitatively estimate the decoherence time, τϕ, due to dissi-
pative electromagnetic environment in circuits consisting of small Josephson junc-
tions has been presented. This method allows discussion about the suitability of
the system in consideration as a quantum bit. Also a direct measurement of τϕ as
a crossover between coherent and incoherent pumping in the single Cooper pair
pump is suggested. It is also shown explicitly how the pumped charge in the Cooper
pair pump can be understood as a partial derivative of Berry’s phase with respect to
the phase difference ϕ across the array. This makes it possible to obtain information
about Berry’s phase by measuring the pumped current in the CPP.

The experiments with Nb/AlOx/Al SSETs show that Nb based junctions with
high critical temperature (Tc ≈ 8.5 K) and Josephson coupling, can be fabricated us-
ing the regular self-alignment technique. The measured Al/Nb/Al SSETs show the
clear signature of the resonant tunnelling of Cooper pairs combined with the elastic
cotunnelling of quasiparticles, q-MQT, through the barrier of ∆Nb. Also a qualitative
explanation is given for the smeared I-V characteristics of the Nb junctions.

In experiments with Cooper pair pump the current in both the in-phase and
out-of-phase gate cycles follows the relation ∆I = 2ef in data measured with am-
plitudes crossing only one triangle on the gate plane. No effect due to coherence in-
duced inaccuracy could be determined due to the fast decoherence induced by room
temperature equipment in the biasing circuit. These experiments demonstrate, how-
ever, in practise how a Cooper pair pump could be used as a turnstile with help of
dissipation. A model was developed to explain the process and experiments clearly
demonstrated this behaviour also quantitatively.

The accuracy of the turnstile-kind of behaviour in the in-phase measurement of
the CPP is contradicting the e-periodicity observed in the DC-modulation measure-
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ment induced by the stochastic tunnelling of quasiparticles. To explain this twofold
behavior of the system, a very general principle of a system to always strive for min-
imum energy was used. The model also agrees with the earlier measurements of the
Cooper pair pump [64, 135] and similar devices [94].

According to experiments we state that it is very unlikely for a Cooper pair
pump as such to be able to provide a current standard or otherwise work with high
accuracy. The strong cotunnelling and relaxation among other uncontrollable pro-
cesses tend to degrade the pumping cycles. Also the use of the CPP to measure, e.g.,
decoherence time would need a much more controlled electromagnetic environment
to be successful [4, 55]. However, there may be ways such as highly resistive envi-
ronment [135] or the use of combined flux and charge control [104,112], to overcome
these difficulties.
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J. E., 3e tunneling processes in a superconducting single-electron tunneling transis-
tor. Phys. Rev. B 58 (1998) 15317.

[72] HARADA, Y., HAVILAND, D. B., DELSING, P., CHEN, C. D., AND CLAESSON,
T., Fabrication and measurement of a Nb based superconducting single electron tran-
sistor. Appl. Phys. Lett. 65 (1994) 636.

[73] HAROCHE, S., BRUNE, M., AND RAIMOND, J. M., Experiments with
single atoms in a cavity: entanglement, Schrödinger’s cats and decoherence.
Phil. Trans. (R. Soc. Lond.) A 355 (1997) 2367.

[74] HASSEL, J., SEPPÄ, H., AND KIVIRANTA, M., A new way to realize a pro-
grammable Josephson voltage standard. Phys. B 284-288 (2000) 2073.

[75] HASSELBERG, L.-E., LEVINSEN, M. T., AND SAMUELSEN, M. R., Theories of
subharmonic gap structures in superconducting junctions. Phys. Rev. B 9 (1974)
3757.

[76] HAVILAND, D. B., HARADA, Y., DELSING, P., CHEN, C. D., AND CLAESON,
T., Observation of Resonant Tunneling of Cooper pairs. Phys. Rev. Lett. 73 (1993)
1541.

[77] INGOLD, G.-L. AND NAZAROV, YU. V., Charge Tunneling Rates in Ultrasmall
Junctions, in Single charge tunnelling, Coulomb blockade phenomena in nanostruc-
tures, edited by H. Grabert and M. H. Devoret (Plenum, New York, 1992), p. 21.

[78] JENSEN, H. D. AND MARTINIS, J. M., Accuracy of the electron pump.
Phys. Rev. B 46 (1992) 13407.

[79] JOSEPHSON, B. D., Possible new effects in superconductive tunnelling. Phys. Lett.
1 (1962) 251.

[80] JOYEZ, P., LAFARGE, P., FILIPE, A., ESTEVE, D., AND DEVORET, M. H., Obser-
vation of parity-induced suppression of Josephson tunneling in the superconducting
single electron transistor. Phys. Rev. Lett. 72 (1994) 2458.

[81] KELLER, M. W., MARTINIS, J. M., AND KAUTZ, R. L., Rare Errors in
a Well-Characterized Electron Pump: Comparison of Experiment and Theory.
Phys. Rev. Lett. (1998) 4530.



BIBLIOGRAPHY 89

[82] KELLER, M. W., MARTINIS, J. M., ZIMMERMAN, N. N., AND STEIN-
BACH, A. H., Accuracy of electron counting using a 7-junction electron pump.
Appl. Phys. Lett. 69 (1996) 1804.

[83] KIM, N., HANSEN, K., TOPPARI, J. J., SUPPULA, T., AND PEKOLA, J. P., Fab-
rication of mesoscopic superconducting Nb wires using conventional electron-beam
lithographic techniques. J. Vac. Sci. Technol. B 20 (2002) 386.

[84] KLEINSASSER, A. W., MILLER, R. E., MALLISON, W. H., AND ARNOLD,
G. B., Observation of Multiple Andreev Reflections in Superconducting Tunnel Junc-
tions. Phys. Rev. Lett. 72 (1994) 1738.

[85] KOUWENHOVEN, L. P., JOHNSON, A. T., VAN DER VAART, N. C., HARMANS,
C. J. P. M., AND FOXON, C. T., Quantized current in a quantum-dot turnstile
using oscillating tunnel barriers. Phys. Rev. Lett. 67 (1991) 1626.

[86] KUBO, R., The fluctuation-dissipation theorem. Rep. Prog. Phys. 29 (1966) 255.

[87] KUZMIN, L. S., DELSING, P., CLAESON, T., AND LIKHAREV, K. K., Single-
electron charging effects in one-dimensional arrays of ultrasmall tunnel junctions.
Phys. Rev. Lett. 62 (1989) 2539.

[88] LAFARGE, P., Macroscopic Charge Quantization in Metallic Nanostructures, Ph.D.
thesis, Université Paris 6 (1993).

[89] LAFARGE, P., JOYEZ, P., ESTEVE, D., URBINA, C., AND DEVORET, M. H., 2e-
Quantization of the Charge on a Superconductor. Nature 365 (1993) 422.

[90] LAFARGE, P., POTHIER, H., WILLIAMS, E. R., ESTEVE, D., URBINA, C., AND

DEVORET, M. H., Direct observation of macroscopic charge quantization. Z. Phys. B
85 (1991) 327.

[91] LEGGETT, A. J., Change and Matter (North-Holland, Amsterdam, 1987).

[92] LIKHAREV, K. K. AND ZORIN, A. B., Theory of the Bloch-Wave Oscillations in
Small Josephson Junctions. J. Low Temp. Phys. 59 (1985) 347.

[93] LOTKHOV, S. V., BOGOSLOVSKY, S. A., ZORIN, A. B., AND NIEMEYER, J.,
Cooper pair cotunneling in single charge transistors with dissipative electromagnetic
environment. Cond-mat/0305113 (unpublished).

[94] LOTKHOV, S. V., BOGOSLOVSKY, S. A., ZORIN, A. B., AND NIEMEYER, J.,
Frequency-Locked Current of Cooper pairs in Superconducting Single Electron Tran-
sistor with Ohmic Resistor, in International Workshop on Superconducting Nano-
Electronics Devices, edited by J. P. Pekola, B. Ruggiero, and P. Silvestrini, SNED
(Plenum, Naples, Italy, 2001), p. 105.



90 BIBLIOGRAPHY

[95] MAKHLIN, Y., SCHÖN, G., AND SHNIRMAN, A., Josehpson junction qubits with
controlled couplings. Nature 386 (1999) 305.

[96] MAKHLIN, Y., SCHÖN, G., AND SHNIRMAN, A., Quantum-state engineering
with Josephson junction devices. Rev. Mod. Phys. 73 (2001) 357.

[97] MARTINIS, J. M., NAHUM, M., AND JENSEN, H. D., Metrological accuracy of
the electron pump. Phys. Rev. Lett. 72 (1994) 904.

[98] MEISSNER, W. AND OCHSENFELD, R., Ein neuer Effekt bei Eintritt der Supraleit-
fähigkeit. Naturwissenschaften 21 (1933) 787.

[99] MINEEV, V. P. AND SAMOKHIN, K. V., Introduction to Unconventional Supercon-
ductors (Gordon and Breach, 1999).

[100] NAKAHARA, M., Geometry, topology, and physics (IOP Publishing, Bristol, New
York, 1990), pp. 29–30, 364–372.

[101] NAKAMURA, Y., CHEN, C. D., AND TSAI, J. S., Quantitative analysis
of Josephson-quasiparticle current in superconducting single-electron transistors.
Phys. Rev. B 53 (1996) 8234.

[102] NAKAMURA, Y., PASHKIN, Y. A., AND TSAI, J. S., Coherent control of macro-
scopic quantum states in a single-Cooper pair box. Nature 398 (1999) 786.

[103] NAVEH, Y., PATEL, V., AVERIN, D. V., KIKHAREV, K. K., AND LUKENS, J. E.,
Universal Distribution of Transparencies in Highly Conductive Nb/AlOx/Nb Junc-
tions. Phys. Rev. Lett. 85 (2000) 5404.

[104] NISKANEN, A. O., PEKOLA, J. P., AND SEPPä, H., Fast and Accurate Single-
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