JYVASKYLA STUDIES IN COMPUTING
58

Kari Kirkkainen

Shape Sensitivity Analysis
for Numerical Solution
of Free Boundary Problems

¢

JYVASKYLAN I YLIOPISTO



JYVASKYLA STUDIES IN COMPUTING 58

Kari Karkkadinen

Shape Sensitivity Analysis
for Numerical Solution
of Free Boundary Problems

Esitetddn Jyvaskyldn yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi yliopiston vanhassa juhlasalissa (5212)
joulukuun 20. pdiviana 2005 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyvaskyls,
in Auditorium S212, on December 20, 2005 at 12 o'clock noon.

o

UNIVERSITY OF H JYVASKYLA

JYVASKYLA 2005



Shape Sensitivity Analysis
for Numerical Solution
of Free Boundary Problems



JYVASKYLA STUDIES IN COMPUTING 58

Kari Karkkadinen

Shape Sensitivity Analysis
for Numerical Solution
of Free Boundary Problems

)

UNIVERSITY OF H JYVASKYLA

JYVASKYLA 2005



Editors

Tommi Kérkk&dinen

Department of Mathematical Information Technology, University of Jyvaskyld
Pekka Olsbo, Marja-Leena Tynkkynen

Publishing Unit, University Library of Jyvaskyla

URN:ISBN:9513923959
ISBN 951-39-2395-9 (PDF)

ISBN 951-39-2354-1 (nid.)
ISSN 1456-5390

Copyright © 2005, by University of Jyvaskyla

Jyviskyld University Printing House, Jyvaskyld 2005



ABSTRACT

Kéarkkainen, Kari

Shape Sensitivity Analysis for Numerical Solution of Free Boundary Problems
Jyvaskyla: University of Jyvaskyla, 2005, 83 p. (+included articles)

(Jyvaskyla Studies in Computing

ISSN 1456-5390; 58)

ISBN 951-39-2395-9

Finnish summary

Diss.

This work is devoted to the development of efficient and robust solution algo-
rithms for a class of free boundary problems. This consists of mathematical analy-
sis of different model problems and the description of numerical implementation
to generic free boundary problems along with the numerical results.

The free boundary problems that are investigated in this work are elliptic
stationary boundary value problems with overdetermined boundary conditions.
Overdetermined boundary conditions are satisfied only in a special geometry
which is a solution to the free boundary problem. The free boundary problems
are nonlinear and can not be solved straightforwardly. Algorithms to solve this
kind of free boundary problems are iterative, the solution is sought by iterating
geometries.

The suggested algorithm is based on the combination of continuous shape
sensitivity analysis and automatic differentiation of discrete equations. The dis-
crete linearized equations are derived tuning the finite element method to corre-
spond to the continuous shape linearization of the problem.

Efficiency of the presented algorithms are tested and illustrated through nu-
merous numerical examples.

Keywords: free surfaces, free boundary problems, automatic differentiation, fi-
nite element method, convergence.



Author

Supervisor

Reviewers

Reviewers

Opponent

Kari Karkkainen

Information Technology Research Institute
University of Jyvaskyla

Finland

Professor Timo Tiihonen

Department of Mathematical Information Technology
University of Jyvaskyla

Finland

Professor N. V. Banichuk

The Institute for Problems in Mechanics
Russian Academy of Science

Russia

Professor V. Arnautu
University “Al | Cuza” lasi,
Romania

Professor Bertrand Maury
Laboratoire de Mathématiques
Université Paris-Sud

France



ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincere gratitude to Prof. Timo
Tiihonen for introducing me into this field of research and for his excellent guid-
ance and continuous support throughout my research. | am grateful to Prof. Ar-
nautu and Prof. Banichuk for reviewing the manuscript and giving encouraging
feedback and to Prof. Pekka Neittaanmaki for the tenacious motivation to my
work. | would also like to acknowledge my appreciation to prof. Haslinger for
fruitful discussions of the topic. |1 would like to thank my colleagues and friends
Mika Laitinen and Markus Inkeroinen for their inspiring ideas and thoughts.
Gary Littler deserves special thanks for his linguistic comments. | want to ex-
press my thanks to my colleagues at the Faculty of Information Technology for
creating the friendly and fertile atmosphere to work.

This work was financially supported by Tekes, the Academy of Finland,
The Artturi Nyyssonen Foundation, COMAS Graduate School of the University
of Jyvaskyla, Department of Mathematical Information Technology and Informa-
tion Technology Research Institute.

Finally, I must express my appreciation to my parents Esko and Kaisa, my
family and friends for their support, especially to Satu for her love. | thank my
children Lotta and Konsta for their love and patience, they always succeed to
delight their father.

Jyvaskyla, 1 December, 2005

Kari Karkkainen



CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
CONTENTS
LIST OF INCLUDED ARTICLES
1 INTRODUCTION ..ot e e 11
1.1 Free boundaries in continuum mechanics ..............ccooccovviiiinennn. 11
1.2 Model free boundary problem ..., 13
1.3 Shape optimization approach .............cccoii 14
1.3.1 Variational formulations...............ccooeiiiiiiiiiiii 15
1.3.2 Leastsquares approach ............ccocoveiiiiiiiiiiiiiieiiniieennn, 16
1.4 Fixed point @pproach .........ccooviiiiiiii 17
141 Trial methods ..o, 17
1.4.2 Shape linearization .............ccooiiiiiiiiiiie e, 18
1.5 Mainresults of the thesiS..........ccooviiiiiiiiii e, 20
151 QUESHIONS. ..ottt 20
152 ANSWELS ..ot 21
1.5.3  Authors contribution .............ccooviiiiiii 22
2 SHAPE SENSITIVITY ANALYSIS ..o 23
2.1 Differentiation with respect to shape .............cocoviiiiiiiiinn, 23
2.1.1 Differential GEOMEtrY .......ccovvviiiiiiii e, 23
2.1.2  Material derivative ............ccoooiiiiiiiiii 25
2.1.3 Derivativesof integrals .............coocoiiiiiiiiic 26
2.1.4  Structure theorems...........oooiiiiii e, 27
2.2 Use of shape calculus in free boundary problems —an example..... 29
2.2.1 Potential flow formulation.................ccooviiiiinii, 30
2.2.2  Stream function formulation.................ccocoii 33
2.2.3 Least squares formulations for free boundary problems .... 34
2.2.4 Internal free boundaries ..............ccovviiiiiiiiiiii 37
3 IMPLEMENTATION ASPECTS .ot 42
3.1 Numerical approximation of the geometry................ocooeviininn. 42
3.1.1 Approximation of geometric quantities............................ 42
3.1.2 Updating of the geometry............cooiviiiiiiiiiieen, 44
3.2 Automatic shape calculus.............cooviiiiiiiii 47
3.2.1  Automatic differentiation .............coooiiiiiiiiiiii, 47
3.2.2 One dimensional model free boundary problem............... 50
3.2.3 Residual based finite element implementation of 1D
PrODIEM ..o 53
3.2.4 Isoparametric approach for automatic differentiation........ 56
3.3 Numerical reSUltS ..o 61
3.3.1 Convergence near the solution................cccooeiieiiiiinennns 61
3.3.2 Model problem.........ccoiiii 63

3.3.3 Die-swell problem ..., 68



3.3.4 Internal free boundary

4 CONCLUSIONS

BIBLIOGRAPHY

YHTEENVETO (FINNISH SUMMARY)
INCLUDED ARTICLES



LIST OF INCLUDED ARTICLES

Kari Karkkéainen and Timo Tiihonen, Free surfaces: shape sensitivity anal-
ysis and numerical methods, Internat. J. Numer. Methods Engrg., 44 (1999),
pp. 1079-1098, 1999.

Kari Karkkainen, Bernoulli’s free boundary problem with curvature de-
pendent boundary conditions, Free Boundary Problems: Theory and Appli-
cations, vol. 14 of GAKUTO International Series, Gakkotosho, Tokyo, 2000,
pp. 239-254, 2000.



1 INTRODUCTION

Free boundary problems are boundary value problems in which some parts of
the boundaries of the considered domains have to be determined as a part of the
solution. A free boundary value problem consists of differential equations with
overdetermined boundary conditions in some parts of the geometrical bound-
aries that are assumed to be free boundaries. Overdetermined means formally
that the boundary conditions in the free boundary can be divided into two parts,
in which the first part can be used to solve differential equations and the second
part to find the geometry of free boundaries.

1.1 Free boundaries in continuum mechanics

Let us first introduce a few examples from real life, which illustrate some bound-
aries, or discontinuities with respect to the geometry. Consider, for example, a
liquid—gas surface, which evidently is a free surface. On the surface viscosity,
density and heat conductivity change rapidly thus producing material proper-
ties to be different on both sides of the surface. Further, different adhesion forces
in the air and in water produce forces on the interface, which appear as surface
tension forces [Ada67, MT68].

The water-air surface may remain in one position in time and the free sur-
face can be considered as stationary. For example, water in the capillary pipe can
be considered as a representative of a static free boundary, where liquid is in a
static position and the free boundary is in an equilibrium state. Here the liquid
does not flow. Hence, the free boundary can only be defined by modelling the
surface position.

The second example, fluid flowing at a (low) constant speed from the pipe
can be considered as a representative of a stationary free boundary, as long as
the free boundary remains in its position in time. However, with higher speed
the flow field becomes unstable and so the free boundary eventually becomes
dynamic.

Between stationary and dynamic flows there is a region, which can be con-
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sidered as quasi-stationary. Quasi-stationary means, that by moving the co-
ordinate system in some speed, depending on the system itself, the system in
this reference coordinate remains stationary. Here we shall sketch two different
guasi-stationary free boundary problems. An example of a quasi-stationary free
boundary problem is a rising air bubble in water. In this case the small time scale
is measured in seconds, and in this small scale time interval the rising bubble can
be quasi-stationary, but as the external forces, like hydrostatic pressure, change
during the rise of a bubble, the bubble can evolve as time goes on. This evolution
appears, however, so slowly that the dynamic effects can be ignored. Hence by
this approach we can take snapshots of the dynamical system. To model the ris-
ing bubble perfectly in a larger time—scale, one must take into account the change
in the physical quantities in time.

Our second physical example is the melting or solidification of a material.
There is quite an extensive collection of references of the books and articles col-
lected by Tarzia [Tar00] on the topic. In this case the free boundary is the bound-
ary of a solid material and therefore it can be characterized as a liquid—solid free
boundary. From the melting temperature of the material we know the temper-
ature on the free surface and it is relevant to consider the temperature of the
material to provide an insight into this dynamical system.

Consider now the enthalpy of the material. Near the melting point of a
material the enthalpy grows rapidly as a function of temperature, see figure 1. In
particular, enthalpy can be a set valued function of temperature and may vary in
single temperature depending on the state of the material.

kenthalpy

tem peraty re

FIGURE 1 Relation between enthalpy and temperature.

Again we can consider the quasi-stationary approach to obtain an insight
into the time—-dependent process. One such quasi-stationary process is a contin-
uous casting of steel. In this case the melted steel is formally fed into the pipe and
then the solidified steel is continuously pulled out from the other head of the pipe
while the pipe is cooled to obtain the solidification inside the pipe. To obtain as
good steel as possible, it is eventually important to know the possible properties
that influence the formation of the steel.

As well as the water—air and the water—ice surface both may be thick when
considered on a microscopic scale we may in a macroscopic view consider these
boundary layers as thin boundaries where physical quantities may rapidly
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change. This enables us to treat physical quantities as continuous functions
elsewhere but on this thin boundary, which is consequently a free boundary.

1.2 Model free boundary problem

In this thesis we shall consider general mathematical or engineering approaches
to solve the free boundary problems of type

A(u, ) =0, (1.1a)
B(u, Q) = 0. (1.1b)

Here A corresponds to a well posed elliptic boundary value problem in domain
2, and B respectively operates on the functions supported at the free boundary
Y. Itis supposed that function « can be solved from equation (1.1a) for any given
suitable domain €. Our aim in this thesis is to study the systematic and efficient
ways to solve the system (1.1) and thus provide tools to solve general stationary
free boundary problems numerically.

The solution of an elliptic boundary value problem usually depends highly
nonlinearly on the shape of the domain. Thus the geometry can not be solved
straightforward from a linear equation. In this thesis we consider approaches
where this system of equations is solved iteratively. We further restrict our atten-
tion to finding solutions with known topology.

In the following sections we shall briefly review the solution strategies to
solve the free boundary problems in the above form and formulate them to gen-
eral principles.

We shall formulate the solution strategies for the abstract problem (1.1) and
for the convenience of the reader will then apply the strategies to the following
model free boundary problem, so called Bernoulli free boundary problem [FR97,
Zol86],

—Au =0 in D, (1.2a)
u=1 on oD, (1.2b)
u=20 on 012, (1.2c)

@ = on 012, (1.2d)
on

where D = D\ Q. This equation models for example the electro-chemical galva-
nization or two dimensional inviscid irrotational fluid. For simplicity we assume
here that the unknown free boundary is contained within a larger domain D.
This assumption enables us to study the so called interior Bernoulli free bound-
ary problem.

Exterior Bernoulli FBP is defined by changing the requirement Q C D to
Q2 D D. For this model problem (1.2) the existence and regularity of the solution
are studied for example in [AC81].
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oD 092 o0

FIGURE 2 Interior (left) and exterior (right) Bernoulli free boundary problems.

To obtain a general abstract form for the above model free boundary prob-
lem we rewrite equations (1.2) in a weak form:

= Vu -Vodx — Aodo =0 y 1.3

aa(u, &) /Du w/mw L gev, (L3a)

bor(u, ) ::/ whdo =0, b eW. (1.3b)
o0

Here we seek u from space H'(D) so that u|,, = 1. Loosely speaking, above

formulation is equivalent with (1.1), if we define A(w,Q) : V(Q) — V(Q)
(A(u,Q),6) = aolu,¢) and B(u, ) : W(Q) — W)’ = (B(u,Q),8) = bo(u,9)
respectively. At the moment we will leave function spaces V and ¥V undefined.
Later we will discuss the different choices for these function spaces.

1.3 Shape optimization approach

In the shape optimization approach the given free boundary problem is rewritten
so that the minimum of some cost functional is attained at the solution of the
free boundary problem. Roughly speaking, optimization based approaches can
be divided into two subclasses. The first class assumes that the free boundary
equations (1.1) are first order optimality conditions for some “energy” functional.
Formally this means that there exists a functional £(u, 2) such that

OE(u, Q) _ 0and O0FE(u, Q)

o 50 0= A(u,) =0and B(u, ) = 0.

However, this approach only applies for some restricted subclass of free
boundary problems. There is quite an extensive presentation of energy-based
free boundary problems in reference [Fri82]. One subclass in this approach is
such that the free boundary problem is reformulated in such a way that the free
boundary disappears from the formulation. From a mathematical point of view
this helps with the analysis of the qualitative properties of the free boundary
problem, since the geometry is determined as a posterior from the solution of a
boundary value problem. In this work we shall only consider solution methods
where the free boundary is solved as one unknown in the solution procedure.
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In the second class of shape optimization based approaches the additional
free boundary condition is reformulated as a functional which attains its min-
imum at the solution of the free boundary problem. The other free boundary
condition is then taken into account as a constraint for this shape optimization
problem. Later we shall call this the least squares approach. For our abstract
model problem this can read as

I{lzlig | B(u, ) ||* with subject to A(u, Q) = 0, (1.4)
€

where O is a suitable set of domains and || - || is some norm supported only on the
free boundary. This formulation is much weaker than the original free boundary
problem (1.1) since the second condition is relaxed and need not to be fulfilled
exactly at the solution. Hence we can have a solution for the above shape op-
timization problem although we do not have a solution for the free boundary
problem. Therefore this formulation can be useful only from a numerical point of
view.

This approach gives us, however, an opportunity to play with suitable
domains O. At the solution of the free boundary problem we should have
| B(u, Q)||*> = 0. However, if we restrict our admissible set of domains too much
we can not reach the optimal set and thus we may observe that || B(u, Q)[]> > 0
for all domains in O. On the other hand, if we enrich the space O too much we
can end up with a minimizing sequence that converges to a fractal-like domain,
which is in most practical cases an incorrect solution. We further have freedom
to choose a suitable norm for boundary condition B(u, (). In particular, using
proper norm results usually a well posed shape optimization problem if there
exists a smooth enough solution for the free boundary problem.

In the following sections we shall briefly apply shape optimization [HN96]
to our model free boundary problem.

1.3.1 \Variational formulations

For general free boundary equations (1.1) we can not always construct an “en-
ergy” formulation [Luk67, Zol94, Fri82, Cra84]. However, for our model problem
it is well known that the solution of the model problem is a critical point of the
functional [Tii97],

E(u) = / Vu - Vu + N0y dz,
D

where I,~0y := {x € D |u(xz) > 0}. This energy is minimized over all functions in
space V :={u € HY (D) | u=1 ondD}. Inthis formulation the geometry is hid-
den into Iy, so that the geometry is not a variable in this definition. However,
the characteristic function is non-smooth thus producing trouble in minimiza-
tion. The actual benefit of this formulation is thus in the mathematical analysis,
although with the help of optimal control theory efficient numerical implemen-
tations can be achieved [ANO03, HHM93].

To obtain a shape optimization approach for the above problem we rewrite
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the energy as a functional of two variables,

El(u,Q):/Vqu—l—/ N dx.
D Dq

Now (2 appears as an unknown variable in the energy. Thus we seek for the
minimizer of £ (u,€)) in some space V x O.

If the minimization is succesfull the minimizer describes the free boundary
00 = {u = 0}. Altand Caffarelli [AC81] showed for first energy formulation that
a nontrivial minimizer exists if and only if inf F(u) < E(0) = X?|D|. This is valid
only if X is larger than some critical value ).

1.3.2 Least squares approach

Let us apply least squares approach for our model problem. Now choosing as the
cost function the L?-norm for the solution on the free boundary, we end up with
the following shape optimization problem:

min J(Q), J(Q) := / u® do where uissuch thatu = 1ondDand  (1.5)
o0

Qe

Vu-ngdx:/ Mpdo  forall ¢ € HY(D). (1.6)

Dq o0

Clearly, if the FBP has a solution (u,Q*) and Q* € O, then v = 0 on 92" and
therefore J(Q2*) = 0.

This formulation is by far not a unique shape optimization formulation for
our model problem. We can take another boundary condition to be minimized,
so that the state equation in the above contains the Dirichlet boundary condition
u = 0 on free boundary 0f2 and the shape optimization problem is in this case

2

min J;(Q), Ji1(2) = ‘ u _ A where u € H'(Dg) is such that (1.7)
Qeo on 2(09)
Vu-Vedr=0 forallgec Hj(Q) with (1.8)
Dq
u=1 onodDandu=0 onof. (1.9)

Here the norm || - || (s is chosen properly, for example Z = H-zorZ=I2 The
norm Z = H~2 seem to be more natural, since the solution w relies on H'(Dy,)
and therefore the trace of u on 99 is in H~2. However, this choice leads to dif-
ficulties in the analysis of derivatives of the cost functional, that is essential in
the study of optimal conditions for the shape optimization problem. Haslinger
et al has studied the above formulation for the model free boundary problems in
reference [HKKPO3]. They use genetic algorithms in the optimization procedure
which does not require shape sensitivity analysis.
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1.4 Fixed point approach

In the fixed point approach to the free boundary problem the nonlinear problem
is usually solved by constructing a sequence of linear problems. Fixed point al-
gorithms do not commonly use gradient information but the algorithms can be
based on the shape sensitivity analysis of the continuous problem.

1.4.1 Trial methods

Trial methods can be characterized as Picard-type iterations for free boundary
problems. A trial method to solve a free boundary problem of type (1.1) can be
written in algorithmic form:

1. Set &k = 0, choose initial domain €.
2. Solve uy from A(ug, ) = 0.
3. Construct Q.1 = F(ug, ), where F'is chosen so that B(ug, Q1) =~ 0.

4. Update k = k + 1 and continue from step 2 until converged.

In particular, the above solution algorithm is generally simple to implement, but
it is not always obvious to construct the updating step so that the method con-
verges or so that the convergence is fast.

For our model problem (1.2) we can set up an algorithm as follows:

1. Set k = 0, choose initial domain 2.

2. Solve Au, = 0 with Neumann boundary condition g—z = A on the free
boundary and u; = 1 on the fixed boundary 0D.

3. Move free boundary with updating rule

D01 = O, + %ﬁ.

4. Update £ = k + 1 and continue from step 2 until converged.

Here n is a smoothed normal vector field on the free boundary. This is required,
since updating the boundary with an unsmoothed normal vector field would de-
crease the smoothness of the free boundary.

The updating rule in the above algorithm was derived by taking into ac-
count the derivative of the solution g—z = ) at the free boundary 0S2. However, it
does not take into account the change in the solution of the boundary value prob-
lem as the geometry is changed. The change in the solution u due to change of Q2
can be minimized by changing the boundary condition in the state problem ap-
propriately, as proposed by Garabedian [Gar56] for a model free boundary prob-
lem. Cryer [Cry70] further calculated the optimal combination of complementing
boundary conditions for a general elliptic boundary value problem.

For our model problem (1.2) we can set up an algorithm as follows:
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1. Set &k = 0, choose initial domain €.

2. Solve Au; = 0 with Neumann boundary condition xu + g—z = )\ on the free
boundary 052 and « = 1 on the fixed boundary 0D.

3. Move free boundary with updating rule

O 1 = O + %n

4. Update k£ = k + 1 and continue from step 2 until converged.

Here « is the mean curvature of the free boundary. This has been studied by Tiiho-
nen [TJ91] with the viewpoint of second order shape derivatives and later Flucher
and Rumpf [FR97] proved rigorously the convergence in spaces of Holder con-
tinuous functions. Earlier Duprét [Dup81] constructed a modified state problem
for a similar free boundary problem that models inviscid irrotational flow.

Detailed analysis of the algorithm shows that the convergence is less than
quadratic but still superlinear [FR97]. For a two dimensional case the conver-
gence factor is  and for n-dimensional case 2. In our studies the convergence
was investigated in the presence of a curvature term in the boundary condition
in paper [I1]. It was shown that the the convergence factor is % in a two dimen-
sional case.

1.4.2 Shape linearization

In shape linearization the nonlinear system of equations is solved by Newtons
method in functional spaces. The derivatives are calculated with respect to the
state © and geometry Q2. Newton iteration assumes that we have an initial guess
for the solution (uy, 2;) and then we solve a linear equation to find a new iterate
(ugs1, Q1) close to the solution. In one Newton step we calculate the change
duy, to the solution u; and the change 6%, to the geometry €2, and then update
(Upr1, Qur1) = (ug, Q) + (dug, I, ). Formally we obtain the system of equations

A7u(uk, Qk) 6uk + A;}(uk, Qk) 5Ek = A(uk, Qk), (110&)

Here - , means derivative with respect to v and - 5, derivative with respect to the
geometry.

There is no easy way to construct a Banach space for general geometries.
A detailed description of differentiation of functionals with respect to the geom-
etry is given by Zolésio and Delfour [DZ01]. In addition, they process exten-
sively different ways to construct valid topologies for geometries. Under appro-
priate smoothness assumptions the differentiation with respect to the geometry
results to an operator which is supported only on the functions which rely on the
boundary of the domain that is differentiated. In particular, for our purpose the
derivatives Ay, and B 5, are supported only on the free boundary. Thus the new
unknown 43 is also supported only on the free boundary.
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Not much can be said about the solvability of the above equation. Intu-
itively, if the system (1.10) is solvable in the appropriate functional spaces, the
solution of the FBP should be stable and behave well. In solving this equation we
obtain a pair (duy, d%;). 03, corresponds to the change of the domain on the free
boundary to the normal direction. ju corresponds respectively to the change in
the state solution . Iterate u; and update uy, is defined on geometry €, and thus
to obtain the next iterate w1 = uy + duy on it must be extended to geometry
Qpes1.

Let us now study the shape linearization for our model free boundary prob-
lem. The derivative with respect to a state variable u reads as

A, (u, Q)ou = / Véu - ¢dz

Q
and the derivative with respect to geometry reads as

A (u, Q)02 = / (Vru- Vg — Ak¢) 60X do.

o0
Here « is the mean curvature of the free boundary. In derivation of the above
formula it is assumed that % = 0 on 0N in weak sense.

The derivatives of B reads as

B7u(u,Q)5u:/ ouy do,

o0
and

By (u,Q)6Q = / (a—u@D + I{’LM/)) 0¥ do.
’ a0 on

As a result we end up with following iteration scheme: Given (uy, () €
H2(Q) x C%*, find (duy, 05;) € HY(Dg) x H2(99) such that

/ Vo, - Vo dr — / (\id — Viug - Vi) 65 do =
Dqy,

o

/DQVuk-V<bdx—/ Apdo,  (1.11)

o

/ oug) do +/ (%@b + /‘Wk?/)) 0 do :/ Uk,
aQy, a0, \ On aQy,

for all (¢,1) € H'(Dq) x Hz(09). Newton update after solving (duy, §%) from
the above weak equation consists of an update of the geometry by 0% 1 = 0 +
ndéY,, and an update of the state by w1 = u + Suy., where ~ means smooth H2-
extension to the updated geometry. Existence of such extension is guaranteed
since duy, € H?(Dg) under above smoothness assumptions.

The above system can be even more simplified by taking into account the
properties of the solution w in the solution of the free boundary. As it holds that
u = 0and g—z = )\ we can substitute these to u; to get

/ Véuk~V¢da:—/ )\mbéEkda:/ Vuk~V¢da:—/ \o do,
DQk 00, Dq 00,

(1.12)
/ ougt) do + / M 0y do :/ ug do.
an. 8Qk; an'
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In the above linearized system we can eliminate A\0X; by setting \6%, = up — duy.
In particular, this results in the same algorithm that was presented in the pre-
vious section as a superlinearly convergent algorithm. What makes the situation
more interesting here is that the above derivation was done in the usual Newton—
linearization and the resulting system of equations can be set up for a general free
boundary problem also. Thus we claim that the previous approach can be applied
only to a subclass of free boundary problems whereas this approach seems to be
more general.

1.5 Main results of the thesis

So far we have only reviewed some solution strategies for free boundary prob-
lems. At this point we shall formulate several questions to be answered in this
thesis.

15.1 Questions

The first questions arise from the shape optimization approach. It has already
been pointed out that from the point of view of the solution algorithm the shape
variational principle is mainly a tool for mathematicians. Does the shape vari-
ational principle lead to efficient solution strategies? For the least squares ap-
proach, which norm would be the best one and which formulation should be used
to solve a free boundary problem? How should we formulate the state equation
to obtain the solution easily.

After the shape optimization based approaches we reformulated our model
free boundary problem as a fixed point iteration and constructed a rapidly con-
verging algorithm. Which one is better, the least squares approach or the fixed
point type approach? Can we always construct fixed point type iterations that
converge superlinearly?

Finally we presented a generic form of a shape linearization procedure.
Open question is that is it really generic? Can it be applied to any stationary
free boundary problem? What about practical issues then? Is shape linearization
the best approach to create optimal solution procedures for generic free boundary
problems? How fast does it converge?

As our approach is numerical we want to address implementation aspects
as well. If the optimal approach to solve free boundary value problems can not be
implemented with regular finite element software, the results of our work has less
impact. Therefore we raise the question, is it possible to automate the construc-
tion of a solution procedure to solve a free boundary problem? In particular, an
optimal idea would be, that we could gain a solution method for any solvable free
boundary problem by just describing the equations A(u, ) = 0 and B(u,2) = 0.
This is for the time being state of the art in the finite element software for normal
elliptic boundary value problems.
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1.5.2 Answers

The first question deals with the shape variational principle and the efficiency
of the solution algorithm. In general, gradient-based solution algorithms based
on the variational principle lead to unoptimal solution algorithms. In a shape
variational principle the solution to a free boundary problem is sought by min-
imizing an energy functional. Gradient-based methods to solve free boundary
problems formulated with shape variational principle optimization-based solu-
tion algorithm are studied in references [KT96, Tii98]. By analyzing second order
optimality condition in the solution of the free boundary problem we find out that
the shape Hessian operates in Hz (X) x Hz () for elliptic A(u, Q). This means that
at each iteration the update to the geometry has to be smoothed to obtain a con-
vergent algorithm based on the gradient of the cost functional. Therefore to ob-
tain better convergence the gradient based formulation has to be preconditioned
by an operator that affects spectrally like Hessian of the energy formulation. This
aspect is studied in section 2.2.3, where the question of choosing a norm to the
least squares formulation is also considered. With preconditioning the conver-
gence of the solution algorithm can be improved but the optimal preconditioning
requires evaluation of the shape Hessian.

The question of construction of a fixed point type iteration that converge
superlinearly is related to shape differentiability of the state equation and the
structure of the shape derivative. If the state solution appears to depend linearly
on the small displacement of the free boundary the fixed point type methods can
be easily derived. However, if the state solution depends on the derivatives of
the displacements to the free boundary the fixed point type iterations are hard to
derive.

The next question was about the shape linearization procedure. The shape
linearization procedure can be treated as a Newton method in metric spaces and
therefore it is generic. However, the differentiability required for the Newton
method to work brings limits to the applicability of the shape linearization. Shape
linearization collects all the good properties from fixed point type iteration and
from the shape optimization based approaches. Although the shape linearization
approaches asymptotically the Newton method the linearization procedure can-
not converge quadratically as it requires smoothing to preserve the regularity of
the geometry. The convergence is studied in the continuous case in paper [I1].

Shape linearization procedure can be automated but the discrete variant
looses some convergence properties compared to continuous calculations. Shape
linearization is based on the knowledge that the shape gradient is supported on
the free boundary. It turns out that the normal derivative of the test function
plays an important role in the numerical implementation. Wheather as in the
continuous analysis it is assumed that the normal derivative of the test function
vanishes in the distributional sense the same assumption in the discrete imple-
mentation can not be enforced. However, it turns out that by post-processing the
derivatives (linear matrices) of the shape linearized equations the assumption of
a vanishing normal derivative of the test function can be implemented.
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1.5.3 Authors contribution

In this section | report my contribution in this research subject. Our work started
with research report [KT96] where we analysed systematically different shape
optimization formulations for a model free boundary problem. The ideas in this
paper was mainly from prof. Tiihonen and my duty was to implement the ideas
by applying the technical shape sensitivity calculations. The ideas were then pub-
lished in a conference proceeding paper [KT97]. In paper [I] we studied an im-
pingement of a jet to a wall and made a first step towards an automated calcu-
lation of shape sensitivities. My main contributions in this paper were the sys-
tematic analysis of continuous formulation, calculation of possible wave lengths
produced by surface tension, the discrete implementation of mixed calculation of
shape sensitivities and one important contribution was to notice that the solution
depended on the inflow position in the presence of surface tension forces. The
paper was made in co-operation with prof. Tiihonen.

In paper [I1] | studied the convergence of the Bernoulli free boundary prob-
lem when the curvature appears in the boundary term. This work is mainly an
extension of a convergence proof of Flucher and Rumpf [FR97].

Some of the results presented in this thesis are published in the proceedings
of Eccomas 2004 conference [KTO04].



2 SHAPE SENSITIVITY ANALYSIS

Shape sensitivity analysis is a fundamental tool in shape optimization. Its goal
is to analyse the relationship between the geometry and some property of the
state solution. From a pragmatic point of view the shape sensitivity analysis cor-
responds to the calculation of partial derivatives with respect to the parameters
that specify the geometry. However, it can also provide valuable theoretical in-
sight of shape related problems.

In this chapter we shall give a short glance into the analysis of shape func-
tionals using the universal approach, based on the work several authors, [Zol79,
Sim80, SZ92, CHB83, Del90, DZ91a, DZ91b, Zol92, DZ97, Ban90] and introduce
the basic concepts of shape calculus. A major part of this chapter is devoted to
different examples demonstrating the use of shape calculus in analysis of free
boundary problems.

2.1 Differentiation with respect to shape

In this section we will present the toolbox to analyse functions and functionals
that depend on the shape of the geometry.

2.1.1 Differential Geometry

In this section we will focus on some basic geometrical properties of domains,
surfaces and curves.

We say that Q € C*7 if the boundary of €2 can be locally represented by C*7—
functions and that € is locally an epigraph of these functions, see [BC84]. Here
we denote by C*7(Q) the space of Holder continuous functions in Q equipped
with a norm

D*¢(x) — D*o(y
[6llcx @y = sup | Do) + sup A= L70W)
zEN T#Y |:L“ - y|

1<k
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For completeness we define C*° = C*, k-times continuously differentiable func-
tions.

The oriented distance function describes the oriented distance from a given
domain. In the context of shape optimization the oriented distance function was
introduced by Delfour and Zolésio in [DZ94]. It has several good properties espe-
cially when handling quantities defined only on the boundary. Oriented distance
function b for domain 2 is defined by

dist(x,Q), ifz e Q°,
b(z) =10, ifzeoQ, (2.1)
—dist(z,Q%), ifz e

With the distance function we define a neighbourhood for (n — 1)-dimensional
manifold T,

I, ={z e R"| dist(z,I") < p}.

Oriented distance function is Lipschiz—continuous with Lipschiz—constant
one:

|b(z) = b(y)| < [lz =yl

For C*~domains with boundary I' = 02, k > 2, we know that there exists
a constant ¢ > 0 depending on €2 such that the oriented distance function is an
element of space C*(T',), see Gilbarg-Trudinger [GT77] page 282. In particular,
the oriented distance function has the following properties:

Lemma 2.1. Let  be a C*~domain. Then
(i). Vb =n,
(ii). Ab=r,
(iii). If further Qis C%, 2 (Ab) = — 3" k2,

on boundary 02, where x; are the principal curvatures of the boundary. Here mean
curvature « is defined by >0~ ;.

Proof. For (i) and (ii) see [DZ94] for (iii) see paper [11] and [KimO00]. O

The oriented distance function is a powerful tool in studying functions de-
fined only on the boundary [DZ94]. For a smooth domain we can define a projec-
tion p(z) = = — b(x) Vb, and we see, that for x close enough to 0%, p(x) € 92. This
provides a tool to study functions defined only on the boundary and to estimate,
how these functions depend on the change to the geometry. The oriented dis-
tance function is also used in tracking the position of a free surface in the numer-
ical implementation. It is especially useful in dynamic free boundary problems
and named as level-set method [OS88, Set90, SSO94, Bur03, Set96, Tor00, Smo01,
BCTO05].
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2.1.2 Material derivative

In this section we will concentrate on the material derivative method developed
by Zolesio et al [Z0l79, SZ92, Del90, DZ91a, DZ91b, Zol92, DZ97]. In the material
derivative method the idea is to analyse how the quantities that depend on the
geometry change when the geometry is perturbed with a velocity field such as in
fluid mechanics. The material derivative method has its background in the con-
tinuum mechanics with the use of Lagrangian coordinates. In brief, the material
derivative method gives the tools to answer the question: how does the solution
of a PDE change when the geometry is varied with a given velocity field.

Let us first define a few notations. In the following we will denote by x
a vector in R™, n is a dimension of the space, for us it is sufficient to consider
n = 2,3. Let us introduce an artificial time ¢, t € R and a velocity field V' (¢,x).
We say that V' is autonomous, if V(¢,x) = V(0,x), so that the velocity field does
not depend on a “time” variable t. Assume further that we have an open domain
D c R", and a domain Q2 C D. Itis natural to define transformation 7;(V)x =
X (t,x) with a velocity field V' through differential equation

%—f(t,x) =V(t,x), X(0,x) = x.

This transformation is quite close to a perturbation of the identity [Del90], where
the transformation was chosen by

T,(V) = I +tV(x).

For small perturbations these two transformations are close. However, if we ap-
ply a condition V -n = 0 on 0D, the former transformation yields to domains that
are contained in D. That is, the condition 7;(V')(D) C D is fulfilled. The image of
Q under T; is denoted by €.

Remark For the perturbation of the identity this property is not fulfilled as can
be seen from the following two dimensional example: let D be a unit disk and
use a velocity field V (t,x) = (—z2, ;). This velocity field rotates the unit disk
but does not make any deformations to it if we use the deformation through the
differential equation, so that 7;(V)D = D for any t. For the perturbation of the
identity we have for example x = (1,0), 7;(V)x = (1,0) + ¢(0, 1) = (1,¢), which is
obviously outside of the domain D.

Let there now be defined a domain functional J : 2 — R. We say that the
functional has a directional Eulerian shape derivative to direction V" at 2 if the limit

i () — T ()
t—0+ t

= dJ (V)

exists. If further d.J (2; V) is linear and continuous with respect to V, we say that
J is shape differentiable at €.

For function y(Q) € W*?(Q), Qin C* k > 1, s € [0, k], we define the material
derivative as a limit

SO g VO 2TV —y ()

t—0 t
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This limit may exist in a weak or a strong sense, and the material derivative is
called respectively a weak or strong material derivative [SZ92]. We define also
shape derivative v/,

v V) =g( V) = Vy(Q) - V(0),
whenever it exists in a weak or a strong sense. Shape derivative i/ represents the
change of function y with respect to the geometry.

If function y and a vectorfield V' (z, t) are defined in a neighborhood of I' C
082 we define

Vry = Vy — (Vy-n)n,
Ve-V=V-V-n-VV.n,

Ary=Vr -Vry=Ay—r— —
yr =9yl — Vry - V.

Here Ar- is the Laplace—-Beltrami operator [DL85].
If 4 is defined only on the surface I' we can extend (for 2 smooth) y to the
small neighborhood of I by taking it constant to the direction of the normal.

Therefore g—z = 327% = 0and Vry = Vy, Ary = Ay on I'. These definitions
for surface derivatives can be weakened in the usual distributional sense.
Further, a shape boundary derivative .. has following properties [Des95,

DZz97]:

(y1y2)p = Y11 Y2 + Y1 Yof,
np = —Vr(V,n),

) OAD
Kb = (D) = —Ar (Vin) + 52 (V,m).

2.1.3 Derivatives of integrals

We are now ready to formulate the basic formulas for shape differentiation of
integrals [CH53, GF63, SZ92]. In the following, we assume that €2 is bounded.

Lemma 2.2 ([SZ92]). Let f(;) € L'(;) be shape differentiable and f/(2;) € L'(),
t €[0,T),T > 0. If Q; is C*'~domain, ie Lipschiz—domain, then

For boundary integrals, we need more regularity for the boundary:

— [r@des [ p@) Vi o @2)
t=0 Q 0N

Lemma 2.3 ([SZ92]). Let f(02;) € L'(99;) be shape differentiable and f/(99;) €
LY(0%%),t € [0,T), T > 0 and let €, be a C*~domain, k£ > 2. Then

i f(O) do

d = | [r0Q)do+ [ [0k (V,n) do,  (23)
t Joq,

t=0 o0 o0

where « is the mean curvature of T.
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In the above lemma the regularity of the domain is quite restrictive. Con-
sider for example a trivial question: how does the arclength of a polygon change,
when one cornerpoint is perturbed? We can not use the above lemma, since the
regularity assumption is not fulfilled. In the next lemma this assumption is weak-
ened so that the corner points are covered by the analysis. However, we first
consider a two dimensional case, and then the three dimensional case. A three
dimensional case is more difficult, since it contains both edges and corners.

Lemma 2.4 ([SZ92]). Suppose that @ € R2, f € Hz, 9 is piecewice C*~domain,
k> 2andleta;, 7 =1,...,m be the cornerpoints of the boundary. Then

:/ (a—f+lif) (V,n) do
im0 Joo\far,am) \ON

-----

d
e d
it Mf g

m

+Y fla) Via) - (7 (@) =74 (@), (24)

=1

where 7 is the left - and respectively 7+ (a;) right limit of tangential vector 7 of the
surface. Tangent vector is assumed to be oriented to counterclockwise direction.

For a three dimensional case we the have following proposition:

Proposition 2.1 ([SZ92]). Suppose that 2 € R3 f € H?, 9Q is divided into two C*,
k > 2 boundaries 99, and 0, by a C*, k& > 2 path v so that 9O, N 99 = 0 and
00 = 091 U0y U~. Then

d

e d
dt mf g

:/m\7 (g—£+mf> (V,n) da—l—/va(V(ai)—i—VJr(ai))d% (2.5)

t=0
where v~ is normal of the boundary of the surface 2, on v — and respectively v normal
of the boundary of the surface 2, on ~.

2.1.4 Structure theorems

Structure theorem of the shape gradient tells that the support of the shape gradi-
ent is contained in the boundary [DZ01].

Theorem 2.1 ([SZ92]). Let J(£2) be a real-valued shape function. Assume that for some
k > 0 shape gradient G(£2) exists for an open domain Q@ C R"™, G(£2) is continuous in
D*(R™, R™)-topology and boundary of 2 is C¥*1. Then

(i) there exist a scalar distribution g(0€2) with support in 0 such that ¢(9) €
C*(082)" and for all V in D*(R", R™),

dJ (V) = (g(082),7a(V) - n>ck(aﬂ)-
(ii) If further g(02) € L'(09),
dJ(; V) :/ gV -ndo

o0

and G = ~{(gn), where ~q is the trace operator on 0f).
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So the above theorem states that if we have a continuous shape gradient
it can be represented by a distribution supported only on the boundary of the
domain studied. As an application to the free boundary problems we recall the
example in the introduction. Assume that v is given from space H?(D) and let
Q1 C D be the open domain with C?-boundary. We shall use the variational
functional from section 1.3.1

E*(Q):= inf Ej(u,Q):= inf /Vu~Vud:L’—/ N dx.
D

u€HL(D) weH (D) Dq
Then 5
dE* (V) :/ (Vu-ng—)\qu—)\—(b) V- -ndo
a0 87?/
so that the shape gradient can be represented by a distribution

g(09) = Ya0 (Vu Vo — Aok — )\g—z) .

Let us now study the second order shape derivatives. Second order deriva-
tives are important especially when analysing optimality conditions for shape
functions. To introduce the second order shape derivative of a shape function we
assume that there are smooth vector fields V' and W defined in [0, 7] x D. De-
note Q. (W) = T;(W)(§2) with T;(1W) being the transformation related to field 1.
Assume that d.J(Q,(W); V(t)) exists for all t € [0,7]. The second order Eulerian
semiderivative at ) in directions V, W is defined as [BZ97]

PHOV)  tiag 2V V(0) = DIV (0)

t—0 t

whenever the limit exists. Function J is twice shape differentiable at € if for all
V,W € D(R",R"), d*J(Q; V; V) exists and the map

h(V,W) — d*(Q; V; W) : D(R",R") x D(R",R") — R

is bilinear and continuous. Associate notation H (£2) for the vector distribution in
(D(R™,R™) x D(R™,R™))’,

(VW) = (H(Q),V @ W) = h(V,W).
H is the shape Hessian of the shape function J. Here
(V@ W)iy(x,y) =Vilz) Wj(y), 4.5 €{l,...,n}

In the following we shall quote the structure theorem for the shape Hessian in
smooth case [BZ97]. V and W are assumed to be autonomous fields and suppose
that ¢(0Q) € H%@Q). J is supposed to be regular enough to guarantee regular
extension for g say Q(Q) € H?(Q2) and that the map 2 — Q(9Q) is shape differen-
tiable, i.e. shape derivative Q'(2; V') exists for any V' € D(R",R"). Since shape
derivative depends only on the normal component of the perturbation, we can
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use this and define Q : D(9Q) — L2(9Q), Q(v) = Q'(:; V), where V is such that
(V,n) = v. Now the structure of the shape Hessian can be written by

+ B(V,W) + Q(Q)sz%n] do
o0N

2J(Q VW) = <Q(W n), V- n> o

L2(0Q)x L2(09)
where B(V, W) is a symmetric bilinear form,

BO.W) = [ (@) (Won) — QWi 2, do

Symmetricity of B(V, W) can be verified by transforming the above representa-
tion to the domain integrals [BZ97].

Calculation of the shape Hessian for shape optimization based approaches
for free boundary problems at the solution gives an insight into the behavior of
the solution. Second order optimality conditions require the Shape Hessian to
be positive definite. Indefinite shape Hessian states that the critical point is a
saddle point and therefore the solution of the free boundary problem may not be a
solution of the optimization problem. In the following section a shape sensitivity
analysis is applied for modified model problems to show different ways in which
to analyze shape optimization based approaches for free boundary problems.

In general shape Hessian is not symmetric but it can be shown that for crit-
ical domains ie. domains in which the shape gradient is zero the shape Hessian
is symmetric. A nonsymmetric part can be in particular presented by a shape
gradient applied to a velocity field (DV)IW [DZ01]

2.2 Use of shape calculus in free boundary problems —an example

In this section we shall give a more detailed analysis of the free fluid surface prob-
lem studied in paper [I]. Let us next study two dimensional fluid flows under
gravitation. The flow is assumed to be inviscid, incompressible and irrotational
so that the potential flow formulation can be used. The problem to be studied can
be formulated either by potential formulation,

Au=0 inQ, u—0 onx, (2.6a)
Viu=60 onyx, Gu—0 onTy, (2.6b)
a—u =—1 only, u=0 onTl,, (2.6¢)
on

or by stream function formulation,

AYp =0 ing, Yv=1 on, (2.7a)
8_w =60 on, =0 only, (2.7b)
on
o

— =0 onIy, Y=y onl,. (2.7¢)
on
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Here T'; is the inflow boundary, I', is the outflow boundary, X is the free bound-
ary and I'; is a fixed boundary (bottom of the geometry). In above equations 6
depends on the height of the free boundary point,

2
0 :=1/2C + —-
0+FTZ/7

where Fr is the Froude number, Cj is the Bernoulli constant and y is the height at
given point.
Let us consider the following functional J

uey

J(2) == inf E(Q,u), = / |Vul?dr + = /92 dzx, (2.8)

which depends both on the geometry of the fluid surface and on the flow velocity
(norm of the gradient of potential/stream function). E(2,u) can be considered
to be the sum of kinetic and potential energies. This energy formulation can be
used both for stream function formulation and for potential function formulation,
depending on the choice of space V that we vary the energy. It turns out that the
critical points of J are the solutions of our free boundary problem when  is
varied in a suitable set. In what follows we shall show this and study the nature
of the critical points.

2.2.1 Potential flow formulation

The potential formulation can be derived from the energy E by choosing the func-
tion space V = {v € H(Q)|v = 0atT,}. In this case the definition of energy F
has to be modified to take into account the inflow boundary condition. Let us
now introduce functional J;,

1
J1(2) = inf E1(Q,u), E1(Q,u) /|Vu|2dx+/ uds + 2/6’2 dx. (2.9)
I

uey
The first order optimality conditions for E; (with respect to u) reads
dE(Q,u;v) = / Vu - Voudz —i—/ vds =0, forallveV, (2.10)
Q Fl‘

and for J;(Q),
dL (V) = / Vuy, - Vudz + %/ (Vu-Vu+6%) (V,n) ds =0 (2.11)
Q >

Proposition 2.2. Let ) be a critical point of J satisfying Cy + & > ¢ > 0 for all
(xz,y) € €, Q is smooth enough. Then (€2, ) is a solution of the free boundary problem
(2.6).

Proof. As u solves equation (2.10) for all v € V we get that u solves the potential
formulation (2.6) except the condition Vu - Vu = 6* has to be verified. First we
perturb the equation (2.10) in both sides with respect to the geometry to get

/VuQ,-Vvd:c—i—/VwVv(V,n) de =0 forallveV.
Q >



31
As u € V we substitute above u — v to get
/ Vuy, - Vude = —/ Vu - Vudo. (2.12)
Q %

Substituting this to equation (2.11) we get

1
dJ (V) = 3 /(92 —|Vul?)(V,n) = 0 for all suitable V. (2.13)
Q
Therefore Vu - Vu = 62 must hold at critical point. O

Thus, to find one solution to FBP, it is sufficient to find a critical point of
E1. In order to be able to do that we have to analyse the second order optimality
conditions so that we know how FE; behaves near the critical points. Let V and
W be two autonomous vector fields so that (V,n) = (W,n) = 0 on 902 \ ¥ and
W =V =0atpoint XN T,. We get from (2.13)

dE(Q,u; V) = 1/ (0> — |Vul*) V - nds

2 Js
:%/Qv.(v(ez—wuﬁ)) d

by applying the Stokes theorem. For the second order shape derivative we first
have

dJ(Qu; VW) = — / V- (V (Vu-Vuy)) dx
Q

+ %/Ev (V (6% — |Vul?)) (W,n) ds (2.14)

— [1 + [2.
Applying once more the Stokes theorem and integrating by parts on X we get

h= = [ Vu iy (Vo) ds = [ Ve (V) D) i s,
by by

For wj,, we can find a boundary condition from (2.12) by integrating by parts,

ouly,
on
We now denote by P the Neumann to Dirichlet map which is defined by

=Vys:-(W,n)Vru) onx. (2.15)

Pu=wv
%
for v being solution of

—Av=0 1In{,

ov
— = onxY
an ’

v=0 onIYy.
ov

6_n:0 onoN\ (X UTy),
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Then we can write at the solution

Wy =P (agg) = P (Vg ((W,n) Vru)) at3. (2.16)

I, can be splitted to

ja. %/E(v V) (6 — [Veul?) (Win) ds

1 0
+ 3 /z (V,n) o (92 — |Vpu|2) (W,n) ds

+%Lm@yva%4mmHaMMda

where Vs = V — (V,n)n. The first and the third term disappear at the critical
point so that we have for I,

1 0
L= /Z B (6% = |Vrul?) (V,n) (W,n) do. (2.17)
We continue by differentiating

06° _ 2 0y _ 2n,

on _ Fron  Fr’
where n, is the upward pointing component of the normal vector n. Finally, it
follows from 2% = 0 on ¥ that we have

63|Vu|2 = —2k|Vrul*> on Y, (2.18)
n

where « is the mean curvature of the surface X. Thus we get the final expression
for the shape Hessian:

Proposition 2.3. At any critical point of the energy £, the shape Hessian of £ has the
expression

d2J1(Q’ wV W)= / Vr - ((V,n)Vru) P (Vs - ((W,n) Vru)) ds
E n (2.19)
Jr[; <92H + Fi) (W,n) (V,n) ds.

We observe that the Hessian is a continuous mapping from H%(E) X
H%(E) — R. This implies, among other things, that straightforward discreti-
sation of the problem leads to a discrete problem where the condition number is
inversely proportional to grid size.

A closer look at the shape Hessian tells us how the functional J; behaves
near the solution. For big Froude numbers, say Fr > 1, we can see that the last
term 2 is small and the first term majorizes the Hessian if the curvature of the
surface X is near zero. Thus the operator is positive definite. Then we have a
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local minimum at every critical point. So we can use optimization to achieve the
critical point. For small Froude numbers the last term gets bigger and we lose the
positive definiteness so the critical point turns to a saddle point. This means that
the free boundary is not a minimiser of the ’energy’ of the system.

This can be in particular analysed by studying Hessian for a simple case, for
a rectangular domain Q := (0,27) x (—1,0). Then for Bernoulli constant C, = 2
the potential function is u = 2r — z. The shape Hessian can then be written in a
simplified form,

T OV oW 1
2 , _ y y
A (VW) = o (x,1)P ( o (z, 1)) + o Vy(x, 1) W, (z,1) dx.

Denote now by v(z) = V,(z,1) and w(x) = W,(x, 1) respectively. Now we try to
construct a velocity field W such that @27, (Q; V, W) = 0 for all V. This means that
the shape Hessian is not strictly positive definite and therefore there may exist a
solution to the free boundary problem near the given geometry. We shall search
this in the form w(x) = sin(¢y z). Now as in paper [I] we obtain by separation of

the variables S~(v/(x)) = m cos(to x), and we get

2m 1
d? (L V, W) = / V() cos(tox) + o v(z) sin(to x) dx
0

tanh(ty)

_ /0 7 (@) sin(to 2) (_mn;% 4 Fir) dz.

Thus d?J,(92; V, W) = 0 for all V by given form of W' if
tanh(tg) = to Fr holds. (2.20)

For Fr > 1 there exists no such t, but for Fr < 1 there exists exactly one t, > 0
such that (2.20) holds. This corresponds to the formation of gravity waves [LK96],
for which the above equation descibes the possible wavelengths as a function of
the Froude number. This agrees with the linear theory for water waves [Sto57,
Whi74].

Remark 2.1. In a two dimensional case the gravity waves for this particular free bound-
ary problem require use of nonreflecting boundary conditions. This is considered in refer-
ences [Bai75, CL83, LM81, LT88, SZ96, JAY79, CIé96, Gival].

2.2.2 Stream function formulation

We now formulate the problem to a stream function form in a bounded region
Q. The mathematical formulation differs from the potential function formulation
only in the boundary conditions. Our aim here is to check how this affects the
shape Hessian. Let 2 now be a region with the boundary 0Q = S UT; UL, UT,.
Let V() = {v e H(Q)|v=00onT,and v = 1 on X}. We now formulate the free
boundary problem by

Jo(2) := inf E(Q,u) (2.21)

ueVy
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The variation of E with respect to parameter u gives us

dE(Q,u;v) = / Vu-Vudr forallv e Hj(Q).
Q

So in the critical point of £ « is a weak solution of

—Au=0 1InqQ,
ou
— =0 onI;Ul,,
on (2.22)

u=1 onx,
u=20 atly.

The following proposition can be easily obtained repeating the steps taken in
section 2.2.1:

Proposition 2.4. Let V and W be two autonomous vector fields so that (V,n) =
(Won) =0atoQ\ X,V =W = 0at point X N I[';. Atany critical point of J, the shape
Hessian of J, has the expression

(V,n) 0(S+ Ik)(W,n) 0 do +/ (V,n) (W, n) n—f; do, (2.23)

2 . _
dMQMM_/ . -

2

where S = P! is the Steklov-Poincare operator on X (i.e. the Dirichlet to Neumann
map).

As the operator S maps the Sobolev space H!(Y) into H'~1(), the minimal
regularity for (2.23) to make sense is that V and W belong to H? (22). Acloser look
at the shape Hessian again tells us that the shape optimization works only for big
Froude numbers for this formulation. Thus the situation is completely analogous
to potential formulation.

2.2.3 Least squares formulations for free boundary problems

Let us now consider the shape analysis of least squares formulation of FBPs. To
make the analysis transparent we shall first consider an abstract formulation. So
let us introduce two conditions f = f(u,¥X) = 0and g = ¢g(u,X) = 0 so that
the free boundary conditions (kinematic and dynamic) are satisfied if and only if
f =0and g = 0. Moreover we assume that the condition g = 0 can be used as a
boundary condition in the state problem. Then we introduce a functional J,

1
ﬂm:—/fm& (2.24)
2 /s
where u is a solution of the boundary value problem

Au=0 1In¢,
g(u,3)=0 onkx,
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combined with the boundary conditions in the outflow and inflow boundaries.
That is, the condition f = 0 is to be satisfied in the least squares sense. The
Eulerian shape derivative of J to direction V' reads now

dJ(E;V):/Zf{,deJr/Z(g—if—l—%fzfi) (V,n) ds.

Obviously this is zero at the solution of the FBP. The second order derivative at
the solution of our FBP (where f = 0) is

eavn = (R ghvm) (B wm) e e

n

If f is defined only on the free boundary the above formula can be presented by
shape boundary derivatives,

EIEV W) = [ fio S ds (2.26)
b}

Minimisation of the dynamic condition

In the potential function formulation it is difficult to impose the dynamic condi-
tion as a boundary condition for the state problem. Hence we choose

fi=Vul* - ¢
and 5
u
= — = E
g1 on 0 at
and define
S (%) = ! / fi?ds. (2.27)
2 )s

which is minimised under constraint

/Vu-Vvdx:/ vds forallveV,
Q Ty

where V = {ve H(Q)|v=0atT,}. The measure of ¥ is also bounded below
with some constant. This problem can be considered as an optimal control prob-
lem, where the control is the shape of €2 and the state is the velocity potential.

A straight calculation gives us

fily =2V - Vi, = 2V - ViP (Vs - (W, n) Vi)

and

0
3—{11 = —2k|Vrul* +

So we conclude the following proposition:

2n,

Fr-
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Proposition 2.5. At any critical point of the cost functional .J; the shape Hessian of J;
has the expression

P (VW) = 4/

3

Vi ViP(Vr - (Vim) Ve — (66 = 22) (Vim)]

Iy

(2.28)
[vpu Ve P(Vr - (W,n) Viu) — (,w? - Fr) W, n>] .

Clearly, the Hessian is positively semidefinite. However, it is still un-
bounded requiring V, W € H'(X) to be well defined. Hence, in the discrete case,
the conditioning behaves proportionally to the inverse of the grid size squared.

Minimisation of the kinematic condition of the stream function

As in previous sections we introduce a shape functional for a stream function and
try to find a form for the Shape Hessian. Now we choose

fo=u—1
and 5
u
= — —1)—0. 2.2
g2 on +a(u )—0 (2.29)
So we minimise .
J(X) = = / f.?ds (2.30)
2 Js

under constraint

/Vu~Vvd:c = / [a(u—1) —0lvds forallv eV,
Q %

where V = {v € H'(Q)|v = 0onT,}. J; is well defined for all » in V and for
regular enough Y. Parameter « is here an additional parameter which can be
chosen freely as v = 1 at the solution. Clearly we have for %,

afg . ou .
on  On

at the solution. For f,}, we have
f2§/ = UQ/

The boundary condition for a shape derivative uj, on ¥ reads in this case

0 00 ou
n [uy] + auy, = Vr - ((V,n) Vru) + &6 (V,n) + n (V,n) — as- (V,m)
but as we have u = 1 at the solution the first term in the right hand side vanishes
at the solution. Moreover we can now choose the parameter « so, that the right

hand side and, consequently u{,, vanishes also. That is, if we choose «,
ny

Fro?’

=K —

(2.31)

we have u;, = 0 for all V' at the solution.
We conclude here with the following propositions:
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Proposition 2.6. If we choose o = 0 in (2.29) and we have .J5(X) = 0 the shape Hessian
of the cost .J, reads

d2J2(2§ VW) = /
)

P (fn V) G0 Vi) )+ 6 (Vi)

50 (2.32)

. [P (9/{<VV,I1> + o <VV,n>) +6’(VV,n)} ds

This Hessian is bounded in L?(X) x L*(¥). Moreover, the 'main’ part of

the Hessian, i.e. the term arising from a shape derivative of the state is now

regularising. This means that Hessian will remain bounded even if the condition
u = 1 will be replaced with the true kinematic condition Vru = 0 on X.

Proposition 2.7. If we choose o =  — 2% in (2.29) and we have J5(X) = 0 the shape
Hessian of the cost J, reads

d?Jo (S, V, W) = / 6> (V,n) (W,n) ds (2.33)
¥

So here we have gained the best possible Hessian for the problem - 62 times
identity operator in L*(X).

Another way to formulate the stream function model is to set up a cost func-
tional for the dynamic boundary condition. This formulation again leads to an
unbounded Hessian as in the potential flow case, so a better way is to formulate
the problem by this kinematic condition.

2.2.4 Internal free boundaries

In previous sections we analysed optimization based approaches to solve free
boundary problems, where the free boundary was part of the boundary of the
system. In this section we shall consider free boundary problems where the free
boundary is between two materials. Let us in particular study the following free
boundary problem,

—Au =0 in D, (2.34a)
u=1 on oD, (2.34b)
u=20 on 012, (2.34c)

Vulg, - n= X on Y (2.34d)
u=1 on . (2.34e)

Here [Vu|y, means the jump in the gradient on the boundary to the exterior direc-
tion from Q. The geometry of the studied problem is described in Figure 3. Now
domain 2 and D are fixed but between these domains there exists a free bound-
ary which is formed as a discontinuity in the gradient of u. Let us first study a
one dimensional case,

u(z) =0 forxze (0,2)\ {s}, (2.35a)
(W' (z)],_, = A\ (2.35b)
u(s) =1, u(0)=0 andu(2)=1, (2.35c¢)
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FIGURE 3 Geometry for the internal free boundary problem.

where
(W' (z)],_, == lim u/(z) — lim u'(z).

T—8~ r—st

For A > % we have a solution to this free boundary problem,

1
u() = Ax forz e [01, )
1 forze (5,2

Here the free boundary is at position s = % € (0,2).
Let us first consider the following shape optimization formulation of this
transmission type problem

. 1
min (u(s) —1)> withu—v € Hy(0,2), v(z) = =z (2.36)

5€(0,2) 2

2
/ u'(z) @' (z) dr = Mp(s) forall p € Hy(0,2). (2.37)
0
Now equation (2.37) is uniquely solvable and the solution is
r=sE=DX - for ¢ € [0, o]

= 2 T 2.38
u(z) {71(1(;2) A forz e (s,2). (2.38)

By substituting the value of the solution at point s to the cost function, we get

(s —2)%(sA—1)
1 .
We see that J € C*°(R). Let us study the optimality conditions at the minimum

point (s* = %). The first order derivative of J with respect to free boundary
position is

J(s) =

Je = 52D (—1+;) A=1) (sA=1)

The second order derivative is

J”(s):%vL)\(4—33+(2+3(s—2) s) A)
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By substituting s* — s we get
1" x 1 2
J"(s ):5(1—2)\) :

Obviously J”(s*) > 0 for A > % and the second order optimality condition guar-
antees the existence of a local minima for the functional. Thus we can, for exam-
ple, apply the quadratically convergent Newton method to obtain the solution.

As above we could solve this shape optimization problem straightforwardly
but we could not observe the actual difficulty arising in this transmission type
problem. The basic difficulty arises from the treatment of the function presenting
the shape derivative of the state function. Consider an iterative solution algo-
rithm where we first solve the state equation (2.37) and get a solution (2.38).
Now the derivative of the solution is discontinuous on the free boundary and
therefore we can not use a normal derivative of the solution for finding a new
trial point for the free boundary. As we know the solution we can analyze that
the left derivative of the solution is equal to A. This suggests the following algo-
rithm:

1. Set k = 0, choose initial guess s, € (0,2).

2. Evaluate uy(sx) = %(sk — A8k + 2A ).

3. Set sy = s — %

4. Update k = k + 1 and continue from step 2 until converged.

This iteration converges, but not quadratically. We can calculate the convergence
speed by differentiating the update i(s) := % with respect to s,

5 (s)] o =1

1
A 2\
Hence |sj1 — s*| & 55|sx — s*|. From here we can see that if A is near 1 the method
converges very slowly, even near the solution. For bigger A, say A >> 1 method
converges faster but still only linearly. Thus we have to consider the problem in
more detail.

Let us now analyse the shape derivative of the solution u. Let us now study
how we can apply the shape linearization method to this model problem. As
the solution is not continuous we can not use normal derivatives on the bound-
ary. One remedy in this case is to separate the solution to u;(x) and uy(z) and
use the shape linearization method separately in each part. Now we use a weak
formulation

/0 (7)) da + [ wd@) @) de = xps) o
ur(0) =0, wui(s)—1=0, wuy(s)—1=0anduy(2)=1.
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From these equations we get the following shape linearized equations for (du,
dug, 05)

/Os duy' (z) ¢’ (z) dw + / duy' () @' (x) do =
Ap(s) — /OS uy' () ¢’ (x) doe — / uo (z) ¢’ (x) dx, (2.39)

dui(0) = —uy(0),  duy(s) +ui'(s)ds =1 — uy(s), (2.40)
dus(s) +ug'(s)ds =1 —wua(s) and duz(2) = 1 — us(2). (2.41)

This gives us the following solution algorithm

1. Set k = 0, choose initial guesses sy € (0,2), ug;(z) € H'(0,s) and ugy(z) €
H'(s,2) such that u;,’(sg) — u'(s9) = .

2. Solve (duq, dus, ds) from equations (2.39)-(2.41).
3. Set sp11 = Sk + 08, Upt1; = Ug; + 0wy, ©=1,2.
4. Update k£ = k + 1 and continue from step 2 until converged.

The above algorithm converges quadratically if the initial guess is near the solu-
tion.

Previous calculations with a one dimensional transmission-type free bound-
ary problem gave us a small hint about the linearization procedure. First of all,
the solutions were separated but connected via linearized equations. In the fol-
lowing we shall extend the result for a multidimensional case. We shall study the
continuous casting of steel. In this case the physical situation is as follows. The
melted steel comes into the domain from boundary I'; (see Figure 4). The steel so-
lidifies inside the domain and the steel is pulled out from the tube by a constant
velocity from boundary I',. The temperature is controlled on boundary I', with
cooling or heating (temperature gradient is known in the normal direction).

I

L'y

FIGURE 4 Geometry for the model transmission problem. I'y in the bottom and
the top are the wall boundaries, I'; and T',, are the “inflow” and “out-
flow” boundaries.
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Neglecting all but temperature diffusion and temperature convection by
constant velocity we end up with the following simplified equations

—Au+S-Vu=0 inQ\, (2.42a)
u=20 onl, (2.42b)
u=2 onl,, (2.42c)

u =a onl,, (2.42d)
on

u=1 on X, (2.42¢)

Vuls -ny = X on . (2.42f)

Here Q) = Q; U5, u denotes the scaled temperature, X is the freezing position (at
temperature v = 1) and a denotes the rate of boundary cooling.

We shall linearize the following form of the equations (we first set S =0 for
simplicity without loss of generality).

2
Z( kauk-wd:p) —/E)\gbda—/nagbdaz(),

k=1

/E(u1 1) do =0,
/Z(u2 —1)¢do = 0.

For these equation we can apply shape linearization to achieve the following
equations for du,, duy, and 6%,

5 (f, v voue) + S ommiooss
o - ) (2.43)
:/z)\gbda—;< kak.wd:p)
/Z (5u1 + %52) ¢do = /2(1 —uy)) do, (2.44)
/E <5u2 + %52) ¢do = /2(1 — up)v do, (2.45)

where s, &k = 1, 2 are the intersection points of the free boundary > and the wall
I',,. Both derivatives % and %% are taken in an outward normal direction from
domain Q;. If 24 =£ 0 or 222 + 0 on free boundary ¥ the linearized equation is
solvable. Later we will study the convergence properties of the above algorithm
by numerical implementation.

As a conclusion we have seen that the shape derivatives can be used to ana-
lyze the qualities of the different formulations of free boundary problems. Shape
calculus provide the tools to derive efficient algorithms to solve FBPs. For inter-
nal free boundary problems shape calculus suggests that for optimal formulation
the state solution is not continuous during the iteration but instead the solution
is connected by a transmission-type condition on the free boundary.



3 IMPLEMENTATION ASPECTS

In this chapter we will describe the implementation of the shape linearization
method. In the first section of this chapter we shall study the approximation of
different geometrical quantities defined in discrete geometry. We shall propose
approximations for curvature and normal vector although these quantities are
not defined pointwise for polyhedral geometries.

In the second section we shall focus on the automatic calculation of the sen-
sitivities for discrete equations. First we shortly review the automatic differen-
tiation and discuss the applicability of the automatic differentiation to a discrete
form of a free boundary problem. This is studied in detail for a one dimensional
model of a free boundary problem. We observe the differences between continu-
ous and discrete linearization.

In the third section we shall present numerical results. First we build a test
bench to verify that the automatic differentiation produces the correct linearized
equations. The shape linearization is applied to a simple model problem and
the convergence properties of the algorithm is studied with a smooth case. The
automatic shape linearization is applied to a die-swell problem and an internal
free boundary problem.

3.1 Numerical approximation of the geometry

In this section we shall consider approximation of different geometrical quantities
of the discrete geometry.

3.1.1 Approximation of geometric quantities

In a finite element method an infinite dimensional function space is approximated
using a finite set of functions. These functions that form the basis of a discrete fi-
nite dimensional subspace of some functional space are usually defined in simple
geometrical elements. A domain 2 is approximated by a collection of elements,
Qn = Use;, where e; denotes a single element (triangle, quadrilateral or tetrahedra
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etc). For a suitable approximation for the geometry it usually holds [KN90]
192 — Qo < ch?,

Let us now study the approximation of some geometric quantities of the bound-
ary, like a normal vector field n and the mean curvature . The mean curvature
appears in the shape derivative of the boundary integrals and it is essential in the
shape linearization of free boundary problems.

First of all we shall sketch the smoothing of a normal vector field. For this
we shall set up a finite dimensional subspace W, defined on a discrete free bound-
ary ¥,. W, might be for example the space of piecewise linear functions. Now
we project the discrete normal vector field into the space W, = {span{¢;}, i =
1,..., N} by solving the projection equation

N
ZI‘Z‘ ¢z¢] dr = / Ilghqu de, j = ]_,...,N. (31)
=1 U%n Xn

Here fzh ¢i¢; do is a boundary mass matrix, ny, (z) € R™ is the normal vector of
the element at point z € ¥;, oriented outward of 2, and r; € R™ are the multipliers
for a smoothed normal vector for basis functions in space W),. From this linear
equation we can solve r to get a discrete smoothed normal vector field ny, =
> i Titi

Let us now study the approximation of the mean curvature. We shall use
the following properties from differential geometry [Ban01, BMNO4a]:

Ari =R, (n—1)k=RFk-n, (3.2)
where Ar is the Laplace-Beltrami operator on the surface and n is the dimension
of the space so that (n-1) is the dimension of the boundary. ¥ = (z4,...,z,) are
the coordinates of the boundary at a given pointand < = (ky, .. ., k,,) IS curvature

vector. We can multiply this equation by a smooth test function ¢ and integrate
over the boundary to get for each z;,

/Apxi¢d0:—/vpxi-vpgbda+/ (vs - Vrz)ody, i=1,...,n.
2 2 %

Here vs, is the normal of the boundary of X. v is oriented outward of the bound-
ary ¥ and is orthogonal to the normal vector n of ..

In what follows we shall discretize equation (3.2) to achieve the following
equation for a smoothed discrete curvature vector & = Zf‘il a0,

é/thi(bi%dgz_/z,

forj=1,...,M and

VrZ - Vrodo + / (VrZ-vs,) ¢dv, (3.3)

Sy

1

M
(n—l)Z/ G ¢ ; — Qi -ny, Gipjdo =0, forj=1,....M.  (3.4)
i=1 Y %n
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As a matrix equation in a discrete case we get the following system of equa-
tions for the curvature:

& - 5 = o) 69
where matrices are
M, == Mjldnyn, M;; = g ¢i¢9;jdo and C;; = IdeN[Z ny, ¢; ¢; do,
h h
and the force vector is
f, =— VrZ - Vro; do +/ (VrZ-vs,) ¢;dy.
n oxy,

After solving this linear equation we get an approximation for the mean curva-
ture of the boundary ¥ defined on X, &5, = >, ¢;¢;. In reference [BMNO4b] there
is an error analysis for surface diffusion flows and especially they proved second
order convergence for the error of the curvature in a curvature driven flow, if the
surface can be represented locally by a graph and the surface is smooth enough.
In [Smo01] the convergence of the approximated curvatures are estimated in less
restrictive smoothness conditions. Clearly, as the regularity of the boundary re-
duces the convergence estimate of the curvature also reduces.

Remark 3.1. By using smooth approximation (like Bezier-curves or Bezier-surfaces) for
the boundaries the normal vector and the curvatures can be calculated straightforwardly
using the smooth boundary approximation.

FIGURE 5 Smoothed normal vector field (ny, , dashed) and actual normal vector
field (nyx, , continuous line) for piecewise linear approximation.

3.1.2 Updating of the geometry

One important issue in the solution procedure of a free boundary problem is the
updating scheme for the discrete geometry. We know the update for the geometry
in each iteration only on the free boundary. For the finite element approximation
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the mesh would distort if we would move only the boundary nodes. Therefore
we must extend the transformation of the boundary inside the domain.

One possible approach would be remeshing. By remeshing we mean that
the finite element mesh is created in each iteration as the geometry is changed.
This approach is computationally expensive but can be necessary in applications
where the free boundary changes dramatically and the error in the solution is
controlled by adaptation. Figure 6 shows the initial mesh and the final meshes for
a two dimensional free boundary problem, where the mesh is created during the
iteration steps. In a remeshing strategy the mesh topology changes and produces
small discontinuity between the state solution and the geometry. The changing
mesh topology can be for example a reordering of the elements or even new nodes
and elements within the mesh.

In the following we shall discuss some issues to be taken into account when
applying the remeshing strategy. Regular mesh generators take the position of
the boundary as an input and produce the created mesh (i.e. nodal positions etc).
As we get movement to the free boundary from the solution of shape linearized
equations at each iterate we can pass this change to the mesh generator. Follow-
ing aspects are important for implementation

= The change of mesh topology induces discontinuous change in the solution.

< When using a fixed point type iteration to solve a free boundary problem
the remeshing should be frozen during the iteration. Freezing means that
the internal nodal points will stop to move and the last few movements are
done only to free boundary nodes.

= |f the solution method requires data from the previous mesh, the solution
has to be interpolated between two different meshes.

FIGURE 6 Initial mesh (left) and final mesh (right) with remeshing solution strat-
egy.

Another way to update the finite element mesh geometry is to expand the
boundary update inside the domain and thus deform the finite elements, see Fig-
ure 7. This is computationally more efficient since the mesh topology does not
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change during the iteration. However, in this approach the mesh can be distorted
during the iteration, if the expansion is not chosen properly, see Figure 8. Let us
now consider the extension of the free boundary update inside the finite element
mesh.

FIGURE 7 Initial mesh (left) and final mesh (right) with mesh perturbation strategy.

FIGURE 8 Distorted mesh when free boundary is moved in normal direction.

At each iteration step in the solution procedure we know the change to the
current geometry on the free boundary in the normal direction. What is required
now is that we extend this update to the inner part of the discrete domain §2;,. We
could decide the lines along which the geometry would move during the iteration
and use a so called arbitrary Lagrangian-Eulerian (ALE)-method in the update
of the geometry [SFDO91, Kno04, B.M96] or to use curvilinear coordinate system
to handle the changes in the geometry [CS92].

In this thesis we shall use simple linear mapping to extend the change in the
geometry from the free boundary to the internal parts of the geometry. Here we
shall give the formulation for star-shaped initial geometry €2 for which it holds
that there exists a point x,, for which all points x € 0€2, n(x) - (x, —x) # 0. For this
geometry we shall construct linear mapping G, : R*™ — R?" (in two dimensional
case), where m is the number of freedoms of free boundary geometry and n is
the number of node points of the mesh. This linear mapping is calculated from
the initial mesh. In the following we shall give the algorithm to calculate this
mapping for a star-shaped domain:
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1. For each nodal point x; find point x; on a free boundary and point x; in
the radial direction of some fixed point in the middle of the star-shaped
domain. Determine the element e, for which point x, belongs to.

2. For each basis function ¢, supported on e; describing the free boundary
geometry, define

%% — x|

gik = 715 (Xf — Xp) Pk (Xs).
T Ixp — X2

Matrix (g;;) is clearly very sparse and therefore the update of the geometry is
efficient.

Remark 3.2. Above linear mapping G/, can also be extended to simple movements to one
coordinate direction and also for three dimensional case.

3.2 Automatic shape calculus

In this section we consider automatic derivation of the equations in order to ob-
tain the sensitivity equations for the iteration of the geometry. In the following
diagram we sketch the approaches leading to discrete equations for iterate in the
solution algorithm for a free boundary problem:

A(u,Q) =0 discretization Ap(up, Q) =0
B(u, Q) =0 Bh(uh, Qh) =0
lshape calculus lautomatic differentiation
Ay(u, Q) ou+ Ax(u, Q)08 = A(u,Q), discretization  [A11 Ag2| [dq|  [Ri(q, )
B7u(u, Q) ou + B7Z(U, Q) 0y = B(u, Q) A9y Ayl |da o Rg(q, a)

In particular, choosing a different order (discretization — shape calculus or shape

calculus — discretization) results in different discrete equations in the standard
approach. We will see however that with suitable modifications we can change
the order and end up with practically similar discrete equations.

3.2.1 Automatic differentiation

Automatic differentiation is a toolbox to achieve derivatives from functions with-
out calculation of the derivatives by hand. It has developed during recent years
mostly together with the improvement of the object oriented programming lan-
guages. In the numerical simulation of different real-life situations automatic
differentiation can produce more exact and correct implementations [MKMAUO3].
In particular, the calculation of the derivatives can be hidden from the implemen-
tation by overloading the operations that evaluate the functions to be differenti-
ated. However, there are still a few important issues to be left into consideration
for the programmer in order to achieve efficient programs.
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By definition directional derivative of a function f is a limit

df (2 y) = lim L&) = F(@)

e—0 g

In a computer program one can estimate this by difference, instead of taking a
real limit, to take ¢ as a small parameter and approximating

flx+ey) — f(x)
19

df (z;y) =

or by central difference

+0(e),

df (22 y) = flz+ 6y)2— Sz —ey)
9

The latter gives better approximation but requires almost twice as many evalu-

ations of function f at different points. Approximation of the derivatives by fi-

nite differences has been applied for solving a free boundary problem in [KT99],

where we calculated the derivative of the smoothed mean curvature with respect

to the geometry.

The above approach, although it seems to be natural by definition, has even-
tually some drawbacks. Firstly, it requires an evaluation of function f several
times, and, if applied to the free boundary problems for example, it could require
a solution of a state equation during each evaluation step. Secondly, the eval-
uation of the derivative includes a division within a small parameter ¢, which
results in an increase of the approximation errors. Thus the resulting derivative
is less accurate than the function value f(z).

In automatic differentiation the idea is to provide derivatives based on the
computer code, say the automatic differentiation results a program that calcu-
lates the derivative of f analytically. A computer program can abstractly be
represented by elementary unary and binary operators. A computer program
that calculates some values from the given data can be represented by a function
© : R" — R™, O(a) = b, where vector a = (ay,...,a,) € R" is the given data,
and b = (by,...,b,) € R™is the output of the calculation. The calculation can be
presented by

+ O(?).

tl = fl(a)a
ty = fa(a, ty),
t3 = f3(a, t1,t2),

tp = fp(a7 tlatQa s 7tp—1)7
b= F(a, ti,to,. .. ,tp),
where t;, 7 =1,...,p are temporary variables to store data.
The aim in automatic differentiation is the calculation of the Jacobian

o b o
J = das Oas Tt Oan ,
Db D O

Oas Oas e Oan
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which characterises the dependence of the result from the given data in the sense
of exact derivative of the program code. Applying this to a free boundary prob-
lem, a could consist of representation of the free boundary (node points, spline
control points etc) and b could be, for example,

b=(b), b =|Bu)?

so that the calculation of the Jacobian J is essentially calculation of a gradient
Vab;.

Automatic differentiation has two approaches to calculate derivatives: for-
ward and reverse modes [Gri89, HMO03]. In brief, a forward mode collects the
needed derivatives during the calculation and a reverse mode stores the opera-
tions to calculate the derivatives after the calculation is done. A reverse mode can
be compared to the adjoint state technique for optimal control problems, since it
can be formulated by using an adjoint state variable see Pironneau in [KPTZ00]
for example.

In what follows we study how to retain the relative ‘compactness’ of the
continuous approach and still exploit the ease of automatic differentiation. In the
case of a sensitivity analysis for a finite difference method this has been studied
by Borggaard et al [BV00], who proposed to modify the functional that was to
be differentiated. Here we shall use a different approach. We shall study how
the finite element software should be modified to produce continuous like shape
derivatives of the coded residuals R, (discrete version of A) and R, (discrete ver-
sion of B).

From a numerical point of view, we apply the automatic differentiation to
calculate the derivative of residual (R;(q, @), R2(q, )) € R™*™, where m is the
degrees of freedom in the geometry design and n is the degrees of freedom of
state. Here q denotes the state solution and o = (v, . . ., a,,) Stands for geometry
design vector, which defines the geometry of the finite element mesh. A Newton
step to find the zero point of the residual consists of solving a linear system

& i )
A21 A22 da RQ(CI,(X) ) .
Here Ay, is the derivative of residual R; with respect to q, A;; is the derivative
of residual R; with respect to a and respectively A,; derivative of R, with re-
spect to q, Ay, derivative of R, with respect to a. Now the efficiency of above
method depends how easily this system is solved. The most important issue in
this context is the sparsity of these matrices blocks.

The derivatives in the above with respect to q are standard and usually these
matrices are sparse. Here we shall focus on the differentiation with respect to
the geometry. As was initially introduced with the continuous formulation of
residuals A and B the residual A stands for elliptic BVP. A quite common way
to implement a finite element program is to use a mesh generation to produce
a finite element mesh. To obtain nodal movement of the finite element mesh
the mesh generation procedure must then be differentiated with respect a.. In

the worst case this derivative can be a large matrix which is not so sparse. The
derivative of the mesh generation routine can then be used in the calculation of
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a derivative of residuals with respect to the geometry («). Again, in the worst
case this can result in matrix A;, which is not sparse thus leading to an inefficient
solution procedure.

The continuous shape sensitivity analysis proposes that the shape gradient
only depends on the normal component of the perturbation velocity field. How-
ever, for a discrete formulation the movement of internal nodal points also affect
the solution. In general, internal nodal movements affect less on the solution than
a boundary node movement, i.e. the solution is more sensitive to the boundary
node changes.

In this thesis we study an approach where the discrete shape sensitivities are
modified to correspond to continuous shape sensitivities. To obtain more insight
in this we shall first study a model one dimensional free boundary problem.

3.2.2 One dimensional model free boundary problem

Our aim is to automate the calculation of the equations for the shape linearization
procedure. However, we approach this in a semi discrete way, that is, let us first
study the following one dimensional free boundary problem and its discretiza-
tion: find solution u(z) and position s such that

—u"(x) =1 xz€(0,s),

u(0) =0,
u(s) =1,
1
/ —_— —
u'(s) = 5
This problem has a unique solution assuming s > 0, u(z) = —32? 4+ 3z and s = 1.

Applying shape linearization for the above problem we get an equation for
the iterate (du, ds):

/0 " 5ul (2) () di — 65 b(s) = / @)0(r) ~ o) dr - o), (37a)
du(s) +u'(s)ds = u(s) — 1. (3.7b)

Here we have assumed without loss of generality that ¢'(s) = 0. Assuming, that
u solves v”(z) = 1 for z € (0, s) we get that éu”(x) = 0 for z € (0, s), du(0) = 0 and
6u'(s) = 0s — u/(s) — ;. Substituting du(z) = az we get the following system for

pair (a,ds) € R% / 1
o ] [ = 19 4]

we see that this equation is solvable, if the determinant «/(s) 4+ s # 0. Solving this
we get the following algorithm:

S

1. Set k=0, choose initial guess s, and uq(z) so that u,”(z) = 1 forz € (0, so+1),
up(0) = 0 and uf(sy) = 3
2. Solve
Sk — 2+ 2ug(sk) — 2 sp up(sg)
2 (s + up(sr))

58k =
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FIGURE 9 Numbering of piecewise linear basis functions in one dimensional case.

and

uk(sk) — 2 + 2ug(sk) uy(sk)
2 (s + ug(sk))

5uk =

3. Update s;1 = sp + 08, upy1 = ug + du, and k = k + 1. Repeat steps 2 and 3
until || (dug, dsx)|| small enough.

Itis easy to see, that if we are near the solution, we obtain a quadratic convergence
rate for the iteration (s, ax) — (Sg11, Grs1):

Lemma 3.1. Assume that u;,(z) = (—32% + a;z),
€< 1.Then |spq — 1] < e?and |apy1 — 2| < €

si,— 1] < eand |ax — 2)| < e with

Next our aim is to discretize the above iterative scheme and study the con-
vergence of this discretized problem. We shall see that fast convergence can be
obtained only by careful implementation.

First we approximate the solution of our one dimensional model free
boundary problem by v, = ZiNzl q:%;, Where ¢;, i = 1,..., N are piecewise linear
basis functions and ¢;, © = 1, ..., N are the multipliers for the basis functions (see
Figure 9). Now the discrete version of (3.7) reads as

S S 1
/ dup' @' dv — ds ¢;(s) = / up'¢;" — ¢jdw — 5@-(3),
0 0
dup(s) + up'(s) s = up(s) — 1,

where du;, = SN | 6q; ¢;.
The resulting system of equations can be written in matrix form,

Adqt +bds, = Aq® —f, (3.8a)
cloqt +dost =cqf —1, (3.8b)

where superscript -* denotes the kth iteration. Here A; = [ ¢/¢; dx, b; =
—¢i(s), Ci = ¢i(s), d = wy'(s) and f; = [ d;dx + L¢i(s). Now one iteration
step in discrete case consists of evaluation of A, b, ¢ and d and solving of pair
(69", §s;,) from system (3.8). The new candidates for the solution are then sought
by setting (q"*", si11) := (q* + 69", si + dsi).

Let us now study the convergence of the above discrete equation near the
solution. We shall consider the convergence of this problem separately, first with
respect to the state.
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Lemma 3.2. Assume that s, = 1 and interval [0, s;] is divided into NV intervals with
length » = 3&. Then §s;, = 0 for any g* such that u,,’(sx) # —sy.

Proof. Assuming that we have divided the interval with N elements with length
h we get that matrix A has a form

e jh forj<i
“)in forj>i

Vectors f, b and c are

>
o

and the scalar d = wu;/(sx). Next we shall show that the full linear system is
solvable. This is accomplished by noticing that the determinant of the matrix

A bT d + Sg .
det L d} =N # 0 by assumption.
Solving és; from system (3.8),
Ss. — clA-f —1
T d— AT

Now cf'A~t = h(1,2,...,N) and therefore
(Nh)>+ Nh 5,2 + s
2 2

from the mesh setup Nh = s;,. But as s, = 1 we have c’A~!f — 1 = 0 which
concludes the proof with the remark that the divisor

c'A7If =

d—c’A'b=d+hN =d+ s, #0.
O

The above lemma is quite obvious, since we have a linear state equation
under consideration. The convergence with respect to the free boundary point is
more delicate. In particular, we note that the approximation of the derivative of
the discrete solution plays an essential role in the convergence of the free bound-
ary point. For a simple approximation we can only obtain a linear convergent
rate which depends on the mesh size h:
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Lemma 3.3. Assume that

qki = <_

k_ _~k . . .
Proof. For given g we have $-2—12=1 — };jlj; Substituting this to the formula

calculated in the proof of lemma 3.2 we get

uy(s) i= T, (3.9)

(ﬁ)Q + %ﬁ) and that |s, — 1| < e. Then |s 1 — 1| < cieh+cy €.

DO =

2
S + Sp — 2
Ss(se) = 5
28k + Tgk
We see that %(1) = 3%1 Using Taylor series we conclude the estimate. O

Using some post—processing for the solution we can obtain a quadratically
convergent iteration:

Lemma 3.4. With the assumptions of lemma 3.3, except approximate the derivative of u,
by
(3ay — 4q§vh1 + Clez)‘ (3.10)

up'(s) ==
Then [spy1 — 1] < cé€?.

Proof. Now u),’(si) = 577

_ 1
NE = Zor Thus

Sk2+8k—2

(SSk(Sk) = SSk

, and ds;'(1) = 1.

O

Lemma 3.4 shows that careful implementation is needed to obtain better
than linear convergence in a discrete case. Post processing information was re-
quired - even in the most simple, one dimensional free boundary problem. There-
fore much attention must be paid into implementation of a multidimensional free
boundary problem solver.

Remark 3.3. In a general case the convergence can not be independent of the mesh size
since the finite element error itself does not obey the super convergence property, which is
the case in this simple one dimensional example, where the solution can be presented by a
quadratic function.

3.2.3 Residual based finite element implementation of 1D problem

Our next aim is to build a finite element implementation for the previous one
dimensional free boundary problem. We shall use a residual based finite element
implementation, where only the residual form of the equations is coded and the
matrices are calculated using automatic differentiation. We shall try separately
two different approaches. The first one uses a straightforward implementation
where the movement of the inner nodal points is also taken into account. In
the second approach we only use movement of the last nodal point to calculate
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the shape derivatives. This approach suggests modifications to the calculation
of the shape sensitivities to tune up the automatic calculation of shape linearised
equations.

In a residual based finite element calculation the form of the weak equations
is coded in a straightforward manner. We now assume that we have a geometry
parameter « that describes the position of the free boundary. The finite element
nodal points for the one dimensional free boundary problem are given by

o
T = k—.

N

Thus the nodal points of the mesh are moved as « is changed. The residuals that
describe the solution are now

naa)= [ 3 el @el@ - p@ - e, G
0 k=1
N
ry(a,a) =Y grpla) — 1. (3.12)
k=1

We further denote by

r—= (rlar27"'7rN+l)a
5= <QI7Q27"'7QN705) and
ds := (0q1,0qa, ..., 0qN, 0x).

In a standard finite element implementation the shape functions ¢;(x) depend on
the parameter «. This results in the following residuals:

N2p—q2) o
o' N
N(=q14+292—q3) o
a N
I‘(S) N(—gn-2+2gN-1—9N)  « (313)
« N
N(=gn-1ten) o 1
a 2N 2

In the second approach we perturb only the last nodal point of the finite element
mesh. Further, the basis functions on the last element are assumed to be fixed
with respect to the geometry change and the basis functions are continued con-
tinuously over the free boundary. Then the residual reads as

Cq1—q2) h

h
_ Do —
( ‘11+hq2 q3) h

f(S) _ ( (IN—3+2(I}1LV—2 gN-1) h (314)
2
(—an—2tanv—1) _ (@v—gn-1) (h—=hN+a)  h—hN?+2Noa—S | Nh—a
h h?2 2 2 h
(gv—gn-1) (h—hN+a)  (h—hN+a)®> 1a—(N-1)h
2 2h 2 h
(N h—a) (a—(N—-1)h)

N-1"—— TANT G — 1
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Here we denote by r the modified residual and by h a fixed element size that does
not depend on « at fixed geometry.

Remark 3.4. It holds that ¥(s) = r(s) for given s, but VF(s) # Vgr(s).

Now a straightforward application of the Newton method to solve zero-
point of residual (3.13) converges quadratically in a neighbourhood of the solu-
tion. The Newton iteration can be formulated by the following algorithm:

1. Pick a initial guess sg, set & = 0.

2. Solve és;, from equation

Vsr(sg) 0sy = r(sg)

3. Update s, 1 = s, — ds. and k = k + 1 and continue from 2 until converged.

Lemma 3.5. Assume that there exist a point s* € R +1\ 0, for which r(s*) = 0 and
det(Vgr(s*) # 0. Then the Newton algorithm converges quadratically in the neighbour-
hood of s*.

Proof. q is twice continuously differentiable at the solution of the free boundary
and the second order derivative is bounded. Further, the determinant of matrix
Vsr(s) # 0 for s neighbourhood of s*. Therefore the statement follows. O

Studying the second residual T(s) we notice that a straightforward imple-
mentation of the Newton method yields a slowly converging or even divergent
method. This is because the internal nodal point movement is not taken into ac-
count in the computation, as in practice h should depend on « and this is not
taken into account in the computation of the Jacobian of the residual.

The derivative of residual T with respect to the geometry parameter « reads

0
Ot 0
or ) (3.15)
8a<) (—(th[Igj)Vl)—N+%+%
Qth2N71 + N — 2« _%
GN—qN-—1

Comparing (3.15) to discretization of the shape linearised equations from the
previous section we notice that they differ in the second and third row from
below. A careful look at the calculations reveal that the extra terms shown up
here comes from the integrals involving the normal derivatives of the test func-
tions, which do not disappear at point « as it was assumed in the continuous
formulation of the shape linearised equations. The derivative -~ should be cal-
culated only for the part of ¥ which corresponds to the smaller trial space (where
¢'(s) = 0). The correct formula can be achieved by replacing the second row
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from below by the sum of the second and third row from below. This corre-
sponds to calculation of shape derivative of the discrete formula for a test func-
tion ¢n(z) := ¢n—1(z) + ©n(z) in the last element, with perturbation that moves
only the free boundary point. Same contribution can be achieved by multiplying
the above vector by (N + 1) x (/N + 1) projection matrix P:

0 ... 000
P=1|o ... 000 (3.16)
0 ... 110
0 ... 00 1
That is,
0
ot
P (s) =
8a<s) 0
-1
qN —gN-—1

h

Now the shape linearised equations can be obtained by the above procedure by
also applying an automatic differentiation in the calculations of the derivatives.
The calculated derivative is then modified by multiplying the shape sensitivity
part of the equations by matrix P. Instantly we notice that Lemma 3.3 suggests
that we do not have a quadratic convergence rate for the above discrete variant
of the one dimensional shape linearization but instead a linear convergence rate
depending on the mesh size h.

Remark 3.5. To obtain a better convergence rate we should obtain formula (3.10) from
the discrete shape sensitivity calculation. This can be obtained by using P2 elements to
approximate the boundary value of the discrete solution.

3.2.4 Isoparametric approach for automatic differentiation

In this section we shall study automatic differentiation of boundary integrals in
an isoparametric finite element approach [HMO03, Mak90]. In an isoparametric
approach the local integrals are transformed to integrals over the a reference el-
ement. We shall study this for a single element at first. In this context we shall
adopt the notations used in [HMO03],~ indicates that the variable is defined on ref-
erence element. In the following 7. is a single element, T is the reference element
and F. : T — T, is a one-to-one mapping of 7 onto 7,. Then the integrals defined
on T, can be computed by integrating over the reference element

[ fwyde - / FE€))|)de.

where |J| is the determinant of the Jacobian J of mapping F.. The standard way
to calculate local integrals in the isoparametric finite element method is to use
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local matrices and vectors in computation. First define

~

(& (o
N:=|: and G::<a§1-~a;1>’

051 9%
“p

08 "7 0&
where ¢, are shape functions and 0¢;,/0¢; are derivatives of the shape functions
for p-noded Lagrangian finite element in reference element 7. F, is now given by

F(&) =) §)X; for¢eT,
i=1

where X is a vector of nodal points,
Xll X12
X — )(.22 )(.22
X, Xy

Here X;; is the first coordinate point and X, is the second coordinate point of ith
element nodepoint in dimension two. In the following we have collected stan-
dard results for the finite element calculation [HMO3]:

p(z) = B(F (2), (3.17)
Vo(z) = J 'Vep(F. Y (z)) and (3.18)
J=GX (3.19)
forz e T,.
Now in practical finite element computations with an automatic differentia-
tion approach we have a design parameter vector a = (o, . . ., o, ), which defines

the geometry of the finite element mesh. Quite a standard way of calculating the
shape derivatives in finite element calculations seems to be to split the differentia-
tion with respect to the design variable by a chain rule [HMO03, HLNTO03, Num03],
i.e.
Of (z(c)) _ Of(x(ev)) O
doy Oz Oa;

Here 0z /0«; can be provided in advance for finite elements by calculating the de-
pendence of each nodepoint with respect to the geometry design variable vector
a. This approach has, however, a few drawbacks. First of all we need to compute
the derivative of each nodal point with respect to the design variable a. Thus in
the worst case we could have a full m x n matrix, for which m is the length of «
and n is the number of nodal points in the finite element mesh.

Haslinger and Méakinen [HMO3] have provided calculations of derivatives
of local finite element integrals with respect to the state variable o assumed that
the shape functions depend on the geometry. Then for isoparametric finite ele-
ments they show that % = 0forall i = 1,..., M. This means that the shape
functions follow the perturbation of the finite element mesh.

The objective here is to enable the calculation of shape sensitivities only on
the free boundary. The main idea is presented in the following lemma
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Lemma 3.6. Assume that V' is a velocity field supported interior of discrete domain
Oy, 6. V(zg) = 0 for xp € 0Qp,. Assume further that the finite element mesh is
perturbed by speed method, i.e. z}(t) = V(zx) and that f,(x) is a function defined
on Qp, fn € f/h(Qh), where V), is a discrete finite element function space of piecewise
polynomial continuous functions for which ¢/(€2,: V) = 0 for all € V,(£,) for any
smooth enough velocity field V. Then

0
— z)odx =0
ot o fh( )99 .
and
9 Vin(z) -Vedz) =0
ot Qp " v t:O_
forall o € V.

Proof. Since fr,p € L*'(9,) and V f,, - Vi € L'(£2;,) we can use Lemma 2.2 and the
statement follows. O

The above Lemma states that by fixing the shape functions with respect
to the geometry change we can restrict our attention to the boundary of discrete
geometry in the variation of the geometry. The next question is, can this modified
isoparametric technique be used in the calculation of a shape gradient of a given
functional.

Now to mimic the shape differentiation on a continuous level we require
that the shape functions do not depend on the perturbation of the geometry. For
this we need new one-to-one mapping

F.(&) = Z POX:,

where notation X means that we have fixed the positions of the nodal coordinates
with respect to the design variable «. In practice, this can be handled by defin-
ing a new variable X, which is not an AD-variable (AD stands for automatically
differentiated) in the finite element program. Now define

Now the test functions do not depend on the design parameter a and therefore
we can compute using the derivative of a domain integral [SZ92]

0
pn . ©i(x) dz

:/ev.m(x)w dx:/aTe oi(s)V - ndo

t=0

by the Stokes formula. Here we have applied transformation of identity, X (¢) =
X + tV(X). We see that summing this over the finite element mesh only leaves
the boundary of the mesh the exterior normal vector of each element boundary
and is opposite to the exterior normal vector of the adjacent element boundary.
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Consider now shape sensitivity of a local integral

/ Véi(x) - Vo (x) da.
Te(t)

Now the shape functions do not depend on the perturbation and we get

7))
ot Jr. ¢ I

Here derivatives V¢, are calculated at each element using isoparametric map-
ping. The derivatives of test functions have a jump over each element boundary
and therefore summing the above over all elements does have some contribution
from the inner part of the finite element mesh.

— / Vo,-Vo,V -ndo.
aT,

t=0

Remark 3.6. In Lemma 3.6 it is supposed that the shape functions do not continue over
the boundaries of the element. In practical computations of integrals the values of shape
functions are evaluated only at integration points. The local elementwise integrals are
then calculated using an integration rule that gives sufficient approximation to the con-
tinuous integrals. In this case the shape functions are continued continuously outside
local elements and these values contribute to the shape sensitivities in the modified ele-
ments.

Assuming that V' is supported only on the free boundary leads then to

V¢;-Vo;V -ndo = / V¢ -Vo;V -ndo.

AT, TN,

Now the situation is similar to the one dimensional example, we have a contri-
bution of a normal derivative of the test function to the derivative. The question
now is, how can this contribution be subtracted from the calculated derivative? If
we only consider quadrilateral elements that are constructed so that the elements
adjacent to the free boundary are orthogonal to the free boundary we can apply
the projection defined for one dimensional example. Then we can construct the
projection mapping by summing up the rows calculated from the discrete shape
sensitivity analysis. In this thesis we shall restrict our attention only to ¢, ele-
ments although this can be generalised for different elements also.

The idea proposed here will be the extension of the test function appearing
in integral by a constant value to the inside of the domain. This is basicly a mimic
of the calculations in the continuum, where the derivatives of the test functions
are assumed to vanish in a smooth case [SZ92].

In particular, we propose that we can use an element layer near the bound-
ary for which we calculate the shape derivatives of the integrals. This element
layer is defined so that at each nodepoint x; the neighbouring node point is given
by x; + 0(h)ng(zx), where ¢ is small enough and depends on size & locally. A
sketch of this configuration is given in Figure 10. Now we replace test functions
¢; in the calculations by summing the test function which corresponds to the ad-
jacent nodepoints in a generated element layer to each other. Furthermore, the
new nodepoints are assumed to be fixed so that the element layer is moved only
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FIGURE 10 (Q1—element layer generated for P;—element mesh.

on the boundary. Denoting éj the test function that is constructed with the above
method we get

9 / Vo Vo dr| = / Vré; - Vid;V - ndo.

ot Jiw o JoT.noq,

This corresponds to the calculation of shape sensitivities for continuous integrals.
For boundary integrals the integral itself is already supported on the bound-

ary of the finite element mesh so that the shape sensitivity can be calculated by

just modifying the calculation of the values of shape functions. However, the

modified shape functions are continued continuously over the free boundary and

thus the discrete shape sensitivity calculation involves normal derivatives. This

can be seen from the sensitivity calculation of

9 / pdo| = / (8—90 + /{) (V,n) do (+ contributions of corners).

ot Jor. o Jor. \On

Now the situation is more difficult compared to the interior integral. In practi-
cal computations we can not use the projection since in standard finite element
implementation the boundary integrals are supposed to vanish in shape func-
tions that are not supported on the boundary and these zero integrals are not
therefore evaluated and thus the nonzero shape derivatives are not evaluated
either. Then we do not get a contribution from the shape functions from the in-
terior nodal points that would cancel the normal derivatives of the test functions
supported on the free boundary. The remedy for this is presented in the follow-
ing. In the calculation of shape sensitivies we define a new variable ¢ (x) defined
on the free boundary only. We define a new test function on the free boundary,
o(x) = p(x) — g—‘g(x)q/;(x). Setting ¢ (z) = 0 for 2 € ¥ during the calculation we

get
o [ 05 B
+<%/E¢da) (V,n):/z(£+w) (V,n) do — Ea—i<v,n>
t=0

0/ N
— do
ot Jr ”
:/apm(V,n) do.
>

Here differentiation with respect to the state variable ) can be automated and this
can be done simultaneously with the shape sensitivity calculation.
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3.3 Numerical results

In this section we shall study the numerical implementation of different Newton-
type solution methods to solve a free boundary problem. We shall compare the
convergence between five different implementations:

DSL (Discrete Shape Linearization method) The derivatives with respect to the ge-
ometry are calculated using a modified implementation of an isoparamet-
ric finite element, automatic differentiation is used to obtain the shape lin-
earized equations and shape differentiation is restricted only on the free
boundary.

CSL (Continuous Shape Linearization method) The shape differentiation is first per-
formed for a continuous form of the equations and then the continuous
equations are discretized. Automatic differentiation is applied only with
respect to the state variable.

ISL (Implicit Shape Linearization method) This corresponds to CSL but the shape
linearized equations are further processed by applying conditions at the
solution of the free boundary to the state equation.

FAD (Full Automatic Differentiation) The mesh movement is not restricted only on
the free boundary, the internal boundary nodes are taken into account in the
shape differentiation.

BAD (Boundary restricted Automatic Differentiation) The automatic differentiation
with respect to the geometry is performed only for nodal points relying on
the free boundary.

The finite element program that was modified was Numerrin 2.0 [NumO03].
In this finite element library automatic differentiation is already implemented
but for our case the kernel routines had to be modified to implement DSL. The
finite element mesh movement was handled by linear mapping that extended
the boundary movements to the internal nodes. The tests were performed on a
Linux Debian-workstation with AMD K-7 CPU 550 MHz processor with 256 Mb
memory.

3.3.1 Convergence near the solution

At first we study the convergence near the known solutions of the FBP. The first
FBP is exterior Bernoulli’s free boundary problem with fixed boundary I', =
0B(0; 1) (circle with radius 1). The boundary conditions for the problem are u = 0

onI'y,u=1onXand g—z = 1 on X. There exists an axisymmetric solution for this
FBP, u(z,y) = log(2w7 V(;Q“’Q) where w is the Lambert 1¥-function, i.e. the inverse of
function f(x) = z e*. The solution geometry is a disc with radius r* = ﬁ

The convergence is studied by perturbing the solution geometry by small
sinusoidal perturbations. The algorithm to test the different methods is given in

the following.
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FIGURE 11 Perturbations for the mesh with wave numbers k = 1, ..., 8, amplitude

a=0.05

1. Initialize the mesh to correspond to the solution of the FBP.
2. Calculate the perturbation to the mesh on a free boundary by

sin(k0)
0) =w————,
PO) = k)
where 6 is the angle of the point in polar coordinates, w is the magnitude of
the perturbation and s is the spectral norm index (s = 0 corresponds to -

norm, s =1 to Hz-norm and s = 1 to H'-norm), and % is the wave number.
Perturb the free boundary by perturbation p, £, = (r}; + p(6))(cos 8, sin9).

3. Set initial guess w,, for the state solution to

log(2/ 7% + y:?)
uh(xiayi) = (U(Q) )

at each nodal point (z;, y;).

4. Solve one iteration to get an update for the geometry. Update the geometry
Ep — 21.

5. Calculate the error between the updated geometry and the solution geome-
try
e(0) = X1(0) —r;.
6. Calculate the contraction rate of the error

el e |
W= , a,be{0,= 1}
b= ol {0,531}

In Figure 11 we can see perturbations with eight different wave numbers for the
geometry. Figures 12— 14 show graphically the contraction rates 9 for 40 wave
lengths and two amplitudes and 99 for one amplitude. We used four different
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meshes, the free boundary was divided into 20, 40, 80 and 160 elements and
respectively in the radial direction the mesh contained 3, 5, 10 and 20 element
layers. The calculation of the fractal norm was done by using fourier multipliers.

We can see that the contraction rate gets better with low frequencies. When
the amplitude of the perturbation increases the convergence slows down or fails.
From Figure 12 we see that the different methods fail to get closer to the solution
in L2-norm when the wavelength of the perturbation gets smaller (with large
wave numbers). However, when studying the high frequencies of the error by
calculating the H! seminorm of the error one finds that the error becomes smaller
in the H' norm. Studying this more carefully it can be seen that the sawtooth-like
error is smoothed and then after one iteration there appears a constant displace-
ment in the radial direction. This constant value appears in L?*-norm but not in
H' seminorm.

Figure 15 presents the contraction rates for 160 x 20-mesh. We can observe
spectral behaviour for the solution methods. DSL and CSL seem to behave sim-
ilarly, these methods seem to operate like H* — L2, where 0 < s < % For ISL,

BAD and FAD spectral parameter s is most likely closer to 1 than %
3.3.2 Model problem

Let us next study a model problem for which the solution is not known a pri-
ori. The problem under investigation is the model problem presented in equa-
tion (1.2). The geometry of the domain can be seen in Figure 16. In the Neumann
condition (1.2c) we used value A = 1 and we changed the free boundary to be
an outer boundary, and a fixed boundary to be the inner boundary of the geom-
etry. We further used a zero Dirichlet value for the fixed boundary and v = 1 on
the free boundary. The fixed geometry consists of four segments of a circle with
a radius of 0.316, corner points of the fixed boundary are located at (—0.4,0.0),
(0.0,0.2), (0.4,0.0) and (0.0, —0.2).

We tested the convergence of the algorithm with different meshes and com-
pared the results against different implementations. Execution times of different
algorithms are shown in Table 1. We observed that a discrete shape linearization
method (denoted DSL) is slower due to the automatic differentiation of variables
with respect to the geometry, but the slow down is only approximately 6% from
the continuous form of the algorithms. The full automatic differentiation takes
the longest time for one iteration but on the other hand the FBP is practically
solved after four iterations. The most competitive solution algorithm seems to be
ISL. The worst results come from boundary restricted automatic differentiation
(BAD) which do not even get close to the solution in five iterations. The solution
times for BAD are the same as in full automatic differentiation since the sparsity
of the nodal derivatives is not used in the calculations.

In Figure 17 we plot the sum of L2-norms of the updates. The L2-norm for
the geometry update is calculated on the free boundary. We can observe that the
convergence of the implicit shape linearization method (ISL) accelerates as the
mesh is refined. This can not be observed from the other two algorithms.
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FIGURE 12 Contraction rate 9 for different wave numbers, k = 1,...,40, w = 0.01
for four meshes.
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Initial 128 x 16 mesh (left) and final mesh (right) for model problem.
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TABLE 1 Execution times in seconds, updates and residuals after five iterations
for 128 x 16 mesh.

one iteration 5 iterations |ous]| 10325 |
FAD 3.4 19.2 0.504%10~ 1% 0.247%10~ 4
DSL 2.6 14.2 0.330%10~2 0.486%10%
ISL 2.5 13.6 0.219%107° 0.188%10~8
CSL 2.5 13.6 0.434%1073 0.223%10°
BAD 3.3 17.8 0.119 0.918%10~2

. ! ! ! !
N DSL 64x8 ——
FAD DSL 128X16 ----x-- ]
DSL 256x32 %
ISL 64x8 g
ISL 128x16 --#--
ISL 256x32 --o-- 1

0.0001 r
0.0001 [

-5

le-08

le-08 [

le-12

le-12

FIGURE 17 Convergence of different shape linearization methods for 256 x 32 mesh
(left) and the convergence of the discrete shape linearization method
and implicit shape linearization method as the mesh is refined (right)
for the model problem.

3.3.3 Die-swell problem

In this section we shall study the solution of Navier-Stokes equations with a free
boundary. We shall study a bench-mark problem and compare the results for
known implementations. Cuvelier et al [KCSV88, CS90] and Duprét [Dup82] in-
troduced total linearization for the Navier-Stokes equations. They linearized the
nonlinear equations in a continuous case and calculated the solution of the non-
linear free boundary problem by a sequence of geometries.

Let us first introduce the problem under consideration. The Navier-Stokes
equations are

-V .0+ pu-Vu=pg, (3.20)
V-u=0, (3.21)

where ¢ = 2mué — pl, and £ = 1 (Vu+ Vu') is the transformation rate tensor.
Here u denotes the velocity of the fluid in a given point and p is the pressure of
the fluid.
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FIGURE 18 Die-Swell problem.

The boundary conditions for this free boundary problem are as follows

n-u=0 onTly, (3.22a)
u=0 onT,, (3.22b)
p=p. onl,, (3.22¢)
u= (gU x(y—1)*(1—y)and,0) onTy, (3.22d)
g-n=Xn-+pmn, n-u=0 onx. (3.22¢)

Here X is the surface tension coefficient and p. is the external pressure on the
fluid surface, here it is assumed to be zero as it is determined up to constant.
The finite element approximation uses Franca—Frey stabilisation [FF92] to give
feasible linear element approximation. Inflow boundary is positioned so that the
upper corner of the inflow boundary is at point (z,y) = (0,1) and the corner
point on the symmetry axis is located in the origin (0,0). The free boundary is
fixed in position in which it touches the pipe (point where ¥ and I',, meet). In the
calculations we used the following dimensionless parameters

pUL

Re Reynolds number, -

, ratio between inertia and viscosity of the fluid,

A

Ca™' Inverse capillary number, iR ratio between surface tension and viscous

forces.

The free boundary problem can be written in a weak form

/Q&l -Vodr + /qu -Vurpde + /2 Akni¢p do = 0, (3.23a)
/952 -Vodx + /qu -Vuso dzr + /z Akngp do = 0, (3.23b)
/QV -udx =0, (3.23¢c)

/Zu ‘n=>0 (3.23d)

In the numerical implementation we used Numerrin 2.0 software. In our calcu-
lations we used each free boundary node as a control point of the geometry and
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FIGURE 19 Die-Swell free boundary solutions for four cases.

the rest of the mesh was moved along the free boundary nodes. The calcula-
tions were made in a regular rectangular mesh. In reference [TMO05] there is also
considered a triangular mesh and especially the optimal restriction of the nodal
movement with the viewpoint of sparsity of the linearized matrices.

The following algorithms were implemented:

FAD Full Automatic Differentiation, all inner nodal point movement was taken
into account during the calculations.

DSL Discrete Shape Linearization, the derivatives were calculated only for moving
free boundary nodes.

DSLI Discrete Shape Linearization with Interpolation, same as above but at each
iteration the solution was interpolated between two meshes.

BAD Boundary restricted Automatic Differentiation, same as DSL but without pro-
jection of the test function contribution.

In the calculation we used 100 x 12 -mesh. From Figure 20 we can see the
behaviour of the residual against the execution time with Re = 1.0 and Ca™! =
0.4. The first step is taken without a geometry update and the time starts from
this point. The maximum iterations was set to 10. We see that after 20 seconds the
FAD method gets closer to the solution of the free boundary problem, but in the
beginning the discrete shape linearization takes more steps in the same execution
time (5 vs 4 iterations). The reduced computation time becomes from the reduced
calculations of the shape sensitivities. After five iterations DSL and as well as
DSLI turn out to be a linear convergence rate. This was already suggested for one
dimensional model problem.
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FIGURE 20 Convergence of the residual in execution time.

TABLE 2 Execution times in seconds for Die-Swell problem.

one iteration 4 iterations

FAD 5.7 22.8
DSL 4.3 17.2
DSLI 4.8 19.1
BAD 4.0 16.1

As a conclusion we can see, that the discrete shape linearization method
converges and is competitive against the full automatic differentiation of the
whole system. The execution time could be reduced even more by using iter-
ative methods that can take advantage of the sparsity of the linearized system.
The convergence is not superlinear in the last iteration steps. This could be im-
proved by post-processing the state solution in the finite element layer near the
free boundary as was suggested in the calculation of the one dimensional exam-

ple.

3.3.4 Internal free boundary

In this section we will test the applicability of the shape linearization method to
an internal free boundary problem. The first test is made for a model free bound-
ary problem (2.34) with axisymmetric interior and exterior boundaries. The inte-
rior boundary T; is a circle with radius r; = % and the exterior boundary 0D is a
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FIGURE 21 Initial 16 x 8 mesh (left) and final mesh (right) for model internal FBP
(A =0.8).

TABLE 3 Numerical results of the axisymmetric internal FBP with coarse mesh
and dense mesh various .

A r* 16 x 8 64 x 8

0.6 1.509 1.531 —
0.8 1.304 1.320 —
1.0 1.173 1.186 1.173
1.2 1.081 1.092 1.082
1.4 1.012 1.022 1.013
1.6 0.959 0.968 —
1.8 0.917 0.924 0.917
24 0.827 0.833 0.827

circle with radius r. = 2. The solution free boundary takes its position at radius
. 1
I

In Table 3 we have collected the numerical results for two different meshes. In
this case only a Discrete Shape Linearization method was used. The convergence
was observed to be linear in the last few iterations, see Figure 22. Further, the
convergence required the initial guess to be close to the solution. The conver-
gence accelerated slightly as the mesh size was refined. For a dense mesh the
convergence turned out to be more sensitive to the initial guess.

In the last numerical example we tested the internal free boundary problem
by adding a source term to the Laplacian —Au = 1 on the exterior part of the
domain. Thus the solution did not remain constant any more. Further the domain
2 was chosen to be a rectangle. The observed convergence was again only linear

but the solution was attained in 10 iterations. Initial guess and the solution can
be seen from Figure 23.
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FIGURE 22 Convergence of the residual for axisymmetric internal free boundary
problem with four different meshes.

R R

FIGURE 23 Initial 64 x 32 mesh (left) and the solution (right) for model internal FBP
(A = 1.1) with force term. Some of the rendering triangles are removed
to show the solution.



4 CONCLUSIONS

Shape calculus provides tools for systematic study and construction of algorithms
for solving stationary free boundary problems. In this thesis we studied different
formulations of free boundary problems and analysed solution methods using
shape sensitivity analysis. We constructed a simple fixed point type iteration
schemes. The iteration scheme was numerically verified to converge superlin-
early for a model problem.

The shape linearization method was introduced as an approximation of the
Newton method. The technique of the shape linearization was confirmed to work
also for numerical approximations. In particular, the automatic differentiation
could be applied to calculate the shape sensitivities and to linearize free boundary
problems. However, the implementation of the discrete shape linearization was
not straightforward but required careful treating of normal derivatives of discrete
shape functions.

The discrete shape linearization method was tested numerically for three
different examples. The first example illustrated the convergence properties of
different solution methods. Numerical results showed that the discrete shape lin-
earization method converges characteristically like discrete continuous lineariza-
tion methods. That is, the iteration starts with superlinear rate but the last it-
eration steps converge in a linear rate which depends on the mesh size. The
convergence accelerates slightly by refining the mesh. The second example was a
Die-Swell free boundary problem with the Navier-Stokes equations. It showed
out that the discrete shape linearization method works also for a free bound-
ary problem with nonlinear and non scalar state equation. The third example
demonstrated the applicability of the discrete shape linearization method to an
internal free boundary problem. When applying the method the state solution
was relaxed to allow discontinuity of the solution on the free boundary. This ap-
proach seems to be more robust and generic compared to methods presented in
the known literature. For example Tiihonen [Tii98] proposed a trial method for
an internal free boundary problem, where the state solution remains continuous
over the free boundary. The proposed method was however restricted to cases
where the derivative of the state solution is continuous over the free boundary.
For our approach the continuity of the derivative is not necessary.
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Finally we want to point out some research issues that were left open in this
thesis.

Treatment of corner points. In this thesis we assumed and analyzed only suffi-
ciently smooth cases. However, in practical calculations there often exist
stagnation points of edges of three materials or fluids [VB97, BS97]. The
question is, how this can be treated efficiently?

Convergence of the numerical method. It would be interesting to prove the ac-
tual convergence rates for the discrete shape linearization method. One di-
mensional example and the numerical examples indicate that the conver-
gence rate is O(h), i.e. the convergence depends on the mesh size. This
could be turned to superlinear convergence rate by post—processing the so-
lution at each step to obtain smoother approximation to the solution near
the free boundary.

3D cases. In the thesis only two dimensional models were presented. The pre-
sented methods are also applicable to three dimensional cases. Limiting
the shape sensitivity calculations only on the free boundary affects to the
efficiency of the assemblation of local matrices in a three dimensional case
even more than in the two dimensional case. This is because the matrices
corresponding to a three dimensional mesh contain more nonzero elements
since there are more shape functions supported on the same element. Fur-
ther, the computational cost of elementwise discrete shape sensitivity anal-
ysis is increased as there are more nodal points that affect to the geometry
and for each nodal point there is one direction more to vary. For example,
Q1-element has 8 degrees of geometric freedom in 2D (4 nodal points, 2
coordinate directions) and 24 degrees of geometric freedom in 3D. On the
other hand Flucher and Rumpf [FR97] showed that the theoretical conver-
gence rate for shape linearization in three dimensional case becomes slower.
Thus we can foresee that the discrete shape linearization will converge a bit
slower in 3D compared to full Newton method but the full Newton method
will take longer time for one iteration.

Time-dependent problems. Most common time dependent free boundary
solvers are based on the implicit solver with respect to state equation and
explicit solver with respect to the geometry. The velocity of the mesh is usu-
ally calculated along with the state equation. In this case there is no need
to use shape sensitivity calculations during the time steps. However, to
obtain unconditionally stable time discretizations for free boundary prob-
lems the geometrical quantities have to be treated implicitly. This concerns
especially the curvature terms like surface tension forces [Ban01l]. This
necessitates the shape sensitivity analysis.
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YHTEENVETO (FINNISH SUMMARY)

Téassa tyossa kehitetdan tehokkaita ja kayttokelpoisia ratkaisumenetelmia vapaan
reunan tehtéville. Tyo koostuu mallitehtavien matemaattisesta analyysista ja sii-
hen pohjautuvasta menetelméan konvergenssitarkastelusta, vastaavan numeeri-
sen toteutuksen esittelysté sekd numeerisista esimerkeista.

Ty0Ossa tutkittavat vapaan reunan tehtévat ovat ylimaariteltyja elliptisia osit-
taisdifferentiaaliyhtaloita. Ylimaaritellyt reunaehdot voivat toteutua vain erityi-
sessd geometriassa, joka ratkaisee yhtaldilla kuvatun vapaan reunan tehtévan.
Vapaan reunan tehtavat ovat luonteeltaan vahvasti epélineaarisia, joten niita ei
voi ratkoa suorin menetelmin. Vapaan reunan ratkaisumenetelmat ovat yleisesti
iteratiivisia ratkaisumenetelmid, joissa tuntematon geometria ratkaistaan laske-
malla sarja tehtavia kiinnitetyissa alueissa.

Tydssa esitetty ratkaisumenetelma pohjautuu jatkuvan tason herkkyysana-
lyysiin seka diskretisoitujen yhtéldiden automaattiseen derivointiin. Jotta diskre-
toidun yhtalén automaattinen derivointi vastaisi jatkuvalle yhtal6lle tehtya herk-
kyysanalyysig, on elementtimenetelmad modifioitava.

Esitetyn menetelmén tehokkuus testataan ja havainnollistetaan numeeris-
ten esimerkkien avulla.
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