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ABSTRACT

Frolov, Maxim

Reliable Control Over Approximation Errors by Functional Type a Posteriori
Estimates

Jyviéskyla: University of Jyvéaskyld, 2004, 39 pages + (included articles)
(Jyvéaskyld Studies in Computing,

ISSN 1456-5390; 44)

ISBN 951-39-2031-3

Diss.

This thesis is focused on the development and numerical justification of a modern
computational methodology that provides guaranteed upper bounds of the energy
error norms. The methodology considered is based on the so-called functional
type a posteriori error estimates, which have been recently suggested for problems
that can be represented as problems of minimization of convex functionals. For
boundary-value problems arising in the theory of plates, several new a posteriori
error estimates (Duality Error Majorants) are derived on purely functional grounds
either by the methods of duality theory in the calculus of variations or by modifying
respective integral identities. This important feature makes it possible to take into
account not only "pure” approximation errors, but also all other errors contained
in the approximate solution (including also the errors caused by possible defects of
a computer code).

Numerical tests are performed for elliptic type boundary-value problems of the
second and fourth order. In particular, the method is compared with some other
(classical) error indicators and estimators, which are based on gradient recovery
or an explicit estimation of residuals. It is shown that functional type a posteriori
error estimates provide accurate and reliable upper bounds of the energy norm of
the actual error and, also, indicate elements with relatively large local errors.

Keywords: Reliable modelling, functional type a posteriori error estimates, effi-
cient adaptive algorithms.
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1 INTRODUCTION

Reliable control over approximation errors is one of the key questions in modern
numerical analysis. This thesis is focused on the development of computational
methodology able to present guaranteed upper bounds of the energy error norms
and on the verification of its efficiency. The methodology considered is based on
a posteriori error estimates of a new type, which have been recently suggested
for problems that can be represented as problems of minimization of convex func-
tionals. The method is compared with some other (classical) error indicators and
estimators, which are based on gradient recovery or an explicit estimation of resid-
uals. Numerical tests are performed for elliptic type boundary-value problems of
the second and fourth order.

It was shown that the method provides accurate and guaranteed upper bounds
of the energy norm of the actual error and, also, indicates elements with relatively
large local errors, which makes it possible to create adaptively refined meshes in a
highly efficient way.

For several decades the attention of a number of authors has been focused on
questions of reliability and efficiency of calculations in computational engineering.
Nowadays, it has become a matter of common knowledge that accurate approxi-
mation of real life problems arising in various applications can be obtained only
on the basis of algorithms combining efficient numerical methods (finite element
method, finite difference method, mixed and boundary element methods) with
mesh-refinement. Such procedures require reliable error control, which is based
on the analysis of solutions computed. On the one hand, it is necessary to have
guaranteed upper bounds of the errors computed in a suitable norm. On the other
hand, it is very desirable to have also a qualitative indication of their local behav-
ior. These efforts are aimed at decreasing computational costs, while ensuring an
accurate and reliable modelling of physical phenomena.

Nowadays, in the context of finite element methods several approaches to error
control are widely used. The first of them was stated at the end of 70s in the papers
of 1. Babuska and W.C. Rheinboldt (see [6, 7]). Further investigations on this
subject were pursued by a number of authors and the amount of relevant literature
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is very large. The most complete description of the methods and related literature
are given, for instance, in the monographs of R. Verfiirth [49], M. Ainsworth and
J.T. Oden [2], I. Babuska and T. Strouboulis [9].

Residual type a posteriori error estimates form a well-known approach to
estimation of errors arising in finite element approximations. This approach has
been proposed in the papers of I. Babuska and W.C. Rheinboldt [6, 7, 8]. Further
investigations of this approach were made by many authors (see, e.g., I. Babuska
and A. Miller [5], R.E. Bank and A. Weiser [11], R. Durdn and R. Rodriguez [25],
R. Rodriguez [44], K. Eriksson and C. Johnson [27], C. Johnson and P. Hansbo
(28], R. Verfiirth [47, 48], J.R. Stewart and T. J.R. Hughes [45], C. Carstensen and
R. Verfiirth [19], C. Carstensen [17], and many other authors).

The first residual-based technique is presented by the so-called explicit residual
methods, which are based on a special construction of an interpolation operator
(see Ph. Clément [21], C. Bernardi and V. Girault [13], and C. Carstensen and
R. Verfiirth [19]). It maps the functions from the energy space of a problem to
a respective subspace formed by finite element approximations. In this case, a
posteriori error estimates usually include a great quantity of mesh-dependent con-
stants. Therefore, it is necessary either to find their exact values or to have a
numerical procedure able to estimate them accurately. However, attempts at pro-
viding upper estimates for these constants may lead to a significant overestimation
of the error (see, for example, C. Carstensen and S.A. Funken [18]). The second
group of residual-based estimators is related to solution of a set of local prob-
lems of the Dirichlet (see I. Babuska and W.C. Rheinboldt [7]) or Neumann type
(see R.E. Bank and A. Weiser [11], R. Durdn and R. Rodriguez [25], R. E. Bank
and B.D. Welfert [12], and R. Verfiirth [47]). Right-hand sides of these problems
are formed by respective element residuals and by approximations of interelement
fluxes of the true solution. It is known that a proper setting (equilibration) of the
normal fluxes leads to a significant improvement of the quality of error estimates.
For various numerical tests, see U. Brink and E. Stein [16], P. Diez, N. Parés, and
A. Huerta [22], I. Babuska, T. Strouboulis, C.S. Upadhyay, S.K. Gangaraj, and
K. Copps [10].

A further approach, which is based on different grounds has been an out-
growth of the so-called superconvergence phenomenon (see, e.g., L.A. Oganesyan
and L.A. Rukhovets [35], M. Kiizek and P. Neittaanmaki [29, 30], L.B. Wahlbin
[50], M.F. Wheeler and J.R. Whiteman [51], M. Zldmal [55, 56]) and various gra-
dient averaging techniques. Among the earliest works devoted to this type of error
estimation methods we refer to O.C. Zienkiewicz and J.Z. Zhu [53], E. Rank and
O.C. Zienkiewicz [37]. Nowadays this approach is widely used. Various procedures
of a gradient recovery are described, for example, in M. Ainsworth and J.T. Oden
[2], M. Ainsworth and A. Craig [1], R. Durdn, M.A. Muschietti, and R. Rodriguez
23, 24], and O.C. Zienkiewicz and J.Z. Zhu [54].

However, a rigorous mathematical justification of the approach was obtained
under the assumption of higher regularity of weak solutions, which (especially in
nonlinear problems) may not hold. Nevertheless, there are known examples demon-
strating that such simple averaging procedures can give realistic results for a wider
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class of problems (see O.C. Zienkiewicz and J.Z. Zhu [52, 53, 54], 1. Babuska,
T. Strouboulis, C.S. Upadhyay, S.K. Gangaraj, and K. Copps [10]).

It should be emphasized that both residual-based and postprocessing-based
error estimation techniques rest crucially on the assumption that an approximate
solution is the Galerkin approximation in a respective finite element subspace.

The first a posteriori error estimates of the functional type were proposed by
W. Prager and J.L. Synge [36], J.L. Synge [46], and S.G. Mikhlin [32]. Estimates
of this type are valid not only for Galerkin approximations but for any conforming
approximate solution of a boundary-value problem. The first approach was called
the hypercircle method. It has its origin in geometric analogies. At the same
time, in the book of S.G. Mikhlin, the derivation of the error estimate is justified
by the calculus of variations. However, in the case of the Poisson equation with
a Dirichlet type boundary condition both methods give an estimate of the same
form. It includes a free additional variable. A proper selection of its value provides
guaranteed upper bounds of the energy norm of the actual error. Unfortunately,
estimates of this type are difficult for practical implementation, because the above-
mentioned free variable must satisfy exactly a very essential restriction.

A posteriori error estimates of different type have been proposed by S.I. Repin
in [38, 39, 40, 41| and in a number of other papers. Most of the references are
given in the book of P. Neittaanméki and S. Repin [34]. The estimates have been
derived on purely functional grounds either by the methods of duality theory in
the calculus of variations or by modifying respective integral identities. They are
valid for conforming approximations of all types and contain only global constants,
which come from the embedding theorems for respective functional spaces. For
these reasons, it is natural to call them functional type a posteriori error estimates.

By this method, guaranteed error estimates are also obtained for any ap-
proximations regardless of whether or not they satisfy the Galerkin orthogonality
condition. The upper bound of the error is given by a new functional, which, in
addition to an approximate solution and external data, also involves a new free vari-
able. The difference between the exact solution and its approximation is estimated
by analyzing the primal problem together with its dual counterpart. A posteriori
error estimates of such a type are valid for all deviations from the exact solutions
lying in an admissible class of functions. This important feature makes it possi-
ble to take into account not only ”pure” approximation errors (arising due to the
inconvenience between the approximation subspace and the respective functional
space), but also all other errors contained in the approximate solution (including
the errors caused by possible defects of a computer code). Thus, the majorant gives
an "independent checker” for verification of the actual accuracy of a computed so-
lution. It is clear that such a ”checker” can be regarded as an efficient numerical
tool if it is (a) reliable, (b) exact, and (c) robust. Reliability means that the es-
timate always gives a guaranteed upper bound of the error, and exactness means
that it is possible to make this computed upper bound close to the true value of
the error. By "robustness” we mean that the estimate adequately accounts errors
of various types. In this thesis, we aim at showing that the method of duality error
majorants possesses the properties (a), (b), and (c).



2 OUTLINE OF THE THESIS

The thesis includes papers A-D; which have been already published. These papers
are devoted to a numerical justification of the method of duality error majorants
by various tests. In addition, we present theoretical results based on the summary
of two articles (paper E and paper of S. Repin and M. Frolov [42]) with some
extensions. Let us begin with these papers. In subsections below we present the
material in the sequence, which differs from the chronological one but better reflects
logic of the whole research and gives its principal summary.

2.1 New duality error majorants for conforming approxi-
mate solutions of the biharmonic problem

In this subsection, a variational formulation of the biharmonic problem is consid-
ered. We call it the primal problem. With the example of this primal problem, we
describe some general features of all estimates obtained by the method of duality
error majorants for various elliptic boundary-value problems of divergent type.

The variational formulation of the biharmonic problem is as follows.
Problem P. Find an element u € Vj such that

J(u) =inf P = inf J(w),

weV
where
T(w) = / (%(M)? —fw) dz
Q
and
vy = WH(Q).

We assume that 2 is a bounded connected domain with a Lipschitz continuous
boundary 02 and f € Ly(£2). These are quite standard assumptions that guarantee
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the existence and uniqueness of a solution. With an approximation v € V{, obtained,
we come up against the problem of controlling the accuracy for this approximate
solution. It is necessary to find guaranteed upper bounds of the energy norm of the
error ¢ = v — u. One of the modern approaches to reliable error control is based
on duality theory in the calculus of variations.

Using the scheme proposed by P. Neittaanméki and S. Repin in [33], we show
how one can apply this method to the case considered. We represent the difference
between the values of the functional J at elements v and u in the form

J@)-mfp:/(%(mf—fv) dm—/(%(Au)Q—fu> da

- / S(Av— Au)dr + / (Au(Bv — Au) = f(v —u)) dz
Q Q

1
= Slel + [ (Buse - fe)da,
Q

where

lelf = [ (a0)? do.
Q
It is well known that the weak solution w satisfies the relation
/Aqu dx = /fw dx, Yw € V. (2.1)
Q Q

From (2.1) it follows that
1, .2 ,
§|||e||| = J(v) —inf P. (2.2)

Therefore, knowledge of the exact lower bound of the primal problem provides
exact error estimates for any conforming approximate solution v. Unfortunately,
this bound is generally unknown. But we can obtain the desired estimate, taking
into account the so-called dual variational Problem P*. It can be obtained from
the reformulation

J(u) = inf { sup L(w;n*)}a

weVp n*€Ly(Q)

of the primal problem in terms of the Lagrangian L, where
* * 1 *\ 2
L(w,n") = n Aw—é(n) — fw ) dz,
Q

and has the following form.
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Problem P*. Find an element m* € N}* such that

I"(m*) =supP* = sup I*(n"),
n*eN;

where

DN —

I*(n*) = —/ (n*)? da

and

=

r = n*GLg(Q)|/n*Awdm:/fwdx, Yw eV
Q Q

It is known that the exact lower bound of the primal problem coincides with
the exact upper bound of the dual one, namely,

inf P = sup P*.

To prove this statement, we consider the difference

w) - 1) = [ (G0 = fut ) do =

_ Q/ G(Aw — "2 £ (n* Aw — fw)) do — Q/ Yaw—n)yde 0.

[\]

The last-mentioned inequality holds for any w € Vp and n* € N§, therefore, inf P >
sup P*.

On the other hand, from (2.1) it follows that Aw is an element of the set N}.
Thus,

1
supP* > I"(Au) = — [ =(Au)?*dx
/!
= / (%(Au)Q _ AuAu) dr = / (%(Auf — fu) dr = inf P,
Q Q

and we obtain the desired result.
Substituting the relation between the primal and the dual problems in (2.2),
we arrive at the estimate

1 * * * *
Slell” < J(w) = I"(n*), - vn* € N},

The right-hand side of this estimate can be rearranged as follows:

Q/ <%(Av)2 — fu+ %(n*)Q) dr = Q/%(Av —n*)?dux,
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and we obtain the a posteriori error estimate
2 2
lell™ < JAv = n"g, (2.3)

which is valid for any element n* € Nj}.

Unfortunately, the estimate (2.3) is mainly of theoretical significance. The
problem of obtaining approximations n* from the admissible set N} for an arbitrary
right-hand side f is rather hard, and this approach is not efficient in practice.

Let us transform the right-hand side of the estimate (2.3) substituting a free
element »* € Ly(Q):

[Av —n*lg < (JAv = 5| + [ = n*lg)*.
Applying the well-known inequality
2| ab|< Ba® + 710,
we have
llell* < (1 + B8)D(v, 5") + (1L + B~ R(>"), V8 >0,
where

D(v, ") = [Av — 5"|g,

)=,

P P

Now, it is necessary to obtain a computable upper estimate of the value of the
functional R. By substituting ¢* = s»* — n*, we arrive at the problem

1
R(»*) = inf |3 —n*|}, = —2 sup —/—(a*)de ,

”*EN; o*EN}

where

NI=< 0" €Ly) | /J*Awd:v:/(%*Aw—fw)dx, Yw € Vj

T

Q Q

It is easy to note that the problem

supP* = sup { —
o*eEN}

{O\
N | —
—~
Q

*
e
QL

S

is dual to Problem P, which is of the same structure as Problem P with another
right-hand side:

weVy

inf P = inf /(%(AM)Q - (%*Aw—fw)) dz.
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For the pair of problems P and P*, we have the same relation as in the above-
mentioned case, namely,

sup P* = inf P.
Therefore,
R(s") = — 12‘5 /((Aw)2 — 203" Aw — fw)) dx. (2.4)
Q

With the help of this relation, two different estimates of the term R(sc*) can be
found. Using these estimates, we arrive at various forms of duality error majorants
for the biharmonic problem. The first of them is obtained and investigated in
paper E, as is shown below.

Estimate 1. In addition, we assume that the variable »* belongs to the set
Ni ={x" € La(Q) | As™ € Lao(Q)}.
Therefore, the identity
/%*Aw dr = /A%*w de, Yw eV, Vi"e N},
Q Q

yields the following transformation of (2.4):

— inf /((Aw)2 —2(Ax" — flw) dz <

weVy
Q

. 2 *
< — inf (JAwl} - 2l A — flolAuly),
where Cyq is a constant from the inequality

|w]g < ConAw|g, Yw € W,

which is related to the minimum eigenvalue of the biharmonic operator. The quan-
tity |Aw|,, is nonnegative, whence,

R(5") < — inf (a® = 2Cs0| Ax" — flga) = CoaAs" — flg,

a>0
and we arrive at the estimate
R(s") < Cio|Asc" — flg,-

Combining the above results, we obtain an a posteriori error estimate of the first
type given by the method of duality majorants

llell® < M(v, 8, 57), (2.5)
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where
M(v,B,57) = (14 B)|Av — "¢, + (14 7 Cha | As" — [l (2.6)

The functional M on the right-hand side is well defined for any 3 > 0 and »* € NX.
For 3 =0, it can be defined as follows:

M(v,0, %) = 400 for »* & N7,
M(v,0,5¢%) = |Av — 5|, for »* € N;.

The above estimate has a certain drawback: for the calculation of bounds of the
actual error we cannot use the simplest approximations of the dual variable s*,
because they do not ensure the necessary condition Asx* € Ly(€2).

Estimate 2. In order to make the restriction on the dual variable s* weaker, we
assume that this element belongs to the set g, where

NG = {5 € Ly(Q) | V" € Ly(QL R},
and introduce the second dual variable y* € Q;,, where

Qi = {y" € Lo(LR?) | divy* € Ly(Q) } .
Then,

/ ((Aw)* = 2(3¢*Aw — fw)) dz

Q

= / (Aw)? = 2(y* - Vw — V3" - Vw + divy*w — fw)) dz.
Q

In this case, similarly to the derivation of the above estimate, we can continue the
relation (2.4) by an upper estimate of the form

— inf /((Aw)2 — 203 Aw — fw)) dx

weVpy
Q

< - inf (JAwly =21V = y'lg + Cafdivy” — flo)IVewlo)
< - nf (lAwlg = 2C1a(IV5e" — y* g + Craldivy* — flo)|Awly),
where C;q is a constant in the Friedrichs inequality
o1
[wlg < Cia|Vwlg,  Vw € Wy(Q).
Thus, we obtain another estimate of the term R(s*):

R(>") < Cio(| V" = y'lq + Cialdivy” — flg)*.
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In practice, it is more convenient to represent the last-mentioned estimate with
a free positive parameter that arises in the same manner as does the parameter (3.
The final estimate has the form

llell* < M(v, By, B, 5", y"), (2.7)

where

M(v, B, Be, 3", y%) = (1 + B1)| Av — 5|5
+ (14 B7)Ch (14 Bo) Vo™ — gl + (1 + 8, )Clodivy” — flg) - (2.8)

In this estimate, the original parameter 3 is denoted by f;.

Note that in paper [33] of P. Neittaanméki and S. Repin, more general es-
timates of such a type have been derived. However, these estimates are more
complicated in structure and include a symmetric second-order tensor as the dual
variable »*.

2.2 Efficiency of functional type a posteriori error esti-
mates

Below, we consider computational properties of the majorant (2.6). As is known
(see, for example, I. Ekeland and R. Temam [26]), the exact solution of the dual
problem m* satisfies the relations

m*=Au and Am*=f a.e. in Q.

Therefore, the optimal value of the majorant, which occurs at a pair (0, m*), coin-
cides with the square of the energy norm of the actual error:

M(v,0,m") = |Av—m"|g = [le]”

Any pair (3, »*) from respective admissible sets provides a guaranteed upper bound
of this quantity. Therefore, with an algorithm that is able to produce an element
»*, which is close enough to m*, we can provide efficient error bounds with any
prescribed accuracy. Following this argument, we arrive at the problem of mini-
mization of the functional M(v, 3, 3¢*) by (3, »*) for a given approximate solution
v. It is natural to solve this problem by approximating the dual variable s»* on the
basis of a certain finite-dimensional subspace of NX.

Let us consider a sequence of subspaces { N/ }722, C N and define a sequence
of the corresponding pairs (3, 3¢;) in the following way:

— Step 1: fix a value of the parameter 3 as a small positive .
— Step 2: find an element s that minimizes the functional M over N;:

M(v,0,5) = inf M(v,d,s").

w*EN}



19

— Step 3: calculate the optimal value (3 of the parameter for a given s:

M(U, 6/67 %Z) = EE%M(Uv 67 %Z)

Note that the optimal value 3, can be computed easily and practically does
not equal to zero. It satisfies the relation

[Ax = flo

Or = Caq .
‘ ? ||AU_%k||Q

Because a solution v has second derivatives that are piecewise continuous, but an
approximation s* is continuous, the denominator of this ratio does not equal to
zero. The majorant (2.6) with the optimal value of the parameter (3 is equivalently
represented in the form

M(v, B, 77) = (JAv = 545l + Caal Asg; — flg)”. (2.9)
Finally, we define a sequence
M (v) = M(v, By, 75).

Proposition 1. If a sequence of subspaces {N}}7°, possesses the limit density
property in NX, then for any positive § we can find a number ks such that for
k > ks the following two-sided estimate is valid:

0 < My(v) — lefl* < 3C(e, 8, Cag).
Proof.

By the definition of the limit density, for any ¢ > 0 there exists a number ks
such that for £ > ks in a subspace N} we can find an element mj that satisfies the
inequality

[y —m™ <9,
where
A = [g + 126
By the algorithm proposed, for the value My (v) we have
Mi(v) = (1+ Bl Av = s[5 + (1 + 5 )Chall Assi = [l

< (14 0)[Av — 53 + (1 + 5 HC2| A5 — fI5,
< (1+0)|Av — mp)2 + (140 T2 | AmL — fI3 = (%)

Using the relations m* = Au and Am* = f and the triangle inequality, we obtain

() < (146) (JAelg + [m* —mjlo)? + (14 6T |A(m; — m")|7,
< (1 +0)el* + (1+6) (2llelld + 6%) + C2q (6 + 62) .



20

Thus, we arrive at the desired result

0 < My(v) = llel® < 6 {llell* + (1 +6) (2lle] + 8+ Clq)} -

O

Proposition 1 justifies an important property of the duality error majo-
rant (2.6). By this proposition, the effectivity index of the estimator

VM (v)

Lepp = ———

llell

will tends to the optimal value (which is equal to one) in the process of minimization
for any given approximate solution. In practice, this property is superior of the
asymptotic exactness. We can obtain error estimates of high accuracy not only in
the case where the corresponding mesh size h is small enough.

Proposition 2. If a sequence of optimal values [, which we obtain in the process
of minimization, tends to zero for £ — oo, then the sequence s tends to the exact
solution of the dual problem m* in N}.

Proof.

From Proposition 1 it follows that the sequence { My (v)}¢2, is bounded. Both
terms of the majorant are nonnegative; therefore, the sequence of values of the
second term is also bounded. Consequently,

Ay — f=Am" inLy(Q) asf — 0.
On the one hand,
\/W — [Av — Aulg,.

On the other hand, from (2.9) we conclude that

VMi(v) = [Av = g¢]q + CanlAsg — flg.
We obtain the following result:

|[Av =5l — |Av — Aulg = [Av —mg,
or, in terms of the dual functional I*,

|[I*(5) — I"(m")| = 0 as k — oo.

Let us consider the sequence of elements s, € N7, where s, is the Ly-projection
of s to N}. Following similar arguments as those used for obtaining the estimate
of the term R(s*), we have

[ = 7sla < Coal A = flg
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and, therefore,
|4, — %Zf”sz — 0.
This result yields
[I*(s4) = I"(m*)| = 0 as k — oo.

It is known that a solution of the dual problem exists, and it is unique. Any element
of the sequence s, belongs to Ny; therefore, this sequence must tend to m*. By
the triangle inequality, s also tends to m* in Ly(Q2) as k — oo. Therefore,

A — Am*  in Ly(Q),
)i — m* in Ly (2).

O

Proposition 2 is used for justification of the efficiency of the approach under
consideration for indicating a local error distribution over the domain 2. Note
that, from our experience, it is preferable to use as an error indicator only the first
term of the majorant (2.6).

Proposition 3. Under the assumption of Proposition 2, we have

/ di(z) — e(a)| dz — 0,

Q

where
di(z) = |Av(z) = s (2)*,  e(x) = [Av(z) — Au(z)].

Proof.

/ |dp — ¢ dx = / [(Av — 2)* — (Av — Au)?| dx
Q Q
_ / (362 — (A)? — 280 (54 — Au)| da

:/|(%Z+Au—2AU)(%Z—Au)]dx
Q

< (I = mlq + 2lelDl > = m™ |-

From Proposition 2, we obtain the desired result.
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Similar propositions for the Poisson equation with a Dirichlet type boundary
condition was stated and proved in the paper [43] of S. Repin, S. Sauter and
A. Smolianski and in paper B. Computational properties of the majorant (2.8)
have been numerically investigated in paper D. The question of a rigorous efficiency
justification for the corresponding error estimate is open.

2.3 Computational properties of a duality error majorant
for Kirchhoff-Love plates

Further we consider a more general case of the primal variational formulation.
Problem P. Find an element u € Vj such that

J(u) = inf J(w),

weV

where

J(w) = / (%BVV@U : VVw — fw) dx
Q

and
0 2
Vo = WL (Q).

Assume that a fourth-order tensor B possesses the symmetry property and
there exist positive constants o and as such that

ap |z < Bz < anlr]?, Ve € M2 |5 = 5 2,

where M2*? denotes the space of symmetric 2 X 2 matrices.
We consider the case of Kirchhoff-Love plates that are clamped along the
boundary. In particular, if the material of a plate is homogeneous and isotropic,

then
E

Br=-—
TR0 -»)

((1=v)se + vitrsel),

where I is the identity matrix, £/ and v are Young’s modulus and the Poisson
ratio, respectively. The variational statement of this problem is exactly the same
as Problem P. The tensor B is symmetric and possesses the necessary inequalities

oy |x)? < Bae: 2 < ap|af?

with
E E

T DA )y TR0
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Proof.
Let us consider the product Bsr : »r without a multiplicative constant:

((L—v)se + vtrxel) e = (1 —v)se: se+vtrae (I: x)
=(1—=v)se: e+ v(tre)? > (1 —v)sx: s
Therefore, on the one hand, we obtain a; = E/(12(1 + v)). On the other hand,
(1 —v)se: se4 v (a1 + 5000)* < (1= v)se: 324 20 (56}, + 25,)
< (1 =v)se: e+ 20 (36, + 2560y + 5055) = (L + V)32 32
and as = E/(12(1 — v)).
O

Consequently, the variational statement for Kirchhoff-Love plates is a very
important special case of Problem P. In this case, the dual problem is as follows.
Problem P*. Find an element m* € N} such that

I"(m*) = sup I*(n"),

n*ENf

I"(n*) = —EB_ln* :n* | dz,
2
Q

where

and
N; = n*ELQ(Q,ngz)|/n*:Vdex:/fwdx, Yw eV
Q Q

Problems P and P*, and their solutions are related as above:
J(u) = I"(m”),
and
m*=BVVu, div(V-m*)=f ae inQ. (2.10)

A respective error estimate of the functional type has been derived by P. Neit-
taanméki and S. Repin in [33] and has the form

lell> < M(v, B, ") = Mp(v, B, 3¢") + Mg(B, ") | (2.11)
where

el = / BYVe : VVe dr.
Q
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Mp(v, 3, ") = (14 ) / (BVVv — ) : (VVv — B 15" da,
0

Mg(B,) = (14571 (;—?’f) /(diV(V- i) — f)2da.
Q

In this case, [ is a free positive parameter and the tensor-valued dual variable »*
belongs to the set

Niw = {5 € Ly(Q,M?*?) | div(V-5*) € Ly(Q)}.
The constant Czn comes from the inequality
|wl < Caa|VVw],  Vw eV,

and in the case of the boundary conditions considered coincides with Csg,.

Paper C provides a similar analysis of the efficiency of the majorant M in
(2.11). From the results of the paper, it follows that the duality error majorant
for the Kirchhoff-Love plates possesses the same computational properties as does
a more trivial majorant (2.6).

2.4 A reliable a posteriori error estimate for Reissner-
Mindlin plates

Below, we present some extensions of the previous analysis to the case of the theory
of Reissner-Mindlin plates, which is a very interesting generalization of the classical
Kirchhoff-Love model. We show how one can derive a functional type a posteriori
error estimate for any conforming approximate solution of this problem. Mainly,
our discussions are based of the results of paper [42].

In the Reissner-Mindlin model, the bending of a plate of thickness ¢ with
middle plane Q C R? is described in terms of two variables: a scalar-valued function
w(x) (the transverse displacement) and a vector-valued function ¢(x) (the rotation
of the fibers normal to the middle plane). The energy functional for this problem
has the form

Jw.) = [ (3e(0) s sl + 5[V = 9P = fu) d

where B is a fourth-order tensor,

_ Ve+ (Ve)'
e AL

e(p)

« is a positive parameter that is proportional to ¢2, and the function f#® is related
to the transverse loading of a plate. The existence of a pair (u,¢) € W3(Q) x



25

W, (9, R?), which satisfies given boundary conditions and minimizes the functional
J(w, @), follows from known results of the calculus of variations for convex coercive
functionals. One can show that as @ — 0 the minimizers of this variational problem
tend to the corresponding solution of the variational problem related to Kirchhoff-
Love plates (see F. Brezzi and M. Fortin [15]).

At the present time, this model is popular. It has wide ranges of applicability
and does not require for an approximate solution to possess second generalized
derivatives. But, unfortunately, a direct application of the simplest finite elements
leads to poor performance and yields some numerical effects such as the locking
phenomenon. In this thesis, we are not able to focus our attention on the problem of
constructing finite element methods for this model. For reviews on this subject we
refer to D.N. Arnold and R.S. Falk [3], D.N. Arnold, A.L. Madureira, and S. Zhang
[4], J.H. Bramble and T. Sun [14], F. Brezzi and M. Fortin [15], and the literature
cited therein.

A posteriori error estimates for this model have been proposed by several
authors. These estimates are based on the arguments of explicit residual methods
(see C. Carstensen [17], C. Carstensen and K. Weinberg [20], and E. Liberman
[31]).

In paper [42], we obtain a computable error majorant of the functional type
that provides guaranteed upper bounds of the error for any conforming approximate
solution of the Reissner-Mindlin plate bending problem. The derivation of this
majorant is based purely on functional grounds and does not require any additional
specification of the finite element method or properties of respective approximate
solutions.

For the sake of simplicity, we consider the case of homogeneous boundary
conditions where the pair of elements u and ¢ satisfies the conditions

{u:O on 0f2,

¢=0 on 0f. (2.12)

However, the approach can also be applied in the case of various boundary condi-
tions.

The weak formulation of the problem is as follows: find a triple (u,¢,v) €
Vo X Yy x @ such that

I Be(¢) :e(p)de — [v-pdr =0 , Vo e,

Q Q

S{v-deng{fwdx , Yw € Vj, (2.13)
g{(a’y—(Vu—¢))~qu:0 , Vg EQ,

where L L

%:W2(Q>7 Yb:W2(Q7R2)7 Q:LQ(Q7R2)
At the same time, the pair of elements (u, ¢) minimizes the above-mentioned func-
tional

Tw, ) = / (3B50) ) + 5 IVw = o2 = fo) do
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on a set S =V x Y. Thus,

J(u,¢) = inf J(w,yp)=infP.

(w,p)€S

We call this variational statement primal.

Consider a pair (v,1) that provides a conforming approximation of the true
solution (u, ¢) in S (it this case, the element v = Vv;—qb is approximated in Ly (92, R?)
by the element y = W) Define the corresponding deviations from the exact
values: e, = v —u, ey, = 1 — ¢ and e, = y — . The errors e,, ey, and e, are
restricted by the relation

ep +ae, =1 — ¢+ (Vo—1) — (Vu—¢) = Vv — Vu = Ve,. (2.14)
Using this relation, the following proposition is proved.
Proposition 4. The relation
lewl? + aleyl? = 2(J(v, ¥) — inf P) (2.15)

holds for any approximation (v,1) € S, where

el = [ lesf?dz
Q

and

mwwzjéa%yd%mx

Q

The element v and its approximation y in (2.15) have an independent physical
meaning and present the so-called shear stress vector. The left-hand side of (2.15)
is a norm in the space Yy x @), which is natural to use for measuring the error in
terms of the deviations e, and e,. As is shown in the concluding part of the section,
the estimates of these two deviations and the relation (2.14) enable us to control
the norm of the deviation e, as well. Thus, the accuracy of any approximation
(v,7) can be estimated if the quantity inf P is known. Although the exact lower
bound of the problem under consideration is unknown in the general case, below
we show that the right-hand side of (2.15) is estimated from above by invoking the
dual variational formulation.

Consider the Lagrangian:

alg*|”

L) = [ (3820 2(0) — w7 (V=) - 21

where

inf P = inf sup L(U),Sp,q*),
(w,p)ES gre*
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and Q* = Ly(92,R?). The dual problem P* generated by the Lagrangian L, has
the form: find an element p* € Q* such that

I"(p*) = sup I"(q") = sup P~,
qreQ*

where
I'(¢*) = inf L(w,e,q").

(w,p)ES

Using the known results of convex analysis, one can prove that the relation inf P =
sup P* is valid, i.e.

inf  sup L(w,¢,q") = sup inf L(w,e,q"). (2.16)
(w,p)€S qFEQ* qreqQ* (w,p)€S

With the help of the relations (2.15) and (2.16), we obtain the estimate
llewll” + alleyllg < 2 (J(v,9) = I'(¢")) (2.17)

which is valid for any element ¢* € Q*.
As follows from the definition of the dual functional,

Flg) = ot L{w,e,q") =
1 *|2
= inf / (5135(@) ce(p) —q" o — a!g | +q¢" - Vw — fw) dz.

we V€Yo

If the element ¢* does not lie in the set %, where

Q= q*ELg(Q,RQ)|/q*'dea::/fwdx, VwEVQV; :
0 0

then the value of *(¢*) is not bounded from below. Therefore, in fact the functional
is well defined for ¢* € )} and has the form

I*(¢") = inf / (%Bs(gp) :5(@)—q*-g0) dx—!%ﬂzdx.

PEYp
The first term in the above expression can be represented as follows:
. 1 * 1 —1__x *
inf —Be(p) 1 e(p) —q* - ¢ | de = sup ——B "7 do,
90€Y0 2 T*ENJ 2
Q Q

where

Ny = {7 e @) [riclo)de= [ ¢ pdn voeh,
Q Q
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This relation connects the primal and dual problems of a special form. As a result,

we arrive at the expression

1 *|2
I*(¢*) = sup /(——B_IT* :T*) dx—/a|Q| dz.
T*GN[{Q 2 2 2

Taking into account the inequality

I*(q*) Z j*<q*,7—*),

1 *|2
j*(q*,T*) — _/ (éBlT* . T*+ a|g| ) da:,
Q

and using (2.17), we obtain the estimate

where

lewl” + ale,lg < 2 (J(v,9) = T*(a" 7)),

which is valid for any ¢* € (} and 7* € Ny.
We show that the inequality (2.18) admits also the representation

2 2 . . * k2
leal? + el < ing { inf. D)+ aly =5 |
where
Dy, ") = / (Be(v) 1 e(ap) + B 75 — 27% : e(¢)) dx.
Q
Indeed,

2(J(v, ) =T"(¢", 7)) =
= / (Ba(d)) ce(y) + é|Vv — ) = 2fv+ B+ a|q*|2> dr =
0

:D(¢,T*)+2/(r* Le(v) — fo) d:c+/oz(|yl2+ |7 [*)
Q

Q
[7iewde= [ g v

Q Q

Y +ay = Vv,

/q*-Vvdx:/fvda:,
9) 9)

Using the relations

and

(2.18)

(2.19)

dz.
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we conclude that

2(J(0,9) — T*(¢" 7)) = D7) + aly — g2+
2 / (¢ (@ +ay) — fo) dz = D, ™)+ aly - ¢°[3

Q

Thus, the right-hand side of the estimate of the error, as well as its left-hand side,
can be written in terms of the pair of approximations (¢, y) rather than of the
initial pair (v, ).

However, the practical application of the estimate (2.19) is hampered by the
fact that, in computing upper bounds of the deviation, it is necessary to choose
the elements ¢* and 7" in respective admissible classes )3 and N;. The problem
of constructing approximations in these classes may be too labor consuming. For
this reason, now our purpose is to modify the above inequality in such a way that
the computation of the estimates of errors does not require complicated approxi-
mations.

Let us find an estimate of the deviation norm, in which the right-hand side is
defined on QF, x Njj, instead of @} x Ny, where

Niy = {3 € Lo(,M2?) | divae” € L(Q, R?)}
and
Q;lkiv = {y* S L2(97R2) ’ dlvy* € LQ(Q)} .
Consider an arbitrary element »* € NJ and rewrite the term D(¢, 7*) in the form

Dy, ") = /B(E(’(/J) — B £ B ) (e(v) - BT £ BT ) da.

Q

By the properties of the tensor B, the quantity

/B%:%d:c

Q

1/2

is a norm in the space Ly (2, M?*?) that is equivalent to the standard norm. Using
the triangle inequality for this norm, we have

1/2
D(h, 7)Y < D(, 5)V? 4 /B1<T* — ") (TF = ) dx
Q
Applying the inequality
2lab] < Bya® + b,
we arrive at the estimate

D(,77) £ (14 B)D(. ) + (14 6) [ B =) (7 = o) do,

Q
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which is valid for any positive value of the parameter (3;. Hence we conclude that

inf D(¢,7%) < (14 B1)D(w, »*) + (1 + ") R(5c"), (2.20)

THENY

where

*\ ¢ =1/ % %) . * %
R(%)—T*lgjfvg/B (7% — »") : (77 — »") dx.
0

We show that for any element s* € N;;_, the estimate

div»
R(x") < Clalg" + div[§,,

holds, where C,q is a constant satisfying the inequality

lelg < Caallell, Vo € Yo.
Proof.

We make the change of variables 0* = 7% — 5* in the definition of R(>*). On
the one hand,

/T*:e(ga)dx:/q*-cpdx, Vo € Y.
Q Q

On the other hand,

—/%*:5(90)dx:/divx*-g0da:, Vo € Y.
Q Q

Consequently, c* belongs to the set N, where r = ¢* + divs™:

N} = U*ELQ(Q,I\\/J@“)|/0*:5(<,0)d$:/7"-<pd:v, Yy €Yy
Q 0

Hence, the required estimate is obtained on the basis of the same arguments as for
the biharmonic problem. Indeed,

R(»") = inf /B_lcr* co0"dx = — sup /(—B_la* . o*) dr =

o*eEN} o*ENF
Q
=—inf [ (Be(yp):e(p) —2r-p)de < — inf ?-2C <
Jnf / (Be(p) s e(w) =2r-p)dz < — inf (Jlol swlrlallel) <
Q

< — inf («* - 2Cualrlge) = Clolg™ + divar” [

0
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The following estimate is a consequence of the inequalities (2.19) and (2.20)
and the assertion proved above:

2 2 X
lesll” + aleyllg < (1 + B1) D, ")+
+inf {(1+57) Gl + divsl + aly — 1)
¥
It is valid for any 51 > 0, ¢* € @}, and »* € Nj;. Thus, we have got rid of the
first restriction — now we can choose the dual variable »* so that it satisfies the
condition divse* € Ly(Q, R?).

Instead of an arbitrary element ¢* € %, we insert an arbitrary element y* €
Q};, in the a posteriori estimate:

ly— a5 < A+ By — vl + (1+ 571 ¢ — v'l5

I+ divae' [ < (14 By + diva' [ + (L4 857) o — o'

where (3, and (33 are free positive parameters. Using the estimate

¢ = y'lg < Claldivy” + flg,

inf
qreQ;
obtained in paper [41] of S.I. Repin, we arrive at the dual majorant of the following
form for the Reissner—Mindlin plates:

lel® + aley s < My, v, B, Ba, By, 3¢, y) = My + Mo+ My + My, (2.21)

where

M= (1+3) / (Be(w) — ) : (e() — B~ da,

Q

M =a(l+ )|y -y o
Ms = (14671 (1 + B5)Clolly” + divse|,

My = {(1+57") (1+857) Clg +a (1+ 671) } Cloldivy” + £,

Now we clarify the sense of the estimate (2.21). On the one hand, it contains
the elements ¢ and y = y, in terms of which we control the accuracy of approx-
imation of the solution of the problem under consideration. On the other hand, it
also includes a pair of free functions (y*, »*) and several positive parameters.

The right-hand side of the inequality (2.21) yields a guaranteed upper estimate
of the norm of the deviation from the exact solution for any choice of y*, »* and [,
(2, B3 from respective admissible classes. However, a poor choice of these elements
may lead to a significant overestimation of its value. On the other hand, it is
easily seen that, with the help of the majorant, one can obtain an arbitrarily exact

estimate of the quantity we are interested in. Indeed, for the pair y* = v and
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»* = Be(¢) the terms M3 and M, vanish. Consequently, we can set (31, B2, O3 to
be equal to zero, and the inequality is converted to equality.

It is easily seen that the estimate obtained implies also an estimate for the
deviation e, = v — u. Using relation (2.14), we get

IVeslo < lleslq +aleyla < Caalleyll + aleylo-

Hence it follows that
IVeulg < (14 B)Clallesl” + (1+ 67") o?ley o,

where 3 is an arbitrary positive number. Putting 8 = aC,3, we arrive at the
inequality

Vel < (a+Cly) (llewll” + aleyln) < (a+Clg) (M + ... + My).

Thus, the dual majorant we have suggested enables us to control simultaneously
the norms of all the deviations considered.

2.5 Summary of the numerical tests performed

In this subsection, we outline only numerical tests presented in papers A-D. These
tests justify the method of duality error majorants as a robust and efficient ap-
proach.

Paper A was originally published in Russian and translated into English in the
journal of Computational Mathematics and Mathematical Physics. The aim of this
paper was to provide a short introduction to some classical methods of a posteriori
error control and the method of duality error majorants. Three approaches have
been discussed with an example of the Poisson equation with a Dirichlet type
boundary condition. The first approach is known as the explicit residual method.
The second technique is based on various procedures of gradient recovery and the
so-called superconvergence phenomenon. The third one is provided by duality
theory in the calculus of variations. In Sections 2-4 of the paper, the basic ideas
of these approaches are described. The second part of the paper is devoted to
numerical tests. Basic advantages and drawbacks and the ranges of applicability
of the methods are examined with a set of boundary-value problems in polygonal
domains with reentrant corners. We consider only the second term of the explicit
residual estimator as an error indicator. This indicator includes only jumps on
interelement boundaries and no longer depends on interpolation constants, but it
does not provide any estimates of global errors. The second indicator is the so-
called Zienkiewicz-Zhu indicator. The third one is the duality error majorant. For
evaluation of the quality of the resulting estimates for the global norm of the error
and its local indication some numerical characteristics have been introduced. Note
that the first one, the so-called effectivity index, is a quite standard global measure
of quality.

The numerical tests performed have shown that the method of duality error
majorants furnishes accurate upper estimates of the global error and, also, yields
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qualitative local error indication. The results justify the theoretical prediction that
this method does not depend on the type of approximation of the original problem
and its accuracy. The quality of other indicators is degraded significantly for in-
accurate approximate solutions, when the Galerkin orthogonality condition is not
satisfied. For this reason, we can conclude that the ranges of robust applicability
of duality error majorants are wider.

In paper B, a general scheme of the method of duality error majorants
(see [41]) is applied to a certain class of nonlinear elliptic type boundary-value
problems. Properties of the estimate presented are investigated from a theoretical
point of view. It is shown that for a given conforming approximate solution the
method, under natural assumptions, provides guaranteed upper bounds of the ac-
tual error with any prescribed accuracy. In some sense, this property is stronger
than the well-known asymptotic exactness of an error estimate.

In numerical tests, we compare a special case of the estimator presented with
several well-known error indicators. On the one hand, from the results we conclude
that this approach furnishes global error estimates of higher quality. On the other
hand, the sets of elements selected for further adaptive mesh refinement by the
method and by the exact knowledge of error distribution are rather similar.

In paper C, we continue investigations that have been started in the previous
paper. Certain analogs of the theorems of paper B are proved for an error estimator,
which is valid for a wide class of fourth-order elliptic partial differential equations.
This estimator has been proposed in [33] and, in particular, it can be applied to
error control for Kirchhoff-Love plates.

The numerical tests are mostly devoted to the verification of the efficiency of
the method in the course of mesh adaptation. Here, we combine the estimator,
which has been considered in paper B, with a standard code of MATLAB PDE
Toolbox. We have compared three error indicators. The first one is computed
as the difference between a given approximate solution and the exact solution. It
provides an objective judgement of the quality of indication of local errors and mesh
adaptation. Then, the duality error majorant and the standard local indicator of
the MATLAB PDE Toolbox are compared with this reference indicator. The main
conclusion is as follows. The method of duality error majorants leads to a more
efficient adaptation than the one obtained by the built-in indicator of the toolbox.
The effectivity index of computed upper bounds for the majorant is very close to
one at each step of adaptive refinement. At the same time, the standard approach
leads to significantly worse results. Finally, the difference is clearly observed — the
same accuracy of computed solutions is archived by the duality error majorant with
approximately half the number of degrees of freedom.

It is important to emphasize that mesh adaptations based on the duality error
majorant are very close to those that would be obtained on the basis of the exact
knowledge of the error distribution.

In paper D, we present a new a posteriori error estimate of the functional
type for the biharmonic problem. We continue investigations of [33] and of paper
C. To derive the error majorant, we use methods of duality theory in the calculus
of variations. Our analysis is focused on aspects of the practical application of this
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technique to error control in the process of adaptive mesh refinement. From this
point of view, it is important to underline that the calculation of an approximate
solution of the original problem requires C'-elements. At the same time, the esti-
mate proposed for the biharmonic problem includes a pair of dual variables, and
both of them can be approximated by simple linear C°-elements.

From numerical results, we conclude that in the case of higher order elliptic
partial differential equations this approach also yields guaranteed error estimates
of reasonable quality. In addition, meshes, which have been obtained in the process
of adaptive refinement, reflect the local behavior of the true solution.
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