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ABSTRACT
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Jyviaskyld: University of Jyvaskyld, 2006, 81 p.(+included articles)

(Jyvaskyld Studies in Computing

ISSN 1456-5390; 68)

ISBN 951-39-2698-2

Finnish summary

Diss.

In this thesis, we study the potential of interactive multiobjective optimization (MOO) in solving

chemical process design problems with several conflicting objectives. When designing real-world
chemical processes, there are several performance criteria that need to be considered simultane-
ously, for example, economical aspects, environmental impact and process operability to name a
few. These aspects are often conflicting and, therefore, the process considered can not be optimal
with respect to each criteria at the same time. This means that some compromise must be made.

In this thesis, interactive MOO is used to help the designer in finding the best compromise
between the conflicting performance criteria. A compromise in MOO is called a Pareto optimal
solution and it means that the performance of the process can not be improved with respect to any
criteria without impairment in some other criteria. Previously, chemical process design problems
have been usually solved with two performance criteria at most. The approach described in this
thesis is not restricted by the number of performance criteria as is often the case in methods
used by chemical engineers. Therefore, process design problems can be considered in their truly
multiobjective character without unnecessary simplifications.

A process design tool based on IND-NIMBUS, an implementation of the interactive MOO
method NIMBUS®, has been developed in this thesis. The IND-NIMBUS process design tool de-
veloped consists of three parts: a modelling tool, an optimizer and a graphical user interface.
The modelling tool produces a numerical model of the process considered. The optimizer con-
sists of NIMBUS® and some suitable single objective optimizer that finally produces new Pareto
optimal solutions by solving the single objective subproblems produced by NIMBUS®. Differ-
ent modelling tools and single objective optimizers can be used depending on the problem to be
solved. The graphical user interface enables the designer to input his/her preferences during the
interactive solution procedure as well as comparing the Pareto optimal solutions obtained with
different types of visualizations. The preference information is used to guide the search of the
most preferred solution by generating desirable Pareto optimal solutions.

Some preliminary ideas are also introduced to aid the designer in the decision making pro-
cedure. In this thesis, trade-off information is studied as a way of supporting the designer. The
idea is to guide the designer towards the most preferred solution by showing him/her trade-
off information during the interactive solution procedure. Trade-off information can help the
designer in realizing what kind of compromises could be available. This information is also ben-
eficial in convincing the designer that (s)he has found the best compromise solution available.

To test these ideas in practice, several industrial process design problems related, for ex-
ample, to paper making and sugar industries were solved. Previously, these problems were con-
sidered in a simplified formulation by including only one or some of the important criteria. Here,
these problems were considered in a totally new way with more than two important performance
criteria included. The IND-NIMBUS process design tool was applied to these problems and all
the problems were solved with the help of real designers who were experts in the specific areas
of the applications considered. The results obtained were promising and the designers found the
interactive solution procedure easy to understand and use. To summarize, we showed that inter-
active MOO can be succesfully applied to solving chemical process design problems in their true
multiobjective character and our approach turned out to be efficient in practice.

Keywords: Chemical process design, multiobjective optimization, interactive methods, classifi-
cation, NIMBUS® method, decision maker, scalarization



Author Jussi Hakanen
Department of Mathematical Information Technology
University of Jyvaskyla
Finland

Supervisors Professor Kaisa Miettinen
Department of Business Technology
Helsinki School of Economics
Finland

Professor Marko M. Mikeld
Department of Mathematics

University of Turku
Finland

Reviewers Professor Hirotaka Nakayama
Department of Information Science and Systems
Engineering
Konan University

Japan

Professor Stratos Pistikopoulos

Centre for Process Systems Engineering
Imperial College London

United Kingdom

Opponent Professor Margaret M. Wiecek
Department of Mathematical Sciences
Clemson University
USA



ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisors Prof. Kaisa Miettinen and
Prof. Marko Mikeld who have guided me through this research work and en-
couraged me during difficult moments. I am also grateful to Dr. Jussi Manninen,
Dr. Sakari Kaijaluoto, Mr. Juha Hakala and Mr. Juha Leppévuori from the VIT
Technical Research Center of Finland for providing me support in the field of
chemical engineering and chemical process design which is not my expertise. I
would also like to thank Prof. Lorenz T. Biegler and Mr. Yoshiaki Kawajiri from
Carnegie Mellon University, USA, for making my visit there a success and cooper-
ating with me in the resarch for multiobjective SMBs. For evaluating my thesis, I
would like to thank Prof. Hirotaka Nakayama from Konan University, Japan, and
Prof. Efstratios N. Pistikopoulos from the Imperial College, United Kingdom. I
would also like to express my appreciation to the whole optimization group, es-
pecially Mr. Vesa Ojalehto for his technical support and Mr. Timo Aittokoski for
comments about the thesis. Prof. Miettinen was also of valuable assistance with
the english language.

This research was financially supported by the COMAS graduate school of
the University of Jyvaskyld, Tekes, the Finnish Funding Agency for Technology
and Innovation (project NIMBUS — Multiobjective Optimization in Product Develop-
ment), the Emil Aaltonen foundation, the Jenny and Antti Wihuri foundation and
the Ellen and Artturi Nyyssonen foundation.

Finally, I would like to thank my wife Merja and my mother Helena for
their love and support during this work. They have encouraged me all the time,
especially at times when my PhD project has tested my belief. They both are the
source of joy and happiness and the most important part of my life.



LIST OF FIGURES

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6

FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10
FIGURE 11
FIGURE 12

FIGURE 13
FIGURE 14

FIGURE 15

FIGURE 16
FIGURE 17

An example of a Pareto optimalset. . . . . . . . . . .. ..
A flowchart of the NIMBUS® algorithm. . . . . . . . . . ..
A screenshot of IND-NIMBUS: classification tab. . . . . . . .
A screenshot of IND-NIMBUS: intermediate solutions tab.

A screenshot of IND-NIMBUS: visualization tab. . . . . . . .
A screenshot of IND-NIMBUS: the tab presenting the function
and variable values.
Different visualizations of solutions obtained by IND-NIMBUS.
An example of the arrow matrix visualization. . . . . . . . .
An example of the compressed trade-off visualization.

A schematic diagram of a process design tool.
A screenshot of the GUI of the BALAS® process simulator.

A simplified flowchart of a bleaching process which reuses
unused bleach. . . . . . .. .. ... 000000
Water sinks and sources in an integrated plant. . . . . . . . .
A simplified flowchart of the heat recovery for the process wa-
ter systemofapapermill. . . . . . . .. ...
A flowsheet of the modified CGAM problem produced by the
BALAS® software.
A schematic diagram of SMB process. . . . . . . . . . . ..
A schematic diagram of the standard and the superstructure
SMBprocesses. . . . . . . . . ...

29
30
35
35
42
43



CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
LIST OF FIGURES
CONTENTS
LIST OF INCLUDED ARTICLES
1 INTRODUCTION ..cotuiiiiiiiiiiiiiiiiiiiiinieeniiineeeniiieeeernniieeesssnneeeenns 9
2 MULTIOBJECTIVE OPTIMIZATION .....cootiimiiniiiiiniiiiiineeeniineeeennnnn. 16
2.1 Multiobjective optimization problem..............c.....ccoooiinL 16
2.2 Some concepts in multiobjective optimization ............................. 19
2.3 Methods of multiobjective optimization......................ccooeeeii 20
2.3.1 No-preference methods................ooooi . 21
232 A posteriori methods ............cccoeviiiiiiiiin 21
233 Apriorimethods .......c...ocoiiiiiiiiiiiiii 22
234 Interactive methods ................coooooiii 22
24 NIMBUS Method ......c.coiviiiiiiiiiieieiieceec e 23
25 IND-NIMBUS ..ot 25
2.6 Supporting the decision maker ......................ooo 31
3  CHEMICAL PROCESS DESIGN ....ccevutiiiiiiiiiiiiinieeniiiinneeeniiieeennnnn. 37
3.1 Optimization in chemical process design ..............ccccoeceiiiiinnnie. 37
3.2 Constructing industrial process design tools ............................... 41
4  INDUSTRIAL APPLICATIONS ...ccoetiiiiimiiiiiiiiiiieineeeeennnnnennnnneeen 45
4.1 Chemical process optimization problems....................cccoeeeeiiii 45
4.2  Water allocation problem ................ccoooiiii 48
43 Heat recovery system design ...............ccccoeeiiiiiiiiiinni 51
44 Modified CGAM problem ...........ccocoouiiiiiiiiiiiiiiiiiin, 53
4.5 Multiobjective Simulated Moving Bed Process ............................ 55
4.6 COMMENtS .......uiiiiiiiiiiiii 58
5  AUTHOR’S CONTRIBUTION ....ccooiiiiiiimmriiiiiiniiiieeeeeeeeniniennninnn 60
6 CONCLUSIONS AND FUTURE WORK .....ccccouttiiiiiiiiiinnieeennnnnnnnnnnnn. 62
YHTEENVETO (FINNISH SUMMARY) ..cootiiiiiiiiiiiiiiiiineeeeennireiniineen. 65
REFERENCES ....cooiiiiiiiiiiiiieeeeeeeeernttteneeeeeeeeeeeenetisee e e e e e e e ennnaanaa e 67

INCLUDED ARTICLES



LIST OF INCLUDED ARTICLES

I

I

III

1A%

VI

J. Hakanen, K. Miettinen, and M.M. Mikeld, An Application of Multiobjec-
tive Optimization to Process Simulation, In CD-Rom Proceedings of ECCO-
MAS 2004, the 4th European Congress on Computational Methods in Applied
Sciences and Engineering, Ed. by Neittaanmiki, P., Rossi, T., Korotov, S., Onate,
E., Periaux, |., Knorzer, D., Volume II, Jyviskyld, Finland, 2004.

J. Hakanen, K. Miettinen, M.M. Mékeld, and ]J. Manninen, On Interactive
Multiobjective Optimization with NIMBUS in Chemical Process Design,
Journal of Multi-Criteria Decision Analysis 13, 125-134 (2005).

J. Hakanen, J. Hakala, and J. Manninen, An Integrated Multiobjective De-
sign Tool for Process Design, Applied Thermal Engineering 26, 1393-1399
(2006).

J. Hakanen, Y. Kawajiri, K. Miettinen, and L.T. Biegler, Interactive Multi-
Objective Optimization for Simulated Moving Bed Processes, Control & Cy-
bernetics. To appear.

J. Hakanen, Y. Kawajiri, K. Miettinen, and L.T. Biegler, Interactive Multi-
objective Optimization of Superstructure SMB Processes, Submitted to the
Post conference volume of MOPGP 2006, the 7th International Conference on
Multi-Objective Programming and Goal Programming, Tours, France.

J. Hakanen and P. Eskelinen, Ideas of Using Trade-off Information in Sup-
porting the Decision Maker in Reference Point Based Interactive Multi-
objective Optimization, Working Paper W-405, Helsinki School of Economics,
2006.



1 INTRODUCTION

This thesis is devoted to using interactive multiobjective optimization in solving
process design problems arising from chemical engineering involving multiple
objectives. The main question for this research was how can chemical process de-
sign benefit from interactive multiobjective optimization? Chemical process de-
sign problems are challenging real-world optimization problems and they often
include several conflicting performance criteria that need to be considered simul-
taneously. Optimization of these problems is not a straightforward task even in
the case of a single objective function [8] and, therefore, answering the research
question requires studying the challenges that chemical process design problems
set on optimization.

In this thesis, we concentrate on processes in the chemical industry like, for
example, paper making processes. Process simulation has become an important
tool in chemical process design [8]. Previously, processes were planned only by
making test runs with the process equipment or with scale models of the equip-
ment. That is, however, very expensive and time consuming. With process simu-
lation, the number of test runs required in planning can be reduced significantly.

It is very useful to be able to simulate the behaviour of a process. Rigorous
mathematical models of many chemical processes have existed for a long time,
but the development of computers and programming languages, such as Fortran,
enabled the numerical simulation of the models in the late 1950’s [97]. At first,
only single process devices were simulated at a time due to the limited computer
capacity. When the capacity increased, it became possible to make simulations
about the whole process in a reasonable time. Recently, the continuing increase
of the computer capacity has enabled the simulation of very complex processes
or whole factories in few seconds by a microcomputer, which previously required
a supercomputer and plenty of computation time.

Nowadays, parts of industrial processes or even whole processes can be
modelled mathematically and the models are sufficiently accurate in order to use
simulation in process design with computers. Usually, the models of industrial
processes are quite complex and computationally very demanding. For some
processes, one simulation run of the process can still take many hours or even
many days requiring lots of computer capacity and sometimes parallel comput-
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ing. After the process has been simulated, we have one description of the perfor-
mance of the process with some fixed process parameters.

If we want to design a process that has the best possible performance, sim-
ulation is not enough. Mathematical models used in process simulation typically
include several parameters that affect the efficiency of the process. Efficiency
is measured in the sense of different objective functions or performance criteria.
Therefore, finding the best combination of the parameters can lead to an improve-
ment of the efficiency of the process. The best parameter values are found from a
feasible set that is restricted by some constraints originating from the simulation
model consisting of physical or chemical properties of the process or environ-
mental, monetary, qualitative or quantitative restrictions to name a few [8, 46].

The performance of the process can be improved by applying optimization
to the simulation model with respect to its parameters [8, 9, 46, 53] because simu-
lation by trial and error does not necessarily give a good performance. Instead of
simply simulating the process with some fixed parameter values, it is desirable
to find such a combination of parameters that will lead to the best possible per-
formance. This can be realized by optimizing some performance criterion subject
to a set of constraints [7, 8, 9, 46, 53]. In optimization, the parameters of the math-
ematical models are called variables.

In real-world optimization problems, it is not always sufficient to consider
only one performance criterion because there are usually several different aspects
involved that produce many performance criteria. The various performance cri-
teria describe the goodness of the process from different perspectives. In addi-
tion, they are usually conflicting which means that they attain their optima at
different points and they can not be all optimized at the same time. For exam-
ple, if we want to minimize costs and maximize product quality we need to use
multiobjective optimization [14, 43, 64, 88, 89].

Multiobjective process design problems involve criteria that are from many
different areas including, for example, economic aspects, environmental impact
and process operability. In some of these areas, the mathematical modelling of
the criteria is not so well developed so far that the models would describe the
phenomena involved accurately enough in order to be used in optimization. In
addition, performance criteria are often in different units, different scales or are
different in nature. For these reasons, it is not easy to compare them directly, for
example, by summing them all up, which would lead us to a problem of adding
up apples and oranges. This means that we can not usually just directly combine
all the objectives into the same objective function, for example, just add them
all up, without changing the interrelationships of the objectives. The methods
of multiobjective optimization (see, for example, [64]) help us to overcome these
difficulties and present more sophisticated ways to convert multiple objectives
into a single objective function, that is scalarizing the multiobjective optimization
problem.

In multiobjective optimization, there is not necessarily a unique optimal so-
lution like in classical single objective optimization, but a set of mathematically
equivalent compromise solutions called Pareto optimal solutions can be identified.
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A solution is Pareto optimal if no criterion can be improved without impairing
at least some other criteria. Usually, we want to end up with one final solution
and, therefore, we need some additional information that helps us to find the best
Pareto optimal solution. A decision maker, DM, (or designer in process design)
is a person who can provide this information and has valuable knowledge about
the problem in question. The DM expresses preference information on what kind
of solution is desirable while looking for the best compromise solution as the final
solution.

Optimization of real-world industrial processes is often computationally de-
manding. Depending on the optimization method used, it may require a consid-
erable number of evaluations of the process model during the optimization pro-
cedure, in order to obtain an optimal solution for a single objective function. On
the other hand, as mentioned before real-world optimization problems typically
have several conflicting objectives or performance criteria that need to be consid-
ered simultaneously, and it is important to have optimization tools that require
only few process model simulations in order to obtain optimal or satisfactory so-
lutions quickly.

A number of papers have been published describing the usage of multiob-
jective optimization in chemical process design including [2, 13, 18, 51, 54, 59, 85,
91, 110]. The most common approach has been to consider only two conflicting
objective functions at a time. For some reason, solving the multiobjective opti-
mization problem has often been understood as approximating the Pareto optimal
set, that is, the set of all Pareto optimal solutions. In order to select the most pre-
ferred solution in that case, some kind of visualization of the Pareto optimal set is
needed. The visualization becomes difficult or impossible for more than two ob-
jectives which naturally makes this kind of approach useful for only two objective
functions. Probably, another reason for considering only two objectives has been
that the designers have not been aware of the existence of methods developed for
multiobjective optimization that can consider more than two objective functions
and, therefore, have used only two. The biobjective optimization problem formu-
lated by the designers has usually been solved by optimizing the weighted sum
of the objectives or optimizing only one objective while considering the other as
a constraint.

Both using weights or additional constraints are simple to implement and
use but they have some severe drawbacks. For example, by optimizing the weigh-
ted sum of the objectives some of the Pareto optimal solutions that might be de-
sired can not be found. On the other hand, if we optimize only one of the objec-
tives it is not obvious which objective should be chosen to be optimised and the
upper bounds for the objectives considered as inequality constraints are also dif-
ficult to define in order to find desired solutions. The cause for using these simple
methods could have been that the designers have not necessarily known any bet-
ter ones. In addition, the case of two objectives is a special case of multiobjective
optimization and, usually, real-world problems have more than two objectives
that need to be considered. For these reasons, we need to use more sophisticated
methods of multiobjective optimization. We describe multiobjective optimization
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previously used in chemical process design more detailed in Chapter 3.

In this thesis, we use interactive multiobjective optimization to solve chem-
ical process design problems involving more than two objective functions. In
interactive multiobjective optimization, preference information is asked from the
DM iteratively, thus, making the solution procedure interactive. Interactive meth-
ods enable the DM to adjust his/her preferences while (s)he obtains new informa-
tion during the interactive procedure. Therefore, interactive methods act also as
learning tools and provide the DM with information on interrelationships of con-
flicting criteria. In addition, interactive methods are computationally efficient be-
cause they only need to generate few Pareto optimal solutions. For these reasons,
interactive multiobjective optimization methods are considered to be promising
in solving real-world problems that can be computationally demanding [34, 64].

There have been some applications of interactive multiobjective optimiza-
tion methods in chemical process design, for example, in the fields of carbo-
chemical and paper industries and production planning [4, 28, 49, 93]. How-
ever, utilization of interactive methods has been infrequent and concentrated
mainly on solving linear problems [4, 49]. In this research, we use the inter-
active NIMBUS® method [64, 67, 72] to solve nonlinear multiobjective chemi-
cal process design problems. We have chosen NIMBUS® because there are not
many implementations of interactive multiobjective optimization methods avail-
able other than NIMBUS and it has been succesfully applied to many challenging
multiobjective optimization problems including the optimal design of the paper
machine headbox [36] and the optimal control problem in the continuous cast-
ing of steel [74]. There is an implementation operating on the Internet called
WWW-NIMBUS [69, 72] (http://nimbus.it. jyu. fi) that is freely available
for academic problems and a new implementation IND-NIMBUS [82] (http:
//ind-nimbus.it. jyu.fi) that can be used for solving industrial problems.
Besides, NIMBUS® has been developed at the University of Jyvaskyld and sup-
port is easily available as well as access to the original programming codes. Real-
world processes are usually nonlinear by nature, and by using NIMBUS®, we do
not have to be restricted only to linear problems. In addition, the preference infor-
mation requested from the DM in the NIMBUS® method is easy to understand for
the DM, thus, making the usage of NIMBUS® easy for the DM. More information
about interactive methods in chemical process design can be found in Chapter 3.

Solving optimization problems related to chemical process design is not
straightforward as mentioned before. There are a few more challenges that need
to be taken into account that are not present, for example, in solving academic op-
timization problems. First of all, exact gradient information is not usually available
which can cause convergence failures or difficulties for certain gradient based op-
timizers. A numerical model of the process is produced by a process simulator
or some modelling tool, and they do not necessarily have analytical forms of the
problem functions. Therefore, partial derivatives need to be numerically approx-
imated using, for example, finite differences [3, 46]. In addition, function values
can also be numerical approximations resulting from some iterative procedure
and that can cause additional inaccuracy in approximated gradients [34]. There-
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fore, in some cases it can be necessary to use such optimizers that do not utilize
gradient information.

Let us mention that one way to obtain accurate gradient information is to
use automatic differentiation (AD, see, for example, [29, 38]). AD is a method to
numerically evaluate the derivative of a function that is given by a computer pro-
gram. It avoids the drawbacks of classical ways to compute derivatives, namely
symbolic differentiation and finite difference approximations. Symbolic differ-
entiation is time consuming while the drawbacks of using finite differences are
accuracy and the selection of discretization. In AD, a new arithmetic is intro-
duced that computes also the derivative of each arithmetic operation as well as
the numerical value. Then, the derivative of the whole function is computed by
utilizing the chain rule of differentiation. Applying AD in process simulation de-
serves further study, but it can be difficult in practical applications with large
process simulation software packages because of the complexity of the software
code.

Another challenge is the existence of so-called non-physical solutions which
means that for some feasible combination of decision variables, the numerical
model of the process leads to a non-physical state. By non-physical state we mean
that for that particular combination of decision variables the physical model makes
no sense. In these cases, simulator or modelling tool is not able to produce
function values (or gradients) for these decision variables and the optimization
method used must be able to handle such a situation. Finally, there is lots of data
transmission between the optimization method and modelling tool, for example,
problem dimensions, variable and function values as well as gradient informa-
tion. Therefore, the interfaces between the modelling tool and the optimization
methods must be designed carefully in order to have an efficient implementation
[34]. The above-mentioned challengies related to accuracy of gradient informa-
tion and non-physical solutions are considered in [34].

An industrial process design tool is a computer program or a combination
of several computer programs that can be used to solve (chemical) process de-
sign problems. A process design tool consists of several different parts. First of
all, we need a simulator or some modelling tool that produces a numerical model
of the problem we are considering. Secondly, we need an optimizer which is able
to solve optimization problems based on the numerical model. This optimizer
should be able to consider all the different aspects of the problem, namely, all
the different performance criteria included. The optimizer itself should consist of
at least two parts: a multiobjective optimization method that handles conflicting
performance criteria and an efficient single objective optimizer that finally pro-
duces new designs as the solutions of the scalarized multiobjective optimization
problem produced by some multiobjective optimization method. Finally, we also
need a graphical user interface that enables the usage of the tool and visualization
and comparison of the Pareto optimal solutions obtained.

In this thesis, we describe a process design tool based on IND-NIMBUS that
we have developed and applied to various chemical process design problems. To
our knowledge, no such tools have earlier been described in the literature utiliz-
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ing interactive multiobjective optimization for nonlinear problems. In the context
of IND-NIMBUS, we have used different modelling tools and single objective op-
timizers depending on the problem in question. The tool has been found very
useful in considering multiple performance criteria present in chemical process
design problems.

The thesis consists of six papers [I]-[VI]. Papers [I]-[III] consider the usage
of IND-NIMBUS in solving steady-state chemical process design problems that
are modelled with the BALAS® process simulator, developed at the VIT Technical
Research Center of Finland. They describe how the process simulator and IND-
NIMBUS have been combined in order to be able to solve steady-state chemical
process design problems utilizing interactive multiobjective optimization. These
papers include different applications from paper making and power industries
that are considered in a novel way, that is, with more than two conflicting ob-
jectives. Papers [IV, V] deal with the design of dynamic simulated moving bed
processes that are used in separation of chemical products. The problems consid-
ered involve models with partial differential equations and they are for the first
time studied with four different objective functions and they lead to large chal-
lenging optimization problems. The papers describe how to solve these types
of optimization problems with efficient optimization tools within IND-NIMBUS
concentrating especially on how to quickly produce new Pareto optimal solutions
for large and computationally demanding problems. Note that all the industrial
applications in these papers were considered in a novel way. In other words,
these problems have not been previously solved with all these objectives func-
tion simultaneously. All the papers are aimed at both chemical engineering and
multiobjective optimization communities.

In paper [VI], we propose some ideas of how to utilize trade-off information
in supporting the DM during the interactive solution procedure. The ultimate
goal is to aid the DM in finding the best compromise solution without taking too
much of his/her time and, therefore, best utilize the benefits of the interactive
solution procedure. Previously, trade-off information has mostly been used as
parts of some multiobjective optimization methods [14, 32, 103, 111]. In addition,
a lot of trade-off theory has been developed (see, for example, [14, 31, 40, 57,
58, 70, 87, 88]) but not so much practical and numerical experiences have been
published. Therefore, the paper is focused on practical and numerical usability
of trade-off information.

Interactive multiobjective optimization turned out to be very useful in pro-
viding chemical process design a way to solve these kind of problems sufficiently
well. From the numerical applications considered, we could conclude that good
and promising solutions could be obtained with this approach and the design-
ers found the interactive solution procedure easy to use and understand. It is
difficult to compare the results obtained with the previous ones because all the
problems were considered with more objectives than before, that is, more realis-
tically. In this way, the interdependencies of the conflicting objectives could be
studied when the trade-offs between them became clearer to the designers.

In practice, there is a lot of work to be done in order to combine all the
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elements required in a good process design tool. For example, there are various
algorithms and iterative procedures in both the optimizer and the modelling tool
that need to be synchronized in order to obtain numerically reliable results. In
addition, there are lots of interfaces between these different components that need
to be constructed. In the process design tool that we have developed in this thesis,
there are several components that we had to get working together, namely, IND-
NIMBUS, the NIMBUS® method, the BALAS® process simulator, several single
objective optimizers and the AMPL modelling language. Therefore, developng
general interfaces that enable combining different parts easily and efficiently is
an important issue in developing chemical process design tools and it also makes
easier the usage of specialized optimizers and modelling tools.

This research gave us an understanding of what needs to be done in or-
der to be able to efficiently consider industrial chemical process design problems
as truly multiobjective ones. In a nutshell, it requires the usage of such interac-
tive multiobjective optimization method that enables the designer to find the best
compromise solution while generating only few Pareto optimal solutions by us-
ing efficient single objective optimizer that takes into account the special features
of the problem considered. In addition, the method should have a graphical user
interface that makes the usage of the method easy for the designer and offers also
a possibility to compare the solutions obtained with the help of some visualiza-
tions. Other researchers can use these ideas and approaches to further develop
this field because this thesis offers them some basis to start with.

The contents of this thesis is the following. First, in Chapter 2, we present
basic ideas of multiobjective optimization and the methods that we have used in
this research. Chapter 3 is devoted to chemical process design describing opti-
mization previously done in this field as well as its challenges and possibilities
to multiobjective optimization. In addition, construction of industrial process
design tool based on IND-NIMBUS, that is, the tool we have developed, is de-
scribed. Chapter 4 is devoted to industrial applications of interactive multiobjec-
tive process design from different areas of chemical engineering. In Chapter 5,
we describe the author’s conribution in this thesis and, finally, in Chapter 6, we
give some concluding remarks and ideas for future research.



2 MULTIOBJECTIVE OPTIMIZATION

Optimization means finding the best solution to a problem within all the possible
solutions. In other words, we must find the optimum (minimum or maximum) of
one or more objective functions with respect to some constraints by varying the
values of the variables. Traditionally, only one objective function is considered
and then we are dealing with mathematical programming or, more exactly, single
objective optimization.

Mathematical programming has been studied for a long time and there are
lots of well developed methods for single objective optimization (see, for exam-
ple, [5, 26, 41, 42]). Different methods have been developed for different types
of optimization problems depending, for example, on the properties of objective
and constraint functions or on the type of the variables. In this thesis, we deal
with optimization problems with nonlinear functions and continuous variables.

In real-world optimization problems, there are often more than one function
or criterion that we want to optimize simultaneously. In that case, the methods for
single objective optimization are not enough, but we need to consider methods of
multiobjective optimization [14, 64, 88, 89]. In this chapter, we present a summary
of multiobjective optimization and we concentrate on interactive multiobjective
optimization. In addition, we present the multiobjective optimization method we
are using in this research, namely the interactive NIMBUS® method. We start by
formulating a single objective optimization problem because multiobjective prob-
lems are usually scalarized, that is, converted into a single objective optimization
problem and solutions of the multiobjective problem are obtained by solving it.

2.1 Multiobjective optimization problem

A single objective optimization problem can be formulated as follows:

minimize f(x)

(1)

subjectto x € S.
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Function f : R" — R to be minimized is called an objective function. If the objec-
tive function f is to be maximized then it is equivalent to minimize the function
— f. Minimization of the objective function is performed with respect to decision
variables x € R". The decision variables x form a decision vector belonging to the
decision space R". Usually, all the decisions in the decision space are not necessar-
ily acceptable and we call the acceptable subset @ # S C IR" the feasible region.
The feasible region can be, for example, of the form

S={xcR"|gx) <0, hi(x) =0, x' <x <x"}, )

where g; : R" — R, i = 1,...,my, are inequality constraints, hj 'R" = R, j =
1,...,my, are equality constraints and x',x* € R" are lower and upper bounds for
the decision variables, respectively. In this thesis, we consider only optimization
problems with continuous decision variables as mentioned before.

Solutions of problem (1) can be categorized in to local and global minima.

Definition 2.1.1

A solutionx™ € S is a local minimum of problem (1) if there exists a neighborhood
N(x*) such that f(x*) < f(x) forallx € N(x*). If f(x*) < f(x) forallx € S,
then x* is a global minimum.

If the optimization problem has more than one objective function, it can be for-
mulated as a multiobjective optimization problem

minimize {fi(x),...,frx(x)}
(3)
subjectto x € S.

Again, functions f; : R" — R,i =1,...,k, k > 2, to be minimized are called
objective functions or criteria. In this thesis, we will use both the terms. The space
R¥, where the objective functions have their values, is called the objective space
and the vectors in the objective space, z = f(x) = (fi(x),..., fi(x))7, are called
objective vectors. The feasible region S can be defined in the same way as in (2).

In single objective optimization, the solution x* of problem (1) gives the
smallest value of the objective function in the feasible region. If we have more
than one objective function, the definition of optimality must be redefined be-
cause individual objective functions usually attain their minima at different points
x € S. The concept of optimality often used in multiobjective optimization is
called Pareto optimality.

Definition 2.1.2

A decision vector x* € S is called a Pareto optimal solution if there does not exist
another decision vector x € S such that f;(x) < fi(x*) foralli = 1,...,k and
fi(x) < fi(x*) for at least one j. Furthermore, an objective vector f(x*) is called
Pareto optimal if the corresponding decision vector x* is Pareto optimal.

The above definition means that the solution x* is Pareto optimal if no criterion
can be improved without impairing some other criterion. All the Pareto optimal
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solutions form a Pareto optimal set. Sometimes, Pareto optimal solutions are also
called non-dominated or efficient [88]. In this thesis, we assume that there exist
Pareto optimal solutions (according to corollary 3.2.1 in [88]). An illustrative ex-
ample of Pareto optimality is shown in Figure 1 where the Pareto optimal set is
denoted with a bold line. Note, that all the Pareto optimal solutions are mathe-
matically equivalent, in other words, all the feasible solutions of multiobjective
optimization problems have only partial ordering.

A Zy

Nadir objective vector

‘ s
! Pareto optimal

set \

Ideal objective vector Z

FIGURE1 An example of a Pareto optimal set.

Definition 2.1.2 is for global Pareto optimality. In a similar way than we
categorized global and local optima for the single objective optimization problem
(1), local Pareto optimal solutions can be defined.

Definition 2.1.3

A decision vector x* € S is locally Pareto optimal if there exists a neighborhood
N(x*) of x* such thatx™ is Pareto optimal in N(x*) N S. The objective vector f(x*)
is locally Pareto optimal if the corresponding point x* is locally Pareto optimal.

There exist also other concepts of optimality like so-called weak Pareto optimality.

Definition 2.1.4

A decision vector x* € S is called a weakly Pareto optimal solution if there does
not exist another decision vector x € S such that fi(x) < fi(x*) foralli=1,...,k.
Furthermore, an objective vector f(x*) is called weakly Pareto optimal if the cor-
responding decision vector x* is weakly Pareto optimal.
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Weak Pareto optimality means that there can be solutions where some of the ob-
jectives (but not all of them) might be improved without impairing any other one.
Note that a Pareto optimal solution is always weakly Pareto optimal but a weakly
Pareto optimal solution is not necessarily Pareto optimal. In other words, the
Pareto optimal set is a subset of weakly Pareto optimal solutions. Weak Pareto op-
timality must be acknowledged because some multiobjective optimization meth-
ods can produce only weakly Pareto optimal solutions.

2.2 Some concepts in multiobjective optimization

To totally order mathematically equivalent Pareto optimal solutions in order to
find the best compromise solution for the problem in question, we need some
extra information. A decision maker is a person who is able to express preference
information about the problem to be considered and, especially, about the dif-
ferent conflicting criteria. It is assumed that less is preferred to more to the DM
when the objective functions are minimized. Assuming that the problem is cor-
rectly specified and the DM is rational, we can concentrate on the Pareto optimal
solutions. In chemical process design, the DM is called a designer. In this thesis,
we will use either the term decision maker or designer depending on the context.
In any case, we mean the same person.

The concepts often used in multiobjective optimization problems are the
ideal objective vector z*, utopian objective vector z** and the nadir objective vector "™
(see, for example, [64]). These vectors in the objective space are used to give
ranges for objective function values in the Pareto optimal set. The ith component
of the ideal objective vector z; is the minimal value of the objective function f;,
that is, a minimum when f; is minimized with respect to the set S. Note, that if the
objective functions are conflicting, then the ideal objective vector is not feasible.

The utopian objective vector is slightly better than the ideal objective vector
and, thus, also infeasible. However, it is used in some multiobjective optimiza-
tion methods for computational reasons. The utopian objective vector for mini-
mization problems is defined, for example, by z;* = z7 — ¢, where z7* is the ith
component of the utopian objective vector and ¢ > 0 is a small number. Both the
ideal and the utopian objective vector form lower bounds for the Pareto optimal
set.

The nadir objective vector gives upper bounds for the objective function
values in the Pareto optimal set. These upper bounds can not be calculated ex-
actly in general, and thus, are only approximations. A widely used method for
approximating the nadir objective vector is to use the payoff table [64]. This table
consists of values of all the objective functions calculated at the points where the
values for the ideal objective vector were achieved. The worst value of the objec-
tive function f; in this table is selected for the ith component of the nadir objective
vector, that is, z?“d . However, this approximation can be very poor, either too low
or too high. Note, that if k = 2, the payoff table gives an exact nadir objective
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vector. An example of ideal and nadir objective vectors is given in Figure 1.

A reference point Z = (21, ...,2;)" consists of aspiration levels z; for each ob-
jective function f;. The aspiration levels are given by the DM and they represent
desired levels for each objective function.

2.3 Methods of multiobjective optimization

In this work, solving a multiobjective optimization problem means finding a
Pareto optimal solution that best fulfils the requirements or hopes of the DM.
Usually, it is not possible or reasonable to generate the whole Pareto optimal
set, but it can be approximated by generating a suitable selection of Pareto op-
timal solutions. Pareto optimal solutions are usually produced by scalarizing the
multiobjective optimization problem (3) into single objective optimization prob-
lem(s) according to the preferences of the DM and then solving it by utilizing
the methods of single objective optimization. The scalarization depends on the
multiobjective optimization method used.

Evolutionary multiobjective optimization (see, for example, [19]) uses evo-
lutionary techniques in solving multiobjective optimization problems. In these
methods, the original problem is not scalarized and there is a population of so-
lutions that is manipulated. Operations having their origin in the evolution pro-
cess of nature (selection, cross-over and mutation) are applied to members of the
population in order to find better solutions. The idea is to approximate, that is,
to cover the Pareto optimal set with the population. These methods do not uti-
lize gradient information, but only the objective and constraint function values
and, therefore, they work well for mathematically challenging problems where
the computation of gradients is difficult or the gradients obtained could be in-
accurate. Evolutionary multiobjective optimization methods are not considered
in this thesis because they can not guarantee the Pareto optimality of the solu-
tions obtained. In addition, they are best suited for only two objective functions
because they often use lots of function evaluations and the number of function
evaluations required increases significantly with the number of objectives. These
methods can be very time consuming when applied to real-world problems with
more than two objective functions.

Many different solution methods have been developed for multiobjective
optimization (see, for example, [43, 64, 89]). Solution methods can be divided into
four categories according to the role of the DM in the solution procedure [43, 64].
These categories are for methods that do not involve a DM, a posteriori methods,
a priori methods and interactive methods. A posteriori and a priori methods take
the preferences of the DM into account after and before the problem is solved,
respectively, while interactive methods require interaction between the method
and the DM. This division of the methods is not unique because some methods
can be considered to belong to different categories depending on how they are
used.
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Next, the four categories are introduced very briefly and some examples of
the methods are presented. The presentation is based on the book [64] where
more information about different methods can be found.

2.3.1 No-preference methods

No-preference methods do not utilize the DM’s expertise at all. Instead, some simple
method is used to produce a Pareto optimal solution which is then accepted or
not. These methods are used when there is no DM available. The benefit of
these methods is that they are fast but the main drawback is that the solution
obtained may be very bad for the problem in question because it does not take
into account the DM’s preferences. An example of no-preference methods is the
method of global criterion [107, 109] where the distance to the ideal objective vector
is minimized.

A special solution related to ideal and nadir objective vectors is the neutral
compomise solution introduced in [102]. The neutral compromise solution is ap-
proximately in the middle of the Pareto optimal set. By “in the middle” we mean
that the distance is measured by the min-max metric, that is, the neutral compro-
mise solution is defined as the solution of problem

minimize max [%] +p f %
i=1,...k | % % i=1 % TF

1 1 1 (4)
subjectto x € S,

where z"d = (21" 4 z*) /2 is used as a reference point. The latter part of the

objective function in (4) is used to guarantee Pareto optimality and not merely
weak Pareto optimality of the solution and the parameter p must be strictly pos-
itive. See [64] for details. Note that the neutral compromise solution does not
involve any preferences of the DM. Information about different neutral compro-
mise solutions can be found in [102].

2.3.2 A posteriori methods

In a posteriori methods, the Pareto optimal set or a subset of Pareto optimal so-
lutions is generated and presented to the DM. Then the DM selects the best so-
lution representing her or his preferences. A posteriori methods are well suited
for problems with two objectives because the solutions representing the Pareto
optimal set can be easily visualized which makes the selection of the most pre-
ferred solution easier to the DM. The drawbacks of these methods are that the
generation of the Pareto optimal set or a part of it is often quite time consuming
and difficult. Furthermore, the DM has to select from a large number of candi-
dates which may be cognitively demanding. (It is not obvious how to present
k-dimensional objective vectors to the DM.) Widely used a posteriori methods
are the weighting method [25, 108] where the weighted sum of the objective func-
tions is optimized and the e-constraint method [14, 33] where one of the objective
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functions is optimized while the rest of the objective functions are converted into
inequality constraints by introducing bounds for them. Different Pareto optimal
solutions are obtained by changing the weights and the upper bounds for new
inequality constraints for the weighting method and the e-constraint method, re-
spectively.

2.3.3 A priori methods

A priori methods ask the preferences of the DM before the method is applied to
the problem. Then, according to the preference information given by the DM, the
method formulates a single objective optimization problem. This optimization
problem is then solved, and the solution obtained is supposed to represent the
preferences of the DM as well as possible. The quality of the solution depends
on the problem in question and, also, on the method used. A benefit of a priori
methods is that the preferences of the DM can be taken into account when Pareto
optimal solutions are generated. Difficulties in these methods are that it may be
difficult for the DM to express the preference information because (s)he does not
know beforehand what is possible to achieve and, therefore, can be disappointed
with the solution obtained. Lexicographic ordering [24] and goal programming [15,
16, 17] are examples of a posteriori methods. In lexicographic ordering, the DM
defines a strict preference order for the objective functions that are then optimized
in the same order. In goal programming, the DM specifies a desired aspiration
level for each objective function and the idea is to minimize the deviation between
the objective function value and the aspiration level.

2.3.4 Interactive methods

Interactive methods [64] require iterative co-operation between the method and
the DM. Usually, at first some initial Pareto optimal solution is generated and
presented to the DM. This can be, for example, the neutral compromise solution.
Then, the DM expresses his or her opinion on which way the current solution
should be improved or gives some other information required by the method
used. Based on this information, Pareto optimal solution(s) are generated, and
the solution(s) obtained are presented to the DM. This iterative solution proce-
dure continues until the DM is satisfied with some solution or does not want to
continue any more.

A benefit of interactive methods is that the DM can guide the solution pro-
cedure and is able to learn about the behaviour of the problem. (S)he can study
the interrelationships of the objective functions and obtain a wider understand-
ing of their effects on the whole problem. Therefore, as the DM gains more and
more understanding of the behaviour of the problem, (s)he can adjust his or her
preferences accordingly. Another benefit is that interactive methods are compu-
tationally efficient, because quite a small number of Pareto optimal solutions is
usually needed to compute. Furthermore, the DM can concentrate only on those
solutions that are of interest. On the other hand, the drawback of interactive
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methods is that they require the DM to take part in the solution procedure ac-
tively and, thus, the DM has to be willing to spend his or her time.

Different interactive methods differ in how the solution information is shown
to the DM, how the DM expresses his or her preferences and how the problem is
scalarized. Examples of ways to express preferences are the classification of the
objective functions and the reference points [64, 99, 102]. This type of preference
information is utilized, for example, in the interactive NIMBUS® method to be
presented next.

2.4 NIMBUS method

NIMBUS' is an interactive multiobjective optimization method for nonlinear prob-
lems [64, 67, 68, 72]. NIMBUS' has been used to solve computationally demand-
ing multiobjective optimization problems, for example, the optimal design of the
paper machine headbox [36], the optimal control problem in the continuous cast-
ing of steel [74], and a structural design problem [73]. There exists several ver-
sions of the NIMBUS~ method and the synchronous version [72] is used in this
research.

NIMBUS' is based on the classification of the objective functions into up to
five classes [67]. The classification is made at the current Pareto optimal objective
vector f(x°) which is shown to the DM. By classifying the objective functions the
DM indicates how the current solution should be improved. In the classes the
value of the objective function f;

should be improved as much as possible (i € [""P),

should be improved until some specified aspiration level z; (i € I%F),

is satisfactory at the moment (i € I°%),

can impair till some specified bound ¢; (i € I boundy and

can change freely (i € 1f7eey,

Note that [P U [P U [*%* U [bound y [free = [1,...,k}. In the sense of Pareto
optimality the classification is acceptable if I U [P = @ and 144 U [f7e¢ o£ @),
because one must let some objective function to impair in order to improve some
other objective function. Aspiration levels z;, j € [*F, and upper bounds ¢;,
i € [Pound are asked from the DM, if these classes are used.

According to the classification by the DM, the original multiobjective op-
timization problem is converted into several single objective optimization prob-
lems, so-called subproblems in the synchronous version of the NIMBUS® method
[72]. Various subproblems are used because there is no unique way to use classifi-
cation information in multiobjective optimization problems [71] and it is the DM
who is the best expert to say which solution follows the preference information
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specified in the most satisfactory way. New Pareto optimal solution candidates
are obtained by solving these subproblems. The subproblems can be solved by
any suitable single objective optimizer.

There are four different subproblems used in the synchronous version of
NIMBUS’, the standard subproblem formulated by the developers of the NIMBUS"
method and three subproblems based on reference points. In all the subproblems,
the latter part of the objective function is called the augmentation term and it guar-
antees that the solution obtained is Pareto optimal as mentioned before in the
context of the neutral compromise solution (see [64] and [72]). The augmentation
parameter p > 0 is a small coefficient. The standard (STD) subproblem is of the
form

_ k
. fitx)—zf fi(x)—z fi(x)
P ielig;}a'x asp lzmdszl*'zmdz»f* +p ; Zpad—z2x
JJEI i i 7 j i=1"%i i

' 5
subjectto f;(x) < fi(x°) for alli € I'"™P U [P U [, (5)
fi(x) < e, foralli € [bound,
x€S.

The three subproblems based on reference points are taken from the liter-
ature, and selected according to the comparison in [71]. These subproblems are
based on the satisficing trade-off method [77, 79, 80, 81], the achievement (scalar-
izing) functions [99, 100, 101] used in the reference point method and the GUESS
method [12]. These three additional subproblems are very similar in structure
although it has been shown [71] that they typically generate different enough so-
lutions. The formulations of these subproblems can be found in [72]. From the
classification information provided by the DM, we can form a reference point
2 € RK, where 2; = zf fori € I'mr, 2, = z;fori € 1P, 5; = f;(x°) for i € I**™,
2 =¢; fori € [Pound and 2, = z?“d fori e 1free.

The number of subproblems used can be changed during the optimization
procedure, that is, the DM can select the number of different solutions to be gen-
erated after each classification. For example, some problems can be computation-
ally so demanding that the usage of all the subproblems is not practical.

In NIMBUS?®, there is also a possibility to generate intermediate Pareto op-
timal solutions between any two Pareto optimal solutions. These intermediate
solutions are generated by computing objective vectors at the decision variables
that are equally divided between the selected two Pareto optimal solutions. These
solutions are not necessarily Pareto optimal but they are always projected into
the set of Pareto optimal solutions by applying some of the reference point based
subproblems.

A simplified flowchart representing the NIMBUS® algorithm is presented in
Figure 2. The optimization procedure starts with the computation of a neutral
compromise solution (4) which is approximately in the middle of the Pareto opti-
mal set as described before. The iteration procedure starts with the classification
at the current solution. After the method has produced new solution candidates
corresponding to the classification, the DM can generate intermediate solutions
between them or select one of them as the basis of the next classification. Note
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that different subproblems do not necessarily produce different solutions. In that
case, only the different ones are shown to the DM. If the DM is satisfied with the
solution obtained, the optimization procedure stops. Otherwise, (s)he can make
another classification. The promising solutions obtained during the solution pro-
cedure can be stored in a database, so that the DM can select also solutions previ-
ously obtained.

All the subproblems in the synchronous NIMBUS® method are of min-max
type and, thus, are always nonsmooth independently of the properties of the
functions in the original multiobjective optimization problem. To solve the sub-
problems we, therefore, need a nonsmooth optimizer, for example, the proximal
bundle optimizer [63] or an optimizer that does not assume differentiability (see,
for example, [27]). However, we can obtain smooth variants of the subproblems
quite easily if the original functions in the problem are differentiable. Smooth
variants enable us to select the single objective optimizer used from a wider class
of smooth optimizers to meet the special requirements often present in real-world
optimization problems. As an example, we present a smooth variant of the STD
subproblem:

fi(x)

Zlnud _Z;F*

k
minimize J6+4p ),
x,0 i=1

subject to fix) =z <§, ieTImp,

szdizii* (6)
S04 <5, jer,
j j .
fi(x) < fi(x€) foralli € I'™P U [P U I,
fi(x) <eg, foralli € [bound,
xeS, JeR.

When compared to the original STD subproblem (5), we have introduced a new
variable ¢ in the objective function. As a result, we have obtained a number of
additional inequality constraints involving é. Note, that we are now optimizing
with respect to both x and ¢.

2.5 IND-NIMBUS

IND-NIMBUS [82] is an implementation of the NIMBUS® method for solving (in-
dustrial) nonlinear multiobjective optimization problems (http://ind-nimbus.
it.Jjyu.fi/). IND-NIMBUS provides a graphical user interface (GUI) for the
designer to participate in the solution procedure and to compare and visualize the
Pareto optimal solutions obtained. IND-NIMBUS can consider several conflict-
ing objectives or performance criteria simultaneously and offers an interactive
solution procedure based on the NIMBUS® method. Let us mention that IND-
NIMBUS can handle objective functions to be either minimized or maximized.
We have used IND-NIMBUS to solve all the chemical process design problems
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FIGURE 2 A flowchart of the NIMBUS® algorithm.

considered in this thesis.

Our goal is that IND-NIMBUS could easily be connected to different simu-
lators and modelling tools. Currently, IND-NIMBUS has been connected to the
BALAS® process simulator [II, 34], virtual paper machine [60, 61], and the Nu-
merrin modelling system [39]. In addition, we want to be able to use different
single objective optimizers to solve the subproblems produced by the NIMBUS®
method. So far, we have used the nonsmooth proximal bundle optimizer [63] (in
[L, II, I1I]), a real-coded genetic algorithm with two variants of constraint handling
[75] (in [35]) and a large-scale nonlinear optimization package IPOPT [95, 96] (in
[IV, V]). The local proximal bundle optimizer is developed for nonsmooth op-
timization problems and it is based on approximating the subdifferential of the
objective function by using subgradients [62, 63]. IPOPT is a local large-scale
nonlinear optimization package based on a Newton-based interior point (barrier)
algorithm with a filter line-search method and it is used to solve smooth single
objective optimization problems. The ability to connect different optimizers to
IND-NIMBUS enables the usage of specialized optimizers tailored for the needs
of the problem in question.

The GUI of IND-NIMBUS consists of tabs for different parts of the solu-
tion procedure. For example, there are different tabs for classification, generating
intermediate solutions, visualization of the Pareto optimal solutions obtained,
showing values of the objective functions and the decision variables of the solu-
tions, changing parameters of the underlying optimizers as well as the NIMBUS®
method and for the messages produced by the optimization methods. Screen-
shots of different tabs are shown in Figures 3—6. Next, we briefly describe four
of the tabs, namely the classification, the intermediate solution generation, the
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visualization and the numerical values tabs. Above the tabs, there is a toolbar for
controlling the solution procedure, for example, starting and stopping calculation
and selecting the underlying single objective optimizers used.

The main tab is used for classification (Figure 3). This tab consists of three
parts: the current Pareto optimal solution, in which the classification is made, is
presented in the left side of the tab, the solutions obtained during the solution
procedure so far are shown in the upper right corner of the tab and the best can-
didates for the final solution (selected by the designer) are presented in the lower
right corner. Each objective function is represented by a colored bar. General idea
is that the shorter the colored bar, the better is the corresponding objective func-
tion value. Note, that the bars for the objective functions to be minimized start
from left while the bars for the objective functions to be maximized start from
right. The values at the left and right sides of each bar represent the ranges of the
Pareto optimal set. The designer needs to select the solution which (s)he wants to
improve from the set of already obtained solutions. Then (s)he can perform the
classification by clicking the bars representing the objective function values of
the current solution in the upper left corner of the tab. The numerical fields in the
right side of the bars can be used to give aspiration levels and bounds required.
Clicking different parts of the bars corresponds to the classification presented in
Section 2.4 so this is an implementation of the classification in NIMBUS®.

In the classification, the designer tries to improve the objective functions
that (s)he believes are not satisfactory (larger or smaller values are preferred de-
pending on whether the objective function is to be minimized or maximized).
Note that due to the Pareto optimality the classification is acceptable if the de-
signer is willing to sacrifice in some objective functions in order to gain in some
other objective functions [72]. After the designer starts the calculation, new solu-
tion candidates will appear into the set of solutions obtained. The designer can
put the solutions that seem to be good at the moment in the set best candidates
with drag and drop. This set is used for helping the designer to keep track of
the best solutions obtained so far. The number of new Pareto optimal solutions
generated as well as the optimizer used can be adjusted from the toolbar.

The tab for generating intermediate solutions between any two chosen solu-
tions is presented in Figure 4. This tab is divided into four parts: all the solutions
obtained and the best candidates for the final solution are shown in the upper
and the lower right corners of the tab, respectively, while the two chosen end so-
lutions and the intermediate solutions produced are shown in the upper and the
lower left corner of the tab, respectively. To generate intermediate solutions [72],
the designer needs to drag and drop two solutions (end points) already obtained
to the upper left corner of the tab, choose the number of intermediate solutions
to be produced and start the calculation. When the intermediate solutions are
produced, they will appear to the pool of the intermediate solutions in the lower
left corner one by one.

The tab for visualizing the Pareto optimal solutions obtained is shown in
Figure 5. The aim of visualization is to give support for the designer in comparing
different Pareto optimal solutions and to help him /her obtain more information
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FIGURE 4 A screenshot of IND-NIMBUS: intermediate solutions tab.



29

B | | focal o ramerarg

Classiier | Generats Alteratives Wsualzation | Lagend | Valuss | Method parameters | Messages |

- Display
4 | & | |selected - W
1 7 9 16 sl
o |
o v %
- Controls
G Seali
roups caling &l
Expuort ==
€ By Function " pbsolute
Scaling
& By Alkermative & Relative
External
I
petal Diagram £ User
I~ Shaws aspirstion levels
4

FIGURE 5 A screenshot of IND-NIMBUS: visualization tab.
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on interrelationships of the objective functions. Again, this tab is divided into
three parts: the left side of the tab is reserved for the visualization of the objec-
tive function values of the selected solutions while all the solutions and the best
candidates are shown in the right side of the tab, respectively.
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FIGURE 7 Different visualizations of solutions obtained by IND-NIMBUS.

There are several types of visualizations available and the designer can
choose the one (s)he finds most suitable. The designer selects the solutions to
be visualized. The solutions can be visualized with absolute or relative values
of the objective functions. In some visualizations, the solutions can be grouped
either by criteria or alternative, that is, one can view either the solutions obtained
with the objective function values or the objective function values with all the so-
lutions. Relative values mean here that they are scaled between the lower and the
upper bounds of the Pareto optimal solution set [64]. Figure 7 shows examples of
different types of visualizations that IND-NIMBUS can offer. The visualizations
shown are 3d bars, barcharts, value paths, and petal diagrams, respectively. Other
visualizations offered by IND-NIMBUS are whisker plot, multiway dot plot, and spi-
der web. More information about visualizations in IND-NIMBUS can be found in
[65, 66].

The values tab shown in Figure 6 presents the values of the objective func-
tions and the decision variables. Each Pareto optimal solution forms one column
in the table. Note that the number of decimals shown can be adjusted.
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2.6 Supporting the decision maker

Currently, IND-NIMBUS has a couple of ways to support the decision maker
during the interactive solution procedure. First of all, the lower and the upper
bounds of the Pareto optimal set are always shown to the DM in order to aid in
classification and in specifying aspiration levels and bounds. Secondly, the DM
can explore Pareto optimal solutions already obtained and compare them with
the help of different visualizations. In addition to already available support, we
are interested in supporting the DM in what kind of classifications (s)he should
make in order to find the most preferred compromise solution without taking
too much of his/her time. It is found, that in practice the DMs do not want to
spent too much time in the solution procedure although they consider interactive
solution procedure useful [55]. By generating new solution(s) quickly and reduc-
ing the number of iterations required, we can ease the DM’s role in the solution
procedure and best utilize good properties of the interactive solution procedure.

One possible support for the DM in selecting the next classification/reference
point is trade-off information [14, 31]. The concept of trade-off is commonly used
in the context of multiobjective optimization because Pareto optimal solutions are
mathematically incomparable and one has to sacrifice in some criteria in order to
gain in some other criteria and that is called trading-off. In this thesis, we study
trade-off information and how it could be utilized in supporting the DM [VI]. We
do not want to develop a new interactive method but to support the usage of al-
ready available methods. In addition, it is important that supporting information
can be obtained without additional computational cost especially for real-world
problems.

Trade-off information does not involve any preference information from the
DM, but it describes interdependencies between different objective functions and
how their values change with respect to others. Pareto optimal solutions for prob-
lem (3) can be produced, for example with the reference point method [100]. In
this thesis, we study trade-off information in the context of reference point based
scalarization. Reference points are closely related to classification. From the clas-
sification information provided by the DM a reference point can be obtained. In
other words, if the DM makes a classification, for example, with IND-NIMBUS,
we can formulate a reference point with the help of the classification informa-
tion and then use a reference point based method to produce a Pareto optimal
solution. Note that the synchronous NIMBUS® formulates three reference point
based subproblems as mentioned before. Because of the above mentiond con-
nection between classification and reference points and because the classification
based scalarizing function (5) includes so much information, using a reference
point based scalarization gives us more simple starting point for this research.

A general reference point problem which is used, for example, in the refer-
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ence point methods of Wierzbicki [100] can be written in the differentiable form

minimize ¢
x,0
. _ . 7)
subjectto w;(fi(x) —z;) <6, i=1,...,k
xeS, JeR,

wherew; > 0,1 =1, ..., k are the fixed weighting coefficients used for scaling and
zj, ] = 1,...,k are the aspiration levels of the reference point Z. The weighting
coefficients form a weighting vector w = (wy, ..., wy)T. Different Pareto optimal
solutions are obtained by changing the reference point. This type of reference
point problem is used also in the synchronous NIMBUS®

A widely studied scalarization was presented by Pascoletti and Serafini in
[83]. In their scalarization, optimality is defined through a convex cone and the
scalarization itself contains several parameters, namely a point p and a direction
g. By changing the values of the parameters all the optimal solutions with respect
to the convex cone used can be found. The scalarization is quite general involving
abstract function spaces and it is widely studied in theory. The general reference
point problem presented above is a special case of this scalarization. The convex
cone defining Pareto optimality is the nonnegative orthant R* = {z € RF | z; <
0, i=1,...,k}. Inaddition, by selecting p = Z and g = w, we obtain the problem
(?).

To illustrate the ideas in this thesis, we consider the reference point problem
based on the achievement (scalarizing functions) that are presented, for exam-
ple, in [100]. If a basic variation of achievement functions is used, the following
problem can be formulated:

minimize ¢

x,0
)z P(z
subject to %Sé, i=1,...,k, (P(2)
xeS, JdeR.

The parameters in this problem are the aspiration levels z;,i = 1,..., k. Problem
(P(2)) is obtained from (7) by introducing weighting coefficients 1/ (z"™ — z}*)
corresponding a basic variation of achievement functions. Let z* be a reference
point related to the solution x*. The following theorem can be formulated for the

solutions of problem (P(z*)) [64]:

Theorem 2.6.1
Let z* € R¥ be a given reference point. Then, a unique solution x* of problem
(P(z*)) is Pareto optimal.

Note that if we use local optimizer to solve problem (7), we can obtain only local
Pareto optimal solutions. Next, we present some concepts related to trade-offs
and our presentation follows [31]. Pairwise trade-off describing the changes of
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two objective functions f; and f; in two points x and % is defined by
x,xeS,

where fi(x) # f;(&). If fi(x) = fl( x) for all I # i,j, we call T;; partial trade-off.
On the other hand, if fj(x) # fi(%) for at least one | # i,j, then Tj; is called total

trade-off.
With the help of pairwise trade-offs, total trade-off rate at the point x € S to
direction d can be defined by

tii(x,d) = hm Tij(x +ad, x),

where we assume that d is a feasible direction, that is, there exists g > 0 such
that x +ad € S forall 0 < a < ig. If d is a feasible direction such that there exists
a > 0 satisfying fj(x +ad) = fi(x) forall I # i,jforall 0 < a < &, then the
corresponding t;; is called a partial trade-off rate.

Note that in continuously differentiable case the total and partial trade-off
rates can alternatively be defined by (see [64])

Vfi(x)'d
(xd) Vf]()

and

9fi(x)
ti(x) = ,
1] ( ) af]
respectively, where x € S, d is a feasible direction and #;;(x) denotes a partial
trade-off rate.

In this thesis, we consider only trade-off rates and by trade-off information
we mean trade-off rates. In addition, we study trade-off rates only at the Pareto
optimal points. Here, for simplicity, we consider only unconstrained problems,
so the feasible region S is now supposed to be R". We assume also that the objec-
tive functions f;, i = 1,...,k, are twice continuously differentiable, that is, their
derivatives and second derivatives with respect to x are continuous functions.

Problem (P(Z)) is a special case of the hyperplane scalarization method in-
troduced by Sakawa and Yano [87, 106]. In the hyperplane scalarization, partial
trade-off rates can be obtained with the help of the Karush-Kuhn-Tucker (KKT)
multipliers [50, 56]. Using KKT multipliers is a convenient way to obtain trade-
off information because many single objective optimizers produce the optimal
KKT multipliers without any additional computational effort, which was one of
our goals. In this thesis, we use partial trade-offs computed with the method of
Sakawa and Yano. Following the presentation of Sakawa and Yano [87] and un-
der some assumptions, partial trade-off rates for the local Pareto optimal solution
(x*,8*)T of problem (P(z*)) can be calculated from the formula

*

tl](x*) = _A_Zk fOI' all Z,] - 1/- . '/kl (8)
1
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where A* is the vector of the optimal KKT multipliers related to the solution
(x*,6*)T and the corresponding reference point z*. Note that trade-offs do not
explicitly depend on the reference levels but implicitly through the KKT multi-
pliers. The theory behind the result (8) is based on the sensitivity theorem (see,
for example, [23]) which in turn relies heavily on the implicit function theorem.
The assumptions required are the following;:

(i) (x*,6%)T is a regular point of the constraints of problem (P(z*)), that is, the
gradients of the active inequality constraints are linearly independent,

(ii) the second order sufficient KKT optimality conditions are satisfied at (x*, 5*)T
(see, for example, [23]), and

iii) there are no degenerate constraints, that is, if f;(x) = Zed _ g 4 Z;, then
g i i
A; > 0.

By selecting a suitable direction d* in the differentiable case of total trade-off rate,
we can obtain a connection to the KKT multipliers. It can be shown [VI] that for
the aspiration levels z7,i = 1,.. ., k, related to the solution (x*,6 *)T we get

Vfi(x*)Td* A
ti]‘(x*,d*) _ f](x ) _ ]

VA A o

where, d* = (d},...,d})T, df = 9x/(2*)/9z; and x(2) is a function depending on
the aspiration levels and defined in some neighborhood N(z*) such that x(z*) =
x*.

In this thesis, trade-offs are used to support the DM during the interactive
solution procedure as mentioned before. Previously, trade-offs were used as a
part of some multiobjective optimization method (see, for example, [14, 32, 76,
81, 103, 111]). That is, trade-off information was a crucial part of the method. Our
aim is to propose some ideas for utilizing trade-off information as a supporting
tool for the DM and not to use this information in the solution method itself. In
addition, although the theoretical background of trade-off information has been
widely studied [11, 14, 31, 40, 47, 48, 57,58, 70, 78, 87, 88, 104, 105], there have been
only few numerical examples. Therefore, there is no good evidence of practical
usefulness of trade-off information as a tool for decision support.

Trade-off information can be utilized in the following way. When the DM
gives a reference point (or makes a classification) and obtains a new Pareto opti-
mal solution, partial trade-off rates are also calculated in that same solution point
and they are shown to the DM. From the trade-off information the DM can study
what kind of reference point (s)he should give next. For example, if it seems that
a large improvement can be obtained in some objective by making a small sac-
rifice in some other objective it might be desirable to use that kind of reference
point next. Trade-off information is most useful in the latter stages of the solution
procedure when the DM has found a promising region and starts to search the
best compromise solution from there.

In order to ease the cognitive burden set on the DM, actual values of par-
tial trade-off rates are not shown to the DM. Instead, our idea is to show the
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magnitude of change, that is, whether it is small, neutral or significant. We have
introduced two ways of presenting trade-off information to the DM, namely, the
arrow matrix visualization and the compressed trade-off visualization. First of all, a
partial trade-off rate is computed for each pair of the objective functions at the
current Pareto optimal solution. In the arrow matrix visualization, the trade-off
information obtained is divided into three categories: small, neutral, and signif-
icant. These categories are represented by white, gray and black arrows, respec-
tively, and the arrow matrix consisting of arrows denoting partial trade-off rates
is shown to the DM. An example of an arrow matrix visualization is shown in
Figure 8. For example, let us assume that the DM wants to improve the value of
the second objective. By looking at the second row of the arrow matrix in Figure
8 one can see that improving the second objective function results only to a small
impairment of the values of the other objective functions. Note that the diagonal
is empty because the partial trade-off rate for pair ii is always equal to 1. If the
DM is interested only in improving some specific objective function, then the cor-
responding row of the arrow matrix visualization can only be shown to the DM.
This could ease the cognitive burden set on to the DM even more.
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FIGURE 8 An example of the arrow matrix visualization.
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FIGURE9 An example of the compressed trade-off visualization.
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In compressed trade-off visualization, a sigmoid function s : R — (—1,1),

¢ t/2 _ —t/2
_> e’ —¢ (10)

s(t) = tanh (2 = /2 1 o—t/2"

is used. The idea is to compress large trade-off rates because we only need to
know whether it is small, neutral or significant. An example of the compressed
trade-off visualization is shown in Figure 9 which represents the same trade-off
data as Figure 8. As can be seen, the scale in vertical axis is compressed with the
sigmoid function. The ranges for small, neutral and significant trade-off rates are
defined to be (—1/2,0], [-2,—1/2] and (—o0, —2), respectively [VI]. Different
graphs in Figure 9 correspond to the rows of the arrow matrix visualization in
Figure 8. For example, the graph in the middle of Figure 9 corresponding to the
second row of the arrow matrix shows that if we want to improve the second
objective the trade-off rates for the other objectives are small. In other words, the
value of the first or the third objective will not change much. The compression
effect to large trade-off rates is can be seen in Figure 9.

To test our ideas we generated 1000 reference points and studied what kind
of advantage we could get by using trade-off information in selecting the next
reference point [VI]. The results indicated that by utilizing trade-off information
computed with the method of Sakawa and Yano we obtained such Pareto optimal
solutions where we gained more than we lost which is desirable.



3 CHEMICAL PROCESS DESIGN

In this thesis, we are studying what kind of benefits interactive multiobjective
optimization can offer to chemical process design [8, 97]. Chemical process design
deals with designing efficient processes for the needs of various chemical indus-
tries. Chemical process industry is a broad field including, for example, paper
making, sugar and pharmaceutical industries. Like in many real-world optimiza-
tion problems, there are often several objectives or performance criteria present
in chemical process design problems. These performance criteria need to be con-
sidered simultaneously and, usually, they are conflicting. Therefore, the methods
of multiobjective optimization need to be used in order to solve them properly.

Chemical process design is based on process simulation [6, 46, 97] that deals
with modelling of real-world processes. Chemical process simulation can be
roughly divided into two groups, steady-state simulation and dynamic process
simulation. The idea of steady-state simulation is to calculate the energy and the
mass balances of the process, that is, to find such a state for the process that satis-
ties the physical conservation laws for the energy and the mass. If these laws are
satisfied, the process is said to be in a steady-state. Time plays no role in steady-
state simulation, while in dynamic simulation, the behaviour of the process is stud-
ied with respect to time. Note that a dynamic system can also reach a steady-state
if there are no changes in the process anymore. In this thesis, steady-state simula-
tion is used in papers [I]-[III] while papers [IV, V] deal with dynamic simulation
models.

In this chapter, we consider optimization previously published related to
chemical process design. Especially, we review the multiobjective optimization
approaches used. In addition, we introduce different parts of the process design
tool based on IND-NIMBUS that we have developed and used in this thesis.

3.1 Optimization in chemical process design

An important part of the process design is optimization. Process optimization has
been used to improve the performance of processes since early 1970’s [46]. Dur-
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ing the last twenty years, optimization has also been used to determine the best
possible process configuration. Simulation models have parameters that affect
the behaviour and performance of the process. These parameters can be divided
into two groups, equipment parameters related to process devices like heat trans-
fer surface area and operational parameters like temperatures and pressures. If
we want to improve the performance of the process by using only simulation
tools, it can be achieved only with trial and error. In other words, the process is
simulated with different values of the parameters and then the results are com-
pared and the best combination is chosen as the final solution. That is very time
consuming and the real optimum can only be achieved by chance. However, the
best parameter values for some specific property of the process can be found by
using optimization [7, 8, 9, 20, 30, 46, 53].

There are mainly two kinds of optimization problems in process design,
namely the parameter optimization problems and process synthesis problems
(see [8] and references therein). In parameter optimization problems, the perfor-
mance of the process is optimized by finding the best values of process parame-
ters with a fixed process structure. On the other hand, process synthesis problems
try to find the best possible process structure from different configurations. They
usually include both continuous and integer-valued variables because different
connections included in a process structure are typically described by using bi-
nary variables, that is, variables having either the value 0 or 1. In this thesis, we
consider parameter optimization problems. That enables us to use optimizers ca-
pable of handling only continuous variables. Note that parameter optimization
and process synthesis problems can be based on either steady-state or dynamic
models.

Traditionally, solving chemical process optimization problems has been re-
alized by optimizing one criterion subject to some constraints. Commonly used
optimization strategies have been sequential quadratic programming (SQP) -based
methods that utilize the Karush-Kuhn-Tucker optimality conditions [50, 56] and
optimize quadratic approximation of the objective function with respect to linear
approximation of the constraints [5, 26]. SQP methods are best suited for smooth,
small or medium-sized optimization problems and they need gradient informa-
tion. Applications of SQP methods to chemical process optimization problems
can be found, for example, in [1, 9, 10, 21, 44, 46, 53]. They have been applied
to both steady-state [9, 44, 46, 53] and dynamic simulation models [1, 10, 21].
Recently, interior point optimization methods have been succesfully applied to
large dynamic optimization problems [7, 52]. An excellent review of optimiza-
tion in chemical process design can be found in [7] while future challenges are
described in [30]. Note, that for some reason, multiobjective optimization is not
considered in [30].

In real-life optimization problems, such as process optimization problems,
there are usually several performance criteria that we want to optimize simulta-
neously. In addition, they are usually conflicting, that is, they all do not attain
their optima at the same solution point. When process optimization problem is
constructed, different criteria are usually forced into a single objective function



39

because designers are not always aware that multiobjective optimization prob-
lems can be solved. It is not satisfactory to leave some of the objectives out of
the problem or consider them as constraints just because designers usually can
solve only problems with one or two criteria. Because usually only two crite-
ria are considered, the designers think that solving a multiobjective optimization
problem equals generating the whole Pareto optimal set. However, that works
well only for problems with two criteria because with more than two criteria the
number of Pareto optimal solutions required increases significantly and, also, vi-
sualization of the Pareto optimal set becomes difficult or impossible. Examples of
commonly used methods are optimizing the weighted sum of the objective func-
tions or selecting just one objective function to be optimised while considering
others as constraints. These are the weighting and the e-constraint methods men-
tioned in Section 2.3 and they are often used without knowing that they actually
are methods of multiobjective optimization.

Both the weighting and the e-constraint methods are easy to implement but
have severe drawbacks. The weighting method does not work with non-convex
optimization problems because it can not found the Pareto optimal solutions lo-
cated in the non-convex part of the Pareto optimal set [64]. In addition, selecting
the weights is not straight-forward because the objective function values of the
solutions obtained do not necessarily have the same proportions as the weights
used [79]. In the e-constraint method, the problem is to select one of the objective
functions ( fj) to be optimized. In addition, bounds ¢;, i # j, have to be assigned
to the other objective functions that are considered as inequality constraints. Dif-
ferent Pareto optimal solutions can be obtained for different bounds. However,
it is difficult to choose such bounds that will give desired solutions because the
selected bounds are strict [64].

For the reasons mentioned above, in order to have the best possible solution,
we have to use more sophisticated methods than single objective optimization
and the simplest multiobjective optimization methods. To be more specific, we
must use the methods of multiobjective optimization presented in Chapter 2.

Some multiobjective optimization methods have already been used in pro-
cess optimization, see, for example, [2, 13, 18, 51, 54, 59, 91]. Usually, the methods
used are very simple and easy to implement such as the weighting method or the
e-constraint method as mentioned before. That also enables the usage of already
available single objective optimizers, because the formulation of the scalarized
objective function is so simple. The multiobjective optimization problems com-
monly solved in process simulation have had only two objective functions and
the aim has been to identify the Pareto curve, that is, the whole Pareto optimal set
for two objectives [13, 59]. The two objectives used have usually described maxi-
mized profit and minimized environmental impact. For these kinds of problems,
the Pareto curve can be easily visualized and it shows the interrelationships of
the objectives. Therefore, the usage of simple methods is well argumented.

Ko and Moon [54] used the modified weighting method to solve cyclic ther-
mal swing adsorption and cyclic rapid pressure swing adsorption processes with
two objective functions in both cases. Note that their approach works only for
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two objectives. Lim et al. [59] applied three different methods to produce an ap-
proximation of the Pareto optimal set, namely the weighting method, goal pro-
gramming and parameter space investigation [90]. They applied these methods
to two cases (a simplified allyl chloride process and a methyl ethyl ketone pro-
cess) which both had two objectives. Chakraborty and Linninger [13] used the
e-constraint method to design plant-wide waste management strategies for batch
manufacturing sites. They considered two criteria, total cost and global polution
index. Kawajiri and Biegler [51] applied also the e-constraint method to solve two
objective simulated moving bed (SMB) optimization problem.

Some applications of evolutionary multiobjective optimization have been
also reported. Submarani et al. [91, 110] applied non-dominated sorting genetic
algorithm (NSGA) to solve optimization problems arising from reactive SMB and
varicol systems. They considered only two and three objective cases because they
found it difficult to analyze the results obtained for more than three objectives.
Roosen et al. [85] considered a combined cycle power system and used an evolu-
tionary base strategy to solve a two objective optimization problem.

There have been also some theoretical consideration of multiobjective opti-
mization methods in chemical engineering. In 1983, Clark and Westerberg [18]
made a review of multiple criteria decision making methods to inform people in-
volved in chemical engineering. They considered a two level optimization prob-
lem where one of the constraints was an optimization problem itself and showed
that a general multiobjective optimization problem is a special case of the two
level optimization problem.

As can be seen from the examples above, multiobjective optimization of
chemical processes has usually consisted of applying very simple methods for
two objective problems and the idea has been to generate a representation of the
Pareto optimal set. However, there are usually more than two conflicting objec-
tives present and, then, the visualization of the Pareto curve becomes much more
difficult if not impossible and computational demand grows due to the larger
number of Pareto optimal solutions required as already mentioned. In addition,
the mutual dependence of the objectives becomes more difficult to understand
for the DM. Interactive methods are well suited for problems having more than
two objectives [64]. They are also computationally efficient, which will decrease
the total time of solving the multiobjective optimization problem. This is quite
important especially in problems where the evaluation of the objective or the con-
straint functions is time-consuming, which is the case in many real-life problems.
For these reasons, we use interactive multiobjective optimization methods in this
thesis.

The usage of interactive methods in chemical process optimization has been
infrequent in the literature [4, 28, 49, 93], although interactive methods have been
considered advantageous in multiobjective optimization. Umeda and Kuriyama
[93] applied the interactive surrogate worth trade-off method [32] to a simple
design of a toluene-steam dealkylation process where three objectives were con-
sidered, namely, investment cost, annual operating cost and reliability. Grauer et
al. [28] made a review of the methods of multiobjective optimization and gave
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an overview of existing software. In addition, they discussed the design of a
twin-screw extruder, the control of a film-hardening process and a production
planning problem with three, two and three objective functions, respectively. Ref-
erence level and reference point approaches [98] were used. Barnikow et al. [4]
applied the interactive multiobjective package IMPROVE to a strategic planning
of carbochemical industry. IMPROVE is based on the reference point approach of
Wierzbicki [100] and it is designed for linear multiobjective optimization. Linear
multiobjective optimization was also considered by Kallio et al. [49] when they
used the interactive mathematical programming package SESAME based on the
reference point approach to solve a multiobjective trajectory optimization prob-
lem for a dynamic model simulating the development of Finnish paper industry.

In this thesis, we consider nonlinear, continuous multiobjective optimiza-
tion problems arising from chemical process design as mentioned before. In
addition, we deal only with deterministic optimization problems as opposed to
stochastic optimization problems that involve uncertainties (see, for example, a
review [84]). The main goal is to be able to treat chemical process design prob-
lems involving multiple criteria in such a way that there is no need for unneces-
sary simplifications and the real nature of the problems can be maintained. As the
cited literature shows, there is a need for tools that can consider more than two
performance criteria simultaneously without making unnecessary restrictions to
the model only because of the lack of knowledge to solve such problems. To be
more specific, the idea is to support the designer in obtaining desirable compro-
mises between conflicting performance criteria present. In addition, interactive
methods do not need to generate too many Pareto optimal solutions which can
be computationally demanding for real-world problems as was previously noted.
For these reasons, we use the process design tool based on IND-NIMBUS in this
thesis. The classification-based interactive solution procedure offers a direct re-
lationship between the classification information and the Pareto optimal solution
obtained and, therefore, the effect of classification can be directly observed.

3.2 Constructing industrial process design tools

There are many different aspects that need to be considered when constructing
an industrial process design tool. By industrial process design tool we mean a tool
that can be used to solve chemical process design problems. A process design
tool consists of at least three parts; a modelling tool, an optimizer and a graphi-
cal user interface. Figure 10 shows a schematic diagram of a process design tool
and data transfer between different parts. First of all, the model of the process is
formed with the modelling tool. During the interactive solution procedure, the
GUI provides preferences of the designer to the optimizer that formulates and
solves the optimization problem by utilizing function values and possible gradi-
ents coming from the modelling tool. Then, the optimizer returns new solutions
to the GUI to be evaluated by the designer. In this thesis, we have used a process
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design tool based on IND-NIMBUS with different modelling tools and single ob-
jective optimizers depending on the process design problem considered. In the
following, we call this tool the IND-NIMBUS process design tool.
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FIGURE 10 A schematic diagram of a process design tool.

In chemical process design, we need a process simulator or some modelling
tool that generates a numerical model of the process considered. This numer-
ical model is a basis for process simulation and, also, any optimization related
to process design. The modelling tool provides the function values and, if nec-
essary, also the gradients of the functions. Depending on the modelling tool,
gradient information can be either exact or only an approximation. In addi-
tion, function values can be approximations if there are no analytic forms of the
functions available. Sometimes, there can be a single objective optimizer imple-
mented in the modelling tool that is specifically tailored to handle optimization
problems produced by the modelling tool. An example of such a tool with a sin-
gle objective optimizer is the BALAS® process simulator with an SQP optimizer
(http://balas.vtt.fi/).

An optimizer is an important part of our process design tool. In solving
design problems, we need an optimization tool that consists of a multiobjective
optimization method that can efficiently handle all the conflicting criteria present
in the problem. To our knowledge, there are no such tools available that uti-
lize interactive multiobjective optimization and, therefore, this research has novel
value. As mentioned earlier, multiobjective optimization methods usually scalar-
ize the original multiobjective problem into a single objective optimization prob-
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lem which produces a Pareto optimal solution for the problem. Therefore, it is
also important to have an efficient single objective optimizer available to be used
within the multiobjective optimization method. The single objective optimizer
used should be chosen so that it takes into account special features present in the
optimization problem.

In this thesis, we have considered interactive multiobjective optimization
methods (namely the NIMBUS® method) because they have found to be useful
in solving computationally demanding real-world optimization problems with
more than two conflicting objectives [64]. As mentioned earlier, they need to gen-
erate only few Pareto optimal solutions and, also, enable the designer to learn
more about the behaviour of the problem and the interrelationships of the con-
flicting criteria. We have also used different single objective optimizers within
IND-NIMBUS, namely the proximal bundle optimizer in [I]-[III] and the interior
point optimizer in [IV, V].
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FIGURE 11 A screenshot of the GUI of the BALAS® process simulator.

With the help of GUI, the design