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ABSTRACT

Majava, Kirsi

Optimization-Based Techniques for Image Restoration

Jyvéskyla: University of Jyvdskyld, 2001, 27 p. (+included articles)
(Jyvdskyla Studies in Computing

ISSN 1456-5390; 14)

ISBN 951-39-1221-3

Finnish summary

Diss.

The intention of this work is to develop robust and efficient numerical methods
for image restoration. This includes two goals: developing appropriate mathe-
matical formulations for image restoration problems and efficient computational
techniques for solving the resulting smooth and nonsmooth optimization prob-
lems.

This study is restricted to the noise reduction problem, that is, it is assumed
that the observed image is degraded by a random noise and no blurring occurs.
The noise reduction problem is formulated as a minimization problem consist-
ing of a least squares fit and a regularization term. First, a bounded variational
(BV) type regularization is studied, which makes it possible to find the disconti-
nuities from the data. Due to the BV seminorm, the cost functional becomes non-
smooth, however, and an efficient numerical technique has to be employed. For
this purpose, the so-called active-set methods based on augmented Lagrangian
smoothing of the original optimization problem are developed. Convergence of
the algorithms is established and efficient implementations are introduced.

The BV-regularized formulation recovers well the sharp edges of the image,
but the result obtained using this technique consists of a staircase-like structure.
Hence, some form of adaptivity is needed for an improved restoration capability.
For this purpose, the SAC method based on a semi-adaptive, strictly convex for-
mulation that better recovers smooth subsurfaces contained in the true image is
proposed.

In the formulations considered, a regularization parameter controls the bal-
ance between the fitting term and the regularization term. A way to automatically
determine the regularization parameter, without needing any a priori information
on the amount of noise contained in the given image is also presented.

Efficiency and restoration capability of the methods are tested and illustrated
through numerical experiments.

Keywords: image restoration, optimization techniques, BV regularization, noise
reduction, active-set methods, image processing, semi-adaptivity
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INTRODUCTION

This thesis is devoted to the study of different optimization formulations for im-
age restoration problems and the development of efficient solution methods for
these optimization problems. Let us first, however, give a general overview of the
research field.

Image restoration is a fundamental task in image processing. In various ap-
plications of computer vision, image processing is usually started by removing
or reducing noise and other distortions from the image taken by a digital camera
or obtained using some other method, for example, ultrasound scan or computer
tomography. After this, the aim is to identify different segments of the image for
further treatment, such as recognition and classification. In such applications, it is
essential that the restoration process preserves edges, since they define the loca-
tion of different segments and objects in an image. Image restoration techniques
are utilized, among many other fields, in telecommunications [11] and medical
imaging [5, 21, 39, 40], where measured signals and images often contain mea-
surement and quantization errors, i.e., noise.

Noise reduction is in many cases a necessity because all classical edge detec-
tion or segmentation methods rely on derivatives to some extent [31, 38]. How-
ever, the problem of numerical differentiation is ill-posed in the sense that small
perturbations in the function (surface) to be differentiated may lead to large errors
in the computed derivative [44, 54]. Hence, the derivatives of noisy images do not
contain correct information and can thus be useless as such for edge detection or
segmentation purposes.

Let us consider the reconstruction of an unknown image from given data
which can represent, for example, a one-dimensional signal (Figure 1) or a two-
dimensional image (Figures 2 and 3). In Figure 2, a grey-level image of a spine and
the corresponding intensity plot are given. The image is distorted by uniformly
distributed noise with a 30-per cent intensity compared to the maximum intensity
of the original image. This noisy image is presented in Figure 3, together with the
corresponding intensity plot. Looking at the noisy grey-level image in Figure 3,
the image restoration problem does not seem difficult. This is because a human
visual system automatically does some kind of image processing - we easily per-
ceive edges even from a noisy image. However, it is the intensity plot that reveals
the true noisy behaviour. Hence, it is clear that to estimate the quality of different
images, it is not enough to look only at grey-level images.

It is often assumed that a noisy image, denoted by z, results from a degradation
of the form [1, 6, 14, 16, 22, 45, 64]

z=Az"+n in Q, 1)

where z* is the true image, A is a linear operator (a blur modelled as a convo-
lution, for instance), n represents a random noise, and Q@ C R? is the image do-
main. Blur can be caused, for example, by a defocused or shifted camera. In the
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Figure 1: Example of original and noisy one-dimensional signals.

Figure 3: Noisy grey-level image and the corresponding intensity plot.



11

original form, the inverse problem (1) for determining z* is generally ill-posed
in the sense that the solution does not depend continuously on the data z. Stabi-
lization techniques can be used to overcome this difficulty. In image restoration,
these techniques can be roughly divided into three categories: statistical meth-
ods (e.g., Wiener filtering) [15, 31, 57], transform-based methods (e.g., filtering
using Fourier or wavelet transforms) [31, 38], and optimization-based methods
(e.g., constrained least squares or total variation -based methods) [27, 31, 45, 58].
Another class of methods gaining an increasing amount of attention in the im-
age processing community are the methods based on partial differential equations
(PDEs), more precisely, on nonlinear anisotropic diffusion [2, 3, 4, 13, 49, 51, 52].
Posed as evolution equations, these techniques are closely related to optimization-
based methods, because their stationary solutions can often be interpreted to sat-
isfy the optimality conditions of some optimization problem [49, 60]. In our work,
however, we prefer to study the restoration problem using optimization formula-
tions. We consider this form to be more illustrative, and, moreover, mathematical
techniques on convex functionals [25] can be applied in the analysis. In addition,
the actual numerical solution methods can be based on smooth and nonsmooth
optimization techniques [46, 50].

Until recently, standard techniques for image restoration have been mainly lin-
ear. While these classical methods are computationally very fast, they tend to per-
form poorly if an image contains sharp edges. More precisely, linear methods tend
to smooth edges out, and transform-based methods suffer from ringing effects (so-
called Gibbs” phenomena) near edges. These difficulties are illustrated using one-
dimensional examples, for example, in [18, 63]. As an example of the standard
techniques, let us consider the well-known (nonlinear) median filter [31] which is
commonly used for denoising images containing sharp edges. The method is fast
and simple to implement, but the results are not satisfactory when the noise level
is high or its distribution is not Gaussian. The result of a 3 x 3 median filter for
the noisy image presented in Figure 3 is shown in Figure 4. The result is almost
as noisy as the original noisy image. As the size of the mask gets larger, the image
obtained becomes even more blurry and small details disappear (cf. Figures 5 and
6).

1 Optimization-based image restoration

To develop image restoration methods more suitable for images containing sharp
edges, we need to modify the ill-posed inverse problem (1) in order to turn it
into a well-posed problem. This can be achieved by using suitable regularization
techniques. One approach is to obtain a restored image u as a solution of the
constrained optimization problem

min R(u) subject to / |Au — 2|? dx = o?, (2)
u 0

where R is a regularization functional measuring the irregularity of » in some
sense, and o2 denotes the variance of the noise. Here, it is assumed that the noise



Figure 6: Reconstruction obtained by using a 9 x 9 median filter.
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is Gaussian and has a zero mean (|n|*> =~ ¢?). If there is no good estimate for
the variance of the noise available, then the problem may be considered in the
unconstrained, penalized form

1
min 3 / |Au — 2> dz + gR(u), (3)
w Q

where the regularization parameter g controls the tradeoff between a good fit to
the data and the regularity of the solution. Ideally, g should be chosen to be the re-
ciprocal of the Lagrange multiplier for the equality constraint in problem (2). This
penalized approach is known as the Tikhonov regularization [61]. Note that in the
framework of Bayesian statistics, the use of a maximum a posteriori (MAP) esti-
mation for image restoration leads typically to the very same optimization prob-
lem (3) (cf. [6, 40] and references therein).

A common approach in image restoration has been to use constrained least
squares, that is, to use quadratic regularization functionals of the form R(u) =
|Qu|?, where @ is a linear operator [31]. Typical examples of this include @ = I
(the identity operator), @ = A (the Laplacian), and Q = V (the H' seminorm).
However, the use of quadratic regularization functionals results with a linear least
squares problem, which suffers from the property of linear methods mentioned
earlier; it smears out sharp edges. Hence, it is not possible to properly recover
discontinuities by using quadratic regularization functionals. For example, for
R(u) = |Vu|?, this is mathematically due to the fact that discontinuous functions
do not have bounded H' seminorms.

In [58], the use of a bounded variational (BV) seminorm in the two-
dimensional case (often called fotal variation of u),

R(u :/Vud:n:/ u2 4+ u?, drides, 4)
(u) Q| | LV 1dzs

was proposed as a regularization functional. Here, the subscripts z; and x> denote
the corresponding partial differentials. To be precise, let 2 C R? be an open set.
Then, a function v € L' (1) is said to be of bounded variation if

sup {/Q u(z) divo(z)de : v € CH(Q)?, Ju(z)| < 1,z € Q} < 00, (5)

and the sup in (5) is denoted by [, |Vu|dz [29]. The space of all functions
u € L'(Q) with bounded variation is abbreviated by BV (Q). Norm | - | in (5)
denotes the Euclidean norm in R?. Using a different norm in R? induces another
equivalent seminorm on BV (Q); for example, the norm | - |, yields [12]

/ |Vu|i de = / <|u$1| + |ux2|> dz1dzs. (6)
Q Q

As (4) corresponds to the l>-norm and (6) to the /;-norm of the gradient, we use,
in the sequel, this terminology to separate these two regularization methods. The
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basic practical difference between these two methods is that the /5-norm is rota-
tionally invariant, whereas the /;-norm is not. Note that in the robust statistics,
the use of the /;-norm and the I/>-norm refers to the marginal median and spatial
median, respectively [55].

The BV seminorm does not penalize discontinuities in u. Thus, it allows one
to recover sharp edges of the original image. The superiority of the BV seminorm
when images are “blocky”, that is, piece-wise constant over a small number of
subregions, has been demonstrated in many papers, using both theoretical [22,
56] and numerical [14, 17, 35] studies. We remark that the BV-regularized image
restoration is a special case of anisotropic diffusion proposed in [52]; see details in
[49].

Solution methods for BV-regularized problem

Due to the BV seminorm, the cost functional in (3) becomes nonsmooth, since the
BV functional is nondifferentiable at locations where |Vu| = 0. Numerical meth-
ods for solving different variants of the (discretized) BV-regularized problem,

min/ |Au — z|? dm—i-g/ |Vu|dz, (7)
u Q 0

have been presented in numerous papers. Let us recall that often, such as in [23,
24, 58, 63] and in our work, the linear operator A is chosen to be identity, which
leads us to the noise reduction problem. Note, however, that the restoration of
*in (1) can be recovered in two steps: a noise reduction step, followed by a
deblurring step. In deblurring, the inversion of A may also require the use of
some stabilization technique. Numerical methods for solving (7) have usually
been based on replacing the BV term [, |Vu| dz by a smooth term

/Q\/|Vu|2+8dar, (8)

for a small positive . The main problem with this technique is that the related
optimality condition contains a highly nonlinear and usually oscillating term
V- (Vu [/ IVu]? + 5) that one should linearize. Due to this term, the original
Newton method does not work satisfactorily, in the sense that its domain of con-
vergence is small. This is due to the regularity of the problem and especially true
if the additional parameter ¢ is small. On the other hand, if ¢ is relatively large,
then this term is well behaved, but the problem to be solved differs much from
the original one [43].

The theoretical analysis of the minimization problem (7), also with the e-
smoothing, was conducted in [1]. In [58], explicit time marching was applied
to obtain a gradient descent scheme for solving the e-smoothed problem corre-
sponding to (2). In [19, 24, 63, 64], a “lagged diffusivity” fixed point iteration was
considered for solving the e-smoothed unconstrained problem (7). The same ap-
proach was taken in [23], with the difference that the unbounded operator Vu

z
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was replaced by a stable approximation, and in [14], where a different smooth-
ing technique was applied to the BV seminorm. This fixed point iteration can be
viewed as a special case of the “half-quadratic regularization” scheme discussed
in [27, 28]. In [16], a primal-dual method was proposed for solving problem (7),
and in [6, 62], a more general regularization function ¢(|Vu|) was used and the
approach was based on a variational method. Different approaches for solving
the BV-regularized problem have also been considered, for example, in [20, 47].

Since the use of the artificial smoothing parameter € can be problematic, let
us consider techniques for solving the image restoration problem in its original
form. In [45], l;-regularization (6) was used, and the method for minimizing the
nonsmooth, constrained problem was based on an affine scaling strategy. The
approach taken in [35] has, however, been our main topic of interest. There, the
authors proposed to use active-set methods based on the augmented Lagrangian
smoothing of the nonsmooth optimization problem

min 1/ |u—z|2da:+/ (H|Vu|2+g|W|) dz. )

weH(2) 2 Jq o \2
Here, u is positive to ensure the coercivity of the cost functional in Hj () and it
yields the unique solvability of the problem in this (Hilbert) space. The idea was
to regularize the nonsmooth, unconstrained optimization problem (9) using La-
grange smoothing [7, 36]. More details of Lagrangian regularization techniques
can be found in [26, 30, 34, 48]. Further, active-set methods based on regular-
ized optimality conditions were described and analyzed. The characteristic fea-
ture of the active-set methods is that the original, nonsmooth optimization prob-
lem is transformed into a sequence of smoother, constrained problems for which
Newton-like steps can be taken. The set of linear constraints, including the nons-
mooth components of (9), is referred to as the active set. Note that similar methods
can be developed also for other nonsmooth problems; see, for example, [7, 41]. In
[35], l>-regularization (4) and nonmonotone active-set algorithms were consid-
ered. The constrained optimization problem that appears in the inner iteration
of active-set algorithms was treated by using a penalty method, which became
expensive (in terms of storage requirement and CPU time) in two-dimensional
problems.

In articles [A] and [B], which originate from the report [42], we studied and
further developed the ideas of [35]. Article [A] was focused on the convergence
of the active-set algorithms for solving problem (9). A one-dimensional image
restoration problem and two formulations for the two-dimensional problem, cor-
responding to two definitions of the BV seminorm in (4) and (6), were considered.
Unlike in [35], we noticed that, depending on the way the Lagrange multiplier
is updated, the active-set algorithms are either nonmonotone or monotone. A
rigorous convergence analysis of the one-dimensional algorithms and monotone
two-dimensional algorithms was presented. Convergence proofs for nonmono-
tone algorithms were in principle the same as in [35], but we used different tech-
niques in showing the details, some of which were missing in [35]. For instance,
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Figure 7: Result obtained by using the BV regularization.

our convergence analysis involved the explicit description of the change of the
active (index) set between two iteration steps.

In article [B], the work of [A] was continued by including linearization in the
algorithms considered. Convergence analysis in [A] was based on the assumption
that the constrained minimization problem appearing in the inner iteration of the
active-set algorithms is solved exactly. However, numerical tests have shown that
it is enough to replace the exact solving by one Newton step and a line search
(see, e.g., [35]). In the same way as in [35], we treated the one-dimensional non-
monotone algorithm using a penalty method; for monotone algorithms, we pre-
sented an efficient, direct way for solving the inner iteration problem. Moreover,
a modified regularization as well as a nested iteration -type technique [32] were
proposed and tested in the two-dimensional algorithms. Compared to previously
developed numerical methods, the main difference in our technique is the fact
that no linear system has to be solved during the inner iterations. Thus, the stor-
age requirement of our approach is O(N), that is, significantly smaller than in
other methods. Furthermore, according to numerical experiments in [B], the CPU
time for solving image restoration problems scales almost linearly and remains
small, also for large problems, with hundreds of thousands of unknowns (when
compared to other approaches, e.g., [53]). As an example of the restoration capa-
bility of the BV formulation, the restored image for the noisy image of Figure 3
is presented in Figure 7. The BV result yields a significant reduction of noise and
an improvement of image quality. However, the result consists of a staircase-like
structure which is not optimal for images with smooth subsurfaces, like in our
example.

Choosing the value of the regularization parameter

In the unconstrained image restoration formulation (3), the regularization param-
eter g controls the balance between the fitting term and the regularization term.



17

If some extra information, like in (2), is available, then the value of g can be fixed
precisely. General analysis on the determination of the regularization parame-
ters is conducted in [59]. Unfortunately, this kind of precise information on noise
statistics is usually not available in practical applications of image restoration.

In our experiments in [B], the value of g was chosen on the basis of the quality
of the restored image - we chose g for which the result looked like the best. In [C],
we assumed that the optimal choice of g minimizes the reconstruction error

e(u*) = %i(u* —2%)2, (10)

i=1

where u* and z* are the restored and true images, respectively, and n denotes the
number of discretization points or pixels. A heuristic approach was presented in
[C] to determine a near optimal value of g in the BV formulation (9) with respect to
the reconstruction error e(u*) without using any extra information. The method
was further tested and successfully applied in [E] and [F]. Notice that such an
automatic determination of g improves possibilities to estimate the variance of
noise in (2).

The result of the BV formulation in Figure 7 was computed with the value of g
obtained by using the method of [C].

Towards a better formulation

The BV-regularized formulation for the image restoration problem is superior in
recovering sharp edges of an image. However, as already pointed out, the re-
sult obtained using this technique consists of a staircase-like structure, which is
not well-suited for images with smooth subsurfaces. In article [E], we studied
whether, using generalizations of basic smoothing approaches for the BV semi-
norm, one can enhance the recovery of smooth subsurfaces contained in the true
image. The regularization terms considered were the s-regularization

Rs(u) = §/9|Vu|sdx, 1<s<2, (11)

the e-regularization (8), and the J-regularization

Rs(u) = / <|Vu| - é) do + — |Vul? dz, (12)
|Vul>5 2 20 Jivul<s

where 6 > 0. Such formulations are studied also, for example, in [6, 10, 14, 33, 62],
but in [E] (and in [43]), we analyzed and compared them more thoroughly. In this
paper, we also compared different solution methods for the formulations consid-
ered and proposed a generalization of the active-set methods described in [35],
[A], and [B], for the s-regularization (11). After the numerical study of these for-
mulations, the first conclusion was that the formulations considered gave practi-
cally the same reconstructions when the parameters were chosen appropriately. It
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also became obvious that the computational results were not optimal in terms of
the restoration properties. Hence, some form of adaptivity is needed if the aim
is to recover both sharp edges and smooth subsurfaces of an image. Moreover,
special techniques have to be applied for solving these problems, because gen-
eral optimization methods tend to be inefficient when compared to the active-set
method, for example.

Adaptive formulations for image restoration have been considered, for exam-
ple, in [8, 14, 17, 37]. As soon as adaptivity comes along, formulations tend to
become much more complicated. Adaptive formulations are often nonconvex or
nonsmooth (or even both), and, in many cases, the number of unknowns and free
parameters in these formulations is increased. The adaptive approach of [8] has
been the most interesting to us. There, the idea was to use the BV regulariza-
tion near edges, the smooth H regularization in flat regions, and regularization
(11), for 1 < s < 2, between. The exponent s was chosen to be a gradient-driven
function s = s(|Vu|) and it made the formulation nonconvex.

In articles [D] and [F], we proposed a new method for image restoration, which
is based on a semi-adaptive, strictly convex (SAC) formulation lying between no
adaptivity and full adaptivity. The formulation is also smooth enough so that
well-known solution methods, especially the conjugate gradient method, can be
applied as a solver. In the conference paper [D], the basic idea was introduced
and illustrated through a one-dimensional example. In article [F], the method
was studied more thoroughly in the two-dimensional case.

The basic idea of the SAC method is similar to [8]: We use smooth regular-
ization in the presumably smooth parts of an image and the BV regularization
for edges. Unlike in [8], however, the division of the given image into differ-
ently regularized parts is made explicitly. The discrete regularization in the one-
dimensional case to be considered is of the form

n

Rsac(u) = sﬁ Z |(Dw);

ti=1

Sia 1 S 54 S 2: (13)

where D denotes the backward difference approximation (Du); = (u; — u;—1)/h
of the derivative for a mesh step size h. Here, the values of s; are determined
by using a reference solution. As a reference solution, we chose the result of the
BV formulation because of its known characteristic features, the fast active-set
algorithm for solving the BV problem, and the possibility to automatically fix g
by using the method of [C]. The BV result was used in a very similar manner as a
reference solution also in [60], where the semi-adaptivity was focused on making
the regularization parameter g to vary within the BV framework in order to better
preserve small details of an image.
The actual SAC method consists of the following three steps:

Step 1. Compute a reference solution # and fix the regularization parameter g.

Step 2. Determine {s;},i = 1,...,n, using 4.
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Figure 8: Result obtained by using the SAC method.

Step 3. Solve the image restoration problem with regularization Rsac:.

In [F], we explained in detail how these steps have been realized and illustrated
their behaviour using a set of example images. Moreover, we proposed an im-
proved algorithm to automatically determine the value of g by using the method
of [C]. The example images considered in [F] are very different by nature. How-
ever, after once fixing the parameters of Step 2, the method gave satisfactory re-
sults in all examples. The result of the SAC method for the noisy image of Figure
3 is presented in Figure 8. The sharp edges are as in the BV result, but the smooth
parts of the original image do not contain a staircase-like structure any more.

In [F], we also discussed three characteristics of images (cf. [37]) - flat, smoothly
varying and edge subregions - and introduced the use of a suitable histogram of a
compound gradient information to distinguish and illustrate them. Studying the
properties of images using gradient information captured into a histogram turned
out to be a useful tool in comparing the quality of the reconstructed images as
well.

2 Conclusions and future research topics

In this work, image restoration formulations and their solution methods were dis-
cussed. Active-set methods for solving the BV-regularized image restoration prob-
lem were described. Convergence of the algorithms was established and efficient
implementations were introduced. The SAC method based on a semi-adaptive,
strictly convex formulation that better recovers smooth subsurfaces contained in
the true image was proposed. A way to automatically determine the regulariza-
tion parameter without needing any a priori information on the amount of noise
contained in the given image was presented. Efficiency and restoration capability
of the methods were illustrated through numerical experiments.
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One difficulty related to the research field is to quantify the quality of the re-
constructed images, for example, for comparing different restoration methods. In
the references that we have found, the quality of the reconstructed images was
usually estimated by presenting only the grey-level images and intensity plots.
Contour plots are also often used for comparing the quality of the reconstructed
images [47]. However, it is clear that these techniques do not fully capture the
overall quality of the reconstructed image. In [F], we noticed that, especially, if
an image contains a lot of small details, a plot of a compound gradient informa-
tion contains useful and additional information when compared to a grey-level
image or an intensity plot. As a measure of quality, we in our work used the re-
construction error e(u*) in (10). However, e(u*) mainly measures the jumps and
does not mind small variations. Hence, if a formulation tends to smear edges, the
optimal result with respect to e(u*) is visually not the best one (cf, for example, ¢-
formulation in [E]). To conclude, e(u*) contains quantitative information, but how
an image actually looks like is also a qualitative matter. Thus, we should be able to
combine these two characteristics to obtain a robust error measure for comparing
different reconstructions.

The scope of image restoration starting from theoretical analysis and ending
up with real digital images in various application fields is extremely broad. There
probably exists no single method having an optimal performance (in terms of both
restoration properties and computational efficiency) for all kinds of restoration
problems. The SAC approach includes basic steps for realizing an image restora-
tion algorithm with proper restoration and decent computational efficiency prop-
erties with automatic determination of free parameters. The proposed substeps
can and should be modified for different application areas when doing practical
restoration. Hence, instead of a single method, we consider the proposed tech-
nique a methodology for image restoration and analysis. For a specific application
area, the SAC method can be tuned as follows:

1) Collect a representative set of samples from the application domain.

2) For the set of samples, study the histograms of the compound gradient infor-
mation to reveal the amount of noise and basic characteristics of the images.

3) Compute the value of the regularization parameter g over the set of samples.
If g is about the same size for all the samples, it can be fixed for the unknown
images to be restored.

4) Compute the histograms for the BV results and realize Step 2 in the SAC
method. In various application domains, images with different character-
istics are produced, and, hence, Step 2 must be tuned individually for each
application domain.

5) Carry out tests concerning stopping criteria and the number of SAC iterations

(cf. [F]).
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To this end, there are many possibilities to continue the work in this research
field. One should develop a more efficient solution method for the SAC prob-
lem, for example, by realizing the generalized active-set method of [E] to the two-
dimensional case. Because the active-set algorithm is not (easily) parallelizable,
also other solution methods for the optimization problems should be considered,
such as operator-splitting methods. Our future research will also involve gener-
alizing our methods to colour image processing [9], including segmentation tech-
niques [49] to our denoising methods, and applying our methods to real applica-
tions.

3 Author’s contribution

Finally, I report my contribution in the presented papers [A]-[F] written together
with other authors. The whole course of research has been inseparable teamwork
with Professor Karkkédinen. The main ideas may have come from him, but I have
processed them from ideas to practical methods. I have made almost all the im-
plementations and conducted numerical testing. The results were interpreted to-
gether.
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YHTEENVETO (FINNISH SUMMARY)

Tutkimuksen tarkoituksena on kehittdd luotettavia ja tehokkaita numeerisia
menetelmid kuvan laadun parantamiseksi. Tdméa sisaltdd kaksi tavoitetta:
sopivien matemaattisten mallien kehittdminen kuvanparannustehtiville ja
tehokkaiden laskennallisten menetelmien kehittdminen malleissa esiintyvien
sileiden ja epdsileiden optimointitehtdvien ratkaisemiseksi.

Téassd tyossd rajoitutaan kohinanpoisto-ongelmaan, jolloin oletetaan, ettd
havaitussa kuvassa ei esiinny muita vdaristymia kuin satunnaista kohinaa. Kohi-
nanpoistotehtdvd muotoillaan minimointitehtdvand, joka koostuu ns. pienimmén
nelibsumman sovitustermistd ja siloitustermistd. Aluksi tarkastellaan ns. BV-
tyyppistd (eng. bounded variation) siloitusta, jonka ansiosta kuvasta l6ydetddn
epdjatkuvuudet. BV-tyyppinen siloitus tekee kustannusfunktiosta kuitenkin
epdsiledn. Tamén epdsiledn optimointitehtdvan ratkaisemiseksi tyossd kehitetdan
ns. aktiivijoukkomenetelmid, jotka perustuvat alkuperdisen optimointitehtdvan
siloittamiseen tdydennetylld Lagrangen menetelmaélld. Aktiivijoukkoalgoritmien
konvergenssit todistetaan ja algoritmeille esitetddn tehokkaita numeerisia toteu-
tuksia.

BV-siloituksen ansiosta kuvasta loydetddn jyrkdt rajapinnat, mutta saadulla
ratkaisulla on porrasmainen rakenne. Jotta myos kuvan siledt osat voitaisiin
palauttaa paremmin, tarvitaan mukautuvia malleja. TyOssd esitetddn ns. SAC-
menetelmd, joka perustuu osittain mukautuvaan, aidosti konveksiin optimoin-
titehtdvaan. Sen lisdksi ettd SAC-menetelma 16ytdd jyrkit rajapinnat, se palauttaa
paremmin myos kuvan sileét osat.

Tarkasteltavissa malleissa ns. siloitusparametri madrdd sovitus- ja siloituster-
mien suhteen. TyOssd esitetidn my0Os tapa, jolla siloitusparametri voidaan
madratd automaattisesti tarvitsematta tietdd kuvassa olevan kohinan maéaraa.

Kehitettyjen menetelmien tehokkuutta testataan ja havainnollistetaan nu-
meeristen esimerkkien avulla.
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