
Tuukka Puranen

Implementing a Lecture Feedback System Using
Semi-Ad-Hoc Wireless Networks

Master’s Thesis
in Information Technology
October 19, 2007

UNIVERSITY OF JYVÄSKYLÄ
DEPARTMENT OF MATHEMATICAL INFORMATION TECHNOLOGY

Jyväskylä

Author: Tuukka Puranen
Contact information: tupepura@jyu.fi
Title: Implementing a Lecture Feedback System Using Semi-Ad-Hoc Wireless Net-
works
Työn nimi: Luentopalautejärjestelmän toteutus langattomia semi-ad-hoc verkkoja
hyödyntäen
Project: Master’s Thesis in Information Technology
Page count: 119
Abstract: This thesis presents a system for assisting learning: a prototype of a mo-
bile device based electronic questionnaire and feedback system for mass lectures.
Technical details regarding the protocols, architecture, and implementation of such
system are provided. The system utilizes short range radio technologies, and this
thesis examines and compares means to form and use these semi-ad-hoc wireless
networks for this purpose. The study emphasizes Bluetooth technology but covers
also a slightly broader area. Using Bluetooth’s built-in methods for connection es-
tablishment, different network establishment procedures can be implemented. Sev-
eral alternatives are presented and evaluated in a given context and against given
requirements.
Suomenkielinen tiivistelmä: Tässä tutkielmassa esitellään mobiilaitteille suunnitel-
tu luentopalautejärjestelmä, jolla pyritään edesauttamaan oppimista massaluennoil-
la. Työssä tarkastellaan tällaisen järjestelmän prototyypin arkkitehtuuria, protokol-
lia ja teknistä toteutusta. Järjestelmä hyödyntää lyhyen kantaman radiotekniikkaa,
ja tutkielmassa tarkastellaan keinoja langattomien verkkojen muodostamiseen tätä
varten. Tutkimus keskittyy Bluetooth-tekniikkaan, mutta sivuaa myös muita lan-
gattomia kommunikaatioteknologioita. Bluetooth-verkko voidaan muodostaa so-
veltaen Bluetoothin sisäänrakennettuja proseduureja eri tavoin. Tässä tutkielmassa
tarkastellaan ja arvioidaan useita tällaisia tapoja annetussa kontekstissa.
Keywords: wireless network, connection establishment, lecture feedback, PI, peer
instruction, InSitu, GPRS, mobile, semi-ad-hoc, WLAN, Bluetooth, BlueZ, Petri nets
Avainsanat: langaton verkko, yhteydenmuodostus, luentopalaute, PI, adaptiivinen
opetus, InSitu, GPRS, mobiililaite, semi-ad-hoc, WLAN, Bluetooth, BlueZ, Petri-
verkot

Preface

This thesis is an extension to author’s Bachelor’s thesis on the subject. The reader
does not have to be familiar with the previous work in order to fully comprehend
the contents of this study.

This study is a result of two years of work at the Department of Mathematical In-
formation Technology at the University of Jyväskylä. The author has been employed
at the department half time as a research assistant during years 2005–2007. The nov-
elty of research has given a great deal of independence and responsibility, but the
task can also be characterized as struggle against unstable and immature environ-
ment and numerous invisible variables. There has been, for example, one complete
rewrite of server program, one attempt of complete rewrite of mobile client program,
and three complete rewrites of the router program during these two years.

This thesis is, to some extend, first on the subject at this depth. It must be noted,
to be fair, that at least the author was surprised by vastness of the task; considerable
amount of work is still left for future research. That said, the author expresses his
wish for continuity of research and development in one form or another.

It has been a sudden leap — not only to world of software engineering and mo-
bile systems — but also that of scientific method, academic papers, seminars and
presentations, which now culminates to this study, before the author leaves this
particular research for new challenges.

i

Acknowledgements

A book is never written by a single person; I am not sure whether this is true when
it comes to master’s thesis, but enormous amount of group work was done before
the actual writing process, and cannot be left without acknowledgement.

First I would like to thank Vesa Lappalainen for providing an opportunity to
work in academia, and also for invaluable advice during both the research work
and the writing of this thesis. It has been a pleasure to work at the Department of
Mathematical Information Technology.

A great deal of background work was shared with me by Mikko Tyrväinen, with
whom I worked closely during these two years. Of the topics covered in this the-
sis, especially the development of system protocols and overall architecture was a
joint operation; special thanks should also be made for working on the architectural
figures seen in this thesis.

Advice from staff members at the department was much appreciated; thanks
to Jonne Itkonen, Antti-Juhani Kaijanaho, Pekka Neittaanmäki, Tommi Kärkkäinen,
and few others for various reasons.

I would like to thank the following persons, who contributed to study by attend-
ing to performance tests and by providing devices: Peter Ciszek, Sauli Korhonen,
Pauli Kujala, Antti Lahtinen, Olli Rautiainen, Mikko Savolainen, and Janne Silven-
doinen.

A special mention should also go to staff at upper secondary school of Piek-
sämäki and that of the University of Joensuu for giving a curious young student a
first introduction to information technology studies during years 2001 and 2002.

To my parents, Pasi and Kaisa, for buying us the Amiga 500 — and for few other
things along the way — thank you.

Jyväskylä, October 2007

Tuukka Puranen

ii

Contents

List of Figures 1

List of Tables 2

Glossary 3

1 Introduction 6
1.1 Structure of the Thesis . 6
1.2 Research Problem . 7

2 Overview 8
2.1 Background . 8
2.2 History . 8
2.3 Overview And Purpose of InSitu System 9
2.4 Possibilities and Effects . 10

3 Wireless Communication 12
3.1 Bluetooth . 12

3.1.1 Background . 12
3.1.2 Implementation and Diffusion Levels 12
3.1.3 Technology . 13
3.1.4 Connection Establishment . 15
3.1.5 Communication . 16

3.2 WLAN . 17
3.2.1 Background . 17
3.2.2 Technology . 17

3.3 GPRS . 18
3.3.1 Background . 18
3.3.2 Technology . 18

4 Implementation 20
4.1 Main Functionality . 20

4.1.1 General . 20

iii

4.1.2 Connection Establishment . 21
4.1.3 Communication . 21

4.2 Non-Functional Requirements . 21
4.3 System Architecture . 22

4.3.1 Overall . 22
4.3.2 Teacher’s App . 24
4.3.3 Router . 29
4.3.4 Leaf . 31
4.3.5 Others . 31

4.4 System Protocols . 32
4.4.1 IRP . 34
4.4.2 IMPv2 . 35
4.4.3 Others . 37

5 Bluetooth Connection Establishment 40
5.1 Connection Alternatives . 40

5.1.1 Inquiry Based Connection . 41
5.1.2 Predefined Address Connection 42
5.1.3 Notify Module Connection . 43
5.1.4 Module Discovery Connection 45

5.2 Implementation Considerations . 47
5.3 User Interaction and Usability . 49
5.4 Performance measurement . 50

5.4.1 Procedure . 50
5.4.2 Protocol . 52
5.4.3 Measurements . 52

5.5 Results . 54
5.5.1 General . 55
5.5.2 Predefined Address Connection 56
5.5.3 Notify Module Connection . 57
5.5.4 Module Discovery Connection 59
5.5.5 Others . 60

5.6 Improving performance and robustness 61

6 Conclusion and Further Research 63

References 65

iv

Appendices

A Performance Data 69

B IRP Specification 72

C IMPv2 Specification 80

D Architecture Notation and Views 95

E Relevant Parts of Source Code of Router 97
E.1 router.c . 97

E.1.1 router_create_connection . 97
E.1.2 router_connect_device . 99
E.1.3 router_send_timestamp . 100
E.1.4 router_send_modules . 101
E.1.5 router_handle_sendto . 101

E.2 btmanager.c . 103
E.2.1 btmanager_listen_hp . 103
E.2.2 btmanager_connect . 105

v

List of Figures

4.1 Overview of InSitu system. 23
4.2 Logical structure of InSitu system. 24
4.3 Default physical layout of InSitu system. 25
4.4 Logical structure of Teacher’s App. 26
4.5 Processes in Teacher’s App. 26
4.6 Processes and their communication in Teacher’s App. 27
4.7 Development structure of Teacher’s App 28
4.8 Processes in Router. 29
4.9 Processes and their communication in Router. 30
4.10 Development structure of Router. 31
4.11 Development structure of Leaf and PCLeaf. 32
4.12 Process structure of InSitu Projector. 33
4.13 Development structure of InSitu Projector. 33

5.1 Formalization of PAC scheme. 43
5.2 Formalization of NMC scheme. 44
5.3 Formalization of MDC scheme. 46
5.4 An example of a module layout ensuring coverage of the network. . 48
5.5 Performance of PAC 2 with 12 devices. 56
5.6 Performance of PAC 2 with 12 devices. 57
5.7 Performance of NMC 1 to 4 with 12 devices. 59
5.8 Performance of NMC 2 to 4 with 12 devices. 60

D.1 Logical notation. 95
D.2 Process notation. 96
D.3 Development notation. 96
D.4 Physical notation. 96

1

List of Tables

3.1 Major Bluetooth versions. 13
3.2 Three classes of transmission power levels. 14
3.3 An example of a Bluetooth address. 14

4.1 Full protocol stack for server-router communication. 34
4.2 Full protocol stack for router-client communication. 36
4.3 Full protocol stack for direct server-client communication. 36
4.4 Full protocol stack for server-projector communication. 38

5.1 Summary of connection establishment schemes. 41
5.2 Universally Unique Identifiers for Bluetooth services in the system. . 49
5.3 Timestamp identifiers. 53

A.1 Summary of performance measurement results. cont. 70
A.1 cont. Summary of performance measurement results. 71

2

Glossary

100Base-T. One standard for Ethernet over twisted pair. – Cf. ETHERNET

3G. 3rd generation of mobile network standards.

APMC. All to Predefined Module Connection; a possible connection scheme used
in the InSitu system in the future.

APPC. Adapted Piconet Physical Channel; one of the physical channels in Blue-
tooth. – Cf. BLUETOOTH

AWT. Abstract Window Toolkit; part of the Java programming language. – Cf. JAVA

SE

BNMC. Buffered Notify Module Connection; a possible connection scheme used in
the InSitu system in the future.

Bluetooth. A specification for wireless personal area networks.

BPPC. Basic Piconet Physical Channel; the default physical channel in Bluetooth
communication. – Cf. BLUETOOTH

CLDC. Connected Limited Device Configuration; a specification of a framework
for Java ME. – Cf. JAVA ME

Ethernet. A collection of networking technologies for local area networks. – Cf.
LAN

GIAC. General Inquiry Access Code; the default access code for Bluetooth inquiry.
– Cf. BLUETOOTH; LIAC

GPRS. General Packet Radio Service; a mobile service for data transfer. – Cf. next

GSM. Global System for Mobile communications; a standard for mobile phones.

Hello Point. See NOTIFICATION MODULE

IBC. Inquiry Based Connection; a connection scheme used by the InSitu system.

3

IEEE. Institute of Electrical and Electronics Engineers; an international non-profit
organization for advancement of technology.

IMP. InSitu Mobile Protocol; a protocol for server-client communication in InSitu
system.

IMPv2. See previous

InfoNode Docking Windows. An open-source Java UI framework. – Cf. UI; JAVA

SE

IP. Internet Protocol; a protocol for communicating across a packet-switched net-
work. – Cf. TCP

IPP. InSitu Projector Protocol; a protocol for server-projector communication in In-
Situ system.

IRP. InSitu Router Protocol; a protocol for server-router communication in InSitu
system.

Java SE. Java Standard Edition; widely used general platform for programming in
the Java language. – Cf. next

Java ME. Java Micro Edition; a subset of the Java platform for small devices. – Cf.
previous

JCommon. An open-source general purpose Java class library.

JFreeChart. An open-source Java charting library.

JSR. Java Community Process; a formalized process for defining the future versions
of the Java platform. – Cf. JAVA SE

Joda Time. An open-source Java date and time management library.

L2CAP. Logical Link Control and Adaptation Protocol; a protocol within Bluetooth
stack. – Cf. BLUETOOTH

LAN. Local Area Network; a computer network typically covering a small local
area. – Cf. WLAN

LC. Link Controller; a protocol within Bluetooth stack. – Cf. BLUETOOTH

LIAC. Limited Inquiry Access Code; an access code for Bluetooth inquiry. – Cf.
BLUETOOTH; GIAC

4

MDC. Module Discovery Connection; a connection scheme used by the InSitu sys-
tem.

MIDP. Mobile Information Device Profile; a specification for the use of Java on em-
bedded devices.

NMC. Notify Module Connection; a connection scheme used by the InSitu system.

Notification Module. A Bluetooth module available for client initiated connection
establishment, used for reporting a presence of a device.

PAC. Predefined Address Connection; a connection scheme used by the InSitu sys-
tem.

PI. Peer Instruction; a methodology for enhancing learning during lectures.

Piconet. An Ad-Hoc network of Bluetooth devices. – Cf. BLUETOOTH; SEMI-AD-HOC

RFCOMM. Radio Frequency Communication; a protocol within Bluetooth stack. –
Cf. BLUETOOTH

SDP. Service Discovery Protocol; a protocol for searching services from Bluetooth
devices. – Cf. BLUETOOTH

Semi-Ad-Hoc. An Ad-Hoc network with some known static components.

SIG. Special Interest Group; a consortium with a particular interest in a specific
technical area.

TCP. Transmission Control Protocol; a transport layer protocol for communicating
packet data. – Cf. IP

UI. User Interface.

Ultra-wideband. Technology for short-range high-bandwidth communications.

USB. Universal Series Bus; a serial bus standard mainly for interface devices.

UTF-16. 16-bit Unicode Transformation Format; a variable-length character encod-
ing.

UUID. Universally Unique Identifier; an identifier standard for identifying entities.
Here Used to identify Bluetooth services. – Cf. BLUETOOTH

WLAN. Wireless Local Area Network. – Cf. LAN

5

1 Introduction

What I hear, I forget. What I hear and see, I remember a little. What I hear, see
and discuss, I begin to understand. What I hear, see, discuss, and do, I acquire
knowledge and skill. What I teach to another, I master.

— Mel Silberman, adapted from [40]

InSitu is a prototype of an electronic mass lecture feedback and questionnaire
system implemented by utilizing students’ mobile devices. This thesis examines the
system, reasons behind its development, and its possible implications.

1.1 Structure of the Thesis

This thesis provides a sketch for implementation of the lecture feedback and ques-
tionnaire system by presenting an overall view of domain. Due to novelty of the
InSitu system, one objective is also to introduce and stabilize terminology. This
study emphasizes inspection of Bluetooth connection establishment and communi-
cation but takes also a slightly broader view, since this is among the first papers on
the subject. The system utilizes also ordinary local area networks, but the issues are
mainly trivial and will, therefore, be examined briefly. There will be an introduction
to the system and its goals to provide insight to typical usage and usage environ-
ment and to provide a general view to evaluate and compare different alternatives
and methodology presented.

In Chapter 2, some problems in mass lectures are addressed; a solution is pro-
posed; and effects of the solution are briefly evaluated as motivation. In Chapter 3,
technical background and theoretical foundation are examined in detail in order to
provide means to analyze and measure different methods for solving the research
problem. Chapter 4 gives broader view on the technical aspects of the current im-
plementation of the system and gives detailed context in which the solution is appli-
cable. It also presents the most relevant requirements, in the scope of this thesis and
in this particular context, that guide the analysis of different methods. In Chapter
5, four different methods for solving the research problem are identified, analysed
and measured.

6

1.2 Research Problem

This thesis introduces the feedback system, outlines an architecture and an example
implementation, and attempts to find out whether this implementation is viable in a
given context. Thus, some general remarks about implementability of such system
will be made. This thesis will also examine whether it is possible, and how, in an
auditorium or a classroom, to form a Bluetooth network of a single server and sev-
eral dozens of mobile devices in an acceptable time frame. This study will, however,
present only estimates, since limited hardware supplies1 prevent exhaustive exami-
nation with actual volumes. The primary method in the empirical part of the study
is measurement of the performance of the prototype.

In other words, this thesis provides two main scientific contributions. The first
is to introduce a wireless mobile device based lecture feedback system for assist-
ing learning and provide outline for its implementation. The other is to evaluate
whether a Bluetooth can be utilized for this purpose from theoretical and empirical
point of view, and how this can be done by constructing a semi-ad-hoc2 network.

Directions for further research will also be provided. These include evaluating
effects of the actual radio traffic with mathematical modelling and simulations. That
said, network simulations, cognitive effects of the final system, and, for example,
physical radio traffic measures are outside the scope of this thesis.

In general, problems that may prevent large number of Bluetooth devices from
functioning in same environment (i.e., overloading of radio frequencies) will not
be addressed in detail in this thesis; instead, examination of hardware and soft-
ware limitations, connection algorithms, performance, and concurrency issues will
be performed.

Notes

1We have been able to acquire about a dozen mobile devices for day to day testing
and an additional half a dozen for larger intermittent tests.

2In this context, the term semi-ad-hoc network means a wireless network that has
some known elements but whose structure is not fully determined beforehand.

7

2 Overview

The mind is not a vessel to be filled, but a fire to be kindled.

— Plutarch [2]

This chapter presents overview of the scope of this thesis. Section 2.1 presents
background, and Section 2.2 history of the system. In Section 2.3, some problems in
mass lectures are addressed and a solution is proposed in form of a software system.
Effects of the solution are briefly evaluated as motivation in Section 2.4.

2.1 Background

In 1996 a staff member of the University of Jyväskylä was attending a lecture in
Maryland, USA. The lecture was given, in physics, by Eric Mazur who used a ques-
tionnaire system while lecturing. Mazur’s system was part of his teaching strategy
that was later published under term Peer Instruction1 (PI). A central part of the PI
method are so called Concept Tests [36, 133–134] in which lecturer asks conceptual
multiple choice questions and directs the lecture based on the answers. The effects
of the approach have been studied since (see, for example, [38], [10], and [33]), and
Mazur summarizes his ten year experience in [12]. The pedagogical results are, in-
deed, encouraging.

Apart from the system presented in this thesis, other similar systems (see, for
example, [11] and [17]) have been developed and their implications are under active
research. Many (but not all2) implementations of PI rely on electronic questionnaire
systems, and many have adopted either radio or infrared based communication.

It must be, however, noted that while the InSitu system has initially been based
on idea of Peer Instruction, it has not been developed solely for the PI per se; the
system can be used to assist lectures in any way teachers find suitable3.

2.2 History

First attempts to implement an electronic lecture feedback system at the University
of Jyväskylä were done in 1997. The system was based on custom made radio de-
vices. The devices communicated with a server program running on a computer at

8

auditorium. A first set of 30 devices was tested successfully in the end of 1990s, but
it was quickly noted that the system was impractical for several reasons. Firstly, it
was unpleasantly immobile, in a sense that devices themselves were large, not to
mention the fact that there should have been 200 of them in the final system. Sec-
ondly, it was costly to build 200 devices from ground up. Thirdly, the usability of
the system was dictated by the usability of the radio devices, which in turn was
dictated by the capabilities of the electronic parts available. The first version was,
indeed, primitive [31], and a more sophisticated system would have cost even more.

Nevertheless, the system was tested about once in a year in 2000–2005 in a pro-
gramming course, and feedback was positive. It was pointed out, for example, that
this method encourages students to think actively during the lecture, and it also
eases answering the lecturer’s questions, since no one4 is able to see whether you
answer correctly or not.

To attack the issues on the radio system, a different implementation approach
was taken in 2005. Short range radio started to become common in mobile phones,
and an idea to use students’ mobile devices and Bluetooth was brought up. This
resulted in two years of research and prototype development, which has lead to this
particular paper.

2.3 Overview And Purpose of InSitu System

InSitu is a system designed to aid communication at mass lectures. The problem
is usually lack of feedback to a lecturer and consequent inability to adjust teaching
according to the level of students. This is especially true with basic studies where
students with different knowledge levels are present. This is also a matter of cultural
environment; it is more difficult to get Finnish students to interact during lecture
than, for example, those from southern Europe.

A way to assist communication is to provide an electronic query and feedback
system where the lecturer’s actions include, but are not limited to, sending ques-
tions to students and receiving and analyzing answers immediately. The system is
implemented by providing a software for mobile devices with short range radio ca-
pabilities, such as Bluetooth. Many students have mobile phones with support for
technologies like Java ME and Bluetooth, and this has been seen strength compared
to other electronic feedback methods; the lecturer does not have to provide devices;
they are brought and maintained by the students.

Typical usage environment of InSitu system is an auditorium or a classroom of
an educational establishment. There are typically several dozens and at most few

9

hundred devices present at a time. The devices vary widely in properties; mobile
phones come from several different manufacturers, have dozens of models and ver-
sions and utilize various different communication technologies.

When compared to other systems, a system based on students’ mobile devices
costs practically nothing. Also — in general — the devices have charged batteries,
they are familiar to users, and they are not broken in a way that requires attention
from the institutional side. It is, on the other hand, more difficult to ensure that the
system functions properly with every available mobile device, but as the technical
environment matures, this will likely become less laborious.

2.4 Possibilities and Effects

The overall goal of the system is to provide means to adapt teaching and assist
learning with modern mobile technology. One obvious usage is the Peer Instruction
method mentioned in Section 2.1. The system can also be used to measure under-
standing in more traditional teaching schemes by, for example, allowing students
to state their opinion about whether they are familiar with the current topic or not.
Other usage scenarios include collecting detailed background information, gather-
ing opinions or even performing exams.

General effect of the Peer Instruction method is that it enhances learning. Results
from Crouch and Mazur show that students taught with PI significantly outperform
the students taught traditionally, averaging 7.4 out of 10 compared to 5.5 out of 10
[12]. They also state that all measures indicate that students’ quantitative problem-
solving skills are comparable to or better than those achieved with traditional in-
struction.

A question is raised whether a lecture should be technology assisted at all; and
that lecturers must be able to teach without technical devices. Indeed, systems of
this kind must not be substitute for bad teaching. Also some concerns are expressed
about the passivating effect of simple button pressing during lectures, but to be fair,
it must be noted that sitting on lectures in general can be passivating by itself. Also,
in some cases, an electronic system has even activated students to debate about the
answers5.

10

Notes

1In 1997, Eric Mazur published a book [32] that provides details on his teaching
strategy.

2The electronic system is in PI mainly used to collect answer data from students,
which can also be implemented, for example, using simple pen and paper method.
This is not as costly as electronic approach, but lacks possibility to accurately record
and analyse the results.

3Examples of usage outside Peer Instruction methodology include charting back-
grounds in seminars and measuring understanding by directly querying subjective
opinions in real time.

4Lecturer may want to know how particular individual answers, and this possi-
bility is included in the system, but in most cases the teacher is interested only in
general notion.

5The author attended an example lecture in spring 2006, in which some intense
debates regarding answers to programming related questions and their justifications
emerged.

11

3 Wireless Communication

In this chapter the technical background and theoretical foundations are examined
in detail in order to provide means to analyze and compare different methods pre-
sented in subsequent chapters. Section 3.1 presents Bluetooth technology, its back-
ground and implementation. In Section 3.2, an overview of WLAN technology is
rendered, and in Section 3.3 GPRS technology is briefly examined.

3.1 Bluetooth

Bluetooth is a radio standard (also known as IEEE 802.15.1) and a short range com-
munications protocol designed mainly for mobile and handheld devices. Data trans-
mission is based on spread spectrum and utilizes frequency-hopping technique. The
Bluetooth technology has been available almost a decade and has been adopted
widely, especially among mobile phone industry.

3.1.1 Background

Development of Bluetooth began in 1994 by a telecommunications equipment man-
ufacturer Ericsson, and first publicly available specification appeared in 1999. To-
day, Bluetooth is developed by Bluetooth SIG, founded in 1998. The group consists
of 9000 member companies and is responsible for developing Bluetooth standards
and licensing Bluetooth technologies and trademarks.

Major Bluetooth versions and their main additions and modifications to previous
versions are listed in Table 3.1 [7].

3.1.2 Implementation and Diffusion Levels

There are far over a billion Bluetooth devices in the world today [8], and even there
exists some controversy whether Bluetooth will be capable of handling future de-
mands placed on the wireless communication, no signs of saturation is yet seen;
new Bluetooth chips are being shipped at a rate of 10 million per week.

Of the Nokia phones released after 2004 and still actively sold in Finland, over
80%1 have support for Bluetooth, and almost 85%2 of the Nokia’s future releases

12

Rev Date Additions including
v2.1 + EDR July 2007 Encryption Pause and Resume, Erroneous

Data Reporting, Extended Inquiry Response,
Secure Simple Pairing, Security Mode 4

v2.0 + EDR October 2004 Enhanced Data Rate (EDR)
v1.2 November 2003 Faster Connection, Adaptive frequency hop-

ping, Extended SCO Links, Enhanced error
detection, flow control, synchronization capa-
bility and flow specification

v1.1 February 2001 Error fixes
v1.0B December 1999 Interoperability with WAP, Test Control Inter-

face, Bluetooth Audio, Baseband Timers and
Optional Packing Scheme.

v1.0a July 1999 First public release

Table 3.1: Major Bluetooth versions.

will support Bluetooth as of August 2007 [34].
Bluetooth is used, apart from mobile phones, for example, in headsets, printers,

laptops, hands-free devices, input devices, watches, clock-radios, televisions, and
gaming consoles.

Current version (2.1) of Bluetooth was released in July 2007 but has not yet been
widely adopted. Version 2.0 was released in 2004 and is extensively used today.
2.0 is the mainly used version in the InSitu system as well. Next version (3.0) of
Bluetooth will include, for example, support for ultra-wideband radio technology,
enabling data transfer rates up to 480 Mbit/s.

3.1.3 Technology

Two Bluetooth devices can communicate with each other whenever they are within
transmission range. Three levels of transmission power are defined [5, 31], and
they are presented in Table 3.2. Each Bluetooth radio device belongs to one of these
classes.

The range varies depending on, for example, antenna and transmission path at-
tenuations; estimates of the maximum range vary greatly. Hongfeng Wang [44] uses
A. Kamerman’s indoor propagation model and estimates that especially in open
environments Bluetooth can reach as far as 30 meters with class 3, 50 meters with
class 2, and 300 meters with class 1. Michael Hayoz [20] on the other hand presents

13

Maximum Permit-
ted Power (mW)

Maximum Permit-
ted Power (dBm)

Approximated
range

Class 1 100 20 50-300
Class 2 2.5 4 10-50
Class 3 1 0 0.1-30

Table 3.2: Three classes of transmission power levels.

typical ranges of 10, 20, and 100 meters.
Bluetooth operates on 2.400–2.4835 GHz frequencies. The actual radio channel

frequencies fk are defined in the Bluetooth specification [5, 29] by equation

fk = 2402 MHz+ k, k = 0, ..., 78. (3.1)

Bluetooth communication is based on four physical channels. Two of them are
reserved for actual data transfer and the other two for connection establishment.
The physical channel is partly characterized by pseudo-random hopping between
the frequencies fk. The hopping is defined by the physical address and clock offset
of the host device. One data transfer channel, BPPC, utilizes all of the 79 frequencies
defined, whereas the other, APPC, can skip, for example, frequencies with high load.
APPC is, however, guaranteed to use at least 20 of the frequencies fk [5, 70–75].
Frequency hopping density in data transfer channels is 1600 hops per second.

During communication the Bluetooth devices are identified by a 48-bit device
address. A typical representation of Bluetooth address is seen in Table 3.3.

00:0A:3A:51:72:C1

Table 3.3: An example of a Bluetooth address.

A Bluetooth address is usually displayed in a user friendly form, that is, as an
arbitrary name defined by user. The user friendly name is sent to another device
as soon as its presence is known. To form a connection, there is no need to know
the address of the remote device due to nature of the Bluetooth technology, but if
the address is available, it can be used to speed up the connection establishment.
This issue and its effects on user interaction will briefly be revisited in Section 5.3;
examination of connection establishment in general will be performed in Section
3.1.4.

14

3.1.4 Connection Establishment

There are two distinct phases in connection establishment of Bluetooth devices: in-
quiry and paging [4, 51–53]. During inquiry, a device looks for discoverable Blue-
tooth devices within range. This must usually be performed prior to paging, during
which the actual connection is established. A separate physical channel is reserved
for both inquiry and paging procedures. Due to nature of the channels, the specifi-
cation [5, 70–75] defines a hopping density of 3200 hops per second. During inquiry,
the inquiring device actively sends inquiry messages. The devices that have been set
to discoverable mode will respond with inquiry response using the same physical
channel.

Inquiring device iterates through all inquiry channel frequencies; the device
sends inquiry message to each channel and listens for responses. Devices share
knowledge of inquiry access codes, which can be used to restrict inquiry to certain
types of devices. [4, 37–38] Two of the access codes are GIAC and LIAC, General
Inquiry Access Code and Limited Inquiry Access Code, respectively. GIAG is the
default access code used during inquiry, and LIAC is used for temporary inquiries,
for example, when devices are planning to be visible for a limited amount of time.
The InSitu utilizes the existence of multiple different access codes in different con-
nection establishment schemes; these are examined in detail in Chapter 5.

A device can perform paging procedure when the address of target device is
known; typically, it is the inquiry that provides address and clock of the target de-
vice. The paging device iterates through frequencies of physical channel reserved
for paging, it sends page request to them, and listens for possible responses. The
access code of paging channel is derived from the address of the paging device. The
paging device can utilize knowledge of the clock of the device being paged to speed
up the synchronization and thereby the connection establishment.

A connection is established between two devices when paged device has sent
page response. The devices share a common physical channel and have synchro-
nized clocks. The devices are now, by definition [4, 51–53], part of same piconet
and can perform data transfer. At this point, the paging device is able to perform a
search among the services provided by the paged device.

Service Discovery Protocol is used to search services from paged device. Services
contain attributes, which can be used to identify them. Typical attributes include
ServiceID, ServiceName, and ServiceDescription. Paging device performs
search among paged device’s services and after finding appropriate, usually based
on ServiceID attribute, opens an actual software level connection to the service.

15

3.1.5 Communication

Of the two physical channels defined for data transfer, BPPC is the default. Data
transfer channels are always associated with specific piconet, thus when devices
share a common physical channel, they belong to same piconet. A piconet consists
of one master and one to seven slave devices, and therefore, the maximum number
of devices in a piconet is restricted to

dpico = 8. (3.2)

Existence of the piconets is a determinative feature of Bluetooth communication,
especially when building large Bluetooth networks.

If expressed in more detail, Bluetooth physical channels are characterized by
combination of pseudo-random hopping sequences between frequencies fk, slot
timing of the transmissions, the access code, and packet header encoding. Fre-
quency hopping is used to change frequency periodically to, for example, reduce
the effects of interference. [5, 69]

Phase in the pseudo-random hopping sequence is defined by the Bluetooth clock.
The physical channels are divided into time slots whose length depends on the type
of the channel. When a piconet is formed, the clock of the master device is communi-
cated to the slave devices. The master clock is used for all timing and synchronizing
activities.

It is possible that multiple Bluetooth devices communicate using same physical
channel, which may lead to physical channel collision. To reduce the effects of this
event, each transmission on a physical channel begins with an access code that can
be used to identify the channel. This channel code is a property of the physical
channel and is present at every packet transmitted. [5, 69] It is, however, discovered
that multiple piconets do interfere with each other, and this interference is the is key
factor limiting the throughput of the network [15].

Several papers have addressed the issue of interference (see for example [21]),
and solutions have, indeed, been proposed. Cordeiro and Agrawal present a dy-
namic packet segmentation algorithm to resolve this matter in [14] and [13]. It is,
however, not clear — without measurement in this particular context — at which
point this interference prevents the InSitu system from functioning properly3.

16

3.2 WLAN

A wireless LAN or WLAN is a wireless local area network, which is the linking of
two or more computers without network cables. WLAN utilizes spread-spectrum
modulation technology based on radio waves and operates, in most cases — like
Bluetooth — on 2.4–2.5 GHz frequencies [41].

3.2.1 Background

Foundation of spread-spectrum wireless networks was laid in 1970s at the univer-
sity of Hawaii when ALOHANET, the first low-cost computer communication net-
work, was developed [1].

First IEEE Workshop on wireless local area networks was held in May 1991 and
subsequent workshops in 1996 and 2001. First version of the IEEE 802.11 standard
series was released in 1997.

While wireless networks were formerly used mainly as substitute for cables, in
places where cables were not practical, e.g., due to their high cost, the WLANs are
nowadays widely used in parallel with LANs for their convenience. But, though
many consumer laptops contain a wireless network card, for mobile phones the
WLAN is not yet widely available.

3.2.2 Technology

Since WLAN and Bluetooth operate on the same frequencies, they interfere with
each other [28] and, perhaps counterintuitively, WLAN throughput is the property
that degrades. Presented solutions include Bluetooth Interference Avoidance Schedul-
ing and WLAN Rate Scaling [19], which take into account the existence of the other
network and adjust their operation accordingly.

From the InSitu system’s point of view, a possibility to run a client software on a
personal computer or a laptop is not highly relevant4; and, indeed, it might not be
especially interesting, that is, any regular TCP/IP connection is sufficient for com-
munication. Nevertheless, while this alternative may yet not be suitable to mass
lectures, it can be used for testing purposes or for questioning, for example, in a
computer classroom. Another interesting option will be WLAN support that is be-
ginning to appear in mobile phones.

The question of throughput with 200 devices remains also within WLAN. A new
standard (IEEE 802.11n) is under development and plans include enhancing WLAN
throughput — in theory — up to 600 Mbps [22]. The new standard is scheduled to

17

be out in September 2008 [23].
As mentioned, WLAN utilizes TCP/IP, which enables client to connect directly

to server. After the connection is established, the server software handles devices
connected via TCP/IP in the same way as devices connected via Bluetooth.

3.3 GPRS

General Packet Radio Service is a mobile data service and a packet switched data
link layer protocol accessible to users of Global System for Mobile Communications
(GSM).

3.3.1 Background

In 1999 and 2000, network operators placed different trials and commercial con-
tracts for GPRS infrastructure with the incorporation of GPRS infrastructure into
GSM networks. In the summer of 2000, the first trial GPRS services became avail-
able. In 2001, the basic GPRS capable terminals began to be available in commercial
quantities, and network operators launched GPRS services commercially. [43]

Today, GPRS techniques are widely used, and 3rd generation of mobile networks
(3G) keep expanding the capabilities of GSM-based data transfer. From the InSitu
system’s point of view, many otherwise suitable mobile device models (that is, hav-
ing Java support), do not have support for either Bluetooth, or its programming
interface. Among these mobile device models, GPRS is, however, quite common,
and even if GPRS is considered as legacy support (again from the system’s point of
view), it is an option that has been rather straightforward to implement and, there-
fore, an easy way to expand device support.

3.3.2 Technology

The mobile devices that provide possibility to communicate via GPRS use TCP/IP,
which, from the server’s standpoint, is similar to WLAN; the client devices connect
directly to the server.

Unlike short range radio, WLAN or Bluetooth, GPRS usually requires fee for
data transfer. The IMPv2 specification (see Appendix C) defines that communica-
tion is based on UTF-16 encoded characters, which signifies 2 bytes for each charac-
ter. GPRS traffic is based on TCP/IP, which implies header data of 28 [42] + 24 [25]
bytes per packet. A typical IMPv2 packet vary in length between 11 and 150 char-

18

acters, yielding typical packet length of 22 to 300 bytes. Length of typical TCP/IP
packet, therefore, varies between 74 and 352 bytes.

The greatest impact on the data transfer have the keep alive packets, which are
sent to ensure that connection has not been lost. Keep alive packet requires 74 bytes
of data transfer. Default value for keep alive interval is 2.0 seconds, but this should
be configured to a larger value if network has GPRS devices. The client informs the
server of its connection method in the login response. This information can be used
to configure keep alive interval from the server side per device basis minimizing the
data transfer to GPRS devices. Client software is, however, not able to distinguish
between GPRS and WLAN connection, which results also in longer keep alive inter-
val for WLAN clients.

Notes

1A sample of 89 phone models.
2A sample of 13 phone models.
3The term properly depends naturally on the requirements, which should be ex-

pressed in detail. This is not, however, done in this thesis since measurements of
required magnitude cannot be performed.

4Some users do use a laptop during lectures, and while this provides a more
useable approach, the option is — and probably will remain — in margin, at least
in near future. On the other hand, in the long run, it is likely that the importance of
WLAN will increase.

19

4 Implementation

I can call spirits from the vasty deep.
Why so can I, or so can any man; but will they come when you do call for them?

— Shakespeare, King Henry IV, Part I [18]

The modern magic, like the old, has its boastful practitioners: ”I can write
programs that control air traffic, intercept ballistic missiles, reconcile bank ac-
counts, control production lines.” To which the answer comes, ”So can I, and so
can any man, but do they work when you do write them?”

— Frederick P. Brooks [18]

This chapter will provide a view to current implementation of the system proto-
type. Section 4.1 presents some of the relevant functionality, and Section 4.2 exam-
ines the essential non-functional requirements for the system. Section 4.3 examines
system at the architectural level, and Section 4.4 introduces the communication pro-
tocols used between different parts of the system.

4.1 Main Functionality

This section presents relevant requirements, especially for connection establishment
and communication.

4.1.1 General

Typical functionalities are related to asking questions and analyzing the results. This
section deals with major system features that are not related to connection and com-
munication per se but bear some implications to the resulting design.

Analyzing. The system should be able to record and store data gathered during
sessions and enable analyzing this data, preferably over several years.

Interoperability with other systems. The system should be able to acquire ex-
isting and available necessary data from other systems, for example, to minimize
manual work in user information management.

20

Querying. The system should be able query users with different types of ques-
tions, ranging from multiple choice questions to free text answers, and from instant1

questions to continuous ones.
Real time observing. Lecturer should be able to observe and interpret the an-

swers as they arrive to system and react to them in a way he or she finds suitable.
Presentation. The lecturer should be able to present the overall results to stu-

dents after the question has been asked.

4.1.2 Connection Establishment

This section examines requirements directly related to connection establishment.
Simultaneous connecting. Multiple clients should be able to perform connec-

tion procedure simultaneously, that is, initiate connection once and wait for suc-
cessful establishment, even if there are other connections pending from other users.

Adding and removing clients in arbitrary times. System should be able to add
and remove clients during session freely without affecting other clients.

Reconnecting. Clients should be able to reconnect to the system during session
in case of disconnection.

4.1.3 Communication

This section presents requirements related to communication between server and
clients.

Authorization. The system should be able to identify and require authorization
of users, if the lecturer chooses to demand this.

Detection of communication errors. The system should be able to detect com-
munication errors and react to them in an appropriate way2.

4.2 Non-Functional Requirements

This section presents the major non-functional requirements that have implications
on the overall design of the system.

Heterogeneous environment. The server should be able to operate in heteroge-
neous environment in both client and server side, that is, on multiple devices, on
varying operating systems, and different physical deployment configurations.

Usable with prior knowledge of client device only. Users, with prior knowl-
edge only of their mobile device, should be able to use client software after a single

21

instruction lection.
Scalability. The system should scale up to 200 simultaneous users.
Worst case performance. 200 users should be able to form a network in less than

15 minutes3.
Utilizing existing infrastructure. The system should utilize existing infrastruc-

ture to prevent need for large hardware acquisitions.
Maintainability. Architecture at package level, especially in Teacher’s App,

should not contain cyclic dependencies between the elements.

4.3 System Architecture

InSitu system is essentially a client-server application where the server software is
operated by lecturer, and the clients are used by students attending the lecture. Since
there exists no free Bluetooth interface for Microsoft Windows operating system,
and to ensure portability of the server software, the part of the server handling the
Bluetooth connections has been detached to a small Linux program.

4.3.1 Overall

An example configuration of the overall system architecture can be seen in Figure
4.1. Notation for the figures in this chapter (except for the informal 4.1) is presented
in Appendix D. The system consists of the following pieces of software:

• server (InSitu Teacher’s App),

• Bluetooth router (InSitu Router),

• projector for results (InSitu Projector),

• mobile device clients (InSitu Leaf), and

• PC clients (InSitu PCLeaf).

As with the hardware requirements, one design objective has been ability to min-
imize need for hardware acquisitions. Most of the required infrastructure should be
available in an average auditorium. The system requires the following hardware:

• USB hub(s)4,

• Bluetooth modules,

22

Internet

TCP/IP/IMPv2

TCP/IP/IMPv2

GPRS/IMPv2

GPRS/IMPv2

Teacher’s App
(Server)

TCP/IP/IRP

WLAN access point

InSitu Router
(Bluetooth Server)

TCP/IP/IPP

InSitu Projector
(PC in auditorium)

DVI

Projector in auditorium

USB hub

WLAN/IMPv2

USB

USB

Bluetooth dongles

USB

WLAN/IMPv2

PCLeaf
(Client)

Leaf
(Client)

Leaf
(Client)

RFCOMM/IMPv2

RFCOMM/IMPv2

RFCOMM/IMPv2

Figure 4.1: Overview of InSitu system.

• Linux PC for Router,

• PC for Teacher’s App,

• PC for Projector5,

• video projector, and

• WLAN access points6.

The server software communicates with the router with LAN-connection, and
the router communicates with the clients via Bluetooth. Due to Bluetooth technol-
ogy, each Bluetooth antenna7 can be connected to seven other Bluetooth devices;
thus a number of antennas is required.

23

Server

Projector

ClientRouter

Client

Figure 4.2: Logical structure of InSitu system.

Formally, the system consists of five logical elements, which communicate with
each other as presented in Figure 4.2. The router is responsible for managing Blue-
tooth connections and communicates this data to the server. The server, on the other
hand, communicates with clients directly or through the router8. The server directs
operation of the projector software, which is used to display results using a video
projector.

Server, Router, and Projector are logically different elements, but can also run in
a single machine. Figure 4.3 presents the default physical layout for server elements.
This has some usability implications, such as that InSitu Router must run on Linux,
and a video projector typically9 presents the same information that is on monitor,
which may not be desirable from the lecturer’s point of view; that is, lecturer may
want to examine results or answers of the questions without students seeing them.
This requirement for two interfaces was the primary reason for creating two differ-
ent programs.

Depending on the hardware availability and OS options, different configurations
can be used. Each of the three pieces of software can either run on an individual PC
or on the same machine.

4.3.2 Teacher’s App

Teacher’s App is responsible for administering the server system as a whole. It
keeps track of the system state and takes care of handling data. The application
operates as a primary interface to the lecturer enabling management of questions,
answers and users; as well as querying and analyzing answers.

24

Figure 4.3: Default physical layout of InSitu system.

Logically, the program is divided into four parts, which are presented in Fig-
ure 4.4. Core administers the operations of the system and coordinates communica-
tion among the other parts of the system. User interface (UI) presents the graphi-
cal interface to user and translates user’s actions and wraps them into Commands,
and related events, for other parts of the system to process. Data contains storage
for runtime data and program state and defines file structures and communication
protocols. Network element provides application-specific services for accessing net-
work.

The Teacher’s App has a typical design of a multithreaded server. The pro-
cess graph for Teacher’s App is presented in Figure 4.5. The runtime structure of
Teacher’s App consists of main thread (Core Thread), user interface thread (Java AWT
Thread) and several network threads (Listener Thread n). Main thread is responsible
for managing data, coordinating user interface thread to prevent modification of
data during update, creation (and deletion) of network threads and sending data
between parts of the system. User interface thread operates on the UI element seen
in Figure 4.4, main thread on Core and Data parts, and network threads operate on
Core part.

Network threads push incoming data to queue, which is periodically checked by
main thread. User interface thread is responsible for updating the interface, when-
ever requested by main thread, and initializing commands and events based on

25

Core

UIData

Network

Commands

Figure 4.4: Logical structure of Teacher’s App.

Figure 4.5: Processes in Teacher’s App.

26

Figure 4.6: Processes and their communication in Teacher’s App.

user’s actions. These commands and events are pushed to appropriate queues as
seen in Figure 4.6. Main thread issues a special update request (InvokeAndWait())
and waits for its completion whenever user interface thread needs to access Data to
update the user interface. Only the main thread is allowed to modify the runtime
data. If the AWT thread detects a need to update, a request to do so can be sent to
main thread via Event queue.

The multithreaded approach to networking aims to ensure that the server soft-
ware is able to meet the performance requirements of 200 simultaneous users. Dif-
ferentiating the user interface thread from processing thread ensures that the user
interface remains operational during lengthy operations.

InSitu Teacher’s App is implemented with Java SE 6 and utilizes the following
open source libraries and frameworks:

• InfoNode Docking Windows 1.5.0 [24],

• Joda Time 1.4 [29],

27

Figure 4.7: Development structure of Teacher’s App

• JFreeChart 1.0.3 [27], and

• JCommon 1.0.8 [26].

Figure 4.4 presented four main parts, which map to the development structure
seen in Figure 4.7 as follows: the core element is basically the insitu.core package,
user interface the insitu.ui package, and network is handled by insitu.network. Data
element is divided to actual data and to different protocols. Commands are bundled
to insitu.commands. User interface utilizes two external libraries (JFreeChart via in-
situ.graphics and Docking Windows), whereas JCommon (omitted from the figure)
is required by the JFreeChart. Joda Time library (also omitted) is used throughout
the program wherever calendar and time calculations are needed10. The insitu.graphs

28

Figure 4.8: Processes in Router.

is implemented as an external library to provide the required functionality for draw-
ing graphs for all the necessary parts of the system; most notable part being natu-
rally the projector. It is notable that no cyclic dependencies are present in the Figure
4.7.

4.3.3 Router

During normal communication, Router essentially maps Bluetooth connections to
virtual device identifications. The server sends a packet that contains an identifica-
tion number and the actual packet. The identification number is provided by Router
during connection establishment. Similarly, the incoming packet from Bluetooth de-
vice is wrapped to another packet and sent to the server along identification.

During connection establishment, however, the router operates in a more sophis-
ticated manner; details, naturally, depending on the connection scheme used. Figure
4.8 presents typical processes and their interaction in router during connection es-
tablishment. A number of connection threads is created. The creator and creation
time depending on the context and the particular connection establishment proce-
dure. The number of hello threads depends typically on the number of notification
modules11 — if any — present in the system.

In one of these schemes (see Section 5.1.3 for more details), a connection to a vis-
ible notification module is made by a client device, to which in turn another module
connects from the server side. To enable as many simultaneously connection es-
tablishment procedures as possible, each of these notification modules is operated
under a distinct Hello Thread, and a new Connection Establishment Thread is spawned

29

Figure 4.9: Processes and their communication in Router.

for each connection establishment procedure.
Figure 4.9 presents the threads operating in one of the connection schemes. Main

Thread is responsible for administering the client data (Devices) and multiplexing the
network traffic to server and clients (IO). The Devices data structure is synchronized
using mutexes. Notice that even if several simultaneous connection establishment
threads should be able to operate independently, hardware seems to place addi-
tional restrictions to their operation. This issue will be examined in detail in Section
5.1.

The router is designed to be as lightweight as possible, partly due to lower level
programming required. It consists only of two major modules presented in Figure
4.10. Router module handles network IO, manages runtime data structures, and
program state as well as parses and interprets packets; BTManager administers the
Bluetooth connection establishment procedures and notification modules. In gen-
eral, all operations requiring Bluetooth functions from Bluetooth library of Linux
kernel should go to BTManager module. Due to nature of the program, both mod-
ules put Linux threading utilities PThread to use.

The router requires currently Linux Kernel version 2.6.2012 due to built-in sup-
port for Bluetooth.

30

Figure 4.10: Development structure of Router.

4.3.4 Leaf

InSitu Leaf is the main client software in the system. It is implemented in Java
ME, supports both Bluetooth and GPRS connections, and operates basically in any
mobile phone with support for the following Java Specification Requests:

• Connected Limited Device Configuration (CLDC) 1.0 for Java ME (JSR 30),

• Java APIs for Bluetooth (JSR 82), and

• Mobile Information Device Profile (MIDP) 2.0 for Java ME (JSR 118).

The Leaf is divided to a core package leaf, custom-made user interface com-
ponents leaf.components, and a Bluetooth management module leaf.bluetooth as ren-
dered in Figure 4.1113. Leaf can be compiled without the insitu.bluetooth package to
ensure compatibility with phones without JSR 82 (that is, phones with GPRS and
Java). A client side package of IMP, insitu.impv2, is an external library and shared
by both Leaf and PCLeaf (see Section 4.3.5). The insitu.impv2 can, therefore, be com-
piled to either desktop or mobile Java.

4.3.5 Others

Other elements in the system include InSitu PCLeaf and InSitu Projector. PCLeaf is a
PC equivalent of InSitu Leaf; and is essentially a rather straightforward Java client
application which connects directly to the server via TCP/IP.

Projector is a thin client operated by the server for displaying a portion of the
server’s user interface to audience. The projector is not meant to be used locally
and, therefore, requires no interactive user interface. The processes in the projector

31

Figure 4.11: Development structure of Leaf and PCLeaf.

are rendered in Figure 4.12 and they present quite a simple structure. Listener Thread
pumps network traffic to Core Thread, which in turn adjusts the operation and pro-
gram state accordingly and further translates the messages to user interface thread
Java AWT Thread, which typically renders a graph of some sort.

The Projector consists of projector.core, which is responsible of processing and
storing data and program state; projector.ui, which manages the user interface; and
projector.network, which handles network traffic and protocol parsing. The package
insitu.graphs is an external library shared by the Projector and the Teacher’s App.
It contains the functionality required to render the graphs used in the system. The
elements are presented in Figure 4.13.

In the future, usability of the system is to be enhanced by introducing a small pro-
gram for operating the server remotely using, for example, lecturer’s mobile phone.
Current sketch is known as InSitu Remote.

4.4 System Protocols

There exist protocols for low-level communication, connection establishment, and
service discovery in Bluetooth. There are, however, no application level protocols
available for lecture feedback and questionnaire systems. As to TCP/IP-based com-
munication between different parts of the server, most of it could have been imple-
mented using, for example, remote method invocation of some kind, but essentially,
the heterogeneity of the operating environment requires an implementation inde-

32

Figure 4.12: Process structure of InSitu Projector.

Figure 4.13: Development structure of InSitu Projector.

33

pendent solution. Thus, a set of text-based protocols were developed.
System architecture, as seen in Figure 4.2, requires four kinds of communication:

• server-router,

• router-client,

• server-client, and

• server-projector.

Communication between the server and the router is based on regular TCP/IP
and consists mainly of administering Bluetooth connections and sending and re-
ceiving question and answer data. InSitu Router Protocol (IRP) is defined for this
purpose. Communication between the server and the clients is done either directly
or via router. From the client’s point of view the actual route is transparent; both
connections utilize InSitu Mobile Protocol (IMPv2) for the communication. Server-
projector communication is based on TCP/IP and InSitu Projector Protocol14 (IPP).

4.4.1 IRP

InSitu Router Protocol is defined for communication between the server and the
router. The main purpose of the protocol is to provide transparency by serving as
carrier to higher level protocols, such as IMPv2 (see Section 4.4.2). IRP also pro-
vides means to communicate the mapping between actual Bluetooth clients and the
session-specific identification number.

Full protocol stack for the server-router communication is seen in Table 4.1.

IMPv215

IRP
TCP
IP

Ethernet
100BASE-T

Table 4.1: Full protocol stack for server-router communication.

IRP is a text-based protocol, and it’s packets are divided to header section and
data section. The header consists of packet length and a packet-specific command.
The data section contains the actual data as specified for each specific packet. The
packets specified by IRP can be divided into three categories:

34

• administering clients,

• communicating with clients, and

• administering router.

Category for handling clients contains User connected, User disconnected, Connec-
tion list, and Disconnect user packets, which notify the server side of newly connected
user, report a lost or ended connection, initiate a connection procedure to given ad-
dresses, and disconnect a given user respectively. Apart from the Connection list,
these packets contain the session-specific identification(s) for the particular client(s),
which in turn can be used, for example, to send data to — and identify messages
from — the client(s). User connected packet contains also the Bluetooth address of
the connected device.

Packets for sending data to clients and receiving data from them form the sec-
ond category. This category contains Send to and Received from packets. Both packets
contain the identification number(s) of the client(s) and the actual data received or
sent in form of an IMP packet. Send to packet may contain more than one identifica-
tion number, which can be useful when sending same packet to multiple Bluetooth
clients.

The third category contains packets for administering the router and consists of
Router settings, Disconnect, and Keep alive packets. Router settings is sent by the router
immediately after a connection is made to it. The packet contains information of
the capabilities of the router. Disconnect packet is sent by the server, and it indicates
that all connections must be closed and the server itself should go idle and wait for
a new connection from the server. Keep alive is sent periodically by the server to
ensure that the connection to the router has not been lost.

Full IRP specification is included in Appendix B.

4.4.2 IMPv2

InSitu Mobile Protocol (IMP) is used for communication between the server and the
clients. IMP was used in first prototype16, and current system utilizes the second
version, IMPv2, which includes, for example, more details about questions, enabling
more comprehensive usage. The router processes the IRP packets and forwards the
contained IMPv2 packets to mobile devices using L2CAP/RFCOMM. IRP is not
dependent of IMPv2, but the router has to be able to parse IMPv2.

The full protocol stack for communication between the clients and the router
after the connection is established is shown in Table 4.2 [6, 181]. Lower parts of

35

the stack are Radio, Link Controller, and Link Manager Protocol and these three
are sometimes grouped into a subsystem known as the Bluetooth controller [4, 21].
Logical Link and Control Adaptation Protocol (L2CAP) interfaces higher level pro-
tocols such as Radio Frequency Communication (RFCOMM) and Service Discovery
Protocol (SDP).

IMPv2
RFCOMM

L2CAP
LMP
LC

Radio

Table 4.2: Full protocol stack for router-client communication.

It is also possible for a client to connect directly to the server. IMPv2 has to be
transported via TCP/IP, since the server has no means to accept Bluetooth connec-
tions. All client devices regardless of the platform or network type use IMPv2 for
communication.

The full protocol stack for server-client communication is presented in Table 4.3.
There is no need to use other protocols like SDP, and connection establishment and
communication is straightforward.

IMPv2
TCP
IP

Ethernet
100BASE-T17

Table 4.3: Full protocol stack for direct server-client communication.

Like IRP, IMPv2 is a text-based protocol whose packets are divided to header
section and data section. The header consists of packet length and a packet-specific
command. The packets specified can be divided into five categories:

• session handling,

• messaging,

36

• querying,

• responding, and

• administering client.

Session handling contains Login request, Login response, Login reject, and Login
success packets. These packets are sent after connection has been established. The
packets contain information related to the authentication process such as allowance
of anonymous login in Login request and reason for rejection in Login reject. Login
response is sent by the client; the others, by the server. The authentication process
itself starts with login request. Login response contains, apart from the user identifi-
cation and password, information about the client software, its connection type, and
version.

Messaging contains Message packet, which can either be sent by the client or the
server. This packet contains essentially a textual message of arbitrary length (see
Section 4.4.3 for implementing an informal subprotocol with this packet).

Querying consists of different question related packets that are sent by the server.
These include Question select, Question order, Question input, and End question. The
packets ask a multiple choice question, ask an ordering question, ask an arbitrary
input, and end a specified question, respectively. The packets contain a session-
specific number identifying the question the packet is referring to.

Multiple choice questions require user to select one or more18 options from given
list. Ordering questions require user to put given elements, or a subset of them, to
proper order, and arbitrary input can contain any textual answer. Questions can
either be instant or continuous1.

Responding contains Answer packet, which is sent by the client as a response to
a question. It contains the answer and the session-specific number identifying the
question in question.

Administering client consists of Disconnect and Keep alive packets. The former
is used to notify the client that it should disconnect from the server for whatever
reason, and the latter to ensure that the connection to client has not been lost. Both
packets are sent by the server.

Full IMPv2 specification is included in Appendix C.

4.4.3 Others

Other protocols include the forthcoming InSitu Projector Protocol (IPP) and possi-
ble protocols, for example, for InSitu Remote (see Section 4.3.5). Full protocol stack

37

for server-projector communication is presented in Table 4.4. IPP will most likely
include packets, for example, for displaying questions and graphs of answers, in
addition to necessary administrative packets.

IPP
TCP
IP

Ethernet
100BASE-T

Table 4.4: Full protocol stack for server-projector communication.

The Message packet mentioned in Section 4.4.2 has been used to implement an
informal subprotocol for debugging purposes. This protocol violates the indepen-
dence of IRP and IMPv2, but is not planned to be formally supported at least in
its current form; hence the term informal. The router interprets the IMPv2 Message
packets, checks whether header of debugging protocol is in place, and sends its
client-specific debugging data to the server by masking it as a traffic from the client
itself.

This debugging protocol is a subprotocol, since it is sent as a message of IMPv2
and interpreted only if debugging has been turned on in both the server and the
client. The packets in the debugging protocol are, for example, used to commu-
nicate clock differences between systems19 and query recorded timestamps of pre-
defined events during connection establishment. This method is used during the
measurement of performance examined in Section 5.4.

Notes

1Instant question refers to questions that can be answered only once, whereas con-
tinuous questions can be answered multiple times, to the point where lecturer chooses
to end the question.

2The system may want to notify user of disconnect or attempt to reconnect silently.
315 minutes for connection establishment may appear to be rather long, but as

will be seen in Section 5.4, a performance requirement this broad may be required.
15 minutes is generally speaking acceptable if we take into account the fact that
lectures of 200 students are in this context very large and quite infrequent.

4USB hubs are most likely required due to large number of Bluetooth modules.

38

5The system does not necessarily require three different PCs, see Figure 4.3 for
more details.

6WLAN is not necessary for the operation, but it does enable usage of, for exam-
ple, laptop clients without Bluetooth capabilities.

7The terms Bluetooth antenna, Bluetooth module and Bluetooth dongle are used
interchangeably in this study.

8Hence the name router; other appropriate ones might have been Bluetooth server
or Bluetooth connection manager.

9Multiple monitors and multiple (different) views can be used, for example, in
Mac OS X, but this is not necessarily the case with other operating systems.

10Joda Time is preferred over Java Calendar due to better usability (during devel-
opment) and more predictable performance.

11Term hello point is also used.
12Older versions may also work, but have not been tested. Especially 2.4 series

may have problems with newer (2.0) Bluetooth modules.
13Names in the figure may not reflect the exact names in the actual up-to-date

source code. Some elements are under heavy (re)development and subject to change.
14As of August 2007 no formal specification of IPP exists.
15IRP packet does not necessarily contain an IMPv2 packet. This is the case when

the server talks directly to the router or vice-versa.
16First Bluetooth prototype dates back to 2004.
17The two bottom layers vary depending on the communication medium. WLAN,

for example, may be used in some parts of the communication channel.
18The number of choices user can or must select can be specified for each question.
19Not to be confused with Bluetooth clock, which is used within the lower levels

of Bluetooth radio communication.

39

5 Bluetooth Connection Establishment

It is common sense to take a method and try it. If it fails, admit in frankly and
try another. But above all, try something.

— Franklin D. Roosevelt [37]

In this chapter, different Bluetooth connection establishment schemes are stud-
ied. In Section 5.1, a number of connection establishment schemes are introduced,
formalized and analyzed. Some notes on the implementation and usability aspects
are given in Sections 5.2 and 5.3, respectively. Some of the schemes were measured
using methods presented in Section 5.4; results and conclusions are expressed in
Section 5.5. Finally, further development guidelines are rendered in Section 5.6.

5.1 Connection Alternatives

Several different connection establishment schemes can be defined. These include

• Inquiry Based Connection (IBC),

• Predefined Address Connection (PAC),

• Notify Module Connection (NMC), and

• Module Discovery Connection (MDC).

Each of these alternatives utilizes Bluetooth connection establishment procedures
presented in Section 3.1.4. The approaches vary mainly in usage and in the initiator
of different phases. This section discusses the parts of the connection establishment
prior to service discovery, which is performed identically in each alternative.

The alternatives are not mutually exclusive; they can be used interchangeably or
simultaneously depending on the situation. Different aspects of defined connection
establishment schemes are summarized in Table 5.1.

Number of devices affects the overall connection delay and dictates the number
of Bluetooth modules required to build the network. Let dpico be the maximum num-
ber of devices in single piconet and Ndev the overall number of client devices in the
system, the number of Bluetooth modules Nm required is defined as

Nm = dNdev/(dpico − 1)e. (5.1)

40

Aspect IBC PAC NMC MDC
Delay Largest Smallest Acceptable Possibly

large
Scalability For small

networks
Can be used
in large net-
works

Can be used
in large net-
works

Possibly for
medium-
sized

Flexibility Flexible im-
plementation
laborious

Flexible
enough

Flexible
enough

Flexible
enough

Traffic Additional
traffic

No addi-
tional traffic

Some ad-
ditional
traffic

Additional
traffic

Usability Simplest Requires
address
database

Rather sim-
ple to use

Simple to
use

Table 5.1: Summary of connection establishment schemes.

5.1.1 Inquiry Based Connection

In Inquiry Based Connection the server first performs an inquiry. Client devices
within range of the module are then found and can be connected to. This requires
that the client devices are discoverable and run client software as connectable Blue-
tooth service. According to Siegemund et al. [39] inquiry is, however, a slow pro-
cess: although, in theory [5, 400], it is possible to perform inquiry up to 255 found
devices, one inquiry cannot find all of these. They measured that in 10.24 seconds
that specification [5, 165] recommends, only about 20 of 50 available devices were
found.

If already found devices are not set to non-discoverable mode during inquiry,
for example, by establishing a connection to them, discovering the same devices
repeatedly will be a problem. Paging and service discovery, presented in Section
3.1.4, between inquiries cause additional delay and requires additional actions on
software level. Furthermore, if minimizing network traffic should be taken into
account, then inquiry should be used dynamically on demand rather than continu-
ously. This requires ability to control the inquiry programmatically by server-side
users, and results in increased delay in connection establishment.

IBC approach requires both inquiry and paging. Paging is required for each
device in the system, but should, in theory, be performed simultaneously by each

41

Bluetooth module. Assuming that number of devices found with a single inquiry
from devices available Ndev is Nf , the average overall time Tibc for connecting all
devices is

Tibc = Iavg
Ndev

Nf

+ Pavg
Ndev

Nm

(5.2)

, where Iavg and Pavg are the average times of inquiry and paging, respectively. Tibc

can further be reduced by performing paging to found devices while still inquiring
devices that have yet not been found.

Therefore, in theory, as can be seen from equation 5.2, IBC can perform linearly in
proportion to number of devices in the network. In practice, however, no assump-
tion about Nf can be made due to finding of same devices. It is defined, for example,
in JSR-82 [30] that device’s discoverability can be programmatically altered, but the
Bluetooth Control Center of the device prevents changing this property in some im-
plementations. This prevents effective implementation of IBC for large networks.

5.1.2 Predefined Address Connection

Predefined Address Connection is based on a database of device addresses. As
stated in Section 3.1.4, paging requires knowledge only of the address of the paged
device. It is, therefore, quite straightforward to iterate a list of addresses and form
a connection to them. Paging takes usually only about one second [44], and as such
is notably faster than Inquiry Based Connection. This applies only if device in ques-
tion is within range of the Bluetooth module, and the software is running and ready
to accept connections. If the device is not available, the connection attempt fails
by default after 5.12 seconds [5, 385], but timeouts as high as 20.48 seconds were
measured by default on BlueZ [9], a Linux Bluetooth implementation.

The Predefined Address Connection scheme consists of multiple consecutive
paging procedures. Each module in the network can perform paging procedure
simultaneously, and thus when all the devices are present, the time Tpac required for
connecting Ndev devices is

Tpac = Pavg
Ndev

Nm

, (5.3)

which is, given by equation 5.1, equivalent to

Tpac = Pavg(dpico − 1). (5.4)

PAC, therefore, requires essentially a constant time under the assumption that each
device (present or not) needs to be connected once, i.e., no disconnects occur during
the connection establishment. Formally, PAC can be expressed as in Figure 5.1. The

42

Figure 5.1: Formalization of PAC scheme.

formalization is done using Petri nets [16]. The tokens in the net represent the mobile
Bluetooth devices, and there are initially Ndev tokens in place Disconnected.

Firing rates of Connect and Disconnect transitions in the formalization are the
rates in which the devices are connected to router, and disconnects occur during the
connection establishment, respectively. The exact values are context dependent and
some results are presented in Section 5.5.

PAC is executed by the server by sending router a request to connect to given
Bluetooth addresses. The router initiates connection establishment procedures indi-
vidually (using distinct threads) for each device as presented in Sections E.1.1 and
E.1.2 in the appendix.

5.1.3 Notify Module Connection

Unlike in pure ad-hoc networks, the connection establishment can also be based on
a known static component of the network. Difference to the preceding schemes is
that in this alternative the initiator is the client device. Client users must, therefore,
have an address of one or more notification modules.

The client device establishes a connection to this notification module as the server
does in the Predefined Address Connection scheme. When connection has been es-
tablished, the server has knowledge of the device, its address and Bluetooth clock.
The connection is then immediately disconnected and re-established by the server
via some other module. This approach is slower than PAC but requires no knowl-
edge of client devices in advance. First part of the connection establishment takes
approximately as long as in PAC, but in addition another is required; though, it may
utilize knowledge of the device clock. This scheme is, in theory, both flexible and
scalable.

Notify Module Connection requires one paging procedure from the client-side

43

Figure 5.2: Formalization of NMC scheme.

and another from the server-side. This scheme requires at least one notification
module and with larger networks possibly multiple modules. The first paging is
performed by client devices and as such can be done almost simultaneously. The
connections are, however, accepted at a rate based on the number of notification
modules Nhp and their ability to handle incoming connections. Typically, each Blue-
tooth module can accept one connection at a time. Similarly, each normal module
can execute a single connection establishment procedure to a single remote device
at a time, thus the system can perform Nm simultaneous outgoing connection estab-
lishment procedures, where Nm is the number of normal modules. Therefore, we
state that

Tnmc =

Ndev∑
i=1

Tini

Nhp

+

Ndev∑
i=1

Touti

Nm

, (5.5)

where Tini
and Touti are times required for accepting the connection from and connecting

back to device i, respectively.
From the formalization presented in Figure 5.2 we see that the firing rate of Con-

nect is limited by the firing rate of Accept, and the throughput of the whole net is
limited by the firing rate of Connect. There are initially Ndev tokens in place Discon-
nected. If we assume approximately constant rate of firing, which is reasonable, we
can state that

Tini
= Tini+1

, Touti = Touti+1
∀i, 0 < i < Ndev. (5.6)

44

Since both Accept and Connect are performed simultaneously, whichever of the addends
in equation 5.5 is larger, dictates the overall throughput, and we may determine the
optimal number of modules as follows: assume optimal situation by stating that

Ndev∑
i=1

Tini

Nhp

=

Ndev∑
i=1

Touti

Nm

, (5.7)

which under the assumption 5.6 yields

Ndev
Tin

Nhp

= Ndev
Tout

Nm

, (5.8)

and, therefore,
Tout

Tin

=
Nhp

Nm

, (5.9)

under the assumption that the devices are equally distributed to different HPs.
NMC scheme performs linearly in proportion to the number of devices if we

assume, again, that each device needs to be connected only once, in other words, no
disconnections occur.

The router listens each hello point, as presented in Section E.2.1 in the appendix,
and initiates connection establishment immediately for each device accepted. As
mentioned, each module can perform a single connection establishment at a time,
thus even though there is a separate thread for each active connection procedure,
they can be executed at the rate dictated by the number of Bluetooth modules. This
scheduling is, in practice, done with mutual exclusion. The exact mechanics are
presented in Section E.2.2 in the appendix.

5.1.4 Module Discovery Connection

The fourth scheme is a more user friendly version of Notify Module Connection.
Module Discovery Connection is mainly analogous to NMC, but the user does not
have to know the address of the notification module; the client device uses inquiry
to locate it.

The inquiry phase in this scheme should be less difficult than in Inquiry Based
Connection because there is a notably smaller amount of devices to discover. The
problem found by Siegemund et al. [39] was that all inquiry responses were not re-
ceived by the inquiring device due to large amount of responses. This is especially
true with devices with different transmission power, such as mobile devices of dif-
ferent generations: transmission from newer devices tends to dampen signal from
older ones.

45

Figure 5.3: Formalization of MDC scheme.

46

As seen from formalization in Figure 5.3, the Module Discovery Connection
scheme is similar to the Notify Module Connection approach but adds an additional
inquiry to the process. Therefore,

Tmdc = Iavg + Tnmc, (5.10)

but since throughput is limited again by the acceptance and connect rates in NMC,
the impact of Iavg is in practice insignificant. In this scheme there are initially Ndev

tokens in place Not aware.
From the implementation point of view, router operates like in Notify Module

Connection, but the notification modules must have a special Inquiry Access Code
(IAC) set, to limit the inquiry, and they must be visible to other devices. After the
notification module has been found, the process continues as in NMC even if Dis-
connects occur. There is no need to perform another inquiry since client’s Bluetooth
device cache store the address of the hello point for further use.

5.2 Implementation Considerations

Bluetooth modules typically belong to class 1 of Bluetooth transmission power level
(see Table 3.2). Although mobile phones usually belong to class 2, this should still
be enough for an open auditorium environment. According to a proof of concept
test, two Nokia 6630 mobile phones were able to communicate via Bluetooth from
one end to another in a mid-sized auditorium. Radio coverage can further be re-
inforced with appropriate placement of Bluetooth antennas. This requires different
adjustments to different schemes in order to be used efficiently, and therefore, to
fully implement scalable network, it is not enough to have static components; the
topology of the known components must also be available. Figure 5.4 presents one
possible antenna arrangement.

It should be possible to link regular modules to notification modules, in order
that system can determine which regular module should be used to connect to found
device. In Figure 5.4 notification module N1 is linked to regular modules R1 and
R2, forming cluster 1, and notification module N2, to modules R3 and R4, forming
cluster 2. This adds some burden to client device users in both Notify Module Con-
nection and Module Discovery Connection, which is analyzed in Section 5.3.

In both Predefined Address Connection and Inquiry Based Connection, coverage
by clustering is harder to arrange. One solution could be that modules are laid out
correspondingly, and a connection attempt from both (all) clusters is done if device
could not be found in previous the attempts. This naturally increases the overall

47

Figure 5.4: An example of a module layout ensuring coverage of the network.

time required.
Notify Module Connection and Module Discovery Connection can also be com-

bined to form a single connection procedure. A large number of devices inquiring
in MDC can cause too much radio traffic preventing effective communication. This
can be resolved by saving addresses of notification modules to the devices. Those
users who have address saved, can perform NMC only1, while those not having
the address can use MDC. As mentioned, it is also possible to ensure radio cover-
age during connection establishment and radio communication with both of these
approaches using clusterization.

It is also possible to adjust visibility of notification modules during the MDC pro-
cedure, which may prevent piling up the connections to single cluster, or to single
notification module. There is, however, no empirical data at the moment regarding
the effects of the usage of this option.

While implementing the connection schemes, it was occasionally noted that spec-
ifications available are quite limited: not all mobile phones work within InSitu sys-
tem, even if the phone’s public specification is identical to another that does work.
For example, Nokia 6600 phone has problems with authentication2 and some others
cannot simply run the client application. In addition, mobile device emulators do

48

not work quite like their actual counterparts, and especially debugging is tedious
using real devices. Implementations also restrict their usage; Java implementation
in mobile devices prevents devices from using other access codes than the General
Inquiry Access Code (GIAC) and the Limited Inquiry Access Code (LIAC), even
though there exists several other access codes. In InSitu system this has lead to
”abuse” of LIAC, which should, according to specification, only be used for a lim-
ited time.

The connection establishment in each scheme ends when a connection has been
made to the service in client device. Bluetooth services are identified during service
discovery using Universally Unique Identifiers (UUID). UUIDs used within the sys-
tem are listed in Table 5.2.

Router 38BE1FB8-9980-11D9-8BDE-F66BAD1E3F3A

Leaf 17F68C6C-FA09-11DA-93F6-0050DA44E4F7

Table 5.2: Universally Unique Identifiers for Bluetooth services in the system.

The Two-way paging used in both NMC and MDC may seem a bit complex,
especially since there is a master-slave switching specified in Bluetooth specifica-
tion. Not all implementations, however, support master-slave switching, and it
would also be tedious to distribute devices to piconets without coordination from
the server (router) side; but, see Section 5.6 for details regarding this option.

5.3 User Interaction and Usability

Due to wide range of users, the user interaction should remain relatively simple, es-
pecially during connection establishment, to ensure fluent forming of the network,
for example, in the beginning of a lecture. The procedures presented in Section 5.1
can be divided in two categories: inquiry-based and address-based; Inquiry Based
Connection and Module Discovery Connection belonging to the former, and Prede-
fined Address Connection and Notify Module Connection to the latter.

Inquiry-based approaches are the easiest for the client device users; starting the
client software is enough to start the connection establishment.

In the address-based procedures, user has to input a raw 48-bit hexadecimal ad-
dress, that is, 12 hex numbers (see Section 3.1.3 for an example), at least when con-
necting for the first time. In Predefined Address Connection, on the other hand, this
is required only on the server-side, but have to be done to every device wishing to
join the network. A database can be formed to assist this approach.

49

Typing a single address in Notify Module Connection may not be the trickiest
task, but larger networks may require multiple notification modules, which means
multiple addresses in address-based procedures. This depends on the actual num-
ber of antennas and layout of the notification modules. The users must also know
which module is located where, in order to fully take advantage of module layout,
i.e., the clusterization. In addition, this depends on the position of the client device
in proportion to module clusters, which may vary between different sessions even
if clusters’ locations do not change.

Norman [35] argues that user’s actions in a given situation should be obvious. If
the user is required to input one of the several 48-bit addresses given, depending on
the positioning in proportion to cluster positions, the actions are far from obvious.

As stated in Section 5.1, Notify Module Connection and Module Discovery Con-
nection can be combined. This eases user interaction; the user can input address of
a notification module in simple cases like in networks with one or two notification
modules, or use an inquiry to find a module whenever there are multiple ones. The
user can then select the appropriate module among the notification modules found
and save the address in a user friendly form (see Section 3.1.3) for future use. The
saved address can then be used with simple NMC.

5.4 Performance measurement

Every approach presented in Sections 5.1.1–5.1.4 can be evaluated using the proto-
type system introduced in Chapter 4. The procedure is simple and follows a real
situation. The results are obtained in two forms: as performance data recorded by
the system and as system logs. This section presents the measurement procedure,
protocol for communicating performance data, and the measurements performed
for this thesis.

5.4.1 Procedure

Measurement of performance in nominal case consists of five phases:

1. Connect to server

2. Synchronize system clocks

3. Perform the connection establishment being measured

4. Collect the performance data

50

5. Start again from phase 3

To synchronize the system clocks for comparing data from different devices, the
router must have knowledge of the devices. This is achieved by first connecting,
using any of the schemes, to the server and storing devices’ addresses and system
clocks. Synchronization of system clocks is done using debugging subprotocol (see
Section 5.4.2) which consists of Time request, Time response, Timestamp request, Times-
tamp response, and Module response packets.

Time request is sent by the server to all clients and indicates that the system clock
should be sent immediately to server. The system time is communicated using Time
response. The difference between system clocks is determined by calculating time
difference between request and response, dividing it with two and comparing it to
received timestamp. Maximum error caused by this operation is in the worst case
the round-trip time, which is typically 0.1–0.3 seconds. In practice, the actual error
is considerably smaller since it takes approximately equal time to send the request
to client as send the response back to server.

Connection establishment is performed as presented in Section 5.1. The Inquiry
Based Connection has not been measured using this procedure — but would be
done similarly — whereas, Predefined Address Connection uses a slightly more
straightforward method. PAC is initiated by the server and requires, therefore, no
knowledge of the timestamps from clients. The server simply measures the time
difference between connection request and actual connection.

Apart from Time request and Time response used in system clock synchronization,
other packets of the debugging subprotocol are used to gather data recorded dur-
ing connection establishment. The timestamps are written instantly and collected
centralized after the procedure to ensure that the measurement itself has a minimal
impact on the results. Timestamp request is sent by the server to request timestamp
data from router and clients. The clients respond normally with Timestamp response
using IMPv2 packets. The router sends timestamp data to server, also using IMPv2,
by masking them to appear to be coming from clients, as seen in Section E.1.5 in
the appendix. The device associated with data is concluded from the data of the
enclosing IRP Received from packet.

In addition to Timestamp response, the router sends the module data using Module
response, which contains knowledge of the hello point and module used during the
connection. The router selects the module m from the set of modules M for the new
device on the fly using a module selection algorithm, which is in essence as follows:
the router keeps track of the number of currently running connection establishment
procedures Em and the number of active connections Cm for each module m ∈ M ,

51

and selects the module m where Em ≤ Ei∀i ∈ M ∧ Cm < dpico − 1. The algorithm is
portrayed in detail in Section E.2.2 in the appendix.

5.4.2 Protocol

The protocol used to communicate timestamp data is specified using augmented
Backus-Naur Form (see, for example, Appendix B for detailed definition) as follows:

time-request = ”TIME”
time-response = ”TIME” time
timestamp-request = ”TIMES”
timestamp-response = ”TIMESTAMP” time timestamp-name
module-response = ”MODULES” hp-number module-number
time = hour ”:” minutes ”:” seconds ”.” milliseconds
hour = 2DIGIT
minutes = 2DIGIT
seconds = 2DIGIT
milliseconds = 3DIGIT
timestamp-name = 3DIGIT
hp-number = 3DIGIT
module-number = 3DIGIT

It must be noted that it was surprisingly straightforward to implement the de-
bug functionality to Teacher’s App due to the centralized message passing system,
which allowed effective hooking to events invoked by the core module presented in
Section 4.3.2.

Each timestamp response contains an identifier for the timestamp. The identifier
specifies the event that has been logged. List of timestamps is presented in Table 5.3.
Identifiers of the form Cxx are recorded by the client, identifiers of the form Rxx by
the router, and identifiers PA0 and PA1 are used within the server while measuring
the PAC scheme.

The results obtained by analyzing the timestamp data for NMC and PAC are
examined in Section 5.5.

5.4.3 Measurements

Measurements for this thesis were carried out for different connection schemes, for
different number of devices, and for different number of modules. Predefined Ad-
dress Connection, Notify Module Connection, and Module Discovery Connection

52

C00 User initiated the connection from client.
C10 Client beginning to connect to Hello Point.
C15 Client started to connect to Hello Point.
C20 Client connected to hello point.
C30 Client accepted connection from router.
R00 Router accepted connection from remote device.
R10 Router beginning to create SDP connection.
R15 Router listing services from remote device.
R20 Router connected to remote device.
PA0 Connection request sent by server.
PA1 Device connected to server.

Table 5.3: Timestamp identifiers.

were measured with 6, 12, and 18 devices and with 2 or 4 notification (or regular, as
in PAC) modules.

The measurements were made in two different locations. Connection establish-
ment with 18 devices in different schemes was measured in an mid-sized audito-
rium, with distance between modules and devices ranging from 1 to 10 meters in
most cases. Measures performed with 6 and 12 devices were done in ”laboratory
conditions”, i.e., in an open room with range of approximately 2 meters. That said,
it is not exactly clear how much the environment affects the results, but the general
trend can nevertheless be seen.

When measured with 6 devices, the following phone models were used:

• 4 × Nokia 6630, and

• 2 × Nokia 6680.

When measured using 12 devices, the following phones were used:

• 4 × Nokia 6630,

• 3 × Nokia 6680,

• 2 × Nokia 9500,

• 2 × Nokia 6620, and

• 1 × Nokia 7610.

During the larger test with 18 phones, the following phones were present:

53

• 4 × Nokia 6630,

• 3 × Nokia 6680,

• 2 × Nokia 9500,

• 2 × Nokia 6620,

• 1 × Nokia 7610,

• 1 × Nokia N80,

• 1 × Nokia N76,

• 1 × Nokia E60,

• 1 × Nokia E70,

• 1 × Nokia 9300, and

• 1 × Sony-Ericsson 990.

The measurement was automated as far as possible. Clients were run in auto-
mated mode, in which they, for example, react to Disconnect packet with reconnect
after few seconds. If no abnormal disconnects were detected, no human interac-
tion was necessary within nor between connection establishment cycles. A cycle is
essentially a sequence of connection establishment procedures that end in a success-
ful simultaneous connection of all devices; i.e., is formed by the phases 3–4 of the
procedure presented in Section 5.4.1.

5.5 Results

In this section, the results from the measurements introduced in Section 5.4.3 are
presented with conclusions. Summary of data is given in Appendix A.

Generally speaking, the results are related to two main topics: the time required
in each connection scheme and configuration3, and number of disconnects in differ-
ent phases of the connection establishment.

54

5.5.1 General

When formulating the connection schemes and analyzing their performance in Sec-
tion 5.1, this was generally done under the assumption that each device must be
connected exactly once. The measurements proved that this is not the case: mea-
sures with different device amounts resulted in different amounts of disconnects
during the connection establishment.

There were three kinds of communication errors: connection establishment at-
tempts that failed for some reason, devices which lost already acquired connection
during the connection establishment, and devices that lost connection while send-
ing the performance timestamps. Of these three, the latest reflects the fragility of the
Bluetooth network in general, not only during the connection establishment. When
analyzing the numbers, it must be noted that automatic connection retries were al-
lowed from the client side in PAC and NMC schemes, and were not counted as a
failed connection establishment, as long as one of the attempts succeeded.

The impact of reconnects on time per device Tavg value has been eliminated from
the results by defining Tavg as presented in equation A.2, that is, calculating the time
to first attempt to request the timestamps and dividing it with the number of devices
plus reconnects. This is not perfectly accurate measure, but as seen from relatively
small deviations, accurate enough for general analysis. Although disconnects have
been taken into account, we do not know how much of the additional delay seen in
results is from larger interference from larger amount of devices4, and how much
from the disconnects themselves.

The data presented in Appendix A contains numbers for disconnects, but some
of the disconnects included were client crashes5; their exact number is uncertain,
but presumably around 1% of total number of connection establishment procedures.
These disconnects are not result from the Bluetooth radio technology and should not
be counted towards failed connection attempt.

In order to simulate the network using formalizations presented in Section 5.1,
we need to determine the rates, at which the transitions are fired, i.e., the models
must be configured. We may attempt to determine the variation of, for example, Pavg

in different schemes and situations using the results from subsequent sections. If we
can achieve that, we may be able to simulate the actual throughput of the connection
establishment with larger amounts of devices. The challenge is, as said, that the rates
vary considerably from situation to situation. One solution might be to model the
network mathematically, simulate it, and determine from probabilities of collisions
and disconnects the firing rates, which could then be used to configure the formal

55

model. In this thesis, however, no further calculations using the formalizations are
performed.

5.5.2 Predefined Address Connection

Both PAC 4, which is Predefined Address Connection using four modules, and PAC
2, with two modules, were measured using 6 and 12 devices. PAC 4 was also mea-
sured using 18 devices. The results indicate that even with PAC 2 with 12 devices,
which is the second challenging of the cases, no disconnects were detected. How-
ever, while measuring with 18 devices, PAC 4 suffered from disconnects in about
3% of the cases.

Performance measures of PAC 2 indicate that with 6 devices, each device takes
on average approximately 2.0 seconds and with 12 devices approximately 1.6. The
reason may be the smaller overhead per device present with 12 devices. On the other
hand, there was relatively high deviation (σ = 0.23) in this case for some reason.

A sample device by device analysis of PAC 2 with 12 devices, seen in Figure
5.5, offers a partial explanation. The first devices are quickly connected by the two
available modules, but the later ones seem to suffer from piling to queue.

Time

Devices

Connected

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.5: Performance of PAC 2 with 12 devices.

Performance measures of PAC 4 indicate that PAC 4 is approximately 2.7 times
and 1.6 times faster than PAC 2 with 6 and 12 devices, respectively. This is due to the

56

two additional modules, which should, in theory, double the throughput. As seen
from Figure 5.6, this sample of PAC performs in a more linear fashion. Interesting
is that the first 6 devices are connected in 5 seconds in both PAC 2 and PAC 4. The
sudden increment of PAC 2 may be result of some retries6 needed in this particular
case.

Time

Devices

Connected

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.6: Performance of PAC 2 with 12 devices.

PAC 4 with 18 devices has considerable higher deviation (σ = 1.13), which is
true to all measures performed with 18 devices regardless of the scheme. There are
several factors in play: disconnects, of which impact cannot be fully nullified, larger
interference due to larger amount of devices, and longer distance due to different
measurement location. PAC 4 with 18 is also over two times slower than PAC 4
with 12 for these reasons.

5.5.3 Notify Module Connection

Whereas in PAC the time per device was the most relevant factor, for NMC it is the
number of disconnects. NMC 1 to 4 (that is, one notification module and four others)
was not able to handle 6 devices without disconnects. The number of disconnects
while sending timestamps, varied from 5.5% to 7.5% in all cases of NMC 1 to 4.
The more interesting result is the rate of Disconnects while connected, which increases
as the number of devices increase. There were 1.7%, 5.8%, and 18.5% disconnect

57

rates while connected in cases of 6, 12, and 18 devices, respectively. While using 18
devices, disconnects during connection also began to appear at the rate of 1.9%.

NMC 2 to 4 (i.e., two notification modules) yields similar but arguably better
results. The number of disconnects while sending timestamps, varied between 1.5%,
and 2.5% in all cases. The rates of disconnects while connected, were 0.0%, 0.0%, and
10.0%, with 6, 12, and 18 devices, respectively, i.e., NMC 2 to 4 was able to handle
12 devices. Disconnects during connection appeared at rate of 2.2% with 18 devices.

These numbers reveal clearly that NMC cannot, in this form, cope with required
device amounts; especially cases of 18 devices yield extremely high disconnect rates,
and the trend seems to be overlinear. What is peculiar is the fact that number of
disconnects while sending the timestamps — that is, while all devices were already
connected — was notably higher with 1 to 4 configuration.

Results with 6 and 12 devices indicate connection establishment performance of
2.0–3.0 and 4.0–5.0 seconds per device for NMC 2 to 4 and 1 to 4, respectively. Prob-
ably for same reasons as in PAC, as mentioned in Section 5.5.2, the corresponding
results from 18 devices are almost twice as high as those from 6 and 12 devices.

When analysed separately, the results indicate acceptable connection time per
device. But when the number of disconnects (and reconnects needed) is taken into
account, the theoretically linear performance slips to polynomial form due to the
ascending rate of disconnects in proportion to the number of devices.

Regardless of the unsatisfactory results, it is possible, for the sake of it, using the
timestamp data gathered, to analyse NMC in more detail by dividing the connection
establishment to several phases.

As seen7 from Figure 5.7, NMC is divided to five phases in this case. First phase
(Starting) consists of starting the connection establishment, and its end is indicated
by the timestamp C10 presented in Table 5.3. Then either follows the phase Waiting
server or phase Paging server, their ending marked by C15 and R00, respectively. The
phase depends on whether the device in question was able to connect to a notifica-
tion module or was timed out. As can be seen from the figure, this delay is the most
significant when determining the overall connection establishment time. Time taken
by Paging server, Paging client, or Connecting to device bears no visible dependency to
the order in which the devices are connected.

Figure 5.8 presents a quite similar procedure of 2 to 4, but with less long Waiting
server phases. In fact, this seems to be the only significant difference to NMC 1 to 4.

The number of modules and hello points is, indeed, a significant factor: from
the performance point of view, there is no use for eight hello points if there are,
say, only four other modules. The number of normal modules is dictated by the

58

Time

Devices

Starting
Paging server
Connecting to service

Waiting server
Paging client

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.7: Performance of NMC 1 to 4 with 12 devices.

number of devices in the network, which can then be used to determine the suitable
number of notification modules. It seems that larger module count produces better
performance.

It can be seen from figures 5.7 and 5.8 that the bottleneck is Accept rate in both
situations (the Waiting server indicates time taken by failed attempts to page the
server). If there was, for instance, a 2 to 2 configuration, the bottleneck would most
likely be the Connect (see Figure 5.2), whereat there would be another phase8 be-
tween the Paging server and Paging client phases.

It might be interesting to note that if paging time is affected by, e.g., interference
or larger distance, this affects the optimal number of modules in NMC (see equation
5.9), since, as paging the server is performed simultaneously and paging of clients
is not, these factors affect differently the paging times Tin and Tout. This relationship
is, however, subtle and has unlikely a practical significance.

5.5.4 Module Discovery Connection

MDC was not measured as extensively as Predefined Address Connection and No-
tify Module Connection. The Bluetooth device cache of the devices stores the re-
cently inquired devices, and thus only first cycle of MDC measurements yields rea-
sonable results. In MDC, the number of disconnects at connection is the number

59

Time

Devices

Starting
Paging server
Connecting to service

Waiting server
Paging client

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.8: Performance of NMC 2 to 4 with 12 devices.

of devices that did not find hello point during first inquiry attempt. MDC scheme
is not completely implemented: it could use multiple sequential inquiries to ensure
better coverage, but in essence MDC after inquiry is identical — or at least not better
due to traffic generated by inquiry — in performance to corresponding NMC. Since
NMC was not a viable solution in its current state, MDC will not be either. The
results from the quick tests indicate that even with as small amounts as 6 devices,
there were some which could not find the hello point with single inquiry for single
notification module. The number of failures increases as the number of devices in-
creases. This is understandable due to the fact that each device performs inquiry
only once.

It is notable that with two visible modules the failure rate is considerable smaller.
This may suggest that using enough modules and multiple sequential inquiries
MDC may cover all the devices. This could be used as base for further improve-
ments presented in Section 5.6.

5.5.5 Others

Inquiry Based Connection was not measured in detail, but couple of proof of concept
tests were performed. The problem with measuring inquiry based schemes is the
Bluetooth device cache which prevents practical performing of iterative tests. As

60

pointed out earlier, IBC cannot guarantee the finding of all the Bluetooth devices
present. However, during the laboratory tests with 12 devices within 2 meters, all
the devices were found with single inquiry performed by USB module attached to
Linux PC9. That said, development and measurement of IBC has not been a major
concern, but the scheme might provide some additional support if used jointly with
other approaches.

5.6 Improving performance and robustness

There are at least two other approaches that have not yet been implemented, which
might provide better performance and more robust network. There are also some
possible improvements to existing schemes.

Due to relatively good performance and high robustness of Predefined Address
Connection approach, a hybrid of NMC and PAC might provide a solution. It may
be that performing connections causes the heaviest interference to other piconets,
which in turn causes disconnects among the already connected devices. This hy-
brid, Buffered Notify Module Connection (BNMC), is in essence a Notify Module
Connection where after the initial paging to notification modules, the server waits
for the flow of new incoming connections to stop and performs then the connection
establishment to all present devices at once, much like in PAC. This approach is even
slower than NMC but might work fast enough if the number of disconnects can be
kept low.

Second option is to list all piconets (i.e., normal modules), and distribute their
addresses to mobile device users in a way that each piconet receives no more than
seven clients. This approach, All to Predefined Module Connection (APMC), then
requires only one paging from the client side, which should be fast. The process of
distributing the addresses manually should be arranged somehow.

A general improvement to all approaches is either to introduce ping function-
ality also to client side or timeout to ping to either side. In addition, there should
be functionality which enables reconnects after connection has been lost, without
bothering the user and without losing any data. In practise this requires monitoring
from both the client and the server side, for example, in cases where a question was
sent while some device was disconnected. The question should, in cases like this,
be automatically sent after reconnect.

One possibility to improve robustness of the network, is to introduce scheduling:
the router could forward data to clients in small bulks, say, to one piconet at a time.
This should decrease the interference between different piconets.

61

Notes

1The address might be stored independently from device cache, which stores
addresses in a temporary fashion.

2An assumption based on the observed behaviour during testing; not verified.
3A configuration of a scheme is essentially determined by the number of modules

and hello points used.
4Or how much does the auditorium environment affect the results, for that mat-

ter.
5Client crashes are most likely result of threading related software defects in In-

Situ Leaf.
6Server retries are not counted towards failed attempts, if some of them eventu-

ally succeed.
7In figures 5.7 and 5.8 the legend is interpreted in a way that phases listed are

being executed first from left to right and then from top to bottom. In bars, the
phases are presented from bottom to top.

8The phase has been omitted from the figures for clarity; it was in both cases
practically zero.

9It must be strongly expressed that there was no way, the author was aware of,
to ensure that these devices were not in device cache. Mobile devices usually clear
their cache after a while unless the remote device is explicitly stored, but this cannot
be guaranteed to be the case with BlueZ kernel module.

62

6 Conclusion and Further Research

InSitu is a prototype of an electronic mass lecture feedback and questionnaire sys-
tem having its roots in Peer Instruction method. To solve the usual high cost of elec-
tronic questionnaire systems, it is implemented using students’ mobile devices as
answering devices. The overall goal is to improve learning by adjusting teaching
as necessary, by activating students to participate and by encouraging interaction
during various education situations.

A central part of the system is based on wireless network technology, especially
Bluetooth, which is a short range radio communication protocol, now widely avail-
able in mobile devices. Other possible communication means include WLAN and
GPRS. GPRS has the disadvantage of being probably costly, and WLAN has not
been widely adopted yet. On the other hand, there is no certainty whether any of
these radio technologies will function when brought to same environment together
in orders of magnitude required in this context.

A system prototype was developed during years 2005–2007. It consists of five
distinct parts, of which three play key role while developing and evaluating radio
technologies and different connection schemes. The system is divided to server,
router, mobile clients, PC clients, and projector. The server part coordinates the
operation of other parts and provides primary interface to lecturer, router manages
Bluetooth clients, mobile and pc clients serve as interface to students during the
lecture, and projector displays gathered results to audience as necessary.

Four different connection schemes were introduced and three of them measured.
Inquiry Based Connection was not suitable due to incompleteness of Bluetooth in-
quiry, Predefined Address Connection was difficult due to the Bluetooth address
database required, Notify Module Connection and Module Discovery Connection
were, in theory, suitable, but tend to suffer from disconnects during the connection
establishment.

PAC, NMC, and MDC were tested in both real environment and in laboratory
conditions with different module counts and different device amounts. Results in-
dicate that none of the approaches were sufficient. The connection schemes came
off in linear time — to a certain point — as suspected, but suffered from disconnects
in ascending rate, which in essence indicates polynomial results in practice. With
given requirements the polynomial result is not acceptable.

63

Further research and development can be divided to four major categories: de-
veloping better connection establishment schemes, elaborating the software system,
researching physical radio communication, and studying the cognitive effects of lec-
ture questionnaires.

New connection establishment schemes that might provide an alternative to
those defined and measured in detail in this thesis, include All to Predefined Mod-
ule Connection (APMC) and Buffered Notify Module Connection (BNMC). These
approaches attempt to minimize the traffic needed in order to prevent connection
establishment from interfering with devices already connected. The research also
includes verifying the actual reasons behind the failing connection establishment: is
it piconets interfering with each other alone or are there other factors in play.

Elaborating the software system further might include adding additional safety
measures to clients to ensure detection of connection loss and adding automatic
reconnection functionality. Shifting functionality from router to server might also
be beneficial since the server is easier to maintain and develop. From a broader
point of view, future research could include developing an open standard format for
questions, results etc. to provide ways to share resources between lecturers using
different systems.

Radio communication in general could be examined by evaluating effects of ra-
dio traffic with mathematical modelling and simulations. This might give answer
to how WLAN and GPRS interoperate together, and with Bluetooth. WLAN and
piconet interference are presumably the major issues in systems of this magnitude.

Peer Instruction and lecture feedback in general should be subject to study in fu-
ture. The cognitive effects, especially in programming lectures, would be reasonable
fruitful area of research.

As a general observation it must be pointed out that current heterogeneity and
immaturity of technological environment prevents effective software development
in mobile environments. Implementations are not entirely conformable to stan-
dards, emulators do not work quite like the actual devices, debugging is tedious in
real situations, and implementations are in many cases too restrictive in their usage.
Overall, there is clearly a need for better developbility [sic] in mobile environments;
there is pressure to develop systems more complex.

This thesis presented a glimpse to software development for mobile devices, ra-
dio communication, lecture feedback, and related topics. Utilizing wireless net-
works for assisting lectures proved to be more challenging than first anticipated.
Further research — and development — may be needed, but some basis has now
been laid out.

64

References

[1] Norman Abramson, Development of the ALOHANET, in IEEE Transactions on
Information Theory, volume 31, pp. 119–123, March 1985

[2] Frank Babbitt (ed.), Moralia, volume 1, Loeb Classical Library, 1927

[3] Len Bass, Paul Clements and Rick Kazman, Software Architecture in Practice,
Addison-Wesley, 2006, ISBN 978-0321154958

[4] Bluetooth Specification Version 2.0 + EDR, volume 1, November 2004

[5] Bluetooth Specification Version 2.0 + EDR, volume 3, November 2004

[6] Bluetooth Specification Version 2.0 + EDR, volume 4, November 2004

[7] Bluetooth Specification Version 2.1 + EDR, volume 0, July 2007

[8] Bluetooth SIG, Bluetooth Wireless Technology Surpasses One Billion Devices,
November 2006

[9] BlueZ Official Linux Bluetooth protocol stack, 2007, http://www.bluez.org/,
Referenced August 2007

[10] Yu-Fen Chen, Chen-Chung Liu, Ming-Hung Yu, Sung-Bin Chang, Yun-Chen Lu
and Tak-Wai Chan, Elementary Science Classroom Learning with Wireless Response
Devices – Implementing Active and Experiential Learning, in WMTE’05, IEEE Com-
puter Society, 2005

[11] Classtalk, The Classroom Communication System, http://www.bedu.com/

classtalk.html, Referenced August 2007

[12] Catherine Crouch and Eric Mazur, Peer Instruction: Ten years of experience and
results, in American Journal of Physics, pp. 970–977, American Association of
Physics Teachers, Harvard University, September 2001

[13] Carlos de Morais Cordeiro and Dharma Agrawal, Employing Dynamic Seg-
mentation for Effective Co-located Coexistence between Bluetooth and IEEE 802.11
WLANs, in IEEE GLOBECOM, pp. 195–200, 2002

65

[14] Carlos de Morais Cordeiro and Dharma Agrawal, Mitigating the Effects of Inter-
mittent Interference on Bluetooth Ad Hoc Networks, in PIMRC, pp. 496–500, IEEE,
2002

[15] Carlos de Morais Cordeiro and Djamel Sadok, Piconet Interference Modeling and
Performance Evaluation of Bluetooth MAC Protocol, in IEEE Transactions on Wireless
Comm., pp. 2870–2874, 2001

[16] Jörg Desel and Gabriel Juhás, What Is a Petri Net? Informal Answers for the In-
formed Reader, in Unifying Petri Nets, LNCS 2128, pp. 1–25, 2001

[17] ENJOY Audience Response System, http://www.enjoy-ars.com/

1-Overview.htm, Referenced August 2007

[18] Jr. Frederick P. Brooks, The Mythical Man-Month, Addison-Wesley, 26th edition,
2005, ISBN 978-0201835953

[19] N. Golmie and O. Rebala, Techniques to Improve the Performance of TCP in a mixed
Bluetooth and WLAN Environment, in International Conference on Communications,
volume 2, pp. 1181–1185, IEEE, 2003

[20] Michael Hayoz, The Bluetooth Wireless Technology, An Overview, 2005, Depart-
ment of Informatics, University of Fribourg, http://diuf.unifr.ch/ds/
michael.hayoz/docs/hayozm_blatand.pdf, Referenced August 2007

[21] Ivan Howitt, Mutual Interference Between Independent Bluetooth Piconets, in IEEE
Transactions on Vehicular Technology, volume 52, pp. 708–718, IEEE, 2003

[22] IEEE 802.11n Report, 2007, http://grouper.ieee.org/groups/802/11/
Reports/tgn_update.htm, Referenced September 2007

[23] IEEE 802.11 Official Timelines, 2007, http://grouper.ieee.org/groups/
802/11/Reports/802.11_Timelines.htm, Referenced September 2007

[24] Infonode Docking Windows, 2007, http://www.infonode.net/index.

html?idw, Referenced August 2007

[25] RFC 791: Internet Protocol, September 1981, http://tools.ietf.org/rfc/
rfc791.txt, Referenced August 2006

[26] JCommon, 2007, http://www.jfree.org/jcommon/, Referenced August
2007

66

[27] JFreeChart, 2007, http://www.jfree.org/jfreechart/, Referenced Au-
gust 2007

[28] Jung-Hyuck Jo and Nikil Jayant, Performance Evaluation of Multiple IEEE 802.11b
WLAN Stations in the Presence of Bluetooth Radio Interference, in International Con-
ference on Communications, pp. 1163–1168, 2003

[29] Joda Time, 2007, http://joda-time.sourceforge.net/, Referenced Au-
gust 2007

[30] JSR-000082 Java(TM) APIs for Bluetooth Specification 1.0 Final Release, 2006,
http://jcp.org/aboutJava/communityprocess/final/jsr082,
Referenced August 2006

[31] Vesa Lappalainen, In Situ -vastauslaitteen käyttöopas, 2000, User manual for
In Situ answering device, http://www.mit.jyu.fi/~vesal/insitu/

palikka.htm, Referenced September 2007

[32] Eric Mazur, Peer Instruction: A User’s Manual, Benjamin Cummings, 1996, ISBN
978-0135654415

[33] David Nicol and James Boyle, Peer Instruction versus Class-wide Discussion in
Large Classes: a comparison of two interaction methods in the wired classroom, in
Studies in Higher Education Volume 28, No. 4, Society for Research into Higher
Education, October 2003

[34] Nokia Suomi - Kaikki puhelimet, 2007, Nokia Finland – All Phones, http://www.
nokia.fi/A4312003, Referenced August 2007

[35] Donald Norman, The Design of Everyday Things, Basic Books, New York, 1988,
ISBN 978-0465067107

[36] Edward Redish, Teaching Physics with the Physics Suite, Wiley, 2003, ISBN 978-
0471393788

[37] Franklin D. Roosevelt, The Public Papers and Addresses of Franklin D. Roosevelt,
volume 1, Random House, 1938

[38] Perry Samson, Stephanie Teasley, Ben van der Pluijm and Peter Knoop, Using
Handheld PCs and Peer Instruction to Improve Science Teaching and Learning in
Higher Education, in ICLS’06, pp. 980–981, 2006

67

[39] Frank Siegemund and Michael Rohs, Rendezvous layer protocols for Bluetooth-
enabled smart devices, February 2003, Springer-Verlag London Limited

[40] Mel Silberman, Active Learning: 101 Strategies to Teach Any Subject, Allyn &
Bacon, 1996, ISBN 978-0205178667

[41] IEEE-SA Standards Board, ANSI/IEEE Std 802.11: Wireless LAN Medium Access
Control and Physical Layer Specifications, June 2003

[42] RFC 793: Transmission Control Protocol, September 1981, http://www.ietf.
org/rfc/rfc793.txt, Referenced August 2006

[43] Ltd. VOCAL Technologies, GPRS White Paper, 2002, http://www.vocal.
com/white_paper/GPRS_wp1pdf.pdf, Referenced August 2007

[44] Hongfeng Wang, Overview of Bluetooth Technology, July 2001, Department of
Electrical Engineering, State College

68

A Performance Data

Summary1 of data gathered during InSitu performance tests is presented here. Re-
sults from various connection schemes are rendered, and their exact nature is pre-
sented in detail in Chapter 5. Disconnects at connection N conn

dc indicate number of
disconnects that occurred during the actual connection establishment, Disconnects
while connected Nwconn

dc the number of disconnects after successful connection, and
Disconnects at timestamps N ts

dc the number of disconnects during gathering of times-
tamp data.

Number of connection establishment procedures Ncon indicate the number of connec-
tion procedures applied for this connection scheme during performance testing. The
number of connection establishment procedures is given by

Ncon = NdevNcycles, (A.1)

where Ndev is amount of devices and Ncycles number of connection establishment
cycles. Thus, the number of reconnects resulting from disconnects or failed attempts
is not included in Ncon. Average time per device Tavg presents the time taken by each
device2 from the initiation of connection establishment to an established connection,
and Standard deviation σ, the root mean square deviation of average times of different
connection establishment cycles.

N ts
dc was not measured in PAC since timestamps were not send in this scheme;

all timing was done by the server. In MDC, N ts
dc and Nwconn

dc were not measured due
to Bluetooth restrictions regarding device caches. For the same reason, Tavg and the
corresponding σ were not measurable.

In NMC and PAC schemes

Tavg =
1

Ncycles

Ncycles∑
i=1

Ttoti

Ndev + Nwconn
dci

+ N conn
dci

, (A.2)

where Ttoti is the time to first attempt to send the timestamp requests, i.e., when all
devices are connected for the first time in cycle i.

69

Notes

1The actual data gathered from single performance test session is several hun-
dreds of pages of XML data and several hundreds of pages of system logs. These
are not included here for practical reasons.

2More detailed partitioning to different phases is presented in Chapter 5, but the
raw data behind this analysis is omitted from this thesis.

Connection
scheme

Number of
devices Ndev

Disconnects
at connec-
tion N conn

dc

Disconnects
while con-
nected
Nwconn

dc

Disconnects
at times-
tamps N ts

dc

NMC 1 to 4 6 0 1 4
NMC 1 to 4 12 0 7 7
NMC 1 to 4 18 1 10 4
NMC 2 to 4 6 0 0 1
NMC 2 to 4 12 0 0 2
NMC 2 to 4 18 2 9 2
MDC 1 to 4 6 2 — —
MDC 1 to 4 12 7 — —
MDC 1 to 4 18 9 — —
MDC 2 to 4 6 0 — —
MDC 2 to 4 12 3 — —
PAC 2 6 0 0 —
PAC 2 12 0 0 —
PAC 4 6 0 0 —
PAC 4 12 0 0 —
PAC 4 18 3 0 —

Table A.1: Summary of performance measurement results. cont.

70

Connection
scheme

Number of
devices Ndev

Number
of connec-
tion estab-
lishment
procedures
Ncon

Average
time per
device Tavg

Standard de-
viation σ

NMC 1 to 4 6 60 4.79 0.93
NMC 1 to 4 12 120 4.14 0.38
NMC 1 to 4 18 54 9.86 2.57
NMC 2 to 4 6 60 2.82 0.44
NMC 2 to 4 12 120 2.68 0.48
NMC 2 to 4 18 90 5.38 1.01
MDC 1 to 4 6 6 — —
MDC 1 to 4 12 12 — —
MDC 1 to 4 18 18 — —
MDC 2 to 4 6 6 — —
MDC 2 to 4 12 12 — —
PAC 2 6 60 2.04 0.09
PAC 2 12 120 1.61 0.23
PAC 4 6 60 0.74 0.10
PAC 4 12 120 1.02 0.15
PAC 4 18 90 2.26 1.13

Table A.1: cont. Summary of performance measurement results.

71

B IRP Specification

1 Introduction

1.1 Purpose

The InSitu router Protocol (IRP) is an application level protocol for InSitu system. It
defines means for managing Bluetooth connections in InSitu router. It is also used
to transport InSitu Mobile Protocol packets to clients via router.

See InSitu Mobile Protocol version 2 specification for details regarding back-
ground of IRP.

1.2 Requirements

The key words ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL NOT”,
”SHOULD”, ”SHOULD NOT”, ”RECOMMENDED”, ”MAY”, and ”OPTIONAL” in
this document are to be interpreted as described in RFC 2119. An implementation
is not compliant if it fails to satisfy one or more of the MUST or REQUIRED level
requirements for the protocols it implements. An implementation that satisfies all
the MUST or REQUIRED level and all the SHOULD level requirements for its proto-
cols is said to be ”unconditionally compliant”; one that satisfies all the MUST level
requirements but not all the SHOULD level requirements for its protocols is said to
be ”conditionally compliant.”

1.3 Terminology

This specification uses a number of terms to refer to the roles played by participants
in, and objects of, the IMP communication.

IRP InSitu Router Protocol

IMPv2 InSitu Mobile Protocol version 2

Connection A transport layer virtual circuit established between two programs for
the purpose of communication.

Client A client device with program that is able to communicate with server using
IMPv2.

72

Router A system managing Bluetooth connections and forwarding IMPv2 packets
to clients.

Server A program to be able to communicate with clients using IMPv2. Server MAY
be able to communicate with router(s) using IRP.

Packet Single sequence of big-endian UTF-16 characters for single purpose in terms
of communication; one entity of those defined in Section 3.3.

Sender Program sending a specified packet.

Receiver Program receiving specified packet.

Session Time scope from connection establishment between server and router to
disconnection of this connection.

1.4 Scope

This specification defines communication after connection has been established be-
tween two programs, server and client. Connection establishment and general net-
work properties are not considered in this paper.

1.5 Encoding

All communication is based on plain text sequence of characters represented in big-
endian UTF-16 encoding.

2 Notational Conventions and Generic Grammar

All of the mechanisms specified in this document are described in both prose and an
augmented Backus-Naur Form (BNF). Implementers will need to be familiar with
the notation in order to understand this specification.

2.1 Augmented BNF

The augmented BNF includes the following constructs and is partly presented here
based on presentation in RFC 2616:

name = definition The name of a rule is simply the name itself (without any enclos-
ing ”<” and ”>”) and is separated from its definition by the equal ”=” charac-
ter. White space is only significant in that indentation of continuation lines is

73

used to indicate a rule definition that spans more than one line. Certain basic
rules are in uppercase, such as CHAR, DIGIT, etc. Angle brackets are used
within definitions whenever their presence will facilitate discerning the use of
rule names.

”literal” Quotation marks surround literal text. Unless stated otherwise, the text is
case-sensitive.

rule1 | rule2 Elements separated by a bar (”|”) are alternatives, e.g., ”yes | no”
will accept yes or no.

(rule1 rule2) Elements enclosed in parentheses are treated as a single element. Thus,
”(elem (foo | bar) elem)” allows the token sequences ”elem foo elem” and
”elem bar elem”.

rule The character ”” preceding an element indicates repetition. The full form
is ”<n>*<m>element” indicating at least <n> and at most <m> occurrences
of element. Default values are 0 and infinity so that ”*(element)” allows any
number, including zero; ”1*element” requires at least one; and ”1*2element”
allows one or two.

[rule] Square brackets enclose optional elements; ”[foo bar]” is equivalent to ”*1(foo
bar)”.

N rule Specific repetition: ”<n>(element)” is equivalent to ”<n>*<n>(element)”;
that is, exactly <n> occurrences of (element). Thus 2DIGIT is a 2-digit number,
and 3CHAR is a string of three characters.

; comment A semi-colon, set off some distance to the right of rule text, starts a com-
ment that continues to the end of line. This is a simple way of including useful
notes in parallel with the specifications.

2.2 Basic Rules

The following rules are used throughout this specification to describe basic parsing
constructs.

CHAR = <any big-endian UTF-16 character>
DIGIT = <any big-endian UTF-16 digit character ”0”..”9”>
HEX = DIGIT | ”A” | ”B” | ”C” | ”D” | ”E” | ”F” |

”a” | ”b” | ”c” | ”d” | ”e” | ”f”

74

It is notable that definition of CHAR includes DIGITs.

3 IMPv2 Packets

A packet is a single plain text sequence of characters for single purpose in terms of
communication.

3.1 Overall Operation

Both sender and receiver MUST treat packet as an atomic entity. When data arrives
to receiver, a packet is defined by the length sequence of the packet, and any further
data arriving MUST be treated as a part of the next packet. Packet length SHALL
NOT exceed 2048 bytes.

3.2 General packet composition

A packet consists of header and data.

packet = header data

Header is divided to length sequence and command sequence. First five char-
acters SHALL represent the length of the packet NOT INCLUDING the first five
characters.

header = packet-len command
packet-len = 5DIGIT

Command defines the purpose of the packet. Specifics about different packets
are defined in Section 3.3.

75

command = router-settings-cmd | ; Router settings
user-connected-cmd | ; User connected
user-disconnected-cmd | ; User disconnected
send-to-cmd | ; Send to
received-from-cmd | ; Received from
connection-list-cmd | ; Connection list
disconnect-user-cmd | ; Disconnect user
disconnect-cmd | ; Disconnect
keep-alive-cmd ; Keep alive

Data consists of arbitrary number of characters defined by length of the packet.

data = *CHAR

3.3 Packets

Specific packets are sent either by server, client or both. This is declared separately
for each packet in the subsequent sections. Each section includes example packet
represented in quotation marks, which are not included in the actual data.

3.3.1 Router settings

Router settings packet MUST be send by router immediately after server has estab-
lished the connection to it. Packet contains information of capabilities of the router.

router-settings-packet = packet-len router-settings-cmd max-num-clients
router-settings-cmd = ”ROUTER”
max-num-clients = 3DIGIT

Example data: ”00009ROUTER007”

3.3.2 User connected

User connected packet is sent by router to indicate that new client has connected to
router. Packet contains an id assigned by router to device. This id is used to identify
the particular device during current session. Router MUST use unique id to identify
devices but MAY reuse any id that has been used by client that is no longer con-
nected. Packet also contains a Bluetooth address of the device, which is represented
as hex values.

76

user-connected-packet = packet-len
user-connected-cmd
device-id
device-address

user-connected-cmd = ”USRCON”
device-id = 3DIGIT
device-address = 12HEX

Example data: ”00021USRCON003000A3A53D4C1”

3.3.3 User disconnected

User disconnected packet is sent by router to indicate that an existing client with
specified id has disconnected.

user-disconnected-packet = packet-len user-disconnected-cmd device-id
user-disconnected-cmd = ”USRDCN”
device-id = 3DIGIT

Example data: ”00009USRDCN003”

3.3.4 Send to

Send to packet is sent by server. The packet contains inner packet that is sent to
devices with specified ids.

send-to-packet = packet-len
send-to-packet-cmd
id-count ids
inner-packet

send-to-packet-cmd = ”SENDTO”
id-count = 3DIGIT
ids = id | id ids
id = 3DIGIT
inner-packet = *CHAR

The number of ids is equal to parsed value of id-count.
Example data: ”00057SENDTO00200500600037QUESTS0102005What?000030600203Yes02No”

77

3.3.5 Received from

Received from packet is sent by router. It contains inner packet that has been re-
ceived from client with specified id.

received-from-packet = packet-len received-from-cmd device-id inner-packet
received-from-cmd = ”RECVFR”
device-id = 3DIGIT
inner-packet = *CHAR

Example data: ”00024RECVFR00600010003ANSWER1”

3.3.6 Connection list

Connection list packet is sent by server to order the server to establish connection to
specified addresses.

connection-list-packet = packet-len
connection-list-cmd
address-count
addresses

connection-list-cmd = ”CONLST”
address-count = 3DIGIT
addresses = address | address addresses
address = 12HEX

The number of addresses is equal to parsed value of address-count.
Example data: ”00021CONLST001000A3A51D4C1”

3.3.7 Disconnect user

Disconnect user packet is sent by the server to disconnect client(s) from router.

disconnect-user-packet = packet-len disconnect-user-cmd id-count ids
disconnect-user-cmd = ”DCUSER”
id-count = 3DIGIT
ids = id | id ids
id = 3DIGIT

Example data: ”00015DCUSER002001003”

78

3.3.8 Disconnect

Disconnect packet is sent by server to disconnect all users, disconnect server from
router and reset the router to accept new connections.

disconnect-packet = packet-len disconnet-cmd
disconnect-cmd = ”DISCON”

Example data: ”00006DISCON”

3.3.9 Keep alive

Keep alive packet is sent by the server to ensure that router is still connected. Router
SHOULD determine that connection has been lost if no packet has arrived in certain
time. Default timeout value is 5.0 seconds and keep alive interval 2.0 seconds.

keep-alive-packet = packet-len keep-alive-cmd
keep-alive-cmd = ”KEEPAL”

Example data: ”00006KEEPAL”

3.4 Communication restrictions

Router MUST send router settings to server immediately after connection establish-
ment prior sending or receiving any other packets. Server MUST NOT send packets
to router before receiving router settings packet.

4 Acknowledgments

Sections 1.2 and 2 have been edited after a number of Network Working Group
RFCs noted in sections in question. Specification development was greatly assisted
by Mikko Tyrväinen and Vesa Lappalainen.

79

C IMPv2 Specification

1 Introduction

1.1 Purpose

The InSitu Mobile Protocol (IMP) is an application level protocol for InSitu system.
The first IMP was defined for early prototypes for Bluetooth communication be-
tween InSitu system and Bluetooth enabled mobile devices. It defined basic func-
tionality for asking single questions, session handling and authorization.

There was need for clear separation between InSitu Router Protocol (IRP) and
InSitu Mobile Protocol (IMP), to ensure extensibility to different network schemes.
IRP was separated from IMP by isolating all Bluetooth management specific oper-
ations to independent specification. Name IMPv2 was introduced at this point to
create distinction to previous version. IMPv2 was further extended to include more
detailed information regarding questions and answers as well as packets for better
session management.

IRP and IMPv2 are syntactically similar but semantically independent. IRP can
be used to manage router without IMPv2 and is able forward any kind of packets
to clients connected to a server supporting IRP. IMPv2 can be used for communi-
cation between server and any IMPv2-compatible client regardless of the network
architecture.

1.2 Requirements

The key words ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL NOT”,
”SHOULD”, ”SHOULD NOT”, ”RECOMMENDED”, ”MAY”, and ”OPTIONAL” in
this document are to be interpreted as described in RFC 2119. An implementation
is not compliant if it fails to satisfy one or more of the MUST or REQUIRED level
requirements for the protocols it implements. An implementation that satisfies all
the MUST or REQUIRED level and all the SHOULD level requirements for its proto-
cols is said to be ”unconditionally compliant”; one that satisfies all the MUST level
requirements but not all the SHOULD level requirements for its protocols is said to
be ”conditionally compliant.”

80

1.3 Terminology

This specification uses a number of terms to refer to the roles played by participants
in, and objects of, the IMP communication.

IRP InSitu Router Protocol

IMP InSitu Mobile Protocol

IMPv2 InSitu Mobile Protocol version 2

Connection A transport layer virtual circuit established between two programs for
the purpose of communication.

Client A client device with program that is able to communicate with server using
IMPv2.

Router A system managing Bluetooth connections and forwarding IMPv2 packets
to clients.

Server A program to be able to communicate with clients using IMPv2. Server MAY
be able to communicate with router(s) using IRP.

Packet Single sequence of big-endian UTF-16 characters for single purpose in terms
of communication; one entity of those defined in Section 3.3.

Sender Program sending a specified packet.

Receiver Program receiving specified packet.

Session Time scope from first connection of any client to disconnection of last con-
nected client

1.4 Scope

This specification defines communication after connection has been established be-
tween two programs, server and client. Connection establishment and general net-
work properties are not considered in this paper.

1.5 Encoding

All communication is based on plain text sequence of characters represented in big-
endian UTF-16 encoding.

81

2 Notational Conventions and Generic Grammar

All of the mechanisms specified in this document are described in both prose and an
augmented Backus-Naur Form (BNF). Implementers will need to be familiar with
the notation in order to understand this specification.

2.1 Augmented BNF

The augmented BNF includes the following constructs and is partly presented here
based on presentation in RFC 2616:

name = definition The name of a rule is simply the name itself (without any enclos-
ing ”<” and ”>”) and is separated from its definition by the equal ”=” charac-
ter. White space is only significant in that indentation of continuation lines is
used to indicate a rule definition that spans more than one line. Certain basic
rules are in uppercase, such as CHAR, DIGIT, etc. Angle brackets are used
within definitions whenever their presence will facilitate discerning the use of
rule names.

”literal” Quotation marks surround literal text. Unless stated otherwise, the text is
case-sensitive.

rule1 | rule2 Elements separated by a bar (”|”) are alternatives, e.g., ”yes | no”
will accept yes or no.

(rule1 rule2) Elements enclosed in parentheses are treated as a single element. Thus,
”(elem (foo | bar) elem)” allows the token sequences ”elem foo elem” and
”elem bar elem”.

rule The character ”” preceding an element indicates repetition. The full form
is ”<n>*<m>element” indicating at least <n> and at most <m> occurrences
of element. Default values are 0 and infinity so that ”*(element)” allows any
number, including zero; ”1*element” requires at least one; and ”1*2element”
allows one or two.

[rule] Square brackets enclose optional elements; ”[foo bar]” is equivalent to ”*1(foo
bar)”.

N rule Specific repetition: ”<n>(element)” is equivalent to ”<n>*<n>(element)”;
that is, exactly <n> occurrences of (element). Thus 2DIGIT is a 2-digit number,
and 3CHAR is a string of three characters.

82

; comment A semi-colon, set off some distance to the right of rule text, starts a com-
ment that continues to the end of line. This is a simple way of including useful
notes in parallel with the specifications.

2.2 Basic Rules

The following rules are used throughout this specification to describe basic parsing
constructs.

CHAR = <any big-endian UTF-16 character>
DIGIT = <any big-endian UTF-16 digit character ”0”..”9”>

It is notable that definition of CHAR includes DIGITs.

3 IMPv2 Packets

A packet is a single plain text sequence of characters for single purpose in terms of
communication.

3.1 Overall Operation

Both sender and receiver MUST treat packet as an atomic entity. When data arrives
to receiver, a packet is defined by the length sequence of the packet, and any further
data arriving MUST be treated as a part of the next packet. Packet length SHALL
NOT exceed 2048 bytes.

3.2 General packet composition

A packet consists of header and data.

packet = header data

Header is divided to length sequence and command sequence. First five char-
acters SHALL represent the length of the packet NOT INCLUDING the first five
characters.

header = packet-len command
packet-len = 5DIGIT

83

Command defines the purpose of the packet. Specifics about different packets
are defined in Section 3.3.

command = login-request-cmd | ; Login request
login-response-cmd | ; Login response
login-reject-cmd | ; Login reject
login-success-cmd | ; Login success
message-cmd | ; Message
question-select-cmd | ; Question select
question-order-cmd | ; Question order
question-input-cmd | ; Question input
answer-cmd | ; Answer
end-question-cmd | ; End question
disconnect-cmd | ; Disconnect
keep-alive-cmd ; Keep alive

Data consists of arbitrary number of characters defined by length of the packet.

data = *CHAR

3.3 Packets

Specific packets are sent either by server, client or both. This is declared separately
for each packet in the subsequent sections. Each section includes example packet
represented in quotation marks, which are not included in the actual data.

3.3.1 Login request

Login request is sent by the server as soon as the connection has been established.

login-request-packet = packet-len login-request-cmd allow-anonymous
login-request-cmd = ”LGNREQ”
allow-anonymous = ”0” | ”1”

In allow-anonymous token, value ”0” represents false and ”1” represents true.
Example data: ”00007LGNREQ0”

84

3.3.2 Login response

Login response is sent by the client in response to login request packet.

login-response-packet = packet-len
login-response-cmd
username-len
username
password-len
password
connection-type
client-version

login-response-cmd = ”LGNRSP”
username-len = 2DIGIT
username = *CHAR
password-len = 2DIGIT
password = *CHAR
connection-type = 2DIGIT
client-version = 2DIGIT

Number of characters in username token is equal to parsed value of username-
len token. Number of characters in password token is equal to parsed value of
password-len token.

In connection-type token value ”00” represents Bluetooth, ”01” represents TCP/IP
and ”02” represents GPRS/WLAN.

Example data: ”00026LGNRSP08012345670499990001”

3.3.3 Login reject

Login reject is sent by the server in response to Login response if login fails.

login-reject-packet = packet-len login-reject-cmd reason
login-reject-cmd = ”LGNREJ”
reason = DIGIT

Example data: ”00007LGNREJ2”

85

3.3.3.1 Reason: Unknown user

Login reject reason ”Unknown user” is represented by value ”0”. The server re-
sponds with this reason if it was not able to find the username specified in Login
response.

3.3.3.2 Reason: Invalid password

Login reject reason ”Invalid password” is represented by value ”1”. The server re-
sponds with this reason if the password and username specified in Login response
did not match.

3.3.3.3 Reason: Anonymous not allowed

Login reject reason ”Anonymous not allowed” is represented by value ”2”. The
server responds with this reason if no username was specified in Login response,
but server does not allow anonymous login.

3.3.3.4 Reason: Already logged in

Login reject reason ”Already logged in” is represented by value ”3”. The server
responds with this reason if the username specified in Login response is already
logged in the system.

3.3.3.5 Reason: Unknown error

Login reject reason ”Unknown error” is represented by value ”4” or above. The
server responds with this reason if it encountered an unspecified error during login.

3.3.4 Login success

Login reject is sent by the server in response to Login response if login succeeds.

login-success-packet = packet-len login-success-cmd message
login-success-cmd = ”LOGNOK”
message = *CHAR

Example data: ”00013LOGNOKWelcome”

86

3.3.5 Message

Message can be sent either by server or by client to the other participant. It repre-
sents single textual message.

message-packet = packet-len message-cmd message
message-cmd = ”MESSAG”
message = *CHAR

Example data: ”00011MESSAGHello”

3.3.6 Question select

Question select is sent by the server. Question select represents question that has
number of alternatives to select from. Question id MUST be unique to each ques-
tion, regardless of the type (select, order, input), during single session. Valid re-
sponse SHOULD consist of selection of at least min-alternatives but no more than
max-alternatives alternatives from total of alternative-count alternatives, where 0 <=
min-alternatives <= max-alternatives <= alternative-count <= 10 and max-alternatives
> 0.

Instant question type represents regular question that MUST be responded with
a single answer packet. Continuous question type represents question that can be
answered multiple times, but not after question end packet has been received with
question id identical to this question.

87

question-select-packet = packet-len
question-select-cmd
min-alternatives
max-alternatives
question-len
question-text
question-type
response-type
question-id
question-time
alternative-count
alternatives

question-select-cmd = ”QUESTS”
min-alternatives = 2DIGIT
max-alternatives = 2DIGIT
question-len = 3DIGIT
question-text = *CHAR
question-type = ”0” | ”1”
response-type = ”0” | ”1”
question-id = 3DIGIT
question-time = 3DIGIT
alternative-count = 2DIGIT
alternatives = alternative | alternative alternatives
alternative = alternative-len alternative-text
alternative-len = 2DIGIT
alternative-text = *CHAR

Number of characters in question-text token is equal to parsed value of question-
len token. In question-type token, value ”0” represents instant type and ”1” repre-
sents continuous type. In response-type token, value ”0” represents user send and
”1” represents auto send. Number of characters in alternative-text token is equal to
parsed value of alternative-len token.

Response type SHOULD NOT be set to auto send unless both min-alternatives
and max-alternatives are equal to 1.

Example data: ”00037QUESTS0102005What?000030600203Yes02No”

88

3.3.7 Question order

Question order is sent by the server. Question select represents question that has
number of alternatives to select and order from. Question id MUST be unique to
each question, regardless of the type (select, order, input), during single session.
Valid response SHOULD consist of selection and correct ordering of at least min-
alternatives but no more than max-alternatives alternatives from total of alternative-
count alternatives, where 0 <= min-alternatives <= max-alternatives <= alternative-
count <= 10 and max-alternatives > 0.

Question time represents time in seconds during witch the question is valid and
must be answered to. Client MAY send answer to a particular question when ques-
tion times out, if user has not already done so. Time equal to zero indicates that
question is valid until either disconnect packet is sent or received or question end is
received.

Instant question type represents regular question that MUST be responded with
a single answer packet. Continuous question type represents question that can be
answered multiple times, but not after question end packet has been received with
question id identical to this question.

89

question-order-packet = packet-len
question-order-cmd
min-alternatives
min-alternatives
question-len
question-text
question-type
question-id
question-time
alternative-count
alternatives

question-order-cmd = ”QUESTO”
min-alternatives = 2DIGIT
min-alternatives = 2DIGIT
question-len = 3DIGIT
question-text = *CHAR
question-type = ”0” | ”1”
question-id = 3DIGIT
question-time = 3DIGIT
alternative-count = 2DIGIT
alternatives = alternative | alternative alternatives
alternative = alternative-len alternative-text
alternative-len = 2DIGIT
alternative-text = *CHAR

Number of characters in question-text token is equal to parsed value of question-
len token. In question-type token, value ”0” represents instant type and ”1” repre-
sents continuous type. Number of characters in alternative-text token is equal to
parsed value of alternative-len token.

Example data: ”00036QUESTO0102005What?00030600203Yes02No”

3.3.8 Question input

Question input packet is sent by server and represents request to type a textual
answer to a question. Answer consists of text, numbers or both.

Question time represents time in seconds during witch the question is valid and
must be answered to. Question id MUST be unique to each question, regardless of
the type (select, order, input), during single session. Client MAY send answer to a

90

particular question when question times out, if user has not already done so. Time
equal to zero indicates that question is valid until either disconnect packet is sent or
received or question end is received.

question-input-packet = packet-len
question-input-cmd
max-answer-len
answer-type
question-id
question-time
question-text

question-input-cmd = ”QUESTI”
max-answer-len = 3DIGIT
answer-type = ”0” | ”1” | ”2”
question-id = 3DIGIT
question-time = 3DIGIT
question-text = *CHAR

Answer type token contains values ”0”, which represents text input, ”1”, which
represents numeric input and ”2”, which represents both text and numeric input.

Example data: ”00021QUEST0501003060What?”

3.3.9 Answer

Answer packet is sent by client as an answer to question that has been asked. Ques-
tion can be any type and can have any options.

Answer packet MUST contain question id that represents question that has been
asked but yet not have been terminated by either receiving question end packet of
identical id, or by timeout indicated by question time field of the question packet.
Client MAY, however, send answer to question which has just timed out, if user has
not already done so.

answer-packet = packet-len answer-cmd question-id answer
answer-cmd = ”ANSWER”
question-id = 3DIGIT
answer = *CHAR

Example data: ”00012ANSWER010394”

91

3.3.9.1 Answer token for question select packet

Answers to question select packet are represented by numbers of alternatives se-
lected. The numbering is zero-based, thus if first and third alternatives are selected,
the answer equals to ”02”. The answer token MUST NOT contain same character
more than once.

Example data: ”00012ANSWER013349”

3.3.9.2 Answer token for question order packet

Answers to question order packet are represented by numbers of alternatives in
the order user selected them. The numbering is zero-based, thus if third and first
alternatives are selected in that particular order, the answer equals to ”20”. The
answer token MUST NOT contain same character more than once.

Example data: ”00012ANSWER014394”

3.3.9.3 Answer token for question input packet

Answers to question input packet are represented by the text typed by user.
Example data: ”00013ANSWER0151941”

3.3.10 End question

End question packet is sent by the server and is a request to terminate particular
question identified by question id supplied within the packet.

Client SHOULD NOT send answer to question that has been terminated by ques-
tion end right after the question has been ended, and MUST not send answer to
question that has been ended at some point earlier.

end-question-packet = packet-len end-question-cmd question-id message
end-question-cmd = ”ENDQUE”
question-id = 3DIGIT
message = *CHAR

Example data: ”00020ENDQUE015Lunch break”

3.3.11 Disconnect

Disconnect packet is either send by the server or the client. Server MAY send packet
when it notifies clients that session has been ended, and client MAY send disconnect

92

packet when it is about to disconnect from the session.

disconnect-packet = packet-len disconnect-cmd message
disconnect-cmd = ”DISCON”
message = *CHAR

Example data: ”00018DISCONLecture ends”

3.3.12 Keep alive

Keep alive packet is sent by the server to ensure that clients are still connected.
Client MAY determine that connection has been lost if no packet has arrived in cer-
tain time. Default timeout value is 5.0 seconds and keep alive interval 2.0 seconds.

keep-alive-packet = packet-len keep-alive-cmd
keep-alive-cmd = ”KEEPAL”

Example data: ”00006KEEPAL”

3.4 Communication restrictions

Server SHOULD send login request packet only once for each client after connection
establishment. Login request SHOULD be first packet sent to client after connection
establishment. Server SHOULD NOT send question packets (question select, ques-
tion order, question input) to client prior login success packet.

3.5 Examples

3.5.1 Login

Server: Login Request ”00007LGNREQ0”
Client: Login response ”00026LGNRSP08012345670499990001”
Server: Login Success ”00013LOGNOKWelcome”

3.5.2 Question

Server: Question select ”00037QUESTS0102005What?000030600203Yes02No”
Client: Answer ”00010003ANSWER1”

93

4 Acknowledgments

Sections 1.2 and 2 have been edited after a number of Network Working Group
RFCs noted in chapters in question. Specification development was greatly assisted
by Mikko Tyrväinen and Vesa Lappalainen.

94

D Architecture Notation and Views

Notation used in figures in this thesis is presented here. Figure D.1 present the
notation used to express logical elements of the system, Figure D.2 presents notation
in process graphs, Figure D.3 presents notation used in figures portraying elements
during development time, and Figure D.4 presents notation for figures rendering
physical layout of the system.

The figures are adapted from Kruchten’s four views1 presented (among others) by
Bass et. al. in [3, 41] and represent logical view, process view, development view,
and physical view, respectively. Some parts of the notation are loosely based on
UML, but since there exists no widely accepted standard for software architecture
documentation, a tailored representation is formalized and presented here for clar-
ity.

Logical views (or module views in [3]) portray key abstractions in the architec-
tural design.

Process views (component-and-connector in [3]) present concurrency and distri-
bution of functionality.

Development view (allocation view mapping software to development environ-
ment in [3]) shows the organization of software modules, libraries, and subsystems.

Physical view (deployment or allocation view in [3]) maps distribution of ele-
ments onto processing and communication nodes.

Figure D.1: Logical notation.

Notes

1Also known as ”Four Plus One” approach.

95

Figure D.2: Process notation.

Figure D.3: Development notation.

Figure D.4: Physical notation.

96

E Relevant Parts of Source Code of Router

At its current state, the InSitu system and its tools consist of over 25 KLOC, spread
over more than half-dozen programs. Listing all of the source code on paper is
naturally impractical in any form or for any purpose. What is presented here, is
a glimpse of the part of core of router, which, in essence, handles the connection
establishment and tasks related to performance measurement. This chapter thus
provides insight to details of some of the connection schemes.

Due to emulation of object-oriented approach used, a const pointer to ”object”
this performing the operation is provided as first parameter and somewhat unusual
naming convention (while using C as programming language) is used: pointers to
type, e.g., router_t* are redefined as plain router.

E.1 router.c

This section presents parts from the core module of router. Its responsibilities in-
clude orchestrating the operation of all other parts of the system, handling IO dur-
ing normal operation, multiplexing the messages from server and clients and storing
and managing the clients’ data.

E.1.1 router_create_connection

This method prepares device data and initiates connection to given address. The
number of hello point and R00 timestamp are passed for tracing the connection
establishment.

void router_create_connection(const router this,

const int hp,

const char* address,

const char* r00)

{

device device = NULL;

// Lock the device data to safely manipulate their state

int mutex_result = pthread_mutex_lock(&this->device_mutex);

if(mutex_result != SUCCESS)

{

sysutil_log(LOG_WARN, 0, "Mutex lock failed: %s\n", strerror(errno));

97

}

int device_num;

for (device_num = 0; device_num < this->max_device_count; device_num++)

{

// Find first device slot that is disconnected

if (device == NULL && this->bt_devices[device_num].state == STATE_DISCONNECTED)

{

device = &this->bt_devices[device_num];

}

// Check whether there exists another device with same address

if (strncmp(address, this->bt_devices[device_num].address, BT_ADDR_LEN) == 0)

{

sysutil_log(LOG_WARN, 0, "Device with adress %s is already connected\n",

address);

device = NULL;

goto end;

}

}

if (device != NULL)

{

device->state = STATE_CONNECTING;

}

else

{

sysutil_log(LOG_WARN, 0, "No space for device %s\n", address);

goto end;

}

// Store the address, R00 timestamp and hello point to device data

strncpy(device->address, address, BT_ADDR_LEN + 1);

strncpy(device->R00, r00, TSLEN);

device->hp = hp;

// Create and start thread to perform connection establishment

pthread_attr_t pthread_attr;

memset(&pthread_attr, 0, sizeof(pthread_attr_t));

conn_args_t* args = malloc(sizeof(conn_args_t));

args->device = device;

args->router = this;

if(pthread_create(&(device->thread), NULL, (void*)router_connect_device, (void*)args)

!= SUCCESS)

{

sysutil_log(LOG_WARN, 0, "Could not start thread for device at %d\n", device->id);

}

// Setting up data for connection establishment is done

// Device mutex can be released now

end:

mutex_result = pthread_mutex_unlock(&this->device_mutex);

if(mutex_result != SUCCESS)

98

{

sysutil_log(LOG_WARN, 0, "Mutex unlock failed: %s\n", strerror(errno));

}

}

E.1.2 router_connect_device

This method is run in a separate thread for each device. The method delegates
the connection establishment to btanager by invoking btmanager_connect (see
Section E.2.2) and then finishes the connection establishment by updating device
and program states accordingly.

void router_connect_device(conn_args_t* args)

{

const device device = args->device;

const router this = args->router;

sysutil_log(LOG_EVENT, 0, "Connecting to %s\n", device->address);

// Perform some timing

watch_t w;

watch_init(&w);

watch_start(&w);

// Let the Bluetooth manager perform the connection establishment

if (btmanager_connect(this->btmanager, device) == SUCCESS)

{

sysutil_log(LOG_EVENT, 0, "Connected to %s\n", device->address);

struct timeval timev;

gettimeofday(&timev, NULL);

double end = (double)timev.tv_sec + (1.e-6) * timev.tv_usec;

device->time = end - w.start;

watch_print(&w);

watch_destroy(&w);

// Update the program state and device data

sysutil_set_nonblock(device->socket);

int mutex_result = pthread_mutex_lock(&this->device_mutex);

if(mutex_result != SUCCESS)

{

sysutil_log(LOG_WARN, 0, "Mutex lock failed: %s\n", strerror(errno));

}

device->state = STATE_CONNECTED_PENDING;

this->connected_devices++;

mutex_result = pthread_mutex_unlock(&this->device_mutex);

if(mutex_result != SUCCESS)

99

{

sysutil_log(LOG_WARN, 0, "Mutex unlock failed: %s\n", strerror(errno));

}

}

else

{

// Failed to connect, log the event and clean up the device data

char* msg = "Could not connect to %s: %s\n";

sysutil_log(LOG_EVENT, 0, msg, device->address, strerror(errno));

sysutil_log(LOG_WARN, 0, msg, device->address, strerror(errno));

watch_print(&w);

watch_destroy(&w);

int mutex_result = pthread_mutex_lock(&this->device_mutex);

if(mutex_result != SUCCESS)

{

sysutil_log(LOG_WARN, 0, "Mutex lock failed: %s\n", strerror(errno));

}

device->state = STATE_DISCONNECTED;

device_destroy(device);

device_init(device);

mutex_result = pthread_mutex_unlock(&this->device_mutex);

if(mutex_result != SUCCESS)

{

sysutil_log(LOG_WARN, 0, "Mutex unlock failed: %s\n", strerror(errno));

}

}

free(args);

args = NULL;

// This thread may now terminate itself. Further IO with devices is performed

// by main thread via multiplexing.

pthread_detach(pthread_self());

}

E.1.3 router_send_timestamp

This method sends timestamp with given value and name and masks its sender to
be the device with given id. The message, therefore, appears to be sent by the client.

void router_send_timestamp(const router this, char* from, char* name, int id)

{

stream_t s;

stream_init(&s, 35);

strncpy(&s.data[0], "00030MESSAGTIMESTAMP", 20);

100

strncpy(&s.data[20], from, 12);

strncpy(&s.data[32], name, 3);

packet_t p;

// Put the data to received from packet to mask the sender appropriately

packet_init_recv_from(&p, &s, id);

// This method copies the packet data to be scheduled for sending

router_send_to_server(this, &p);

packet_destroy(&p);

stream_destroy(&s);

}

E.1.4 router_send_modules

This method sends module IDs stored to given device. The message appears to be
sent by the client in question.

void router_send_modules(const router this, const device device)

{

stream_t s;

stream_init(&s, 24);

strncpy(&s.data[0], "00019MESSAGMODULES", 18);

sprintf(&s.data[18], "%03d", device->hp);

sprintf(&s.data[21], "%03d", device->dongle);

packet_t p;

// Put the data to received from packet to mask the sender appropriately

packet_init_recv_from(&p, &s, device->id);

// This method copies the packet data to be scheduled for sending

router_send_to_server(this, &p);

packet_destroy(&p);

stream_destroy(&s);

}

E.1.5 router_handle_sendto

This method typically handles the Send to packet (see Section 4.4.1). As mentioned in
Chapter 5, however, the debugging subprotocol utilizes Message packet from IMPv2.
Therefore, whenever contents of a Send to packet is about to be forwarded, we need
to check whether there is need to react to the subprotocol. Namely, the router also
stores timestamps, which need to be sent.

101

The debugging functionality is not intended to be left to final program, at least
not in this form, but is instead portrayed here for illustrating the mechanics used in
performance measures.

void router_handle_sendto(const router this, const stream stream)

{

stream->pos = PACKET_LENGTH_LENGTH + PACKET_COMMAND_LENGTH;

// Exctract the ids of the devices we need to send the contents of this packet.

int device_count = 0;

stream_read_int(stream, 3, &device_count);

int* ids = (int*)malloc(device_count * sizeof(int));

int i;

int connected = 0;

for(i = 0; i < device_count; i++)

{

int id = 0;

stream_read_int(stream, 3, &id);

// Skip the devices that are not connected

if(this->bt_devices[id].state != STATE_CONNECTED)

{

sysutil_log(LOG_WARN, 0, "Attempt to send data to disconnected device at %d\n",

id);

continue;

}

ids[connected++] = id;

}

int len = stream->len - stream->pos;

char data[len+1];

int b;for(b=0;b<len+1;b++)(data[b])=’\0’;

stream_read_char(stream, len, data);

/// BEGIN MEASUREMENT CODE

// Here we violate the line between IMPv2 and IRP for debuggin purposes and check if

// we have TIMES command of the subprotocol.

bool sendTimes = FALSE;

if(strncmp(data, "00011MESSAGTIMES", 16) == 0)

{

sendTimes = TRUE;

}

/// END MEASUREMENT CODE

// Send to appropriate devices

102

for(i = 0; i < connected; i++)

{

device device = &this->bt_devices[ids[i]];

/// BEGIN MEASUREMENT CODE

// Send the necessary performance data back to server

if(sendTimes)

{

router_send_modules(this, device);

router_send_timestamp(this, device->R00, "R00", device->id);

router_send_timestamp(this, device->R10, "R10", device->id);

router_send_timestamp(this, device->R15, "R15", device->id);

router_send_timestamp(this, device->R20, "R20", device->id);

}

/// END MEASUREMENT CODE

sysutil_log(LOG_DATA, 0, "Sending ’%s’ to device %d\n", data, device->id);

if (device->out_buffer.end + len > device->out_buffer.base->len)

{

sysutil_log(LOG_ERROR, 0, "Out buffer full\n");

}

else

{

// Schedule the message to be sent by copying it to device’s out buffer

strncpy(&device->out_buffer.base->data[device->out_buffer.end], data, len);

device->out_buffer.end += len;

this->pending = TRUE;

}

}

free(ids);

}

E.2 btmanager.c

This section presents parts from the Bluetooth manager module. It responsibilities
include listening of hello points and initiating and running connection establish-
ment to Bluetooth devices.

E.2.1 btmanager_listen_hp

This method is run for each notification module in a separate thread. The method
essentially loops infinitely, accepts incoming connections as they are detected and
invokes router_create_connection (see Section E.1.1) for each connection.

103

void btmanager_listen_hp(hp_args_t* args)

{

const int device_id = args->id;

const router this = args->router;

free(args);

// Create and initialize socket

struct sockaddr_rc loc_addr = { 0 }, rem_addr = { 0 };

int hp_socket, client;

hp_socket = socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM);

int reuse_addr_flag = 1;

setsockopt(hp_socket, SOL_SOCKET, SO_REUSEADDR, &reuse_addr_flag,

sizeof(reuse_addr_flag));

if (hp_socket == ERROR)

{

sysutil_log(LOG_WARN, 0, "Could not create hello point: %s\n", strerror(errno));

pthread_detach(pthread_self());

return;

}

bdaddr_t local_bt_addr;

memset(&local_bt_addr, 0, sizeof(local_bt_addr));

hci_devba(device_id, &local_bt_addr);

char bt_addr[18];

bt_addr[17] = ’\0’;

ba2str(&local_bt_addr, bt_addr);

sysutil_log(LOG_DEBUG, 0, "Using device ’%s’ as hello point\n", bt_addr);

loc_addr.rc_family = AF_BLUETOOTH;

loc_addr.rc_bdaddr = local_bt_addr;

loc_addr.rc_channel = (uint8_t)30;

if (bind(hp_socket, (struct sockaddr *)&loc_addr, sizeof(loc_addr)) != SUCCESS)

{

sysutil_log(LOG_WARN, 0, "Could not bind hello point: %s\n", strerror(errno));

close(hp_socket);

pthread_detach(pthread_self());

return;

}

// close socket when thread cancels (at shutdown)

pthread_cleanup_push(btmanager_close_socket, (void*)hp_socket);

int backlog = 1;

sysutil_log(LOG_DEBUG, 0, "Setting backlog to %d\n", backlog);

if (listen(hp_socket, backlog) != SUCCESS)

{

sysutil_log(LOG_WARN, 0, "Listen returned error: %s\n", strerror(errno));

}

104

char addr[BT_ADDR_LEN+1];

unsigned int opt = sizeof(rem_addr);

// Enter the loop, we exit by thread interruption

while (TRUE)

{

if(!btmanager_is_device_at(device_id, NULL))

{

sysutil_log(LOG_ERROR, 0, "Hello point at %d disconnected\n", device_id);

return;

}

// Accept the connection

sysutil_log(LOG_DEBUG, 0, "hp %d ready to accept\n", device_id);

client = accept(hp_socket, (struct sockaddr *)&rem_addr, &opt);

sysutil_log(LOG_DEBUG, 0, "hp %d done accepting\n", device_id);

if(client == -1)

{

sysutil_log(LOG_WARN, 0, "Accept returned error: %s\n", strerror(errno));

continue;

}

// store the R00 timestamp here

char r00[TSLEN];

router_print_time(r00);

// Close the connection

close(client);

ba2str(&rem_addr.rc_bdaddr, addr);

sysutil_log(LOG_EVENT, 0, "Accepted connection to hello point %d from %s\n",

device_id, addr);

// Begin connection establishment procedure

router_create_connection(this, addr, r00);

}

// We never get here, but the push macro has opening bracket, so close it

pthread_cleanup_pop(TRUE);

}

E.2.2 btmanager_connect

This method performs the actual connection establishment. First, the appropriate
module is selected, then a SDP connection is made to remote device, which is fol-
lowed by service discovery. Finally, a connection to service is established and a
cleanup and program state update is performed.

105

int btmanager_connect(const btmanager this, const device device)

{

int ret_val;

int l_port = -1;

int shortest_queue = 99;

int module_number = -1;

int i = 0;

// Lock the Bluetooth manager and select the Bluetooth module

pthread_cleanup_push(btmanager_release_mutex, (void*)&this->bt_mutex);

int mutex_result = pthread_mutex_lock(&this->bt_mutex);

if(mutex_result != SUCCESS)

{

sysutil_log(LOG_WARN, 0, "Mutex lock failed: %s\n", strerror(errno));

}

for (i = 0; i < this->module_count; i++)

{

if (this->free_slot_counts[i] - this->queue_lengths[i] <= 0) // no free slots

{

continue;

}

if (this->queue_lengths[i] < shortest_queue)

{

shortest_queue = this->queue_lengths[i];

module_number = i;

}

}

if (module_number != -1)

{

this->queue_lengths[module_number]++;

int port_candidate;

// Assign a different port for devices in same module

for(port_candidate = MIN_LOCAL_PORT;

port_candidate <= MAX_LOCAL_PORT;

port_candidate++)

{

if(btmanager_is_reserved(this, module_number, port_candidate))

{

continue;

}

btmanager_reserve(this, module_number, port_candidate);

break;

}

l_port = port_candidate;

}

// Done selecting the module, release mutex

pthread_cleanup_pop(TRUE);

106

if (module_number == -1)

{

sysutil_log(LOG_WARN, 0, "No space for device %d\n", device->id);

errno = EBUSY;

ret_val = ERROR;

goto err;

}

// Begin creating the SDP connection

device->dongle = module_number;

device->l_port = l_port;

// Determine local bt address

bdaddr_t local_bt_addr;

memset(&local_bt_addr, 0, sizeof(local_bt_addr));

hci_devba(module_number, &local_bt_addr);

// determine remote bt address

bdaddr_t remote_bt_addr;

str2ba(device->address, &remote_bt_addr);

sysutil_log(LOG_EVENT,

0,

"Creating sdp connection from local device %d to remote device %d...\n",

module_number,

device->id);

// Create session between local bt address and remote bt address

sdp_session_t *session = NULL;

// Lock the mutex of the Bluetooth module in question to avoid collision at hardware level

pthread_cleanup_push(btmanager_release_mutex,

(void*)&this->dongle_mutexes[module_number]);

int mutex_result = pthread_mutex_lock(&this->dongle_mutexes[module_number]);

if(mutex_result != SUCCESS)

{

sysutil_log(LOG_WARN, 0, "Mutex lock failed: %s\n", strerror(errno));

}

// Store the R10 timestamp here

router_print_time(device->R10);

// Try to connect

int flags = 0;

int attempts = 3;

do

{

start:

session = sdp_connect(&local_bt_addr, &remote_bt_addr, flags);

if(session)

{

sysutil_log(LOG_DEBUG,

0,

"Tried to connect from %d to %d: 0\n",

107

module_number,

device->id);

break;

}

else

{

sysutil_log(LOG_DEBUG,

0,

"Tried to connect from %d to %d: %d\n",

module_number,

device->id,

errno);

sleep(1);

}

// Try again if we did not succeed and there is still attempts left

if(session == NULL &&

(errno == ECONNRESET ||

errno == EHOSTDOWN ||

errno == ETIMEDOUT ||

errno == ECONNABORTED

) && --attempts > 0)

{

sysutil_log(LOG_DEBUG,

0,

"Retry (%s) from local device %d to remote device %d...\n",

strerror(errno),

module_number,

device->id);

goto start;

}

}

// We don’t accept EBUSY, EMLINK or EAGAIN as valid failure, continue unconditionally

while (session == NULL && (errno == EBUSY || errno == EMLINK || errno == EAGAIN));

// Done connecting, release the module mutex

pthread_cleanup_pop(TRUE);

if(session == NULL)

{

ret_val = ERROR;

goto err;

}

// Begin searching the service. The service id is hard-coded and predefined

sdp_list_t *attrid, *search, *seq;

uint32_t range = 0x0000ffff;

attrid = sdp_list_append(0, &range);

search = sdp_list_append(0, &this->remote_uuid);

// Get a linked list of services

int attempts = 3;

int result;

do

108

{

sysutil_log(LOG_EVENT, 0, "Listing services from device %d...\n", device->id);

result = sdp_service_search_attr_req(session,

search,

SDP_ATTR_REQ_RANGE,

attrid,

&seq);

}

while(result != SUCCESS && --attempts > 0);

if(result != SUCCESS)

{

char* msg = "No service found from device %d\n";

sysutil_log(LOG_EVENT, 0, msg, device->id);

sysutil_log(LOG_WARN, 0, msg, device->id);

sdp_close(session);

ret_val = ERROR;

goto err;

}

sdp_list_free(attrid, 0);

sdp_list_free(search, 0);

sysutil_log(LOG_EVENT, 0, "Searching services from device %d...\n", device->id);

int r_port = -1;

// Loop through the list of services

for(; seq; seq = seq->next)

{

sdp_record_t *rec = (sdp_record_t*)seq->data;

sdp_list_t *access = NULL;

// get the RFCOMM channel

sdp_get_access_protos(rec, &access);

if(access)

{

r_port = sdp_get_proto_port(access, RFCOMM_UUID);

}

}

free(seq);

sdp_close(session);

if (r_port == -1)

{

errno = EHOSTUNREACH;

ret_val = ERROR;

goto err;

}

// Begin opening the connection to service

int connected = 0;

109

int bt_socket = -1;

attempts = 3;

bool first = TRUE;

do

{

retry:

if (bt_socket != -1)

{

close(bt_socket);

}

if((bt_socket = socket(PF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)) == ERROR)

{

sysutil_log(LOG_WARN, 0, "Failed to create socket for device %d\n", device->id);

errno = EHOSTUNREACH;

ret_val = ERROR;

goto err;

}

int opt;

opt = 0;

if(setsockopt(bt_socket, SOL_RFCOMM, RFCOMM_LM, &opt, sizeof(opt)) != SUCCESS)

{

sysutil_log(LOG_WARN, 0, "Failed to set socket options: %s\n", strerror(errno));

goto err;

}

opt = 0;

if (setsockopt(bt_socket, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)) != SUCCESS)

{

sysutil_log(LOG_WARN, 0, "Failed to set socket options: %s\n", strerror(errno));

goto err;

}

struct sockaddr_rc rem_addr, loc_addr;

memset(&loc_addr, 0, sizeof(loc_addr));

loc_addr.rc_family = AF_BLUETOOTH;

btmanager_reversebt(&local_bt_addr);

baswap(&loc_addr.rc_bdaddr, &local_bt_addr);

loc_addr.rc_channel = l_port;

if(bind(bt_socket, (struct sockaddr *) &loc_addr, sizeof(loc_addr)) != SUCCESS)

{

sysutil_log(LOG_WARN, 0, "Failed to bind socket for device %d\n", device->id);

ret_val = ERROR;

close(bt_socket);

goto err;

}

memset(&rem_addr, 0, sizeof(rem_addr));

rem_addr.rc_family = AF_BLUETOOTH;

baswap(&rem_addr.rc_bdaddr, strtoba(device->address));

110

rem_addr.rc_channel = r_port;

if(first)

{

sysutil_log(LOG_EVENT, 0, "Connecting to service at device %d...\n", device->id);

first = FALSE;

}

else

{

sysutil_log(LOG_DEBUG,

0,

"Retry (%s) to service at device %d...\n",

strerror(errno),

device->id);

}

// Connect to service

connected = connect(bt_socket, (struct sockaddr *)&rem_addr, sizeof(rem_addr));

if(connected != SUCCESS && (errno == EBUSY || errno == EAGAIN))

{

goto retry;

}

}

while (connected != SUCCESS && --attempts > 0);

if(connected != SUCCESS)

{

sysutil_log(LOG_DEBUG,

0,

"connected=%d attempts=%d id=%d\n",

connected,

attempts,

device->id);

close(bt_socket);

ret_val = ERROR;

goto err;

}

// Store the R20 timestamp here

router_print_time(device->R20);

// Lock the Bluetooth manager mutex and update program state

pthread_cleanup_push(btmanager_release_mutex, (void*)&this->bt_mutex);

int mutex_result = pthread_mutex_lock(&this->bt_mutex);

if(mutex_result != SUCCESS)

{

sysutil_log(LOG_WARN, 0, "Mutex lock failed: %s\n", strerror(errno));

}

this->free_slot_counts[module_number]--;

// Updated, release the mutex

pthread_cleanup_pop(TRUE);

111

device->socket = bt_socket;

device->r_port = r_port;

ret_val = SUCCESS;

err:

if (module_number != -1)

{

// Lock for cleanup update

pthread_cleanup_push(btmanager_release_mutex, (void*)&this->bt_mutex);

int mutex_result = pthread_mutex_lock(&this->bt_mutex);

if(mutex_result != SUCCESS)

{

sysutil_log(LOG_WARN, 0, "Mutex lock failed: %s\n", strerror(errno));

}

this->queue_lengths[module_number]--;

if(ret_val == ERROR)

{

btmanager_unreserve(this, module_number, l_port);

}

// Cleanup done, release

pthread_cleanup_pop(TRUE);

}

return ret_val;

}

112

