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ABSTRACT 

 

The aim of this study was to examine whether the quality of driving performance could 
be predicted by psychophysiological variables. The study was conducted with sleep 
deprived subjects (n = 9) performing a simulated driving task for three hours. Driving 
performance was analyzed in 15.5 s epochs. Epochs were classified to represent 
accurate, unstable or deficient states of driving. These states of driving formed the 
dependent variable. Delta, theta, alpha, sigma and beta EEG band powers, eye blink rate 
and amplitude, and heart rate were each examined at four epochs before the epoch 
defined according to the driving quality, and formed the independent variables 
(altogether 8 × 4 = 32 variables). Differences in the averages of the variables in the 
driving quality states were analyzed across subjects with MANOVAs. The variable 
beta–4 differentiated significantly the quality states (p = 0.015 < 0.05), but in further 
analysis with paired samples t-tests it did not differentiated the states significantly. 
Logistic regression analyses were carried out at the subject level when accurate and 
unstable driving and accurate and deficient driving formed the dependent variable. Most 
of the independent variables (delta, alpha and sigma power, blink rate and amplitude, 
heart rate) predicted according to the hypotheses the change of driving from accurate to 
unstable or deficient states. The changes in theta and beta were, however, contrary to 
the hypotheses. The accurate classifications of correct driving quality states changed 
individually and were quite low for some subjects. The results show that further studies 
of the power of psychophysiological variables to predict changes in driving quality with 
validity and generalizability are needed. 
  
 

Keywords: Driver Fatigue, Driving Performance, Sleepiness, EEG power spectrum, Eye 
Blink, Heart Rate 
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TIIVISTELMÄ 

 

Tämän tutkimuksen tarkoituksena oli tutkia, voiko ajosuorituksen laatua ennustaa 
psykofysiologisilla muuttujilla. Valvoneet koehenkilöt (n = 9) ajoivat tutkimuksessa 
kolme tuntia ajosimulaattorilla. Ajosuoritusvideot analysoitiin ajovirheiden osalta 15,5 s 
pituisissa epokeissa. Epokit luokiteltiin edustamaan joko virheetöntä, epävakaata tai 
vajaata ajolaatua. Nämä ajolaadun tilat muodostivat riippuvan muuttujan. 
Riippumattomat muuttujat olivat EEG:n tehospektrit delta, theta, alfa, sigma ja beeta, 
sekä silmän räpytystiheys, räpytyksen amplitudi ja sydämen syke tarkasteltuna 
ajolaadun mukaan määriteltyä epokkia edeltävältä neljältä epokilta (yhteensä 8 x 4 = 32 
muuttujaa). Riippumattomien muuttujien keskiarvojen eroja eri ajolaatutiloissa 
vertailtiin yli koehenkilöiden MANOVAlla. Beta–4 oli ainoa merkitsevästi ajolaadun 
mukaan erotteleva muuttuja (p = 0,015 < 0,05), mutta riippuvien otosten t-testin mukaan 
se ei kuitenkaan erotellut enää merkitsevästi yksittäisiä ajolaatutilanteita toisistaan. 
Logistinen regressioanalyysi tehtiin jokaiselle koehenkilölle siten, että virheetön ja 
epävakainen tai virheetön ja vajaa ajolaatu muodostivat riippumattoman muuttujan 
kaksi luokkaa. Riippumattomista muuttujista suurin osa (deltan, alfan ja sigman 
tehospektrit, räpytystiheys ja amplitudi, syke) ennusti pääasiassa hypoteesien mukaisesti 
ajolaadun muuttumista virheettömästä ajamisesta epävakaaseen tai vajavaiseen. Theetan 
ja beetan tehospektrit kuitenkin ennustivat useammin hypoteesien vastaisesti kuin 
niiden mukaisesti. Oikean ajolaatutilan ennustamisprosentit vaihtelivat koehenkilöittäin 
ja olivat joillakin koehenkilöillä melko matalia. Tulokset osoittavat, että lisätutkimukset 
ovat tarpeen psykofysiologisten muuttujien kyvystä ennustaa validisti ja yleistettävästi 
ajolaadun muutoksia.  
 

 

Avainsanat: Ajoväsymys, Ajosuoritus, Uneliaisuus, EEG:n tehospektri, Silmänräpytys, 
Syke  
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LIST OF TERMS 

accurate driving = accurate driving quality, one of three driving quality states 

defined in this study on the basis of the driving performance of the subjects, 

includes not more than one minor error during the time unit of one epoch  

alpha band power = EEG (electroencephalographic) power (μV2) of alpha 

frequency. In this study the frequency of 8.0-12.0 Hz measured at the Oz-

channel (occipital area), the independent variables of alpha are alpha-4, alpha-3, 

alpha-2 and alpha-1 

BA = blink amplitude, measured on the vertical EOG channel   

beta band power = EEG power (μV2) of beta frequency, in this study the 

frequency of 14.0-30.0 Hz measured at the Oz-channel (occipital area), the 

independent variables of beta are beta-4, beta-3, beta-2 and beta-1 

crash = when the simulated car touched the wall on the right side of the road 

deficient driving = deficient driving quality, one of the three driving quality states 

formed in this study on the basis of the driving performance of the subjects, 

includes several large driving errors during the time unit of one epoch 

delta band power = EEG power (μV2) of delta frequency. In this study the 

frequency of 0.5-4.0 Hz measured at the Oz-channel (occipital area), the 

independent variables of alpha are alpha-4, alpha-3, alpha-2 and alpha-1 

dependent variable = formed of the three categories of driving quality 

driving error = types of errors observed in this simulated driving study. Four 

different types were distinguished: two wheels out of the road, near crash, four 

wheels out of the road and crash 

driving quality = quality of the driving performance, three states/categories of 

driving quality for each epoch were defined: accurate, unstable and deficient 

driving on the basis of the summed variable 

EOGH = horizontal EOG; EOG (electro-oculography) channel, which is measured 

in this study from the corner of the left eye 

EOGV = vertical EOG; EOG channel, which is measured in this study above the 

left eye 

epoch = the time unit of this study; 15.5 ± 0.5 s.  



                                                                                                

 

 

  

 

four wheels out of the road = when the whole car in the simulated driving had 

crossed the line marking on the left side of the road  

HR = heart rate in beats per minute 

impaired driving/driving impairment = reduced driving quality, in this study refers 

also to unstable and deficient states of driving 

independent variable = the variables of delta, theta, alpha, sigma and beta band 

power, blink rate and amplitude and heart rate 

near crash = when the car in the simulated driving was near the wall on the right 

side of the road 

sigma band power = EEG (electroencephalographic) power (μV2) of sigma and 

sleep spindle frequency, in this study the frequency of 12.0-4.0 Hz measured at 

Oz-channel (on occipital area), the independent variables of sigma are sigma-4, 

sigma-3, sigma-2 and sigma-1 

SO = in this study, sleep onset refers to the onset of Stage 2 (Ogilvie, Simons, 

Kuderian, MacDonald & Rustenburg, 1991) 

St 1/St 2 = Stage 1 or Stage 2 according to the sleep scale of Retschaffen and 

Kales (1968) 

subscript 0/-1/-2/-3/-4 = in the name of a variable (for example alpha-1) or epoch 

(epoch0), signifies how many epochs before the dependent variable (driving 

quality) the value of the independent variable is averaged  
summed variable = a methodological way to summarize the four types of driving 

errors during one epoch  

theta band power = EEG power (μV2) of theta frequency, in this study the 

frequency of 4.0-8.0 Hz measured at the Oz-channel (occipital area), the 

independent variables of theta are theta-4, theta-3, theta-2 and theta-1 

two wheels out of the road = when the wheels on the left side of the car in the 

simulated driving crossed the line marking on the left side of the road 

unstable driving = unstable driving quality,  middle category of the three driving 

quality states, includes moderate errors during the time of one epoch  

variable type = refers to the types of independent variables, for example to 

variables of alpha  



                                                                                                

 

 

  

 

1. INTRODUCTION 

The increase in the amount of road-traffic fatalities in the world during the last decades 

has been primarily due to low- and middle-income countries (Peden et al., 2004). After 

1960s and 1970s there has been decrease in a number of road-traffic fatalities in high-

income countries (Peden et al., 2004). In Finland, the amount of accidents has slightly 

decreased from 1980s to 2002 with growing number of vehicles (Statistics Finland, 

2004). 

Different factors contribute to the occurrence of the accidents. According to the study 

of Powell, Schechtman, Riley, Li and Guilleminau (2002) some factors, which were 

found to be significantly associated with the increased number of accidents, were 

younger age, alcohol use, driving at night, or a night/irregular work shifts. Sleepiness 

was also among those factors (Powell et al. 2002).  

Reports of the amount of accidents due to sleepiness vary. Italian police officers have 

ascribed that amount to be 3.2 % of all accidents (Garbarino, Nobili, Beelke, De Carli, 

& Ferrillo, 2001), which is similar with the percent based on the questionnaire for 

Norwegian accident-involved drivers, where sleep or drowsiness was reported to be a 

contributing factor in 3.9 % of all accidents (Sagberg, 1999). Also rates as high as 20 % 

have been brought up by the research based on police databases and spot interviews (16 

% in major roads and over 20 % in motorways; Horne & Reyner, 1995) or as an 

estimation, which is based on real accident rates (21.9 %; Garbarino et al, 2001). The 

reported rate of sleepiness as a contributing factor in accidents is higher within 

accidents occurring at night-time (Sagberg, 1999). Optimal driving performance 

requires a certain level of attention and alertness. The qualifications and subparts of 

adequate driving are presented clearly by MacLean, Davies and Thiele (2003).     
The perception of relevant cues; the making of appropriate decisions; the performance of 

necessary control movements; and the maintenance of a sufficient level of attention both to 

deal with the normal demands of driving as well as to respond to emergency situations. 

Clearly, most, if not all, of these functions are compromised under conditions of 

drowsiness. (MacLean et al., 2003, pp. 509) 

As performance varies in attention tasks (Kraemer et al., 2000) or in simulator driving 

(Lenné, Triggs, & Redman, 1998) according to the time of the day, it is evident that the 

time of the day has a significant effect on the number of accidents too. There are more
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sleep-related accidents in the night and in the mid-afternoon (Horne & Reyner, 1995; 

Pack et al., 1995; Garbarino et al, 2001). This circadian effect can also result in falling 

asleep in the beginning of the trip (Horne & Reyner, 1995), but often longer trips induce 

sleepiness (Sagberg, 1999) more likely as does the monotony of the road (Thiffault & 

Bergeron, 2003b).  

Changes of alertness can be modelled to reflect the amount of hours been awake and 

the length of prior sleep in addition to the circadian rhythms (Åkerstedt & Folkard, 

1994). According to this model and other studies, sleep deprivation reduces alertness 

and sleep latency (latency: Carskadon & Dement, 1979; Helmus et al., 1996). Sleep 

deprivation has been found to affect driving performance on a simulator (Lenné et al., 

1998). And, prior sleep loss has been found to be one of the contributing factors of 

accidents (Fell & Black, 1997), even though in the study with truck drivers, prior time 

awake and prior sleep length were not related to sleepiness during the evening and at 

night-time (Kecklund & Åkerstedt, 1993). 

Alertness changes can be perceived subjectively as well as objectively. Drivers 

report as different subjective fatigue feelings as muscles going numb, pain in the eyes, 

difficulties in focusing and in speaking, increased blinking, hallucinations, apathy, lack 

of attention, incoherent memory and stomach pain (Summala, Häkkänen, Mikkola, & 

Sinkkonen, 1999). In spite of this variety of subjective symptoms, the problem with 

subjective evaluations of alertness is that it is not always concurrent with objective ones 

or reliable. Drivers may have knowledge of their sleepiness (Horne & Baulk, 2004), but 

the person’s own evaluations of sleepiness are not necessarily concurrent with 

behavioural ones (Risser, Ware, & Freeman, 2000) or do not predict well the driving 

impairments (Verwey & Zaidel, 2000). Also if the feelings of sleepiness precede the 

sleep in the driving situation, the driving impairment can be worse than the driver 

realizes (Horne & Reyner, 2001).  

The dilemma of defining sleepiness is not only the discrepancy between subjective 

evaluation and behavioural capability. There are also variations between the different 

objective variables in reflecting sleepiness. The accuracy with which alertness is defined 

has been found to increase by using several measuring indices (Numata, Kitajima, Goi 

& Yamamoto, 1998). For that reason, a multiparametric approach seems to be the most 

effective method for examining the alertness of a driver (Heitmann, Guttkuhn, Aguirre, 

Trutschel, & Moore-Ede, 2001). Different methods consist of performance measures 
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during driving, vigilance tasks (reaction time tasks), physiological measures, video 

image of the driver’s face, behavioural signs of sleepiness and subjective evaluations 

(Heitmann et al., 2001; Rimini-Doering, Manstetten, Altmueller, Ladstaetter, & Mahler, 

2001). In addition, analyses of eye-movement or different measures of the pupil are 

used (Heitmann et al., 2001; Velichovsky, Rothert, Kopf, Dornhöfer, & Joos, 2002).  

Physiological measures include electroencephalographic measures (EEG), event-related 

potentials (ERP), electro-oculography (EOG), electromyography (EMG), heart rate 

(HR), skin impedance and respiration. Despite of the variety of methods, the issue of 

detection and prevention of driver fatigue is still vague. According to MacLean et al. 

(2003), especially the prediction of impaired driving by EEG and heart rate in simulated 

settings needs further investigation.  

In this research driver drowsiness was studied in a simulated driving environment. 

The main task of this research was to examine whether it is possible to predict driving 

performance based on the psychophysiological variables. Driving performance was 

observed among sleep deprived subjects in the simulated driving. The predicative 

occurrence of behavioural alertness was studied within the variables of 

electroencephalographic (EEG) band powers, blink rate, blink amplitude and heart rate.  

In the next chapters some research results of those variables are introduced in 

different alertness levels starting from basic sleep studies to sleep deprivation studies 

and continuing to studies with task performance including driving studies. The process 

of falling asleep is assumed to be always similar (e.g. independent of the sleep 

deprivation or circadian variation), which makes it possible to study the results through 

the whole field of sleepiness studies with the variables used in this research. The 

specific sleepiness studies with driving or similar situations are however the focus of the 

introduction and form the basis of the whole research. 

 

1.1. The variables and diminishing of alertness 

1.1.1. Background 

At rest 

The diminishing of alertness towards sleep is often measured with scale based on 

electrophysiological variables at normal resting (relaxed wakefulness) situation with 
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closed eyes. The scale most often used is the one of Retschaffen & Kales (1968). 

According to this scale, the EEG contains alpha (8-13 Hz) activity during the stage of 

wakefulness, while in the stage 1, the activity of 2-7 Hz is dominant and the amount of 

alpha activity is less than in the stage of wakefulness. Sleep spindles and K-complexes 

in the frequency of the sigma band occur in the stage 2 (Retschaffen and Kales, 1968). 

This process of falling asleep is quite similar with the process presented in the scale of 

Hori (Hori, Hayashi, & Morikawa, 1994). Instead, Santamaria & Chiappa (1987) 

describe the reduction of alertness more accurately with some additions to the process 

mentioned above. Fronto-central beta can appear at the time of the bursts at slow 

activities and is attenuated by arousing stimuli. On the other hand, centro-frontal beta is 

mentioned as a sign of arousal either alone or together with a return to alpha 

(Santamaria & Chiappa, 1987). 

EEG can be examined during sleep deprivation and it seems that sleepiness is 

directly represented in the awake EEG (Strijkstra, Beersma, Drayer, Halbesma, & Daan, 

2003). The effect of sleep deprivation is a natural one: according to the study of Rogé et 

al. the episodes of sleep were more frequent after sleep deprivation than after a normal 

night of sleep (Rogé, Pébayle, El Hannachi, & Muzet, 2003). Thus, sleep deprivation is 

often used to induce episodes of falling asleep. Then the process of sleep onset is 

thought to be comparable with normal and sleep deprived states.  

The term ’at rest’ refers, in this study, to the state of sleep deprivation in addition to 

the normal sleep onset process, starting with relaxed wakefulness with closed eyes. 

Exceptions are blink variables, which are examined shortly during a normal work-day.     

At task performance 

The process of diminishing alertness can be studied also while performing a task. This 

is done for studying the behavioural sleep onset (Ogilvie & Wilkinson, 1984; Ogilvie, 

Wilkinson, & Allison, 1989; Ogilvie, Simons, Kuderian, MacDonald, & Rustenburg, 

1991) or for finding out whether task performance interferes with or effects on the 

natural sleep onset process (Casagrande, De Gennaro, Violani, Braibanti, & Bertini, 

1997). Task performance with diminishing alertness is often studied with sleep deprived 

subjects. The effect of sleep deprivation on the EEG during task performance is brought 

out by the study of Corsi-Cabrera, Arce, Ramos, Lorenzo and Guevara (40 h 

deprivation; 1996). The effect was more pronounced during the reaction time (RT) task 

than during the relaxed wakefulness. Also the number of omissions in RT task increased 
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during hours of deprivation (Corsi-Carbera et al., 1996) as did RT (Corsi-Carbera et al., 

1996; Lorenzo et al., 1995). 

Additionally, task performance can refer to reaction time, vigilance, or motor tasks. 

In this study, task performance refers also to driving or similar tasks such as train 

driving or piloting. In studies of driver fatigue, the performance measures can refer to 

driver’s performance (Lemke, 1982) or driving performance. Driving performance is 

examined in this study. The time on task effects and performance impairments are 

considered in the context of each variable. 

Driving or piloting tests can be carried out as field or simulator studies. The 

reliability of simulator studies is examined in many other studies. According to the 

review of George (2003), simulators can detect the driving performance in sleepy 

subjects. In the study of Contardi, Pizza, Sancisi, Mondini and Cirignotta (2004), the 

driving performances with a simulator reflected the circadian variations of alertness; the 

conclusion being that simulator was reliable in measuring driver fatigue. The reliability 

of a simulator is increased by the fact that the tunnel vision phenomenon is found to 

occur with time on task also in simulator with monotonous driving task (Rogé, Pébayle, 

Kiehn, & Muzet, 2002). Also the relative energy parameter [(alpha + theta)/beta], which 

is found to increase with time on task (2.5 h) in a daytime field study of car drivers 

(Brookhuis & de Waard , 1993), increased in simulated driving task with sleep deprived 

subjects (Eoh, Chung, & Kim, in press).  

1.1.2. EEG alpha band power 

At rest 

When the eyes are closed, the alpha rhythm (8-13 Hz) is at its greatest (Cantero, 

Atienza, Gomez, & Salas, 1999) in the posterior regions of the brain (Tolonen and 

Lehtinen, 1994; Lang and Krause, 1996; Benca et al., 1999).  

During pre-sleep wakefulness, alpha activity has been found to slow between 0.5 and 

1.5 Hz and diffuse to anterior from posterior regions (Broughton & Hasan, 1995). It can 

vanish progressively during pre-sleep wakefulness and return to more focally 

distributed in awakenings from drowsiness and sleep (Hasan & Broughton, 1994; 

Broughton & Hasan, 1995). More specifically, this rhythm has been found to spread 

from occipital-central to fronto-polar areas during drowsiness (Cantero et al., 1999). 
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The anterior diffusion of this rhythm (8-11 Hz) is denoted to happen also at sleep onset 

(SO) in stage 2 (St 2) (De Gennaro, Ferrara, Curcio, & Cristiani, 2001b). Distributional 

changes of alpha are visible in power too. The vanishing of alpha (8-11 Hz) power in 

the occipital area ends with SO (St 2), when power starts to increase (De Gennaro, 

Ferrara, & Bertini, 2001a; De Gennaro et al., 2001b). Also in an auditory RT task alpha 

(8-12 Hz) power has been found to decrease when behavioural SO (St 2) closed and to 

increase at SO (Ogilvie et al., 1991). 

In sleep deprivation studies the power of alpha has been found to decrease. With 40 h 

of sleep deprivation, alpha (8-12 Hz) decreased with time awake in all scalp locations 

(Strijkstra et al., 2003). In the other study of sleep deprivation (40h), a decrease of alpha 

power (7.5-9.5 Hz) was found with time on task when eyes were closed (Lorenzo et al., 

1995). Similarly, in the study of Barabato et al (1995), relative alpha EEG power (8-12 

Hz) increased after sleep deprivation (23 h), mainly because of the alpha 1 component 

(8-10 Hz). 

At task performance 

The increment of alpha 1 (7.5-9.5 Hz) power with time on task in a sleep deprivation 

study (40 h) was greater during RT task performance than during rest (Corsi-Carbera et 

al., 1996). In the study of Åkerstedt, Kecklund & Knutsson (1991) with shift workers an 

increased amount of alpha power (8-11.9 Hz) was found before and during sleep 

episodes. The alpha power increased also with time on task (Åkerstedt et al., 1991). 

Also within the more driving-specific field-study (4.5 h) with train drivers at night-time 

the increased amount of alpha power was found with time on task; power started to 

increase after 75 min of driving (Torsvall & Åkerstedt, 1987). Instead, in the field-study 

(500 km) with truck drivers composed of evening and night groups, mean alpha power 

density (8-11.9 Hz) did not increase significantly with hours of driving (Kecklund & 

Åkerstedt, 1993). But the increase of alpha power (8-12 Hz) along with driving time has 

been found also in a simulated night-time driving task (350 km; Campagne et al, 2004) 

and in a simulated driving (8-13 Hz; 50 min), performed in the morning after the night 

of sleep deprivation (Eoh et al., in press). In another simulator study, it was found that 

after two hours of driving, slower alpha appeared when the drivers closed their eyes 

(Shiozawa et al., 1995). In a daytime simulator study (60 min) it was found that 

attention lapses defined as, at least, 3 seconds duration of EEG alpha activity (8-12 Hz) 

correlated in frequency and duration with lane position variability and crash frequency 
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(Risser, Ware & Freeman, 2000). As a conclusion, alpha power increases in falling 

asleep episodes and with driving time and it seems possible that it also accompanies 

inadequate driving in driving simulator tasks. 

1.1.3. EEG delta, theta and sigma band powers 

At rest 

Theta activities (3-7 Hz) seem to be largest in amplitude at frontal and central scalp sites 

during drowsiness (Broughton & Hasan, 1995). The power of delta-theta activity (1-3 

and 4-7 Hz) has been found to increase in all areas after St 1 onset, only occipital delta 

increased more slowly (Hori, 1995). In addition to the increase in St 1, the power of 

delta/theta/sigma frequencies (1-7, 12-16 Hz) has been found to increase in St 2 (De 

Gennaro, 2001a). This increasing of power is also found in partly different frequency 

ranges (0.3-3 Hz, 3-8 Hz, 12-15 Hz) when behavioural SO (St 2) closed and at onset 

(Ogilvie et al., 1991). In the study of De Gennaro et al. (2001b), the increase was higher 

at central sites than at other sites about 1 min before SO (St 2). After SO, the increase 

was found at all sites, but mostly at Cz for the frequencies delta, theta, and sigma (1-7, 

12-15 Hz; De Gennaro et al., 2001b).  

The main location of the sigma band (13-15 Hz) is reported to change from parieto-

occipital to fronto-centro-parietal 0.6 min before St 2 (Morikawa, Hayashi, & Hori, 

2002). Also the power of sigma frequencies (12-16 Hz) increased at centro-parietal sites 

after SO (St 2) (De Gennaro, 2001b). 

In a sleep deprivation study (40 h), the power of theta (4-8 Hz) was found to increase 

at fronto-central locations with time at wake (Strijkstra et al., 2003). Similar results 

were found also in another study (Lorenzo et al., 1995). Theta power (4-7.5 Hz) 

increased at all locations with time of sleep deprivation (Lorenzo et al., 1995). Instead 

in the study of Barbato et al. (1995), the relative theta (3.0-7.5 Hz) EEG power did not 

vary before, nor after sleep deprivation (23 h). 

At task performance 

The increment of power in the theta band (4-7.5 Hz) with time on task was greater 

during task performance than at rest in a sleep deprivation study (40 h) (Corsi-Carbera 

et al., 1996). In a study with shift workers (Åkerstedt, 1991), the amount of theta power 
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was found during sleep episodes among night-shift workers. Theta power (4-7.9 Hz) did 

not increase with time on task (Åkerstedt et al., 1991). 

Instead increases in the theta and delta power (0.5-3.9 Hz; 4-7.9 HZ) were found in a 

night-time field-study of train drivers in real surroundings along with driving time (4.5 

h; n = 11; p < 0.01), but despite the delta power was actually significant with alert 

subjects, it was not so with sleepy ones (Torsvall & Åkerstedt, 1987).  

In a field-study with truck drivers (500 km), neither delta nor theta (0.5-3.9; 4-7.9 

Hz) power density/hour changed significantly with hours of driving (Kecklund & 

Åkerstedt, 1993). Similar results to the study of train-drivers were found in driving 

simulator studies. The power of theta (4-8 Hz) was found to increase with driving time 

in a simulated night-time driving task (350 km) (Campagne et al, 2004). In another 

simulator study (2 h), continuous theta persisted and sleep spindles appeared with 

driving time (Shiozawa et al., 1995). As a sum, the increase in power of delta, theta and 

sigma occur with diminishing alertness, when falling asleep or with increased driving 

time. On the basis of this, it seems possible that the increase in power accompanies also 

the occurrence of driving impairments in a simulator task. 

1.1.4. EEG beta band power 

At rest 

Only small amounts of beta with very low amplitude have been found during 

drowsiness (Broughton & Hasan, 1995). The power of beta (17-28 Hz) has been found 

to decrease during the transition from wakefulness to sleep (De Gennaro, 2001a). Also, 

according to another study, beta power (15-25 Hz) decreased when the behavioural SO 

(St 2) closed, but at SO it increased (Ogilvie et al.,1991).  

In a sleep deprivation study of 40 hours, the increase in beta power with hours of 

wakefulness was found in central locations when eyes were closed (Lorenzo et al., 

1995). Similar results were obtained in another research of sleep deprivation (40 h): the 

power of beta band (20-32 Hz) was found to increase at fronto-central locations with 

hours of sleep deprivation (Strijkstra et al., 2003). Also in another study, the relative 

amount of beta power (12.25-16.0 Hz) was increased after 23 h of sleep deprivation 

(Barabato et al., 1995). 
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At task performance 

In task performance it was found that the increment of beta 1 power (13-20 Hz) with 

time on task was greater at task performance than at rest in a study of sleep deprivation 

(40 h; Corsi-Carbera et al., 1996). More specific results of task performance were 

obtained in a field-study with truck drivers (500 km) with evening group (n= 11) and 

night group (n=7) of Kecklund and Åkerstedt (1993). In that study the mean power 

density per hour of beta band (12-14.9 Hz) did not change significantly with driven 

hours (Kecklund, 1993). Contrary results were obtained in a simulator study performed 

in the morning after one night of sleep deprivation: beta power (13-22 Hz) decreased 

with time on task (50 min) (Eoh et al., in press). As a conclusion, falling asleep and 

increased driving time seems to be accompanying the diminishing power of beta. It 

seems possible that in a driving simulator task, the occurrence of impaired driving co-

occurs with diminishing in beta power.  

1.1.5. Blink rate and amplitude 

At rest 

Eye blink can be measured by different methods, for example video, EMG or EOG 

while blink amplitude (BA) is measured as potential changes in the vertical EOG 

channel (BA: Stern, Walrath, & Goldstein, 1984).  

According to the study of Caffier, Erdmann and Ullsperger (2003), the blink rate 

(BR) of spontaneous blinks decreased after one working day. Instead, the proportion of 

long blinks increased after one working day (Caffier et al., 2003).  After 23 h of sleep 

deprivation, blink rate has been found to increase (14 ± 8/min vs. 30 ± 20/min; Barbato 

et al, 1995). Also in another study, the spontaneous blink rate during voluntary and 

reflexive saccade tasks was increased after sleep deprivation (20 h) (Crevits, Simons, & 

Wildenbeest, 2003).  

At task performance 

Blink frequency increased with time in a viewing task (5h) at a visual display terminal 

after 2 hours of viewing in the study of Kaneko and Sakamoto (2001). Also blink 

amplitude increased as a function of time (5h) (Kaneko & Sakamoto, 2001).  
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With more driving specific tasks, in a night-time field-study of driving (1200 km; 

Summala, 1999), the blink rate was found to be higher with a more demanding task; 

blink rate was higher while driving than while being a passenger (30.96 vs. 19.77). 

Blink rate increased as a function of time on task (Summala et al, 1999). Similar results 

were found in a daytime field study of Brookhuis and de Waard (1993) with car drivers 

(2.5 h). BR increased with time on task, but more with task performance than at rest 

(driver compared to passenger; Brookhuis & de Waard, 1993). 

In a simulated setting, blinking has been found to increase in a driving study (2h) 

during day- and night-time (Shiozawa et al., 1995). In the daytime simulated driving-

task, the rate (/30 s) of long blinking (110 % of standard) has been found to represent 

changes in behavioural sleepiness with sleep deprived (24 h) subjects. (Numata et al., 

1998) Also in the night-time simulated driving task it was found that the frequency of 

long eye-blinks (closure >1 s.) was one of the best predicting measures of poor driving 

(Verwey & Zaidel, 2000). 

Blink amplitude was found to predict drowsiness in a simulated flight in the study of 

Morris and Miller (1996). They assumed that the decrease in blink amplitude could be 

due to a lower starting position of the eyelid while being sleepy. Thus, the changes in 

the lid position could reflect changes in attention or arousal and further predict 

performance decrements (Morris & Miller, 1996). 

As a sum, the change in both blink variables seems to co-occur with diminishing 

alertness and with task performance. In simulator study, the occurrence of impaired 

driving could accompany the increase in blink rate and the decrease in blink amplitude.  

1.1.6. Heart rate 

At rest 

Variations of EEG alertness are found to influence cardiac autonomic activity (Ferini-

Strambi et al., 2000). In a study with preadolescents, the heart rate (HR) measured from 

the beat-to-beat interval decreased significantly 30 s before the onset of stage 1 and 30 s 

after the onset of stage 2 (Pivik & Busby, 1996). Also, according to other studies, HR 

decreased from transitions to stage 2 sleep (Burgess, Kleiman, & Trinder, 1999) and it 

was lower (6.64 beats /min) in stable stage 2 sleep than during wakefulness (Burgess et 

al., 1999) or pre-sleep wakefulness (Trinder et al., 2001). In a delayed sleep onset study 
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of 3 h, HR was found to fall at sleep onset, though prominently influenced by the 

circadian rhythm (Carrington, Walsh, Stambas, Kleiman, & Trinder, 2003).  

At task performance 

In a study with shift workers during the nightshift, the HR did not increase with time on 

task (Åkerstedt et al., 1991). With more driving specific tasks in a field-study of train 

drivers (4.5 h) (Torsvall & Åkerstedt, 1987), HR was found to be lower in the night-

time study than in the daytime study. Apart from that, HR did not change with time on 

task in the night-time study (Torsvall & Åkerstedt, 1987). Similar results were obtained 

in highway driving (340 km), where HR did not change along with the distance driven 

(Egelund, 1982). Instead in a daytime field-study of driving (2.5 h), inter-beat-interval 

(IBI) increased significantly after 150 min of driving and co-occurred with behavioural 

changes as the deviation of the lateral position of the car (Brookhuis & de Waard, 

1993). Thus the diminishing of alertness and also the occurrence of impaired driving 

could accompany HR increases. 

1.2. Hypotheses 

In this research the quality of the driving performance was evaluated in a simulated 

driving task to identify changes in the psychophysiological variables preceding 

compromised driving. Errors in driving were assumed to be preceded by changes in 

vigilance level and the change of the alertness state towards drowsiness (Risser et al., 

2000; Campagne et al, 2004, Horne & Baulk, 2004). Driving performance was observed 

by analysing the driving videos in 15.5 s epochs. Driving errors were combined into one 

variable. The dependent variable, the quality of the driving performance, represented an 

ordinal-scale variable. The first category of this dependent variable denoted accurate 

driving. Not more than one minor driving error; crossing the lane marking or near crash 

situation was accepted. Unstable driving consisted of two to three smaller incidents or 

one larger one; driving out of the road and crash, and formed the second category of the 

quality of driving. The third category, deficient driving performance, included several 

larger driving errors in addition to smaller ones. The averages of power of delta, theta, 

alpha, sigma and beta bands, blink rate and amplitude, and heart rate at four time 

segments (epoch; 15.5 s) preceding each of the three driving quality states formed the 

independent variables. 
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The research question was, whether the quality of the driving performance could be 

predicted by psychophysiological changes occurring during a time window covering 

one minute before an event in the driving behaviour, or more specifically during the 

four previous 15.5 s observation epochs analysed separately from this time.  

The stated hypotheses are that the following changes of the psychophysiological 

variables are detectable before driving impairments occur:    

1. increase in delta power  

2. increase in theta power  

3. increase in alpha power   

4. increase in sigma power 

5. decrease in beta power 

6. increase in blink rate  

7. decrease in amplitude of eye-blink  

8. decrease in heart rate 

 

Also research questions concerning the linearity of changes through the three 

categories of driving (stable, unstable and deficient) and the contribution of each 

preceding epoch in predicting the states of impaired driving are examined. 

The differences in the averages of each psychophysiological variable among the 

three driving states are tested at the group level and the prediction of driving states is 

carried out for each individual separately.   
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2. METHODS 

2.1. Experiment 

2.1.1. Design 

The purpose of this study was to investigate how electrophysiological variables could 

predict the quality of driving. Driving was performed continuously for three hours at 

night-time on a simulated environment. The driving performances of 9 subjects were 

analyzed on the basis of the observational data recorded on videotapes. Based on the 

driving errors, each 15.5 s epoch was defined to represent accurate, unstable or deficient 

states of driving. This categorization formed the dependent variable. Independent 

variables were band powers of the EEG measured at the Oz channel, blink rate and 

blink amplitude based on the vertical EOG channel, and heart rate. The statistical 

analyses were conducted with MANOVA tests across subjects and with logistic 

regression analysis at the subject level. 

2.1.2. Participants 

Participants (n = 9; 5 women) were recruited by an advertisement among students. Their 

age were 20 to 27 and average 23.7 ± 2.1 years. They all had driving licence and they 

were all, except one, right-handed. They were healthy and did not have any severe sleep 

problems according to the questionnaire of BNSQ (Basic Nordic Sleep Questionnaire; 

Partinen & Gislason, 1995). Others but one subject had the ESS (Epworth Sleepiness 

Scale; Johns, 1991) scores (n = 8; range 3-4; av, SD: 7 ± 3 points) in normal range (≤ 

10). Volunteers slept in average 8.6 ± 0.9 hours and their usual bedtime was at noon (≈ 

23-01) on workdays. One subject had a night work and usually he went to sleep in the 

early morning. Subjects drove less than once a week to 3-5 times per week. The 

majority (7) of them drove less than once a week, but more than once a month. Six of 

them drove less than 5000 km/year, the others 5000-15000 km/year. 

Participants were asked to try to stay awake the night before the experiment. This 

was done in order to induce falling asleep events during the experimental driving. 
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Accordingly, the total hours of sleep in the night before the experiment were 0-3.5 h 

(av, SD 1.3 ± 1.4). Consumption of caffeine products were not allowed 24 h before the 

experiment and alcohol or drugs for 48 h before the experiment. One subject had drunk 

a cup of tea during the night of sleep deprivation. 

The experiment was described to the participants but the purpose of inducing falling 

asleep episodes was not explained to them for reasons of validation. Subjects signed an 

informed consent and as a reward for their participation they received 23 euros.  

2.1.3. Simulator 

The simulator consisted of steering wheel, break and gas pedals. The seat of the driver 

was a comfortable office chair. The simulator software was the Nascar Racing 2002: 

Season (A Papyrus Racing Games Inc. Software distributed by Sierra Entertainment 

Inc.) and it was run under Windows 2000. The simulated driving was performed in a 

closed oval track, which had the form of a stadium. The direction of driving was counter 

clockwise. There were line markings on the left and right sides of the track. On the right 

side of the track there was a wall and on the left side a grass area. The steering wheel 

provided force feedback while driving against the wall or on the grass area. On the 

track, there was no other traffic and the conditions did not change during the task. This 

helps to make the driving monotonous and sleep inducing. A similar method has been 

used lately in other studies (Campagne et al., 2004; Contardi et al., 2004).  

2.1.4. Setting 

The game was back projected on a screen (1080 x 924 millimeters) in the front of the 

driver at a distance of 1.25 m. On the front right of the driver there was a camera 

recording his/her face. Other camera was situated behind the driver. It was directed to 

the view of the simulated driving environment. The images of these two cameras and 

the electrophysiological data from DSAMP (i.e. the Oz EEG channel, the horizontal 

EOG channel, and skin potential) were mixed into the same screen by a video mixer and 

recorded on video tape. Thus the recorded video images consisted of simultaneous 

information from these three different sources for the observational analysis of the 

driving and verification of some variables.  
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2.1.5. Procedure 

Each participant was tested in separate nights. Participants arrived at the laboratory 2-3 

hours before their usual bedtime, in the night after the night of sleep deprivation. First 

they signed the informed consent and filled the questionnaires concerning their sleeping 

(ESS, BNSQ) and driving habits. Then the heart rate, EOG and EEG electrodes, the 

respiration strain gauge band, and the skin potential electrodes were attached. Attaching 

the measuring equipment took 1.5 to 3 hours. After that, the subjects went over to the 

driver seat in the front of the screen where the simulated environment was projected. 

The video cameras directed towards their faces and to the driving environment were 

adjusted. Subjects were told that they could practise a little and that they were expected 

to drive and respond to the lights. A target driving speed (70 m/h) and the functioning of 

the lights of the reaction time task were explained to the subjects. Then, the participants 

practised as long as they felt they needed to accustom themselves to driving with the 

simulator and responding to the reaction time task (about 15 min).  

After the practice, the sound level on the earphones was adjusted for the auditory 

oddball task. Then the instructions for the experimental driving session were given. The 

instructions indicated that the subject should react to the lights of the reaction time task 

as fast and accurately as possible and drive at the target speed. Subjects were explained, 

that the sounds of driving were turned off for the experimental purposes and they were 

advised not to pay attention to the sounds of the oddball task. Participants were asked to 

restrict the movement of the left hand to avoid artefacts. They were also encouraged to 

drive even if they would start to feel sleepy. The experimental session lasted as long as 

the subjects thought they were able to continue but the purpose was to drive for three 

hours. The subjects were not allowed to wear watches during the experiment and neither 

were they allowed to get any information about the elapsed driving time. 

2.1.6. Recording  

The EEG channels were recorded using the international 10-20 system (Jasper, 1958). 

The following EEG channels were recorded: Cz, C3, C4, Fz, F3, F4, Oz, M1 and M2. 

Recording was done through a monopolar connection, where the tip of the nose was 

used as a reference. The type of a cap was an ElectroCap and the electrodes were 
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Ag/AgCl. The horizontal EOG was recorded 1-2 cm from the corner of the left eye. The 

vertical EOG was recorded 1 cm above the left eye. These EOG channels were also 

referenced to the nose. The EOG electrodes were disposable Neuroline Ag/AgCl 

electrodes type 725 01– K and were filled with ElectroGel as a conductive. Input signal 

was calibrated with 100 μV and 5 Hz. 

The EEG and EOG signals were amplified with a gain of 50 000 and filtered by an 

analogue bandpass filter with 0.3 s time constant. Passed frequencies were from 0.53 Hz 

to 35 Hz. The signals were further converted with a sampling rate (digitizing frequency) 

of 200 Hz and recorded on hard disk through the D-samp software.  

For heart rate recording, the ground electrode was placed on the right side of the 

abdomen, just under the undermost rib. Two electrodes were placed on the left side of 

the upper and lower part of the chest and vertically in line. These electrodes were Blue 

Sensor disposable clip ECG electrodes. The heart rate signal was acquired through a 

cardiotachograph, sampled at 200 Hz and recorded through D-samp. Impedances of 

each of the electrodes (EEG and EOG) were 5 kΩ or less. 

In this experiment, reaction time (RT), mismatch negativity (MMN), respiration rate 

and skin potential were also measured. In addition to the driving task, subjects 

performed continuously a visual reaction time task. In the reaction time task four diodes 

were placed on the sides of the screen, two on the left and two on the right side. 

Switching of the light varied randomly between the sides of the screen, the colours of 

the light, and the inter-stimulus-intervals (ISIs). Responding to this task was done by 

pressing two buttons placed on the steering wheel with the right thumb. The subject 

took part simultaneously in an auditory oddball task. In this task, the subject heard 

sounds for eliciting the MMN via earphones which he was wearing while driving. The 

MMN inducing sounds were presented as different segments, which had a duration of 

31.250 s. This duration determined the basic time unit of the analysis; half of the trial 

named as epoch was used in the analysis. Respiration was measured around the chest 

and skin potential from the left index finger. The results of RT, MMN, respiration rate 

and skin potential are not reported here. 
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2.1.7. Variables 

EEG-data of Oz-channel was divided off-line into the bands of delta (0.5-4.0 Hz), theta 

(4.0-8.0 Hz), alpha (8.0-12.0 Hz), sigma/spindle activity (12.0-14.0 Hz) and beta (14.0-

30.0 Hz) (Hasan, 1994; sigma: Tolonen & Lehtinen, 1994). Spectral analysis in the 

frequency-domain was done with a Fast Fourier Transform (FFT) algorithm. Absolute 

power of the FFT for every epoch with the used bandwidths was calculated.   

Eye blinks were analyzed on the basis of the vertical EOG (EOGV) channel. On the 

vertical channel, blinks are seen as amplitude changes (Stern et al., 1984). 

Correspondence in amplitude change between the vertical and horizontal channels was 

assured from print-outs. Then the similarity between horizontal amplitude change and 

the observational data of the driver’s eyes via video was verified. Thus, the 

observational blinks coincided with the amplitude change on the EOGV channel. Direct 

verification of correspondence between the amplitude change of the EOGV channel and 

with the observational data was not possible, because only the EOGH channel was 

mixed into the same picture with the drivers face.  

Blinks were defined by using a threshold on the vertical EOG channel in an offline 

computerised analysis. The number of blinks per minute was counted for every epoch 

on the basis of the spikes in the EOGV channel. Unfortunately blinks overloaded quite 

often the EOGV channel, which caused that the real amplitude of those blinks could not 

be calculated. Thus, blink amplitude was counted only for those blinks, which did not 

overload the vertical channel.  

In addition, the average heart rate was counted for every epoch. 

2.2. Observational measures  

2.2.1. Incident types of impaired driving 

Videos of the driving were analyzed by observing the quality of driving 

performances. Analysis was based only on the driving errors; driving impairments are 

often used as a measure in driver fatigue researches (George, 2003; Horne et al., 2004; 

Eoh et al., in press). The analyzed segment was one epoch and had the duration of 

15.625 s (31.250/2) (Chapter 2.1.6). Because of the limits of the video cassette recorder 
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the epoch had in practice the duration of 15.5 ± 0.5 s. In analyzing the quality of the 

driving performance, obvious driving errors which were considered at least as a sign of 

impaired attention unless the sleepiness of the driver, were marked. Driving 

impairments are defined often as the crossing of the lateral lane marking (Horne & 

Baulk, 2004), or more specifically crossing of the emergency line on the left or the 

white line on the right (Campagne et al., 2004). The obvious error incidents were 

chosen to be two wheels out of the road, four wheels out of the road, near crash and 

crash (table 1). The former two took place on the left side of the track and indicated that 

the driver had crossed the line marking on his left side. In the case of four wheels out of 

the road, the yellow line was crossed totally, before it was marked as an incident. The 

latter two incident types took place on the right side of the road. A crash was marked 

when the car seemed to touch the wall. Beside the wall, there was a shadow. When the 

car had crossed half of this shadow, a near crash was marked. All but one subject (6) 

chose to drive clearly on the left side of the road. Despite of that each of the subjects 

was included in the analyses. 

TABLE 1. Description of driving errors observed from driving videos of the subjects in the time 
unit of epoch (15.5 s) 
Driving errors on the left side of the road include cases when two wheels (2W) or all wheels (4W) of the 
car were over the left side line. Driving errors, which occur on the right side of the road, include driving 
errors near crash (NC) and crash (C). 

Driving error Description 

 

Two wheels off the road (2W) 

 

When the car had crossed the yellow line on the left side of the car so 

that the line is not visible until the point when the line is partly visible 

Four wheels off the road (4W) When the car had crossed the yellow line on the left side of the car, so 

that the yellow line was visible on the right side of the car wholly to 

the point when yellow line was visible only partially  

Near crash (NC) When the car was in the area from the half of the shadow before the 

wall to the wall on the right side of the track 

Crash (C) From the point when the car touched the wall on the right side of the 

track to the point when it separated from the wall 

  

The duration of the incidents was measured. When an incident started during one epoch 

and continued in the next epoch, the time of the incident was measured per each epoch. 
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The interconnections of the driving errors were marked meaning whether the errors 

occurred separately or in series. This was important, for example in the cases of the 2W 

and NC, which can occur separately, or preceding and following 4W and C. In uncertain 

classification cases, the more severe category was chosen (table 1).  

2.2.2. Evaluation of the incidents during epoch 

After marking the quality and the duration of the driving errors, the episodes were 

weighted within every single epoch. 2W and NC were valued equally in severity and 

were combined into one category. Similarly 4W and C were combined to form another 

category. For both of these categories (2W/NC and 4W/C) the maximum amount of 

points during one epoch was decided to be three (table 2). 

Some incidents of driving errors were single ones and could easily be defined to 

represent either one of these categories. Naturally, category 4W/C included also 

category 2W/NC twice as intermediate state. For avoiding overrating of error incidents, 

the state of 2W/NC was not valued when it occurred together with 4W/C and lasted 5 s 

or less.  

The single incidents during one epoch were valued according to their duration. An 

incident that lasted 5 seconds or less was scored with one point, an incident lasting 10 s 

or less was scored with two points and an incident lasting 15 s or less was scored with 

three points. The number of points for the categories of 2W/NC and 4W/C during one 

epoch was also based on the occurrence rate of incidents. It was possible to get two 

points also from two different incidents, which lasted 5 s or less. Similarly it was 

possible to get three points from three or more different incidents that lasted 5 s or less. 

The combination of occurrence and duration was possible while evaluating the epochs. 

For example, a combination of longer (> 5 s) incident and shorter (< 5) incident would 

yield a value of three points. 

An intermediate state of 4W/C is 2W/NC and it was valued when it had a duration 

over 5 s. This was so because 5 s or less was estimated to be the normal time in the area 

before or after 4W/C. Therefore, when the time in that intermediate state was over 5 s 

but under 10 s, the category 2W/NC was scored with one point. Similarly, when time in 

that area was over 10 s, the category 2W/NC yielded two points. At times there was an 

incident, which included both categories alternating 2W/NC and 4W/C. In those cases 
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the time limit of the intermediate state was considered only once during the same 

2W/NC, even if that 2W/NC would be between two 4W/Cs. In that case, the time was 

excluded from the seconds after 4W/C and not before the next 4W/C. As an example, in 

the case of 2W-4W-2W-4W-2W, from the duration of every 2W the time limit of the 

intermediate state was excluded. So from the first 2W the latest 5 s, from the middle 2W 

the first 5 s and the last 2W the first 5 s were not valued. If there was any seconds left 

after these exclusions for category 2W/NC, they were weighted according to the normal 

rules of category 2W/NC.  

The points were given for that epoch during which parts of the incidents occurred. In 

cases when there was a change of epoch during the incident, the same seconds were 

never weighted twice to avoid overrating of time. The duration of an epoch was divided 

into 5 s segments and points were given to that epoch during which that 5 s (or less) 

segment started. An example: An incident lasted 8 s. First 2 s occurred during the 

previous epoch and the last 6 s during the latter epoch. The incident was segmented into 

five seconds’ segments. The first segment had the durance of 5 s and the latter 3 s. The 

first segment started during the former epoch and the last segment during the latter 

epoch. So the both epochs yielded one point. In other cases when the epoch included 

four incidents with one incident continuing after an epoch change, the criteria 

mentioned above was followed. The former epoch got three points because of three 

single incidents. The fourth incident was segmented into five seconds’ segments. 

However, because the maximum amount of points for one category during each epoch 

was three, the first five seconds of the incident did not increase the points of the former 

epoch. The latter epoch got the possible points of the next segments of 5 s. 

Incidents during one epoch were evaluated by adapting the above mentioned criteria 

(table 2) and the segmentation of incident was considered when there was an epoch 

change during an incident.  
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TABLE 2. Criteria for evaluating the severity of the driving incidents  
Driving errors were divided into two categories: two wheels out of the road/near crash (2W/NC) and four 
wheels out of the road/ crash (4W/C). The severity of the incident was rated according to the duration and 
frequency of the incidents. 

Category Rating Description 

   

2W/NC 1 Single incident of 2W/NC lasting 5 s or less. An intermediate state during the 

incident of 2W/NC preceding or following 4W/C and lasting 10 s or less. 

 2 Single incident of 2W/NC lasting 10 s or less. Two incidents of 2W/NC 

lasting 5 s or less. An intermediate state during the incident of 2W/NC 

preceding or following 4W/C and lasting 15 s or less. 

 3 Single incident of 2W/NC lasting 15 s or less. Three or more incidents of 

2W/NC lasting 5 s or less. 

   

4W/C 1 Incident of 4W/C lasting 5 s or less.  

 2 Incident of 4W/C lasting 10 s or less. Two incidents of 4W/C lasting 5 s or 

less. 

 3 Incident of 4W/C lasting 15 s or less. Three or more incidents of 4W/C 

lasting 5 s or less. 

 

2.2.3. Categories of driving quality 

A summed variable was formed from the types of driving errors (2W/NC and 4W/C) for 

each 15.5 s epoch. The coefficient for 4W/C was chosen to be 2.5 which means that 

4W/C was estimated to be 2.5 times more severe incident type than 2W/NC. Thus the 

function for summing the incidents was 2.5 * 4W/C + 2W/NC. Theoretical range for the 

summed variable is 0-10.5, but the actual range was 0-8.5.  

The division into three states of driving quality was carried out by cluster analysis. 

The values of the summed variable of each subject were combined into one variable. 

Then the number of cluster centres was set to three, and the epochs were divided into 

clusters which had ranges 0-1, 2-3.5 and 4.5-8.5 of the summed variable. The division 

of the epochs based on the cluster analysis seemed to be reasonable, so the ranges were 

accepted. The three formed categories of driving quality were named as accurate (state 

1), unstable (state 2) and deficient stage (state 3). Cluster values were returned to the 

subject level. For data analysis, the first 10 minutes of data (from 41. epoch) for each 
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subject were eliminated. This excluded the time when the subjects, despite the 

familiarization period, could still be getting used to drive on the simulator. 

2.3. Statistical analysis 

A statistical analysis was carried out across subjects to test whether the variables 

differed in the three states of driving quality. At the subject level, analyses were carried 

out to test which variables could predict the unstable and deficient states of driving. The 

categorisation of driving quality was defined as that of epoch0. The averages of the 

variables during these epochs were not included in the analyses because they could 

contain also arousal effects caused by the incidents. The averages of variables which 

occurred one epoch before epoch0 were used as independent variables as well as the 

variables which took place two, three and four epochs before epoch0. Those epochs were 

denoted as epoch-1, epoch-2, epoch-3 and epoch-4. The statistical analyses were carried out 

with the SPSS -program (v.12.0). Comparing the means of the independent variables 

(psychophysiological variables) among all three driving quality states (dependent 

variable) was carried out with MANOVA as GLM-procedure for repeated measures. 

Two subjects (subj. 3 and 5) did not have any epochs classified as deficient state and 

they were not included in the MANOVA analysis of averages in the three categories of 

driving. Because of that, a separate MANOVA was also carried out for all subjects 

between accurate and unstable states of driving. The significant or near significant 

variables (p < 0.1) within different states of driving quality were further analyzed with 

paired samples t-test (compared pairs: accurate vs. unstable states and accurate vs. 

deficient states).  

The analysis for predicting the driving quality was done with logistic regression 

analyses. Choosing logarithmic regression as an analysis tool instead of linear 

regression is supported by the more liberal assumptions of logistic regression analysis 

for differences of variances and correlations among the dependent variables 

(Metsämuuronen, 2003). However, the logistic regression analysis measures only the 

association between dependent and independent variables; the analysis itself does not 

predict the dependent variable (Metsämuuronen, 2003).  Instead the predicting element 

was captured with independent variables, which were averages of variables during 

epochs occurring earlier than the dependent variable. 
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In the logistic regression analyses, accurate driving was included either with unstable 

driving or with deficient driving to form the two categories of the dependent variable 

(table 3). The sole effect of each independent variable four epochs earlier (variables of 

epoch-4) than the values of the dependent variable were tested. Two subjects (3 and 5) 

had not any epoch classified into the deficient state and they were not included in the 

analyses where deficient state of driving was used as one of both categories of the 

dependent variable. 

The logistic regression analyses were done for both pairs of dependent variables 

separately. Significant variables (sig. ≤ 0.05) of epoch-4 (theta-4, delta-4, alpha-4, sigma-4, 

beta-4, BR-4, BA-4 and HR-4) for every subject were further fed one at a time into the first 

block of the logistic regression analysis. The other variables of epoch-4 formed the 

second block. Third block consisted of values of variables at the time of epoch-3 

(similarly, theta-3, delta-3, alpha-3, sigma-3, beta-3, BR-3, BA-3 and HR-3) 4th block of 

variables at time of epoch-2 and 5th block of variables at time of epoch-1. The variable of 

the first block was entered into the model; in other blocks, the variables were fed using 

the forward Wald method. This procedure was performed with every subject in order to 

find the best personal predictors for unstable and deficient states of driving. Analysis 

covering the minute (62.250 s; epoch-1, epoch-2, epoch-3, and epoch-4) before epoch of 

incident presented the averages of variables of four epochs (table 3).  

The logistic analyses tested the difference of the Wald statistic from zero, with the 

significance level of 0.05. In tables 8 and 9, the logistic analyses with multiple variables 

show the final significant models which had significant step, block and model values. 

The significance level of the model, the Nagelkerke R2 and the percentage of 

classification accuracies are presented. The variables in this final model and their 

significances are shown. The direction of the effect, β-coefficient, is signified as + 

(increased) or – (decreased) sign. The values of β-coefficients, its standard errors, the 

values of Wald or degrees of freedoms are not presented because the sign of the β-

coefficient was considered to include sufficient information for the purposes of this 

study. Similarly the odds ratios are not reported.  
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TABLE 3. Logistic regression analyses of variables  
Logistic regression analyses were initially carried out with single variables, which took place four epochs 
(epoch = 15.5 s) earlier than the values of the dependent variable. Those variables of epoch-4 of each 
subject were entered one at a time into the analyses. Then the significant variables were entered one at 
time into the first block of the next logistic analyses. The rest of the variables of epoch four were fed into 
the next block of the analyses. Each of the variables which happened three epochs before the driving 
impairment were fed into the 3rd block. The 4th block contained the variables which happened two epochs 
earlier. And, the variables of the epoch prior to the dependent variable were fed into the 5th block. The 
enter method used in blocks 2 - 5, was stepwise forward Wald. The analyses were carried out for each 
subject. 

Logistic 
regression 
analysis 

Block 1 
 

 Block 2 
 

Block 3 
 

Block 4 
 

Block 5 
 

       
1. With 
single 
variables, 
one at a time 

delta-4, theta-4, 
alpha-4, sigma-4, 
beta-4, BR-4, 
BA4, HR-4 

     

           
 

     

2. With 
multiple 
variables 

The 
significant* 
variables at 
time of epoch-

4, one at time 

 The rest of 
the variables 
at time of 
epoch-4 

All variables 
at time of 
epoch-3 

All variables 
at time of 
epoch-2 

All variables 
at time of 
epoch-1 

                                                 

 

 

 

 

 
* p ≤ 0.05 
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3. RESULTS 

3.1. Frequencies of driving quality states 

In this experiment the amount of analyzed epochs was 5398, representing 23 h 14 min 

(table 4). The number of epochs for most of the subjects was over 600. One subject had 

only 145 epochs (subject 2). The percentage of epochs classified as accurate state of 

driving was 70.2 %. In addition, this state was, for most of the subjects, the one which 

had the highest frequency of epochs. Only one subject had more epochs in unstable state 

than in accurate state (subject 6). The number of epochs in accurate state varied 

individually. Subjects 3, 5 and 8 had 94.1 % or more of the epochs in accurate state and 

subjects 1, 6 and 9 had fewer than 50 % of the epochs classified into this state. 

Into unstable state were classified 21.5 % of all epochs. The number of epochs varied 

from 16 to 292 and in percents from 3.6 % to 43.8 % (subjects 8 and 6). Subjects can be 

divided into two different groups based on the amount of epochs classified as unstable 

driving. One group (subjects 1, 4, 6, 7 and 9) had over 115 epochs classified as unstable 

driving, while the other group (subjects 2, 3, 5 and 8) had less than 29. Subject 2 had a 

small amount of epochs in state of unstable driving partly because of the shorter 

duration of the experiment. 

The total amount of epochs in deficient state was 6.9 % of all epochs. Number of 

epochs varied from 0 to 168, in percents from 0 to 25.2 %. Together five subjects had 

none (subjects 3 and 5) or less than five epochs classified as deficient (subjects 2, 4 and 

8). 

Three subjects had a short break during the driving; two due to technical reasons 

(subjects 2 and 7) and one to ergonomic ones (subject 8). Thus the amount of missing 

epochs was 70 (1.3 %; table 4). 
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TABLE 4. The frequencies and percentages of epochs in each of the three categories of driving 
quality  
The epochs were divided into three quality states of driving performance (accurate, unstable and 
deficient) on the basis of cluster analysis of the summed variable. Summed variable represents the sum of 
the driving errors during one epoch. Ranges of the summed variable, the frequencies over and within 
subjects in these three driving quality states are presented. The category ‘All’ includes the frequencies in 
three driving quality states and the number of missing epochs.   

 Accurate Unstable Deficient Missing All 

Range of the 

summed 

variable 

0-1 2-3.5 4.5-8.5 − 0-8.5 

Subject f % f % f % f % f % 

           

1 269 42.7 257 40.8 104 16.5 - - 630 100.0 

2 117 80.7 16 11.0 2 1.4 10 6.9 145 100.0 

3 639 96.1 26 3.9 - - - - 665 100.0 

4 544 81.9 116 17.5 4 0.6 - - 664 100.0 

5 636 95.8 28 4.2 - - - - 664 100.0 

6 206 30.9 292 43.8 168 25.2 - - 666 100.0 

7 437 65.6 156 23.4 25 3.8 48 7.2 666 100.0 

8 626 94.1 24 3.6 3 0.5 12 1.8 665 100.0 

9 316 49.9 248 39.2 69 10.9 - - 633 100.0 

Total 3790 70.2 1163 21.5 375 6.9 70 1.3 5398 100.0 

 

3.2. The driving quality with time on task 

Occurrence of driving performance in states of accurate, unstable or deficient driving 

(respectively states 1, 2 and 3) within the subjects was basically similar (figure 1). In the 

beginning of the experimental driving epochs belonged most frequently to the accurate 

state (state 1). Usually the frequencies of unstable state (state 2) started to increase 

during driving. This was the case for subjects 1, 3 and 8. Subject 9 had not so obvious 

increase in the occurrence of unstable driving with time. For some subjects the amount 

of epochs in deficient state (state 3) increased while the driving task proceeded. For 

subjects 1 and 9 this increasing was detectable in the figures, even though with subject 9 
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the amount of epochs in deficient state is quite high already before the middle of the 

experiment (figure 1). 
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FIGURE 1. Driving quality in time 
Occurrence of three different driving quality states as a function of driving time presented as epochs (15.5 
s) in subjects 1, 3, 8 and 9. State 1 signifies the state of accurate driving, state 2 the unstable driving and 
state 3 the deficient driving. State number 0 signifies the interruptions during experiment. Numbering of 
the epochs starts in the beginning of the analysed driving (after 10 min 25 s of driving). 

3.2.1. Averages of variables across subjects 

The differences in the averages of variables across subjects through the three states of 

driving quality were tested with MANOVA. This analysis included 7 subjects because 

subjects 3 and 5 did not possess any epochs classified as deficient driving state. Beta-4 

was the variable, which reached significance (p = 0.015). Delta-2, alpha-2, and alpha-4 had 
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significance below 0.1 and they were analyzed together with beta-4 with paired samples 

t-testes. None of these variables reached significances in the t-testes. A MANOVA was 

also carried out for accurate and unstable states of driving. This was done in order to 

include each subject in the analysis to increase the sample size of unstable driving 

quality. There were no significances in the averages of any variable across subjects.  

The averages, over subjects, of the variables in the three driving quality states seem 

to differ in spite of insignificances in MANOVAs (table 5). The values of three of the 

delta increased from accurate to unstable state and further to deficient state. The EEG 

power in all theta variables decreased from accurate to unstable and increased from 

unstable to deficient in all four variables, in three variables of alpha and sigma power 

and in two beta variables. Concerning the BR it increased from accurate to unstable 

state and decreased from unstable to deficient. BA decreased in two variables from 

accurate to unstable and increased from accurate to deficient. HR decreases from state 

to state towards deficient state in two variables. The standard deviations of the EEG 

variables are larger than the average value. This is also true for other variables (table 5), 

which affects the significances of the analyses. 

3.3. Logistic regression analyses on individual data 

Logistic regression analyses were carried out for single independent variables at the 

time of epoch-4. The dependent variable consisted of accurate state of driving either with 

unstable or deficient state. A separate analysis was carried out for each individual. 

3.3.1. Accurate and unstable states 

Logistic regression analyses were carried out with the following independent variables: 

theta-4, delta-4, alpha-4, sigma-4, beta-4, BR-4, BA-4 and HR-4. The dichotomous dependent 

variable was driving quality state with accurate and unstable states of driving as 

categories (table 6). The number of significant variables at the subject level ranged from 

1 to 4. For subject 1 the variables alpha-4, sigma-4, BA-4 and HR-4 had significant (p ≤ 

0.05) effect on predicting the accurate and unstable driving quality states. For subject 2 

there was only one variable, theta-4, which was significant. Subject 3 had sigma-4 and 
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TABLE 5. Averages of the variables according to driving quality states 
The averages of every variable with standard deviations are presented in three different driving quality 
states: accurate (St 1), unstable (St 2) and deficient (St 3). The index in the name of the variables refers to 
how many epochs (epoch = 15.5 s) before the driving quality definition the average of variable is 
counted. The unit of EEG variables (delta, theta, alpha, sigma and beta) is μV2, with blink rate (BR) and 
heart rate (HR), the rate in minute and with blink amplitude (BA) µV.   

 Accurate state Unstable state Deficient state 

Variables Mean SD Mean SD Mean SD 

delta-1 688 255.0 671 427.2 691 393.9 695 083.4 828 148.2 993 331.7 

delta-2 685 309.9 680 035.9 704 965.2 664 894.8 721 701.1 693 685.3 

delta-3 687 147.7 676 931.2 674 516.9 672 814.1 833 776.4 839 712.6 

delta-4 690 093.5 675 301.4 699 985.9 708 629.5 818 881.0 722 426.3 

theta-1 581 004.0 1 564 334.5 572 272.4 1 535 787.4 710 580.6 1 689 699.2 

theta-2 580 331.7 1 561 166.9 574 396.6 1 547 636.2 712 641.8 1 709 306.7 

theta-3 582 680.2 1 567 789.2 562 612.6 1 510 650.1 681 964.1 1 621 548.7 

theta-4 582 710.1 1 569 449.4 557 658.2 1 487 559.3 770 217.5 1 815 308.2 

alpha-1 224 402.3 595 389.5 222 735.1 583 450.0 282 817.8 662 184.6 

alpha-2 223 728.8 592 146.6 228 385.6 604 521.3 278 985.1 649 410.6 

alpha-3 225 009.7 596 795.7 219 097.1 574 360.4 266 646.0 618 979.6 

alpha-4 224 382.2 595 139.1 218 947.4 573 243.3 321 392.8 751 265.9 

sigma-1 79 914.0 219 957.3 76 076.5 207 984.7 97 679.2 237 993.5 

sigma-2 79 763.9 219 460.3 76 636.1 209 607.9 101 652.4 248 845.2 

sigma-3 79 993.0 220 273.1 77 423.2 211 738.3 77 397.0 185 741.2 

sigma-4 79 780.9 219 944.6 78 383.0 214 578.9 86 513.7 206 387.8 

beta-1 151 971.0 373 611.9 150 854.4 365 082.1 191 363.0 433 547.4 

beta-2 151 600.3 372 776.1 152 475.9 370 496.1 182 134.5 406 895.4 

beta-3 152 204.9 375 553.4 142 091.6 344 959.4 185 912.3 416 100.0 

beta-4 150 719.7 370 597.4 151 075.1 368 601.5 224 692.6 510 685.6 

BR-1 27.1 12.0 28.3 14.5 26.3 10.5 

BR-2 26.9 12.1 28.6 14.8 24.2 14.7 

BR-3 27.0 12.0 28.4 14.3 22.7 13.5 

BR-4 26.9 12.0 29.3 14.8 27.7 19.5 

BA-1 267.8 51.8 267.3 50.4 275.2 35.7 

BA-2 268.1 52.7 265.3 47.8 267.8 34.9 

BA-3 267.5 51.9 266.6 48.4 259.4 41.0 

BA-4 267.0 51.9 269.4 46.6 281.9 39.6 

HR-1 66.7 16.2 66.4 16.4 67.4 15.9 

HR-2 66.6 16.2 66.5 16.5 66.1 17.2 

HR-3 66.6 16.2 66.3 16.4 65.5 16.7 

HR-4 66.5 16.3 66.7 15.8 66.3 18.9 
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BR-4, which predicted significantly the quality of driving. Subject 4 had theta-4, alpha-4 

and BR-4, and subject 5 had only BA-4 predicting driving quality. Sigma-4 and beta-4 were 

significant predictors for subject 6, while theta-4, BR-4 and HR-4 predicted significantly 

the driving of subject 7. For subject 8, theta-4, BR-4, BA-4 and HR-4 were significant. 
Sigma-4 was the only variable that predicted the driving quality for subject 9 (table 6). 

TABLE 6. Logistic regression analyses of single variables with accurate and unstable driving 
quality states  
The logistic regression analyses were carried out for independent variables theta-4, delta-4, alpha-4, sigma-4, 
beta-4, BR-4, HR-4 and BA-4. Values of those variables were the averages of 15.5 sec epochs, which 
occurred four epochs earlier than the values of driving quality, when accurate and unstable driving states 
formed the dependent variable. The analyses were carried out within subjects. In the table are presented 
the significances of the variables entered in the logistic regression analyses. 

Subject delta-4 theta-4 alpha-4 sigma-4 beta-4 BR-4 BA-4 HR-4 

         

1 0.709 0.055 0.002* 0.000* 0.132 0.834 0.001* 0.000* 

2 0.299 0.018* 0.075 0.488 0.894 0.692 0.653 0.097 

3 0.867 0.316 0.706 0.025* 0.864 0.038* 0.210 0.312 

4 0.312 0.015* 0.002* 0.169 0.062 0.001* 0.419 0.353 

5 0.226 0.458 0.270 0.937 0.634 0.068 0.015* 0.268 

6 0.901 0.781 0.356 0.036* 0.034* 0.490 0.420 0.099 

7 0.170 0.003∗ 0.116 0.272 0.298 0.008* 0.799 0.003* 

8 0.989 0.001* 0.087 0.060 0.246 0.000 0.000* 0.019* 

9 0.756 0.474 0.063 0.021* 0.407 0.982 0.544 0.095 

                                                 

 

 

 

 

 
∗ p ≤ 0.05 

 

3.3.2. Accurate and deficient states 

Logistic regression analyses were also carried out in which accurate and deficient state 

formed the two categories of the dependent variable, and theta-4, delta-4, alpha-4, sigma-4, 

beta-4, BR-4, BA-4 and HR-4 independent variables (table 7). Two subjects (3 and 5) were 
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excluded from the analyses because they did not possess any epochs classified as 

deficient driving quality. 

For subject 1, the significant variables predicting accurate and deficient states were 

alpha-4, sigma-4, BA-4 and HR-4. Alpha-4 was significant also for subject 2. Subject 4 had 

theta-4, alpha-4, sigma-4, beta-4 and HR-4 as significant variables. Subject 6 did not have 

any variable, which significantly predicted accurate and deficient driving states. For 

subject 7, alpha-4 and HR-4 were significant variables.  Almost each of the variables 

predicted the driving quality for subject 8. These were theta-4, alpha-4, sigma-4, beta-4, BR-

4, BA-4 and HR-4. Instead, subject 9 did not have any variable significantly predicting 

driving quality (table 7). 

TABLE 7. Logistic regression analyses of single variables with accurate and deficient driving 
quality states  
The logistic regression analyses were carried out with the independent variables theta-4, delta-4, alpha-4, 
sigma-4, beta-4, BR-4, HR-4 and BA-4. These variables were the averages of 15.5 sec epochs, which occurred 
four epochs earlier than the values of driving quality state. The driving quality states accurate and 
deficient driving formed the two categories of the dependent variable. The analyses were carried out 
within subjects. In the table are presented the significances of the variables entered in the logistic 
regression analyses. 

Subject delta-4 theta-4 alpha-4 sigma-4 beta-4 BR-4 BA-4 HR-4 

         

1 0.230 0.630 0.001* 0.000* 0.412 0.113 0.000* 0.000* 

2 0.824 0.631 0.03* 0.054 0.061 0.803 0.168 0.252 

4 0.891 0.010* 0.028* 0.046* 0.049* 0.701 0.652 0.035* 

6 0.596 0.207 0.253 0.703 0.624 0.151 0.631 0.761 

7 0.667 0.272 0.032* 0.834 0.073 0.241 0.300 0.021* 

8 0.164 0.000∗ 0.024* 0.006* 0.010* 0.00* 0.004* 0.008* 

9 0.949 0.673 0.494 0.126 0.361 0.908 0.870 0.103 

                                                 

 

 

 

 

 
∗ p ≤ 0.05  
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3.4. Logistic regression analyses with multiple variables 

Logistic regression analyses were carried out using the significant variables of the 

univariate logistic regression analyses. Each of them was entered separately into the 1st 

block of analyses. Other variables of epoch-4 formed the 2nd block, variables of epoch-3 

formed the 3rd block etc. until the variables of epoch-1 and 5th block. Accurate state of 

driving with unstable and deficient driving formed the dependent variable. Different 

tests were carried out for each subject. The different models for each subject with the 

dependent variables are presented in the results. The models with the same dependent 

variable for each subject were quite similar, and hence, the significances of the models, 

R2 and the percentage of correct classification of states of driving are presented in the 

text as representing of the different models for each subject. 

3.4.1. Models including accurate and unstable states 

Subject 1 had four final models with alpha-4, sigma-4, BA-4 or HR-4 as the entered 

variable in the first block of these models. From these entered variables sigma-4 was the 

only significant variable in the final model. Three of these final models included the 

same significant variables with same direction in β-coefficient: sigma-4 (β = +), beta-3 (β 

= +), BA-1 (β = -) and HR-3 (β = -). The fourth model did not include beta-3, but instead 

the variables theta-4 (β = +) and HR-4 (β = -). All β-coefficients except beta-3 showed the 

expected direction based on the hypotheses. The p-values of the models were quite close 

to each other as were the Nagelkerke R2 and classification accuracies for accurate and 

unstable state (p = 0.000; R2 ≈ 0.16; classification accuracy for accurate and unstable ≈ 

66 % and 62 %; table 8).  

Subject 2 had theta-4 as the entered variable in the first block of the analysis. Theta-4 

was not significant in the model. The significant variable in the model (p = 0.05; 

Nagelkerke R2 = 0.154; classification accuracies 100 % and 0 %) was beta-3 (β = -). The 

value of beta-3 decreased from state accurate to unstable driving, as was expected from 

the hypothesis. 

Subject 3 had two similar final models with sigma-4 or BR-4 as variable in the first 

block of the analysis. Sigma-4 was not significant in the model. The significant variables 

in the models (p = 0.00; Nagelkerke R2 = 0.138; classification accuracies 100 % and 0 
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%) were BR-4 (β = +), delta-3 (β = -) and sigma-1 (β = -). BR-4 showed expected direction 

for β-coefficient unlike delta-3 and sigma-1. 

Subject 4 had three different models with theta-4, alpha-4 or BR-4 as the entered 

variable. Alpha-4 and BR-4 were significant in their final models. The significant 

variables in all three models (Nagelkerke R2 ≈ 0.09; classification accuracies ≈ 99 % 

and 3 %) were BR-4 (β = +), theta-2 (β = -) and BA-2 (β = -). In addition to these, two 

similar models included the significant variables alpha-4 (β = +) and BR-1 (β = +). Third 

model included also the variable alpha-1 (β = +). Each significant variable except theta-2 

had expected changes in values from accurate to unstable driving states.  

Subject 5 had one model (p = 0.00; Nagelkerke R2 = 0.163; classification accuracies 

100 % and 0 %), with BA-4 as the entered variable in the first block. Significant 

variables in the model were theta-3 (β = -), theta-2 (β = -) and delta-2 (β = +). BA-4 was 

not significant in the model. The β-coefficient of delta-2 was positive as was expected 

unlike the theta variables. 

Subject 6 had two models with sigma-4 or beta-4 as the entered variable. The 

significant variables in both of the final models (p = 0.00; Nagelkerke R2 ≈ 0.05; 

classification accuracies ≈ 27 % and 87 %) were theta-3 (β = -) and HR-3 (β = +). Sigma-

4 (β = +) was the significant variable in the other model. The other final model included 

also the variable beta-4 (β = +). The β-coefficient had expected value for sigma-4 unlike 

for other significant variables.  

Subject 7 had three models (p = 0.00; Nagelkerke R2 ≈ 0.100; classification 

accuracies ≈ 98 % and 14 %) with theta-4, BR-4 or HR-4 as the entered variable in the 

first block. Only theta-4 was significant in the final model. All three models included 

significant variables alpha-3 (β = +), alpha-1 (β = +) and sigma-1 (β = -). Two models 

were similar and did not include any other variables. The third model included also the 

variable theta-4 (β = -). Values of alpha variables increased from accurate to unstable 

states as was expected except for the values of theta-4 and sigma-4 variables. 

Subject 8 had only BA-2 (β = +) as significant variable in all four final models (p = 

0.00; Nagelkerke R2 ≈ 0.20; classification accuracies = 100 % and 0 %). Theta-4, BR-4,  

BA-4 and HR-4, and were fed into these models but neither of them was significant in the 

final models. BA-2 did not decrease from state accurate to unstable driving as was 

expected.  
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Subject 9 had sigma-4 as the entered variable. In the final model (p = 0,00; 

Nagelkerke R2 = 0.072; classification accuracies 74.4 % and 38.5 %; table 8) significant 

variables in addition to sigma-4 (β = +) were HR-4 (β = -), BA-3 (β = +), HR-2 (β = -), 

HR-1 (β = -) and BA-1 (β = +). All the other except BA variables had the direction of β-

coefficient as expected. 

3.4.2. Models including accurate and deficient states 

Subject 1 had four final models with alpha-4, sigma-4, HR-4 or BA-4 as the entered 

variable each at turn. Sigma-4 was the only one of these variables, which reached 

significance in its model. All final models had the values of Nagelkerke R2 and 

classification accuracies for predicting the states accurate and deficient state quite 

similar (p = 0.00; Nagelkerke R2 ≈ 0.33; classification accuracies ≈ 88 % and 40 %; 

table 9). The significant variables were the same in each model. These were sigma-4 (β = 

+), HR-3 (β = -), delta-2 (β = +), HR-2 (β = -), HR-1 (β = -) and BA-1 (β = -). These 

variables had the expected direction in their β-coefficients when comparing the states of 

accurate and deficient driving.  

For subject 2, alpha-4 was entered as the variable in the first block. Alpha-4 was not 

significant and neither were the other variables in the model (p = 0.00; Nagelkerke R2 = 

1.00; classification accuracies 100 % and 100 %). 

For subject 4, theta-4, alpha-4, sigma-4, beta-4 or HR-4 was the entered variable in the 

first block of the analysis. Theta-4 was the only significant variable. In all five final 

models (p ≈ 0.01; Nagelkerke R2 ≈ 0.2; classification accuracies ≈ 100 % and 0 %) 

theta-4 (β = +) was the significant variable. In addition BA-3 (β = -) was a significant 

variable in one model. The directions in the β-coefficients of theta-4 and BA-3 were as 

expected.  

Two final models of subject 7 (Nagelkerke R2 ≈ 0.2; classification accuracies ≈ 100 

% and 4.5 %) included alpha-4 or HR-4 as the entered variable. Alpha-4 (β = +) was 

significant in its model. Theta-3 (β = -), delta-3 (β = +) and BA-1 (β = -) were significant 

variables in both models. In addition to these, beta-4 (β = +) was a significant variable in 

another model. The β-coefficient values of beta-4 and theta-3 were not in the expected 

direction. Instead, the other variables showed the expected direction in their β-

coefficients.  
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For subject 8 the entered variable theta-4, alpha-4, sigma-4, beta-4, BR-4, BA-4 or HR-4 

was not significant in their final models (p =0.00; Nagelkerke R2 ≈ 0.6; classification 

accuracies = 100 % and 33.3 %; table 9). Two models did not include any significant 

variables and BR-4 (β = +) was the only significant variable in five models. The β-

coefficient of BR-4 increased from accurate driving to deficient driving according to the 

hypotheses. 

The significant variables in the models for each subject differed between both 

dependent variables. However, the direction of the β-coefficients of a particular variable 

(for example HR-1) for each subject was always the same for both dependent variables 

(table 10). The direction of the β-coefficients for each subject was also usually the same 

for a particular variable type (for example variables of HR) independently of the 

dependent variable. Only subject 4 had a difference in the direction of the β-coefficients 

of the variable theta when comparing both dependent variables (table 10).  
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TABLE 8. Results of logistic regression analyses for accurate and unstable driving states  
The analyses were carried out as logistic regression with the forward Wald method. The independent variables were fed as different blocks into the model. The entered 
variable is the one which was significant in the logistic regression analysis as the unique independent variable (table 6) when comparing the accurate and unstable driving 
categories. The entered variable is the variable of the first block. Other independent variables are fed into the four blocks of the logistic regression analysis as a method of 
forward Wald. Significances of final model and variables Nagelkerke R2, classification accuracies and the sign of β-coefficients are presented. Nagelkerke R2 signifies the 
predictive part of the model, classification accuracies denote the percentages of epochs (epoch = 15.5 s)  rated correctly into categories of accurate (% correct 1) and 
unstable driving (% correct 2) based on the final models. The sign of a β-coefficient is presented as a plus or minus signifying the decrement or increment in the values of 
the independent variables from accurate to unstable driving. All variables of the final models are presented, despite only significant variables (p ≤ 0.05)were accepted.  

Subject 1 1 1 1 2 3 3 
        

1st block alpha-4 sigma-4 BA-4 HR-4 theta-4 sigma-4 BR-4 
Sig of variables 
in model 

alpha-4 0.383   - 
sigma-4 0.001 + 
HR-4 0.007      - 
theta-4 0.015   + 
HR-3 0.004      - 
BA-3 0.152      - 
BA-1 0.005      - 

sigma-4 0.00   + 
HR-4 0.074      -
beta-3 0.042    +
HR-3 0.001      -
BA-3 0.227      -
BA-1 0.006      -

BA-4 0.782     - 
sigma-4 0.000 +
HR-4 0.066      -
beta-3 0.037    +
HR-3 0.001      -
BA-1 0.002      -

HR-4 0.074      -
sigma-4 0.000 +
beta-3 0.042    +
HR-3 0.001      -
BA-3 0.227      - 
BA-1 0.006      -

 

theta-4 0.070    - 
beta-3 0.048     -

sigma-4 0.075  -
BR-4 0.020     +
delta-3 0.011    -
sigma-1 0.020  -

BR-4 0.020     +
sigma-4 0.075  -
delta-3 0.011    -
sigma-1 0.020  -

 

Sig of model 0.000 0.000 0.000 0.000 0.005 0.000 0.000 
Nagelkerke R2  0.164 0.160 0.157 0.160 0.154 0.138 0.138 
% correct 1 67.7 66.4  66.4 66.4 100 100 100 
% correct 2 58.8 61.5 61.9 61.5 0 0 0 
  
 

(continues) 
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TABLE 8. (continues). 
 

Subject 4 4 4 5 6 6 
       

1st block theta-4 alpha-4 BR-4 BA-4 sigma-4 beta-4 
Sig of variables 
in model 

theta-4 0.082  +  
BR-4 0.011     + 
theta-2 0.005   - 
BA-2 0.001      -  
alpha-1 0.023  + 

alpha-4 0.028  +
BR-4 0.047     +
theta-2 0.005   - 
BA-2 0.001      -
BR-1 0.036     +

BR-4  0.047    +
alpha-4  0.028 +
theta-2  0.005  - 
BA-2 0.001      -
BR-1 0.036     +

BA-40.084      +
theta-3 0.015   - 
theta-2 0.001   - 
delta-2 0.002  +

sigma-4 0.009 + 
alpha-4 0.082   -
theta-3 0.015   - 
HR-3 0.015     +

beta-4 0.024    +
theta-3 0.006   - 
HR-3 0.009     +

Sig of model 0.00 0.00 0.00 0.00 0.00 0.00 
Nagelkerke R2  0.088 0.089 0.089 0.163 0.055 0.049 
% correct 1 99.1 99.4 99.4 100 27.0 26.5 
% correct 2 3.4 2.6 2.6 0 87.3 86.9 
 
  
 
 
Subject 7 7 7 8 8 8 8 9 

         
1st block theta-4 BR-4 HR-4 theta-4 BR-4 BA-4 HR-4 sigma-4 
Sig of variables 
in model 

theta-4 0.011   - 
alpha-4 0.795  + 
alpha-3 0.006  + 
alpha-1 0.000  + 
sigma-1 0.028  - 

BR-4 0.336      -
theta-3 0.098    -
alpha-3 0.003  +
sigma-1 0.025  -
alpha-1 0.000  +

HR-4 0.336      -
theta-3 0.098    -
alpha-3 0.003  +
sigma-1 0.025  -
alpha-1 0.000  +

theta-4 0.483   +
BR-4 0.266     +
BR-3 0.078     +
BA-2 0.022     +

BR-4 0.190     + 
BR-3 0.078     +
BA-20.017      +

BA-4 0.386     +
BR-4 0.280     +
BR-3 0.095     +
BA-2 0.033     +

 

HR-4 0.808     +
BR-4 0.227     +
BR-3 0.080     + 
BA-2 0.018     +

sigma-4 0.031 + 
HR-4 0.048      -
BA-3 0.044     + 
HR-2 0.024      -
HR-1 0.037      -
BA-1 0.010     +

Sig of model 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Nagelkerke R2  0.100 0.096 0.096 0.199 0.196 0.200 0.197 0.072 
% correct 1 97.9 97.9 97.9 100 100 100 100 74.4 
% correct 2 12.3 14.3 14.3 0 0 0 0 38.5 
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TABLE 9. Results of logistic regression analyses for accurate and unstable driving states  
The analyses were carried out as logistic regression with the forward Wald method. The independent variables were fed as different blocks into the model. The entered 
variable is the one which was significant in the logistic regression analysis as the unique independent variable (table 7) when comparing the accurate and deficient driving 
categories. The entered variable is the variable of the first block. Other independent variables are fed into the four blocks of the logistic regression analysis as a method of 
forward Wald. Significances of final model and variables Nagelkerke R2, classification accuracies and the sign of β-coefficients are presented. Nagelkerke R2 signifies the 
predictive part of the model, classification accuracies denote the percentages of epochs (epoch = 15.5 s) rated correctly into categories of accurate (% correct 1) and 
deficient driving (% correct 3) based on the final models. The sign of a β-coefficient is presented as a plus or minus signifying the decrement or increment in the values of 
the independent variables from accurate to deficient driving. All variables of the final models are presented, despite only significant variables (p ≤ 0.05) were accpeted. 

 
Subject 1 1 1 1 2 4 4 4 

         
1st block alpha-4 sigma-4 BA-4 HR-4 alpha-4 theta-4 alpha-4 sigma-4 
Sig of variables 
in model  

alpha-4 0.723   - 
sigma-4 0.003 + 
HR-4 0.509      - 
beta-3 0.119    + 
HR-3 0.021      - 
delta-2 0.005   + 
HR-2  0.007    - 
BA-2 0.105      - 
HR-1  0.012     - 
BA-1 0.037      - 

sigma-4 0.000 +
HR-4 0.497      -
beta-3 0.116    +
HR-3 0.021      -
delta-2 0.005   +
HR-2 0.007      -
BA-2 0.093      -
HR-1 0.012      -
BA-1 0.036      -

BA-40.503+ 
sigma-4 0.00   +
HR-4 0.433      -
beta-3 0.118    +
HR-3 0.019      -
delta-2 0.004   +
HR-2 0.007      -
BA-2 0.075      -
HR-1 0.012      -
BA-1 0.031      -

HR-4 0.497      -
sigma-4 0.00   +
beta-3 0.116    +
HR-3 0.021      -
delta-2 0.005   +
HR-2 0.007      -
BA-2 0.093      -
HR-1 0.012      -
BA-1 0.036      -

alpha-4 0.997  +
sigma-3 0.998  -
BR-1 0.995     +

theta-4 0.013   +
BA-3 0.021      -

 

alpha-4 0.113  +
theta-4 0.019   +

sigma-4 0.146 +
theta-4 0.017   +

Sig of model 0.00 0.00 0.00 0.00 0.00 0.004 0.01 0.014 
Nagelkerke R2  0.328 0.328 0.329 0.328 1.00 0.240 0.2 0.186 
% correct 1 87.9 87.9 88.7 87.9 100 100 100 100 
% correct 3 42.3 40.4 43.3 40.4 100 25.0 10 0 

 

 
(continues) 
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TABLE 9. (continues). 

 

Subject 4 4 7 7 8 8 8 8 
         
1st block beta-4 HR-4 alpha-4 HR-4 theta-4 alpha-4 sigma-4 Beta-4 
Sig of variables 
in model  

beta-4 0.063    + 
theta-4 0.015   + 

HR-4 0.074     +
theta-4 0.012   +

alpha-4 0.028  +
HR-4 0.194      -
theta-3 0.003    -
delta-3 0.003   +
BA-1 0.006      -

HR-4 0.072      -
beta-4 0.014    +
theta-3 0.002    -
delta-3 0.004   +
BA-1 0.007      -

theta-4 0.075   +
BR-4 0.088     +

alpha-4 0.827  +
BR-4 0.021     +

 

sigma-4 0.168 +
BR-4 0.033     +

beta-4 0.138    +
BR-4 0.047     +

Sig of model 0.012 0.008 0.00 0.00 0.00 0.00 0.00 0.00 
Nagelkerke R2  0.193 0.211 0.201 0.213 0.637 0.543 0.577 0.587 
% correct 1 100 100 99.8 99.5 100 100 100 100 
% correct 3 0 0 4.5 4.5 33.3 33.3 33.3 33.3 

 

 

 
Subject 8 8 8 
    
1st block BR-4 BA-4 HR-4 
Sig of variables 
in model  

BR-4 0.014    + 
 

BA-4 0.29       +
BR-4 0.039     +

HR-4 0.301     +
theta-4 0.072  + 
BR-4 0.096     +

Sig of model 0.00 0.00 0.00 
Nagelkerke R2  0.542 0.580 0.667 
% correct 1 100 100 100 
% correct 3 33.3 33.3 33.3 
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4. DISCUSSION 

In this study, the psychophysiological variables preceding the three driving quality 

states (accurate, unstable and deficient) from 15 s to 1 min, were examined. The study 

was conducted with sleep-deprived participants as a night-time simulator-study. It was 

found that the driving quality was impaired with time on task (figure 1). The number of 

epochs classified as unstable and deficient state of driving increased along the driving 

time. Differences in averages among the three states of driving quality and between 

accurate and deficient states of driving were analyzed with MANOVA tests (table 5). 

Beta-4 reached significance (p = 0.015) in the MANOVA when comparing the three 

driving quality states, but not in the paired samples t-tests (accurate against unstable 

state and accurate against deficient state). Logistic regression analyses were carried out 

at the subject level (table 8 & table 9). In the final significant models, Nagelkerke R2 

ranged from 0.049 to 0.200 and from 0.186 to 0.667 and correct prediction rates of 

impaired driving from 0 to 87.3 % and from 0 to 43.3 % for accurate and unstable states 

of driving and for accurate and deficient states of driving, respectively. The significant 

psychophysiological variables changed often from accurate state to unstable or deficient 

as expected, but more often when moving from accurate to deficient state than from 

accurate to unstable state. 

4.1. A closer look at the results  

To find out how the hypotheses were supported after non-significant tests of averages, 

the results of the analyses made at the subject level were summarized. The signs of the 

β-coefficients of the significant variables for each subject and for both dependent 

variables were entered into the table independently of the rate of occurrence in different 

models. This was possible because the direction of the β-coefficient of a particular 

variable was always the same for each subject.  

Delta power 

When predicting the accurate and unstable states of driving, the values of delta 

increased from accurate to unstable states according to the hypothesis for one out of two 

subjects (table 10). When the accurate and deficient driving states were predicted, the 
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delta variables were also significant for two subjects. For these subjects the averages 

increased from accurate to deficient driving as expected. The significant variables of 

delta were delta-2 and delta-3, both being significant once in predicting the accurate and 

unstable driving states, and accurate and deficient driving.  

Increases in delta with time on task (Torsvall & Åkerstedt, 1987), before sleep onset 

(St 2), and during St 2 (Hori, 1995; Ogilvie et al., 1991) have been reported. The 

probable reason for not increasing the power of delta from accurate to unstable state of 

driving for both subjects in this study could be that the driver was not sleepy enough 

during unstable driving. Delta frequencies are however more pronounced in deeper 

sleep stages (Retchaffen & Kales, 1968). The increase in power from accurate state to 

deficient supports that notion. 

Theta power 

The variables of theta were significant for five subjects when predicting accurate and 

unstable driving (table 10). According to the β-coefficient values, theta increased for 

one of those five subjects along with the hypothesis. When predicting accurate and 

deficient driving, the power of theta increased, according to the hypothesis, for one of 

two subjects. The discrepancy with the hypothesis was also evident in the variables 

theta-2 and theta-3: contrary to the hypothesis, theta decreased from accurate to unstable 

state of driving for two subjects. In addition to them, theta-4 predicted as expected for 

two out of thee subjects.  

The power of theta has been reported to increase with time on task (Torsvall & 

Åkerstedt, 1987; Campagne et al., 2004) as well as before and during SO (Hori, 1995; 

Ogilvie et al., 1991). Theta is often treated as one of the most evident bandwidths for 

predicting sleepiness (Retschaffen & Kales, 1968; Hori et al., 1994; Santamaria & 

Chiappa, 1987). Thus, the reasons for the decrease of theta power in four subjects when 

predicting the states of accurate and unstable driving is unclear. Decreases of theta 

power towards the onset of sleep have not been found in any of the articles referred in 

this study. Instead, according to the study of Horne and Baulk (2004), the drifting out of 

the lane was accompanied with high alpha/theta power (4-11 Hz). In some sleep studies, 

the increase is found to be most evident in central sites (De Gennaro et al., 2001b) or 

slowest in occipital area (Hori, 1995), but increases of theta power should still occur at 

occipital sites. The discrepancy concerning theta is also found in some referred articles. 

According to the study of Eoh et al. (in press), the theta activity can only be found in 
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continuous sleep, whereas according to Åkerstedt et al. (1991), theta would have 

occurred if the subject had been prevented from sleeping.   

Alpha power 

Based on the hypotheses, the values of alpha variables increased for two subjects from 

accurate to unstable driving as expected (table 10). The value of alpha variable also 

increased from state accurate to deficient driving according to hypothesis for one 

subject, for whom this variable was significant. The power of alpha-1 and alpha-4 

changed also according to the hypothesis from accurate to unstable or deficient driving 

for these subjects, who had the any alpha variable as significant.  

In addition to increases in alpha power with time on task (Torsvall & Åkerstedt, 

1987; Åkerstedt et al., 1991; Shiozawa et al., 1995; Campagne et al., 2004; Eoh et al., in 

press) and before and during sleep episodes with shift workers (Åkerstedt et al., 1991), 

alpha power has been found to correlate with lane variability in simulator study of 

Risser et al. (2000). Thus it was interesting that it was not significant for more than two 

subjects in this study. One reason for this may be, that the EEG-variables were 

measured at Oz-channel, and alpha power has been reported to decrease before Stage 2 

(Ogilvie et al., 1991) at occipital areas (De Gennaro, 2001a; 2001b), before it starts to 

increase at the onset of Stage 2 (De Gennaro, 2001a; 2001b). But, both of these subjects 

had two significant alpha variables when comparing the states of accurate and unstable 

driving. In addition, alpha changed always according to hypothesis. Therefore, alpha 

seems to be a quite reliable measure for some subjects.    

Sigma power 

The sigma power predicted accurate and unstable states of driving for five subjects 

(table 10). The power increased in three out of five subjects from accurate to unstable 

driving. Instead, from accurate to deficient driving states, variables of sigma were 

significant only for one subject. This value increased according to the hypothesis. 

Sigma-4 was the variable, which was a significant predictor for four subjects. It 

increased from accurate to unstable or deficient driving according to the hypothesis for 

these four subjects. Sigma-1 was instead the variable, which decreased for two subjects 

from accurate to unstable driving.  

The increase in the power of sigma has been reported with time on task (Shiozawa et 

al., 1995) as well as in sleep studies before and during sleep onset (Hori, 1995; Ogilvie 

et al., 1991). The occurrence of sigma or sleep spindle occurs at Stage 2 according to 
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the sleep scale of Retschaffen & Kales (1968). Thus, it is quite interesting that sigma-4 

showed increases in power for three subjects from accurate to unstable driving, but 

decreases in power of sigma-1 for two subjects. At the individual level, sigma was one of 

the variables, which predicted driving impairment for most of the subjects.  

Beta power 

Contrary to the hypothesis, the values of beta variables increased for two out of three 

subjects from accurate to unstable driving (table 10). Beta power was also significant 

for one subject when predicting accurate and deficient driving. Also contrary the 

hypothesis, the power increased for this particular subject. Beta-4 was the variable which 

increased as expected from accurate to unstable or deficient driving with two subjects. 

The results of beta power were mostly contrary to the hypothesis. In addition to 

decreases in beta power with driving time (Eoh et al., in press), beta power has been 

reported to decrease before SO (Ogilvie et al., 1991; De Gennaro et al., 2001b) and to 

increase (Ogilvie et al., 1991) or decrease (De Gennaro et al., 2001) at behavioural SO. 

According to Santamaria & Chiappa (1987), centro-frontal beta can occur at sleep onset, 

but it can also be a sign of arousal. Thus, the literature is partly contradictory about the 

occurrence of beta power and does not explain the results of this study. One possible 

explanation of these contradictory results could be that the significant beta variables 

were either beta-3 or beta-4, and the possible decrease of beta power detected by Eoh et 

al. (in press) occurs closer in time to the moment of driving impairment. 

BR 

Values of BR variables increased as expected from accurate to unstable states for both 

subjects who showed significant BR variables (table 10). BR was significant for one 

subjects when comparing accurate and deficient driving. It increased according to the 

hypothesis. Also, BR-4 increased from accurate to unstable or deficient driving 

according to hypothesis for three subjects.  

Blink rate always increased from accurate to impaired driving (unstable or deficient) 

according to the hypothesis. Therefore, BR was a quite reliable measure of impaired 

driving. In addition to increases of blink rate in driving tasks (Shiozawa et al., 1995; 

Summala et al., 1999), long blink rate has also been found to change with behavioural 

sleepiness (Verwey et al., 2000) or to predict sleepiness level during driving (Numata et 

al., 1998) in a driving simulator. Hence, it seems possible that significant results could 

have been obtained using the rate of long blinking with more subjects as a variable. 
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BA 

When comparing the states of accurate and unstable driving, BA was significant for four 

subjects (table 10). It increased along with the hypothesis in two out of four subjects. 

For predicting the states of accurate and deficient driving, the variables of BA decreased 

according to the hypothesis for three subjects. Thus, the BA appeared to be a more 

powerful measure with increased driving impairment. BA-1 decreased significantly for 

two out of three subjects, and in general, the BA-4 was not significant for any subject 

unlike the other variables of BA. 

Blink amplitude (BA) was found to be one of the best predicting variables in a 

simulated flight study with pilots (Morris & Miller, 1996). In the present study it was 

also the variable, which predicted the driving quality for more subjects than any of the 

other variables when predicting accurate and deficient driving states. The reason for 

these results, partly contrary to the hypotheses when predicting accurate and unstable 

states, could be that the blink detection was not perfect because the vertical EOG 

channel was overloaded by blinks in some occasions. This affected the calculation of 

blink amplitude averages, and perhaps diminished its significance and predictive power. 

HR 

The values of HR decreased as expected in two out of three subjects (table 10). HR was 

significant for three subjects when predicting accurate and unstable states and decreased 

for two of them as was expected. When predicting accurate and deficient states of 

driving, HR was significant for one subject and decreased as was expected. HR-4 

decreased according to hypothesis for two subjects accurate to unstable driving. For 

these two subjects, at least two variables of HR decreased when predicting the states of 

from accurate and unstable driving, and accurate and deficient driving. Thus, HR seems 

to be a quite reliable measure predicting driving quality for those subjects.  

Even though the heart rate has been reported to decrease at sleep onset (Pivik & 

Busby, 1996; Burgess et al., 1999), it has not been found to decrease with time on task 

in many studies (Egelund, 1982; Torsvall & Åkerstedt, 1987; Åkerstedt et al., 1991). In 

spite of this it has also been found to decrease in driving tasks (Brookhuis & de Waard, 

1993) as it did in this experiment. The HR increased from accurate to unstable driving 

only for subject 6.  
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As a total 21 different variables predicted significantly the accurate and unstable 

states of driving quality (table 10). From these, 11 were significant for two subjects and 

one for three subjects. Thus the predicting variables varied widely among subjects.  

In the case of accurate vs. deficient states, 13 different variables were found, which 

predicted significantly the driving for four subjects (table 10). These variables predicted 

also the states of accurate and unstable driving. Because of this there seems to be some 

correspondence between the results of both dependent variables.   

TABLE 10. The direction of the β-coefficient of the significant variables 
The direction of the β-coefficients of every significant variable of each subject in the final models of 
logistic regression analyses are shown in the final models of the subjects in the logistic regression 
analyses. The dependent variables were accurate vs. unstable states, and accurate vs. deficient states of 
driving. The columns of accurate vs. deficient (D) driving are separated from rows of accurate vs. 
unstable (U) driving by shadowing. Some subjects do not have a column for accurate vs. deficient driving 
because they did not have any epoch classified as deficient driving, because they did not have any 
significant variable to enter into the first block of the logistic analyses, or because their model did not 
show any significant variable. The index in the name of variable denotes the epoch before the driving 
impairment. One epoch has length of 15.5 s. 

Driving quality U D U U U D U U U D U D U 

Subject 1 1 2 3 4 4 5 6 7 7 8 8 9 

              

delta-1              

delta-2  +     +       

delta-3    −      +    

delta-4              

theta-1              

theta-2     −  −       

theta-3       − −  −    

theta-4 +     +   −     

sigma-1    −     −     

sigma-2              

sigma-3              

sigma-4 + +      +     + 

alpha-1     +    +     

alpha-2              

alpha-3         +     

alpha-4     +     +    

 
(continues) 
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TABLE 10. (continues) 

 

Driving quality U D U U U D U U U D U D U 

Subject 1 1 2 3 4 4 5 6 7 7 8 8 9 

              

beta-1              

beta-2              

beta-3 +  −           

beta-4        +  +    

BR-1     +         

BR-2              

BR-3              

BR-4    + +       +  

BA-1 − −        −   + 

BA-2     −      +   

BA-3      −       + 

BA-4              

HR-1  −           − 

HR-2  −           − 

HR-3 − −      +      

HR-4 −            − 

 

 

In general, it seems that some variables reflected driving quality better than the others. 

Theta, sigma and BA were the best predictors. The direction of the β-coefficient was not 

always in line with the hypothesis and it was different among subjects. Theta and beta 

were mostly against the hypotheses when predicting driving quality. The significant 

variables for predicting states were most often the variables at time of epoch-4 for both 

dependent variables, but the significant variables were the ones in other epochs too. 

This means that the driving impairment is detectable through psychophysiological 

variables starting at least one minute before the incident, and that driving states further 

progress towards greater impairment. The predictability of driving errors from EEG 

variables is supported also by the result of Horne and Baulk (2004). According to this 

study, changes in EEG power are closely followed by driving incidents (Horne & 

Baulk, 2004). According to study of Numata et al (1998), a warning signal of driver 
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sleepiness should be set to the level of sleepiness, which was reached in time minute 

before the crash.  

Some methodological reasons that may have affected the significance of the logistic 

regression models are considered in the next chapter. 

4.2. Discussion: methodology  

4.2.1. The adequacy of the models 

In this study, the simulated driving task for each subject was planned to have a duration 

of three hours. Eight out of nine subjects drove until this time was completed. Only one 

subject interrupted the driving because of sleepiness. There were also technical 

problems with this subject, which diminished the number of useful epochs to 145, while 

other subjects had over 600 epochs (table 4). Even though the number of epochs was 

sufficient for most of the subjects, the amount of epochs in the three driving quality 

states was not. In spite of these, every subject who had some epochs of unstable or 

deficient driving was included in the analyses.  

The models of the dependent variables for each subject based on Nagelkerke R2 were 

almost as good as based on the correct classification of driving quality states. Despite of 

high Nagelkerke R2 values, the correct classifications of unstable and deficient states of 

driving were not very high. Nevertheless, there were some subjects with such high 

classification accuracies (> 40 %; subject 1; table 8 and table 9). The main reason for 

low classification accuracies of unstable and deficient state is a small number of epochs 

in those states. The connections between frequencies and goodness of the models are 

evident. 

Two subgroups of drivers can be defined based on the frequency table (table 4) of the 

driving quality. One group had worse driving performance than the other. Those who 

had low frequency of epochs in unstable driving (< 30; subjects 2, 3, 5 and 8) were the 

same ones, who had low frequency of epochs in deficient driving (< 5). Participant 2 

belonged to this group only because of the shorter experimental time. The other subjects 

(1, 6, 7 and 9) had more epochs in unstable state (< 100) and in deficient state (≥ 25). 

Participant 4 was the only one who did not fit into this pattern; high frequency of 
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epochs in unstable driving state did not accompany the high frequency in deficient state 

of driving (table 4).    

When the categories of accurate and unstable driving formed the dependent variable, 

the subjects with a small number of epochs rated 0 % for prediction of unstable state of 

driving and quite high Nagelkerke R2 values (Nagelkerke R2 ≥ 0.138;  table 4 and table 

8). The subjects who had higher frequencies had mainly higher classification accuracies 

of unstable state of driving (with majority of subjects > 12 %) but lower R2 values 

(Nagelkerke R2 = 0.049-0.164). The increased amount of epochs in unstable state of 

driving increased the percent of classification accuracies of unstable state but not 

Nagelkerke R2. One reason for the lower value of Nagelkerke R2 could be that the states 

of accurate and unstable driving were not discriminative enough and the variability 

within these categories was too high. It is interesting that partly the same subjects who 

had small number of epochs in state of unstable driving also had the β-coefficient values 

contrary to the hypotheses in over half of the significant variables (subj. 3, 5, 6 and 8; 

table 4 and table 8).  

When accurate and deficient states of driving formed the dependent variable there 

was not such pattern as with the other dependent variable between the number of epochs 

in driving quality states, Nagelkerke R2 and classification accuracies. Instead higher 

Nagelkerke R2 values and higher classification accuracies for deficient category tended 

to accompany each other (Nagelkerke R2 ≥ 0.328; prediction rate of deficient state ≥ 

33.3 % vs. Nagelkerke R2 ≤ 0.21; prediction rate of deficient state ≤ 10 %; table 4 and 

table 9). The reason for higher values could be that the states of accurate and deficient 

driving differed enough unlike accurate and unstable states of driving. This can be also 

a reason why the values of R2 and some classification accuracies of driving quality 

states were higher with this dependent variable than with the previous one, even though 

the frequencies in deficient driving quality state were a lot smaller than in unstable state 

of driving. Accurate and deficient driving quality states were also predicted more often 

according to the hypotheses than accurate and unstable states.  

More epochs in this deficient state could result in models with higher R2 values and 

classification accuracies. This is supported by the fact that for some subjects, the 

classification accuracies of deficient category were surprisingly high in some models 

even though there were only a few epochs classified as deficient driving (subj. 4: 25 %; 

subj. 8: 33.3 %; table 9). Thus, it seems possible that for these subjects more epochs in 
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the deficient state of driving would increase the validity and classification accuracy of 

deficient driving. Basically, Nagelkerke R2 should present directly the predicting part of 

the model with dependent variable (Metsämuuronen, 2003). On the other hand, too few 

data compared to the number of variables can cause R2 values to be too high 

(Metsämuuronen, 2003). This may be one reason for high R2 values while predicting the 

deficient category. 

Unequal number of epochs in three driving quality states of subjects and across 

subjects increased the variability. Particularly, the small amount of epochs in deficient 

driving state caused validity problems. Four subjects did not have any model where 

accurate and deficient states of driving formed the dependent variable. Subjects 3 and 5 

did not have any epochs of deficient driving (table 4), and subjects 6 and 9 did not have 

any significant variable entered into the first block of the model on the multiple variable 

logistic analysis (table 7). The small number of epochs in state of deficient driving 

increased the variability among subjects in the logistic regression analyses as well as the 

variability within and across subjects in the MANOVAs. Also inter-individual 

differences of independent variables increased the standard deviation between subjects 

in the MANOVA tests; the SD on the EEG variables was higher than the average.  

MANOVA and logistic regression analyses can only use complete rows of data. 

Therefore the MANOVAs were performed on the averages of subjects, even though 

MANOVAs computed on the primary data of the subjects could have been better. Equal 

number of epochs in each state of driving quality should be desirable. With incomplete 

data, the use of statistical mixed models, would be a better approach to explore driving 

qualities. Another methodological flaw of this study was that the same subjects formed 

the categories of the dependent variables, which is not ideal in logistic regression 

analysis (Metsämuuronen, 2003).  

4.2.2. Measuring driver fatigue 

The basic assumption of this study was that the driving impairments reflect drowsiness 

or diminishing of alertness. This assumption is supported by the study of Campagne et 

al. (2004). They found that running-of-the-road-incidents (RORIs) or speed deviations 

can reflect changes of alertness (Campagne et al., 2004). Time on task effects are 

difficulties in guiding the vehicle (Rogé et al., 2002), more frequent and longer RORIs 
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(Campagne et al., 2004) or an increase in the number of accidents (Eoh et al., 2004). 

These effects were found also in this study either as evident increase in number of 

unstable and deficient states of driving or as a trend within subjects who had smaller 

number of epochs classified as unstable or deficient quality of driving.  

In the study with monotonous driving at night-time by Verwey and Zaidel (2000) the 

error hierarchy was used for classification. As a result they considered more common 

and less serious incidents as possible predictors of the more serious incidents (Verwey 

& Zaidel, 2000). The results are similar to the observations made in this research. 

Subjects could have unstable driving quality (meaning short crossings of the lines on the 

track some time), but the deficient driving (meaning driving out of the road or crash) 

did not necessarily follow these smaller incidents. However, often the more severe 

incidents were preceded or accompanied by the smaller ones, even though over ratings 

were excluded. This observation and the result of Verwey and Zaidel (2000) support the 

idea of summing the less important and more relevant driving incidents assuming that 

they could reflect the same state (diminishing of alertness) but differ in its severity.  

The problem with summing driving errors with different severity and type, is that the 

weighting of incidents is difficult. In this study two wheels out of the road (over the lane 

marking) and near crash, and four wheels out of the road (over the lane marking) and 

crash were evaluated similarly. The latter ones were estimated to be 2.5 times more 

severe than the preceding ones. These suppositions can naturally bear sources of error. 

The range of summed variable was divided into three ranges, which were decided to 

represent accurate, unstable and deficient categories of driving quality. These three 

categories covered each a wide range of summed variable and could partly overcome 

the issue of wrong weighting of incidents. The frequencies in the three categories, more 

specifically the small frequencies in the deficient state, could be a consequence of 

wrong classification or weighting of cases. The small frequencies of epochs in state of 

deficient driving could also mean that subjects were not sleepy enough. After one night 

of sleep-restriction, the more plausible explanation could be also that some subjects may 

have fought more strongly against sleepiness than others.  

When considering the validity of simulated driving compared to real situations, it is 

assumed that the diminishing of attention or falling asleep follow the same pattern in 

simulated or real driving situation. In addition, the use of sleep deprivation or 

monotonous environments in simulator to induce sleepiness and falling asleep has this 
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same point of view: the investigated phenomenon is the same independently of situation 

that induced it. However, the important difference between driving simulator task and 

field-task is that subject may not fight against the sleep as strongly in simulated 

environment as in the real environment. This can occur because the subjects know that 

there will not be disastrous consequences if they fall asleep. Apart from this, some 

subjects took the experiment more seriously. One subject bit his lip to prevent falling 

asleep. Differences in personality could explain some of the differences in falling asleep 

while driving, and perhaps fight against sleep. Sensation seeking extraverts seem to be 

more sensitive to fatigue-related driving errors (Thiffault & Bergeron, 2003a). 

According to other study, falling asleep and departure from the road were more typical 

for subjects who scored high on extraversion-boredom cluster based on principal 

component analysis, and crossing the lane markings was more typical for subject who 

scored high on disinhibition-honesty cluster (Verwey & Zaidel, 2000).  

Åkerstedt et al. (1991) have stated the effect of fighting against sleep into 

psychophysical variables. According to them, it is possible that polysomnographic 

manifestations occur only when subject is sleepy enough, fights against sleep and is 

prevented from sleeping (Åkerstedt et al., 1991). In earlier study of this group with train 

drivers at night-time it was found that alpha bursts were part of dozing off and 

represented the failure to fight against sleep (Torsvall & Åkerstedt, 1987). Thus the 

explanation of this study to the contradictory results of EEG variables on the basis of 

the hypothesis and further for low classification accuracy percents while predicting the 

accurate and unstable or deficient states of driving could be that the subjects were not 

sleepy enough. This could also explain why the impaired driving occurred very rarely. 

Also performing an activating task could result that the sleep-deprivation is not visible 

in continuous EEG/EOG recording (Kecklund & Åkerstedt, 1993). In the simulator 

study with monotonous surroundings, and after one night of sleep deprivation, neither 

the lack of sleepiness is not quite likely and nor the finding the driving task as 

activating. Hence other reasons for the rare occurrence of impaired driving need to be 

considered.  

The epoch length is essential when studying sleepiness. According to the study of 

Numata et al. (1998) the prediction of sleepiness should be done in blocks shorter than 

75 s. In a study with train drivers failing to act on signals was accompanied by 20 s of 

alpha bursts and rolling eyes on the EOG (Torsvall & Åkerstedt, 1987). Even if the 
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EEG activity of sleepiness could be possible to detect as bursts, it might be that the 

epoch length of 15.5 is not able to capture power changes of different band widths even 

though threshold activity level of bursts would be 150 % of individual’s normal activity 

level as used in the study by Kecklund and Åkerstedt (1993). They analyzed bursts as 

7.5 s segments to avoid the diminishing of bursts in averaging (Kecklund & Åkerstedt, 

1993) and found that amount of alpha and theta bursts increased within the last hours of 

driving at night-time. The analysis of bursts has also yielded other meaningful results in 

driving fatigue research. In the study of Eoh et al. (in press) the amount of alpha and 

theta bursts increased with driving time. According to their study, the length of a 

segment in a burst analysis should be less than 7.5 s. The bursts had durations of 1-3 s. 

According to them, theta activity can only be found in continuous sleep, and in burst 

analysis because of microsleeps (Eoh et al., in press). Too long epochs could explain 

some of the results contrary to hypothesis of theta power and other variables of this 

research.  

The issue of microsleep in driver fatigue is supported also by Lal and Craig (2005). 

According to them, driver fatigue consists of episodes of microsleeps and the fatigue 

state can only occur during these episodes (Lal & Craig, 2005; microsleep: Harrison & 

Horne, 1996). On the basis of the blink duration in a field-study with bus-drivers the 

length of microsleeps was 0.69 s.  (Häkkanen, Summala, Partinen, Tihonen & Silvo, 

1999). The occurrence of microsleeps could also explain why the frequencies of 

impaired driving in this study were quite rare: subjects were able to correct the course of 

the car before the incident. Thus, it seems that a burst analysis and detection of 

microsleeps would yield better results in driving studies as predictor of sleepiness than 

using time segments of 15 s. Also the recording of the EEG-variables and predicting the 

driving quality on the basis of one channel is not an optimal solution. More channels are 

needed to obtain more reliable information from the EEG during driver sleepiness.  
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5. CONCLUSION 

In this research it was found that the averages of the psychophysiological variables did 

not differ significantly between the different driving quality states. The 

psychophysiological variables predicted driving quality states more frequently 

according to the hypotheses. However, the prediction of driving quality was not very 

consistent for most of the subjects. 

A sufficient amount of impaired driving events is essential for successful detection of 

driver fatigue using driving quality as a criterion. The definition of driving quality states 

should be as unambiguous as possible. With psychophysiological measures the burst 

analysis of EEG band power or some other measure for detection of microsleeps is 

necessary. The detection of long blink rate could reflect sleepiness better than the 

detection of blink rate in general. Also blink amplitude is, with proper measuring 

methods, a promising variable for the detection of sleepiness.  

The occurrence of driving impairment with changes in some psychophysical 

variables or the prediction of driving impairment based on psychophysical variables has 

been significant in many studies (Morris & Miller 1996; Numata et al., 1998; Risser et 

al., 2000; Verwey et al., 2000; Horne & Baulk, 2004). Especially, research on the 

prediction of driver fatigue is needed for developing and providing effective 

countermeasures against driver fatigue. The use of EEG and heart rate has not been 

investigated enough from this point of view (MacLean et al., 2003). With the likely 

increases in the number of motor accidents in the world in the near future (Kopits & 

Cropper, 2005), the need to increase the safety of the drivers grows in parallel.   
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