Doping liquid argon with xenon in ProtoDUNE Single-Phase : effects on scintillation light
The DUNE collaboration. (2024). Doping liquid argon with xenon in ProtoDUNE Single-Phase : effects on scintillation light. Journal of Instrumentation, 19(8), Article P08005. https://doi.org/10.1088/1748-0221/19/08/P08005
Julkaistu sarjassa
Journal of InstrumentationTekijät
Päivämäärä
2024Tekijänoikeudet
© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of
Sissa Medialab
Doping of liquid argon TPCs (LArTPCs) with a small concentration of xenon is a technique for light-shifting and facilitates the detection of the liquid argon scintillation light. In this paper, we present the results of the first doping test ever performed in a kiloton-scale LArTPC. From February to May 2020, we carried out this special run in the single-phase DUNE Far Detector prototype (ProtoDUNE-SP) at CERN, featuring 720 t of total liquid argon mass with 410 t of fiducial mass. A 5.4 ppm nitrogen contamination was present during the xenon doping campaign. The goal of the run was to measure the light and charge response of the detector to the addition of xenon, up to a concentration of 18.8 ppm. The main purpose was to test the possibility for reduction of non-uniformities in light collection, caused by deployment of photon detectors only within the anode planes. Light collection was analysed as a function of the xenon concentration, by using the pre-existing photon detection system (PDS) of ProtoDUNE-SP and an additional smaller set-up installed specifically for this run. In this paper we first summarize our current understanding of the argon-xenon energy transfer process and the impact of the presence of nitrogen in argon with and without xenon dopant. We then describe the key elements of ProtoDUNE-SP and the injection method deployed. Two dedicated photon detectors were able to collect the light produced by xenon and the total light. The ratio of these components was measured to be about 0.65 as 18.8 ppm of xenon were injected. We performed studies of the collection efficiency as a function of the distance between tracks and light detectors, demonstrating enhanced uniformity of response for the anode-mounted PDS. We also show that xenon doping can substantially recover light losses due to contamination of the liquid argon by nitrogen.
...


Julkaisija
IOP PublishingISSN Hae Julkaisufoorumista
1748-0221Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/245518032
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MŠMT, Czech Republic; ERDF, H2020-EU and MSCA, European Union; CNRS/IN2P3 and CEA, France; INFN, Italy; FCT, Portugal; NRF, South Korea; CAM, Fundación “La Caixa”, Junta de Andalucía FEDER, MICINN, and Xunta de Galicia, Spain; SERI and SNSF, Switzerland; TÜBİTAK, Turkey; The Royal Society and UKRI/STFC, United Kingdom; DOE and NSF, United States of America.

Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Extending physics potential of large liquid scintillator neutrino detectors
Loo, Kai (University of Jyväskylä, 2016) -
Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector
Daya Bay collaboration; JUNO collaboration (Elsevier, 2021)To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in ... -
First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform
The DUNE collaboration (Institute of Physics, 2020)The ProtoDUNE-SP detector is a single-phase liquid argon time projection chamber with an active volume of 7.2× 6.1× 7.0 m3. It is installed at the CERN Neutrino Platform in a specially-constructed beam that delivers charged ... -
Solar neutrino detection in liquid xenon detectors via charged-current scattering to excited states
Haselschwardt, Scott; Lenardo, Brian; Pirinen, Pekka; Suhonen, Jouni (American Physical Society (APS), 2020)We investigate the prospects for real-time detection of solar neutrinos via the charged-current neutrino-nucleus scattering process in liquid xenon time projection chambers. We use a nuclear shell model, benchmarked with ... -
Neutrino Flavor Sensitivity of Large Liquid Scintillator Detectors
Loo, Kai; Bick, D.; Enqvist, T.; Hellgartner, D.; Kaiser, M.; Lorenz, S.; Meloni, M.; Meyer, M.; Möllenberg, R.; Oberauer, L.; Soiron, M.; Smirnov, Mikhail; Trzaska, Wladyslaw; Wonsak, B.; Wurm, M. (Elsevier BV, 2015)Scintillator detectors are known for their good light yield, energy resolution, timing characteristics and pulse shape discrimination capabilities. These features make the next-generation liquid scintillation detector ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.