(2+1)-dimensional discrete exterior discretization of a general wave model in Minkowski spacetime
Mönkölä, S., Räbinä, J., Saksa, T., & Rossi, T. (2025). (2+1)-dimensional discrete exterior discretization of a general wave model in Minkowski spacetime. Results in Applied Mathematics, 25, Article 100528. https://doi.org/10.1016/j.rinam.2024.100528
Julkaistu sarjassa
Results in Applied MathematicsPäivämäärä
2025Tekijänoikeudet
© 2024 The Author(s). Published by Elsevier B.V.
We present a differential geometry-based model for linear wave equations in -dimensional spacetime. This model encompasses acoustic, elastic, and electromagnetic waves and is also applicable in quantum mechanical simulations. For discretization, we introduce a spacetime extension of discrete exterior calculus, resulting in a leapfrog-style time evolution. The scheme further supports numerical simulations of moving and deforming domains. The numerical tests presented in this paper demonstrate the method’s stability limits and computational efficiency.
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
2590-0382Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/244584248
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This project was partially funded by the Research Council of Finland (grants 259925 and 260076).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Comparison of finite element and discrete exterior calculus in computation of time-harmonic wave propagation with controllability
Saksa, Tytti (Elsevier, 2025)This paper discusses computation of time-harmonic wave problems using a mixed formulation and the controllability method introduced by Roland Glowinski. As an example, a scattering problem (in an exterior domain) is ... -
Systematic implementation of higher order Whitney forms in methods based on discrete exterior calculus
Lohi, Jonni (Springer, 2022)We present a systematic way to implement higher order Whitney forms in numerical methods based on discrete exterior calculus. Given a simplicial mesh, we first refine the mesh into smaller simplices which can be used to ... -
Generalized wave propagation problems and discrete exterior calculus
Räbinä, Jukka; Kettunen, Lauri; Mönkölä, Sanna; Rossi, Tuomo (EDP Sciences, 2018)We introduce a general class of second-order boundary value problems unifying application areas such as acoustics, electromagnetism, elastodynamics, quantum mechanics, and so on, into a single framework. This also enables ... -
On a numerical solution of the Maxwell equations by discrete exterior calculus
Räbinä, Jukka (University of Jyväskylä, 2014) -
Time-harmonic electromagnetics with exact controllability and discrete exterior calculus
Mönkölä, Sanna; Räbinä, Jukka; Rossi, Tuomo (Academie des Sciences, 2023)In this paper, we apply the exact controllability concept for time-harmonic electromagnetic scattering. The problem is presented in terms of the differential forms, and the discrete exterior calculus is utilized for spatial ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.