Secure Transmission Strategies in UAV-Assisted Wireless Networks
Abstract
Viidennen/kuudennen sukupolven (5G/6G) langattomasta lähetyksestä on tullut
yhä yleisempää ja väistämättömämpää, joten tietoturvan varmistamisesta tulee
entistä tärkeämpää. Tästä syystä tämä väitöskirja keskittyy tiedonsiirtovarmuuden
saavuttamiseen miehittämättömissä ilma-alusten (unmanned aerial vehicle,
UAV) tukemissa langattomissa verkoissa fyysisen kerroksen turvallisuuden
(physical layer security, PLS) ja suojattujen kommunikaatiotekniikoiden avulla,
samalla kun parannetaan energiatehokkuutta, lähetyksen suorituskykyä ja salassapitoa.
Ensinnäkin esitetään energiatehokasta UAV-tiedonkeruu- ja -siirtojärjestelmää
salakuuntelun estämiseksi. Tässä tutkimuksessa pyritään maksimoimaanUAV-
tiedonkeruun energiatehokkuus ja turvattu suorituskyky optimoimalla
lentorata, lennon kesto, käyttäjämäärittely, UAV-lähetysteho ja eston pituus samanaikaisesti.
Simulaatiotulokset osoittavat, että ehdotettu järjestelmä voi parantaa
energiatehokkuutta ja varmistaa tietoturvan. Toisekseen suojatun älykkään
heijastavan pinnan (intelligent reflecting surface) omaava IRS-UAV-verkko
on suunniteltu ja optimoitu suojaamaan salakuuntelulta. Luottamuksellisten signaalien
ja keinotekoisten kohinasignaalien keilanmuodostusvektorit sekä IRS:n
vaihesiirtomatriisi ja sijainti on optimoitu yhdessä maksimoimaan salausastetta
ja samalla rajoittamaan salakuuntelua sen rajoissa. Simulaatiotulokset vahvistavat
ehdotetun lähestymistavan tehokkuuden ja turvallisuuden. Lopuksi PLS
otetaan käyttöön suojatussa viestinnässä salassapitokyvyn lisäämiseksi. Tämän
tutkimuksen tarkoituksena on tarjota suojattu tiedonsiirto salaisessa viestinnässä
PLS-tekniikoiden avulla, vaikka Alice epäonnistuisi ja Willie havaitsisi hänet.
Simulaatiotulokset vahvistavat merkittävät parannukset tietoturvassa.
Avainsanat: Aaltoryhmän muodostus, suojattu viestintä, yhteisoptimointi, fyysisen
kerroksen turvallisuus, miehittämätön ilma-alus
As the fifth/sixth generation (5G/6G) wireless transmission has become increasingly ubiquitous and inevitable, ensuring information security becomes more crucial than ever. Therefore, this dissertation focuses on achieving transmission security in unmanned aerial vehicle (UAV)-assisted wireless networks via physical layer security (PLS) and covert communication techniques while also enhancing energy efficiency, transmission performance, and secrecy throughput. First, an energy-efficient UAV data collection and transmission scheme is proposed to prevent eavesdropping. This research aims to maximize the energy efficiency of UAV data collection and secure performance via optimizing the trajectory, flight duration, user scheduling, UAV transmit power, and blocklength simultaneously. Simulation results prove that the proposed scheme can enhance energy efficiency and guarantee information security. Next, a secure intelligent reflecting surface (IRS)-on-UAV network is designed and optimized to defend against an eavesdropper. The beamforming vectors of confidential signals and artificial noise signals, as well as the phase-shift matrix and location of IRS, are jointly optimized to maximize the secrecy rate while constraining the eavesdropping rate within its limit. Simulation results validate the effectiveness and security of the proposed approach. Finally, PLS is introduced into covert communication to increase secrecy throughput. The purpose of this research is to provide more secure data transmission in covert communication using PLS technology to avoid eavesdropping even if Alice fails andWillie detects her. Simulation results confirm the significant improvements in security performance. Keywords: Beamforming, covert communication, joint optimization, physical layer security, unmanned aerial vehicle
As the fifth/sixth generation (5G/6G) wireless transmission has become increasingly ubiquitous and inevitable, ensuring information security becomes more crucial than ever. Therefore, this dissertation focuses on achieving transmission security in unmanned aerial vehicle (UAV)-assisted wireless networks via physical layer security (PLS) and covert communication techniques while also enhancing energy efficiency, transmission performance, and secrecy throughput. First, an energy-efficient UAV data collection and transmission scheme is proposed to prevent eavesdropping. This research aims to maximize the energy efficiency of UAV data collection and secure performance via optimizing the trajectory, flight duration, user scheduling, UAV transmit power, and blocklength simultaneously. Simulation results prove that the proposed scheme can enhance energy efficiency and guarantee information security. Next, a secure intelligent reflecting surface (IRS)-on-UAV network is designed and optimized to defend against an eavesdropper. The beamforming vectors of confidential signals and artificial noise signals, as well as the phase-shift matrix and location of IRS, are jointly optimized to maximize the secrecy rate while constraining the eavesdropping rate within its limit. Simulation results validate the effectiveness and security of the proposed approach. Finally, PLS is introduced into covert communication to increase secrecy throughput. The purpose of this research is to provide more secure data transmission in covert communication using PLS technology to avoid eavesdropping even if Alice fails andWillie detects her. Simulation results confirm the significant improvements in security performance. Keywords: Beamforming, covert communication, joint optimization, physical layer security, unmanned aerial vehicle
Main Author
Format
Theses
Doctoral thesis
Published
2024
Series
ISBN
978-952-86-0443-3
Publisher
Jyväskylän yliopisto
The permanent address of the publication
https://urn.fi/URN:ISBN:978-952-86-0443-3Use this for linking
ISSN
2489-9003
Language
English
Published in
JYU Dissertations
Contains publications
- Artikkeli I: Chen, X., Zhao, N., Chang, Z., Hämäläinen, T., & Wang, X. (2023). UAV-Aided Secure Short-Packet Data Collection and Transmission. IEEE Transactions on Communications, 71(4), 2475-2486. DOI: 10.1109/TCOMM.2023.3244954
- Artikkeli II: Chen, X., Chang, Z. and Hämäläinen, T. Secure transmission for IRS-on-UAV-assisted wireless networks. Submitted.
- Artikkeli III: Chen, X., Chang, Z., Zhao, N., & Hämäläinen, T. (2023). IRS-Based Secure UAV-Assisted Transmission with Location and Phase Shifting Optimization. 2023 IEEE International Conference on Communications Workshops (pp. 1672-1677). IEEE. IEEE International Conference on Communications Workshops. DOI: 10.1109/ICCWorkshops57953.2023.10283558
- Artikkeli IV: Chen, X., Chang, Z. and Hämäläinen, T. Enhancing covert secrecy rate in a zero-forcing UAV jammer-assisted covert communication. Accepted for publication.
- Artikkeli V: Chen, X., Chang, Z., & Hämäläinen, T. (2024). Achieving Improved Security in UAV-Assisted Covert Communication Networks. 2024 IEEE/CIC International Conference on Communications in China (ICCC Workshops) (pp. 323-328). IEEE. IEEE/CIC international conference on communications in China - workshops. DOI: 10.1109/icccworkshops62562.2024.10693776
Copyright© The Author & University of Jyväskylä