Multiscale Molecular Dynamics Simulations of Enhanced Excitation Energy Transport in Organic Microcavities
Abstract
Orgaaniset aurinkosähköratkaisut tarjoavat vaihtoehdon tavanomaisille piipohjaisille
aurinkokennoille, jotka tällä hetkellä hallitsevat globaaleja aurinkosähkömarkkinoita.
Huolimatta useista keskeisistä orgaanisten aurinkokennojen hyödyistä
verrattuna epäorgaanisiin aurinkokennoihin, energian kuljetus orgaanisissa
materiaaleissa on selvästi hitaampaa johtuen niiden rakenteellisesta epäjärjestyksestä.
Tästä epäjärjestyksestä aiheutuen viritysten kantajat liikkuvat vierekkäisten
molekyylipaikkojen välillä epäkoherenttien siirtymien avulla, mikä on tehotonta
verrattuna elektronien ja aukkojen liikkeeseen epäorgaanisissa materiaaleissa,
tehden orgaanisista aurinkokennoista huomattavasti epäorgaanisia tehottomampia.
Ratkaisuna tähän on esitetty molekulaaristen viritysten sekoittamista optisten
kaviteettien rajoitettujen valomoodien kanssa. Vahvan vuorovaikutuksen vallitessa
nämä kaksi osatekijää hybridisoituvat polaritoneiksi kutsutuiksi kvasihiukkasiksi,
joilla on sekä molekyyliviritysten että kaviteetin valomoodien ominaisuudet.
Polaritonien ryhmänopeuden vuoksi niiden etenemisen pitäisi olla
ballistista ja pitkän kantaman etenemistä. Kokeellisten tulosten mukaan polaritonien
eteneminen on kuitenkin monimutkaisempaa, ja se voi olla joko ballistista
tai diffuusiota riippuen valo-ainesysteemin parametreista. Saadaksemme atomitason
tietoa tästä ilmiöstä hyödynnämme monitasoista molekyylidynamiikkamallia,
jossa molekyylejä ja niiden kemiallista ympäristöä mallinnetaan käyttäen
kvantti- ja molekyylimekaniikan yhdistelmää. Tässä väitöskirjassa keskitymme
systemaattisesti tutkimaan viritysenergian kuljettamista orgaanisissa mikrokaviteeteissa.
Simulaatioiden tulosten perusteella esitämme yleisen mekanismin kaviteetin
tehostamalle kuljetukselle. Lisäksi tutkimme kuinka kuljetus muuttuu riippuen
polaritonien dispersiosta ja kaviteetin laatukertoimesta. Esitämme ja testaamme
myös käytännöllistä keinoa tehokkaaseen viritysenergian kuljetukseen
fotokemiallisen reaktion avulla. Uskomme, että tässä väitöskirjassa esitetyt näkemykset
tasoittavat tietä kohti molekyyli-kaviteettisysteemien rationaalista suunnittelua
koherenttia eksitonikuljetusta varten.
Organic photovoltaics provide an alternative to conventional silicon-based solar cells, which currently dominate the global photovoltaics market. Despite several critical advantages of organic solar cells over their inorganic counterparts, the energy transport in organic materials is severely impeded by the structural disorder, which makes the excitation carriers move by means of incoherent hops between neighbouring molecular sites. This process is inefficient in comparison with the motion of electrons and holes in inorganic materials, resulting in significantly lower efficiencies of the organic solar cells. To address this challenge, mixing molecular excitations with confined light modes of optical cavities has been proposed. In the limit of strong interaction, these two constituents hybridize into quasiparticles called polaritons, which inherit properties of both molecular excitons and cavity light modes. Owing to the group velocity of polaritons, their propagation should be ballistic and long-range. However, according to experiments, the transport of polaritons is more intricate and can be either ballistic or diffusive depending on the parameters of the light-matter system. To bring atomistic insights into this phenomenon, we utilise a multiscale molecular dynamics model based on a hybrid Quantum Mechanics/Molecular Mechanics description of the molecules and their chemical environment. In this dissertation, we focus on a systematic investigation of the excitation energy transport in organic microcavities. The results of the performed simulations allow us to propose a general mechanism of such a cavity-enhanced transport. Furthermore, we investigate how the transport is modified along the polariton dispersion and with a change in the cavity quality factor. We also suggest and test a practical means of efficient excitation energy transport by a photochemical reaction. We believe that the insights provided in the dissertation, pave the way towards rational design of molecule-cavity systems for coherent exciton transport.
Organic photovoltaics provide an alternative to conventional silicon-based solar cells, which currently dominate the global photovoltaics market. Despite several critical advantages of organic solar cells over their inorganic counterparts, the energy transport in organic materials is severely impeded by the structural disorder, which makes the excitation carriers move by means of incoherent hops between neighbouring molecular sites. This process is inefficient in comparison with the motion of electrons and holes in inorganic materials, resulting in significantly lower efficiencies of the organic solar cells. To address this challenge, mixing molecular excitations with confined light modes of optical cavities has been proposed. In the limit of strong interaction, these two constituents hybridize into quasiparticles called polaritons, which inherit properties of both molecular excitons and cavity light modes. Owing to the group velocity of polaritons, their propagation should be ballistic and long-range. However, according to experiments, the transport of polaritons is more intricate and can be either ballistic or diffusive depending on the parameters of the light-matter system. To bring atomistic insights into this phenomenon, we utilise a multiscale molecular dynamics model based on a hybrid Quantum Mechanics/Molecular Mechanics description of the molecules and their chemical environment. In this dissertation, we focus on a systematic investigation of the excitation energy transport in organic microcavities. The results of the performed simulations allow us to propose a general mechanism of such a cavity-enhanced transport. Furthermore, we investigate how the transport is modified along the polariton dispersion and with a change in the cavity quality factor. We also suggest and test a practical means of efficient excitation energy transport by a photochemical reaction. We believe that the insights provided in the dissertation, pave the way towards rational design of molecule-cavity systems for coherent exciton transport.
Main Author
Format
Theses
Doctoral thesis
Published
2024
Series
ISBN
978-952-86-0379-5
Publisher
Jyväskylän yliopisto
The permanent address of the publication
https://urn.fi/URN:ISBN:978-952-86-0379-5Use this for linking
ISSN
2489-9003
Language
English
Published in
JYU Dissertations
Contains publications
- Artikkeli I: Sokolovskii, I., Tichauer, R. H., Morozov, D., Feist, J., & Groenhof, G. (2023). Multi-scale molecular dynamics simulations of enhanced energy transfer in organic molecules under strong coupling. Nature Communications, 14, Article 6613. DOI: 10.1038/s41467-023-42067-y
- Artikkeli II: Tichauer, R. H., Sokolovskii, I., & Groenhof, G. (2023). Tuning the Coherent Propagation of Organic Exciton‐Polaritons through the Cavity Q‐factor. Advanced Science, 10(33), Article 2302650. DOI: 10.1002/advs.202302650
- Artikkeli III: Berghuis, A. M., Tichauer, R. H., de Jong, L. M. A., Sokolovskii, I., Bai, P., Ramezani, M., Murai, S., Groenhof, G., & Gómez Rivas, J. (2022). Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays. ACS Photonics, 9(7), 2263-2272. DOI: 10.1021/acsphotonics.2c00007
- Artikkeli IV: Sokolovskii, I., Luo, Y., Groenhof. G. Disentangling Enhanced Diffusion and Ballistic Motion of Excitons Coupled to Bloch Surface Waves with Molecular Dynamics Simulations. Submitted to ACS Photonics. Preprint
- Artikkeli V: Sokolovskii, I., & Groenhof, G. (2024). Photochemical initiation of polariton-mediated exciton propagation. Nanophotonics, 13(14), 2687-2694. DOI: 10.1515/nanoph-2023-0684
Copyright© The Author & University of Jyväskylä