Non-covalent adsorption of neurotransmission-relevant proteins on locally laser-oxidized and pristine graphene

Abstract
Femtosecond pulsed laser two-photon oxidation (2PO) was used to modulate protein adsorption on graphene surfaces on a Si/SiO2 substrate. The adsorption behavior of calmodulin (CaM) and a muscarinic acetylcholine receptor (mAchR) fragment on pristine (Pr) and 2PO-treated graphene were studied, utilizing atomic force microscopy and infrared scattering-type scanning near-field optical microscopy for characterization. The results showed that proteins predominantly bound as a (sub-)monolayer, and selective adsorption could be achieved by carefully varying graphene oxidation level, pH during functionalization, and protein concentration. The most pronounced selectivity was observed at low 2PO levels, where predominantly only point-like oxidized defects are generated. Preferential binding on either Pr or oxidized graphene could be achieved depending on the 2PO and adsorption conditions used. Based on the incubation conditions, the surface area covered by mAchR on single-layer graphene varied from 29% (Pr) vs. 91% (2PO) to 48% (Pr) vs. 13% (2PO). For CaM, the coverage varied from 53% (Pr) vs. 95% (2PO) to 71% (Pr) vs. 52% (2PO). These results can be exploited in graphene biosensor applications via selective non-covalent functionalization of sensors with receptor proteins.
Main Authors
Format
Articles Research article
Published
2024
Series
Subjects
Publication in research information system
Publisher
Royal Society of Chemistry
The permanent address of the publication
https://urn.fi/URN:NBN:fi:jyu-202410246523Use this for linking
Review status
Peer reviewed
ISSN
2755-3701
DOI
https://doi.org/10.1039/d4lf00102h
Language
English
Published in
RSC Applied Interfaces
Citation
  • Lampinen, A., Schirmer, J., Emelianov, A., Johansson, A., & Pettersson, M. (2024). Non-covalent adsorption of neurotransmission-relevant proteins on locally laser-oxidized and pristine graphene. RSC Applied Interfaces, Early online. https://doi.org/10.1039/d4lf00102h
License
CC BY 4.0Open Access
Funder(s)
Jane and Aatos Erkko Foundation
Funding program(s)
Foundation
Säätiö
Additional information about funding
Also, we thank Emil Aaltonen foundation and Jane and Aatos Erkko foundation for the research funding provided.
Copyright© 2024 The Author(s). Published by the Royal Society of Chemistry

Share