Show simple item record

dc.contributor.authorSipilä, Mika
dc.contributor.authorCappello, Claudia
dc.contributor.authorDe Iaco, Sandra
dc.contributor.authorNordhausen, Klaus
dc.contributor.authorTaskinen, Sara
dc.date.accessioned2024-10-23T07:24:07Z
dc.date.available2024-10-23T07:24:07Z
dc.date.issued2025
dc.identifier.citationSipilä, M., Cappello, C., De Iaco, S., Nordhausen, K., & Taskinen, S. (2025). Modelling multivariate spatio-temporal data with identifiable variational autoencoders. <i>Neural Networks</i>, <i>181</i>, Article 106774. <a href="https://doi.org/10.1016/j.neunet.2024.106774" target="_blank">https://doi.org/10.1016/j.neunet.2024.106774</a>
dc.identifier.otherCONVID_243505466
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/97621
dc.description.abstractModelling multivariate spatio-temporal data with complex dependency structures is a challenging task but can be simplified by assuming that the original variables are generated from independent latent components. If these components are found, they can be modelled univariately. Blind source separation aims to recover the latent components by estimating the unknown linear or nonlinear unmixing transformation based on the observed data only. In this paper, we extend recently introduced identifiable variational autoencoder to the nonlinear nonstationary spatio-temporal blind source separation setting and demonstrate its performance using comprehensive simulation studies. Additionally, we introduce two alternative methods for the latent dimension estimation, which is a crucial task in order to obtain the correct latent representation. Finally, we illustrate the proposed methods using a meteorological application, where we estimate the latent dimension and the latent components, interpret the components, and show how nonstationarity can be accounted and prediction accuracy can be improved by using the proposed nonlinear blind source separation method as a preprocessing method.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesNeural Networks
dc.rightsCC BY 4.0
dc.subject.otherblind source separation
dc.subject.otherdimension estimation
dc.subject.otherkriging
dc.subject.othermeteorological data
dc.subject.otherShapley values
dc.titleModelling multivariate spatio-temporal data with identifiable variational autoencoders
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202410236478
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0893-6080
dc.relation.volume181
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Authors. Published by Elsevier Ltd.
dc.rights.accesslevelopenAccessfi
dc.subject.ysomallintaminen
dc.subject.ysokriging-menetelmä
dc.subject.ysomonimuuttujamenetelmät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
jyx.subject.urihttp://www.yso.fi/onto/yso/p3126
jyx.subject.urihttp://www.yso.fi/onto/yso/p2131
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.neunet.2024.106774
jyx.fundinginformationWe acknowledge the support from Vilho, Yrjö and Kalle Väisälä foundation for MS, the support from the Research Council of Finland (453691) to ST, the support from the Research Council of Finland (363261) to KN and the support from the HiTEc COST Action (CA21163) to KN and ST.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0