Show simple item record

dc.contributor.authorDomínguez-Flores, Fabiola
dc.contributor.authorKiljunen, Toni
dc.contributor.authorGroß, Axel
dc.contributor.authorSakong, Sung
dc.contributor.authorMelander, Marko M.
dc.date.accessioned2024-09-11T10:28:23Z
dc.date.available2024-09-11T10:28:23Z
dc.date.issued2024
dc.identifier.citationDomínguez-Flores, F., Kiljunen, T., Groß, A., Sakong, S., & Melander, M. M. (2024). Metal–water interface formation : Thermodynamics from ab initio molecular dynamics simulations. <i>Journal of Chemical Physics</i>, <i>161</i>(4), Article 044705. <a href="https://doi.org/10.1063/5.0220576" target="_blank">https://doi.org/10.1063/5.0220576</a>
dc.identifier.otherCONVID_233315622
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/97032
dc.description.abstractMetal–water interfaces are central to many electrochemical, (electro)catalytic, and materials science processes and systems. However, our current understanding of their thermodynamic properties is limited by the scarcity of accurate experimental and computational data and procedures. In this work, thermodynamic quantities for metal–water interface formation are computed for a range of FCC(111) surfaces (Pd, Pt, Au, Ag, Rh, and PdAu) through extensive density functional theory based molecular dynamics and the two-phase entropy model. We show that metal–water interface formation is thermodynamically favorable and that most metal surfaces studied in this work are completely wettable, i.e., have contact angles of zero. Interfacial water has higher entropy than bulk water due to the increased population of low-frequency translational modes. The entropic contributions also correlate with the orientational water density, and the highest solvation entropies are observed for interfaces with a moderately ordered first water layer; the entropic contributions account for up to ∼25% of the formation free energy. Water adsorption energy correlates with the water orientation and structure and is found to be a good descriptor of the internal energy part of the interface formation free energy, but it alone cannot satisfactorily explain the interfacial thermodynamics; the interface formation is driven by the competition between energetic and entropic contributions. The obtained results and insight can be used to develop, parameterize, and benchmark theoretical and computational methods for studying metal–water interfaces. Overall, our study yields benchmark-quality data and fundamental insight into the thermodynamic forces driving metal–water interface formation.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAIP Publishing
dc.relation.ispartofseriesJournal of Chemical Physics
dc.rightsIn Copyright
dc.subject.otherdensity functional theory
dc.subject.othermolecular dynamics
dc.subject.otherquantum mechanical/molecular mechanical calculations
dc.subject.otherthermodynamics
dc.subject.othercomputational methods
dc.subject.otherliquid solid interfaces
dc.subject.othercatalysts and catalysis
dc.subject.othersolvation
dc.titleMetal–water interface formation : Thermodynamics from ab initio molecular dynamics simulations
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202409115912
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0021-9606
dc.relation.numberinseries4
dc.relation.volume161
dc.type.versionacceptedVersion
dc.rights.copyright© 2024 AIP Publishing
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber338228
dc.relation.grantnumber307853
dc.subject.ysotermodynamiikka
dc.subject.ysotiheysfunktionaaliteoria
dc.subject.ysorajapinnat (pinnat)
dc.subject.ysorajapintailmiöt
dc.subject.ysosimulointi
dc.subject.ysomolekyylidynamiikka
dc.subject.ysopintakemia
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p14558
jyx.subject.urihttp://www.yso.fi/onto/yso/p28852
jyx.subject.urihttp://www.yso.fi/onto/yso/p27705
jyx.subject.urihttp://www.yso.fi/onto/yso/p26891
jyx.subject.urihttp://www.yso.fi/onto/yso/p4787
jyx.subject.urihttp://www.yso.fi/onto/yso/p29332
jyx.subject.urihttp://www.yso.fi/onto/yso/p15067
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1063/5.0220576
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundinginformationM.M.M. and F.D.-F. acknowledge the funding by the Academy of Finland (Project Nos. 307853 and 338228). A.G. and S.S. acknowledge the support of the Dr. Barbara Mez-Starck Foundation. The computational resources were provided by the state of Baden-Württemberg through bwHPC and the German Research Foundation (DFG) under Grant No. INST 40/575-1 FUGG (JUSTUS 2 cluster), by CSC—IT CENTER FOR SCIENCE LTD., and the FGCI—Finnish Grid and Cloud Infrastructure.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright