Approaching Optimal pH Enzyme Prediction with Large Language Models
Zaretckii, M., Buslaev, P., Kozlovskii, I., Morozov, A., & Popov, P. (2024). Approaching Optimal pH Enzyme Prediction with Large Language Models. ACS Synthetic Biology, Early online. https://doi.org/10.1021/acssynbio.4c00465
Julkaistu sarjassa
ACS Synthetic BiologyPäivämäärä
2024Tekijänoikeudet
© The Authors. Published by American Chemical Society
Enzymes are widely used in biotechnology due to their ability to catalyze chemical reactions: food making, laundry, pharmaceutics, textile, brewing─all these areas benefit from utilizing various enzymes. Proton concentration (pH) is one of the key factors that define the enzyme functioning and efficiency. Usually there is only a narrow range of pH values where the enzyme is active. This is a common problem in biotechnology to design an enzyme with optimal activity in a given pH range. A large part of this task can be completed in silico, by predicting the optimal pH of designed candidates. The success of such computational methods critically depends on the available data. In this study, we developed a language-model-based approach to predict the optimal pH range from the enzyme sequence. We used different splitting strategies based on sequence similarity, protein family annotation, and enzyme classification to validate the robustness of the proposed approach. The derived machine-learning models demonstrated high accuracy across proteins from different protein families and proteins with lower sequence similarities compared with the training set. The proposed method is fast enough for the high-throughput virtual exploration of protein space for the search for sequences with desired optimal pH levels.
...
Julkaisija
American Chemical SocietyISSN Hae Julkaisufoorumista
2161-5063Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/241748096
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Tutkijatohtori, SALisätietoja rahoituksesta
P.B. was supported by the Academy of Finland (grant 342908). A.M. was supported by the Russian Science Foundation (RSF-22–74–10098).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
GraphBNC : Machine Learning‐Aided Prediction of Interactions Between Metal Nanoclusters and Blood Proteins
Pihlajamäki, Antti; Matus, María Francisca; Malola, Sami; Häkkinen, Hannu (Wiley-VCH Verlag, 2024)Hybrid nanostructures between biomolecules and inorganic nanomaterials constitute a largely unexplored field of research, with the potential for novel applications in bioimaging, biosensing, and nanomedicine. Developing ... -
Predicting Children's Myopia Risk : A Monte Carlo Approach to Compare the Performance of Machine Learning Models
Artiemjew, Piotr; Cybulski, Radosław; Emamian, Mohammad; Grzybowski, Andrzej; Jankowski, Andrzej; Lanca, Carla; Mehravaran, Shiva; Młyński, Marcin; Morawski, Cezary; Nordhausen, Klaus; Pärssinen, Olavi; Ropiak, Krzysztof (SCITEPRESS Science and Technology Publications, 2024)This study presents the initial results of the Myopia Risk Calculator (MRC) Consortium, introducing an innovative approach to predict myopia risk by using trustworthy machine-learning models. The dataset included approximately ... -
Firefront Forecasting in Boreal Forests : Machine Learning Approach to Predict Wildfire Propagation
Raita-Hakola, Anna-Maria; Pölönen, Ilkka (Copernicus GmbH, 2024)Wildfires have become increasingly prevalent worldwide due to climate change, posing significant threats to human lives, property, and natural ecosystems. The rapid progression of wildfires necessitates predictive computational ... -
Artificial Intelligence and Computational Science
Neittaanmäki, Pekka; Repin, Sergey (Springer, 2022)In this note, we discuss the interaction between two ways of scientific analysis. The first (classical) way is known as Mathematical Modeling (MM). It is based on a model created by humans and presented in mathematical ... -
Machine Learning for Predicting Chemical Potentials of Multifunctional Organic Compounds in Atmospherically Relevant Solutions
Hyttinen, Noora; Pihlajamäki, Antti; Häkkinen, Hannu (American Chemical Society (ACS), 2022)We have trained the Extreme Minimum Learning Machine (EMLM) machine learning model to predict chemical potentials of individual conformers of multifunctional organic compounds containing carbon, hydrogen, and oxygen. The ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.