Näytä suppeat kuvailutiedot

dc.contributor.authorEriksson-Bique, Sylvester
dc.date.accessioned2024-08-29T12:03:31Z
dc.date.available2024-08-29T12:03:31Z
dc.date.issued2024
dc.identifier.citationEriksson-Bique, S. (2024). Equality of different definitions of conformal dimension for quasiself-similar and CLP spaces. <i>Annales Fennici Mathematici</i>, <i>49</i>(2), 405-436. <a href="https://doi.org/10.54330/afm.146682" target="_blank">https://doi.org/10.54330/afm.146682</a>
dc.identifier.otherCONVID_233267455
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/96861
dc.description.abstractWe prove that for a quasiself-similar and arcwise connected compact metric space all three known versions of the conformal dimension coincide: the conformal Hausdorff dimension, conformal Assouad dimension and Ahlfors regular conformal dimension. This answers a question posed by Murugan. Quasisimilar spaces include all approximately self-similar spaces. As an example, the standard Sierpiński carpet is quasiself-similar and thus the three notions of conformal dimension coincide for it. We also give the equality of the three dimensions for combinatorially p-Loewner (CLP) spaces. Both proofs involve using a new notion of combinatorial modulus, which lies between two notions of modulus that have appeared in the literature. The first of these is the modulus studied by Pansu and Tyson, which uses a Carathéodory construction. The second is the one used by Keith and Laakso (and later modified and used by Bourdon, Kleiner, Carrasco-Piaggio, Murugan and Shanmugalingam). By combining these approaches, we gain the flexibility of giving upper bounds for the new modulus from the Pansu–Tyson approach, and the ability of getting lower bounds using the Keith–Laakso approach. Additionally the new modulus can be iterated in self-similar spaces, which is a crucial, and novel, step in our argument.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSuomen matemaattinen yhdistys
dc.relation.ispartofseriesAnnales Fennici Mathematici
dc.rightsCC BY-NC 4.0
dc.subject.otherconformal dimension
dc.subject.otherAssouad dimension
dc.subject.otherAhlfors regular
dc.subject.otherself-similar
dc.subject.othercombinatorial Loewner property
dc.subject.othermodulus
dc.titleEquality of different definitions of conformal dimension for quasiself-similar and CLP spaces
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202408295744
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange405-436
dc.relation.issn2737-0690
dc.relation.numberinseries2
dc.relation.volume49
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 The Finnish Mathematical Society
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber356861
dc.subject.ysokvasikonformikuvaukset
dc.subject.ysometriset avaruudet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p39799
jyx.subject.urihttp://www.yso.fi/onto/yso/p27753
dc.rights.urlhttps://creativecommons.org/licenses/by-nc/4.0/
dc.relation.doi10.54330/afm.146682
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramPostdoctoral Researcher, AoFen
jyx.fundingprogramTutkijatohtori, SAfi
jyx.fundinginformationThe author was partially supported by Finnish Academy Grants n. 345005 and n. 356861.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC 4.0