Show simple item record

dc.contributor.authorRadojičić, Una
dc.contributor.authorNordhausen, Klaus
dc.contributor.editorAnsari, Jonathan
dc.contributor.editorFuchs, Sebastian
dc.contributor.editorTrutschnig, Wolfgang
dc.contributor.editorAsunción Lubiano, María
dc.contributor.editorÁngeles Gil, María
dc.contributor.editorGrzegorzewski, Przemyslaw
dc.contributor.editorHryniewicz, Olgierd
dc.date.accessioned2024-08-21T09:25:51Z
dc.date.available2024-08-21T09:25:51Z
dc.date.issued2024
dc.identifier.citationRadojičić, U., & Nordhausen, K. (2024). Order Determination in Second-Order Source Separation Models Using Data Augmentation. In J. Ansari, S. Fuchs, W. Trutschnig, M. Asunción Lubiano, M. Ángeles Gil, P. Grzegorzewski, & O. Hryniewicz (Eds.), <i>Combining, Modelling and Analyzing Imprecision, Randomness and Dependence</i> (pp. 371-379). Springer. Advances in Intelligent Systems and Computing, 1458. <a href="https://doi.org/10.1007/978-3-031-65993-5_46" target="_blank">https://doi.org/10.1007/978-3-031-65993-5_46</a>
dc.identifier.otherCONVID_233411155
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/96709
dc.description.abstractWe propose a robust estimator for the number of latent components in an internal noise model within the second-order source separation (SOS) framework. Our approach utilizes a data augmentation strategy in conjunction with the robust SOS approach eSAM-AMUSE, which combines information from eigenvalues and variations of eigenvectors of eSAM-AMUSE. The resulting dimension estimate can be visualized using a ladle plot. Through a simulation study, we demonstrate the superior properties of the new estimator, which outperforms the bootstrap-based AMUSEladle estimator.en
dc.format.extent565
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofCombining, Modelling and Analyzing Imprecision, Randomness and Dependence
dc.relation.ispartofseriesAdvances in Intelligent Systems and Computing
dc.rightsIn Copyright
dc.titleOrder Determination in Second-Order Source Separation Models Using Data Augmentation
dc.typeconferenceObject
dc.identifier.urnURN:NBN:fi:jyu-202408215602
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-3-031-65992-8
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange371-379
dc.relation.issn2194-5357
dc.type.versionacceptedVersion
dc.rights.copyright© 2024 the Authors
dc.rights.accesslevelembargoedAccessfi
dc.relation.conferenceInternational Conference on Soft Methods in Probability and Statistics
dc.subject.ysomallintaminen
dc.subject.ysotilastomenetelmät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
jyx.subject.urihttp://www.yso.fi/onto/yso/p3127
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1007/978-3-031-65993-5_46
jyx.fundinginformationThe work of Una Radojičić is supported by the Austrian Science Foundation, project number I 5799-N.
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright